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Abstract 27 

Transcripts are potential therapeutic targets, yet bacterial transcripts remain biological dark matter with 28 

uncharacterized biodiversity. We developed and applied an algorithm to predict transcripts for 29 

Escherichia coli K12 and E2348/69 strains (Bacteria:gamma-Proteobacteria) with newly generated ONT 30 

direct RNA sequencing data while predicting transcripts for Listeria monocytogenes strains Scott A and 31 

RO15 (Bacteria:Firmicute), Pseudomonas aeruginosa strains SG17M and NN2 strains (Bacteria:gamma-32 

Proteobacteria), and Haloferax volcanii (Archaea:Halobacteria) using publicly available data. From >5 33 

million E. coli K12 ONT direct RNA sequencing reads, 2,484 mRNAs are predicted and contain more than 34 

half of the predicted E. coli proteins. While the number of predicted transcripts varied by strain based 35 

on the amount of sequence data used for the predictions, across all strains examined, the average size 36 

of the predicted mRNAs is 1.6-1.7 kbp while the median size of the predicted bacterial 5’- and 3’- UTRs 37 

are 30-90 bp. Given the lack of bacterial and archaeal transcript annotation, most predictions are of 38 

novel transcripts, but we also predicted many previously characterized mRNAs and ncRNAs, including 39 

post-transcriptionally generated transcripts and small RNAs associated with pathogenesis in the E. coli 40 

E2348/69 LEE pathogenicity islands. We predicted small transcripts in the 100-200 bp range as well as 41 

>10 kbp transcripts for all strains, with the longest transcript for two of the seven strains being the nuo 42 

operon transcript, and for another two strains it was a phage/prophage transcript. This quick, easy, 43 

inexpensive, and reproducible method will facilitate the presentation of operons, transcripts, and UTR 44 

predictions alongside CDS and protein predictions in bacterial genome annotation as important 45 

resources for the research community. 46 

Importance 47 

Our understanding of bacterial and archaeal genes and genomes is largely focused on proteins since 48 

there have only been limited efforts to describe the bacterial/archaeal RNA diversity. This contrasts with 49 
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studies on the human genome, where transcripts were sequenced first through large scale EST 50 

sequencing projects that preceded the release of the human genome over two decades ago. We 51 

developed an algorithm for the quick, easy, inexpensive, and reproducible prediction of bacterial and 52 

archaeal transcripts from ONT direct RNA sequencing data. These predictions are urgently needed for 53 

more accurate studies examining bacterial/archaeal gene regulation, including regulation of virulence 54 

factors, and for the development of novel RNA-based therapeutics and diagnostics to combat bacterial 55 

pathogens, like those with extreme antimicrobial resistance.  56 
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Introduction 57 

Genomics, genome-enabled technologies, computational biology, and large-scale data mining are 58 

essential for rigorous, modern experiments on all organisms. Whole genome sequencing and protein-59 

based annotation are now routine, low-cost approaches for analyzing bacteria and archaea. But often 60 

the annotation, and thus analysis and experimental validation, is limited to predicted protein-coding 61 

regions and a few highly conserved non-coding RNAs (ncRNAs) like the rRNAs. Yet, pathogen RNA 62 

transcripts, particularly ncRNAs and RNA-mediated regulation, offer an unexplored set of druggable 63 

targets, diagnostics, and potential therapeutics (1). In this context, a transcript is a physical RNA 64 

molecule that can be detected by sequencing RNA that has discrete start and end sites generated by a 65 

diversity of molecular mechanisms (e.g., promoter/terminator, post-transcriptional processing).  66 

Transcripts are encoded within operons but are distinct from operons, which also include regulatory 67 

regions. Operons are widespread in bacterial/archaeal genomes, with ~630-700 operons in Escherichia 68 

coli (2). Experimentalists have predicted operons using FPKM and/or sequencing depth without 69 

algorithms (e.g. (3, 4)), and efforts have been made to develop algorithms for their prediction (5-11). For 70 

example, the most recent version of Rockhopper predicts operons using a naïve Bayes classifier to 71 

combine strand, intergenic distance, and coordinated differential expression in a unified probabilistic 72 

model (12). Most operon predictions rely on the decades-old paradigm of operons as put forth by Jacob 73 

and Monod (13), which was summarized recently as “sets of contiguous and functionally related genes 74 

cotranscribed from a single promoter up to a single terminator” (14), including the operator regulatory 75 

region.  76 

Fundamentally, the classical definition of operon is a DNA-based definition, defining a region in DNA 77 

that extends beyond the RNA-based transcripts to include the promoter/operator and terminator. 78 

Operons can have multiple transcripts due to post-transcriptional processing (15), alternate terminators 79 
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(e.g. attenuation) (8, 16, 17), and alternate transcriptional initiation sites (14). There is a need for both 80 

DNA-based annotation of operons and RNA-based annotation of transcripts. Fundamentally, RNA-seq is 81 

transcript quantification, therefore it should be measured at the RNA/transcript level. Rockhopper has 82 

been used for differential expression of its predicted operons (9), but it yields different results than the 83 

corresponding transcript-focused analysis (14). 84 

Currently mostly bacterial/archaeal RNA-seq studies are conducted using coding sequence (CDS) 85 

predictions. Even when issues with counting algorithms are mitigated for a CDS-focused analysis of 86 

polycistronic transcripts (18), measurements of CDSs in polycistronic transcripts are dependent on one 87 

another yet are treated as independent measurements with the statistics used to detect differential 88 

expression. This results in errors in variance estimations in differential expression tools (19). 89 

Comparisons of StringTie and Rockhopper have previously noted some of these issues, as well as the 90 

need for long RNA sequence reads to resolve these problems (8). 91 

E. coli K12 is a well-studied genome that has some transcript predictions (17, 20), anti-sense RNA 92 

characterization (21), and transcriptional start site and terminator predictions (17, 22-25), all of which 93 

are aggregated and manually curated in RegulonDB (26) and EcoCyc (27). But even for this well studied 94 

organism, reference GFF files lack transcript annotations, and it can be difficult, if not impossible, to 95 

ascertain and use transcript structures for a differential expression analysis. The current work done to 96 

characterize transcripts and transcriptional regulation in E. coli (e.g., (26)), while laudable and necessary, 97 

is not possible for more than a few microorganisms, yet there is immense bacterial biodiversity. 98 

Therefore, we sought to develop a fast, simple, rigorous, and reproducible method for identifying 99 

bacterial transcripts that can be widely applied and takes advantage of recent advances in RNA 100 

sequencing, including PacBio IsoSeq and Oxford Nanopore Technologies (ONT) direct RNA Sequencing 101 

(14, 28-30). Transcript predictions will enable differential expression analyses using transcripts such that 102 

the analyses can be expanded to include non-coding RNAs (ncRNAs) and also use the latest transcript-103 
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based differential expression analysis tools like Salmon (31) and Kallisto (32). Transcript predictions are 104 

also needed to inform consequences of genetic knock-in and knock-out experiments (e.g., (33)), identify 105 

regulatory sequences (e.g., (8, 16, 34)) and detect post-transcriptional processing (e.g., (15, 35)). Recent 106 

studies (8, 28, 36) reveal a much more complex picture of bacterial transcripts with post-transcriptional 107 

processing and potentially multiple promoters and terminators, including transcripts beginning or 108 

ending in the middle of adjacent coding sequences due to the coding density (17). 109 

In this study, we describe a quick, easy, inexpensive, and reproducible method for whole transcriptome 110 

sequencing and annotation using ONT direct RNA sequencing. We directly test the methods on the E. 111 

coli K12 and E2348/69 strains and then also apply the algorithm to existing public data for Pseudomonas 112 

aeruginosa strains SG17M and NN2 (37), Listeria monocytogenes strains Scott A and RO15 (38), and 113 

Haloferax volcanii (39). Ultimately, we envision genomes where operons, transcripts, and UTRs are all 114 

annotated alongside CDSs and proteins in GFF files. 115 

Results 116 

ONT direct RNA sequencing of E. coli transcripts 117 

We generated ONT direct RNA sequencing data (Figure 1) from RNA isolated from E. coli K12 and the 118 

pathogenic E. coli E2348/69 (40) grown at 37 °C with aeration in LB and DMEM media (Table 1, Table 119 

A1), which are virulence gene inducing growth conditions (15, 41-44). E. coli K12 is a well-studied 120 

genome including previous transcript predictions (17, 20), anti-sense RNA characterization (21), and 121 

transcriptional start site and terminator predictions (17, 22-25), all of which are aggregated and 122 

manually curated in RegulonDB (26) and EcoCyc (27). The inclusion of E. coli E2348/69 allows us to 123 

interrogate operon predictions in a related but clinically-relevant Enteropathogenic E. coli (EPEC) strain 124 

with plasmids (40) that has pathogenesis-associated operons, which have had fine scale analysis of 125 

transcription (15, 44). We focused on using ONT direct RNA sequencing, where RNA is sequenced 126 
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directly in the pore (Figure 1K) to predict bacterial transcripts because it does not have template 127 

switching (36). Additionally, ONT direct RNA sequencing data lack genomic DNA contamination since 128 

sequenced RNA and DNA have markedly different signals with RNA advancing through the pore more 129 

slowly and with a higher electrical current range than DNA (Figure 1E). This difference between RNA and 130 

DNA is seen in every RNA read as the sequencing transitions from the DNA-based adaptor to the RNA, 131 

but is used to eliminate DNA reads with high fidelity. Therefore, we are confident that every read we 132 

analyze arose from a transcript, which is tremendously powerful when considering alternative 133 

transcripts, anti-sense transcripts, and non-coding RNA (ncRNA) predictions.  134 

Predicted E. coli K12 transcripts 135 

Using the 5,266,309 ONT reads generated for E. coli K12 (Table 1), we predicted transcripts using an 136 

algorithm we developed, which is described below. We identified 3,902 strand-specific contiguously 137 

transcribed (CT) regions in the K12 genome with 1,055 that have >20 reads that we used for predictions 138 

(Table 1). The 1,055 CT regions used for predictions are on average 4 kbp and include 521 regions on the 139 

(+)-strand spanning 2.07 Mbp and 534 regions on the (-)-strand spanning 2.14 Mbp (Table 1). There are 140 

3,618 predicted transcripts with 1,465 predicted transcripts on the (+)-strand and 2,153 predicted 141 

transcripts on the (–)-strand (Table 1). There are 289 (27%) regions with only a single transcript 142 

predicted (Table 1), meaning the majority of CT regions contain more than one transcript either because 143 

operons overlap or because there are multiple overlapping transcripts. 144 

Of the 3,618 predicted transcripts, 2,484 are predicted to be mRNAs and 1,134 are predicted to be 145 

ncRNAs (Table 1). mRNAs were defined as transcripts that have at least one annotated CDS found 146 

completely within the transcript boundaries, whereas a ncRNA was defined as a transcript that lacks a 147 

CDS found completely within the transcript boundaries. It is important to note that frequently the 5’-148 

end of CDSs (and the N-terminal portion of the protein encoded by them) are incorrectly annotated, 149 
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such that the assignment of transcripts as mRNA/ncRNA needs manual refinement in the future 150 

including possible curation of the N-termini of proteins; additionally, protein annotation may be 151 

informed and improved through transcript structural annotation. However, given these definitions, the 152 

average mRNA was 1,618 bp with the smallest and largest being 131 bp and 13,305 bp, respectively 153 

(Table 1). The average ncRNA was 517 bp with the smallest and largest being 52 bp and 2,947 bp, 154 

respectively (Table 1). Of these 1,134 predicted ncRNAs, 23 (2%) were already described in the 155 

reference GFF file and are ~23% of the 98 previously annotated ncRNAs in the reference GFF file (Table 156 

1). 157 

Of the 4,494 annotated coding sequences (CDSs), 2,357 were in an annotated transcript while 2,775 158 

were not, suggesting that with these growth conditions we could annotate transcripts for approximately 159 

half the CDSs. Of those, 1,341 (57%) CDSs were associated with a single transcript and 90% of CDSs were 160 

associated with <4 transcripts (Table 1, Figure 2A). While 1,564 of the predicted transcripts contained 161 

only a single CDS (Table 1, Figure 2B), the predicted transcript with the largest number of CDSs encoded 162 

within it contained 17 CDSs, including glf, gnd, insH7, rfbABCDX, and wbbHIJKL (Table 1). 163 

From the predicted mRNAs (excluding ncRNAs) and the predicted CDSs within those mRNAs, we 164 

predicted the 5’- and 3’-untranslated regions (UTRs). The median 5’-UTR is 53 bp and the most common 165 

length (mode) is 14 bp, while the median 3’-UTR has a median of 72 bp, and most common length 166 

(mode) of 36 bp (Table 1, Figure 2CD). There are concerns that ONT sequencing cannot capture the 167 

terminal 5’-end of transcripts. However, these results suggest that we are very close since it has been 168 

previously shown that the 5’-UTR is 20-40 nt (24). 169 

Complexity of bacterial transcription 170 

Our predictions detect tremendous bacterial transcript structural variation while confirming previous 171 

experimentally verified predictions. For example, in the thr operon, three transcripts are predicted, 172 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2024.04.02.587803doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.02.587803
http://creativecommons.org/licenses/by-nc/4.0/


9 

including the previously described thrL transcript for the leader peptide, the thrLABC transcript, and a 173 

thrBC transcript (45) (Figure 1J). 174 

Other regions are more complex, like the region from 4,080-4,087 kbp encompassing fdoGHI and fdhE 175 

(Figure 3). EcoCyc and RegulonDB describe this entire region as an operon with two promoters—one 176 

that makes a transcript for the entire region and a second smaller internal transcript encoding fdhE that 177 

is started from a promoter within fdoH (Figure 3). The ONT data suggest differential expression of the 178 

transcript isoforms where fdoGHI are largely untranscribed in DMEM relative to LB while fdhE is 179 

transcribed in both (Figure 3). A small ncRNA is observed in DMEM when fdoG is not transcribed. (Figure 180 

3). Our algorithm predicts 11 different transcripts in this entire region, including the fdhE transcript that 181 

starts in fdoH (Figure 3). As has been seen for decades in eukaryotic transcript prediction, automated 182 

predictions require manual curation. The algorithm likely underpredicts long transcripts, due to the 183 

limitations of the ONT technology as described below, so despite evidence for a complete fdoGHI-fdhE 184 

transcript, we do not predict it, likely because there is insufficient depth (Figure 3). But there is robust 185 

evidence for many of the other transcripts predicted that are not currently in RegulonDB, EcoCyc or the 186 

GFF file, including a transcript of just fdoG, just fdoGHI, two putative overlapping small RNAs that 187 

overlap the end of fdoI and the beginning of the fdhE transcript, and four putative overlapping small 188 

RNAs that overlap the beginning of fdoG (Figure 3). In a typical differential expression analysis that uses 189 

CDS regions., these four putative small RNAs overlapping fdoG would likely be misinterpreted as 190 

expression of fdoG in DMEM. Importantly, while we detect these transcripts, we cannot ascertain that 191 

they have a function, and they could merely be stable degradation products of transcription. Regardless, 192 

they are likely to confound and obfuscate differential expression analyses. 193 

Across the 11 transcripts predicted in the fdoGHI/fdhE region, there is imprecision in transcript start and 194 

end sites, as previously described (15, 24). This variability includes slightly longer transcripts that extend 195 

beyond fdhE that are observed under both growth conditions and was reproducible across all 196 
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sequencing runs (Figure 3). This variability is seen in many regions, suggesting that transcription and 197 

termination are flexible. 198 

Predicted E. coli E2348/69 transcripts 199 

The 60% fewer reads sequenced for E. coli E2348/69 relative to K12 led to fewer transcript predictions 200 

(Table 1), particularly fewer ncRNA predictions, but otherwise the results are quite similar. The longest 201 

predicted mRNA for E2348/69 is nuoABCEFGHIJKLMN, a known operon (46, 47). Unlike the K12 strain, 202 

the E2348/69 strain contains two plasmids (NZ_CP059841.1 and NZ_CP059842.2, respectively) and 203 

mRNA and ncRNAs were predicted on both plasmids. Of the 405 predicted ncRNAs, 3 (1%) were already 204 

described in 4 ncRNAs in the reference GFF. Additional known ncRNAs missing in the reference GFF file 205 

were identified, including glmY and glmZ, both of which are important for regulation of the LEE operon 206 

and thus virulence (44). 207 

The transcription of LEE operons, which are found in the E2348/69 genome, has been extensively 208 

studied. In LEE4, a promoter upstream of sepL produces a sepL-espADB transcript that is post-209 

transcriptionally cleaved with RNAse E to generate an espADB transcript and a sepL transcript that is 210 

then further endonucleolytically degraded (15) (Figure 4). A putative transcriptional terminator was 211 

previously identified downstream of espB within cesD2, but it was hypothesized that there is 212 

readthrough transcription of the terminator (15). The ONT sequencing data here provide evidence for 213 

readthrough of the transcriptional terminator. Very few reads included both the cesD2-vapB-escF region 214 

and sepL, which may be an indication that processing to remove sepL is more efficient on the longer 215 

transcript that terminates after espF, although we can’t rule out that the 6 kbp transcript of the whole 216 

region was not predicted due to the size limitations of ONT direct RNA sequencing. Consistent with the 217 

latter, the 4 kbp sepL-espADB transcript has been detected by Northern blots in multiple studies (15, 218 

44), yet it is very infrequently detected here. Prior 5’- and 3’-RACE of LEE4 transcripts revealed variation 219 
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in transcript ends, which we also detect, with multiple reads supporting a longer transcript at the 5’-end 220 

of sepL, which seems to be a frequent phenomenon across all transcripts. We also predict single CDS 221 

transcripts that encode for espA, espB, and espF. 222 

Data re-use and transcripts in Listeria monocytogenes, Pseudomonas aeruginosa, and 223 

Haloferax volcanii 224 

Through data re-use, we also predicted transcripts using published ONT data for P. aeruginosa strains 225 

SG17M and NN2 (37), L. monocytogenes strains Scott A and RO15 (38), and H. volcanii (39). All five of 226 

these strains had fewer sequencing reads than we had for E. coli, leading to fewer predictions of 227 

transcripts, including both mRNA and ncRNA (Table 1). Yet we were still able to predict 274-1103 228 

transcripts across the five strains and those transcripts were similar to the E. coli data with respect to 229 

mean/median/mode 3’-UTR lengths, proportion of single CDS transcripts, proportion of single transcript 230 

CDSs, size distribution of mRNA, and size distribution of ncRNA (Table 1). The 5’-UTR predictions were 231 

similar across the bacterial strains, but the archaeal reads frequently did not extend beyond the 5’-end 232 

of the CDS (Table 1). For a monocistronic transcript, the mRNA is erroneously called a ncRNA, while for a 233 

polycistronic transcript, a very long 5’-UTR is predicted resulting in an increased median (Table 1). It may 234 

be the 5’-end predictions of the CDS are flawed due to calling the longest ORF, or it may be that the H. 235 

volcanni UTRs are shorter than the bacterial 5’-UTRS and/or not well captured with the ONT technology. 236 

Across all seven strains examined, the longest transcript varied, although two were phage transcripts 237 

and two were nuo transcripts (Table 1). The inclusion of L. monocytogenes was an important test case 238 

since it is a firmicute with leading strand transcription bias (48), which led to fewer and longer CT 239 

regions, but did not prevent high quality transcript predictions. While there was ONT direct RNA data for 240 

further species of gamma-Proteobacteria, we limited this analysis to just two species with two strains 241 

each from this taxon. Overall, these results suggest that this simple sequencing method combined with 242 
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our algorithm can be applied widely to archaeal/bacterial genomes to enable rigorous and robust 243 

transcript predictions. 244 

Differential expression analysis 245 

These transcript predictions can be used in a differential expression analysis using Salmon and EdgeR as 246 

demonstrated with existing E2348/69 short read data from the SRA (PRJEB36845/E-MTAB-88804) and 247 

the long read ONT data generated here (Figure 5). Even when analyzing the same Illumina data, there is 248 

discordance between the TPM values calculated for transcripts and CDSs (Figure 5GHI). There is also 249 

discordance when quantifying the ONT data, which might be attributed to many factors, which bears 250 

further investigation but is beyond the scope of this manuscript. We have concerns about using ONT 251 

reads for differential expression analysis since shorter transcripts are preferentially sequenced relative 252 

to longer transcripts (Figure 6F, as described below). In addition, the larger numbers of Illumina reads 253 

generated is beneficial in the calculation of TPMs and subsequent statistical analyses. 254 

Features and Limitations of ONT direct RNA sequencing of E. coli transcripts 255 

To develop rigorous methods and algorithms to predict these transcripts, we needed to understand the 256 

characteristics of ONT direct RNA sequencing of bacterial transcripts, which we expect to differ from 257 

sequencing of eukaryotic transcripts given the differing physical features and stability of prokaryotic and 258 

eukaryotic RNA. Overall, operons >5 kbp are difficult to obtain in a single read (Figure 6A), but reads can 259 

be sequenced that span most predicted operons as well as exceed the boundaries of an existing operon 260 

prediction (Figure 6AB). While E. coli has known transcripts >10 kbp, we do not generate reads >9 kbp 261 

(Table 1). This is, at least in part, likely due to the ONT technology since we observe that (a) this is 262 

reproducible across multiple systems and RNA molecules we know must be full length, like rRNAs 263 

(Figure 6C), (b) there is 5’-truncation of transcripts in 11.7 kbp full-length in vitro transcribed (IVT) 264 

polyadenylated RNA (Figure 6D), and (c) there are many incomplete reads for the 1.4 kbp yeast 265 
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enolase 2 (ENO2) RNA calibration strand provided by ONT (Figure 6E). Sequenced transcripts are also 3’-266 

truncated (Figures 1ABCD, 3AC, 4ABCD), as previously described for ONT (28, 36, 37) and PacBio IsoSeq 267 

(30) sequencing of bacterial transcripts, possibly from (a) random fragmentation of RNA, (b) RNA 268 

degradation, and/or (c) incomplete transcription in a bacterial cell. Additionally, we found that shorter 269 

transcripts are preferentially sequenced relative to longer transcripts (Figure 6F). This is despite 270 

counts/RPKMs being reported as well correlated between Illumina cDNA-based sequencing, ONT cDNA-271 

based sequencing, and ONT direct RNA sequencing (49), as well as when nanopore direct RNA 272 

sequencing CPMs are compared to the absolute concentration of a spike-in (50). 273 

To address incomplete reads and preferential sequencing of shorter transcripts, we developed a method 274 

that first predicts transcript start/stop sites in locations where there is an over-abundance of reads 275 

starting and ending. Subsequently, the actual transcripts are defined by measuring the strength of the 276 

connection between those start and stop sites using a model that supports the characteristics of 277 

truncated transcripts where smaller transcripts are preferentially sequenced. In this way, we can predict 278 

12-15 kbp mRNAs (Table 1), despite having a shorter max ONT read length (Figure A1). 279 

One of the features of ONT direct RNA sequencing is the ability to use changes in electrical current to 280 

detect RNA modifications including N6-methyladenosine (m6A), 5-methylcytosine (m5C), inosine, 281 

pseudouridine, and many more (51). At a minimum, posttranscriptional modifications are expected in 282 

bacterial tRNA and rRNA (52), but might also be present in mRNA and would lead to nonrandom 283 

changes in sequencing depth and base calling errors (53, 54). To alleviate this issue, we use a depth 284 

calculation computed assuming every base is equally present in a read using start/end positions of bed 285 

files for mapped reads. This also enables predictions in the presence of errors in the reference or 286 

sequence divergence from the reference (e.g. (55)).  287 
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Using only read end positions may also facilitate predictions of transcripts for one strain using data from 288 

a different strain. However, given that we haven’t ascertained how much transcript structural diversity 289 

there is between strains, it may be ill-advised. For that reason, we did not, for example, use the SG17M 290 

and NN2 data to make available predictions for the research community for the frequently used P. 291 

aeruginosa PA01. 292 

Chimeric RNA sequencing reads were detected in all samples, including chimeras between the ONT 293 

ENO2 calibration strand and sample RNA (Figure 1H). A subset of these are in silico chimeric reads, with 294 

a spike observed in the electrical current when analyzing the raw signal data, indicating an open pore 295 

state that was missed by the MinKNOW software. Others lack this spike and could be either ligase-296 

mediated chimeras or in silico-mediated chimeras where the open pore state was too short to be 297 

detected (Figure A2) (56). In our analysis, this was addressed by removing the clipped portions of 298 

mappedreads. When mapping reads to a reference genome, portions of a mapped read that do not align 299 

with the reference will be either “soft-clipped” or “hard-clipped.” A soft clipped read has a portion that 300 

does not align to any other area of the reference (e.g. the ENO2 portion of an ENO2/mRNA chimeric 301 

read), whereas a hard clipped read has two portions that align to different parts of the genome. For 302 

soft- and hard-clipped reads we used the primary alignment, ignoring the clipped portion of the read.  303 

Transcript Prediction Algorithm 304 

We developed an algorithm to predict transcripts based on these characteristics and applied it as 305 

described above. Each CT region is examined separately along with the reads completely contained 306 

within that region. CT regions are initially defined through the bed input file and subsequently refined to 307 

subdivide regions based on a minimum depth cut-off (default=2). Ultimately a region needs to have a 308 

minimum number of reads fully contained within it to be considered (default=2). The change in depth of 309 
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the sequencing reads for each genomic position of the CT region (Dreg) ignoring mismatches/indels is 310 

calculated as  311 

ΔDreg = Dreg (n+1) – Dreg (n) 312 

Potential start and stop sites are predicted at positions where ΔDreg is sufficiently positive/negative and 313 

always includes the first and last position of the region. These predictions require that |ΔDreg| surpasses 314 

a threshold (default=4). ONT sequencing has issues identifying precise ends of transcripts due to polyA-315 

trimming as well as sequencing 5’-ends, such that predicted start/stop sites in close proximity 316 

(default=100) are grouped. 317 

Candidate transcripts are predicted using the Cartesian product of all predicted start and stop sites. The 318 

total read count (Ntot) is calculated from the number of total reads that are mapped to all transcripts 319 

that fully contains them, allowing for mapping to multiple transcripts. The count of exclusively assigned 320 

reads (Nea) is calculated after mapping each read to the shortest transcript that fully contains it. The 321 

candidate transcripts are processed from shortest to longest computed as Ratio = Nea / Ntot. If this ratio 322 

is less than the threshold (default=0.2), the candidate transcript is discarded. If possible, reads from 323 

discarded transcripts are re-assigned to longer transcripts, and the Nea is recalculated such that reads 324 

initially assigned to now discarded transcripts can be used to support a longer transcript. All transcripts 325 

that meet the ratio at the end of the analysis are reported in a gff file and a bed file. 326 

Assembling ONT RNA reads 327 

We attempted to assemble the ONT direct RNA reads with existing tools, including TAMA 328 

(tc_version_date_2020_12_14) (57), Cupcake (v.29.0.0) (58), and StringTie (v1.3.4d) (59). None of the 329 

existing tools recapitulated the complexity of the bacterial transcripts accurately, leading us to develop a 330 

new algorithm for the prediction of bacterial transcripts (Figure A3). 331 

Discussion 332 
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In biology, dark matter is often used to describe functional portions of genomes that are not described 333 

or annotated. In most bacteria, transcripts are largely dark matter, with CDSs often serving as a proxy, 334 

albeit a poor one. Here, we show that bacterial long read transcriptome data can be used to predict 335 

bacterial transcripts using a tool designed for the complexities and nuances of prokaryotic transcripts. 336 

Application of this tool to ONT data from three organisms revealed extensive transcript structural 337 

variation, transcription of RNA on both strands in some regions, overlapping transcripts, and a diversity 338 

of non-coding RNAs. Fundamental biological differences such as a high coding density and polycistronic 339 

transcripts in bacterial genetics lead to problems in applying transcript prediction tools developed for 340 

the human genome. We cannot merely apply the same laboratory and computational methods that 341 

were designed and optimized for humans and eukaryotic model organisms, with the false assumption 342 

that they will work because bacteria are “simpler” than humans.  343 

The transcript structural diversity highlights the need for algorithmic and analysis improvements that are 344 

important for rigorous differential expression analyses, molecular evolution analyses, and other analyses 345 

as well as laboratory experiments like making knock-outs/ins or promoter analysis. Coupling this with a 346 

re-analysis of existing E. coli proteomics data would be enlightening and informative in understanding if 347 

transcripts annotated as ncRNAs are producing previously undescribed proteins/peptides. 348 

Yet, there is much room for improvement for bacterial transcript predictions, both through lab 349 

experimentation and bioinformatics. We hope that attention to the recent developments in bacterial 350 

transcript sequencing will lead to the development of more bioinformatics tools with a richness like that 351 

seen for eukaryotic transcript prediction. The greatest improvement in the lab would be in obtaining 352 

more full-length reads, particularly for long transcripts, which is a challenge for all long-read sequencing 353 

platforms. For ONT, the new chemistry may improve the length, and further improvements may be 354 

possible by altering the reverse transcription method needed to remove RNA secondary structure by 355 

changing the enzyme (60).  356 
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The issue of missing the last few bases of the read, which represents the 5’-end of the transcript, is a 357 

more significant issue for those looking for single base pair resolution of transcript ends. Ligating an 358 

adaptor to the read prior to sequencing shows promise in addressing that issue (50, 61). However, these 359 

are only likely to improve recovery of the 5’-ends of transcripts, but we saw a significant amount of 360 

fragmentation at the 3’-ends that may be either incomplete transcription, 3′-degradation of transcripts, 361 

random breakage, or sequencing biases that need to be better understood.  362 

Incomplete transcription is intriguing and may reflect the fundamental biology since (a) bacterial 363 

transcription and translation are coupled and (b) bacterial transcripts are short-lived and frequently in 364 

the process of being synthesized, since bacterial mRNAs are made at a rate of 40-80 nt/sec (62) while 365 

the average mRNA half-life is only 2-10 minutes (63). In contrast, eukaryotic RNAs have to be spliced to 366 

create mature mRNA before being exported from the nucleus and have increased stability and a longer 367 

half-life. 368 

Some have noted the inaccuracy of ONT sequencing. There is the base inaccuracy, which should not 369 

solely be considered inaccuracy. RNA is modified with over >160 different modifications (64), and much 370 

of the inaccuracy is actually hyperaccuracy that is detecting those modifications but still trying to make 371 

assignment in four base space. It is actually the notion that RNA sequence is in four base space that is 372 

issue. That will improve as people develop base callers that expand beyond just four base space. We 373 

avoid base “inaccuracy” by using only the read mapping coordinates.  374 

When discussing taxonomy, Stephen J. Gould emphasized that “classifications both reflect and direct 375 

our thinking” (65). Going on to say that “the way we order represents the way we think” (65). 376 

Annotation has many similarities to taxonomy, and similarly genome annotation both reflects and 377 

directs our thinking. For bacteria, annotation is protein-centric, influencing our results and ways of 378 

thinking. Historically, this is likely due to the connection between the definition of a gene and protein, 379 
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but practically it also relates to the ease with which we can computationally predict proteins. However, 380 

with new experimental methods and abilities, it is time for a sea change in bacterial genome annotation.  381 

The experimental and computational methods here are inexpensive, easy, and quick, and thus they 382 

should be implemented widely. Additionally, there is a need for associated new ontology standards for 383 

describing transcripts and operons in annotation files that will better describe these features, similar to 384 

changes made in eukaryotic annotation files to accommodate alternative splicing and alternative 385 

transcripts (66). A harmonization of the two would be ideal, such that there is a standard that spans the 386 

incredible biological diversity and commonalities across the domains of life.  387 

Conclusions 388 

Here we use bacterial long read transcriptome data and a new algorithm we developed to predict 389 

transcripts from this data for two strains of three diverse bacterial species including both Gram-negative 390 

and Gram-positive bacteria. Our analysis reveals a tremendous amount of transcript structural variation, 391 

transcription of RNA on both strands in some regions, overlapping transcripts, and a diversity of non-392 

coding RNAs, which we provide as new annotation for these genomes. Bacterial transcriptional 393 

structural variation has a richness that rivals or surpasses what is seen in eukaryotes and provides a rich 394 

new set of therapeutic and diagnostic targets. 395 

Methods 396 

Bacterial cultures 397 

Cryogenically preserved E. coli K12 MG1655 or E2348/69 were streaked onto an LB agar plate and 398 

placed in an incubator overnight at 37 oC. A single colony was selected to inoculate LB broth for an 399 

overnight culture. The overnight culture was diluted 1:100 in LB broth and harvested at the optical 400 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 3, 2024. ; https://doi.org/10.1101/2024.04.02.587803doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.02.587803
http://creativecommons.org/licenses/by-nc/4.0/


19 

density specified in Table 1A. For DMEM, overnight cultures were grown in LB broth and diluted 1:100 in 401 

DMEM. 402 

RNA Isolation 403 

To isolate RNA, the Qiagen RNeasy Mini Kit was used according to Qiagen RNA Protect Reagent 404 

Handbook Protocols 4 and 7 with Appendix B on-column DNase digestion (Qiagen, Hilden, Germany). 405 

The RNA was assessed with UV-Vis spectrophotometry (Denovix DS-11, Wilmington, DE), Qubit RNA HS 406 

Assay Kit (Fisher Scientific, Waltham, MA), and TapeStation RNA Screentape (Agilent, Santa Clara, CA). 407 

RNA preparations were stored at -80 oC until ready for polyadenylation and sequencing, except for the E. 408 

coli K12 MG1655 harvested at an optical density OD600  of 0.2. The RNA isolated from this one culture 409 

was treated four different ways. For SRR27982843, 4 µg of the freshly isolated RNA was immediately 410 

polyadenylated and then taken into library preparation and sequenced, as detailed below. The leftover 411 

polyadenyalated RNA was stored at -80 oC alongside the original RNA isolation which had been frozen 412 

without polyadenylation. Two months later, the original, unpolyadenylated RNA was thawed and 413 

polyadenylated just before library preparation and sequencing (SRR27982841). On that same day, the 414 

RNA that had been polyadenylated before being frozen was thawed and taken directly into library 415 

preparation and sequencing (SRR27982841). Four months after the original RNA isolation, the RNA that 416 

had been polyadenylated before storing at -80 oC was thawed again and polyadenylated again before 417 

library preparation and sequencing (SRR27982840). 418 

Oxford Nanopore Sequencing 419 

RNA was polyadenylated with E. coli poly(A) polymerase (M0276S, New England Biosciences, Ipswich, 420 

Massachusetts) at 37 oC for 90 s – 30 min (Table S1) according to the manufacturer’s protocol and 421 

sequenced with the Direct RNA Sequencing kit (SQK-RNA002, Oxford Nanopore Sequencing, Oxford, UK) 422 

according to protocol version DRS_9080_v2_revR_14Aug2019. The prepared RNA library was loaded 423 
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onto R9.4.1 flow cells (FLO-MIN106D) in a MinION device Mk1B (MIN-101B). Sequencing runs were 424 

terminated at 24 h. Fast5 files were basecalled using Guppy version 6.4.2 generating FASTQ files with 425 

the high accuracy model using the rna_r9.4.1_70bps_hac config file on a GPU cluster. 426 

Read Mapping, Transcript Prediction, and Analysis 427 

FASTQ files were mapped to the reference genome (Table A2) using minimap2 (v2.24-r1122) 428 

(67)(options: ‑ax map-ont -t 2). Alignments were sorted and filtered with samtools (v1.11) (68) using 429 

view (option: -F 2308) and generating bam files that were merged and indexed. BED files were 430 

generated with bamToBed (v2.27.1) (69)(options: -s -c 6,4 -o distinct,count) and filtered with awk to 431 

remove regions with fewer than 20 reads. The tp.py script was run in python (v.3.11.4). Statistics on 432 

regions, predicted transcripts, and other features were calculated with perl (v5.30.2). Perl (v5.30.2) was 433 

also used to merge the transcript and reference gff files and identify mRNAs, ncRNAs, and UTRs. ONT 434 

sequencing, transcript predictions, and reference CDS predictions were visualized in R (v3.6.3). E2348/69 435 

reads from the SRA for PRJEB36845/E-MTAB-88804 and counted against the E2348/69 with the 436 

transcript predictions presented here using Salmon (v. 1.10.2) (31). Before differential expression was 437 

assessed, genes not meeting the required CPM cutoff of 5 in at least 3 samples were removed. The 438 

samples were grouped based on the treatment status, and differentially expressed genes were 439 

identified with EdgeR v3.30.3 using the quasi-likelihood negative binomial generalized log-linear model. 440 

Statistical significance was set at an FDR cutoff < 0.05 after correction with the Benjamini Hochberg 441 

method. A heatmap was drawn in R v4.2.1 using heatmap.3 of the z-score transformed log2(TPM) values 442 

for differentially expressed genes with the columns ordered based on a dendrogram generated using 443 

pvclust v2.2-0. 444 
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The full set of commands are described at: https://github.com/jdhotopp/tp.py-Direct-RNA-Sequencing-445 

Manuscript-/tree/main (a DOI will be acquired after commands are finalized following review of the 446 

manuscript). 447 
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Tables 665 

Table 1. Characteristics of Predicted Transcripts for Escherichia coli, Listeria monocytogenes, and Pseudmonas aeruginosa 666 
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*The reads for this species frequently do not extend beyond the 5’-end of the CDS, essentially meaning transcripts start where translation is predicted to start. When this happens for a polycistronic 667 
transcript, the result is a very long 5’-UTR as seen with the increased median, and when this happens for a monocistronic transcript, the mRNA is erroneously called a ncRNA. While this likely occurs 668 
for all of the organisms, it is acute for the H. volcanii data. It may be that the 5’-end predictions of the CDS are flawed due to calling the longest ORF, or it may be that the H. volcanni UTRs are 669 
shorter than the bacterial 5’-UTRS. 670 

671 

Feature 
Escherichia coli K12  
(GCF_000005845.2) 

Escherichia coli 
E2348/69 

(GCF_014117345.2) 
Listeria monocytogenes 
Scott A (CM001159.1) 

Listeria monocytogenes 
RO15 

(CADEHJ000000000.1) 

Pseudomonas 
aeruginosa SG17M 
(NZ_CP080369.1) 

Pseudomonas 
aeruginosa NN2 
(NZ_LT883143.1) 

Haloferax volcanii 
(GCF_000025685.1) 

Number of contigs in reference 1 3 1 2 1 1 5 
Number of reads used 5,266,309 3,025,047 1,679,073 1,664,744 220,553 1,196,279 1,438,670 
Number of CT Regions for Predictions (>20 reads) 1,055 1,071 525 464 391 1,209 640 
Number of Regions on (+)-strand 521 528 238 206 181 612 318 
Number of Regions on the (-)-strand 534 543 287 258 210 597 322 
Span (bp) on (+)-strand 2,068,709 1,951,551 703,660 589,005 530,329 1,944,294 893,429 
Span (bp)on (-)-strand 2,135,707 1,827,581 821,637 759,698 589,348 1,886,100 974,115 
Average span (bp) + strand 3,968 3,777 2,946 2,848 2,915 3,174 2,807 
Average span (bp) – strand 3,997 3,446 2,851 2,932 2,786 3,155 3,022 
Number of Transcripts 3,618 2248 881 793 274 1103 613 
Number of  Transcripts on the (+)-strand 1,465 1101 402 361 79 495 241 
Number of Transcripts  on the (-) strand 2,153 1147 479 432 195 608 372 
Number of Regions with 1 transcript 289 429 218 199 85 258 226 
Maximum Number of Transcripts per Region 254 141 32 31 68 63 27 
Mean 3'-UTR (bp) 150 126 122 112 163 236 180 
Median 3'-UTR (bp) 72 62 48 47 59 78 84 
Maximum 3'-UTR (bp) 2,716 1,261 1,306 1,245 2,235 2,809 2040 
Mean 5'-UTR (bp) 134 119 137 114 185 205 373 
Median 5'-UTR (bp) 53 49 36 33 93 85 207* 
Maximum 5'-UTR (bp) 2,122 2,817 2,303 2,303 1,835 1,943 2,955 
Number of genes 4,494 4,809 3,038 3,149 6,349 6,380 3,956 
Number of genes in annotated transcript 2,360 2,037 765 680 209 765 385 
Number of genes associated with just 1 transcript 1,341 1,300 636 554 168 572 301 
Maximum number of transcripts a single gene is 
associated with 15 12 6 7 4 6 10 
90% of genes are associated with fewer than this 
number transcripts 4 4 3 3 3 3 3 
Number of transcripts with 1 gene 1,563 1,096 349 316 79 398 167 
Maximum number of genes in a single mRNA 17 14 38 22 15 15 15 
90% of transcripts have fewer than this many genes 4 4 4 3 3 3 3 
Number of predicted mRNAs 2,487 1,844 536 491 133 601 263 
Average predicted mRNA size (bp) 1,617 1,732 1,660 1,607 1,590 1,735 1,948 
Largest predicted mRNA (bp) 13,305 15,256 29,034 10,791 14,168 12,709 10,463 
Smallest predicted mRNA (bp) 131 129 224 209 183 146 136 
Number of predicted ncRNAs (including ones in 
reference GFF) 1,131 404 345 302 141 502 350* 
Average predicted ncRNA size (bp) 550 649 497 524 578 538 724* 
Largest predicted ncRNA (bp) 2,947 2,916 2,585 2,588 6,361 2,851 3,045* 
Smallest predicted ncRNA (bp) 89 80 95 136 97 77 81* 

Genes in longest mRNA 
glf, gnd, insH7, 

rfbABCDX, wbbHIJKL nuoABCEFGHIJKLMN 
phage (LMOSA_9400-

LMOSA_9770) 
rplBCDEFNOPRVWX, 

rpmCD, rpsCEHJQS, secY 
fusA,rplJL,rpoBC,rpsGL, 

tuf 

phage 
(PANN_06920 -  
PANN_07050) nuoABCD1HIJ1J2KLMN 
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Figures 672 

Figure 1 – Overview of the Experimental/Analysis Workflow 673 

Plus-strand ONT direct RNA sequencing reads (shown as lines) are mapped from 1 bp to 6 kbp in the E. 674 

coli K12 genome (NC_000913.3), which corresponds to the thr operon, and sorted by their transcription 675 

stop site for E. coli K12 grown in rich LB media (left sorted, A; right sorted, C) and DMEM media (left 676 

sorted, B; right sorted, D). Our algorithm predicts 3 transcripts (E), and 4 CDSs in the GFF file are 677 

illustrated (F). The transcript for the leader peptide thrL is recovered in both growth conditions. (G) RNA 678 

was isolated from E. coli K12 grown at 37 °C with aeration in LB and DMEM media. (H) Squiggle plot for 679 

two sequencing reads in tandem. In this case, the open pore state was missed by the software resulting 680 

in a chimeric read. In both reads the DNA adapter can be observed with lower current followed by a 681 

relative flat plateau that corresponds to the polyA tail. This is followed by the current changes 682 

associated with the RNA moving through the pore. (I) Squiggle plots are shown of current for the same 683 

length DNA and RNA highlighting that the signal to base ratio is different for RNA and DNA. (J) The 684 

standard ONT direct RNA sequencing library was used on bacterial RNA that was in vitro polyadenylated 685 

following RNA isolation. Library construction and (K) loaded on an ONT MinION device for nanopore 686 

sequencing. 687 

Figure 2 – Characteristics of Transcript Predictions 688 

The distribution of the number of instances of CDS by transcripts/CDS (A) and the distribution of the 689 

number of instances of transcripts by CDSs/transcript (B) are shown for E. coli K12, E. coli E2368/69, L. 690 

monocytogenes ScottA, L. monocytogenes RO15, P. aeruginosa SG17M, P. aeruginosa NN2, and H. 691 

volcanii. The data points in these discrete distributions are connected by lines for visualization purposes. 692 

The inset in each illustrates how transcripts/CDS and CDSs/transcript are defined. The size distributions 693 
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of predicted 5’-UTRs (C) and 3’-UTRs (D) are plotted for each of the six strains examined with an inset 694 

that zooms in on 0-350 bp to better illustrate the distribution of the majority of the data. 695 

Figure 3 – fdoGHI-fdhE Transcripts 696 

Reads mapping to the minus strand of the E. coli K12 genome (NC_000913.3) grown in LB (A, C) and 697 

DMEM (B, D) are shown for a region from 4,080-4,088 kbp. To facilitate the visualization of the starts 698 

and stops of transcripts, reads were sorted by either their left most (A, B) or right most (C, D) position 699 

and plotted from top to bottom accordingly. Transcript predictions from our algorithm (E) and the 700 

predicted CDSs in the reference gff file (F) are shown with arrows indicating the direction of 701 

transcription and with transcripts/CDSs on the different strands having different shading (light for the 702 

(+)-strand and dark for the (-)-strand).  703 

Figure 4 – LEE4 Operon 704 

Reads are illustrated that map to the plus strand (A, C) and minus strand (B, D) of the E. coli E2348/69 705 

genome (GCF_014117345.2) grown in LB or DMEM for a region from 72-78 kbp. There are no reads from 706 

the LB conditions on the (+)-strands. To facilitate the visualization of the starts and stops of transcripts, 707 

reads were sorted by either their left most (A, B) or right most (C, D) position and plotted from top to 708 

bottom accordingly. Transcript predictions from our algorithm (E) and the predicted CDSs in the 709 

reference gff file (F) are shown with arrows indicating the direction of transcription and with 710 

transcripts/CDSs on the different strands having different shading (light for the (+)-strand and dark for 711 

the (-)-strand). 712 

Figure 5 – Differential expression of predicted transcripts 713 

Reads are illustrated mapping to the plus strand of the E. coli E2348/69 genome (GCF_014117345.2) 714 

grown in LB (A, C) or DMEM (B, D) from 4.730-4.735 Mbp sorted by either their left most (A, B) or right 715 

most (C, D) position. Transcript predictions from our algorithm (E) and the predicted CDSs in the 716 
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reference gff file (F) are shown with arrows indicating the direction of transcription. Table of TPMs 717 

calculated with Salmon for transcripts and FADU for CDSs (G) for the same region shown in panels 718 

ABCDEF. For ONT reads, only Salmon was used. Plot of the log2(TPM) for all CDSs and all corresponding 719 

transcripts for ERR393285 (H). Heatmap clustered by genes for the log2(TPM) for all CDSs calculated with 720 

FADU and all corresponding transcripts calculated with Salmon for Illumina and ONT reads generated 721 

from LB and DMEM (I). 722 

Figure 6 – ONT sequencing characteristics that informed algorithm development 723 

Size distribution of all of the E. coli K12 ONT sequencing reads aligning outside the rRNA reads compared 724 

to the distribution of predicted operons (A). For the 285,619 reads that are longer than the operon they 725 

map to, the length of reads is plotted relative to the size of the operon they map to (B). Normalized 726 

sequencing depth from the 3’-end to the 5’-end for E. coli K12 16S rRNA, E. coli K12 23S rRNA, and IVT 727 

RNA (SRR23886069), all thought to be complete, showing the 3’-bias in sequencing (C). Distribution of 728 

read lengths for the 1.3 kbp yeast enolase ONT spike-in (D) and an 11.7 kbp IVT RNA (E) from 729 

SRR23886069where only reads ending at the far right position are shown. The log transformed ratios of 730 

Illumina (SRR3111494) and ONT (SRR23886071) TPM values for RNA isolated from adult female Brugia 731 

malayi, a filarial nematode and invertebrate animal, is compared to the transcript length, illustrating 732 

how shorter transcripts have more Illumina reads relative to ONT reads than longer transcripts (F). Our 733 

interpretation is that ONT sequencing is biased toward shorter transcripts. The inset uses the heat 734 

function to show the intensity of the points in the region which contains most of the data.  735 
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Additional Files 736 

Table A1 – Sequencing statistics for ONT direct RNA sequencing runs with E. coli RNA 737 

Table A2 – Data Used in the Analysis and Prediction of Transcripts 738 

Figure A1 – recBCD/ptrA Transcript Predictions 739 

Minus-strand ONT direct RNA sequencing reads (shown as lines) are mapped from ~2.950-2.965 Mbp in 740 

the E. coli K12 genome (NC_000913.3), which corresponds to a region encoding RecBCD and PtrA. Reads 741 

are sorted by their transcription stop site for E. coli K12 grown in rich LB media (left sorted, A; right 742 

sorted, C) and DMEM media (left sorted, B; right sorted, D). Our algorithm predicts 3 transcripts (E), and 743 

7 CDSs in the reference NC_000913.3 GFF file are illustrated (F). While there are no ONT reads that span 744 

the entire recBCD/ptrA region, there is sufficient evidence to call this transcript.  This is because, after 745 

removing reads wholly contained within a predicted recBD transcript and a ptrA/recBD transcript there 746 

were sufficient reads remaining to predict a transcript that spans recBCD/ptrA. 747 

Figure A2 -- Pore-mediated and ligase-mediated chimeras 748 

Chimeric sequencing reads observed in ONT direct RNA sequencing data can theoretically be generated 749 

by (A) two reads entering the pore in tandem with an open pore state that is not detected, (B) two RNA 750 

molecules being fused through ligation in vivo, in vitro during library construction, or a mapping artifact 751 

when there is a rearrangement in the genome reference, and (C)  two fragments fused by ligation 752 

following adapter ligation during library construction. (D) A chimeric read from a sequencing run that 753 

shows that an open pore state (black) was missed between the first read (blue) and the second read 754 

(red). For both reads, the characteristic DNA adaptor with a lower current is observed followed by a 755 

higher plateau that is the polyA tail being sequenced. The open pore state is a spike from increased 756 

current when the pore is open between RNA molecules sequenced. 757 
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Figure A3 -- Results from Stringtie, Tama, and Cupcake 758 

Transcript predictions resulting from Stringtie, Tama, and Cupcake are shown for E. coli K12 for the same 759 

region as presented in Figure 3. Plots are labeled on the right side according to the notation in the 760 

github page that fully describes how they were run with those ending in LB resulting from only the K12 761 

LB data and those ending in DMEM resulting from only the K12 DMEM data. Stringtie is splicing focused, 762 

and since bacteria do not have splicing it is unsurprising that it could not predict transcript structures, 763 

largely yielding transcript predictions corresponding to zero-depth regions across the genome. Whether 764 

default (Tama 1) or user-defined parameters were used (Tama 2 and 3), Tama frequently over-called 765 

transcripts, particularly in regions with higher sequencing depth. With default parameters (Cupcake 1), 766 

Cupcake tends to under-call transcripts because ONT reads get filtered out of analysis due to higher 767 

degree of mismatches, and in this region no results were reported. When the parameters were adjusted 768 

to better fit ONT reads (Cupcake 2), Cupcake produced results similar to TAMA. 769 
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