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Abstract

Transcripts are potential therapeutic targets, yet bacterial transcripts remain biological dark matter with
uncharacterized biodiversity. We developed and applied an algorithm to predict transcripts for
Escherichia coli K12 and E2348/69 strains (Bacteria:gamma-Proteobacteria) with newly generated ONT
direct RNA sequencing data while predicting transcripts for Listeria monocytogenes strains Scott A and
RO15 (Bacteria:Firmicute), Pseudomonas aeruginosa strains SG17M and NN2 strains (Bacteria:gamma-
Proteobacteria), and Haloferax volcanii (Archaea:Halobacteria) using publicly available data. From >5
million E. coli K12 ONT direct RNA sequencing reads, 2,484 mRNAs are predicted and contain more than
half of the predicted E. coli proteins. While the number of predicted transcripts varied by strain based
on the amount of sequence data used for the predictions, across all strains examined, the average size
of the predicted mRNAs is 1.6-1.7 kbp while the median size of the predicted bacterial 5’- and 3’- UTRs
are 30-90 bp. Given the lack of bacterial and archaeal transcript annotation, most predictions are of
novel transcripts, but we also predicted many previously characterized mRNAs and ncRNAs, including
post-transcriptionally generated transcripts and small RNAs associated with pathogenesis in the E. coli
E2348/69 LEE pathogenicity islands. We predicted small transcripts in the 100-200 bp range as well as
>10 kbp transcripts for all strains, with the longest transcript for two of the seven strains being the nuo
operon transcript, and for another two strains it was a phage/prophage transcript. This quick, easy,
inexpensive, and reproducible method will facilitate the presentation of operons, transcripts, and UTR
predictions alongside CDS and protein predictions in bacterial genome annotation as important

resources for the research community.

Importance

Our understanding of bacterial and archaeal genes and genomes is largely focused on proteins since

there have only been limited efforts to describe the bacterial/archaeal RNA diversity. This contrasts with
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studies on the human genome, where transcripts were sequenced first through large scale EST
sequencing projects that preceded the release of the human genome over two decades ago. We
developed an algorithm for the quick, easy, inexpensive, and reproducible prediction of bacterial and
archaeal transcripts from ONT direct RNA sequencing data. These predictions are urgently needed for
more accurate studies examining bacterial/archaeal gene regulation, including regulation of virulence
factors, and for the development of novel RNA-based therapeutics and diagnostics to combat bacterial

pathogens, like those with extreme antimicrobial resistance.
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Introduction

Genomics, genome-enabled technologies, computational biology, and large-scale data mining are
essential for rigorous, modern experiments on all organisms. Whole genome sequencing and protein-
based annotation are now routine, low-cost approaches for analyzing bacteria and archaea. But often
the annotation, and thus analysis and experimental validation, is limited to predicted protein-coding
regions and a few highly conserved non-coding RNAs (ncRNAs) like the rRNAs. Yet, pathogen RNA
transcripts, particularly ncRNAs and RNA-mediated regulation, offer an unexplored set of druggable
targets, diagnostics, and potential therapeutics (1). In this context, a transcript is a physical RNA
molecule that can be detected by sequencing RNA that has discrete start and end sites generated by a

diversity of molecular mechanisms (e.g., promoter/terminator, post-transcriptional processing).

Transcripts are encoded within operons but are distinct from operons, which also include regulatory
regions. Operons are widespread in bacterial/archaeal genomes, with ~630-700 operons in Escherichia
coli (2). Experimentalists have predicted operons using FPKM and/or sequencing depth without
algorithms (e.g. (3, 4)), and efforts have been made to develop algorithms for their prediction (5-11). For
example, the most recent version of Rockhopper predicts operons using a naive Bayes classifier to
combine strand, intergenic distance, and coordinated differential expression in a unified probabilistic
model (12). Most operon predictions rely on the decades-old paradigm of operons as put forth by Jacob
and Monod (13), which was summarized recently as “sets of contiguous and functionally related genes
cotranscribed from a single promoter up to a single terminator” (14), including the operator regulatory

region.

Fundamentally, the classical definition of operon is a DNA-based definition, defining a region in DNA
that extends beyond the RNA-based transcripts to include the promoter/operator and terminator.

Operons can have multiple transcripts due to post-transcriptional processing (15), alternate terminators
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80 (e.g. attenuation) (8, 16, 17), and alternate transcriptional initiation sites (14). There is a need for both
81 DNA-based annotation of operons and RNA-based annotation of transcripts. Fundamentally, RNA-seq is
82  transcript quantification, therefore it should be measured at the RNA/transcript level. Rockhopper has
83 been used for differential expression of its predicted operons (9), but it yields different results than the

84  corresponding transcript-focused analysis (14).

85 Currently mostly bacterial/archaeal RNA-seq studies are conducted using coding sequence (CDS)

86 predictions. Even when issues with counting algorithms are mitigated for a CDS-focused analysis of

87 polycistronic transcripts (18), measurements of CDSs in polycistronic transcripts are dependent on one
88  another yet are treated as independent measurements with the statistics used to detect differential
89  expression. This results in errors in variance estimations in differential expression tools (19).

90  Comparisons of StringTie and Rockhopper have previously noted some of these issues, as well as the

91 need for long RNA sequence reads to resolve these problems (8).

92  E. coliK12 is a well-studied genome that has some transcript predictions (17, 20), anti-sense RNA
93 characterization (21), and transcriptional start site and terminator predictions (17, 22-25), all of which
94  are aggregated and manually curated in RegulonDB (26) and EcoCyc (27). But even for this well studied
95 organism, reference GFF files lack transcript annotations, and it can be difficult, if not impossible, to
96 ascertain and use transcript structures for a differential expression analysis. The current work done to
97 characterize transcripts and transcriptional regulation in E. coli (e.g., (26)), while laudable and necessary,
98 is not possible for more than a few microorganisms, yet there is immense bacterial biodiversity.
99  Therefore, we sought to develop a fast, simple, rigorous, and reproducible method for identifying
100  bacterial transcripts that can be widely applied and takes advantage of recent advances in RNA
101  sequencing, including PacBio IsoSeq and Oxford Nanopore Technologies (ONT) direct RNA Sequencing
102 (14, 28-30). Transcript predictions will enable differential expression analyses using transcripts such that

103 the analyses can be expanded to include non-coding RNAs (ncRNAs) and also use the latest transcript-
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104  based differential expression analysis tools like Salmon (31) and Kallisto (32). Transcript predictions are

105  also needed to inform consequences of genetic knock-in and knock-out experiments (e.g., (33)), identify
106  regulatory sequences (e.g., (8, 16, 34)) and detect post-transcriptional processing (e.g., (15, 35)). Recent
107 studies (8, 28, 36) reveal a much more complex picture of bacterial transcripts with post-transcriptional
108 processing and potentially multiple promoters and terminators, including transcripts beginning or

109  ending in the middle of adjacent coding sequences due to the coding density (17).

110 In this study, we describe a quick, easy, inexpensive, and reproducible method for whole transcriptome
111 sequencing and annotation using ONT direct RNA sequencing. We directly test the methods on the E.
112 coli K12 and E2348/69 strains and then also apply the algorithm to existing public data for Pseudomonas
113 aeruginosa strains SG17M and NN2 (37), Listeria monocytogenes strains Scott A and RO15 (38), and

114  Haloferax volcanii (39). Ultimately, we envision genomes where operons, transcripts, and UTRs are all

115  annotated alongside CDSs and proteins in GFF files.

116  Results

117  ONT direct RNA sequencing of E. coli transcripts

118  We generated ONT direct RNA sequencing data (Figure 1) from RNA isolated from E. coli K12 and the
119 pathogenic E. coli E2348/69 (40) grown at 37 °C with aeration in LB and DMEM media (Table 1, Table
120 A1), which are virulence gene inducing growth conditions (15, 41-44). E. coli K12 is a well-studied

121  genome including previous transcript predictions (17, 20), anti-sense RNA characterization (21), and
122  transcriptional start site and terminator predictions (17, 22-25), all of which are aggregated and

123 manually curated in RegulonDB (26) and EcoCyc (27). The inclusion of E. coli E2348/69 allows us to

124 interrogate operon predictions in a related but clinically-relevant Enteropathogenic E. coli (EPEC) strain
125  with plasmids (40) that has pathogenesis-associated operons, which have had fine scale analysis of

126  transcription (15, 44). We focused on using ONT direct RNA sequencing, where RNA is sequenced
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127  directly in the pore (Figure 1K) to predict bacterial transcripts because it does not have template

128  switching (36). Additionally, ONT direct RNA sequencing data lack genomic DNA contamination since
129  sequenced RNA and DNA have markedly different signals with RNA advancing through the pore more
130  slowly and with a higher electrical current range than DNA (Figure 1E). This difference between RNA and
131 DNA is seen in every RNA read as the sequencing transitions from the DNA-based adaptor to the RNA,
132 but is used to eliminate DNA reads with high fidelity. Therefore, we are confident that every read we
133 analyze arose from a transcript, which is tremendously powerful when considering alternative

134 transcripts, anti-sense transcripts, and non-coding RNA (ncRNA) predictions.

135  Predicted E. coli K12 transcripts

136 Using the 5,266,309 ONT reads generated for E. coli K12 (Table 1), we predicted transcripts using an

137  algorithm we developed, which is described below. We identified 3,902 strand-specific contiguously

138  transcribed (CT) regions in the K12 genome with 1,055 that have >20 reads that we used for predictions
139 (Table 1). The 1,055 CT regions used for predictions are on average 4 kbp and include 521 regions on the
140  (+)-strand spanning 2.07 Mbp and 534 regions on the (-)-strand spanning 2.14 Mbp (Table 1). There are
141 3,618 predicted transcripts with 1,465 predicted transcripts on the (+)-strand and 2,153 predicted

142  transcripts on the (=)-strand (Table 1). There are 289 (27%) regions with only a single transcript

143 predicted (Table 1), meaning the majority of CT regions contain more than one transcript either because

144  operons overlap or because there are multiple overlapping transcripts.

145 Of the 3,618 predicted transcripts, 2,484 are predicted to be mRNAs and 1,134 are predicted to be
146 ncRNAs (Table 1). mRNAs were defined as transcripts that have at least one annotated CDS found
147  completely within the transcript boundaries, whereas a ncRNA was defined as a transcript that lacks a
148  CDS found completely within the transcript boundaries. It is important to note that frequently the 5’-

149  end of CDSs (and the N-terminal portion of the protein encoded by them) are incorrectly annotated,
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150  such that the assignment of transcripts as mRNA/ncRNA needs manual refinement in the future

151 including possible curation of the N-termini of proteins; additionally, protein annotation may be

152 informed and improved through transcript structural annotation. However, given these definitions, the
153 average mRNA was 1,618 bp with the smallest and largest being 131 bp and 13,305 bp, respectively
154 (Table 1). The average ncRNA was 517 bp with the smallest and largest being 52 bp and 2,947 bp,

155  respectively (Table 1). Of these 1,134 predicted ncRNAs, 23 (2%) were already described in the

156 reference GFF file and are ~23% of the 98 previously annotated ncRNAs in the reference GFF file (Table

157  1).

158 Of the 4,494 annotated coding sequences (CDSs), 2,357 were in an annotated transcript while 2,775

159  were not, suggesting that with these growth conditions we could annotate transcripts for approximately
160 half the CDSs. Of those, 1,341 (57%) CDSs were associated with a single transcript and 90% of CDSs were
161  associated with <4 transcripts (Table 1, Figure 2A). While 1,564 of the predicted transcripts contained
162  only asingle CDS (Table 1, Figure 2B), the predicted transcript with the largest number of CDSs encoded

163  within it contained 17 CDSs, including glf, gnd, insH7, rfbABCDX, and wbbHIJKL (Table 1).

164 From the predicted mRNAs (excluding ncRNAs) and the predicted CDSs within those mRNAs, we

165 predicted the 5’- and 3’-untranslated regions (UTRs). The median 5’-UTR is 53 bp and the most common
166 length (mode) is 14 bp, while the median 3’-UTR has a median of 72 bp, and most common length

167 (mode) of 36 bp (Table 1, Figure 2CD). There are concerns that ONT sequencing cannot capture the

168  terminal 5’-end of transcripts. However, these results suggest that we are very close since it has been

169 previously shown that the 5’-UTR is 20-40 nt (24).

170  Complexity of bacterial transcription

171  Our predictions detect tremendous bacterial transcript structural variation while confirming previous

172  experimentally verified predictions. For example, in the thr operon, three transcripts are predicted,
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173 including the previously described thrL transcript for the leader peptide, the thrLABC transcript, and a

174 thrBC transcript (45) (Figure 1J).

175  Other regions are more complex, like the region from 4,080-4,087 kbp encompassing fdoGHI and fdhE
176 (Figure 3). EcoCyc and RegulonDB describe this entire region as an operon with two promoters—one
177  that makes a transcript for the entire region and a second smaller internal transcript encoding fdhE that
178 is started from a promoter within fdoH (Figure 3). The ONT data suggest differential expression of the
179  transcript isoforms where fdoGHI are largely untranscribed in DMEM relative to LB while fdhE is

180  transcribed in both (Figure 3). A small ncRNA is observed in DMEM when fdoG is not transcribed. (Figure
181  3). Our algorithm predicts 11 different transcripts in this entire region, including the fdhE transcript that
182  startsin fdoH (Figure 3). As has been seen for decades in eukaryotic transcript prediction, automated
183 predictions require manual curation. The algorithm likely underpredicts long transcripts, due to the

184 limitations of the ONT technology as described below, so despite evidence for a complete fdoGHI-fdhE
185  transcript, we do not predict it, likely because there is insufficient depth (Figure 3). But there is robust
186 evidence for many of the other transcripts predicted that are not currently in RegulonDB, EcoCyc or the
187 GFF file, including a transcript of just fdoG, just fdoGHI, two putative overlapping small RNAs that

188 overlap the end of fdol and the beginning of the fdhE transcript, and four putative overlapping small

189 RNAs that overlap the beginning of fdoG (Figure 3). In a typical differential expression analysis that uses
190 CDS regions., these four putative small RNAs overlapping fdoG would likely be misinterpreted as

191  expression of fdoG in DMEM. Importantly, while we detect these transcripts, we cannot ascertain that
192  they have a function, and they could merely be stable degradation products of transcription. Regardless,

193  they are likely to confound and obfuscate differential expression analyses.

194  Acrossthe 11 transcripts predicted in the fdoGHI/fdhE region, there is imprecision in transcript start and
195  endsites, as previously described (15, 24). This variability includes slightly longer transcripts that extend

196 beyond fdhE that are observed under both growth conditions and was reproducible across all
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197  sequencing runs (Figure 3). This variability is seen in many regions, suggesting that transcription and

198 termination are flexible.

199  Predicted E. coli E2348/69 transcripts

200 The 60% fewer reads sequenced for E. coli E2348/69 relative to K12 led to fewer transcript predictions
201 (Table 1), particularly fewer ncRNA predictions, but otherwise the results are quite similar. The longest
202 predicted mRNA for E2348/69 is nuoABCEFGHIJKLMN, a known operon (46, 47). Unlike the K12 strain,
203 the E2348/69 strain contains two plasmids (NZ_CP059841.1 and NZ_CP059842.2, respectively) and

204 mMRNA and ncRNAs were predicted on both plasmids. Of the 405 predicted ncRNAs, 3 (1%) were already
205 described in 4 ncRNAs in the reference GFF. Additional known ncRNAs missing in the reference GFF file
206 were identified, including gImY and gimZ, both of which are important for regulation of the LEE operon

207 and thus virulence (44).

208  The transcription of LEE operons, which are found in the E2348/69 genome, has been extensively

209  studied. In LEE4, a promoter upstream of sepl produces a sepL-espADB transcript that is post-

210  transcriptionally cleaved with RNAse E to generate an espADB transcript and a seplL transcript that is
211 then further endonucleolytically degraded (15) (Figure 4). A putative transcriptional terminator was
212 previously identified downstream of espB within cesD2, but it was hypothesized that there is

213 readthrough transcription of the terminator (15). The ONT sequencing data here provide evidence for
214 readthrough of the transcriptional terminator. Very few reads included both the cesD2-vapB-escF region
215 and sepL, which may be an indication that processing to remove sepl is more efficient on the longer
216  transcript that terminates after espF, although we can’t rule out that the 6 kbp transcript of the whole
217 region was not predicted due to the size limitations of ONT direct RNA sequencing. Consistent with the
218 latter, the 4 kbp sepL-espADB transcript has been detected by Northern blots in multiple studies (15,

219  44),yetitis very infrequently detected here. Prior 5’- and 3’-RACE of LEE4 transcripts revealed variation

10
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220 intranscript ends, which we also detect, with multiple reads supporting a longer transcript at the 5’-end
221  of sepL, which seems to be a frequent phenomenon across all transcripts. We also predict single CDS

222 transcripts that encode for espA, espB, and espF.

223  Data re-use and transcripts in Listeria monocytogenes, Pseudomonas aeruginosa, and

224  Haloferax volcanii

225  Through data re-use, we also predicted transcripts using published ONT data for P. aeruginosa strains
226  SG17M and NN2 (37), L. monocytogenes strains Scott A and RO15 (38), and H. volcanii (39). All five of
227  these strains had fewer sequencing reads than we had for E. coli, leading to fewer predictions of

228  transcripts, including both mRNA and ncRNA (Table 1). Yet we were still able to predict 274-1103

229  transcripts across the five strains and those transcripts were similar to the E. coli data with respect to
230 mean/median/mode 3’-UTR lengths, proportion of single CDS transcripts, proportion of single transcript
231 CDSs, size distribution of mRNA, and size distribution of ncRNA (Table 1). The 5’-UTR predictions were
232 similar across the bacterial strains, but the archaeal reads frequently did not extend beyond the 5’-end
233 of the CDS (Table 1). For a monocistronic transcript, the mRNA is erroneously called a ncRNA, while for a
234 polycistronic transcript, a very long 5’-UTR is predicted resulting in an increased median (Table 1). It may
235 be the 5’-end predictions of the CDS are flawed due to calling the longest ORF, or it may be that the H.
236 volcanni UTRs are shorter than the bacterial 5’-UTRS and/or not well captured with the ONT technology.
237  Across all seven strains examined, the longest transcript varied, although two were phage transcripts
238 and two were nuo transcripts (Table 1). The inclusion of L. monocytogenes was an important test case
239 since it is a firmicute with leading strand transcription bias (48), which led to fewer and longer CT

240 regions, but did not prevent high quality transcript predictions. While there was ONT direct RNA data for
241  further species of gamma-Proteobacteria, we limited this analysis to just two species with two strains

242  each from this taxon. Overall, these results suggest that this simple sequencing method combined with

11
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243 our algorithm can be applied widely to archaeal/bacterial genomes to enable rigorous and robust

244 transcript predictions.

245  Differential expression analysis

246  These transcript predictions can be used in a differential expression analysis using Salmon and EdgeR as
247 demonstrated with existing E2348/69 short read data from the SRA (PRIEB36845/E-MTAB-88804) and
248  the long read ONT data generated here (Figure 5). Even when analyzing the same Illumina data, there is
249 discordance between the TPM values calculated for transcripts and CDSs (Figure 5GHI). There is also
250 discordance when quantifying the ONT data, which might be attributed to many factors, which bears
251 further investigation but is beyond the scope of this manuscript. We have concerns about using ONT
252 reads for differential expression analysis since shorter transcripts are preferentially sequenced relative
253  tolonger transcripts (Figure 6F, as described below). In addition, the larger numbers of lllumina reads

254  generated is beneficial in the calculation of TPMs and subsequent statistical analyses.

255  Features and Limitations of ONT direct RNA sequencing of E. coli transcripts

256  To develop rigorous methods and algorithms to predict these transcripts, we needed to understand the
257  characteristics of ONT direct RNA sequencing of bacterial transcripts, which we expect to differ from
258  sequencing of eukaryotic transcripts given the differing physical features and stability of prokaryotic and
259 eukaryotic RNA. Overall, operons >5 kbp are difficult to obtain in a single read (Figure 6A), but reads can
260 be sequenced that span most predicted operons as well as exceed the boundaries of an existing operon
261 prediction (Figure 6AB). While E. coli has known transcripts >10 kbp, we do not generate reads >9 kbp
262 (Table 1). This is, at least in part, likely due to the ONT technology since we observe that (a) this is

263 reproducible across multiple systems and RNA molecules we know must be full length, like rRNAs

264 (Figure 6C), (b) there is 5’-truncation of transcripts in 11.7 kbp full-length in vitro transcribed (IVT)

265 polyadenylated RNA (Figure 6D), and (c) there are many incomplete reads for the 1.4 kbp yeast

12
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266  enolase 2 (ENO2) RNA calibration strand provided by ONT (Figure 6E). Sequenced transcripts are also 3’-
267 truncated (Figures 1ABCD, 3AC, 4ABCD), as previously described for ONT (28, 36, 37) and PacBio IsoSeq
268  (30) sequencing of bacterial transcripts, possibly from (a) random fragmentation of RNA, (b) RNA

269 degradation, and/or (c) incomplete transcription in a bacterial cell. Additionally, we found that shorter
270 transcripts are preferentially sequenced relative to longer transcripts (Figure 6F). This is despite

271 counts/RPKMs being reported as well correlated between lllumina cDNA-based sequencing, ONT cDNA-
272 based sequencing, and ONT direct RNA sequencing (49), as well as when nanopore direct RNA

273 sequencing CPMs are compared to the absolute concentration of a spike-in (50).

274  To address incomplete reads and preferential sequencing of shorter transcripts, we developed a method
275  that first predicts transcript start/stop sites in locations where there is an over-abundance of reads

276  starting and ending. Subsequently, the actual transcripts are defined by measuring the strength of the
277  connection between those start and stop sites using a model that supports the characteristics of

278  truncated transcripts where smaller transcripts are preferentially sequenced. In this way, we can predict

279 12-15 kbp mRNAs (Table 1), despite having a shorter max ONT read length (Figure Al).

280 One of the features of ONT direct RNA sequencing is the ability to use changes in electrical current to
281  detect RNA modifications including N6-methyladenosine (m°®A), 5-methylcytosine (m>C), inosine,

282 pseudouridine, and many more (51). At a minimum, posttranscriptional modifications are expected in
283 bacterial tRNA and rRNA (52), but might also be present in mRNA and would lead to nhonrandom

284  changes in sequencing depth and base calling errors (53, 54). To alleviate this issue, we use a depth
285  calculation computed assuming every base is equally present in a read using start/end positions of bed
286 files for mapped reads. This also enables predictions in the presence of errors in the reference or

287 sequence divergence from the reference (e.g. (55)).
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288 Using only read end positions may also facilitate predictions of transcripts for one strain using data from
289  adifferent strain. However, given that we haven’t ascertained how much transcript structural diversity
290 there is between strains, it may be ill-advised. For that reason, we did not, for example, use the SG17M
291 and NN2 data to make available predictions for the research community for the frequently used P.

292 aeruginosa PAOL.

293 Chimeric RNA sequencing reads were detected in all samples, including chimeras between the ONT

294 ENO2 calibration strand and sample RNA (Figure 1H). A subset of these are in silico chimeric reads, with
295 a spike observed in the electrical current when analyzing the raw signal data, indicating an open pore
296  state that was missed by the MinKNOW software. Others lack this spike and could be either ligase-

297  mediated chimeras or in silico-mediated chimeras where the open pore state was too short to be

298  detected (Figure A2) (56). In our analysis, this was addressed by removing the clipped portions of

299 mappedreads. When mapping reads to a reference genome, portions of a mapped read that do not align
300 with the reference will be either “soft-clipped” or “hard-clipped.” A soft clipped read has a portion that
301 does not align to any other area of the reference (e.g. the ENO2 portion of an ENO2/mRNA chimeric

302 read), whereas a hard clipped read has two portions that align to different parts of the genome. For

303 soft- and hard-clipped reads we used the primary alignment, ignoring the clipped portion of the read.

304  Transcript Prediction Algorithm

305 We developed an algorithm to predict transcripts based on these characteristics and applied it as

306 described above. Each CT region is examined separately along with the reads completely contained

307  within that region. CT regions are initially defined through the bed input file and subsequently refined to
308 subdivide regions based on a minimum depth cut-off (default=2). Ultimately a region needs to have a

309 minimum number of reads fully contained within it to be considered (default=2). The change in depth of
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310 the sequencing reads for each genomic position of the CT region (D.g) ignoring mismatches/indels is

311 calculated as

312 ADreg = Dreg(n+1) - Dreg(n)

313 Potential start and stop sites are predicted at positions where AD, is sufficiently positive/negative and
314  always includes the first and last position of the region. These predictions require that | ADyeg| surpasses
315 a threshold (default=4). ONT sequencing has issues identifying precise ends of transcripts due to polyA-
316  trimming as well as sequencing 5’-ends, such that predicted start/stop sites in close proximity

317  (default=100) are grouped.

318 Candidate transcripts are predicted using the Cartesian product of all predicted start and stop sites. The
319  total read count (Niwt) is calculated from the number of total reads that are mapped to all transcripts
320 that fully contains them, allowing for mapping to multiple transcripts. The count of exclusively assigned
321 reads (Nea) is calculated after mapping each read to the shortest transcript that fully contains it. The
322  candidate transcripts are processed from shortest to longest computed as Ratio = Nea / Niot. If this ratio
323 is less than the threshold (default=0.2), the candidate transcript is discarded. If possible, reads from
324  discarded transcripts are re-assigned to longer transcripts, and the Ne, is recalculated such that reads
325 initially assigned to now discarded transcripts can be used to support a longer transcript. All transcripts

326  that meet the ratio at the end of the analysis are reported in a gff file and a bed file.

327  Assembling ONT RNA reads

328 We attempted to assemble the ONT direct RNA reads with existing tools, including TAMA
329 (tc_version_date_2020_12_ 14) (57), Cupcake (v.29.0.0) (58), and StringTie (v1.3.4d) (59). None of the
330 existing tools recapitulated the complexity of the bacterial transcripts accurately, leading us to develop a

331 new algorithm for the prediction of bacterial transcripts (Figure A3).

332 Discussion
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333 In biology, dark matter is often used to describe functional portions of genomes that are not described
334  or annotated. In most bacteria, transcripts are largely dark matter, with CDSs often serving as a proxy,
335  albeit a poor one. Here, we show that bacterial long read transcriptome data can be used to predict
336 bacterial transcripts using a tool designed for the complexities and nuances of prokaryotic transcripts.
337  Application of this tool to ONT data from three organisms revealed extensive transcript structural

338  variation, transcription of RNA on both strands in some regions, overlapping transcripts, and a diversity
339  of non-coding RNAs. Fundamental biological differences such as a high coding density and polycistronic
340 transcripts in bacterial genetics lead to problems in applying transcript prediction tools developed for
341  the human genome. We cannot merely apply the same laboratory and computational methods that
342  were designed and optimized for humans and eukaryotic model organisms, with the false assumption

343  that they will work because bacteria are “simpler” than humans.

344  The transcript structural diversity highlights the need for algorithmic and analysis improvements that are
345 important for rigorous differential expression analyses, molecular evolution analyses, and other analyses
346  as well as laboratory experiments like making knock-outs/ins or promoter analysis. Coupling this with a
347 re-analysis of existing E. coli proteomics data would be enlightening and informative in understanding if

348  transcripts annotated as ncRNAs are producing previously undescribed proteins/peptides.

349 Yet, there is much room for improvement for bacterial transcript predictions, both through lab

350 experimentation and bioinformatics. We hope that attention to the recent developments in bacterial
351  transcript sequencing will lead to the development of more bioinformatics tools with a richness like that
352  seen for eukaryotic transcript prediction. The greatest improvement in the lab would be in obtaining
353 more full-length reads, particularly for long transcripts, which is a challenge for all long-read sequencing
354  platforms. For ONT, the new chemistry may improve the length, and further improvements may be

355 possible by altering the reverse transcription method needed to remove RNA secondary structure by

356  changing the enzyme (60).
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357 Theissue of missing the last few bases of the read, which represents the 5’-end of the transcript, is a
358  more significant issue for those looking for single base pair resolution of transcript ends. Ligating an

359  adaptor to the read prior to sequencing shows promise in addressing that issue (50, 61). However, these
360 are only likely to improve recovery of the 5’-ends of transcripts, but we saw a significant amount of

361 fragmentation at the 3’-ends that may be either incomplete transcription, 3’-degradation of transcripts,

362 random breakage, or sequencing biases that need to be better understood.

363 Incomplete transcription is intriguing and may reflect the fundamental biology since (a) bacterial

364 transcription and translation are coupled and (b) bacterial transcripts are short-lived and frequently in
365  the process of being synthesized, since bacterial mRNAs are made at a rate of 40-80 nt/sec (62) while
366  the average mRNA half-life is only 2-10 minutes (63). In contrast, eukaryotic RNAs have to be spliced to
367  create mature mRNA before being exported from the nucleus and have increased stability and a longer

368 half-life.

369  Some have noted the inaccuracy of ONT sequencing. There is the base inaccuracy, which should not
370 solely be considered inaccuracy. RNA is modified with over >160 different modifications (64), and much
371 of the inaccuracy is actually hyperaccuracy that is detecting those modifications but still trying to make
372 assignment in four base space. It is actually the notion that RNA sequence is in four base space that is
373 issue. That will improve as people develop base callers that expand beyond just four base space. We

374 avoid base “inaccuracy” by using only the read mapping coordinates.

375  When discussing taxonomy, Stephen J. Gould emphasized that “classifications both reflect and direct
376  our thinking” (65). Going on to say that “the way we order represents the way we think” (65).

377  Annotation has many similarities to taxonomy, and similarly genome annotation both reflects and
378  directs our thinking. For bacteria, annotation is protein-centric, influencing our results and ways of

379  thinking. Historically, this is likely due to the connection between the definition of a gene and protein,
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380  but practically it also relates to the ease with which we can computationally predict proteins. However,
381  with new experimental methods and abilities, it is time for a sea change in bacterial genome annotation.
382  The experimental and computational methods here are inexpensive, easy, and quick, and thus they

383 should be implemented widely. Additionally, there is a need for associated new ontology standards for
384 describing transcripts and operons in annotation files that will better describe these features, similar to
385 changes made in eukaryotic annotation files to accommodate alternative splicing and alternative

386  transcripts (66). A harmonization of the two would be ideal, such that there is a standard that spans the

387 incredible biological diversity and commonalities across the domains of life.

388 Conclusions

389 Here we use bacterial long read transcriptome data and a new algorithm we developed to predict

390 transcripts from this data for two strains of three diverse bacterial species including both Gram-negative
391 and Gram-positive bacteria. Our analysis reveals a tremendous amount of transcript structural variation,
392 transcription of RNA on both strands in some regions, overlapping transcripts, and a diversity of non-
393  coding RNAs, which we provide as new annotation for these genomes. Bacterial transcriptional

394  structural variation has a richness that rivals or surpasses what is seen in eukaryotes and provides a rich

395 new set of therapeutic and diagnostic targets.

396 Methods

397 Bacterial cultures

398 Cryogenically preserved E. coli K12 MG1655 or E2348/69 were streaked onto an LB agar plate and
399 placed in an incubator overnight at 37 °C. A single colony was selected to inoculate LB broth for an

400  overnight culture. The overnight culture was diluted 1:100 in LB broth and harvested at the optical
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401  density specified in Table 1A. For DMEM, overnight cultures were grown in LB broth and diluted 1:100 in

402 DMEM.

403 RNA Isolation

404  Toisolate RNA, the Qiagen RNeasy Mini Kit was used according to Qiagen RNA Protect Reagent

405 Handbook Protocols 4 and 7 with Appendix B on-column DNase digestion (Qiagen, Hilden, Germany).
406  The RNA was assessed with UV-Vis spectrophotometry (Denovix DS-11, Wilmington, DE), Qubit RNA HS
407  Assay Kit (Fisher Scientific, Waltham, MA), and TapeStation RNA Screentape (Agilent, Santa Clara, CA).
408 RNA preparations were stored at -80 °C until ready for polyadenylation and sequencing, except for the E.
409 coli K12 MG1655 harvested at an optical density ODgoo of 0.2. The RNA isolated from this one culture
410  was treated four different ways. For SRR27982843, 4 ug of the freshly isolated RNA was immediately
411 polyadenylated and then taken into library preparation and sequenced, as detailed below. The leftover
412 polyadenyalated RNA was stored at -80 °C alongside the original RNA isolation which had been frozen
413 without polyadenylation. Two months later, the original, unpolyadenylated RNA was thawed and

414 polyadenylated just before library preparation and sequencing (SRR27982841). On that same day, the
415 RNA that had been polyadenylated before being frozen was thawed and taken directly into library

416 preparation and sequencing (SRR27982841). Four months after the original RNA isolation, the RNA that
417  had been polyadenylated before storing at -80 °C was thawed again and polyadenylated again before

418 library preparation and sequencing (SRR27982840).

419  Oxford Nanopore Sequencing

420 RNA was polyadenylated with E. coli poly(A) polymerase (M0276S, New England Biosciences, Ipswich,
421 Massachusetts) at 37 °C for 90 s — 30 min (Table S1) according to the manufacturer’s protocol and
422  sequenced with the Direct RNA Sequencing kit (SQK-RNA002, Oxford Nanopore Sequencing, Oxford, UK)

423 according to protocol version DRS 9080 v2 revR_14Aug2019. The prepared RNA library was loaded
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424 onto R9.4.1 flow cells (FLO-MIN106D) in a MinlION device Mk1B (MIN-101B). Sequencing runs were
425  terminated at 24 h. Fast5 files were basecalled using Guppy version 6.4.2 generating FASTQ files with

426  the high accuracy model using the rna_r9.4.1_70bps_hac config file on a GPU cluster.

427  Read Mapping, Transcript Prediction, and Analysis

428 FASTQ files were mapped to the reference genome (Table A2) using minimap2 (v2.24-r1122)

429 (67)(options: -ax map-ont -t 2). Alignments were sorted and filtered with samtools (v1.11) (68) using
430 view (option: -F 2308) and generating bam files that were merged and indexed. BED files were

431 generated with bamToBed (v2.27.1) (69)(options: -s -c 6,4 -o distinct,count) and filtered with awk to
432 remove regions with fewer than 20 reads. The tp.py script was run in python (v.3.11.4). Statistics on

433 regions, predicted transcripts, and other features were calculated with perl (v5.30.2). Perl (v5.30.2) was
434  also used to merge the transcript and reference gff files and identify mRNAs, ncRNAs, and UTRs. ONT
435  sequencing, transcript predictions, and reference CDS predictions were visualized in R (v3.6.3). E2348/69
436 reads from the SRA for PRIEB36845/E-MTAB-88804 and counted against the E2348/69 with the

437  transcript predictions presented here using Salmon (v. 1.10.2) (31). Before differential expression was
438 assessed, genes not meeting the required CPM cutoff of 5 in at least 3 samples were removed. The

439 samples were grouped based on the treatment status, and differentially expressed genes were

440 identified with EdgeR v3.30.3 using the quasi-likelihood negative binomial generalized log-linear model.
441 Statistical significance was set at an FDR cutoff < 0.05 after correction with the Benjamini Hochberg

442 method. A heatmap was drawn in R v4.2.1 using heatmap.3 of the z-score transformed log,(TPM) values
443  for differentially expressed genes with the columns ordered based on a dendrogram generated using

444  pvclust v2.2-0.
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445  The full set of commands are described at: https://github.com/jdhotopp/tp.py-Direct-RNA-Sequencing-
446 Manuscript-/tree/main (a DOI will be acquired after commands are finalized following review of the

447  manuscript).
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665 Tables

666  Table 1. Characteristics of Predicted Transcripts for Escherichia coli, Listeria monocytogenes, and Pseudmonas aeruginosa
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667
668
669
670

671

Escherichia coli Listeria monocytogenes Pseudomonas Pseudomonas
Escherichia coli K12 E2348/69 Listeria monocytogenes RO15 aeruginosa SG17M aeruginosa NN2 Haloferax volcanii
Feature (GCF_000005845.2) (GCF_014117345.2)  Scott A (CM001159.1) (CADEHJ000000000.1) (NZ_CP080369.1) (NZ_LT883143.1) (GCF_000025685.1)
Number of contigs in reference 1 3 1 2 1 1 5
Number of reads used 5,266,309 3,025,047 1,679,073 1,664,744 220,553 1,196,279 1,438,670
Number of CT Regions for Predictions (>20 reads) 1,055 1,071 525 464 391 1,209 640
Number of Regions on (+)-strand 521 528 238 206 181 612 318
Number of Regions on the (-)-strand 534 543 287 258 210 597 322
Span (bp) on (+)-strand 2,068,709 1,951,551 703,660 589,005 530,329 1,944,294 893,429
Span (bp)on (-)-strand 2,135,707 1,827,581 821,637 759,698 589,348 1,886,100 974,115
Average span (bp) + strand 3,968 3,777 2,946 2,848 2,915 3,174 2,807
Average span (bp) — strand 3,997 3,446 2,851 2,932 2,786 3,155 3,022
Number of Transcripts 3,618 2248 881 793 274 1103 613
Number of Transcripts on the (+)-strand 1,465 1101 402 361 79 495 241
Number of Transcripts on the (-) strand 2,153 1147 479 432 195 608 372
Number of Regions with 1 transcript 289 429 218 199 85 258 226
Maximum Number of Transcripts per Region 254 141 32 31 68 63 27
Mean 3'-UTR (bp) 150 126 122 112 163 236 180
Median 3'-UTR (bp) 72 62 48 47 59 78 84
Maximum 3'-UTR (bp) 2,716 1,261 1,306 1,245 2,235 2,809 2040
Mean 5'-UTR (bp) 134 119 137 114 185 205 373
Median 5'-UTR (bp) 53 49 36 33 93 85 207*
Maximum 5'-UTR (bp) 2,122 2,817 2,303 2,303 1,835 1,943 2,955
Number of genes 4,494 4,809 3,038 3,149 6,349 6,380 3,956
Number of genes in annotated transcript 2,360 2,037 765 680 209 765 385
Number of genes associated with just 1 transcript 1,341 1,300 636 554 168 572 301
Maximum number of transcripts a single gene is
associated with 15 12 6 7 4 6 10
90% of genes are associated with fewer than this
number transcripts 4 4 3 3 3 3 3
Number of transcripts with 1 gene 1,563 1,096 349 316 79 398 167
Maximum number of genes in a single mMRNA 17 14 38 22 15 15 15
90% of transcripts have fewer than this many genes 4 4 4 3 3 3 3
Number of predicted mRNAs 2,487 1,844 536 491 133 601 263
Average predicted mRNA size (bp) 1,617 1,732 1,660 1,607 1,590 1,735 1,948
Largest predicted mRNA (bp) 13,305 15,256 29,034 10,791 14,168 12,709 10,463
Smallest predicted mRNA (bp) 131 129 224 209 183 146 136
Number of predicted ncRNAs (including ones in
reference GFF) 1,131 404 345 302 141 502 350*
Average predicted ncRNA size (bp) 550 649 497 524 578 538 724*
Largest predicted ncRNA (bp) 2,947 2,916 2,585 2,588 6,361 2,851 3,045*
Smallest predicted ncRNA (bp) 89 80 95 136 97 77 81*
phage
glf, gnd, insH7, phage (LMOSA_9400- rpIBCDEFNOPRVWX, fusA,rplIL,rpoBC,rpsGL, (PANN_06920 -
Genes in longest mRNA rfbABCDX, wbbHIJKL ~ nuoABCEFGHIJKLMN LMOSA_9770) rpmCD, rpsCEHJQS, secY tuf PANN_07050) nuoABCD1HIJ1J2KLMN

*The reads for this species frequently do not extend beyond the 5’-end of the CDS, essentially meaning transcripts start where translation is predicted to start. When this happens for a polycistronic
transcript, the result is a very long 5’-UTR as seen with the increased median, and when this happens for a monocistronic transcript, the mRNA is erroneously called a ncRNA. While this likely occurs
for all of the organisms, it is acute for the H. volcanii data. It may be that the 5’-end predictions of the CDS are flawed due to calling the longest ORF, or it may be that the H. volcanni UTRs are

shorter than the bacterial 5’-UTRS.
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672  Figures

673  Figure 1 — Overview of the Experimental/Analysis Workflow

674 Plus-strand ONT direct RNA sequencing reads (shown as lines) are mapped from 1 bp to 6 kbp in the E.
675  coli K12 genome (NC_000913.3), which corresponds to the thr operon, and sorted by their transcription
676 stop site for E. coli K12 grown in rich LB media (left sorted, A; right sorted, C) and DMEM media (left
677 sorted, B; right sorted, D). Our algorithm predicts 3 transcripts (E), and 4 CDSs in the GFF file are

678 illustrated (F). The transcript for the leader peptide thrL is recovered in both growth conditions. (G) RNA
679 was isolated from E. coli K12 grown at 37 °C with aeration in LB and DMEM media. (H) Squiggle plot for
680  two sequencing reads in tandem. In this case, the open pore state was missed by the software resulting
681 in a chimeric read. In both reads the DNA adapter can be observed with lower current followed by a
682 relative flat plateau that corresponds to the polyA tail. This is followed by the current changes

683  associated with the RNA moving through the pore. (I) Squiggle plots are shown of current for the same
684  length DNA and RNA highlighting that the signal to base ratio is different for RNA and DNA. (J) The

685  standard ONT direct RNA sequencing library was used on bacterial RNA that was in vitro polyadenylated
686  following RNA isolation. Library construction and (K) loaded on an ONT MinlON device for nanopore

687 sequencing.

688  Figure 2 — Characteristics of Transcript Predictions

689  The distribution of the number of instances of CDS by transcripts/CDS (A) and the distribution of the
690 number of instances of transcripts by CDSs/transcript (B) are shown for E. coli K12, E. coli E2368/69, L.
691 monocytogenes ScottA, L. monocytogenes RO15, P. aeruginosa SG17M, P. aeruginosa NN2, and H.

692 volcanii. The data points in these discrete distributions are connected by lines for visualization purposes.

693  The inset in each illustrates how transcripts/CDS and CDSs/transcript are defined. The size distributions
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694  of predicted 5’-UTRs (C) and 3’-UTRs (D) are plotted for each of the six strains examined with an inset

695  that zooms in on 0-350 bp to better illustrate the distribution of the majority of the data.

696  Figure 3 — fdoGHI-fdhE Transcripts

697 Reads mapping to the minus strand of the E. coli K12 genome (NC_000913.3) grown in LB (A, C) and
698 DMEM (B, D) are shown for a region from 4,080-4,088 kbp. To facilitate the visualization of the starts
699  and stops of transcripts, reads were sorted by either their left most (A, B) or right most (C, D) position
700 and plotted from top to bottom accordingly. Transcript predictions from our algorithm (E) and the
701 predicted CDSs in the reference gff file (F) are shown with arrows indicating the direction of

702 transcription and with transcripts/CDSs on the different strands having different shading (light for the

703 (+)-strand and dark for the (-)-strand).

704  Figure 4 — LEE4 Operon

705 Reads are illustrated that map to the plus strand (A, C) and minus strand (B, D) of the E. coli E2348/69
706  genome (GCF_014117345.2) grown in LB or DMEM for a region from 72-78 kbp. There are no reads from
707  the LB conditions on the (+)-strands. To facilitate the visualization of the starts and stops of transcripts,
708  reads were sorted by either their left most (A, B) or right most (C, D) position and plotted from top to
709 bottom accordingly. Transcript predictions from our algorithm (E) and the predicted CDSs in the

710 reference gff file (F) are shown with arrows indicating the direction of transcription and with

711 transcripts/CDSs on the different strands having different shading (light for the (+)-strand and dark for

712  the (-)-strand).

713  Figure 5 — Differential expression of predicted transcripts

714 Reads are illustrated mapping to the plus strand of the E. coli E2348/69 genome (GCF_014117345.2)
715  grownin LB (A, C) or DMEM (B, D) from 4.730-4.735 Mbp sorted by either their left most (A, B) or right

716  most (C, D) position. Transcript predictions from our algorithm (E) and the predicted CDSs in the
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717  reference gff file (F) are shown with arrows indicating the direction of transcription. Table of TPMs

718  calculated with Salmon for transcripts and FADU for CDSs (G) for the same region shown in panels

719  ABCDEF. For ONT reads, only Salmon was used. Plot of the log,(TPM) for all CDSs and all corresponding
720  transcripts for ERR393285 (H). Heatmap clustered by genes for the log,(TPM) for all CDSs calculated with
721 FADU and all corresponding transcripts calculated with Salmon for lllumina and ONT reads generated

722  from LB and DMEM (1).

723  Figure 6 — ONT sequencing characteristics that informed algorithm development

724 Size distribution of all of the E. coli K12 ONT sequencing reads aligning outside the rRNA reads compared
725 to the distribution of predicted operons (A). For the 285,619 reads that are longer than the operon they
726 map to, the length of reads is plotted relative to the size of the operon they map to (B). Normalized

727  sequencing depth from the 3’-end to the 5’-end for E. coli K12 16S rRNA, E. coli K12 23S rRNA, and IVT
728 RNA (SRR23886069), all thought to be complete, showing the 3’-bias in sequencing (C). Distribution of
729 read lengths for the 1.3 kbp yeast enolase ONT spike-in (D) and an 11.7 kbp IVT RNA (E) from

730  SRR23886069where only reads ending at the far right position are shown. The log transformed ratios of
731 Ilumina (SRR3111494) and ONT (SRR23886071) TPM values for RNA isolated from adult female Brugia
732 malayi, a filarial nematode and invertebrate animal, is compared to the transcript length, illustrating
733 how shorter transcripts have more Illumina reads relative to ONT reads than longer transcripts (F). Our
734 interpretation is that ONT sequencing is biased toward shorter transcripts. The inset uses the heat

735 function to show the intensity of the points in the region which contains most of the data.
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736  Additional Files

737  Table Al - Sequencing statistics for ONT direct RNA sequencing runs with E. coli RNA
738  Table A2 — Data Used in the Analysis and Prediction of Transcripts

739  Figure Al — recBCD/ptrA Transcript Predictions

740 Minus-strand ONT direct RNA sequencing reads (shown as lines) are mapped from ~2.950-2.965 Mbp in
741 the E. coli K12 genome (NC_000913.3), which corresponds to a region encoding RecBCD and PtrA. Reads
742 are sorted by their transcription stop site for E. coli K12 grown in rich LB media (left sorted, A; right

743  sorted, C) and DMEM media (left sorted, B; right sorted, D). Our algorithm predicts 3 transcripts (E), and
744 7 CDSs in the reference NC_000913.3 GFF file are illustrated (F). While there are no ONT reads that span
745 the entire recBCD/ptrA region, there is sufficient evidence to call this transcript. This is because, after
746  removing reads wholly contained within a predicted recBD transcript and a ptrA/recBD transcript there

747  were sufficient reads remaining to predict a transcript that spans recBCD/ptrA.

748  Figure A2 -- Pore-mediated and ligase-mediated chimeras

749  Chimeric sequencing reads observed in ONT direct RNA sequencing data can theoretically be generated
750 by (A) two reads entering the pore in tandem with an open pore state that is not detected, (B) two RNA
751 molecules being fused through ligation in vivo, in vitro during library construction, or a mapping artifact
752 when there is a rearrangement in the genome reference, and (C) two fragments fused by ligation

753 following adapter ligation during library construction. (D) A chimeric read from a sequencing run that
754  shows that an open pore state (black) was missed between the first read (blue) and the second read
755 (red). For both reads, the characteristic DNA adaptor with a lower current is observed followed by a
756  higher plateau that is the polyA tail being sequenced. The open pore state is a spike from increased

757  current when the pore is open between RNA molecules sequenced.
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758  Figure A3 -- Results from Stringtie, Tama, and Cupcake

759  Transcript predictions resulting from Stringtie, Tama, and Cupcake are shown for E. coli K12 for the same
760  region as presented in Figure 3. Plots are labeled on the right side according to the notation in the

761  github page that fully describes how they were run with those ending in LB resulting from only the K12
762 LB data and those ending in DMEM resulting from only the K12 DMEM data. Stringtie is splicing focused,
763 and since bacteria do not have splicing it is unsurprising that it could not predict transcript structures,
764 largely yielding transcript predictions corresponding to zero-depth regions across the genome. Whether
765  default (Tama 1) or user-defined parameters were used (Tama 2 and 3), Tama frequently over-called
766 transcripts, particularly in regions with higher sequencing depth. With default parameters (Cupcake 1),
767 Cupcake tends to under-call transcripts because ONT reads get filtered out of analysis due to higher

768  degree of mismatches, and in this region no results were reported. When the parameters were adjusted

769  to better fit ONT reads (Cupcake 2), Cupcake produced results similar to TAMA.
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