

1 **Shot running title:** *SIAN1* is critical for anthocyanin synthesis in purple tomato

2
3 **SIAN1 is a limiting factor for the light-dependent anthocyanin accumulation in fruit tissues**
4 **of purple tomato**

5
6 Gabriel Lasmar dos Reis^{a,b,1}, Chaiane Fernandes Vaz^{b,1}, Luis Willian Pacheco Arge^{c,1}, Adolfo Luís dos
7 Santos^{a,b}, Samuel Chaves-Silva^{a,b}, Lázaro Eustáquio Pereira Peres^{d*}, Antonio Chalfun-Junior^b, Vagner
8 Augusto Benedito^{a,b*}

9
10 ^a Division of Plant and Soil Sciences, West Virginia University, 3425 Agricultural Sciences Building, Morgantown,
11 WV 26506-6108, USA

12 ^b Biology Department, Universidade Federal de Lavras (UFLA), Lavras, MG, 37200-900, Brazil

13 ^c Laboratory of Molecular Genetics and Biotechnology of Plants, Biology Department, Universidade Federal do Rio
14 de Janeiro, Rio de Janeiro, RJ, 21941902, Brazil

15 ^d Laboratory of Hormonal Control of Plant Development, Luiz de Queiroz College of Agriculture, University of São
16 Paulo, Department of Biological Sciences, Piracicaba, SP, 13418-900, Brazil

17
18 ¹ These authors contributed equally to this work

19 *** Corresponding authors:** Lázaro E. P. Peres: lazaro.peres@usp.br, +55-19-3429-4052; Vagner A. Benedito:
20 vagner.benedito@mail.wvu.edu, +1-304-293-5434

21
22 **Email address of each author:**
23 gabriellasmarreis@hotmail.com
24 cha.fvaz@hotmail.com
25 l.willianpacheco@gmail.com
26 adolfagro@yahoo.com
27 samchaves06@gmail.com
28 lazaro.peres@usp.br
29 chalfunjunior@ufla.br
30 vagner.benedito@mail.wvu.edu

31
32 **Date of submission:** April 2, 2024

33 **Number of Figures:** 8

34 **Word count:** 5,491

35 **Supplemental Data:** 7 Figures, 9 Tables

36 **Highlight**

37 The expression of the *SIAN1* gene is activated in response to light signals, and it is the limiting
38 factor for anthocyanin pigmentation in tomato fruit tissues.

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67 **Abstract**

68 Anthocyanins are specialized plant metabolites with significant dietary value due to their anti-
69 inflammatory properties. Research indicates that dietary intake of these phenolic compounds
70 contributes to preventing various chronic diseases. As the most consumed vegetable worldwide,
71 tomato (*Solanum lycopersicum*) is an excellent candidate for anthocyanin-enrichment strategies.
72 In tomato, activation of anthocyanin biosynthesis is light-dependent, but this mechanism has yet
73 to be entirely characterized. We investigated the role of light in anthocyanin biosynthesis in
74 fruits of the purple tomato, which is a near-isogenic line (NIL) derived from wild accessions into
75 cv. Micro-Tom (MT). MT-*Aft/atv/hp2* starts accumulating anthocyanin early during fruit
76 development but is restricted to the peel (exocarp and epicarp). Manipulating light incidence in
77 different fruit tissues determined that the absence of anthocyanin accumulation in the flesh
78 results from the sun-blocking effect of the cyanic epicarp on the mesocarp, thus preventing light
79 from penetrating deeper into the fruit. Transcriptional analyses of the fruit peel and flesh
80 revealed that the bHLH transcription factor SIAN1 (Solyc09g065100) is the limiting factor for
81 light-dependent anthocyanin accumulation in both tissues. This research enhances our
82 comprehension of the genetic and environmental regulation of anthocyanin accumulation in fruit
83 tissues, offering valuable insights into plant breeding for human nutrition.

84

85 **Keywords:** antioxidant; crop improvement; food and health; natural dye; natural genetic
86 variation; near-isogenic line (NIL)

87

88

89

90

91

92

93

94

95

96

97

98 **Introduction**

99 Anthocyanins are natural pigments derived from the plant's specialized metabolism that confer
100 red, pink, purple, or blue pigmentation to plant tissues, depending on the molecular structure and
101 vacuolar pH for their final hue (Hichri *et al.*, 2010; Houghton *et al.*, 2021). Beyond the
102 ecological notion that anthocyanins are responsible for attracting pollinators and seed dispersers,
103 they also play a protective role due to their antioxidant activity by scavenging reactive oxygen
104 species (ROS) that otherwise could severely damage plant tissues (Buer *et al.*, 2010; Corso *et al.*,
105 2020). Furthermore, it has been suggested that anthocyanins form a protective barrier in plant
106 tissues by absorbing the UV-B radiation potentially harmful to the photosynthetic machinery
107 (Gould *et al.*, 2010; Cerqueira *et al.*, 2023). These properties make anthocyanins an important
108 protective compound against environmental stresses. From a dietary perspective, based on their
109 antioxidant and anti-inflammatory properties, anthocyanins are bioactive in preventing or
110 mitigating a series of chronic diseases (Martin *et al.*, 2011; Panchal *et al.*, 2022), such as
111 cardiovascular disorders (Cassidy *et al.*, 2013), type-2 diabetes (Fallah *et al.*, 2020), obesity
112 (Muraki *et al.*, 2013), and cancer (Butelli *et al.*, 2008). Therefore, they represent an important
113 health-promoting compound that should be consistently incorporated into the diet.

114 Considering the ubiquity of horticultural crops in the human diet, studies were carried out
115 on these species to understand the regulatory mechanisms of the anthocyanin biosynthesis
116 pathway (for a review, cf. Chaves-Silva *et al.*, 2018). In this context, anthocyanin-enriched
117 (cyanic) versions of fresh produce represent a critical source of anthocyanins that is readily
118 available and cost-effective, allowing dietary enrichment simply by choosing cyanic varieties.
119 Anthocyanins are typically found in limited quantities in cyanic products, as they are often
120 confined to the epidermal and subepidermal cells (epicarp, exocarp, or peel), which account for
121 only 3–5% of the fruit's total mass (Sestari *et al.*, 2014; Chaves-Silva *et al.*, 2018). Thus,
122 devising breeding strategies to generate anthocyanin-enriched varieties with an emphasis on the
123 mesocarp (flesh) of horticultural crops is critical.

124 Worldwide, the tomato (*Solanum lycopersicum*) is the most consumed vegetable. It is
125 thus an excellent model for discovering strategies aiming at anthocyanin enrichment. Although
126 the fruits of cultivated varieties of tomato do not accumulate anthocyanins (Povero *et al.*, 2011;
127 Sestari *et al.*, 2014), some related wild species, such as *S. lycopersicoides*, *S. peruvianum*, and *S.*

128 *chilense*, accumulate small amounts in the subepidermal layers under adequate light conditions
129 (Bedinger *et al.*, 2011; Chaves-Silva *et al.*, 2018).

130 Traditional breeding has delivered some varieties with cyanic tomato fruits. The
131 introgression of the alleles *Anthocyanin fruit* (*Aft*) and *atroviolacea* (*atv*) from *S. chilense* and *S.*
132 *cheesmaniae*, respectively, into *S. lycopersicum* led to purple tomato varieties, such as the cv.
133 Indigo Rose, with an epicarp with high levels of anthocyanins (Mes *et al.*, 2008; Gonzali *et al.*,
134 2009). The further stacking of the mutation *high pigment 2* (*hp2*) from cv. Manapal, which
135 confers hypersensitivity to light-mediated responses, into the double mutant in the cv. Micro-
136 Tom background led to a genotype (MT-*Aft/atv/hp2*) with very high anthocyanin content in the
137 epicarp (Sestari *et al.*, 2014).

138 The anthocyanin biosynthesis pathway is controlled by the action of specific transcription
139 factors (TFs), which are influenced by plant development and environmental stimuli (Albert *et*
140 *al.*, 2014). Among these, R2R3 MYBs can act individually or together with bHLH and WDR
141 TFs in a multiprotein complex (MBW). On the other hand, R3 MYB are competitive inhibitors
142 of the anthocyanin biosynthesis pathway mediated by the MBW. This complex controls the
143 expression of the structural genes, the “*early biosynthetic genes*” (EBGs) and “*late biosynthetic*
144 *genes*” (LBGs), which code for enzymes essential to the anthocyanin biosynthesis in different
145 tissues (Chaves-Silva *et al.*, 2018; Colanero *et al.*, 2020a). In tomato, *ATV* is an R3 MYB, while
146 *AFT* is a putative R2R3 MYB. This is consistent with the observation that the recessive *atv*
147 allele, characterized by a loss-of-function due to a premature stop codon, and the dominant *Aft*
148 allele both contribute to the enhancement of anthocyanin biosynthesis (Cao *et al.*, 2017;
149 Colanero *et al.*, 2018; Colanero *et al.*, 2020b).

150 Light is one of the most critical environmental factors that control the anthocyanin
151 biosynthesis (Albert *et al.*, 2009). Shading or dark conditions repress the expression of structural
152 genes in this pathway (Hong *et al.*, 2015; Liu *et al.*, 2020). In some tomato genotypes (e.g., cv.
153 'Indigo Rose' and *Aft/Aft*: LA1996), the expression of anthocyanin-related genes in the epicarp
154 starts at the mature green stage and is influenced by the amount of light received on each side of
155 the fruit, with the shaded side exhibiting a green hue compared to a darker purple hue on the side
156 exposed to direct light (Qiu *et al.*, 2019; Colanero *et al.*, 2020b).

157 A critical unresolved question is the mechanism behind internal parenchymatic tissues
158 often less prone to accumulate anthocyanins than epidermal tissues in plants (Chaves-Silva *et al.*,

159 2018). Here, we investigated how light influences anthocyanin accumulation in purple fruit
160 tissues of tomato genotype MT-Aft/atv/hp2 by blocking light during fruit development. We
161 explored global transcriptional activity in response to light in dissected tissues of the fruit. This
162 work sheds light on the transcriptional regulation of anthocyanin pigmentation in response to
163 light. Our study also provides new insights for achieving higher anthocyanin content in fleshy
164 fruits.

165

166 **Material and Methods**

167 **Plant material, growth conditions, and sampling**

168 To characterize the starting point of anthocyanin pigmentation in tomato fruits, we used the
169 cyanic genotype (MT-Aft/atv/hp2) (Sestari *et al.*, 2014) and the cultivar Micro-Tom (Meissner *et*
170 *al.*, 1997) as a control. The plants were grown in a greenhouse under a 16-h photoperiod with
171 600–700 W/m² radiation, 21°C ± 2°C, and 50% RH. The images were analyzed using the NIS-
172 Elements software.

173 Individual flowers were covered with aluminum foil at anthesis and kept for 30 days,
174 aiming at fruit development in a complete absence of light (Supplementary Fig. S1).
175 Subsequently, the developed fruits were exposed to light and collected at different times:
176 immediately (0d), 2 days (2d), and 5 days (5d) after the cover was removed. For a positive
177 control treatment (Ctl), flowers were marked at the anthesis, left exposed to normal light, and the
178 fruits were collected after 30 days.

179 Young leaves and fruits in three development stages (green, turning, and mature) were
180 collected from MT-Aft/atv/hp2 for the RT-qPCR analyses.

181 All fruits collected were dissected into the epicarp (the peel or exocarp) and mesocarp
182 (the flesh), and seeds were discarded. All plant material was snap-frozen in liquid nitrogen and
183 stored in a -80°C freezer until use. Material from three plants was collected and pooled to
184 represent a biological replicate, and three biological replicates were used in the following
185 analyses.

186

187 **RNA Isolation, library preparation, and sequencing**

188 Total RNA was extracted from the epicarp and mesocarp separately using the mirVana miRNA
189 isolation kit (Ambion, ThermoFisher) according to the manufacturer's instructions for total RNA

190 extraction. The integrity of the RNA was visualized on a 1.2% agarose gel, and the quantity and
191 quality were assessed on a Nanodrop spectrophotometer. Library preparation and Illumina
192 sequencing were performed at Novogene (Sacramento, CA, USA). Twenty-four cDNA libraries
193 were prepared and then sequenced on an Illumina Novaseq 6000, with a configuration of 150-bp
194 paired-end. The sequencing of transcripts revealed a total of 585.6 million reads (a mean of 23.7
195 million reads per library), of which 568.8 million (97%) showed sufficient quality (Q>20). The
196 libraries were aligned on the *Solanum lycopersicum* genome assembly v.4.0 and ITAG
197 annotation v.4.2 from SolGenomics (<https://solgenomics.net>; Fernandez-Pozo *et al.*, 2015). On
198 average, 22.2 million reads per library (94%) were uniquely mapped on the genome
199 (Supplementary Table S1).

200

201 **Pre-processing and mapping of reads**

202 Raw FastQ data were initially submitted for quality analysis with FastQC v.0.11.5 (Andrews,
203 2010). The cleaning step was performed with Trimmomatic v.0.39 (Bolger *et al.*, 2014), with the
204 following parameters: ILLUMINACLIP:TruSeq3-PE.fa:2:30:10:2:keepBothReads to remove
205 adapters and keep both reads as paired, LEADING:3 and TRAILING:3 to remove bases above
206 the quality of three at the start and final of each read, respectively, and MINLEN:36 to discard
207 reads with < 36 bp. Each cleaned library was submitted for read mapping against the genome
208 with the software Star v.2.7.5.c (Dobin *et al.*, 2013). The counting of mapped reads for each gene
209 was performed with featureCounts v.1.6.5 (Liao *et al.*, 2014), and gene expression was
210 normalized as TPM (transcripts per million).

211

212 **Differential expression, Functional Annotation, and Enrichment Analysis**

213 Genes with low expression values (TPM < 1) were removed from the differential expression
214 analysis. Differentially expressed genes were identified in R v.4.0.5 with the package DESeq2
215 v.1.32.0 (Love *et al.*, 2014). All three replicates for each time point were used for the differential
216 expression analysis, and the comparisons were performed against the same tissue. Genes with
217 adjusted p-values < 0.05 were considered differentially expressed (DEGs). The package ggplot2
218 v.3.3.2 (Wickham, 2016) was used to build bar charts, and ComplexHeatmap v.2.9.0 (Gu *et al.*,
219 2016) for heatmaps.

220 Tomato gene features were retrieved from different databases. Transcription factor
221 information was retrieved from the PlantTFDB v.5.0 (Jin *et al.*, 2016). Annotation of genes
222 encoding metabolic enzymes was collected from the KEGG (Kyoto Encyclopedia of Genes and
223 Genomes) database with GhostKOALA v.2.2 (Kanehisa *et al.*, 2016). Gene Ontology (GO)
224 terms were annotated with GOMAP v.1.3.4 (Wimalanathan and Lawrence-Dill, 2021) to obtain a
225 high coverage level of genome annotation. The R's match function was used to retrieve
226 functional information from the genome and match it to a set of DEGs.

227 To investigate the primary functional annotations of the differentially expressed (DE)
228 gene sets in each comparison, we conducted an enrichment analysis to identify overrepresented
229 metabolic pathways, transcription factors, and GO terms in the dataset. This approach was
230 applied for each DE profile, separated by up- and down-regulated genes. We considered features
231 below the p-value < 0.05 threshold for metabolic pathways and transcription factors, and FDR <
232 0.05 for GO terms as overrepresented. Due to the high number of enriched GO terms, we
233 computed the semantic similarity between terms with the mgoSim function from the R package
234 GOSemSim Ver. 2.24.0 (https://doi.org/10.1007/978-1-0716-0301-7_11,
235 <https://doi.org/10.1093/bioinformatics/btq064>). Following, a dimensional reduction analysis was
236 conducted using the umap (Uniform Manifold Approximation and Projection) function from the
237 umap Ver. 0.2.10 (<https://arxiv.org/abs/1802.03426>) R package. dbscan function, package
238 dbscan Ver. 1.1-11 (<https://doi.org/10.18637%2Fjss.v091.i01>) was applied to identify GO terms
239 clusterings using eps of 0.4 and minimum points of 5. Ggplot2 and ggConvexHull were used to
240 plot umap and bubble charts, and each clustering of GO terms was labeled by the lowest FDR
241 value.

242
243 **Structural analysis of *SlMYB-ATV* transcripts**
244 The *SlMYB-ATV* transcript reconstruction was performed based on the data generated from the
245 MT and MT-Aft/atv/hp2 transcript sequences against that reported by Sun *et al.* (2020). The
246 sequences were reconstructed with Trinity v.2.13.0 (Grabherr *et al.*, 2011). Blast v.2.8.1+
247 (Altschul *et al.*, 1990) was used to identify the *SlMYB-ATV* transcript. ORFFinder
248 (ncbi.nlm.nih.gov/orffinder) was used to determine the ORF (Open Reading Frame) representing
249 the transcript of interest. Subsequently, global alignment was performed for the *SlMYB-ATV*

250 sequences from cv. Heinz, Indigo Rose (InR), Micro-Tom, and MT-Aft/atv/hp2 with ClustalX
251 v.2.1 (Larkin *et al.*, 2007).

252

253 **RNA isolation, DNase treatment, and cDNA synthesis**

254 Total RNA was extracted from the leaves and fruits (epicarp and mesocarp, separately) from the
255 green, turning, and mature stages using the TRIzol® reagent following the manufacturer's
256 instructions. Subsequently, the extracted RNA was subjected to DNase treatment (Turbo DNA-
257 free™ kit) and reverse transcribed into cDNA using the SuperScript III Reverse Transcriptase kit
258 with oligo(dT) primers.

259

260 **Real-time PCR analysis**

261 The RT-qPCR was performed with an ABI PRISM 7500 Real-Time (Applied Biosystems) using
262 the SYBR Green Master Mix with the primers listed in Supplementary Table S2. *β-tubulin*
263 (*Solyc04g081490*) and *Glyceraldehyde 3-phosphate dehydrogenase (GAPDH)* (*Solyc05g014470*)
264 were used as reference genes. The relative expression was analyzed according to Pfaffl (2001).

265

266 **Statistics**

267 Statistical analyses of the RT-qPCR data were performed using the R software (Team, 2013).
268 The normality of variables was assessed using the Shapiro-Wilk test. Student's t-test was applied
269 to data with normal distribution, and the non-parametric U test (Mann-Whitney-Wilcoxon) was
270 applied to non-normal data. All tests were used with a significance level of 95% ($P \leq 0.05$).

271

272 **Results**

273 **The onset of anthocyanin pigmentation in the cyanic tomato fruit (MT-Aft/atv/hp2)**

274 We monitored flowering and fruit development in MT-Aft/atv/hp2 plants and identified that
275 anthocyanin accumulation starts right after flower senescence. As the petals fell off and the
276 young fruit was directly exposed to light, anthocyanin accumulated in the epicarp (Fig. 1A). In
277 contrast, fruits of the control genotype (cv. Micro-Tom) did not show visible anthocyanin
278 pigmentation (Fig. 1B). This pattern of anthocyanin accumulation in MT-Aft/atv/hp2 plants is
279 independent of further fruit development but restricted mainly to the epicarp, while the mesocarp
280 and the region under the sepals remained acyanic (Fig. 1C).

281

282 **Light activates anthocyanin biosynthesis in the tomato mesocarp**

283 Based on the light-dependent pattern of anthocyanin pigmentation in MT-Aft/atv/hp2 purple
284 fruits, we investigated the metabolic response when restricting light incidence on the fruit from
285 its first developmental stages and then exposing the physiologically mature fruit to light.
286 Immediately after anthesis, individual flowers were covered with aluminum foil to allow the fruit
287 to develop for 30 days to physiological maturity in the complete absence of light (Supplementary
288 Fig. S1). As a control, flowers from other plants were marked simultaneously but not covered.
289 Compared to control fruits, which developed a dark purple phenotype in the epicarp and a green
290 phenotype in the mesocarp (Fig. 2), the covered fruits were completely acyanic at the removal of
291 the cover (0d) (Fig. 2). Notably, even without light, fruits developed normally in size and shape.

292 To investigate the activation of the anthocyanin biosynthesis after the fruit was fully
293 developed in the dark, we exposed them to normal light conditions for up to five days after the
294 cover had been removed and examined the anthocyanin pigmentation phenotype in the epicarp
295 and mesocarp. Exposure to light for 2 days (2d) showed visible signs of anthocyanin
296 accumulation in sectors of the fruit epicarp and mesocarp (Fig. 2). Furthermore, exposure to light
297 for 5 days (5d) led to a notable increase in purple pigmentation in the entire epicarp and,
298 surprisingly, also in the mesocarp (Fig. 2). The progressive development of the purple hue in the
299 fruits is shown in Supplementary Fig. S2.

300

301 **Global transcriptional expression analysis of tomato fruit tissues in response to light**

302 To further understand the molecular mechanisms behind the light-mediated transcriptional
303 regulation of anthocyanin accumulation in the tomato fruit, we carried out RNA-seq analysis of
304 the epicarp and mesocarp of the treatments shown in Fig. 2. By comparing the epicarp of control
305 (fruits developed under light) and fruits exposed to light for 0 (immediately after uncovering), 2,
306 and 5 days, we identified 4559, 5859, and 3900 differentially expressed genes (DEGs),
307 respectively. The expression of 983 genes in the epicarp coincidentally differed in 0, 2, and 5 days
308 of light exposure compared to the control. Meanwhile, we found 1722 (0d), 5705 (2d), and 4937
309 (5d) DEGs in the mesocarp compared to the control (Fig. 3A; Supplementary Table S3). In this
310 tissue, 549 genes were identified as differentially expressed coincidentally in 0, 2, and 5 days of
311 light exposure, compared to the control (Fig. 3B). The heatmap representing all DEGs is shown

312 in Supplementary Fig. S3. Expression values for TPM (Transcript Per Million) and DEGs can be
313 accessed in the Supplementary Table S4 and S5, respectively. This analysis revealed a light-
314 triggered transcriptional network involved in anthocyanin accumulation in fruit tissues.

315 Enrichment analyses of functional gene annotations can reveal critical transcriptional
316 changes associated with a phenotype. Therefore, we conducted enrichment analyses of metabolic
317 pathways, transcription factor (TF) families, and gene ontology (GO) terms to identify distinct
318 patterns triggered by light in fruit tissues. Seventy-five metabolic pathways were enriched in
319 both the epicarp and mesocarp upon light exposure, including those directly or indirectly
320 associated with anthocyanin biosynthesis and specialized metabolism: flavone and flavonol
321 biosynthesis (map00944); flavonoid biosynthesis (map00941); phenylalanine metabolism
322 (map00360); phenylalanine, tyrosine, and tryptophan biosynthesis (aromatic amino acids:
323 map00400); along with the biosynthesis of carotenoids (map00906) and terpenes (map00900),
324 and the degradation of geraniol (map00281). Aromatic amino acid biosynthesis was not enriched
325 in the mesocarp at 0d light exposure but at 2d and 5d of light exposure when compared with the
326 mesocarp of the control fruit developed under light conditions (Supplementary Fig. S4;
327 Supplementary Table S6).

328 Transcription factors (TFs) play critical roles in modulating gene expression. We
329 identified 15 TF families enriched in the various DEG comparisons (Supplementary Fig. S4).
330 The most noticeable family was MYB at 2d and 5d light exposure compared to the control. Other
331 anthocyanin-related TF families were identified, such as SQUAMOSA promoter-binding
332 protein-like (SBP box) and Double B-box (DBB) proteins (Supplementary Fig. S4). Further
333 analysis of the DEG sets allowed us to identify 27 clusterings of enriched GO terms associated
334 with light-mediated responses. A clustering of light responses was found with 20 GO terms,
335 which include response to far-red light (GO:0010218), response to red light (GO:0010114),
336 response to high light intensity (GO:0009644), and the profiles with the highest number of
337 enriched GO terms were down-regulated at mesocarp 2d and 5d (against control). Interestingly,
338 anthocyanin-containing compound biosynthesis (GO:0009718) was enriched in both tissues
339 (Supplementary Fig. S4) when anthocyanin accumulation became perceptible.

340

341 **Expression of photoreceptors genes in the anthocyanin biosynthesis pathway**

342 We propose a model for suppressing anthocyanin accumulation in the MT-*Aft/atv/hp2* mesocarp,
343 where the pigmented epicarp creates a shading effect on the internal tissues of the fruit, thereby
344 preventing the mesocarp from initiating anthocyanin biosynthesis. To evaluate this hypothesis,
345 we examined the transcriptional level of photoreceptor genes: phytochromes (sensors of red and
346 far-red light: *SlPHYA*, *SlPHYB1*, and *SlPHYB2*); cryptochromes (sensors of blue/UV light:
347 *SlCRY1a*, *SlCRY1b*, *SlCRY2*, and *SlCRY3*); and *SlUVR8* (a sensor of UV-B light). In our study,
348 *SlCRY3* (*Solyc08g074270*) showed a higher expression in the epicarp than the mesocarp of fruits
349 developed under normal light conditions (Fig. 4; Supplementary Table S7). Furthermore, *SlCRY3*
350 expression was repressed in the epicarp of the fruit just uncovered (0d) compared to the control.
351 In contrast, no difference was observed between the mesocarp at 0d and the control fruit (Fig. 4;
352 Supplementary Table S7). *SlCRY3* was up-regulated in the mesocarp at 2d of light exposure
353 compared to 0d, indicating that light reached the mesocarp and activated its expression at 2d in
354 this tissue. On the other hand, in neither tissue, *SlCRY1a* (*Solyc04g074180*), *SlCRY1b*
355 (*Solyc12g057040*), or *SlCRY2* (*Solyc09g090100*) showed differential expression between the
356 epicarp and mesocarp of fruits developed under light (control), or when comparing the same
357 tissue at 0d with the control condition (Fig. 4; Supplementary Table S7).

358 The UV-B-responsive photoreceptor gene *SlUVR8* (*Solyc05g018630*) showed higher
359 expression in the epicarp compared to the mesocarp in the control condition. Furthermore, it was
360 up-regulated in the mesocarp at 2d and 5d light exposure compared to the control mesocarp (Fig.
361 4; Supplementary Table S7). The expression of genes coding for the phytochromes *SlPHYB1*
362 (*Solyc01g059870*) and *SlPHYB2* (*Solyc05g053410*) was repressed in the epicarp control
363 compared to the mesocarp control. In contrast, *SlPHYA* (*Solyc10g044670*) did not show a
364 significant difference in this comparison (Fig. 4; Supplementary Table S7).

365

366 **Analysis of the anthocyanin-related transcription factor genes expression in MT- 367 *Aft/atv/hp2* tomato fruits**

368 We analyzed the expression of some transcription factors that act upstream of the MBW complex
369 in anthocyanin biosynthesis activation (Fig. 5; Supplementary Table S8). The expression of the
370 *SlHY5* (*Solyc08g061130*) gene was up-regulated in the epicarp at 0d light exposure and in the
371 mesocarp at 0d and 2d compared to the control tissues of fruits developed under normal light
372 conditions. Interestingly, *SlHY5* expression was induced in the acyanic epicarp developed

373 without light (0d) compared to the cyanic epicarp (control). The transcription factor *SIWRKY*
374 (*Solyc10g084380*) was repressed in the epicarp at 0d light exposure compared to the cyanic fruit
375 control. In contrast, it was induced in the mesocarp at 2d and 5d light exposure compared to the
376 acyanic mesocarp of the control fruit. Furthermore, *SIWRKY* was induced in the epicarp
377 compared to the mesocarp in control conditions. This expression pattern aligns with the
378 development of anthocyanin pigmentation observed in the MT-*Aft/atv/hp2* fruit tissues. We also
379 observed that the transcriptional level of *CONSTITUTIVE PHOTOMORPHOGENIC 1* (*COP1*:
380 *Solyc05g014130*) was higher at 0d compared with 2d and 5d light exposure in both tissues, the
381 epicarp and mesocarp (Fig. 5; Supplementary Table S8).

382 Among the MYB TF genes, *SIANTI* (*SIKYB113*: *Solyc10g086260*) and *SIANTI-like*
383 (*SIKYB28*: *Solyc10g086270*) were not expressed in any of the tissues or treatments analyzed,
384 except for the epicarp at 0d, where *SIANTI-like* showed a very low value (Supplementary Fig.
385 S5; Supplementary Table S8). The *SIAN2* (*SIKYB75*: *Solyc10g086250*) showed very few
386 transcripts in the epicarp and mesocarp in all conditions analyzed. By contrast, *SIAN2-like*
387 (*SIKYB114/AFT*: *Solyc10g086290*) showed high expression levels in all tissues and conditions
388 analyzed. In the epicarp, there was no differential expression of the *SIAN2-like* at 2d and 5d light
389 exposure, while it was down-regulated at 0d compared to the light-exposed control. *SIAN2-like*
390 expression was induced at 2d and 5d in the mesocarp but not differentially expressed at 0d
391 compared to the control (Fig. 5; Supplementary Fig. S5; Supplementary Table S8).

392 *SIAN2-like* interacts with the constituent factors bHLH1 (*SIJAF13*) and WDR (*SIAN11*)
393 to form the first MBW complex (Chaves-Silva *et al.*, 2018). In our study, *SIJAF13*
394 (*Solyc08g081140*) and *SIAN11* (*Solyc03g097340*) were expressed in all cyanic and acyanic
395 tissues analyzed (Fig. 5; Supplementary Fig. S5; Supplementary Table S8). In the epicarp,
396 *SIJAF13* expression was induced at 2d light exposure, whereas *SIAN11* expression was lower at
397 0d but higher at 2d and 5d when compared to the light-exposed control. In the mesocarp,
398 *SIJAF13* and *SIAN11* expression levels were not different at 0d compared to the control but were
399 induced at 2d and 5d. Subsequently, the formation of the first MBW complex induces the
400 expression of bHLH2 (*SIAN1*: *Solyc09g065100*). This, in turn, replaces bHLH1 and leads to the
401 assembly of the second MBW complex, ultimately activating the anthocyanin structural genes. In
402 both tissues, *SIAN1* expression was minimal at 0d light exposure, whereas it highly increased at

403 2d and 5d (Fig. 5; Supplementary Fig. S5; Supplementary Table S8), which correlates with
404 anthocyanin pigmentation in tomato fruit tissues.

405

406 **Expression of specific MYB regulators of anthocyanin biosynthesis in MT-Aft/atv/hp2**
407 **tomato fruits**

408 We examined the role of the second MBW complex in activating the expression of the negative
409 anthocyanin regulators: *SlMYB-ATV* (*Solyc07g052490*), *SlMYBATV-like* (*Solyc12g005795*),
410 *SlTRY* (*Solyc01g095640*), *SlMYB3* (*Solyc06g065100*), *SlMYB7* (*Solyc01g111500*), *SlMYB32*
411 (*Solyc10g055410*), and *SlMYBL2/SlMYB76* (*Solyc05g008250*). Although these MYB repressors
412 were expressed in all samples (Fig. 5; Supplementary Table S8), the *SlMYB-ATV* expression
413 pattern matches that of *SlANI*, suggesting that the second MBW complex coordinates the
414 transcription of both genes.

415 Given the efficient activation of anthocyanin biosynthesis in MT-Aft/atv/hp2 fruits, we
416 decided to investigate if it contains a loss of function in *SlMYB-ATV*. For this, we compared the
417 coding sequence of MT-Aft/atv/hp2 with cv. Heinz (the reference genome), cv. Micro-Tom (the
418 genetic background of our purple fruit genotype) and the commercial purple variety Indigo Rose.
419 In MT-Aft/atv/hp2, a 4-bp insertion in the second exon of the *SlMYB-ATV* gene leads to a
420 truncated, potentially non-functional protein without the R3 domain (Supplementary Fig. S6).
421 The same 4-bp insertion was also observed in the Indigo Rose variety (Supplementary Fig. S6).

422

423 **Expression of structural genes associated with the anthocyanin biosynthesis in purple fruits**

424 Regulatory and structural genes regulate the anthocyanin biosynthesis pathway (Fig. 6A). In the
425 epicarp, the expression of almost all structural genes was highly down-regulated at 0d of light
426 exposure, compared with the control. In contrast, at 2d and 5d of light exposure, their expression
427 levels were similar to the control (Fig 6B; Supplementary Table S9). Interestingly, in the
428 mesocarp at 2d and 5d light exposure conditions, EBGs and LBGs were highly up-regulated
429 compared with the acyanic mesocarp control developed under normal light conditions, matching
430 the anthocyanin accumulation in the fruit tissues (Fig 6B; Supplementary Table S9).

431

432 **Discussion**

433 **Light-dependent anthocyanin biosynthesis activation in the MT-Aft/atv/hp2 fruits**

434 Genetic and environmental parameters directly influence the anthocyanin biosynthesis pathway
435 in the tomato fruit (Albert *et al.*, 2014). Light-mediated signals are usually essential to activating
436 this pathway in different tissues (Liu *et al.*, 2018b). In addition, fruit development also influences
437 anthocyanin accumulation, with some anthocyanin-enriched tomato genotypes only starting to
438 accumulate this compound after a specific stage (Qiu *et al.*, 2019; Sun *et al.*, 2020). Our cyanic
439 genotype MT-Aft/atv/hp2 is an anthocyanin-enriched tomato line that accumulates anthocyanins
440 in the subepidermal layer of the epicarp (the peel), thus developing dark purple fruits. This line
441 was developed by introgressing natural genetic variation from two wild species and a cultivar of
442 tomato (the loci *Aft*, *atv*, and *hp2*) to create a near-isogenic line (NIL) in the cv. Micro-Tom
443 background: the MT-Aft/atv/hp2 (Sestari *et al.*, 2014).

444 Fruits of tomato lines containing both alleles *Aft* and *atv* in homozygosity (i.e., cv. Indigo
445 Rose) showed progressive accumulation of anthocyanins: it started right before the mature green
446 stage on the side directly exposed to light, whereas the shaded side remained green at this stage
447 (Qiu *et al.*, 2019; Sun *et al.*, 2020). On the other hand, MT-Aft/atv/hp2 fruit started accumulating
448 anthocyanins in the epicarp right after petal senescence (Fig. 1A). The difference in pigmentation
449 pattern is due to the *hp2* allele, a loss of DE-ETIOLATED (DET1) function, a negative regulator
450 of light signal transduction, conferring hypersensitivity to light (Levin *et al.*, 2003). However,
451 when growing under regular light exposure, anthocyanin accumulation in MT-Aft/atv/hp2 fruits
452 remained restricted to the epicarp. In contrast, the mesocarp and the region under the sepals
453 remained acyanic (Fig. 1C). This pattern shows that light is essential to activating anthocyanin
454 biosynthesis in the purple tomato fruit.

455

456 **Anthocyanin pigmentation pattern correlates with light exposure**

457 Anthocyanin accumulation is commonly restricted to the subepidermal cells and absent in the
458 parenchymal cells of the mesocarp, mesophyll, and cortex. Substrate is likely to be available in
459 these cells since the expression of specific transgenic MYB and bHLH transcription factors leads
460 to high anthocyanin accumulation in the inner tissues of the tomato fruit (Butelli *et al.*, 2008;
461 Cerqueira *et al.*, 2023). Therefore, other mechanisms should explain this “parenchymal
462 recalcitrance”, a widespread phenomenon throughout the angiosperms (Chaves-Silva *et al.*,
463 2018).

464 Here, we demonstrated that the restriction of light incidence over MT-*Aft/atv/hp2* fruits
465 completely inhibited the anthocyanin pigmentation in all tissues (Fig. 2). Similar results of the
466 anthocyanin pigmentation inhibition in the dark were observed in tomato (Xu et al., 2022), apple
467 (Li et al., 2012), broccoli (Liu et al., 2020), chrysanthemum (Hong et al., 2015), and eggplant
468 (Jiang et al., 2016; Li et al., 2024), confirming that light is a major factor controlling
469 anthocyanin biosynthesis (Liu et al., 2018b). Subsequently, 5 days of light exposure of the non-
470 pigmented, physiologically mature MT-*Aft/atv/hp2* fruits, grown in the dark for 30 days to light
471 conditions, led to rapid activation of the anthocyanin biosynthesis in both the epicarp and
472 mesocarp (Fig. 2). This observation shows that the activation of the anthocyanin biosynthesis
473 pathway in the MT-*Aft/atv/hp2* fruit depends directly on the incidence of light and it is
474 developmentally independent. Moreover, although some studies have successfully obtained
475 anthocyanin accumulation in the mesocarp via transgenic methods (Butelli et al., 2008; Sun et
476 al., 2020), our study is the first to report anthocyanin pigmentation in the tomato mesocarp
477 through natural genetic variation. These findings led us to reason that the pigmented epicarp of
478 MT-*Aft/atv/hp2* acted as a light-blocking layer starting in the first stage of fruit development,
479 thus preventing light from reaching the mesocarp. Our experimental design, therefore, allowed
480 the inhibition of the early pigmentation of the epicarp and facilitated the penetration of light into
481 the non-pigmented epicarp, triggering anthocyanin biosynthesis in the mesocarp (Fig. 7).

482

483 **Photoreceptors involved in the anthocyanin biosynthesis activation in tomato fruits**

484 Plants use specific photoreceptor classes to receive light signals and coordinate stimulus
485 responses. The cryptochrome *CRY3* participates in anthocyanin biosynthesis in eggplant, purple
486 broccoli, and petunia. *CRY3* expression is repressed in shading conditions and highly induced by
487 light Fields(Li et al., 2017; Fu et al., 2020; Liu et al., 2020). In petunia, while *CRY3* was
488 repressed by exposure to red light compared to white and blue lights, *CRY1* and *CRY2* did not
489 show significant changes in response to the light quality (Fu et al., 2020). The synergistic effect
490 of blue and UV-B light promoted anthocyanin accumulation in the epicarp of the tomato *Aft* line
491 (Kim et al., 2021). In our study, *SlCRY3* and *SlUVR8* were the only photoreceptors
492 transcriptionally induced in the cyanic epicarp compared with the acyanic mesocarp in control
493 conditions. *SlUVR8* expression increased in both tissues along the days of light exposure for the
494 fruits grown in the dark, whereas *SlCRY3* peaked at 2d when anthocyanin accumulation started

495 becoming noticeable (Fig. 4). Based on these gene expression patterns and the current
496 understanding that short-wavelength radiation (*i.e.* blue and UV lights) promotes anthocyanin
497 accumulation, we infer that *SlCRY3* and *SlUVR8* are the primary photoreceptors activating the
498 anthocyanin pigmentation in tomato fruits.

499 Therefore, the anthocyanin pigmentation of the MT-*Aft/atv/hp2* epicarp starts at the first
500 stage of fruit development and directly influences the quantity and quality of light at the
501 mesocarp by blocking short-wavelength radiation. This light-blocking effect leads to the
502 inactivation of light-induced signal transduction in the mesocarp, which is necessary to activate
503 anthocyanin biosynthesis-responsive genes (Fig. 7).

504

505 **COP1 may act as a negative regulator of SIHY5 activity in the tomato fruit growing in the**
506 **dark**

507 Anthocyanin biosynthesis is controlled by complex molecular mechanisms orchestrated by
508 transcription factors and regulated by developmental and environmental stimuli. Light-
509 responsive transcription factors can act individually or in multiprotein complexes to regulate the
510 expression of anthocyanin regulatory and structural genes (Qiu *et al.*, 2016, 2019). Upon
511 photoreceptor perception of blue and UV-B light, anthocyanin biosynthesis relies on a signal
512 transduction cascade coordinated by the transcription factors HY5 and COP1 (Podolec and Ulm,
513 2018). HY5 is a bZIP transcription factor considered a central regulator of anthocyanin
514 enrichment in tomato fruits (Liu *et al.*, 2018a). In the cultivar ‘Indigo Rose’, SIHY5 is related to
515 the anthocyanin biosynthesis (Qiu *et al.*, 2019; Sun *et al.*, 2020); however, in the cv. Indigo
516 Rose, the expression of SIHY5 was not significantly different between the fruit side facing the
517 light, which developed a purple phenotype, compared to the non-cyanic epicarp on the shaded
518 side (Qiu *et al.*, 2019). Similarly, in our study, SIHY5 expression was up-regulated in the epicarp
519 developed in the dark (0d) compared to the control cyanic epicarp (Fig. 5).

520 This peculiar SIHY5 expression pattern, *i.e.*, expression in both light and dark conditions
521 but not leading to the anthocyanin accumulation in dark conditions, could be explained by a post-
522 translational regulation of the SIHY5 protein affecting its stability and activity, as observed in
523 *Arabidopsis* (Hardtke *et al.*, 2000). In the dark, COP1 ubiquitinates HY5, leading to its
524 degradation by the proteasome. Conversely, in light conditions, photoreceptors become the
525 targets of COP1 instead of HY5 (Saijo *et al.*, 2003). Our data indicate that SIHY5, COP1,

526 SICRY3, and SIUVR8 expression pattern is correlated with the anthocyanin accumulation in
527 tomato fruits. In summary, even with higher gene expression in the dark (acyanic tissues),
528 SIHY5 may be post-translationally repressed by COP1. On the other hand, when the fruit tissues
529 received light, SICRY3 and SIUVR8 transcription levels were induced (Fig. 4). Furthermore, our
530 GO term analysis showed enrichment in protein ubiquitination (GO:0016567) at 0d in the
531 acyanic epicarp compared with the fruit growing in normal light conditions, as well as in the
532 epicarp versus mesocarp of the control (Supplementary Fig. S4). Nevertheless, in a comparative
533 analysis of the differential expression of the genes *SIHY5* and *COP1* between the epicarp and
534 mesocarp, both in the control condition, *SIHY5* was up-regulated, whereas *COP1* was down-
535 regulated in the cyanic epicarp (Fig. 5). This opposite expression pattern corroborates the
536 hypothesis that COP1 negatively regulates SIHY5 in tomato fruits.

537 Transcription factors from the WRKY family are essential regulators of anthocyanin
538 biosynthesis in an HY5-independent manner (Qiu *et al.*, 2019). WRKY physically interacts with
539 WD to form a transcriptional complex independent of the MBW complex, leading to the
540 transcriptional activation of membrane transporter and vacuolar acidification genes (Lloyd *et al.*,
541 2017). In our study, the *SIWRKY* transcriptional profile matches the anthocyanin accumulation
542 pattern in MT-*Aft/atv/hp2* fruit tissues (Fig. 5). Thus, our model suggests that *SIWRKY*
543 expression is regulated by light and that it plays an essential cyanogenic role in the tomato fruit
544 by activating the transcription of anthocyanin structural genes.

545

546 **Transcriptional patterns of anthocyanin-positive regulatory genes may explain the lack of**
547 **anthocyanin synthesis in the mesocarp**

548 We demonstrated that anthocyanin accumulation in MT-*Aft/atv/hp2* fruits is light-dependent.
549 Tomato lines with the dominant locus *Aft* (*Anthocyanin fruit*) display a purple phenotype linked
550 to a genomic region that contains four in-tandem R2R3 MYB genes (Sapir *et al.*, 2008; Cao *et*
551 *al.*, 2017): *SIAN2* (*SI MYB75*: *Solyc10g086250*), *SIANT1* (*SI MYB113*: *Solyc10g086260*), *SIANT1-like*
552 (*SI MYB28*: *Solyc10g086270*), and *SIAN2-like* (*SI MYB114*: *Solyc10g086290*), which
553 corresponds to the *AFT* gene. Fig. 5 and Supplementary Fig. S5 show that *SIANT1*, *SIANT1-like*,
554 and *SIAN2* displayed no or very low expression levels in both cyanic and acyanic fruit tissues.
555 Similar studies on tomato genotypes with the *Aft* locus found insignificant expression levels for

556 these genes (Qiu *et al.*, 2019; Colanero *et al.*, 2020b; Sun *et al.*, 2020), suggesting they are not
557 involved in regulating anthocyanin biosynthesis in *Aft*-bearing purple tomato fruits.

558 In contrast, *SIAN2-like* was highly expressed in all tissues and conditions analyzed. Its
559 expression was only slightly lower in the non-pigmented epicarp at 0d of exposure to light
560 compared to the purple epicarp of fruits developed under normal light conditions (Fig. 5;
561 Supplementary Fig. S5). The same pattern was reported for the ‘Indigo Rose’ cultivar and a
562 mutant with a reduced anthocyanin pigmentation (Qiu *et al.*, 2019). Also, the *SIHY5* transcription
563 occurred even in dark conditions (Fig. 5). These findings led us to speculate about a possible
564 negative regulation of the *SIAN2-like* protein by COP1 in tomato fruit tissues under dark
565 conditions, similar to what is observed in apple and eggplant (Li *et al.*, 2012, 2024).

566 The MYB transcription factor *SIAN2-like* interacts with the constitutive factors bHLH1
567 (*SIJAF13*) and WDR (*SIAN11*) to form the first MBW complex, which induces bHLH2 (*SIAN1*)
568 expression. Subsequently, bHLH2 (*SIAN1*) replaces bHLH1 (*SIJAF13*) to configure the second
569 MBW complex. This second complex, in turn, activates the expression of *SIAN1* (“reinforcement
570 mechanism”) and the late anthocyanin biosynthetic genes (Colanero *et al.*, 2020b). Even though
571 *SIJAF13* and *SIAN11* expression levels fluctuated across samples, they were constitutively
572 detected in pigmented and non-pigmented tissues (Fig. 5), confirming previous reports (Gao *et*
573 *al.*, 2018). Transcriptional analysis in transgenic lines and cv. ‘Indigo Rose’ purple fruit tissues
574 showed that *SIAN1* expression correlated with the level of anthocyanin pigmentation (Butelli *et*
575 *al.*, 2008; Bassolino *et al.*, 2013; Qiu *et al.*, 2016, 2019), which was confirmed in our study (Fig.
576 5; Supplementary Fig. S5). Although *SIAN2-like* was the most highly expressed anthocyanin-
577 related MYB factor across all tissues and conditions analyzed, its expression levels remained
578 relatively stable in both cyanic and non-cyanic tissues of tomato fruits at 30-35 days after
579 anthesis. Even though *SIAN2-like* is actively expressed in dark conditions, the protein may be
580 inactive due to an undetermined post-translational mechanism.

581 The interaction between COP1 and MYB proteins controlling the anthocyanin
582 accumulation was observed in apple and eggplant. MdCOP1 interacts with MdMYB1 to regulate
583 light-induced anthocyanin biosynthesis in apple (Li *et al.*, 2012), and SmCOP1 interacts with
584 SmMBY5 to trigger the degradation of the latter via the 26S proteasome pathway in eggplant (Li
585 *et al.*, 2024). The expression patterns of COP1 and *SIAN2-like* genes observed here indicate that
586 the interaction between their products also occurs in tomato fruits and directly influences

587 anthocyanin accumulation. In dark conditions, COP1 may act as a negative regulator of the
588 SIAN2-like protein, thus inhibiting the formation of the MBW complex and, consequently,
589 SIAN1 expression. In turn, light induces the expression of photoreceptor genes, making them
590 preferred targets of COP1 for ubiquitination instead of SIAN2-like. This mechanism allows the
591 formation of the MBW (SIAN2-like/SIJAF13/SIAN11) complex to activate the SIAN1
592 expression (Fig. 8).

593 Our findings show that *SIAN1* is the limiting factor governing the development of
594 anthocyanin pigmentation of tomato fruit tissues, with its expression being light-dependent. As a
595 result, the early onset of epicarp pigmentation, which obstructs light from penetrating the inner
596 tissues, ultimately impedes *SIAN1* expression and anthocyanin accumulation in the mesocarp of
597 *MT-Aft/atv/hp2*. This regulation may be the key to unleashing light-independent anthocyanin
598 biosynthesis in different edible plant parts, such as purple-fleshed roots, tubers, and internal fruit
599 organs.

600

601 **Loss-of-function of *SIMYB-ATV* and its expression in the *MT-Aft/atv/hp2* genotype**

602 Genes that encode enzymes of the anthocyanin pathway are divided into “*early biosynthetic*
603 *genes*” (EBGs) and “*late biosynthetic genes*” (LBGs) (Quattrocchio *et al.*, 2006). EBGs are
604 related to synthesizing flavonoid precursors and final products (e.g., chalcones,
605 dihydroflavonols, and flavonols). In contrast, LBGs are more specific for anthocyanins (Fig.
606 6A). In our study, the expression pattern of anthocyanin structural and regulatory genes
607 correlated with anthocyanin pigmentation in the tissues of tomato fruits (Fig. 6B).

In addition to activating *SIANI* and LBGs, the second MBW complex also induces the expression of MYB repressors (Albert *et al.*, 2014; Colanero *et al.*, 2020b). The R3-MYB protein can directly bind to the bHLH factors, inhibiting the formation of the MBW complex activator of anthocyanin-related genes (Colanero *et al.*, 2018; Sun *et al.*, 2020).

612 *SlMYB-ATV* (*Solyc07g052490*) is responsible for negatively regulating the anthocyanin
 613 biosynthesis in tomato fruits (Cao *et al.*, 2017; Colanero *et al.*, 2018). The transcriptional
 614 activation of *SlMYB-ATV* is triggered by the MBW ternary complex (SlAN2-
 615 like/SlAN1/SlAN11), which also activates *SlAN1* expression (Colanero *et al.*, 2018). In our
 616 study, the expression pattern of *SlMYB-ATV* matches that of *SlAN1* (Fig. 5), suggesting the
 617 activation of both genes by the same complex. The functional, dominant *SlMYB-ATV* allele is

618 present in *S. lycopersicum*, whereas the recessive *atv* allele is present in some wild species, such
619 as *S. cheesmaniae*. The *atv* alleles code for a truncated, non-functional protein due to a 4-bp
620 insertion in the second exon that leads to a frameshift and the onset of a premature stop codon.
621 The resulting truncated *SlMYB-ATV* protein lacks the R3-domain that cannot bind to the bHLH
622 factors and thus cannot disrupt the MBW complex (Cao *et al.*, 2017; Colanero *et al.*, 2018; Sun
623 *et al.*, 2020), favoring the anthocyanin enrichment in tomato tissues. We identified that the
624 *SlMYB-ATV* gene from the cyanic line MT-*Aft/atv/hp2* also contains the 4-bp insertion.
625 Therefore, the nonfunctional *SlMYB-ATV* allele favors the anthocyanin pigmentation in the
626 tissues of the tomato fruits.

627

628 **Additional traits observed in MT-*Aft/atv/hp2* plants**

629 The yield of MT-*Aft/atv/hp2* plants was reported to be comparable to that of cv. MT. MT-
630 *Aft/atv/hp2* fruits showed significantly higher levels of ascorbic acid, lycopene, and β -carotene
631 than cv. MT (Sestari *et al.*, 2014). Anthocyanins have also been associated with increased
632 resistance to biotic stresses in mango (Sivankalyani *et al.*, 2016). We observed that MT-
633 *Aft/atv/hp2* plants appeared more resistant to thrips (*Thysanoptera*) than MT plants in greenhouse
634 conditions. Even though we have not addressed this question in our current research, it warrants
635 further investigation.

636

637 **Conclusions**

638 This study brings novel information on anthocyanin metabolism in the mesocarp cells of purple
639 tomato fruits mediated by light. Short wavelengths, such as blue and UV-B light, represent
640 crucial signals for anthocyanin biosynthesis activation in cyanic tomato fruits. In the epicarp of
641 MT-*Aft/atv/hp2*, these wavelengths are detected early during development and trigger signal
642 transduction pathways, thereby inducing the expression of the anthocyanin regulatory and
643 structural genes, resulting in anthocyanin accumulation. This pigmentation establishes a filter
644 that blocks the short wavelengths from reaching the deep tissues of the fruit, consequently
645 suppressing the expression of the *SlAN1*, the limiting gene for anthocyanin accumulation in
646 mesocarp cells. Exposing acyanic fruits, which develop in the dark, to light for 5 days promotes
647 anthocyanin accumulation in the epicarp and the mesocarp tissues. Therefore, our results present
648 a working hypothesis to elucidate the anthocyanin recalcitrance observed in parenchymatic cells

649 of inner fruit tissues. To overcome this resistance, we propose a reliable approach or genetic
650 pathway- namely, preventing early epidermis pigmentation.

651

652 **Supplementary Data**

653 **Supplementary Table S1.** Summary of cleaning, mapping, and counting reads on the tomato
654 reference genome.

655 **Supplementary Table S2.** Primers used in the RT-qPCR analyses.

656 **Supplementary Table S3.** Differentially expressed genes by log2FC interval.

657 **Supplementary Table S4.** Gene expression in TPM (Transcript Per Million) of epicarp and
658 mesocarp tissues from tomato fruits (MT-*Aft/atv/hp2*) developed under dark and light conditions.

659 **Supplementary Table S5.** Differentially expressed genes identified for different comparisons of
660 epicarp and mesocarp tissues, FDR < 0.05.

661 **Supplementary Table S6.** Biological processes enriched in each profile in up- and down-
662 regulated genes.

663 **Supplementary Table S7.** Expression of the photoreceptor genes in the epicarp and mesocarp of
664 tomato fruits (MT-*Aft/atv/hp2*).

665 **Supplementary Table S8.** Expression [log (TPM+1)] and differential expression (log2FC) of
666 the anthocyanin biosynthetic regulatory genes in the epicarp and mesocarp of tomato fruits (MT-
667 *Aft/atv/hp2*).

668 **Supplementary Table S9.** Expression [log (TPM+1)] and differential expression (log2FC) of
669 the anthocyanin biosynthetic structural genes in the epicarp and mesocarp of tomato fruits (MT-
670 *Aft/atv/hp2*).

671 **Supplementary Fig. S1.** Restriction of light incidence during fruit development. Individual
672 flowers were covered with aluminum foil at anthesis **(A)** for 30 days **(B)**.

673 **Supplementary Fig. S2.** Characterization of the progressive development of anthocyanin
674 pigmentation in the epicarp of MT-*Aft/atv/hp2* under different light conditions for 30 days after
675 anthesis. **(A)** Thirty-day fruit developed in the dark immediately after cover removal. **(B-F)**
676 Covered fruit exposed to normal light conditions for 1**(B)**, 2**(C)**, 3**(D)**, 4**(E)**, and 5**(F)** days after
677 cover removal. **(G)** Fruit developed in normal light conditions (not covered).

678 **Supplementary Fig. S3.** Heatmap of DEGs. Each column compares two conditions, whereas
679 each line represents a gene. See Table S3 for details. d, days; Ctl, control (fruit grown under light
680 conditions); Log2FC, logarithmic base 2 of fold change.

681 **Supplementary Fig. S4.** Analyses of Gene Ontology (GO) terms, KEGG pathways, and
682 transcription factors enriched in the differentially expressed gene (DEG) set within each tissue at
683 a specific light exposure time compared to the control condition (fruit developed under regular
684 light exposure). The last comparison shows DEG regulation between the epicarp and mesocarp
685 in the control fruit. Ctl, control; d, days of exposure to light after cover removal.

686 **Supplementary Fig. S5.** qPCR analysis of regulatory *R2R3 MYB* (*SIAN2-like*, *SIAN2*, *SIANT1-like*,
687 and *SIANT1*), *bHLH* (*SIAN11*), *WDR* (*SIAN11*), *Early biosynthetic gene (CHI-like)*, and
688 *Late biosynthetic gene (DFR)* genes performed in the young leaves and fruits (peel and flesh) of
689 MT-Aft/atv/hp2 at green, turning, and mature stages. Data are means of three biological
690 replicates. Student's T-test was performed. Different letters indicate significant differences at $P \leq$
691 0.05.

692 **Supplementary Fig. S6. (A)** Sequence alignment of *SlMYB-ATV* (*Solyc07g052490*) transcripts
693 from cv. 'Indigo Rose' (InR), MT-Aft/atv/hp2, Micro-Tom, and Heinz (genome) tomato
694 genotypes. **(B)** Schematic representation of the *SlMYB-ATV* (*Solyc07g052490*) gene mutation in
695 the MT-Aft/atv/hp2.

696 **Supplementary Fig. S7.** Principal component analysis based on expression values.

697

698 **Author Contributions**

699 GLR, ALS, LEPP, AC-Jr., and VAB conceived and planned the study; GLR, ALS, and VAB
700 designed the experiments; GLR, SC-S, and ALS performed the experiments; GLR, CFV, LWPA,
701 and VAB analyzed the data; GLR, CFV, and LWPA wrote the manuscript; VAB, LEPP, and
702 AC-Jr revised the manuscript; VAB supervised all steps of the study and final manuscript. All
703 authors read and approved the manuscript.

704

705 **Conflict of Interest**

706 No conflict of interest declared.

707

708 **Funding**

709 This work is partly supported by the USDA National Institute of Food and Agriculture, Hatch
710 project 11400036 (WVA00754). The Brazilian funding agencies, Coordination for the
711 Improvement of Higher Education Personnel (CAPES) and the Brazilian National Council for
712 Scientific and Technological Development (CNPq), provided scholarships to GLR, CFV,
713 LWPA, ALS, and SC-S. CNPq also provided fellowships to LEPP and AC-Jr.

714

715 **Data availability**

716 The RNA-seq data underlying this article are available in the Gene Expression Omnibus (GEO)
717 Database (GSE235565).

718

719

720

References

Albert NW, Davies KM, Lewis DH, Zhang H, Montefiori M, Brendolise C, Boase MR, Ngo H, Jameson PE, Schwinn KE. 2014. A Conserved Network of Transcriptional Activators and Repressors Regulates Anthocyanin Pigmentation in Eudicots. *The Plant Cell* **26**, 962–980.

Albert NW, Lewis DH, Zhang H, Irving LJ, Jameson PE, Davies KM. 2009. Light-induced vegetative anthocyanin pigmentation in Petunia. *Journal of Experimental Botany* **60**, 2191–2202.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. *Journal of Molecular Biology* **215**, 403–410.

Andrews S. 2010. FastQC: a quality control tool for high throughput sequence data.

Bassolino L, Zhang Y, Schoonbeek HJ, Kiferle C, Perata P, Martin C. 2013. Accumulation of anthocyanins in tomato skin extends shelf life. *New Phytologist* **200**, 650–655.

Bedinger PA, Chetelat RT, McClure B, et al. 2011. Interspecific reproductive barriers in the tomato clade: Opportunities to decipher mechanisms of reproductive isolation. *Sexual Plant Reproduction* **24**, 171–187.

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. *Bioinformatics* **30**, 2114–2120.

Buer CS, Imin N, Djordjevic MA. 2010. Flavonoids: New roles for old molecules. *Journal of Integrative Plant Biology* **52**, 98–111.

Butelli E, Titta L, Giorgio M, et al. 2008. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. *Nature Biotechnology* **26**, 1301–1308.

Cao X, Qiu Z, Wang X, et al. 2017. A putative R3 MYB repressor is the candidate gene underlying *atrovviolacum*, a locus for anthocyanin pigmentation in tomato fruit. *Journal of Experimental Botany* **68**, 5745–5758.

Cassidy A, Mukamal KJ, Liu L, Franz M, Eliassen AH, Rimm EB. 2013. High anthocyanin intake is associated with a reduced risk of myocardial infarction in young and middle-aged women. *Circulation* **127**, 188–196.

Cerqueira JVA, Zhu F, Mendes K, Nunes-Nesi A, Martins SCV, Benedito VA, Fernie AR, Zsögön A. 2023. Promoter replacement of *ANT1* induces anthocyanin accumulation and triggers the shade avoidance response through developmental, physiological and metabolic reprogramming in tomato. *Horticulture Research* **10**, uhac254.

Chaves-Silva S, Santos AL dos, Chalfun-Júnior A, Zhao J, Peres LEP, Benedito VA. 2018.

Understanding the genetic regulation of anthocyanin biosynthesis in plants – Tools for breeding purple varieties of fruits and vegetables. *Phytochemistry* **153**, 11–27.

Colanero S, Perata P, Gonzali S. 2018. The *atroviolacea* gene encodes an R3-MYB protein repressing anthocyanin synthesis in tomato plants. *Frontiers in Plant Science* **9**, 1–17.

Colanero S, Perata P, Gonzali S. 2020a. What's behind purple tomatoes? Insight into the mechanisms of anthocyanin synthesis in tomato fruits. *Plant Physiology* **182**, 1841–1853.

Colanero S, Tagliani A, Perata P, Gonzali S. 2020b. Alternative Splicing in the *Anthocyanin Fruit* Gene Encoding an R2R3 MYB Transcription Factor Affects Anthocyanin Biosynthesis in Tomato Fruits. *Plant Communications* **1**, 100006.

Corso M, Perreau F, Mouille G, Lepiniec L. 2020. Specialized phenolic compounds in seeds: structures, functions, and regulations. *Plant Science* **296**, 110471.

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. 2013. STAR: Ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15–21.

Fallah AA, Sarmast E, Jafari T. 2020. Effect of dietary anthocyanins on biomarkers of glycemic control and glucose metabolism: A systematic review and meta-analysis of randomized clinical trials. *Food Research International* **137**, 109379.

Fernandez-Pozo N, Menda N, Edwards JD, et al. 2015. The Sol Genomics Network (SGN)-from genotype to phenotype to breeding. *Nucleic Acids Research* **43**, D1036–D1041.

Fu Z, Shang H, Jiang H, et al. 2020. Systematic Identification of the Light-quality Responding Anthocyanin Synthesis-related Transcripts in Petunia Petals. *Horticultural Plant Journal* **6**, 428–438.

Gao Y, Liu J, Chen Y, Tang H, Wang Y, He Y, Ou Y, Sun X, Wang S, Yao Y. 2018. Tomato SIAN11 regulates flavonoid biosynthesis and seed dormancy by interaction with bHLH proteins but not with MYB proteins. *Horticulture Research* **5**, 1–18.

Gonzali S, Mazzucato A, Perata P. 2009. Purple as a tomato: towards high anthocyanin tomatoes. *Trends in Plant Science* **14**, 237–241.

Gould KS, Dudle DA, Neufeld HS. 2010. Why some stems are red: Cauline anthocyanins shield photosystem II against high light stress. *Journal of Experimental Botany* **61**, 2707–2717.

Grabherr MG, Haas BJ, Yassour M, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. *Nature Biotechnology* **29**, 644–652.

Gu Z, Eils R, Schlesner M. 2016. Complex heatmaps reveal patterns and correlations in

multidimensional genomic data. *Bioinformatics* **32**, 2847–2849.

Hardtke CS, Gohda K, Osterlund MT, Oyama T, Okada K, Deng XW. 2000. HY5 stability and activity in *Arabidopsis* is regulated by phosphorylation in its COP1 binding domain. *EMBO Journal* **19**, 4997–5006.

Hichri I, Heppel SC, Pillet J, Léon C, Czembel S, Delrot S, Lauvergeat V, Bogs J. 2010. The basic helix-loop-helix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine. *Molecular Plant* **3**, 509–523.

Hong Y, Tang X, Huang H, Zhang Y, Dai S. 2015. Transcriptomic analyses reveal species-specific light-induced anthocyanin biosynthesis in chrysanthemum. *BMC Genomics* **16**, 1–18.

Houghton A, Appelhagen I, Martin C. 2021. Natural blues: Structure meets function in anthocyanins. *Plants* **10**, 1–22.

Jiang M, Ren L, Lian H, Liu Y, Chen H. 2016. Novel insight into the mechanism underlying light-controlled anthocyanin accumulation in eggplant (*Solanum melongena* L.). *Plant Science* **249**, 46–58.

Jin J, Tian F, Yang D, Meng Y, Kong L, Luo J, Gao G. 2016. PlantTFDB 4 . 0□: toward a central hub for transcription factors and regulatory interactions in plants. *Nucleic Acids Research* **45**, 1040–1045.

Kanehisa M, Sato Y, Morishima K. 2016. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. *Journal of Molecular Biology* **428**, 726–731.

Kim MJ, Kim P, Chen Y, Chen B, Yang J, Liu X, Kawabata S, Wang Y, Li Y. 2021. Blue and UV-B light synergistically induce anthocyanin accumulation by co-activating nitrate reductase gene expression in *Anthocyanin fruit (Aft)* tomato. *Plant Biology* **23**, 210–220.

Larkin MA, Blackshields G, Brown NP, et al. 2007. Clustal W and Clustal X version 2.0. *Bioinformatics* **23**, 2947–2948.

Levin I, Frankel P, Gilboa N, Tanny S, Lalazar A. 2003. The tomato dark green mutation is a novel allele of the tomato homolog of the *DEETIOLATED1* gene. *Theor Appl Genet* **106**, 454–460.

Li S, Dong Y, Li D, Shi S, Zhao N, Liao J, Liu Y, Chen H. 2024. Eggplant transcription factor SmMYB5 integrates jasmonate and light signaling during anthocyanin biosynthesis. *Plant Physiology* **194**, 1139–1165.

Li YY, Mao K, Zhao C, Zhao XY, Zhang HL, Shu HR, Hao YJ. 2012. MdCOP1 ubiquitin E3 ligases interact with MdMYB1 to regulate light-induced anthocyanin biosynthesis and red fruit coloration in apple. *Plant Physiology* **160**, 1011–1022.

Li J, Ren L, Gao Z, Jiang M, Liu Y, Zhou L, He Y, Chen H. 2017. Combined transcriptomic and proteomic analysis constructs a new model for light-induced anthocyanin biosynthesis in eggplant (*Solanum melongena* L.). *Plant Cell and Environment* **40**, 3069–3087.

Liao Y, Smyth GK, Shi W. 2014. FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features. *Bioinformatics* **30**, 923–930.

Liu CC, Chi C, Jin LJ, Zhu J, Yu JQ, Zhou YH. 2018a. The bZip transcription factor *HY5* mediates *CRY1a*-induced anthocyanin biosynthesis in tomato. *Plant Cell and Environment* **41**, 1762–1775.

Liu Y, Tikunov Y, Schouten RE, Marcelis LFM, Visser RGF. 2018b. Anthocyanin Biosynthesis and Degradation Mechanisms in Solanaceous Vegetables: A Review. *Frontiers in Chemistry* **6**, 52.

Liu C, Yao X, Li G, Huang L, Xie Z. 2020. Transcriptomic profiling of purple broccoli reveals light-induced anthocyanin biosynthetic signaling and structural genes. *PeerJ* **2020**, 1–29.

Lloyd A, Brockman A, Aguirre L, Campbell A, Bean A, Cantero A, Gonzalez A. 2017. Advances in the MYB-bHLH-WD Repeat (MBW) pigment regulatory model: Addition of a WRKY factor and co-option of an anthocyanin MYB for betalain regulation. *Plant and Cell Physiology* **58**, 1431–1441.

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biology* **15**, 1–21.

Martin C, Butelli E, Petroni K, Tonelli C. 2011. How can research on plants contribute to promoting human health? *Plant Cell* **23**, 1685–1699.

Meissner R, Jacobson Y, Melamed S, Levyatuv S, Shalev G, Ashri A, Elkind Y, Levy A. 1997. A new model system for tomato genetics. , 1465–1472.

Mes PJ, Boches P, Myers JR, Durst R. 2008. Characterization of tomatoes expressing anthocyanin in the fruit. *Journal of the American Society for Horticultural Science* **133**, 262–269.

Muraki I, Imamura F, Manson JE, Hu FB, Willett WC, Van Dam RM, Sun Q. 2013. Fruit consumption and risk of type 2 diabetes: Results from three prospective longitudinal cohort studies. *BMJ (Online)* **347**, 1–15.

Panchal SK, John OD, Mathai ML, Brown L. 2022. Anthocyanins in Chronic Diseases: The Power of Purple. *Nutrients* **14**, 1–30.

Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT – PCR. *Nucleic Acids Research* **29**, 16–21.

Podolec R, Ulm R. 2018. Photoreceptor-mediated regulation of the COP1/SPA E3 ubiquitin ligase. *Current Opinion in Plant Biology* **45**, 18–25.

Povero G, Gonzali S, Bassolino L, Mazzucato A, Perata P. 2011. Transcriptional analysis in high-anthocyanin tomatoes reveals synergistic effect of *Aft* and *atv* genes. *Journal of Plant Physiology* **168**, 270–279.

Qiu Z, Wang X, Gao J, Guo Y, Huang Z, Du Y. 2016. The tomato *Hoffman's Anthocyaninless* gene encodes a bHLH transcription factor involved in anthocyanin biosynthesis that is developmentally regulated and induced by low temperatures. *PLoS ONE* **11**, 1–22.

Qiu Z, Wang H, Li D, Yu B, Hui Q, Yan S, Huang Z, Cui X, Cao B. 2019. Identification of Candidate HY5-Dependent and -Independent Regulators of Anthocyanin Biosynthesis in Tomato. *Plant and Cell Physiology* **60**, 643–656.

Quattrocchio F, Verweij W, Kroon A, Spelt C, Mol J, Koes R. 2006. PH4 of Petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway. *Plant Cell* **18**, 1274–1291.

Saijo Y, Sullivan JA, Wang H, Yang J, Shen Y, Rubio V, Ma L, Hoecker U, Deng XW. 2003. The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity. *Genes and Development* **17**, 2642–2647.

Sapir M, Oren-Shamir M, Ovadia R, et al. 2008. Molecular aspects of *Anthocyanin fruit* tomato in relation to *high pigment-1*. *Journal of Heredity* **99**, 292–303.

Sestari I, Zsögön A, Rehder GG, Teixeira L de L, Hassimotto NMA, Purgatto E, Benedito VA, Peres LEP. 2014. Near-isogenic lines enhancing ascorbic acid, anthocyanin and carotenoid content in tomato (*Solanum lycopersicum* L. cv Micro-Tom) as a tool to produce nutrient-rich fruits. *Scientia Horticulturae* **175**, 111–120.

Sivankalyani V, Feygenberg O, Diskin S, Wright B, Alkan N. 2016. Increased anthocyanin and flavonoids in mango fruit peel are associated with cold and pathogen resistance. *Postharvest Biology and Technology* **111**, 132–139.

Sun C, Deng L, Du M, Zhao J, Chen Q, Huang T, Jiang H, Li CB, Li C. 2020. A

Transcriptional Network Promotes Anthocyanin Biosynthesis in Tomato Flesh. *Molecular Plant* **13**, 42–58.

Team RC. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. <http://www.R-project.org/>, 201.

Wickham H. 2016. Data analysis. *ggplot2*. Springer, 189–201.

Wimalanathan K, Lawrence-Dill CJ. 2021. Gene Ontology Meta Annotator for Plants (GOMAP). *Plant Methods* **17**, 1–14.

712 **Figure legends**

713 **Fig. 1. Monitoring the flowering and fruit development of two Micro-Tom (MT) genotypes**
714 **and light-dependent anthocyanin accumulation patterns in purple tomato fruit.**

715 (A) Floral buds, flower, and developing fruit in the purple-fruit genotype, MT-*Aft/atv/hp2*, and
716 (B) the regular, red-fruit cv. Micro-Tom (control). i, Developing floral bud; ii, Cross-section of
717 the developing floral bud; iii, Immature flower; iv, Cross-section of the immature flower; v,
718 Flower anthesis; vi, Flower anthesis without the petals; vii, Floral senescence; viii, Fruit in early
719 development at floral senescence; ix, Zoom in on the early developing fruit shown in viii. (C)
720 Lack of anthocyanin accumulation in the mesocarp and proximal region of mature fruits (MT-
721 *Aft/atv/hp2*) when growing under normal light conditions. Notice the lack of anthocyanin
722 accumulation in the epidermis under the calyx due to the lack of direct light exposure.

723

724 **Fig. 2. Phenotypic characterization of the anthocyanin pigmentation pattern.**

725 The epicarp and mesocarp of the cyanic tomato genotype (MT- *Aft/atv/hp2*) developed in the
726 dark for 30 days post-anthesis. Tissues of fruit developed under different light conditions: not
727 covered (control); immediately after the removal of the foil cover (0d); 2 days (2d); and after 5
728 days (5d) after cover removal. The 2d and 5d fruits were cut longitudinally to better visualize the
729 anthocyanin accumulation in the mesocarp tissue. The inset of the 5d mesocarp cross-section
730 displays the internal side of the mesocarp by removing the inner fruit tissues.

731

732 **Fig. 3. Differentially expressed genes (DEGs) and enriched GO terms in tomato fruit tissues**
733 **(MT-*Aft/atv/hp2*) in response to different light exposure conditions.**

734 (A) Total number of DEGs in different comparisons. (B) Venn diagrams for differential
735 expression within the same tissue in different light conditions versus the control (fruit grown
736 under normal light conditions). (C) Summary of all enriched GO terms (biological process)
737 clustered by semantic similarity using UMAP (Uniform Manifold Approximation and
738 Projection). Each cluster was labeled by the GO term with the lowest FDR. d, days; Ctl, control
739 (fruit grown under light conditions); Log2FC, logarithmic base 2 of fold change.

740

741 **Fig. 4. Transcriptional level of the anthocyanin photoreceptor genes in tissues of tomato**
742 **fruits (MT-*Aft/atv/hp2*).**

743 Expression [log10 (TPM+1)] and differential expression (log2 FC) of the photoreceptor genes
744 involved in the anthocyanin biosynthesis pathway. d, days of light exposure after cover removal;
745 Ctl, control; TPM, transcripts per million; DEGs, differentially expressed genes; Log2FC, base-2
746 logarithm of fold change.

747

748 **Fig. 5. Transcriptional level of the anthocyanin biosynthetic regulatory genes in tissues of**
749 **tomato fruit (MT-Aft/atv/hp2).**

750 Expression [log10 (TPM+1)] and differential expression (log2FC) of the anthocyanin
751 biosynthetic regulatory genes in the epicarp and mesocarp of tomato fruits (MT-Aft/atv/hp2). d,
752 days of light exposure; Ctl, control; TPM, transcripts per million; DEGs, differentially expressed
753 genes; Log2FC, base-2 logarithm of fold change.

754

755 **Fig. 6. Anthocyanin biosynthesis pathway and expression patterns of the early biosynthetic**
756 **genes and late biosynthetic genes in tissues of tomato fruits (MT-Aft/atv/hp2).**

757 **(A)** Anthocyanin biosynthesis pathway Adapted from Qiu et al. (2019). **(B)** Expression [log10
758 (TPM+1)] and differential gene expression (log2 FC) of the anthocyanin Early biosynthetic
759 genes and Late biosynthetic genes in the epicarp and mesocarp of purple tomato fruits (MT-
760 Aft/atv/hp2). d, days; Ctl, control; TPM, transcripts per million reads; Log2 FC, base-2 logarithm
761 of fold change.

762

763 **Fig. 7: Summary of the experimental design used to manipulate light and its effect on fruit**
764 **anthocyanin accumulation.**

765 At the anthesis, tomato flowers were submitted to light and dark conditions for 30 days. In light
766 conditions, the tomato fruit showed cyanic epicarp and acyanic mesocarp. In the dark, the fruits
767 were entirely acyanic. After the cover removal, the acyanic fruits were exposed to light for 5
768 days, leading to anthocyanin accumulation in the epicarp and mesocarp of these fruits.

769

770 **Fig. 8: Possible transcriptional model for anthocyanin biosynthesis regulation under light**
771 **and dark conditions.**

772 Under visible light, instead of ubiquitinating the SIAN2-like (*Solyc10g086290*), the COP1
773 (*Solyc05g014130*) ubiquitinates the photoreceptors SIUVR8 (*Solyc05g018630*) and CRY3

774 (Solyc08g074270), leading to their degradation by the proteasome. In this condition, the SIAN2-
775 like forms the first MBW complex together with the SIJAF13 (Solyc08g081140) and SIAN11
776 (Solyc03g097340) to activate the *SIAN1* (Solyc09g065100) gene expression. After that, the
777 SIAN1 replaces the SIJAF13 to form the second MBW complex to activate the anthocyanin
778 structural genes. In dark conditions, the COP1 will ubiquitinate the SIAN2-like, inducing its
779 degradation by the proteasome, inhibiting the formation of the first MBW complex from
780 activating the *SIAN1* expression and, consequently, the anthocyanin biosynthesis.

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

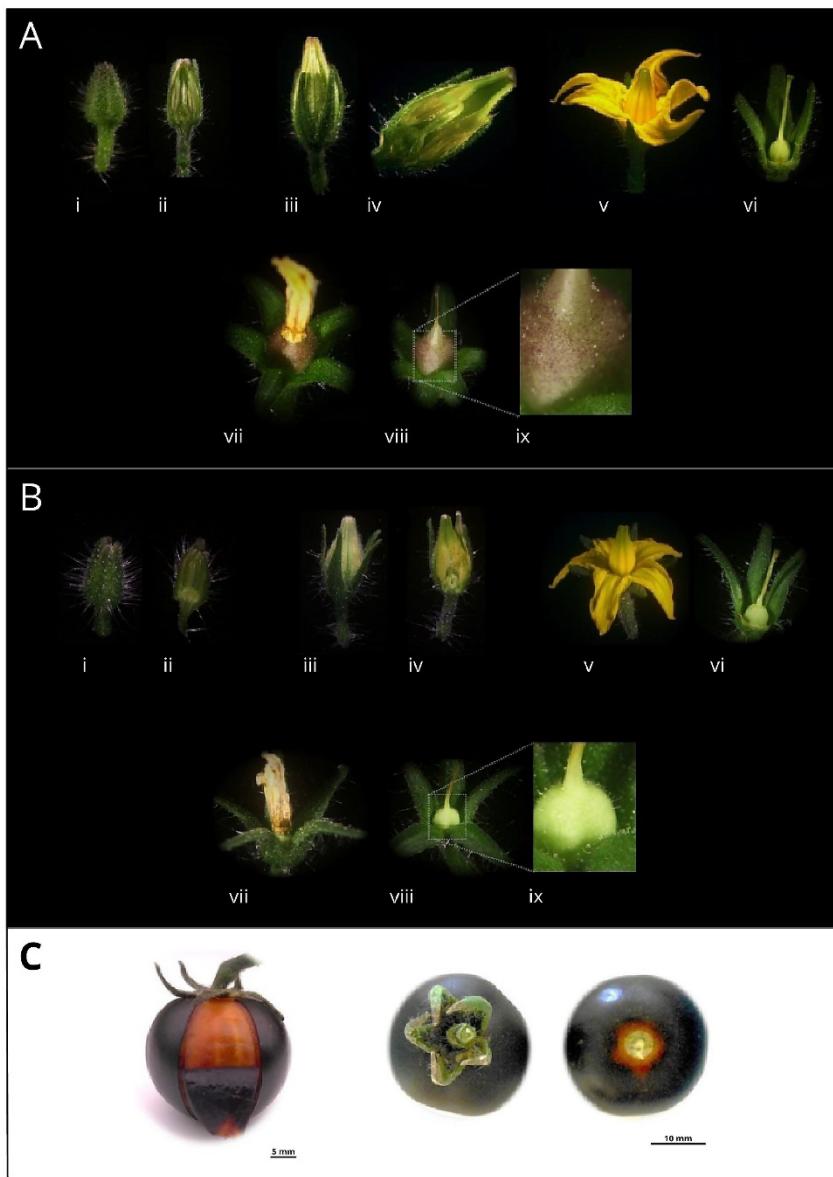
798

799

800

801

802


803

804

805

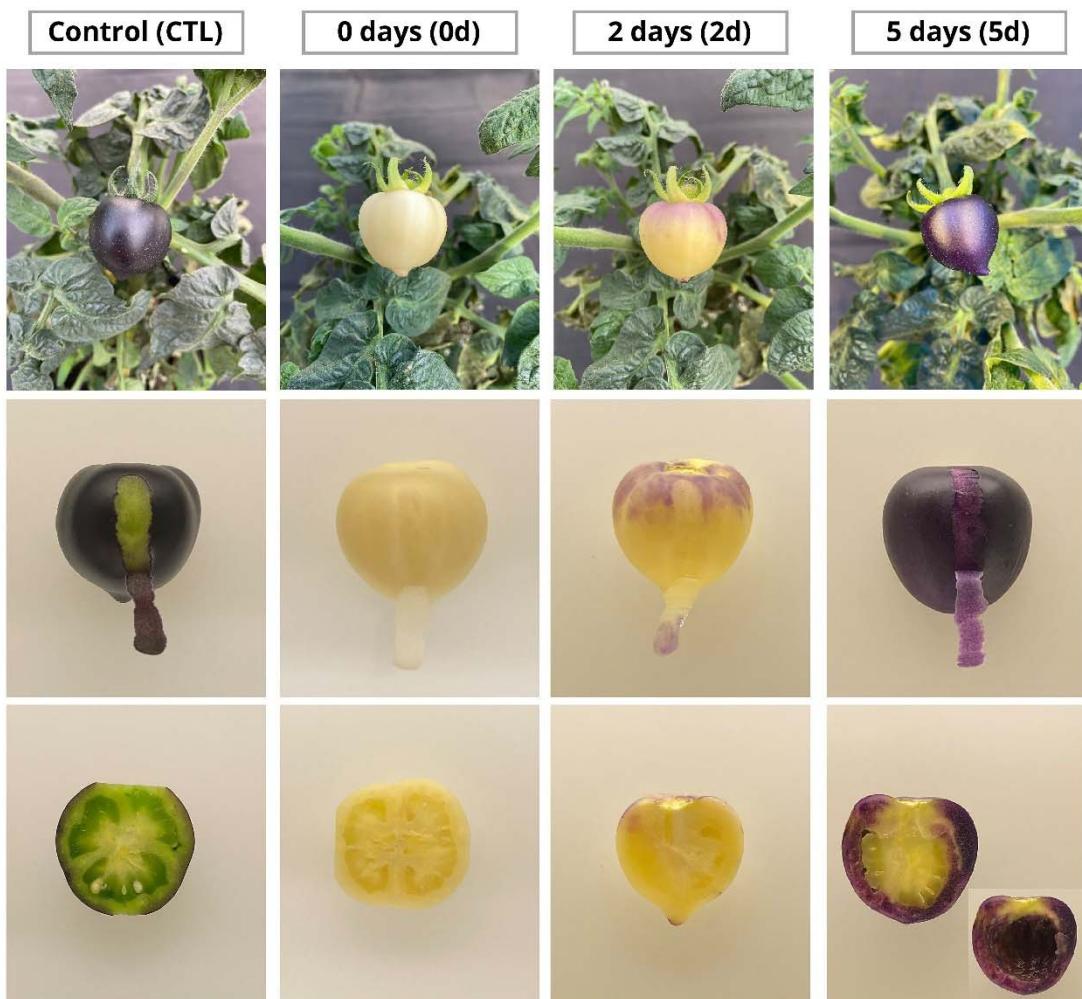
806

Figure 1

Fig. 1. Monitoring the flowering and fruit development of two Micro-Tom (MT) genotypes and light-dependent anthocyanin accumulation patterns in purple tomato fruit.

(A) Floral buds, flower, and developing fruit in the purple-fruit genotype, MT-Aft/atv/hp2, and (B) the regular, red-fruit cv. Micro-Tom (control). i, Developing floral bud; ii, Cross-section of the developing floral bud; iii, Immature flower; iv, Cross-section of the immature flower; v, Flower anthesis; vi, Flower anthesis without the petals; vii, Floral senescence; viii, Fruit in early development at floral senescence; ix, Zoom in on the early developing fruit shown in viii. (C) Lack of anthocyanin accumulation in the mesocarp and proximal region of mature fruits (MT-Aft/atv/hp2) when growing under normal light conditions. Notice the lack of anthocyanin accumulation in the epidermis under the calyx due to the lack of direct light exposure.

807


808

809

810

811

Figure 2

Fig. 2. Phenotypic characterization of the anthocyanin pigmentation pattern.

The epicarp and mesocarp of the cyanic tomato genotype (MT-Aft/atv/hp2) developed in the dark for 30 days post-anthesis. Tissues of fruit developed under different light conditions: not covered (control); immediately after the removal of the foil cover (0d); 2 days (2d); and after 5 days (5d) after cover removal. The 2d and 5d fruits were cut longitudinally to better visualize the anthocyanin accumulation in the mesocarp tissue. The inset of the 5d mesocarp cross-section displays the internal side of the mesocarp by removing the inner fruit tissues.

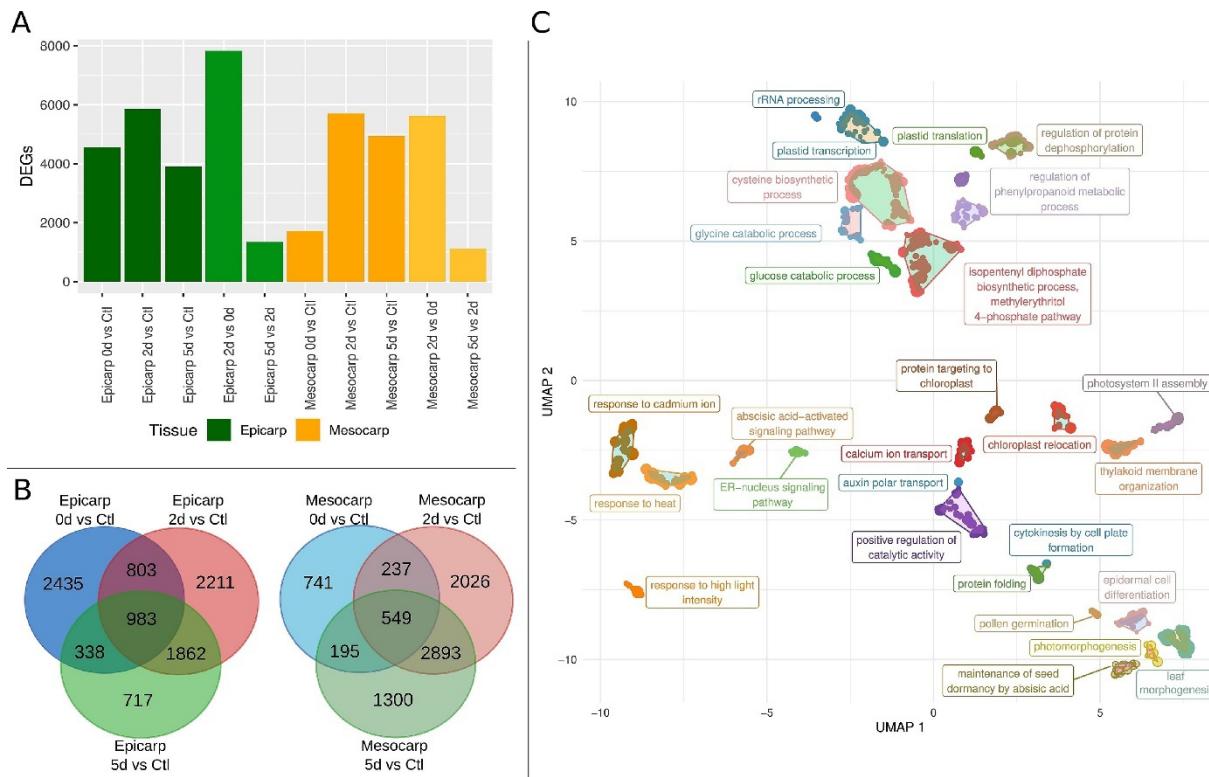
812

813

814

815

816


817

818

819

820

Figure 3

Fig. 3. Differentially expressed genes (DEGs) and enriched GO terms in tomato fruit tissues (MT-Aft/atv/hp2) in response to different light exposure conditions.

(A) Total number of DEGs in different comparisons. (B) Venn diagrams for differential expression within the same tissue in different light conditions versus the control (fruit grown under normal light conditions). (C) Summary of all enriched GO terms (biological process) clustered by semantic similarity using UMAP (Uniform Manifold Approximation and Projection). Each cluster was labeled by the GO term with the lowest FDR. d, days; Ctl, control (fruit grown under light conditions); Log2FC, logarithmic base 2 of fold change.

821

822

823

824

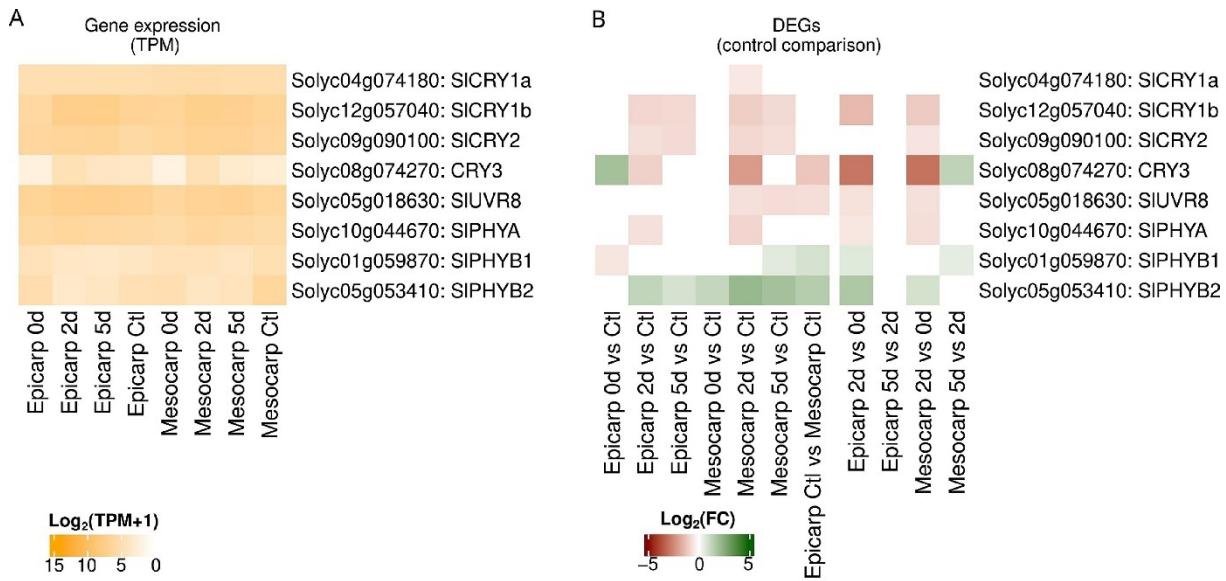
825

826

827

828

829


830

831

832

833

Figure 4

Fig. 4. Transcriptional level of the anthocyanin photoreceptor genes in tissues of tomato fruits (MT-Aft/atv/hp2).

Expression [$\log_{10} (\text{TPM}+1)$] and differential expression ($\log_2 \text{FC}$) of the photoreceptor genes involved in the anthocyanin biosynthesis pathway. d, days of light exposure after cover removal; Ctl, control; TPM, transcripts per million; DEGs, differentially expressed genes; Log2FC, base-2 logarithm of fold change.

834

835

836

837

838

839

840

841

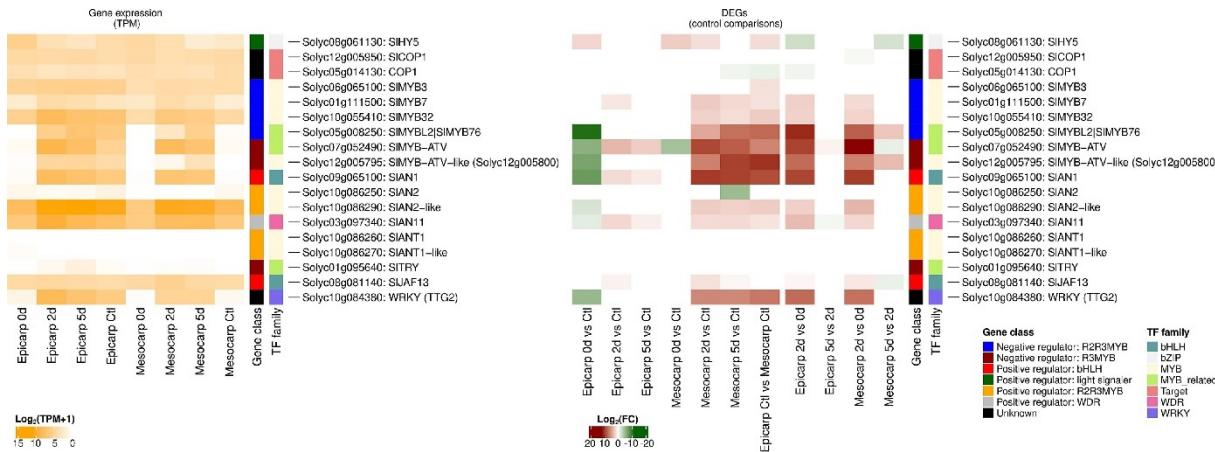
842

843

844

845

846


847

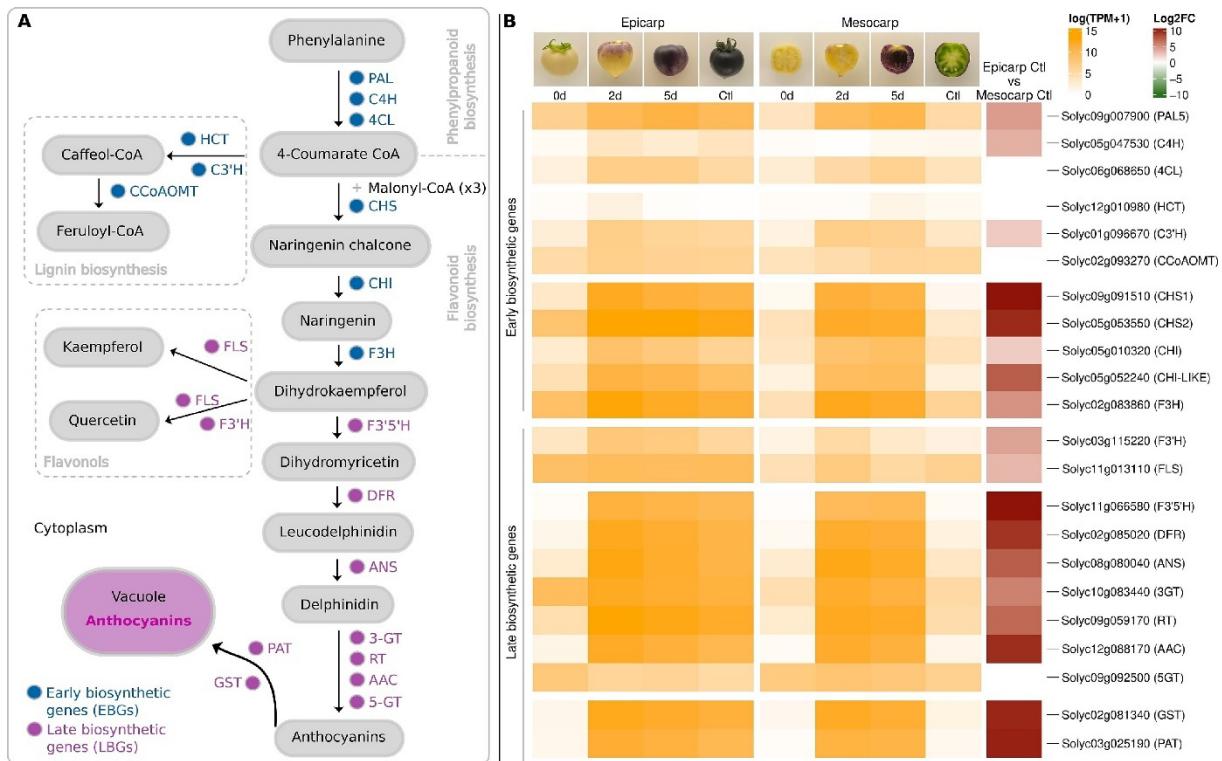
848

849

850
851

Figure 5

Fig. 5. Transcriptional level of the anthocyanin biosynthetic regulatory genes in tissues of tomato fruit (MT-Aft/atv/hp2).


Expression [log10 (TPM+1)] and differential expression (log2FC) of the anthocyanin biosynthetic regulatory genes in the epicarp and mesocarp of tomato fruits (MT-Aft/atv/hp2). d, days of light exposure; Ctl, control; TPM, transcripts per million; DEGs, differentially expressed genes; Log2FC, base-2 logarithm of fold change.

852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869

870

871

Figure 6

Fig. 6. Anthocyanin biosynthesis pathway and expression patterns of the early biosynthetic genes and late biosynthetic genes in tissues of tomato fruits (MT-Aft/atv/hp2).

(A) Anthocyanin biosynthesis pathway Adapted from Qiu et al. (2019). (B) Expression [\log_{10} (TPM+1)] and differential gene expression (\log_2 FC) of the anthocyanin Early biosynthetic genes and Late biosynthetic genes in the epicarp and mesocarp of purple tomato fruits (MT-Aft/atv/hp2). d, days; Ctl, control; TPM, transcripts per million reads; Log2 FC, base-2 logarithm of fold change.

872

873

874

875

876

877

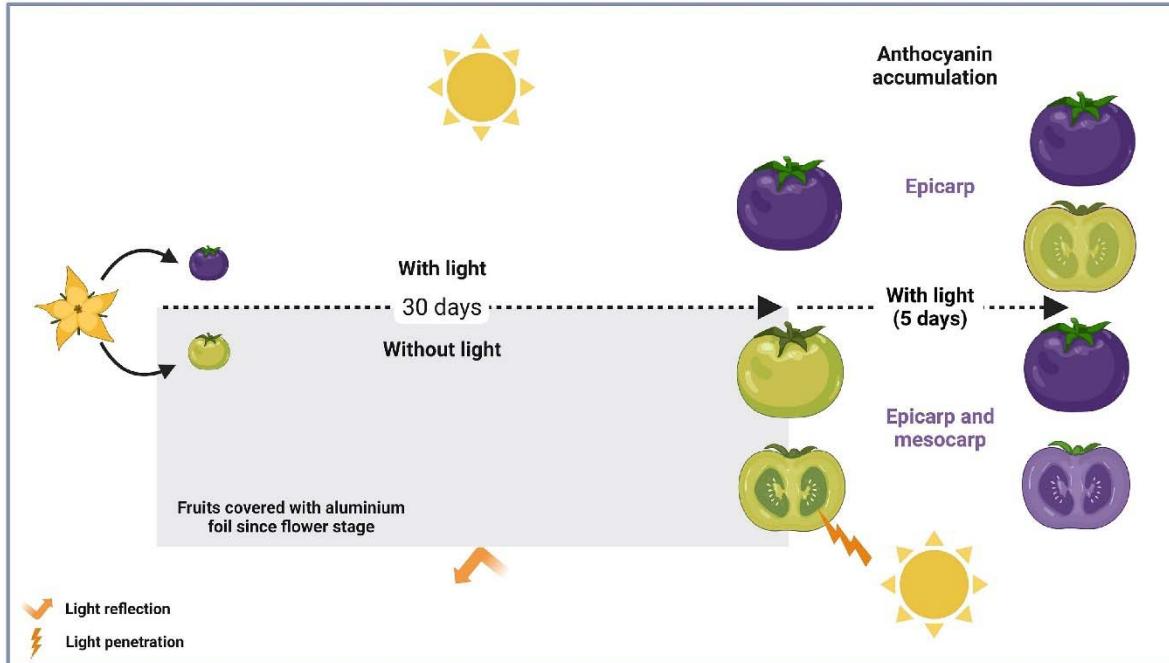
878

879

880

881

882


883

884

885

Figure 7

Tomato fruit development and anthocyanin biosynthesis

Fig. 7: Summary of the experimental design used to manipulate light and its effect on fruit anthocyanin accumulation.

At the anthesis, tomato flowers were submitted to light and dark conditions for 30 days. In light conditions, the tomato fruit showed cyanic epicarp and acyanic mesocarp. In the dark, the fruits were entirely acyanic. After the cover removal, the acyanic fruits were exposed to light for 5 days, leading to anthocyanin accumulation in the epicarp and mesocarp of these fruits.

886

887

888

889

890

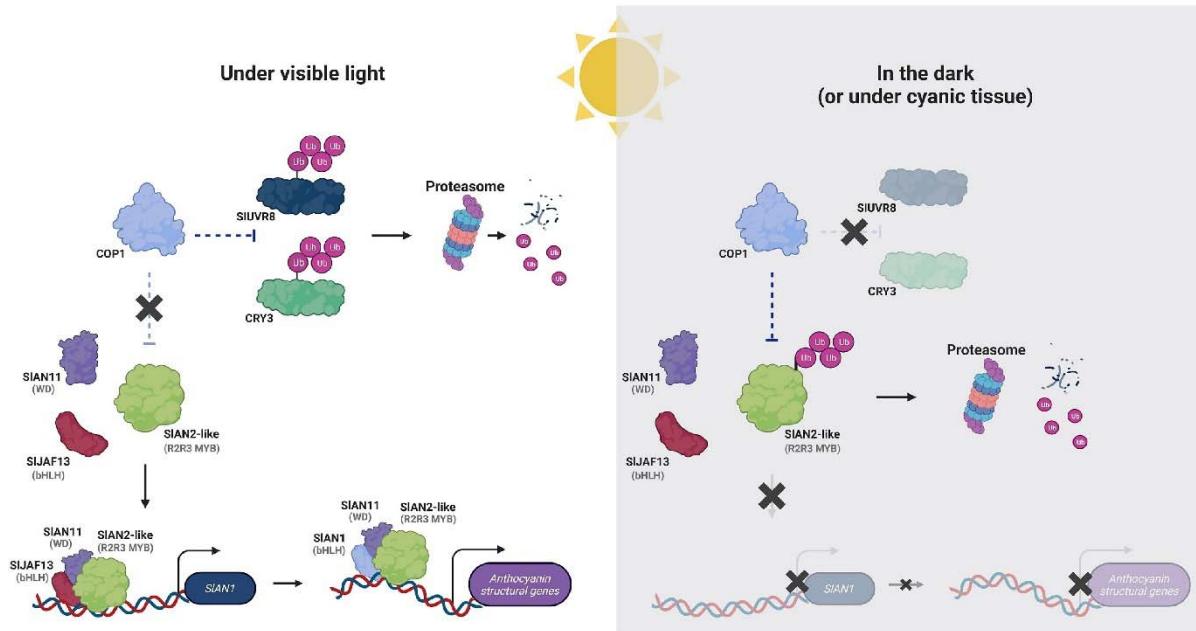
891

892

893

894

895

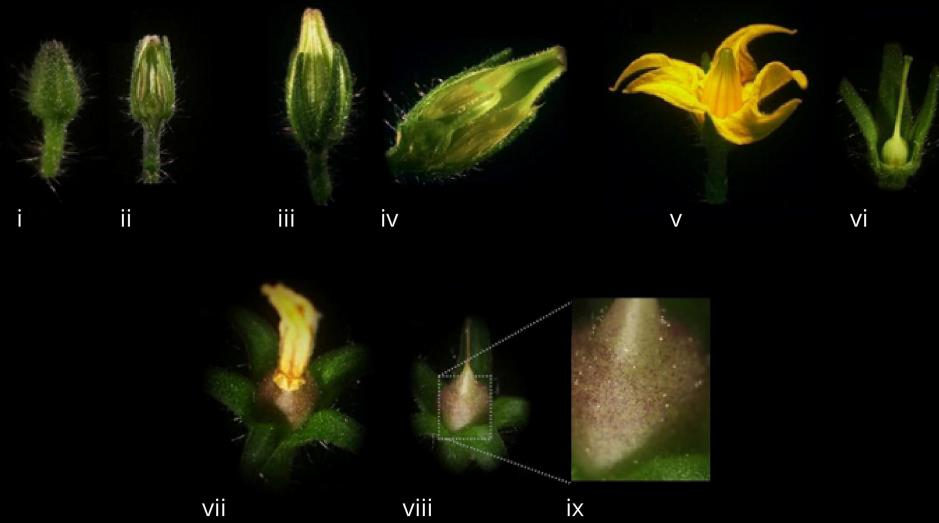
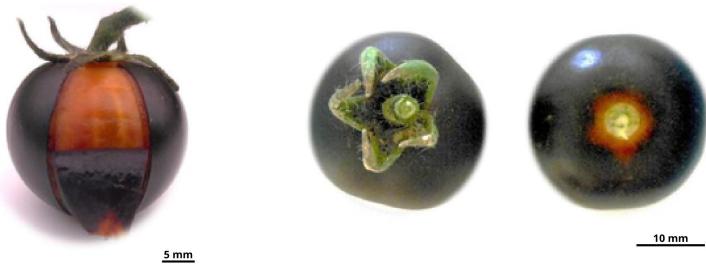

896

897

898

899

Figure 8



Fig. 8: Possible transcriptional model for anthocyanin biosynthesis regulation under light and dark conditions.

Under visible light, instead of ubiquitinating the SIAN2-like (*Solyc10g086290*), the COP1 (*Solyc05g014130*) ubiquitinates the photoreceptors SIUVR8 (*Solyc05g018630*) and CRY3 (*Solyc08g074270*), leading to their degradation by the proteasome. In this condition, the SIAN2-like forms the first MBW complex together with the SIJAF13 (*Solyc08g081140*) and SIAN11 (*Solyc03g097340*) to activate the *SIAN1* (*Solyc09g065100*) gene expression. After that, the SIAN1 replaces the SIJAF13 to form the second MBW complex to activate the anthocyanin structural genes. In dark conditions, the COP1 will ubiquitinate the SIAN2-like, inducing its degradation by the proteasome, inhibiting the formation of the first MBW complex from activating the *SIAN1* expression and, consequently, the anthocyanin biosynthesis.

900

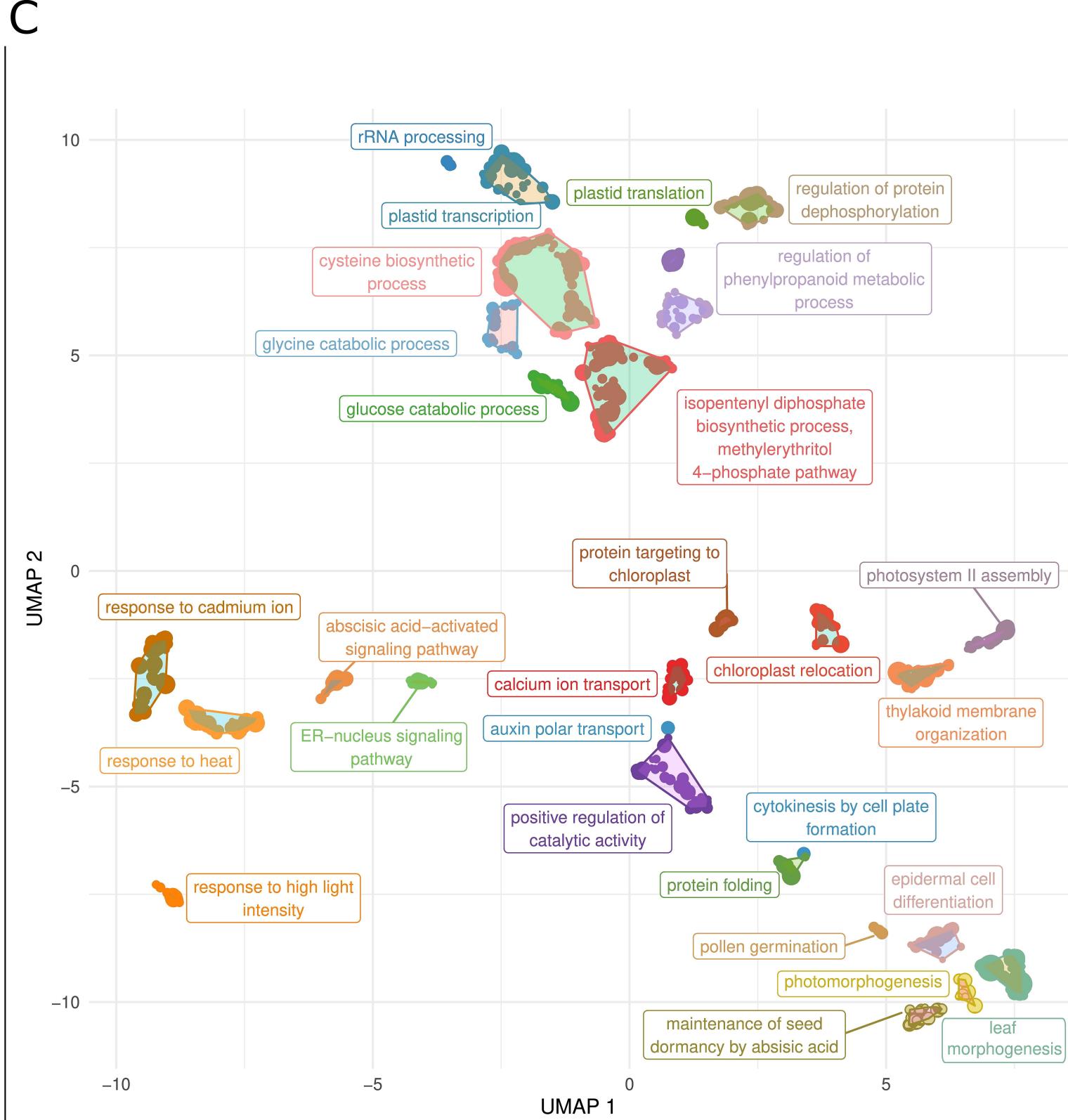
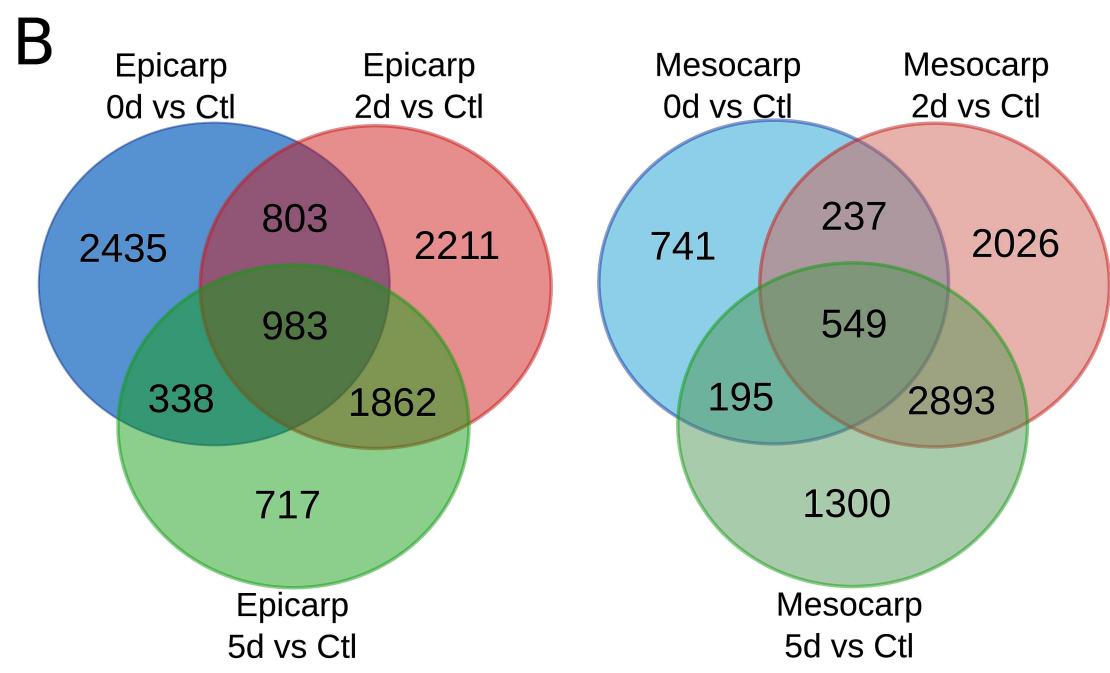
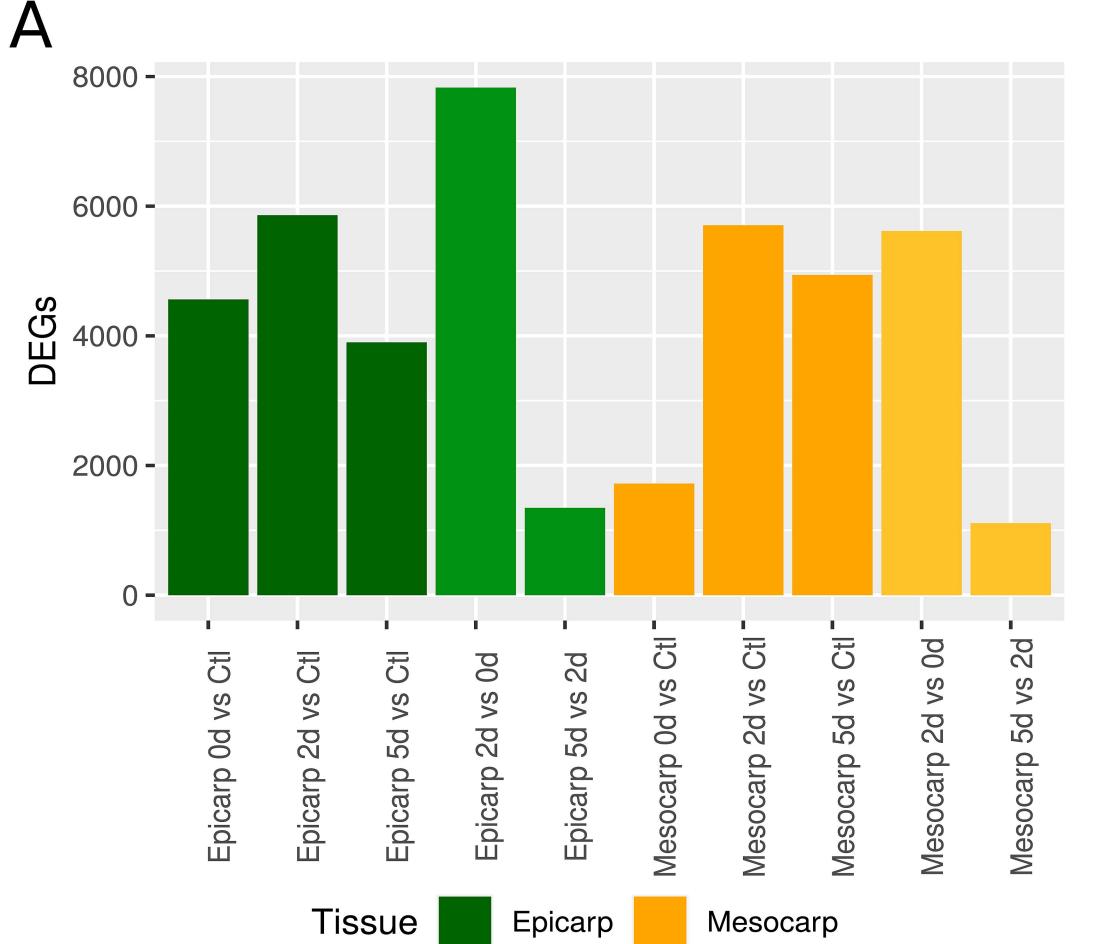
901

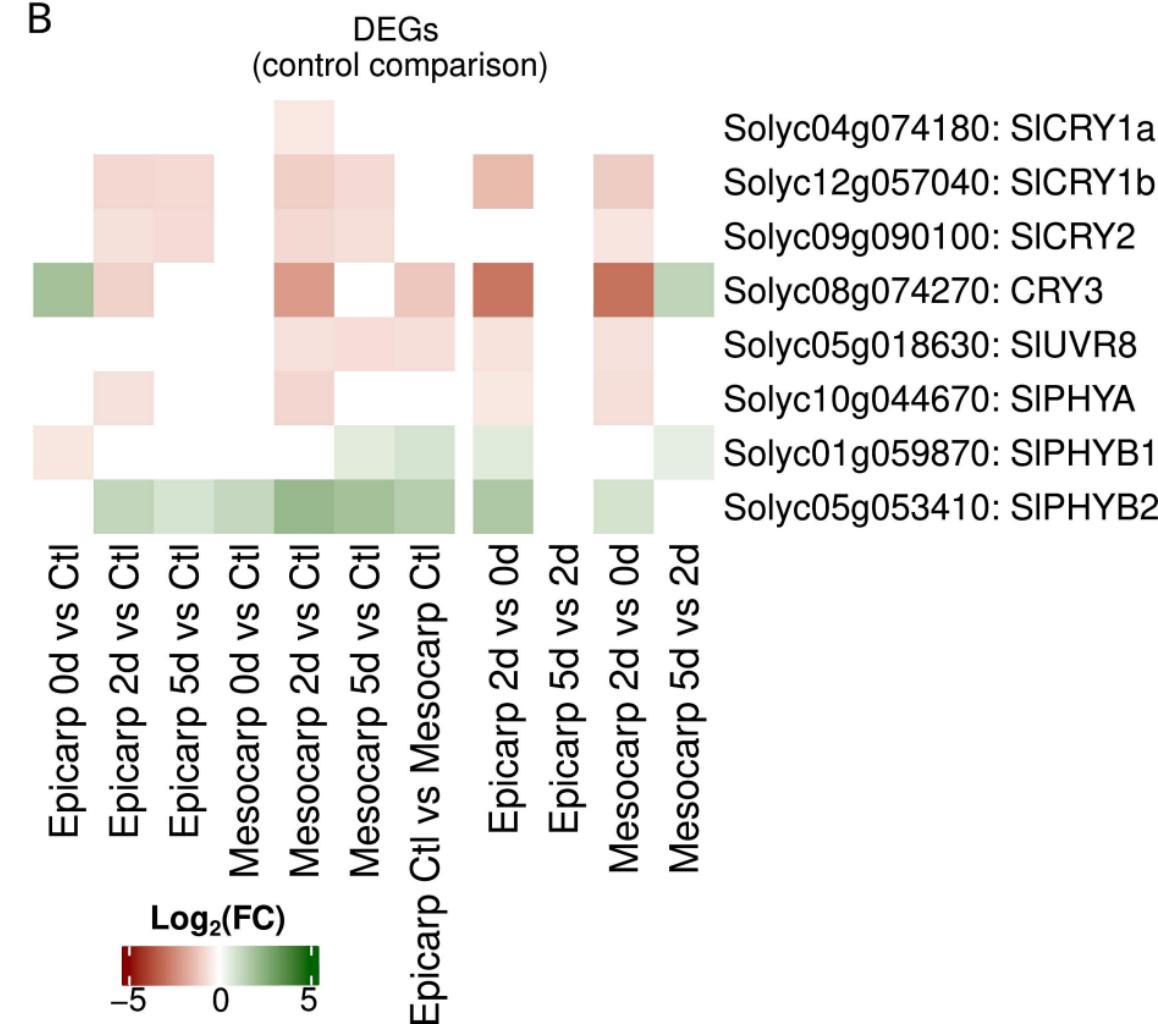
902

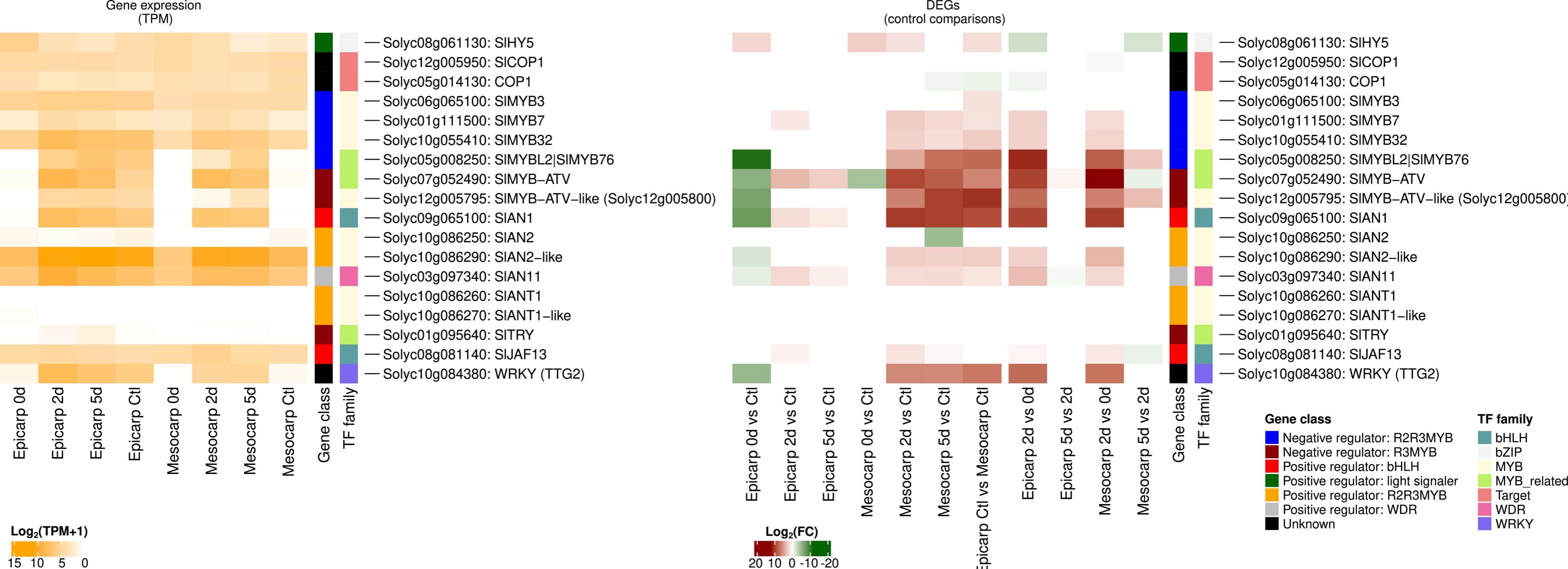
A**B****C**

Control (CTL)

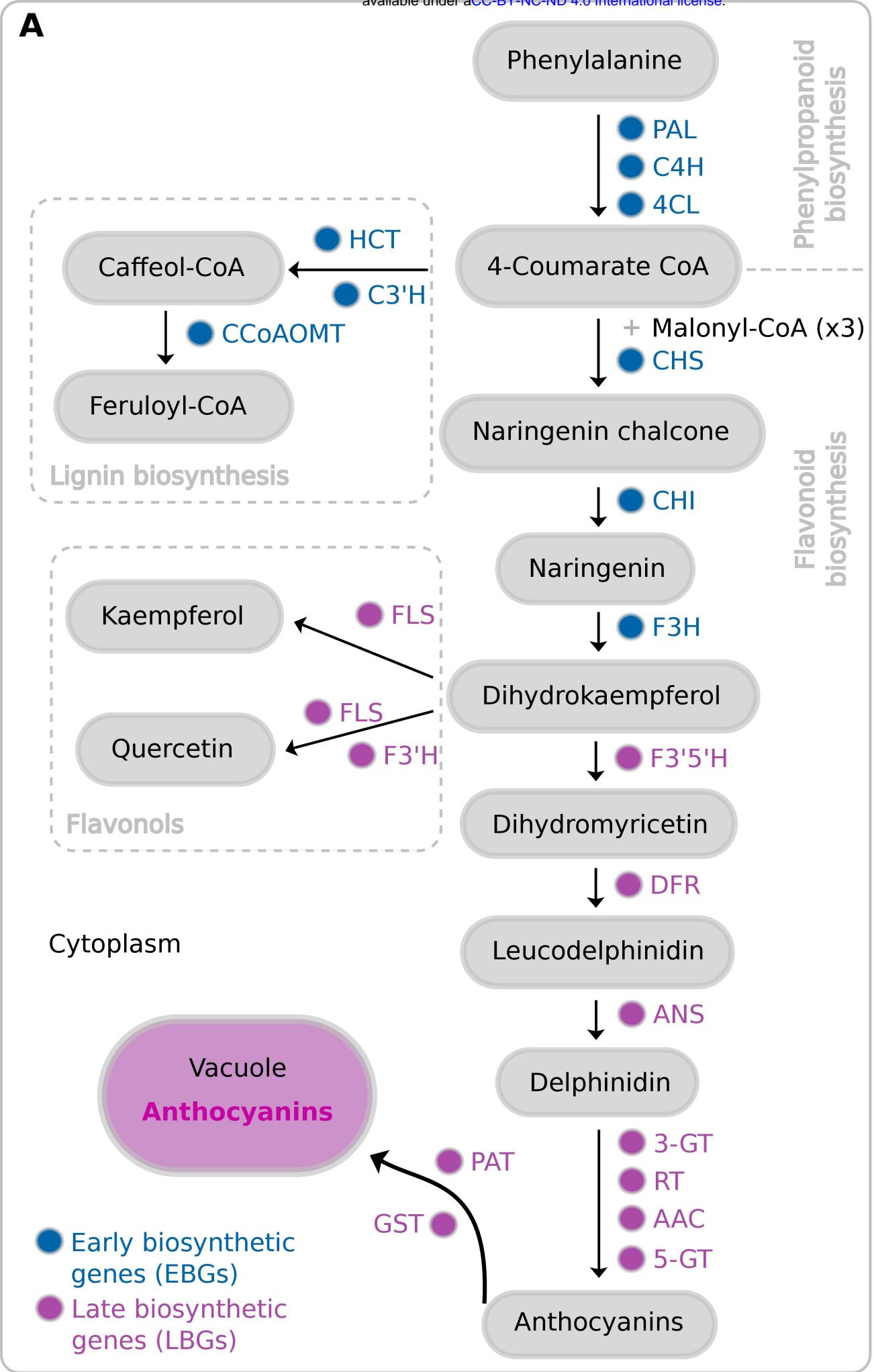
0 days (0d)

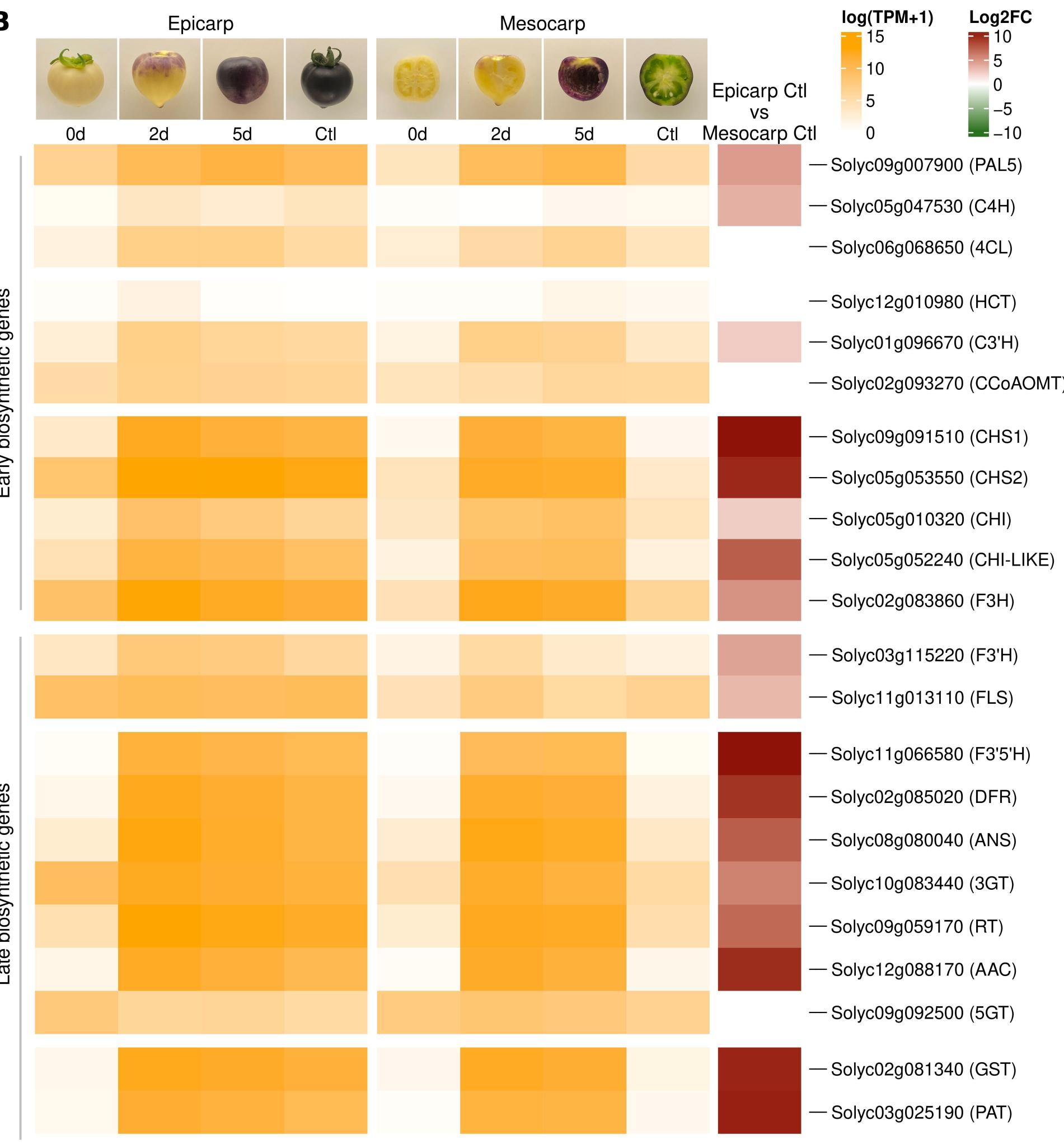




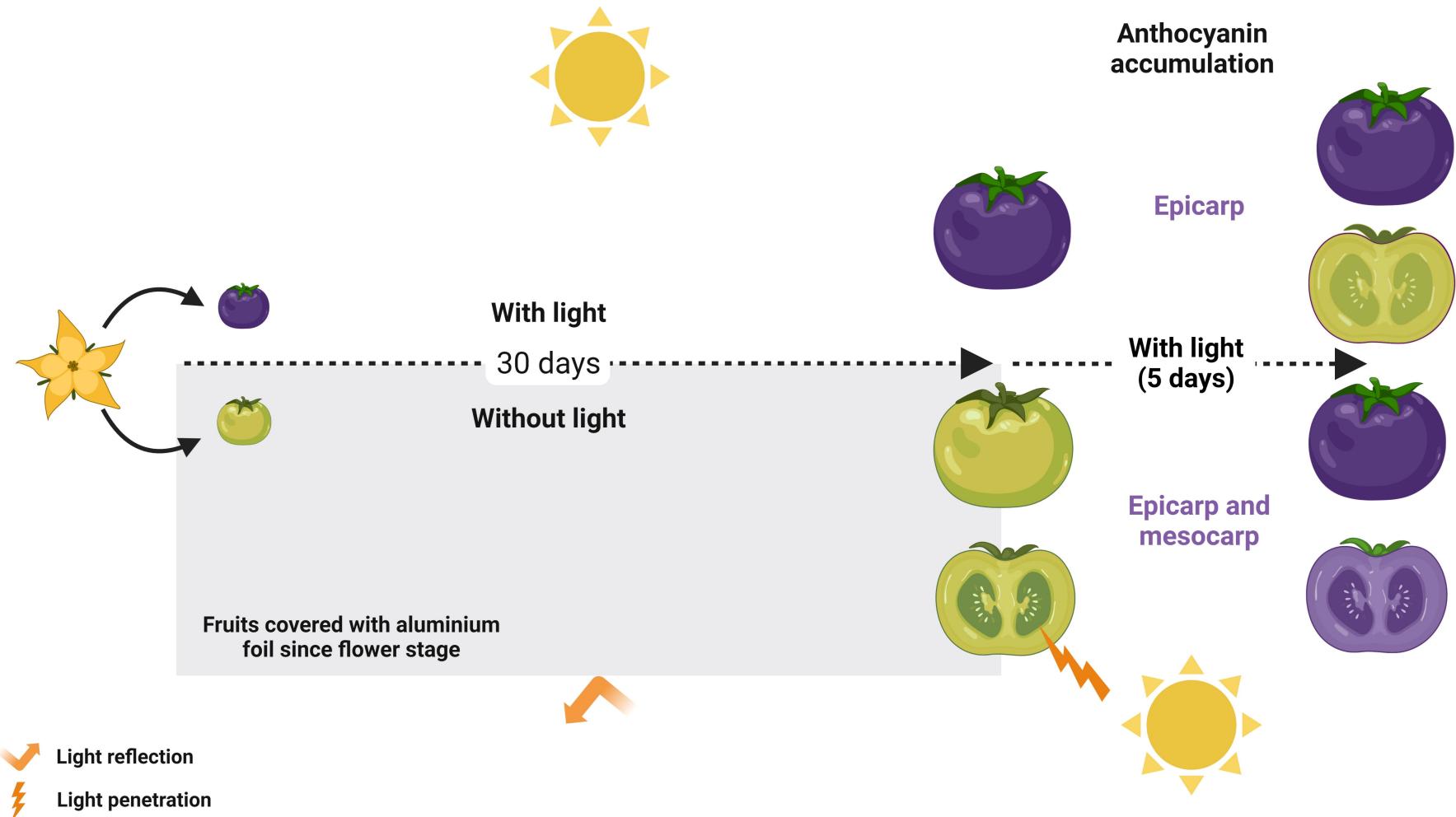

2 days (2d)

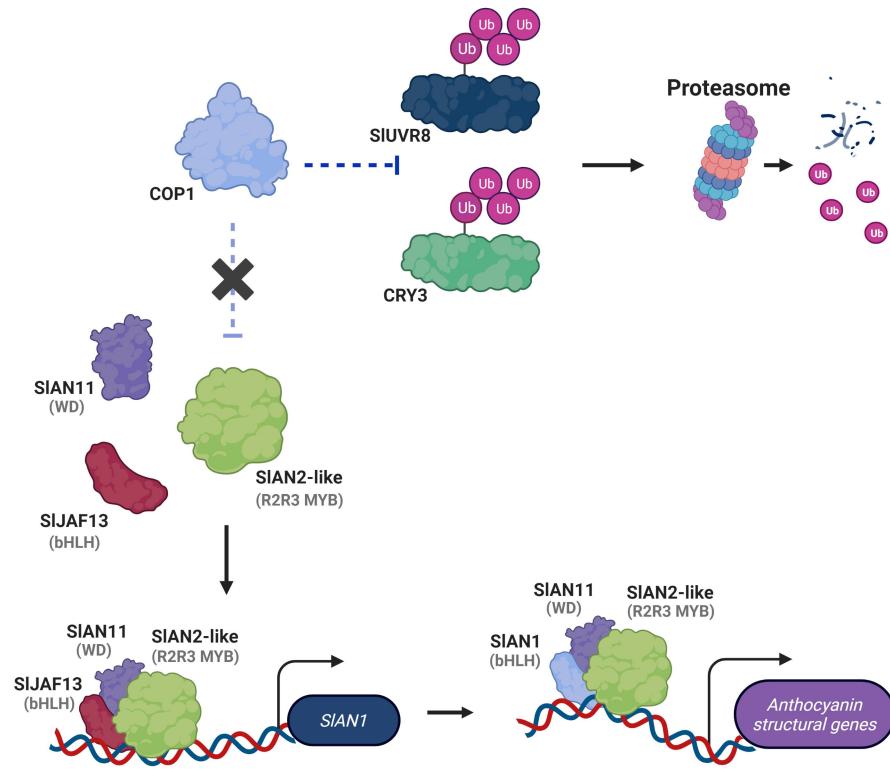


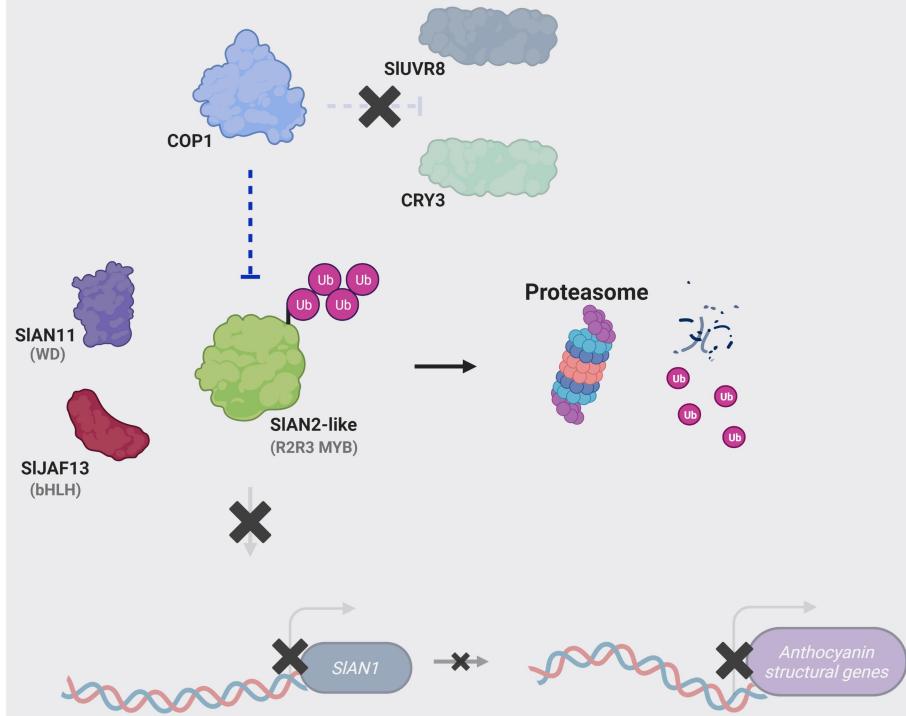
5 days (5d)






A


18


Tomato fruit development and anthocyanin biosynthesis

Under visible light

In the dark (or under cyanic tissue)

