

1 **Downregulation of Semaphorin 4A in keratinocytes reflects the features of non-
2 lesional psoriasis**

3

4 **Authors:** Miki Kume ¹, Hanako Koguchi-Yoshioka ^{1,2}, Shuichi Nakai ^{1,3}, Yutaka
5 Matsumura ¹, Atsushi Tanemura ¹, Kazunori Yokoi ¹, Shoichi Matsuda ^{1,3}, Yuumi
6 Nakamura ^{1,4}, Naoya Otani ⁵, Mifue Taminato ⁵, Koichi Tomita ^{5,6}, Tateki Kubo ⁵, Mari
7 Wataya-Kaneda ^{1,2}, Atsushi Kumanogoh ⁷, Manabu Fujimoto ¹, Rei Watanabe ^{1,8}

8

9 **Author Affiliations:**

10 ¹ Department of Dermatology, Course of Integrated Medicine, Graduate School of
11 Medicine, Osaka University, Osaka, Japan

12 ² Department of Neurocutaneous Medicine, Division of Health Sciences, Graduate
13 School of Medicine, Osaka University, Osaka, Japan

14 ³ Research Department, Maruho Co, Ltd., Kyoto, Japan

15 ⁴ Cutaneous Allergy and Host Defense, Immunology Frontier Research Center (iFReC),
16 Osaka University, Osaka, Japan

17 ⁵ Department of Plastic Surgery, Course of Organ Regulation Medicine, Graduate
18 School of Medicine, Osaka University, Osaka, Japan

19 ⁶ Department of Plastic and Reconstructive Surgery, Kindai University, Osaka, Japan

20 ⁷ Department of Respiratory Medicine and Clinical Immunology, Course of Internal
21 Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan

22 ⁸ Department of Medicine for Cutaneous Immunological Diseases, Course of Integrated
23 Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan

24

25 **Corresponding author:**

26 Rei Watanabe, MD, PhD.

27 Department of Medicine for Cutaneous Immunological Diseases, Course of Integrated
28 Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan

29 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan

30 Phone number: +81-6-6879-3031

31 Fax number: +81-6-6879-3038

32 E-mail address: rwtanabe@derma.med.osaka-u.ac.jp

33

34 **Competing interests**

35 SN and SM are affiliated with Maruho Co. as employees, but have declared no
36 conflicts of interest related to this research. The remaining authors also declare no

37 conflicts of interest.

38

39 **Funding statement:** This study was supported by a Grant-in-Aid for JSPS Fellows

40 22KJ2071 (to MK), a Grant-in-Aid for Scientific Research (KAKENHI) 16K19705 (to

41 RW), and a collaborative research grant from Maruho Co (Osaka, Japan).

42 **Abstract**

43 Psoriasis is a multifactorial disorder mediated by IL-17-producing T cells,
44 involving immune cells and skin-constituting cells. Semaphorin 4A (Sema4A), an
45 immune semaphorin, is known to take part in T helper type 1/17 differentiation and
46 activation. However, Sema4A is also crucial for maintaining peripheral tissue
47 homeostasis and its involvement in skin remains unknown. Here, we revealed that while
48 Sema4A expression was pronounced in psoriatic blood lymphocytes and monocytes, it
49 was downregulated in the keratinocytes of both psoriatic lesions and non-lesions
50 compared to controls. Imiquimod application induced more severe dermatitis in
51 Sema4A knockout (KO) mice compared to wild-type (WT) mice. The naïve skin of
52 Sema4AKO mice showed increased T cell infiltration and IL-17A expression along with
53 thicker epidermis and distinct cytokeratin expression compared to WT mice, which are
54 hallmarks of psoriatic non-lesions. Analysis of bone marrow chimeric mice suggested
55 that Sema4A expression in keratinocytes plays a regulatory role in imiquimod-induced
56 dermatitis. The epidermis of psoriatic non-lesion and Sema4AKO mice demonstrated
57 mTOR complex 1 upregulation, and the application of mTOR inhibitors reversed the
58 skewed expression of cytokeratins in Sema4AKO mice. Conclusively, Sema4A-
59 mediated signaling cascades can be triggers for psoriasis and targets in the treatment

60 and prevention of psoriasis.

61 **INTRODUCTION**

62 While the infiltration of immune cells into skin plays a critical role in the
63 development of psoriasis, as evidenced by interleukin (IL) -23/IL-17 axis (Fitch, Harper,
64 Skorcheva, Kurtz, & Blauvelt, 2007; Hawkes, Yan, Chan, & Krueger, 2018; Kim &
65 Krueger, 2017), recent studies have revealed that cells constructing skin structure, such
66 as keratinocytes, fibroblasts, and endothelial cells, also play pivotal roles in the
67 development (Heidenreich, Röcken, & Ghoreschi, 2009; Lowes, Russell, Martin, Towne,
68 & Krueger, 2013; Zhang et al., 2023) and maintenance (Arasa et al., 2019; Francis et al.,
69 2024; Q. Li et al., 2023; Ma et al., 2023; Tan et al., 2015; Zhu et al., 2020) of psoriasis.
70 Among these cells, keratinocytes function as a barrier and produce cytokines,
71 chemokines, and antimicrobial peptides against foreign stimuli, resulting in the
72 activation of immune cells (Ni & Lai, 2020; Zhou, Chen, Cui, Shi, & Guo, 2022).

73 Semaphorins were initially identified as guidance cues in neural development
74 (Kolodkin, Matthes, & Goodman, 1993; Pasterkamp & Kolodkin, 2003) but are now
75 regarded to play crucial roles in other physiological processes including angiogenesis
76 (Iragavarapu-Charyulu, Wojcikiewicz, & Urdaneta, 2020; Serini, Maione, Giraudo, &
77 Bussolino, 2009), tumor microenvironment (Hui, Tam, Jiao, & Ong, 2019; Jiang et al.,
78 2022; Nakayama, Kusumoto, Nakahara, Fujiwara, & Higashiyama, 2018; Rajabinejad

79 et al., 2020), and immune systems (Garcia, 2019; Kanth, Gairhe, & Torabi-Parizi, 2021;
80 M. Naito & Kumanogoh, 2023). Semaphorin 4A (Sema4A), one of the immune
81 semaphorins, plays both pathogenic and therapeutic roles in autoimmune diseases
82 (Cavalcanti et al., 2020; He et al., 2023), allergic diseases (Maeda et al., 2019), and
83 cancer (Iyer & Chapoval, 2018; Liu et al., 2018; Y. Naito et al., 2023; Pan, Wang, & Ye,
84 2016). While Sema4A expression on T cells is essential for T helper type 1
85 differentiation in the murine *Propionibacterium acnes*-induced inflammation model and
86 delayed-type hypersensitivity model (Kumanogoh et al., 2005), Sema4A amplifies only
87 T helper type 17 (Th17)-mediated inflammation in the effector phase of murine
88 experimental autoimmune encephalomyelitis (Koda et al., 2020). Accordingly, in
89 multiple sclerosis, high serum Sema4A levels correlate with the elevated serum IL-17A,
90 earlier disease onset, and increased disease severity (Koda et al., 2020; Nakatsuji et al.,
91 2012). In anti-tumor immunity, research involving human samples and murine models
92 suggests that Sema4A expressed in cancer cells and regulatory T cells promotes tumor
93 progression (Delgoffe et al., 2013; Liu et al., 2018; Pan et al., 2016), while other reports
94 reveal that Sema4A in cancer cells and dendritic cells bolsters anti-tumor immunity by
95 enhancing CD8 T cell activity (Y. Naito et al., 2023; Suga et al., 2021). In addition to
96 these roles in immune reactions, mice with a point mutation in Sema4A develop retinal

97 degeneration, suggesting that Sema4A is also crucial for peripheral tissue homeostasis
98 (Nojima et al., 2013). These reports suggest that the role of Sema4A can differ based on
99 the disease, phase, and involved cells.

100 Herein, we investigated the roles of Sema4A in the pathogenesis of psoriasis by
101 analyzing skin and blood specimens from psoriatic subjects and using a murine model.

102

103 **RESULTS**

104 **Epidermal Sema4A expression is downregulated in psoriasis**

105 The analysis of previously-published single-cell RNA-sequencing data from
106 control (Ctl) and psoriatic lesional (L) skin specimens (Kim et al., 2023) revealed
107 detectable expression of *SEMA4A* in keratinocytes, dendritic cells, and macrophages in
108 both Ctl and L. *SEMA4A* expression was low in neural crest-like cells, fibroblasts, CD4
109 T cells, CD8 T cells, NK cells, and plasma cells, making the comparison of expression
110 levels impractical (Figure 1A and B; Figure 1-figure supplement 1A-C). Dendritic cells
111 and macrophages showed comparable *SEMA4A* expression levels between Ctl and L
112 (Figure 1C). The adjusted *p*-value (*padj*) for *SEMA4A* in keratinocytes between Ctl and
113 L was 2.83×10^{-39} , indicating a statistically significant difference despite not being
114 visually prominent in the volcano plot, which shows comprehensive differential gene
115 expression in keratinocytes (Figure 1C; Figure 1-figure supplement 1D).

116 Immunohistochemistry of Ctl and psoriasis demonstrated Sema4A expression
117 in keratinocytes (Figure 1D). The staining intensity of Sema4A in epidermis was
118 significantly lower in both non-lesions (NL) and L than in Ctl (Figure 1E). Relative
119 mRNA expression of *SEMA4A* was also decreased in the epidermis of NL and L
120 compared to Ctl, while it remained comparable in the dermis (Figure 1F). In contrast,

121 the proportions of Sema4A-positive cells were significantly higher in blood CD4 and
122 CD8 T cells, and monocytes in psoriasis compared to Ctl (Figure 1G; Figure 1-figure
123 supplement 2). Serum Sema4A levels, measured by enzyme-linked immunosorbent
124 assay (ELISA), were comparable between Ctl and psoriasis (Figure 1H). These findings
125 demonstrate that the expression profile of Sema4A in psoriasis varies across cell types.

126

127 **Psoriasis-like dermatitis is augmented in Sema4AKO mice**

128 When psoriasis-like dermatitis was induced in wild-type (WT) mice and
129 Sema4A knockout (KO) mice by imiquimod application on ears (Figure 2A), ear
130 swelling on day 4 was more pronounced in Sema4AKO mice (Figure 2B) with
131 upregulated *Il17a* gene expression (Figure 2C). Flow cytometry analysis of cells
132 isolated from the ears revealed increased proportions of V γ 2 $^+$ T cells, V γ 2 $^-$ V γ 3 $^-$ double-
133 negative (DN) $\gamma\delta$ T cells, and IL-17A-producing cells of those fractions in Sema4AKO
134 epidermis (Figure 2D and E; Figure 2-figure supplement 1). In Sema4AKO dermis,
135 there was also an increase in the proportions of V γ 2 $^+$ T cells and IL-17A-producing
136 V γ 2 $^+$ T cells (Figure 2D and E). These results suggest that Sema4A deficiency in mice
137 accelerates psoriatic profile. IL-17A-producing T cells in skin-draining lymph nodes
138 (dLN) remained comparable between WT mice and Sema4AKO mice (Figure 2F).

139 Though the imiquimod model is well-established and valuable murine psoriatic model
140 (van der Fits et al., 2009), the vehicle of imiquimod cream can activate skin
141 inflammation that is independent of toll-like receptor 7, such as inflammasome
142 activation, keratinocyte death and interleukin-1 production (Walter et al., 2013). This
143 suggests that the imiquimod model involves complex pathway. Therefore, we
144 subsequently induced IL-23-mediated psoriasis-like dermatitis (Figure2-figure
145 supplement 2A), a much simpler murine psoriatic model, because IL-23 is thought to
146 play a central role in psoriasis pathogenesis (Krueger et al., 2007; Lee et al., 2004).
147 Although ear swelling on day 4 was comparable between WT mice and Sema4AKO
148 mice (Figure2-figure supplement 2B), the epidermis, but not the dermis, was
149 significantly thicker in Sema4AKO mice compared to WT mice (Figure2-figure
150 supplement 2C). We found that the proportion of CD4 T cells among T cells was
151 significantly higher in Sema4A KO mice compared to WT mice, while the proportion of
152 V γ 2 and DN γ δ T cells among T cells was comparable between them (Figure 2-figure
153 supplement 2D). On the other hand, focusing on IL-17A-producing cells, the proportion
154 of IL-17A-producing V γ 2 and DN γ δ T cells in CD3 fraction in the epidermis was
155 significantly higher in Sema4A KO mice, consistent with the results from imiquimod-
156 induced psoriasis-like dermatitis. (Figure 2-figure supplement 2E).

157

158 **Sema4A in keratinocytes may play a role in preventing murine psoriasis-like**
159 **dermatitis**

160 To investigate the cells responsible for the augmented ear swelling in

161 Sema4AKO mice, bone marrow chimeric mice were next analyzed (Figure 3A). Since it

162 has already been reported that bone marrow cells contain keratinocyte stem cells (Harris

163 et al., 2004; Wu, Zhao, & Tredget, 2010), we confirmed that epidermis of mice deficient

164 in non-hematopoietic Sema4A (WT→KO) showed no obvious detection of *Sema4a*,

165 thereby ruling out the impact of donor-derived keratinocyte stem cells infiltrating the

166 host epidermis (Figure 3-figure supplement 1A). WT→KO mice displayed more

167 pronounced ear swelling than mice with intact Sema4A expression (WT→WT)

168 following imiquimod application (Figure 3B). Similarly, mice with a systemic

169 deficiency of Sema4A (KO→KO) showed severe ear swelling compared to mice

170 deficient in hematopoietic Sema4A (KO→WT) (Figure 3B). Ear swelling was

171 comparable between WT→WT mice and KO→WT mice (Figure 3B). Flow cytometry

172 analysis revealed increased infiltration of IL-17A-producing DN γ δ T cells in the

173 epidermis, as well as V γ 2 $^{+}$ T cells and IL-17A-producing V γ 2 $^{+}$ T cells in the dermis, in

174 WT→KO mice compared to WT→WT mice (Figure 3C; Figure 3-figure supplement

175 1B). These findings suggest that non-hematopoietic cells, possibly keratinocytes, are
176 primarily responsible for the increased imiquimod-induced Sema4AKO mice ear
177 swelling.

178

179 **Sema4AKO epidermis is thicker than WT epidermis with increased $\gamma\delta$ T17
180 infiltration**

181 Even without imiquimod application, Sema4AKO ears turned out to be slightly
182 but significantly thicker than WT ears on week 8 while their appearance remained
183 normal (Figure 4A). While epidermal thickness of back skin was comparable at birth
184 (Figure 4B), on week 8, epidermis of Sema4AKO back and ear skin was notably thicker
185 than that of WT mice (Figure 4B), suggesting that acanthosis in Sema4AKO mice is
186 accentuated post-birth. Dermal thickness remained comparable between WT mice and
187 Sema4AKO mice at both times (Figure 4B). The epidermis of WT ear at week 8 showed
188 significantly higher *Sema4a* mRNA expression compared to the dermis (Figure 4C).
189 Based on these observations, Sema4A appears to play a more pronounced role in
190 epidermis than in dermis.

191 Sema4AKO epidermis exhibited increased expression of *Ccl20*, *Tnfa*, and
192 *Il17a* and a trend of upregulation of *S100a8* compared to WT epidermis (Figure 4-figure

193 supplement 1A). These differences were not observed in dermis (Figure 4-figure
194 supplement 1A). Flow cytometry analysis revealed increased infiltration of $\gamma\delta$ T cells in
195 Sema4AKO ear (Figure 4-figure supplement 1B). These cells predominantly expressed
196 resident memory T cell (T_{RM})-characteristic molecules, CD69 and CD103 (Figure 4-
197 figure supplement 1B). Sema4AKO skin also had a higher number of T_{RM} in both CD4
198 and CD8 T cells (Figure 4-figure supplement 1B). The percentages of $V\gamma2^+$ T cells,
199 DN $\gamma\delta$ T cells, and CD8 T cells in epidermis were higher in Sema4AKO mice than in
200 WT mice, which was not the case in dermis (Figure 4-figure supplement 2A). The
201 proportion of $V\gamma3^+$ dendritic epidermal T cells was comparable between WT mice and
202 Sema4AKO mice (Figure 4-figure supplement 2A). Epidermal $V\gamma2^+$ T cells and DN $\gamma\delta$ T
203 cells in Sema4AKO mice showed higher IL-17A-producing capability (Figure 4D),
204 while IFN γ and IL-4 production was comparable between WT mice and Sema4AKO
205 mice (Figure 4-figure supplement 2B and C). Conversely, the frequency of IL-17A-
206 producing T cells from dLN was comparable (Figure 4E). The production of IL-17A
207 and IFN γ from splenic T cells under T17-polarizing conditions remained consistent
208 between WT mice and Sema4AKO mice (Figure 4-figure supplement 3).

209 Taken together, it is suggested that T17 cells are specifically upregulated in
210 epidermis, indicating that the epidermal microenvironment plays a pivotal role in

211 facilitating the increased T cell infiltration observed in naïve Sema4AKO mice.

212

213 **Sema4AKO skin shares features with human psoriatic NL**

214 Previous literatures have identified certain features common to psoriatic L and

215 NL, such as thickened epidermis (Figure 5-figure supplement 1) (Gallais Séréal et al.,

216 2019), CCL20 upregulation (Gallais Séréal et al., 2019), and accumulation of IL-17A-

217 producing T cells (Vo et al., 2019), which were detected in Sema4AKO mice.

218 Gene expression analysis using public RNA-sequencing data (Tsoi et al., 2019)

219 with RaNA-seq (Prieto & Barrios, 2019) showed upregulation of keratinization and

220 antimicrobial peptide genes in NL compared to Ctl (Figure 5A). Gene Ontology analysis

221 highlighted an upregulation in biological processes, predominantly in peptide cross-

222 linking involved in epidermis formation and keratinocyte differentiation, with a

223 secondary increase in the defense response to viruses in NL (Figure 5B). While the

224 expression of *Keratin (KRT) 10* was comparable between NL and Ctl, upregulation in

225 *KRT5*, *KRT14*, and *KRT16* was observed in NL (Figure 5C).

226 In the murine model, relative expression levels of *Krt10*, *Krt14*, *Krt16*, and

227 *Filaggrin* were elevated in Sema4AKO epidermis. (Figure 5D). Immunofluorescence

228 analysis showed that Sema4AKO epidermis had a higher density of keratinocytes

229 positive for Krt5, Krt10, Krt14, and Krt16 compared to WT epidermis (Figure 5E). This
230 upregulation was not observed in back skin at birth (Figure 5-figure supplement 2).
231 Comparable transepidermal water loss between WT mice and Sema4AKO mice
232 indicated preserved skin barrier function in Sema4AKO mice (Figure 5F).

233 Based on these results, it is implied that the epidermis of human psoriatic NL
234 and Sema4AKO mice exhibit shared pathways, potentially leading to an acanthotic state.

235 Combined with the observed acanthosis and increased T17 infiltration in Sema4AKO
236 mice, Sema4AKO skin is regarded to demonstrate the features characteristic of human
237 psoriatic NL.

238

239 **mTOR signaling is upregulated in the epidermis of psoriatic NL and Sema4AKO
240 mice**

241 Previous reports have shown that mTOR pathway plays a critical role in
242 maintaining epidermal homeostasis, as evidenced by mice with keratinocyte-specific
243 deficiencies in Mtor, Raptor, or Rictor, which exhibit a hypoplastic epidermis with
244 impaired differentiation and barrier formation (Asrani et al., 2017; Ding et al., 2016;
245 Ding et al., 2020). We thus investigated mTOR pathway in both human and murine
246 epidermis.

247 Immunohistochemical analyses highlighted the increase in phospho-S6 (p-S6),
248 indicating the upregulation of mTOR complex (C) 1 signaling, in the epidermal upper
249 layers of both L and NL compared to Ctl (Figure 6A). The activation of mTORC2 in the
250 epidermis, inferred from phospho-Akt (p-Akt), was scarcely detectable in L, NL, and
251 Ctl (Figure 6A). In the epidermis of WT mice and Sema4AKO mice, the upregulation of
252 both mTORC1 and mTORC2 signaling was observed in Sema4AKO epidermis by
253 immunohistochemistry (Figure 6B). Western blot analysis showed upregulated
254 mTORC1 signaling in Sema4AKO epidermis compared to WT epidermis (Figure 6C).
255 The enhancement of mTORC1 and mTORC2 signaling became obvious in the
256 Sema4AKO epidermis after developing psoriatic dermatitis by imiquimod application
257 (Figure 6D).

258

259 **Inhibition of mTOR signaling modulates cytokeratin expression in Sema4AKO mice**

260 To investigate the contribution of mTORC1 and mTORC2 signaling in the
261 development of psoriatic features in the Sema4AKO epidermis, mTORC1 inhibitor
262 rapamycin and mTORC2 inhibitor JR-AB2-011 were intraperitoneally applied to
263 Sema4AKO mice for 14 days. Although epidermal thickness remained unchanged by
264 the inhibitors (Figure 7A and B), relative gene expression of *Krt5* was significantly

265 upregulated and that of *Krt16* was significantly downregulated after rapamycin
266 application (Figure 7C). While the upregulation of *Il17a* in Sema4AKO epidermis was
267 not clearly modified by rapamycin (Figure 7C), immunofluorescence revealed the
268 decrease in the number of CD3 T cells in Sema4AKO epidermis by rapamycin (Figure
269 7D). We additionally conducted topical application of rapamycin gel and vehicle gel on
270 the left and right ears of Sema4AKO mice, respectively. Although there were no
271 detectable changes in epidermal thickness and epidermal T cell counts, the upregulation
272 of *Krt5* and downregulation of *Krt16* was observed again (Figure 7-figure supplement
273 1). Conversely, the application of JR-AB2-011 resulted in decreased expression of *Krt5*,
274 *Krt10*, and *Krt14* with a trend towards increased *Krt16* expression (Figure 7E). JR-
275 AB2-011 did not influence the number of infiltrating T cells in the epidermis (Figure
276 7F). Next, we investigated whether intraperitoneal rapamycin treatment effectively
277 downregulates inflammation in the IMQ-induced murine model of psoriasis in
278 Sema4AKO mice (Figure 7-figure supplement 2A). Rapamycin significantly reduced
279 epidermal thickness compared to vehicle treatment (Figure 7-figure supplement 2B).
280 Additionally, rapamycin treatment downregulated the expression of *Krt10*, *Krt14*, and
281 *Krt16* (Figure 7-figure supplement 2C). While the upregulation of *Il17a* in the
282 Sema4AKO epidermis in IMQ model was not clearly modified by rapamycin (Figure 7-

283 figure supplement 2C), immunofluorescence revealed a decrease in the number of CD3
284 T cells in Sema4AKO epidermis by rapamycin (Figure 7-figure supplement 2D). In the
285 naive states, mTORC1 primarily regulates keratinocyte proliferation, whereas mTORC2
286 mainly involved in the keratinocyte differentiation through Sema4A-related signaling
287 pathways. Conversely, in the psoriatic dermatitis state, rapamycin downregulated both
288 keratinocyte differentiation and proliferation markers. The observed similarities in *Il17a*
289 expression following treatment with rapamycin and JR-AB2-011, regardless of
290 additional IMQ treatment, suggest that *Il17a* production is not significantly dependent
291 on Sema4A-related mTOR signaling.

292

293 **DISCUSSION**

294 Recent studies have highlighted the significance of IL-17A-producing T_{RM} in
295 psoriatic NL (Cheuk et al., 2014; Gallais Séréal et al., 2018; Vo et al., 2019; Vu,
296 Koguchi-Yoshioka, & Watanabe, 2021). This condition is also characterized by
297 epidermal thickening with elevated CCL20 expression (Gallais Séréal et al., 2019) and
298 a distinct cytokeratin expression pattern, marked by increased levels of Krt5, Krt14, and
299 Krt16 (Tsoi et al., 2019) (Figure 5C). Here, we identified that murine Sema4A
300 deficiency could induce these features of psoriatic NL.

301 Sema4A expression in epidermis, but not in dermis, was diminished in
302 psoriatic L and NL compared to Ctl. While Sema4A expression on blood immune cells
303 was upregulated in psoriasis, its serum levels were comparable between Ctl and
304 psoriasis. Despite the reported involvement of increased Sema4A expression on immune
305 cells in the pathogenesis of multiple sclerosis (Koda et al., 2020; Nakatsuji et al., 2012),
306 our results suggest that the diminished expression of Sema4A in skin-conducting cells
307 plays a more prominent role in the pathogenesis of psoriasis than its increased
308 expression on immune cells.

309 In our murine model, regardless of imiquimod application, IL-17A-producing
310 T cells were increased in Sema4AKO skin although their frequency was comparable in

311 dLN of WT mice and Sema4AKO mice. Additionally, the potential for *in vitro* T17
312 differentiation did not differ between T cells from WT mice and Sema4AKO mice.
313 These findings suggest that the absence of Sema4A in the skin microenvironment plays
314 a crucial role in the localized upregulation of IL-17A-producing T cells in Sema4AKO
315 mice.

316 It is well-documented that upregulated mTORC1 signaling promotes the
317 pathogenesis of psoriasis (Buerger, 2018; Karagianni, Pavlidis, Malakou, Piperi, &
318 Papadavid, 2022; Ruf, Andreoli, Itin, Pluschke, & Schmid, 2014), and that rapamycin
319 can partially ameliorate the disease activity in psoriatic subjects and murine models
320 (Bürger et al., 2017; Gao & Si, 2018; Reitamo et al., 2001). Our results using
321 Sema4AKO mice revealed that inhibition of mTORC1 leads to the downregulation of
322 *Krt16*, and inhibition of mTORC2 leads to the downregulation of undifferentiated
323 keratinocytes, while the Sema4AKO epidermal thickening and the upregulated IL-17A
324 signaling are not reversed by mTOR blockade in the naïve state. It is plausible that the
325 downregulation of Sema4A can lead to the upregulation of mTORC1 and mTORC2
326 signaling in keratinocytes, and the augmented signaling leads to the psoriatic profile of
327 proliferation and differentiation of keratinocytes, which is part of the psoriatic NL
328 disposition.

329 This study has limitations. Sema4A expression in skin cells other than
330 keratinocytes was not thoroughly investigated. However, since single-cell RNA-
331 sequencing has shown that Sema4A is predominantly expressed in keratinocytes,
332 dendritic cells, and macrophages, with a notable reduction in keratinocytes in psoriasis,
333 we infer that keratinocytes are the primary cells responsible for the psoriatic features
334 resulting from Sema4A downregulation. We were not able to determine whether
335 Sema4A functions as a ligand or a receptor in epidermis (Ito & Kumanogoh, 2016;
336 Kumanogoh et al., 2002; Lu et al., 2018; Sun et al., 2017) in this study, either. We were
337 not able to reveal how Sema4A expression is regulated. Although we showed that
338 downregulation of Sema4A is related to the abnormal cytokeratin expression observed
339 in psoriasis, we could not determine the relationships between Sema4A expression and
340 the essential molecules upregulated in psoriatic keratinocytes. While both mTORC1 and
341 mTORC2 signals are upregulated in Sema4AKO epidermis, we were not able to
342 confirm mTORC2 signaling from human skin due to technical limitation and sample
343 limitation, while the results from augmented mTORC2 signal in Sema4AKO mice and
344 the normalization of *Krt5* and *Krt14* by mTORC2 inhibitor imply the involvement of
345 mTORC2 signal in psoriatic epidermis. The role of Sema4A other than mTOR signaling,
346 which may be involved in the regulation of T17 induction in skin, is not discussed,

347 either. These limitations should be overcome in the near future.

348 In summary, epidermal Sema4A downregulation can reflect the psoriatic non-

349 lesional features. Thus, targeting the downregulated Sema4A and upregulated mTOR

350 signaling in psoriatic epidermis can be a promising strategy for psoriasis therapy and

351 modification of psoriatic diathesis in NL for the prevention of disease development.

352

353 **MATERIALS AND METHODS**

354 **Human sample collection**

355 Psoriatic L and NL skin specimens were acquired from 17 psoriasis patients.

356 Ctl specimens were obtained from 19 subjects who underwent tumor resection or

357 reconstructive surgery. For epidermal-dermal separation, specimens were incubated

358 overnight at 4°C with 2.5 mg/mL dispase II (Wako, Osaka, Japan) in IMDM (Wako).

359 Blood samples were collected from 73 psoriasis and 33 Ctl. In addition to ELISA

360 (Nakatsuji et al., 2012), peripheral blood mononuclear cells were isolated using Ficoll-

361 Paque PLUS density gradient media (Cytiva, Tokyo, Japan). Patient details are provided

362 in Supplemental Table 1.

363

364 **Mice**

365 C57BL/6J WT mice were procured from CLEA Japan (Tokyo, Japan).

366 Sema4AKO mice with C57BL/6J background were generated as previously described

367 (Kumanogoh et al., 2005). We examined female mice in order to reduce the result

368 variation. Neonatal mice and female mice aged 8 to 12 weeks, maintained under

369 specific pathogen-free conditions, were used.

370 To develop psoriasis-like dermatitis, 10 mg of 5% imiquimod cream (Mochida,

371 Tokyo, Japan) was applied to both ears for 4 consecutive days. To induce IL-23-
372 mediated psoriasis-like dermatitis, 20 μ l of phosphate-buffered saline containing 500 ng
373 of recombinant mouse IL-23 (BioLegend, San Diego, CA) was injected intradermally
374 into both ears of anesthetized mice using a 29-gauge needle for 4 consecutive days. Ear
375 thickness was measured using a thickness gauge (Peacock, Tokyo, Japan).

376 For bone marrow reconstitution, 2×10^5 bone marrow cells obtained from the
377 indicated strains were intravenously transferred to recipient mice that had received a
378 single 10 Gy irradiation. The reconstituted mice were subjected to the experiments in 8
379 weeks.

380 In the specified experiments, skin specimens were separated into epidermis and
381 dermis by 5 mg/mL dispase (Wako) in IMDM for 30 minutes at 37°C.

382 Transepidermal water loss measurements were performed on the back skin of
383 mice at week 8 using a Tewameter (Courage and Khazaka Electronic GmbH, Cologne,
384 Germany), according to the manufacturer's instructions.

385

386 **Immunofluorescence and immunohistochemistry**

387 Specimens were fixed in 4% paraformaldehyde phosphate buffer solution
388 (Wako), embedded in paraffin, and sliced into 3- μ m thickness on glass slides. After

389 deparaffinization and rehydration, antigen retrieval was performed using citrate buffer

390 (pH 6.0, Nacalai tesque, Kyoto, Japan) or TE buffer (pH 9.0, Nacalai tesque).

391 For immunohistochemistry, samples were incubated with 3% H₂O₂ (Wako) for

392 5 minutes. After blocking (Agilent, Santa Clara, CA), the specimens were incubated

393 with the indicated primary antibodies under specified conditions (Supplemental Table 2).

394 The specimens were applied with the Dako REAL EnVision Detection System,

395 Peroxidase/DAB, Rabbit/Mouse, HRP kit (Agilent) and counterstained with

396 hematoxylin (Wako). For immunofluorescence, the blocked specimens were incubated

397 with the indicated primary antibodies followed by the secondary antibodies (Table E4).

398 Mounting medium with DAPI (Vector Laboratories, Burlingame, CA) was used. Slides

399 were observed using a fluorescence microscope (BZ-X700, Keyence, Osaka, Japan).

400 The staining intensity was measured using Fiji software (ImageJ, National Institutes of

401 Health, Bethesda, MD) over lengths of 200 µm in human samples and 100 µm in murine

402 samples. This measurement was taken from five areas of each specimen, and the

403 average score is presented. The average thickness of epidermis and dermis from 10

404 spots is presented. The number of epidermal cells positive for the indicated cytokeratins

405 was counted per 100 µm width, with the average number from 5 areas being presented.

406 Additionally, the numbers of CD3-positive cells in murine ears were counted across 10

407 fields of 400 μ m width, with the total sum being presented.

408

409 **Quantitative reverse transcription polymerase chain reaction (qRT-PCR)**

410 Total RNA was extracted from homogenized skin tissue using Direct-zol RNA

411 MiniPrep Kit (ZYMO Research, Irvine, CA). cDNA was synthesized by High-Capacity

412 RNA-to-cDNATM Kit (Thermo Fisher Scientific, Waltham, MA). qPCR was performed

413 using TB Green Premix Ex TaqTM II (Takara-bio, Shiga, Japna) on a ViiA 7 Real-Time

414 PCR System (Thermo Fisher Scientific). The primers are listed in Supplemental Table 3.

415 All samples were run in triplicate, and the median CT value was calculated. Relative

416 gene expression levels were normalized to the housekeeping gene *GAPDH* using the

417 $\Delta\Delta$ CT technique.

418

419 **Flow cytometry analysis**

420 Single-cell suspensions from murine skin-dLN and spleen were prepared by

421 grinding, filtering, and lysing red blood cells (BioLegend). Skin specimens were minced

422 and digested with 3 mg/mL collagenase type III (Worthington Biochemical Corporation,

423 Lakewood, NJ) in RPMI 1640 medium (Wako) at 37°C for 10 minutes for epidermis,

424 and 30 minutes for dermis or whole skin. Cells were surface-stained with directly

425 conjugated monoclonal antibodies (Supplemental Table 4). Dead cells were identified
426 using LIVE/DEADTM Fixable Dead Cell Stain Kit (Thermo Fisher Scientific). To
427 evaluate cytokine production, cells were stimulated with Phorbol 12-Myristate 13-
428 Acetate (PMA; 50 ng/mL, Wako) and ionomycin (1000 ng/mL, Wako), plus BD
429 GolgiPlugTM (BD Biosciences, San Jose, CA) for 4 hours before surface staining.
430 Fixation, permeabilization, and intracellular cytokine staining were performed using BD
431 Cytofix/CytopermTM Fixation/Permeabilization Kit (BD Biosciences) according to the
432 manufacturer's protocol. In specified experiments, the numbers of each cell subset per
433 ear were estimated using CountBrightTM Absolute Counting Beads (Thermo Fisher
434 Scientific). Sample analysis was conducted using BD FACSCanto II (BD Biosciences),
435 and data were analyzed with Kaluza software (Beckman Coulter, Brea, CA).

436

437 ***In vitro* Th17 differentiation**

438 Murine splenic T cells were isolated using Pan T Cell Isolation Kit II (Miltenyi
439 Biotec, Bergisch Gladbach, Germany). Two hundred thousand T cells per well were
440 cultured in 96-well plates in the presence of T Cell Activation/Expansion Kit (Miltenyi
441 Biotec) for 2 weeks. The medium was supplemented twice per week with the following
442 recombinant cytokines: mouse recombinant IL-6 (20 ng/mL), IL-1 β (20 ng/mL), and

443 IL-23 (40 ng/mL) for the IL-23 dependent Th17 cell condition; IL-6 (20 ng/mL) and
444 TGF β 1 (3 ng/mL) for the IL-23 independent Th17 cell condition; or IL-23
445 (40 ng/mL) for the IL-23 only Th17 cell condition. The cytokines listed were
446 purchased from BioLegend (Supplemental Table 5). Afterward, the cultured cells were
447 processed for flow cytometry analysis.

448

449 **Western blotting**

450 Murine epidermis was lysed using RIPA buffer (Wako) containing
451 phosphatase-and protease-inhibitor cocktail (Nacalai tesque). Protein lysates were
452 separated by 10% SuperSepTM Ace (Wako), transferred onto polyvinylidene difluoride
453 membranes (0.45 μ m, Merck, Darmstadt, Germany) by Trans-Blot Turbo Transfer
454 System (Bio-Rad, Hercules, CA). The membrane was blocked with 5% bovine serum
455 albumin and subjected to immunoblotting targeting the indicated proteins overnight 4°C,
456 followed by the application of HRP-conjugated secondary antibody for one hour at
457 room temperature (Supplemental Table 2). WB stripping solution (Nacalai tesque) was
458 used to remove the antibodies for further evaluation.

459

460 **Inhibition of mTOR**

461 Rapamycin (4 mg/kg, Sanxin Chempharma, Hebei, China), JR-AB2-011 (400
462 μg/kg, MedChemExpress, Monmouth Junction, NJ) and vehicle were applied
463 intraperitoneally to mice once daily for 14 consecutive days. Rapamycin and JR-AB2-
464 011 were dissolved in 100% DMSO and diluted with 40% Polyethylene Glycol 300
465 (Wako), 5% Tween-80 (Sigma-Aldrich, St. Louis, MO) and 45% saline in sequence. For
466 topical application, 0.2% rapamycin gel and vehicle gel were prepared by the
467 pharmaceutical department as previously described (Wataya-Kaneda et al., 2017).
468 Rapamycin gel was applied to the left ear, and vehicle gel to the right ear (10mg/ear) of
469 Sema4AKO, once daily for 14 consecutive days. To analyze the preventive
470 effectiveness of rapamycin in an IMQ-induced murine model of psoriatic dermatitis,
471 Sema4AKO mice were administered either vehicle or rapamycin intraperitoneally from
472 Day 0 to Day 17, and IMQ was topically applied to both ears for 4 days starting on Day
473 14. Then, on Day 18, ears were collected for further analysis.
474

475 **Data processing of single-cell RNA-sequencing and bulk RNA-sequencing**

476 The raw count matrix data from the previously reported single-cell RNA-
477 sequencing data from GSE220116 (Kim et al., 2023) were imported into Scanpy (1.9.6)
478 using Python for further analyses. For each sample, cells and genes meeting the

479 following criteria were excluded: cells expressing over 200 genes (sc.pp.filter_cells),
480 cells with a high proportion of mitochondrial genes (> 5%), and genes expressed in
481 fewer than 3 cells (sc.pp.filter_genes). Counts were normalized using
482 sc.pp.normalize_per_cell, logarithmized (sc.pp.log1p), and scaled (sc.pp.scale). Highly
483 variable genes were selected using sc.pp.filter_genes_dispersion with the options
484 min_mean = 0.0125, max_mean = 2.5, and min_disp = 0.7.

485 Principal Component analysis was conducted with sc.pp.pca, selecting the 1st
486 to 50th Principal Components for embedding and clustering. Neighbors were calculated
487 with batch effect correction by BBKNN (Polański et al., 2020). Embedding was
488 performed by sc.tl.umap, and cells were clustered using sc.tl.leiden. Some cells were
489 further subclassified in a similar manner. The data was integrated into an h5ad file,
490 which can be visualized in Cellxgene VIP (K. Li et al., 2022). We then performed
491 differential analysis between two groups of cells to identify differentially expressed genes
492 using Welch's t-test. Multiple comparisons were controlled using the Benjamini-
493 Hochberg procedure, with the false discovery rate set at 0.05 and significance defined as
494 $padj < 0.05$.

495 Bulk RNA-sequencing data from GSE121212 (Tsoi et al., 2019) were re-
496 analyzed using RaNAseq (Prieto & Barrios, 2019) for differential expression in Ctl

497 versus psoriatic NL. Our analysis included normalization, differential gene expression
498 (defining significance as $p_{adj} < 0.05$), and focused on Gene Ontology biological
499 process analysis. The gene expression was calculated with the transcripts per million
500 values.

501

502 **Statistical analysis**

503 GraphPad Prism 10 software (GraphPad Software, La Jolla, CA) was used for
504 all statistical analyses except for RNA-sequencing. Mann-Whitney test was used for
505 two-group comparisons, while Kruskal-Wallis test followed by Dunn's multiple
506 comparisons test was applied for comparison among three or more groups. Statistical
507 significance was defined as $p < 0.05$ (*), $p < 0.01$ (**), and $p < 0.001$ (***). In the
508 analysis of RNA-sequencing data, statistical significance was defined as $p_{adj} < 0.01$
509 (**), and $p_{adj} < 0.001$ (***).

510

511 **Study approval**

512 All experiments involving human specimens were in accordance with the
513 Declaration of Helsinki and were approved by the Institutional Review Board in Osaka
514 University Hospital (20158-6). Written informed consent was obtained from all

515 participants. All murine experiments were approved by Osaka University Animal
516 Experiment Committee (J007591-013) and all procedures were conducted in
517 compliance with the Guidelines for Animal Experimentation established by Japanese
518 Association for Laboratory Animal Science.

519

520 **Data availability**

521 The single-cell RNA-sequencing datasets generated by Kim et al. (Kim et al.,
522 2023) and Tsoi et al. (Tsoi et al., 2019) used in this study are available in the NCBI
523 Gene Expression Omnibus under accession codes GSE220116 and GSE121212,
524 respectively. Values for all data points in graphs are reported in the Source data.

525

526 **Acknowledgments**

527 We express our gratitude to all patients for their participation in this study.
528

529 **REFERENCES**

530 Arasa, J., Terencio, M. C., Andrés, R. M., Marín-Castejón, A., Valcuende-Cavero, F.,
531 Payá, M., & Montesinos, M. C. (2019). Defective Induction of COX-2 Expression
532 by Psoriatic Fibroblasts Promotes Pro-inflammatory Activation of Macrophages.
533 *Front Immunol*, 10, 536. doi:10.3389/fimmu.2019.00536

534 Asrani, K., Sood, A., Torres, A., Georgess, D., Phatak, P., Kaur, H., . . . Lotan, T.
535 L. (2017). mTORC1 loss impairs epidermal adhesion via TGF-beta/Rho kinase
536 activation. *J Clin Invest*, 127(11), 4001-4017. doi:10.1172/JCI92893

537 Bürger, C., Shirsath, N., Lang, V., Diehl, S., Kaufmann, R., Weigert, A., . . . Wolf,
538 P. (2017). Blocking mTOR Signalling with Rapamycin Ameliorates Imiquimod-
539 induced Psoriasis in Mice. *Acta Derm Venereol*, 97(9), 1087-1094.
540 doi:10.2340/00015555-2724

541 Buerger, C. (2018). Epidermal mTORC1 Signaling Contributes to the Pathogenesis of
542 Psoriasis and Could Serve as a Therapeutic Target. *Front Immunol*, 9, 2786.
543 doi:10.3389/fimmu.2018.02786

544 Carvalheiro, T., Affandi, A. J., Malvar-Fernández, B., Dullemond, I., Cossu, M.,
545 Ottria, A., . . . García, S. (2019). Induction of Inflammation and Fibrosis
546 by Semaphorin 4A in Systemic Sclerosis. *Arthritis Rheumatol*, 71(10), 1711-
547 1722. doi:10.1002/art.40915

548 Cavalcanti, C. A. J., Germoglio, V., de Azevêdo Silva, J., Glesse, N., Vianna, P.,
549 Cechim, G., . . . Sandrin-Garcia, P. (2020). T-cell specific upregulation of
550 Sema4A as risk factor for autoimmunity in systemic lupus erythematosus and
551 rheumatoid arthritis. *Autoimmunity*, 53(2), 65-70.
552 doi:10.1080/08916934.2019.1704273

553 Cheuk, S., Wikén, M., Blomqvist, L., Nylén, S., Talme, T., Ståhle, M., & Eidsmo, L.
554 (2014). Epidermal Th22 and Tc17 cells form a localized disease memory in
555 clinically healed psoriasis. *J Immunol*, 192(7), 3111-3120.
556 doi:10.4049/jimmunol.1302313

557 Delgoffe, G. M., Woo, S. R., Turnis, M. E., Gravano, D. M., Guy, C., Overacre, A.
558 E., . . . Vignali, D. A. (2013). Stability and function of regulatory T cells
559 is maintained by a neuropilin-1-semaphorin-4a axis. *Nature*, 501(7466), 252-
560 256. doi:10.1038/nature12428

561 Ding, X., Bloch, W., Iden, S., Rüegg, M. A., Hall, M. N., Leptin, M., . . . Eming, S.
562 A. (2016). mTORC1 and mTORC2 regulate skin morphogenesis and epidermal
563 barrier formation. *Nat Commun*, 7, 13226. doi:10.1038/ncomms13226

564 Ding, X., Willenborg, S., Bloch, W., Wickström, S. A., Wagle, P., Brodesser, S., . . .
565 Eming, S. A. (2020). Epidermal mammalian target of rapamycin complex 2
566 controls lipid synthesis and filaggrin processing in epidermal barrier
567 formation. *J Allergy Clin Immunol*, 145(1), 283–300.e288.
568 doi:10.1016/j.jaci.2019.07.033

569 Fitch, E., Harper, E., Skorcheva, I., Kurtz, S. E., & Blauvelt, A. (2007).
570 Pathophysiology of psoriasis: recent advances on IL-23 and Th17 cytokines.
571 *Curr Rheumatol Rep*, 9(6), 461–467. doi:10.1007/s11926-007-0075-1

572 Francis, L., McCluskey, D., Ganier, C., Jiang, T., Du-Harpur, X., Gabriel, J., . . .
573 Mahil, S. K. (2024). Single-cell analysis of psoriasis resolution
574 demonstrates an inflammatory fibroblast state targeted by IL-23 blockade. *Nat
575 Commun*, 15(1), 913. doi:10.1038/s41467-024-44994-w

576 Gallais Sérézal, I., Classon, C., Cheuk, S., Barrientos-Somarribas, M., Wadman, E.,
577 Martini, E., . . . Eidsmo, L. (2018). Resident T Cells in Resolved Psoriasis
578 Steer Tissue Responses that Stratify Clinical Outcome. *J Invest Dermatol*,
579 138(8), 1754–1763. doi:10.1016/j.jid.2018.02.030

580 Gallais Sérézal, I., Hoffer, E., Ignatov, B., Martini, E., Zitti, B., Ehrström, M., &
581 Eidsmo, L. (2019). A skewed pool of resident T cells triggers psoriasis-
582 associated tissue responses in never-lesional skin from patients with
583 psoriasis. *J Allergy Clin Immunol*, 143(4), 1444–1454.
584 doi:10.1016/j.jaci.2018.08.048

585 Gao, M., & Si, X. (2018). Rapamycin ameliorates psoriasis by regulating the
586 expression and methylation levels of tropomyosin via ERK1/2 and mTOR pathways
587 in vitro and in vivo. *Exp Dermatol*, 27(10), 1112–1119. doi:10.1111/exd.13745

588 Garcia, S. (2019). Role of Semaphorins in Immunopathologies and Rheumatic Diseases.
589 *Int J Mol Sci*, 20(2). doi:10.3390/ijms20020374

590 Harris, R. G., Herzog, E. L., Bruscia, E. M., Grove, J. E., Van Arnam, J. S., &
591 Krause, D. S. (2004). Lack of a fusion requirement for development of bone
592 marrow-derived epithelia. *Science*, 305(5680), 90–93.
593 doi:10.1126/science.1098925

594 Hawkes, J. E., Yan, B. Y., Chan, T. C., & Krueger, J. G. (2018). Discovery of the IL-
595 23/IL-17 Signaling Pathway and the Treatment of Psoriasis. *J Immunol*, 201(6),
596 1605–1613. doi:10.4049/jimmunol.1800013

597 He, R., Tan, X., Xiang, J., Zhu, J., Jiang, Y., Liu, W., . . . Xing, Y. (2023).
598 Semaphorin 4A as a Potential Biomarker for Diagnosis of Systemic Lupus
599 Erythematosus. *Immunol Invest*, 52(1), 104–116.

600 doi:10.1080/08820139.2022.2134024

601 Heidenreich, R., Röcken, M., & Ghoreschi, K. (2009). Angiogenesis drives psoriasis
602 pathogenesis. *Int J Exp Pathol*, 90(3), 232–248. doi:10.1111/j.1365-
603 2613.2009.00669.x

604 Hui, D. H. F., Tam, K. J., Jiao, I. Z. F., & Ong, C. J. (2019). Semaphorin 3C as a
605 Therapeutic Target in Prostate and Other Cancers. *Int J Mol Sci*, 20(3).
606 doi:10.3390/ijms20030774

607 Iragavarapu-Charyulu, V., Wojcikiewicz, E., & Urdaneta, A. (2020). Semaphorins in
608 Angiogenesis and Autoimmune Diseases: Therapeutic Targets? *Front Immunol*, 11,
609 346. doi:10.3389/fimmu.2020.00346

610 Ito, D., & Kumanogoh, A. (2016). The role of Sema4A in angiogenesis, immune responses,
611 carcinogenesis, and retinal systems. *Cell Adh Migr*, 10(6), 692–699.
612 doi:10.1080/19336918.2016.1215785

613 Iyer, A. S., & Chapoval, S. P. (2018). Neuroimmune Semaphorin 4A in Cancer
614 Angiogenesis and Inflammation: A Promoter or a Suppressor? *Int J Mol Sci*,
615 20(1). doi:10.3390/ijms20010124

616 Jiang, J., Zhang, F., Wan, Y., Fang, K., Yan, Z. D., Ren, X. L., & Zhang, R. (2022).
617 Semaphorins as Potential Immune Therapeutic Targets for Cancer. *Front Oncol*,
618 12, 793805. doi:10.3389/fonc.2022.793805

619 Kanth, S. M., Gairhe, S., & Torabi-Parizi, P. (2021). The Role of Semaphorins and
620 Their Receptors in Innate Immune Responses and Clinical Diseases of Acute
621 Inflammation. *Front Immunol*, 12, 672441. doi:10.3389/fimmu.2021.672441

622 Karagianni, F., Pavlidis, A., Malakou, L. S., Piperi, C., & Papadavid, E. (2022).
623 Predominant Role of mTOR Signaling in Skin Diseases with Therapeutic
624 Potential. *Int J Mol Sci*, 23(3). doi:10.3390/ijms23031693

625 Kim, J., & Krueger, J. G. (2017). Highly Effective New Treatments for Psoriasis
626 Target the IL-23/Type 17 T Cell Autoimmune Axis. *Annu Rev Med*, 68, 255–269.
627 doi:10.1146/annurev-med-042915-103905

628 Kim, J., Lee, J., Li, X., Lee, H. S., Kim, K., Chaparala, V., . . . Krueger, J. G.
629 (2023). Single-cell transcriptomics suggest distinct upstream drivers of IL-
630 17A/F in hidradenitis versus psoriasis. *J Allergy Clin Immunol*, 152(3), 656–
631 666. doi:10.1016/j.jaci.2023.05.012

632 Koda, T., Namba, A., Kinoshita, M., Nakatsuji, Y., Sugimoto, T., Sakakibara, K., . . .
633 Okuno, T. (2020). Sema4A is implicated in the acceleration of Th17 cell-
634 mediated neuroinflammation in the effector phase. *J Neuroinflammation*, 17(1),
635 82. doi:10.1186/s12974-020-01757-w

636 Kolodkin, A. L., Matthes, D. J., & Goodman, C. S. (1993). The semaphorin genes encode
637 a family of transmembrane and secreted growth cone guidance molecules. *Ce11*,
638 75(7), 1389–1399. doi:10.1016/0092-8674(93)90625-z

639 Krueger, G. G., Langley, R. G., Leonardi, C., Yeilding, N., Guzzo, C., Wang, Y., . . .
640 Lebwohl, M. (2007). A human interleukin-12/23 monoclonal antibody for the
641 treatment of psoriasis. *N Engl J Med*, 356(6), 580–592.
642 doi:10.1056/NEJMoa062382

643 Kumanogoh, A., Marukawa, S., Suzuki, K., Takegahara, N., Watanabe, C., Ch'ng,
644 E., . . . Kikutani, H. (2002). Class IV semaphorin Sema4A enhances T-cell
645 activation and interacts with Tim-2. *Nature*, 419(6907), 629–633.
646 doi:10.1038/nature01037

647 Kumanogoh, A., Shikina, T., Suzuki, K., Uematsu, S., Yukawa, K., Kashiwamura,
648 S., . . . Kikutani, H. (2005). Nonredundant roles of Sema4A in the immune
649 system: defective T cell priming and Th1/Th2 regulation in Sema4A-deficient
650 mice. *Immunity*, 22(3), 305–316. doi:10.1016/j.immuni.2005.01.014

651 Lee, E., Trepicchio, W. L., Oestreicher, J. L., Pittman, D., Wang, F., Chamian,
652 F., . . . Krueger, J. G. (2004). Increased expression of interleukin 23 p19
653 and p40 in lesional skin of patients with psoriasis vulgaris. *J Exp Med*,
654 199(1), 125–130. doi:10.1084/jem.20030451

655 Li, K., Ouyang, Z., Chen, Y., Gagnon, J., Lin, D., Mingueneau, M., . . . Zhang, B.
656 (2022). Cellxgene VIP unleashes full power of interactive visualization and
657 integrative analysis of scRNA-seq, spatial transcriptomics, and multiome data.
658 *bioRxiv*, 2020.2008.2028.270652. doi:10.1101/2020.08.28.270652

659 Li, Q., Shao, S., Zhu, Z., Chen, J., Hao, J., Bai, Y., . . . Wang, G. (2023). An
660 IGFBP7hi endothelial cell subset drives T cell extravasation in psoriasis via
661 endothelial glycocalyx degradation. *J Clin Invest*, 133(9).
662 doi:10.1172/jci160451

663 Liu, X., Sun, Y., Tian, W., Wang, F., Lv, X., Wang, M., . . . Han, M. (2018). Sema4A
664 Responds to Hypoxia and Is Involved in Breast Cancer Progression. *Biol Pharm
665 Bull*, 41(12), 1791–1796. doi:10.1248/bpb.b18-00423

666 Lowes, M. A., Russell, C. B., Martin, D. A., Towne, J. E., & Krueger, J. G. (2013).
667 The IL-23/T17 pathogenic axis in psoriasis is amplified by keratinocyte
668 responses. *Trends Immunol*, 34(4), 174–181. doi:10.1016/j.it.2012.11.005

669 Lu, N., Li, Y., Zhang, Z., Xing, J., Sun, Y., Yao, S., & Chen, L. (2018). Human
670 Semaphorin-4A drives Th2 responses by binding to receptor ILT-4. *Nat Commun*,
671 9(1), 742. doi:10.1038/s41467-018-03128-9

672 Ma, F., Plazyo, O., Billi, A. C., Tsoi, L. C., Xing, X., Wasikowski, R., . . .
673 Gudjonsson, J. E. (2023). Single cell and spatial sequencing define processes
674 by which keratinocytes and fibroblasts amplify inflammatory responses in
675 psoriasis. *Nat Commun*, 14(1), 3455. doi:10.1038/s41467-023-39020-4

676 Maeda, Y., Tsuda, T., Takeda, Y., Koyama, S., Hayama, Y., Nojima, S., . . . Kumanogoh,
677 A. (2019). SEMA4A promotes eosinophil survival and contributes to eosinophil-
678 mediated allergic diseases. *Allergol Int*, 68(2), 274–276.
679 doi:10.1016/j.alit.2018.10.001

680 Naito, M., & Kumanogoh, A. (2023). The role of semaphorins in allergic diseases.
681 *Allergol Int*. doi:10.1016/j.alit.2023.08.006

682 Naito, Y., Koyama, S., Masuhiro, K., Hirai, T., Uenami, T., Inoue, T., . . .
683 Kumanogoh, A. (2023). Tumor-derived semaphorin 4A improves PD-1-blocking
684 antibody efficacy by enhancing CD8(+) T cell cytotoxicity and proliferation.
685 *Sci Adv*, 9(20), eade0718. doi:10.1126/sciadv.ade0718

686 Nakatsuji, Y., Okuno, T., Moriya, M., Sugimoto, T., Kinoshita, M., Takamatsu,
687 H., . . . Kumanogoh, A. (2012). Elevation of Sema4A implicates Th cell
688 skewing and the efficacy of IFN- β therapy in multiple sclerosis. *J Immunol*,
689 188(10), 4858–4865. doi:10.4049/jimmunol.1102023

690 Nakayama, H., Kusumoto, C., Nakahara, M., Fujiwara, A., & Higashiyama, S. (2018).
691 Semaphorin 3F and Netrin-1: The Novel Function as a Regulator of Tumor
692 Microenvironment. *Front Physiol*, 9, 1662. doi:10.3389/fphys.2018.01662

693 Ni, X., & Lai, Y. (2020). Keratinocyte: A trigger or an executor of psoriasis? *J*
694 *Leukoc Biol*, 108(2), 485–491. doi:10.1002/jlb.5mr0120-439r

695 Nojima, S., Toyofuku, T., Kamao, H., Ishigami, C., Kaneko, J., Okuno, T., . . .
696 Kumanogoh, A. (2013). A point mutation in Semaphorin 4A associates with
697 defective endosomal sorting and causes retinal degeneration. *Nat Commun*, 4,
698 1406. doi:10.1038/ncomms2420

699 Pan, J. X., Wang, F., & Ye, L. Y. (2016). Doxorubicin-induced epithelial-mesenchymal
700 transition through SEMA 4A in hepatocellular carcinoma. *Biochem Biophys Res*
701 *Commun*, 479(4), 610–614. doi:10.1016/j.bbrc.2016.09.167

702 Pasterkamp, R. J., & Kolodkin, A. L. (2003). Semaphorin junction: making tracks
703 toward neural connectivity. *Curr Opin Neurobiol*, 13(1), 79–89.
704 doi:10.1016/s0959-4388(03)00003-5

705 Polański, K., Young, M. D., Miao, Z., Meyer, K. B., Teichmann, S. A., & Park, J. E.
706 (2020). BBKNN: fast batch alignment of single cell transcriptomes.
707 *Bioinformatics*, 36(3), 964–965. doi:10.1093/bioinformatics/btz625

708 Prieto, C., & Barrios, D. (2019). RaNA-Seq: Interactive RNA-Seq analysis from FASTQ
709 files to functional analysis. *Bioinformatics*.
710 doi:10.1093/bioinformatics/btz854

711 Rajabinejad, M., Asadi, G., Ranjbar, S., Afshar Hezarkhani, L., Salari, F., Gorgin
712 Karaji, A., & Rezaieemanesh, A. (2020). Semaphorin 4A, 4C, and 4D: Function
713 comparison in the autoimmunity, allergy, and cancer. *Gene*, 746, 144637.
714 doi:10.1016/j.gene.2020.144637

715 Reitamo, S., Spuls, P., Sassolas, B., Lahfa, M., Claudy, A., & Griffiths, C. E.
716 (2001). Efficacy of sirolimus (rapamycin) administered concomitantly with a
717 subtherapeutic dose of cyclosporin in the treatment of severe psoriasis: a
718 randomized controlled trial. *Br J Dermatol*, 145(3), 438–445.
719 doi:10.1046/j.1365-2133.2001.04376.x

720 Ruf, M. T., Andreoli, A., Itin, P., Pluschke, G., & Schmid, P. (2014). Ribosomal
721 protein S6 is hyperactivated and differentially phosphorylated in epidermal
722 lesions of patients with psoriasis and atopic dermatitis. *Br J Dermatol*,
723 171(6), 1533–1536. doi:10.1111/bjd.13248

724 Serini, G., Maione, F., Giraudo, E., & Bussolino, F. (2009). Semaphorins and tumor
725 angiogenesis. *Angiogenesis*, 12(2), 187–193. doi:10.1007/s10456-009-9138-4

726 Suga, Y., Nagatomo, I., Kinehara, Y., Koyama, S., Okuzaki, D., Osa, A., . . .
727 Kumanogoh, A. (2021). IL-33 Induces Sema4A Expression in Dendritic Cells and
728 Exerts Antitumor Immunity. *J Immunol*, 207(5), 1456–1467.
729 doi:10.4049/jimmunol.2100076

730 Sun, T., Yang, L., Kaur, H., Pestel, J., Looso, M., Nolte, H., . . . Worzfeld, T.
731 (2017). A reverse signaling pathway downstream of Sema4A controls cell
732 migration via Scrib. *J Cell Biol*, 216(1), 199–215. doi:10.1083/jcb.201602002

733 Tan, Y., Wang, Y., Li, L., Xia, J., Peng, S., & He, Y. (2015). Chemokine-like factor
734 1-derived C-terminal peptides induce the proliferation of dermal
735 microvascular endothelial cells in psoriasis. *PLoS One*, 10(4), e0125073.
736 doi:10.1371/journal.pone.0125073

737 Tsoi, L. C., Rodriguez, E., Degenhardt, F., Baurecht, H., Wehkamp, U., Volks,
738 N., . . . Weidinger, S. (2019). Atopic Dermatitis Is an IL-13-Dominant
739 Disease with Greater Molecular Heterogeneity Compared to Psoriasis. *J Invest
740 Dermatol*, 139(7), 1480–1489. doi:10.1016/j.jid.2018.12.018

741 van der Fits, L., Mourits, S., Voerman, J. S., Kant, M., Boon, L., Laman, J. D., . . .
742 Lubberts, E. (2009). Imiquimod-induced psoriasis-like skin inflammation in
743 mice is mediated via the IL-23/IL-17 axis. *J Immunol*, 182(9), 5836–5845.

744 doi:10.4049/jimmunol.0802999

745 Vo, S., Watanabe, R., Koguchi-Yoshioka, H., Matsumura, Y., Ishitsuka, Y., Nakamura,
746 Y., . . . Fujimoto, M. (2019). CD8 resident memory T cells with interleukin
747 17A-producing potential are accumulated in disease-naïve nonlesional sites of
748 psoriasis possibly in correlation with disease duration. *Br J Dermatol*,
749 181(2), 410–412. doi:10.1111/bjd.17748

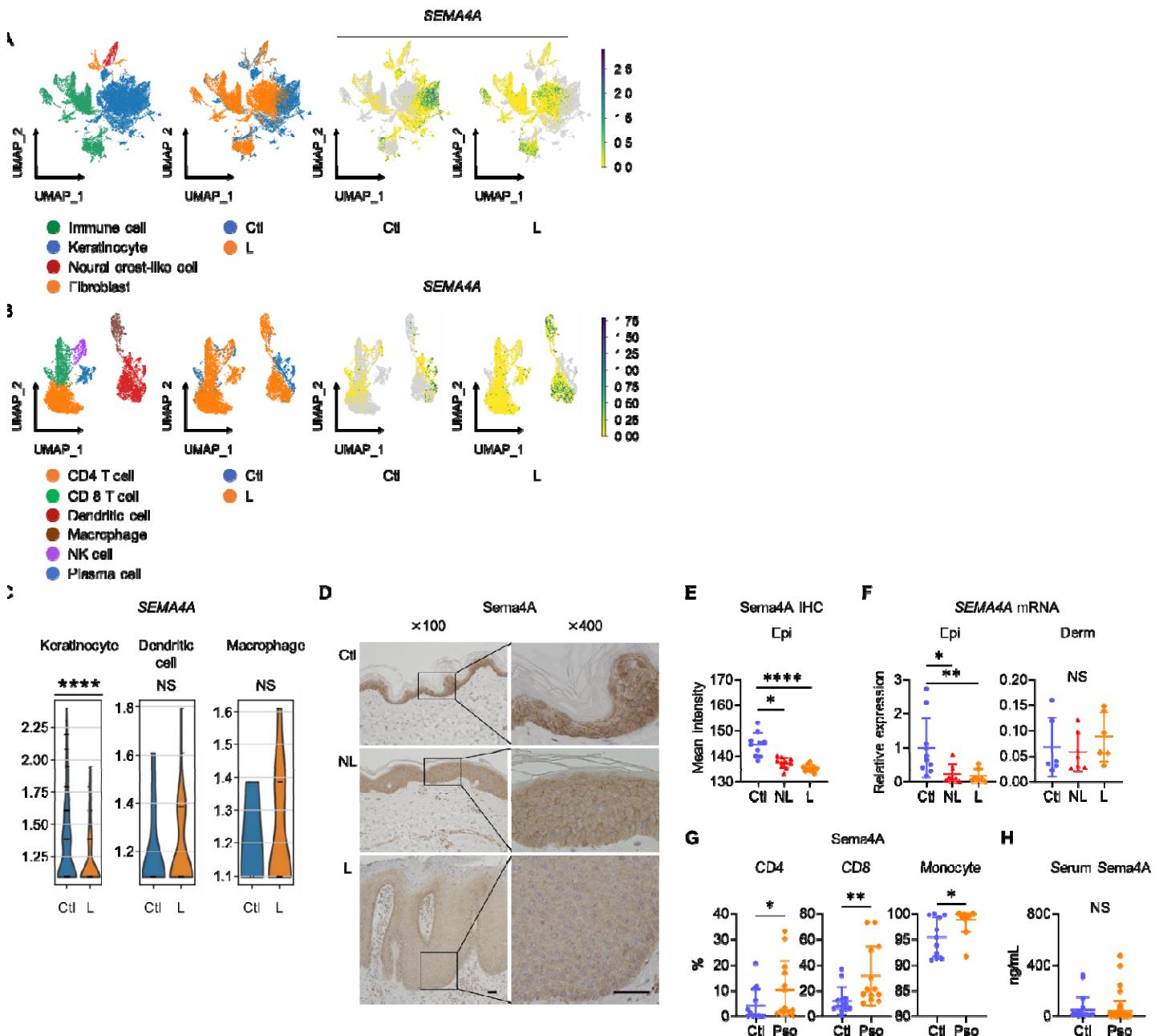
750 Vu, T. T., Koguchi-Yoshioka, H., & Watanabe, R. (2021). Skin-Resident Memory T Cells:
751 Pathogenesis and Implication for the Treatment of Psoriasis. *J Clin Med*,
752 10(17). doi:10.3390/jcm10173822

753 Walter, A., Schäfer, M., Cecconi, V., Matter, C., Urosevic-Maiwald, M., Belloni,
754 B., . . . van den Broek, M. (2013). Aldara activates TLR7-independent immune
755 defence. *Nat Commun*, 4, 1560. doi:10.1038/ncomms2566

Wataya-Kaneda, M., Nakamura, A., Tanaka, M., Hayashi, M., Matsumoto, S., Yamamoto, K., & Katayama, I. (2017). Efficacy and Safety of Topical Sirolimus Therapy for Facial Angiofibromas in the Tuberous Sclerosis Complex : A Randomized Clinical Trial. *JAMA Dermatol*, 153(1), 39-48. doi:10.1001/jamadermatol.2016.3545

761 Wu, Y., Zhao, R. C., & Tredget, E. E. (2010). Concise review: bone marrow-derived
762 stem/progenitor cells in cutaneous repair and regeneration. *Stem Cells*, 28(5),
763 905–915. doi:10.1002/stem.420

764 Zhang, X., Lei, L., Jiang, L., Fu, C., Huang, J., Hu, Y., . . . Zeng, Q. (2023).
765 Characteristics and pathogenesis of Koebner phenomenon. *Exp Dermatol*, 32(4),
766 310–323. doi:10.1111/exd.14709


767 Zhou, X., Chen, Y., Cui, L., Shi, Y., & Guo, C. (2022). Advances in the pathogenesis
768 of psoriasis: from keratinocyte perspective. *Cell Death Dis*, 13(1), 81.
769 doi:10.1038/s41419-022-04523-3

770 Zhu, Z., Chen, J., Lin, Y., Zhang, C., Li, W., Qiao, H., . . . Wang, G. (2020). Aryl
771 Hydrocarbon Receptor in Cutaneous Vascular Endothelial Cells Restricts
772 Psoriasis Development by Negatively Regulating Neutrophil Recruitment. *J
773 Invest Dermatol.*, 140(6), 1233–1243.e1239. doi:10.1016/j.jid.2019.11.022

774

775

776 **Figures**

777

778 **Figure 1: Epidermal Sema4A expression is downregulated in psoriasis.**

779 (A) UMAP plots, generated from single-cell RNA-sequencing data (GSE220116),

780 illustrate cell distributions from control (Ctl) and psoriatic lesion (L) samples ($n = 10$

781 for Ctl, $n = 11$ for L). (B) Subclustering of immune cells. (C) *SEMA4A* expression in

782 keratinocytes, dendritic cells, and macrophages. $****p_{adj} < 0.001$. NS, not significant.

783 Analyzed using Python and cellxgene VIP. (D) Representative immunohistochemistry

784 and magnified views showing Sema4A expression in Ctl, psoriatic non-lesion (NL), and

785 L. Scale bar = 50 μ m. (E) Mean epidermal (Epi) Sema4A intensity in

786 immunohistochemistry ($n = 10$ per group). Each dot represents the average intensity

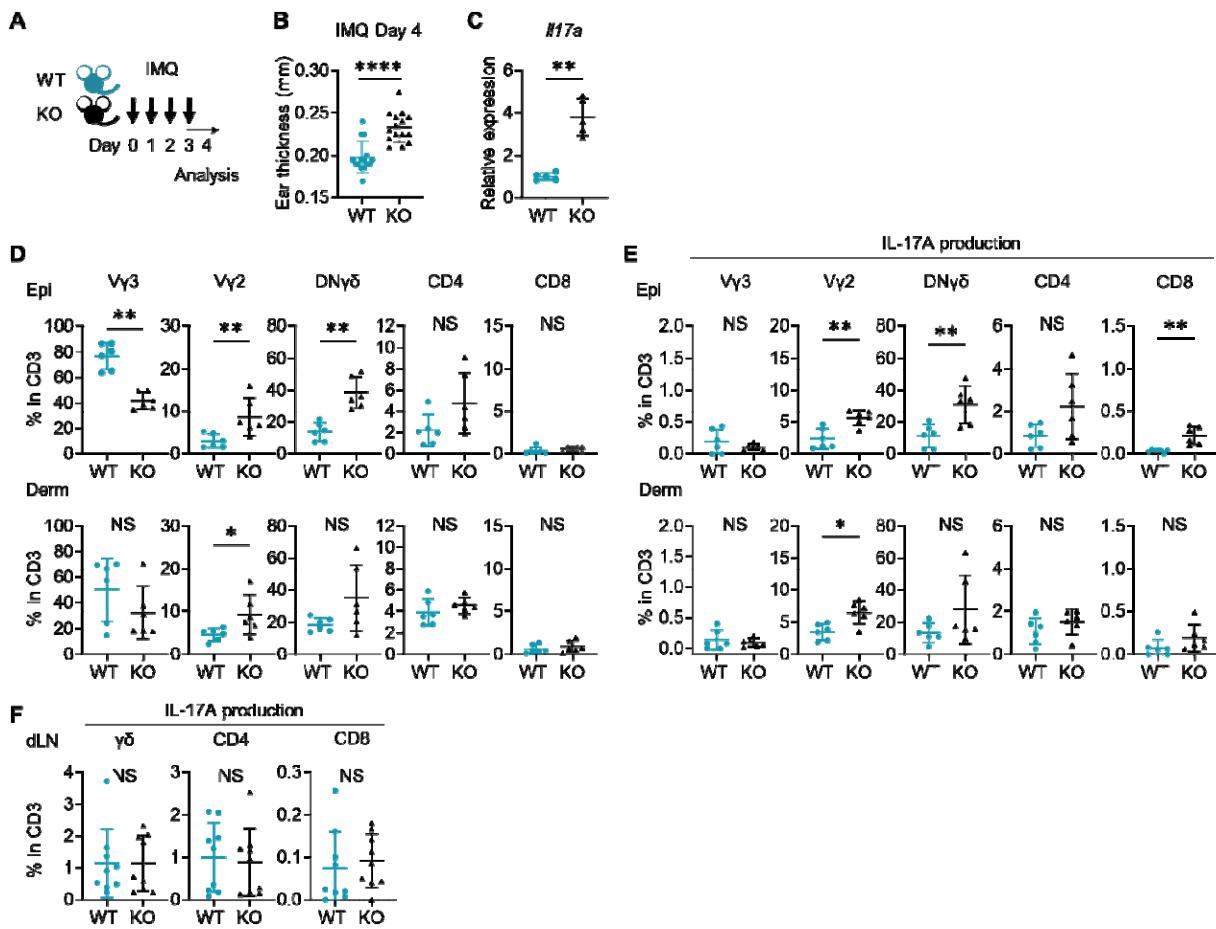
787 from 5 unit areas per sample. (F) Relative *SEMA4A* expression in Epi ($n = 10$ for Ctl, L,

788 $n = 7$ for L and NL) and dermis (Derm, $n = 6$ per group). (G) Proportions of Sema4A-

789 expressing cells in blood CD4 T cells (left), CD8 T cells (middle), and monocytes

790 (right) from Ctl and psoriatic (Pso) patients. ($n = 13$ per group in CD4 and CD8, $n = 11$

791 for Ctl and $n = 13$ for Pso in Monocytes). (H) Serum Sema4A levels in Ctl ($n = 20$) and


792 Pso ($n = 60$). **E to H:** $*p < 0.05$, $**p < 0.01$, $****p < 0.0001$. NS, not significant.

793

794 Figure 1-source data 1

795 Excel file containing quantitative data for Figure 1.

796

797

798 **Figure 2: Imiquimod-induced Psoriasis-like dermatitis is augmented in**

799 **Sema4AKO mice.**

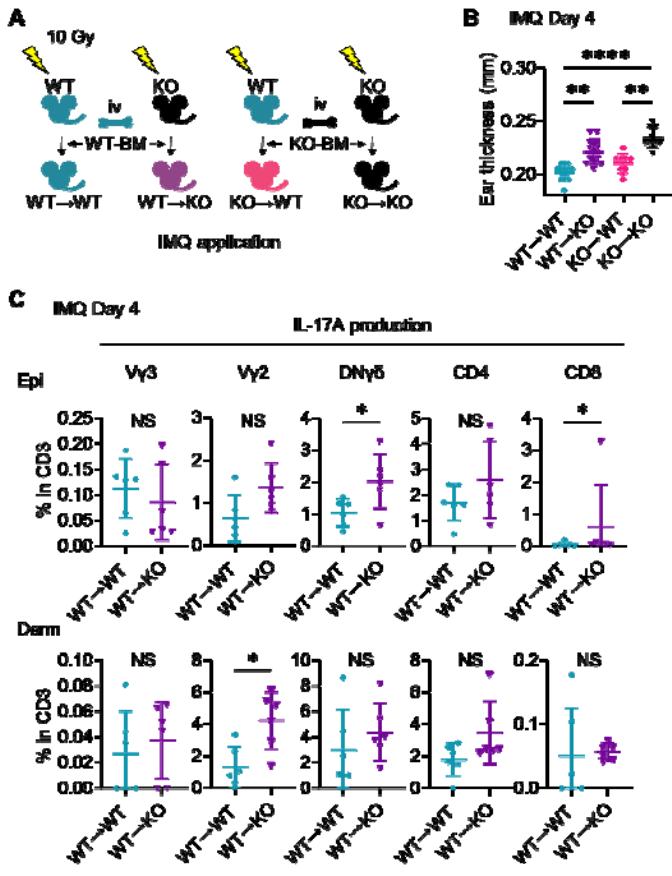
800 (A) Experimental scheme. Wild-type (WT, green) mice and Sema4A knockout (KO,

801 black) mice were treated with 10 mg/ear of 5% Imiquimod (IMQ) for 4 consecutive

802 days. Samples for flow cytometry analysis were collected on Day 4. (B) Ear thickness

803 of WT mice and KO mice on Day 4 ($n = 15$ per group). (C) Relative expression of *Il17a*

804 in epidermis ($n = 5$ per group). (D and E) The percentages of V γ 3, V γ 2, V γ 2-V γ 3- γ δ


805 (DN γ δ), CD4, and CD8 T cells (**D**) and those with IL-17A production (**E**) in CD3
806 fraction in the Epi (top) and Derm (bottom) of WT and KO ears ($n = 6$ per group, each
807 dot represents the average of 4 ear specimens). (**F**) The percentages of IL-17A-
808 producing γ δ , CD4, and CD8 T cells in CD3 fraction in skin-draining lymph nodes
809 (dLN) ($n = 9$ per group). **B-F:** * $p < 0.05$, ** $p < 0.01$, **** $p < 0.0001$. NS, not
810 significant.

811

812 Figure 2-source data 1

813 Excel file containing quantitative data for Figure 2.

814

816 **Figure 3: Sema4A in keratinocytes may play a role in preventing murine psoriasis-**

817 **like dermatitis.**

818 (A) Experimental scheme for establishing BM chimeric mice. (B) IMQ Day 4 ear

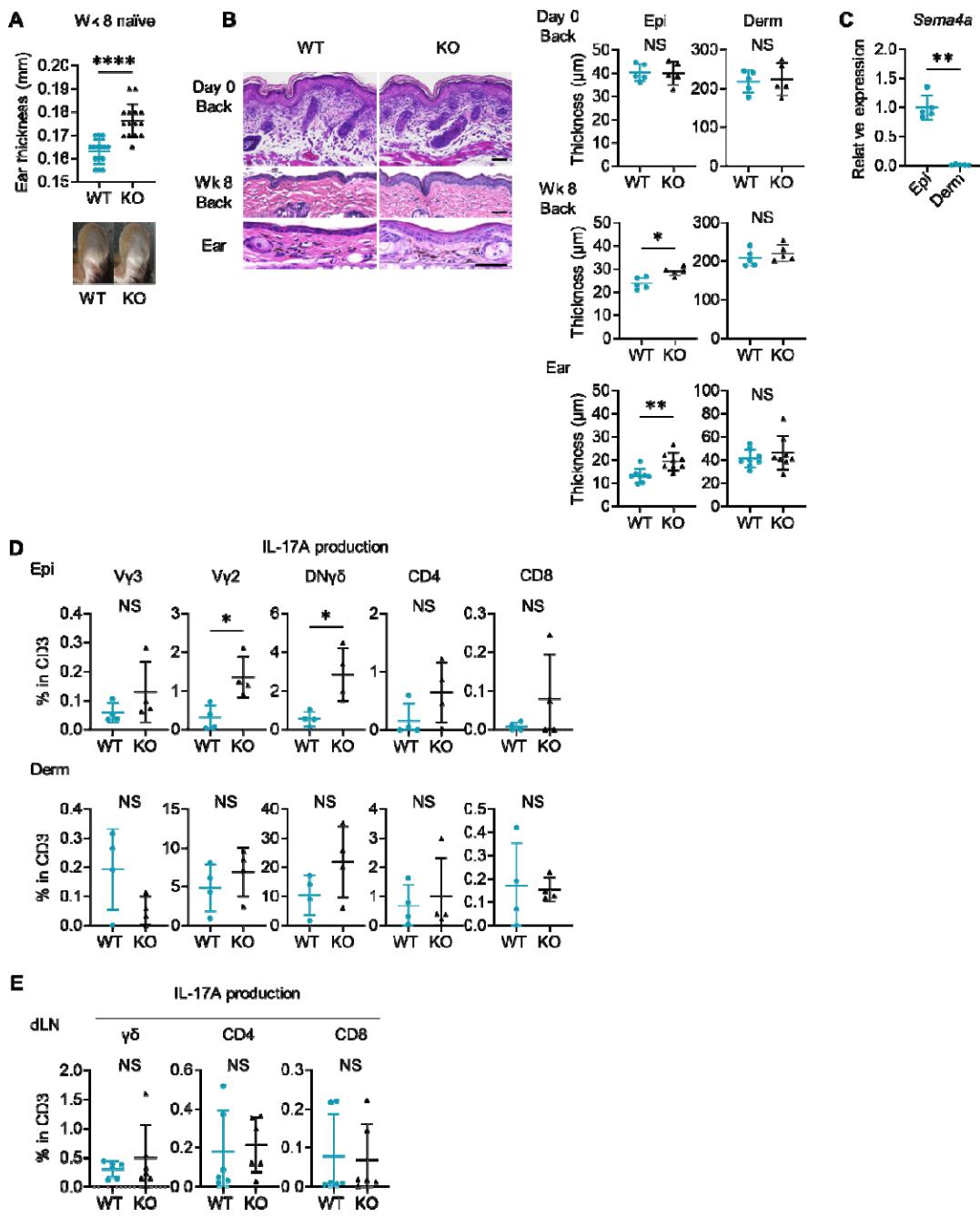
819 thickness in the mice with the indicated genotypes ($n = 14$ for $WT \rightarrow WT$, $n = 13$ for WT

820 $\rightarrow KO$, $n = 9$ for $KO \rightarrow WT$, $n = 9$ for $KO \rightarrow KO$). (C) The percentages of IL-17A-

821 producing $V\gamma 3$, $V\gamma 2$, $DN\gamma\delta$, $CD4$, and $CD8$ T cells in $CD3$ fraction from IMQ Day 4

822 Epi (top) and Derm (bottom) of the ears from $WT \rightarrow WT$ mice and $WT \rightarrow KO$ mice ($n =$

823 6 per group). Each dot represents the average of 4 ear specimens. **B-C:** $*p < 0.05$, $**p <$


824 0.01, *** $p < 0.0001$. NS, not significant.

825

826 Figure 3-source data 1

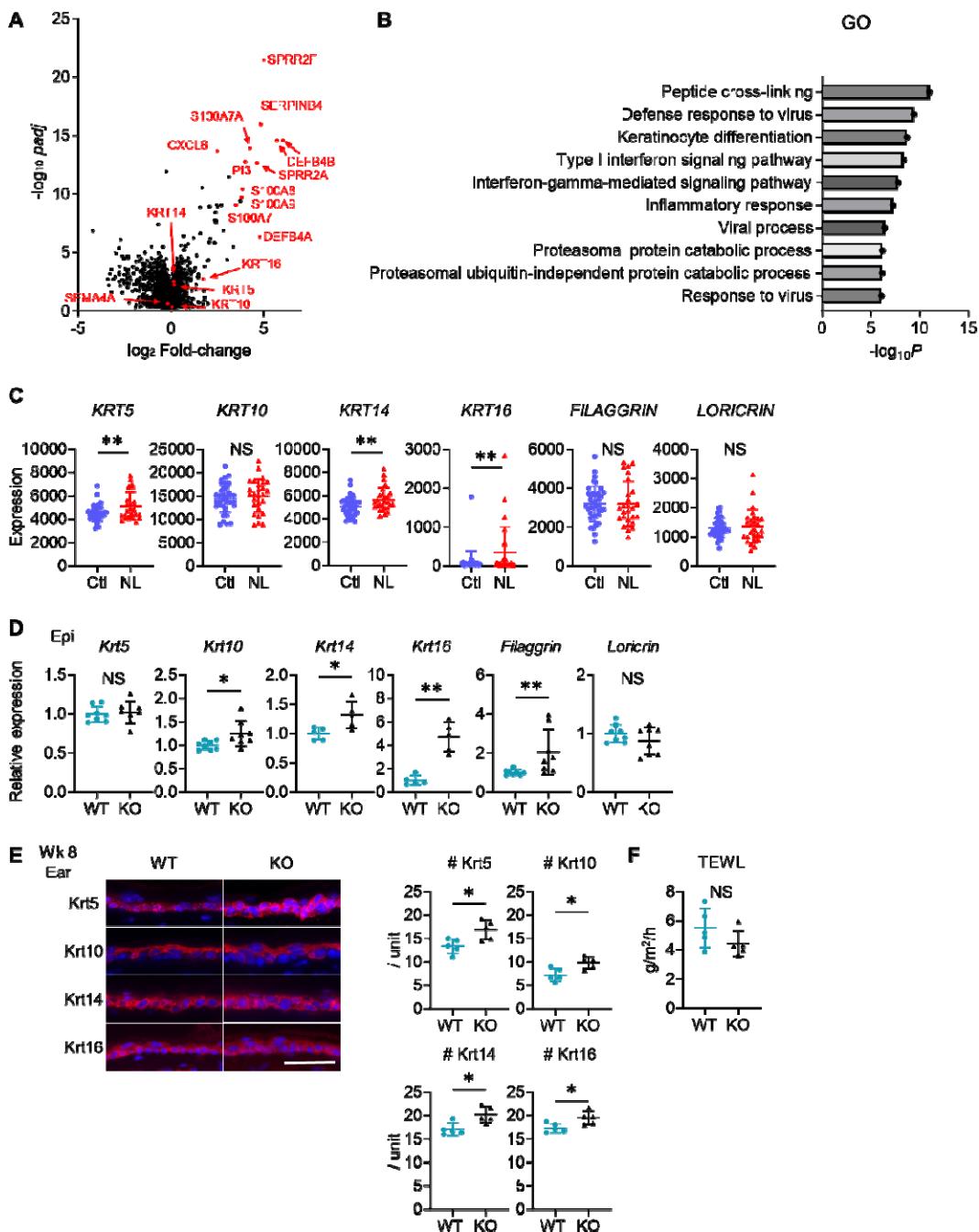
827 Excel file containing quantitative data for Figure 3.

828

829

830 **Figure 4: Naïve Sema4AKO epidermis is thicker than WT epidermis with**
 831 **increased $\gamma\delta$ T17 infiltration.**

832 (A) Ear thickness of WT mice and KO mice at week (Wk) 8 ($n = 15$ per group) and


833 representative images. **(B)** Left: representative Hematoxylin and eosin staining of Day 0
834 back and Wk 8 back and ear. Scale bar = 50 μ m. Right: Epi and Derm thickness in Day
835 0 back ($n = 5$) and Wk 8 back ($n = 5$) and ear ($n = 8$). **(C)** Relative *Sema4a* expression
836 in WT Epi and Derm ($n = 5$ per group). **(D)** The percentages of the IL-17A-producing
837 V γ 3, V γ 2, DN γ δ , CD4, and CD8 T cells in CD3 fraction ($n = 4$ per group) in Epi (top)
838 and Derm (bottom). Each dot represents the average of 4 ear specimens. **(E)** The graphs
839 showing the percentages IL-17A-producing γ δ , CD4, and CD8 T cells in CD3 fraction
840 from draining LN (dLN) of WT mice and Sema4AKO mice ($n = 6$ per group). **A-E:** $*p$
841 < 0.05 , $**p < 0.01$, $****p < 0.0001$. NS, not significant.

842

843 Figure 4-source data 1

844 Excel file containing quantitative data for Figure 4.

845

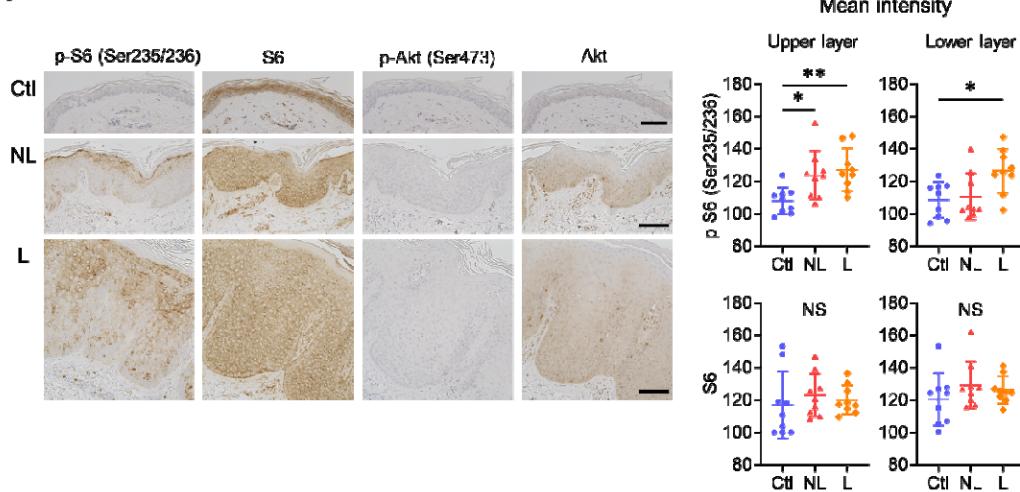
846

847 **Figure 5: Sema4AKO skin shares the features of human psoriatic NL.**

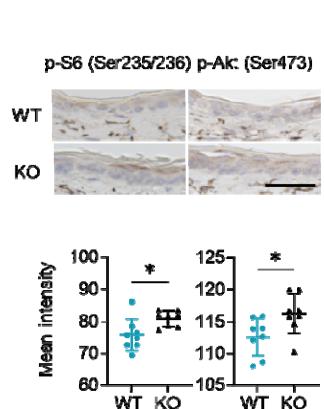
848 (A and B) The volcano plot (A) and Gene ontology (GO) analysis (B), generated from

849 RNA-sequencing data (GSE121212) using RaNA-seq, display changes in gene

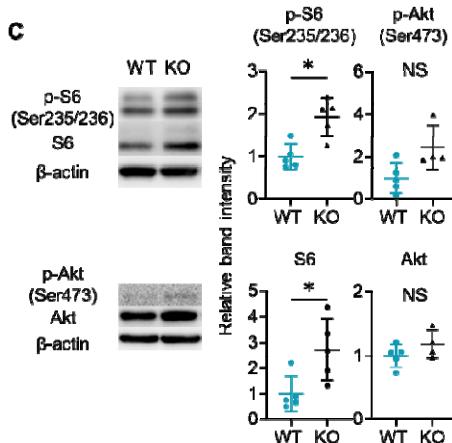
850 expression in psoriatic NL compared to Ctl. **(C)** The difference in the expression of
851 epidermal differentiation markers between Ctl and NL ($n = 38$ for Ctl, $n = 27$ for NL)
852 was calculated with the transcripts per million values. $^{**}p_{adj} < 0.01$. NS, not significant.
853 **(D)** Relative gene expression of epidermal differentiation markers between wk 8 Epi of
854 WT mice and KO mice ($n = 5$ for *Krt14* and *Krt16*, $n = 8$ for *Krt5*, *Krt10*, *Filaggrin*, and
855 *Loricrin*). **(E)** Left: Representative immunofluorescence pictures of Krt5, Krt10, Krt14,
856 and Krt16 (red) overlapped with DAPI. Scale bar = 50 μm . Right: Accumulated graphs
857 showing the numbers of Krt5, Krt10, Krt14, and Krt16 positive cells per 100 μm width
858 ($n = 5$ per group) of wk 8 ear (right). Each dot represents the average from 5 unit areas
859 per sample. **(F)** Transepidermal water loss (TEWL) in back skin of WT mice and KO
860 mice at wk 8 ($n = 5$ per group). **D-F:** $*p < 0.05$, $^{**}p < 0.01$. NS, not significant.

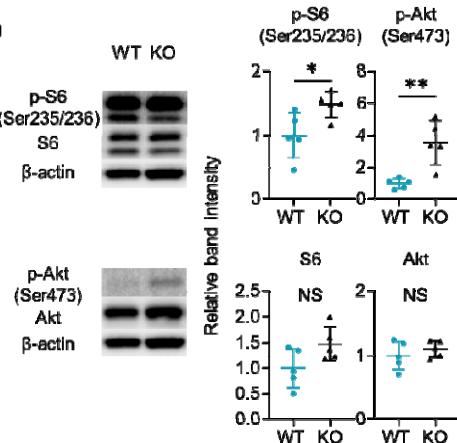

861

862 Figure 5-source data 1


863 Excel file containing quantitative data for Figure 5.

864


A


B

C

D

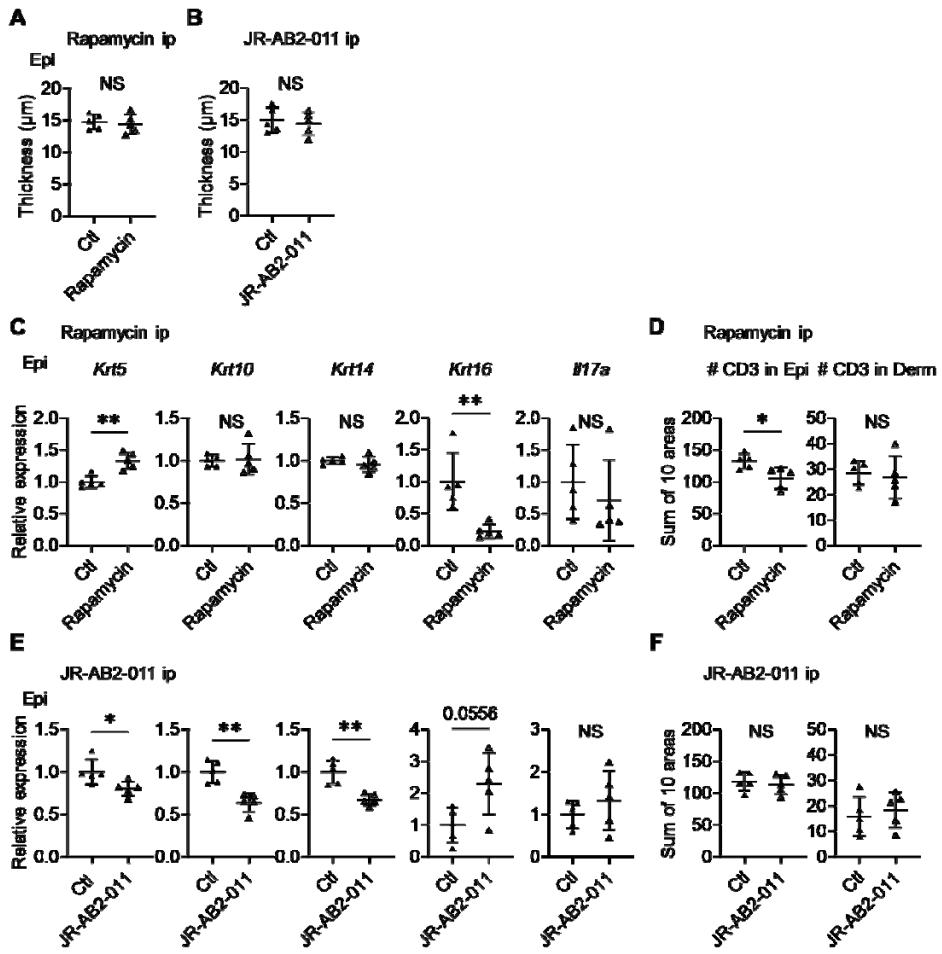
865

866 **Figure 6: mTOR signaling is upregulated in the epidermis of psoriatic NL and**

867 **Sema4AKO mice.**

868 (A) Representative results of immunohistochemistry displaying cells positive for p-S6

869 (Ser235/236), S6, p-Akt (Ser473), and Akt in Ctl, NL, and L. The graphs of


870 accumulated data show the mean intensity of p-S6 and S6 in the upper and lower

871 epidermal layers ($n = 9$ per group). Scale bar = 100 μ m. Each dot represents the average

872 mean intensity from 5 unit areas per sample. **(B)** The mean intensity of p-S6
873 (Ser235/236) and p-Akt (Ser473), detected by immunohistochemistry in the epidermis
874 of WT mice and KO mice, were analyzed. Scale bar = 50 μ m. Each dot represents the
875 average intensity from 5 unit areas per sample ($n = 8$ per group). **(C and D)**
876 Immunoblotting of p-S6 (Ser235/236), S6, p-Akt (Ser473), and Akt in tissue lysates
877 from epidermis without treatment **(C)** and with IMQ treatment for consecutive 4 days
878 **(D)** ($n = 5$ per group, except for p-Akt and Akt in **C**, for which $n = 4$). **A-D:** $*p < 0.05$,
879 $**p < 0.01$. NS, not significant.

880

881 Figure 6-source data 1
882 Excel file containing quantitative data for Figure 6.
883

884

885 **Figure 7: Inhibitors of mTOR signaling modulate the expression of cytokeratins in**

886 **Sema4AKO mice.**

887 (A and B) Epidermal thickness of Sema4AKO mice treated intraperitoneally with

888 vehicle (Ctl) or rapamycin (A), and Ctl or JR-AB2-011 (B) ($n = 5$ per group). (C and D)

889 Relative expression of keratinocyte differentiation markers and *Il17a* in Sema4AKO Epi

890 (C), and the number of T cells in Epi and Derm under Ctl or rapamycin (D) ($n = 5$ per

891 group). (E and F) Relative expression of keratinocyte differentiation markers and *Il17a*

892 in Sema4AKO Epi (**E**), and the number of T cells in Epi and Derm under Ctl or JR-

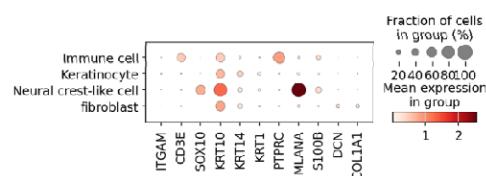
893 AB2-011 (**F**) ($n = 5$ per group). **D** and **F**: Each dot represents the sum of numbers from

894 10 unit areas across 3 specimens. **A-F**: $*p < 0.05$, $**p < 0.01$. NS, not significant.

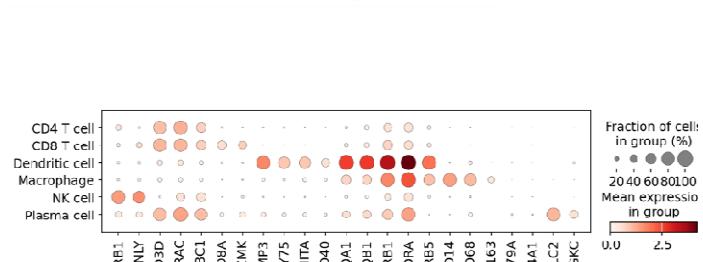
895

896 Figure 7-source data 1

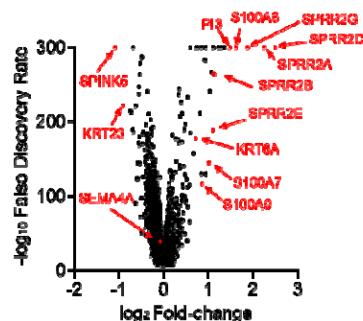
897 Excel file containing quantitative data for Figure 7.


898

899 **SUPPLEMENTARY MATERIALS**


A

Clinical information					
Sample name	Title	Age	Gender	PASI	Site
Sample01	Control01	37	Male	0	Trunk
Sample02	Control02	37	Male	0	Trunk
Sample03	Control03	66	Male	0	Trunk
Sample04	Control04	40	Male	0	Leg (right)
Sample05	Control05	40	Male	0	Leg (right)
Sample06	Control06	41	Male	0	Leg (right)
Sample07	Control07	62	Female	0	Arm (left)
Sample08	Control08	52	Female	0	Arm (left)
Sample09	Control09	74	Male	0	Trunk
Sample10	Control10	74	Male	0	Trunk
Sample11	Psoriasis01_preTx_LS	52	Female	18	Arm (right)
Sample12	Psoriasis02_preTx_LS	63	Male	7.8	Back
Sample13	Psoriasis03_preTx_LS	58	Female	8.4	Leg (left)
Sample15	Psoriasis04_preTx_LS	41	Male	8.6	Trunk
Sample17	Psoriasis05_preTx_LS	46	Female	6.8	Arm (right)
Sample18	Psoriasis06_preTx_LS	39	Male	6	Leg (right)
Sample21	Psoriasis07_preTx_LS	39	Male	9.8	Trunk
Sample22	Psoriasis07_preTx_LS_02	40	Male	18	Trunk
Sample26	Psoriasis08_preTx_LS	48	Female	7.4	Arm (right)
Sample27	Psoriasis09_preTx_LS	45	Male	8.4	Leg (right)
Sample28	Psoriasis10_preTx_LS	38	Male	8.4	Leg (right)


B

C

D

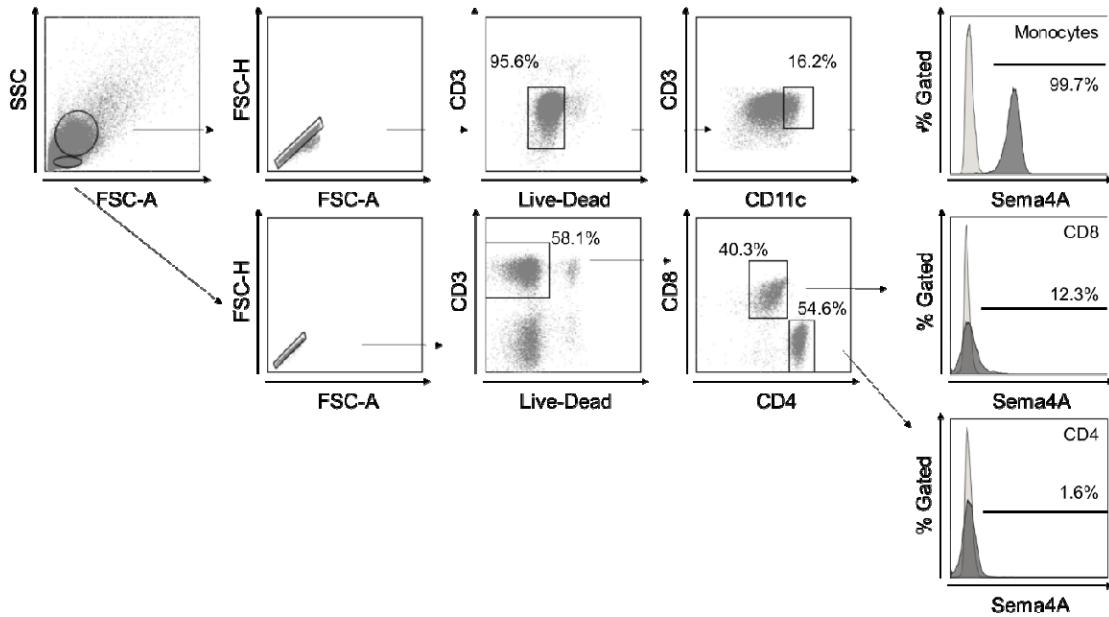
900

901 **Figure 1-figure supplement 1: Sema4A is downregulated in the keratinocytes of**

902 **lesional psoriasis in the single-cell RNA-sequencing data.**

903 **(A)** Sample information for specimens from Ctl and psoriatic L (GSE220116). **(B)** and

904 **(C)** Clusters of cells were identified by their expression patterns of signature genes. **(D)**


905 The volcano plot displays changes in gene expression in psoriatic L compared to Ctl.

906

907 Figure 1-figure supplement 1-source data 1

908 Excel file containing quantitative data for Figure 1-figure supplement 1.

909

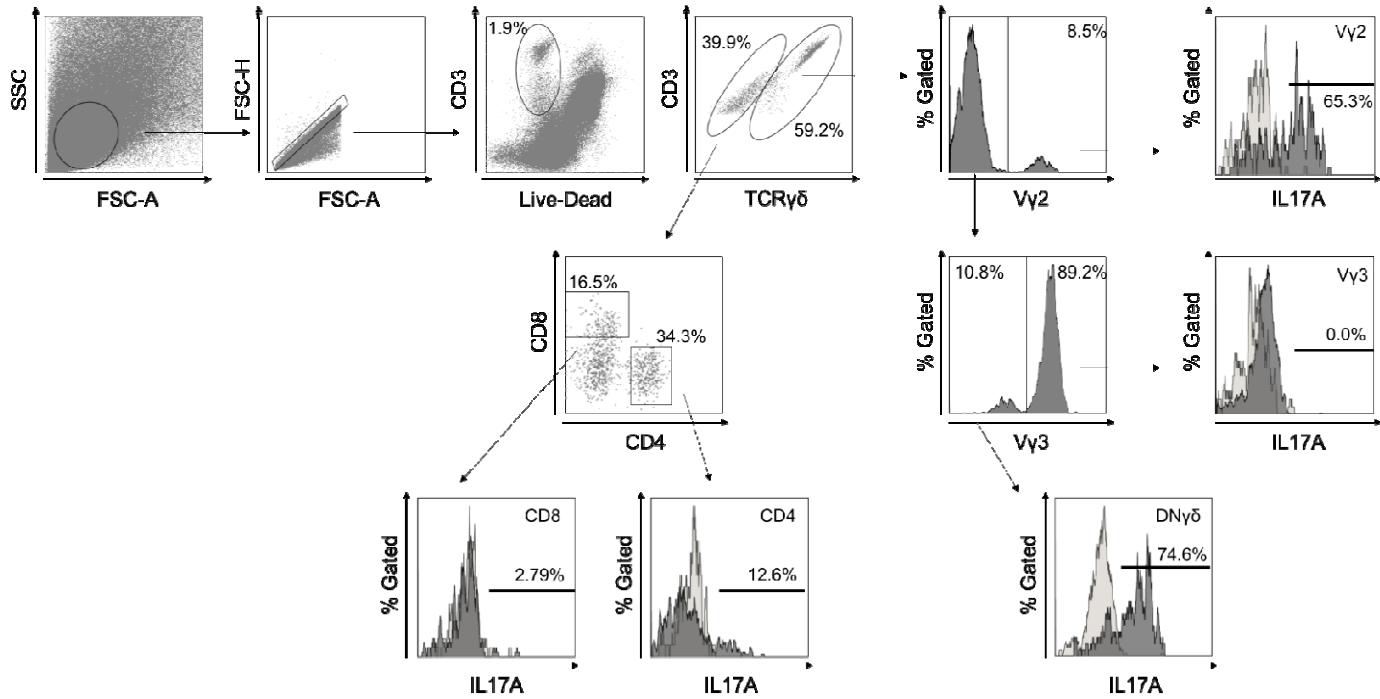
910

911 **Figure 1-figure supplement 2: Gating strategy in flow cytometry.**

912 Gating strategy for human Sema4A expression in blood cells. Large and small cells

913 were distinguished using forward scatter (FCS) and side scatter (SSC) in a dot plot

914 panel, with dead cells being excluded. Monocytes were defined within the live large cell


915 population as CD11c positive. CD4 and CD8 T cells were identified within the live

916 small cell population as CD3 positive CD4 positive and CD3 positive CD8 positive

917 populations, respectively. The empty histogram represents the flow cytometry minus

918 one control for Sema4A.

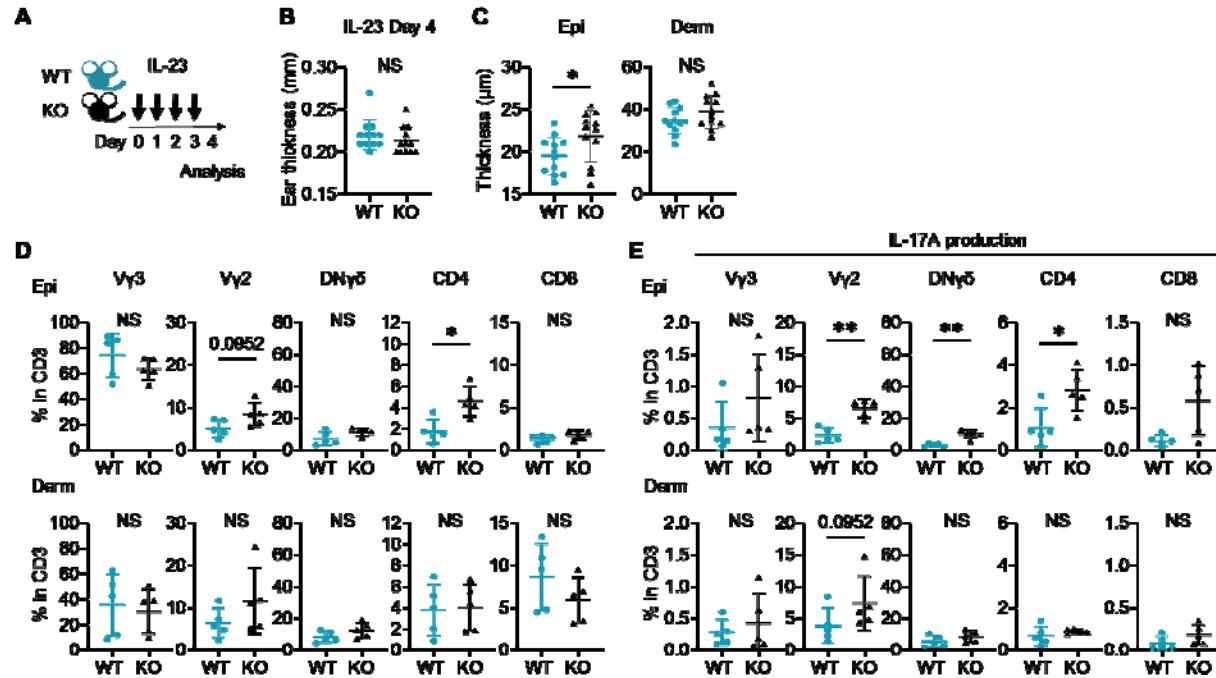
919

920

921 **Figure 2-figure supplement 1: Gating strategy in flow cytometry.**

922 Gating strategy for murine T cells infiltrating the epidermis and dermis. After excluding

923 dead cells, TCRγδ positive T cells were evaluated for the expression of Vγ2. TCRγδ


924 positive Vγ2 negative population was further assessed the expression of Vγ3. The CD3

925 positive TCRγδ negative population was evaluated for the expression of CD4 and CD8.

926 Each population was analyzed for cytokine production. The empty histogram represents

927 the isotype control for IL-17A.

928

929

930 **Figure 2-figure supplement 2: IL-23-mediated psoriasis-like dermatitis is**

931 **augmented in Sema4AKO mice.**

932 **(A)** An experimental scheme involved intradermally injecting 20 μ l of phosphate-

933 buffered saline containing 500 ng of recombinant mouse IL-23 into both ears of WT

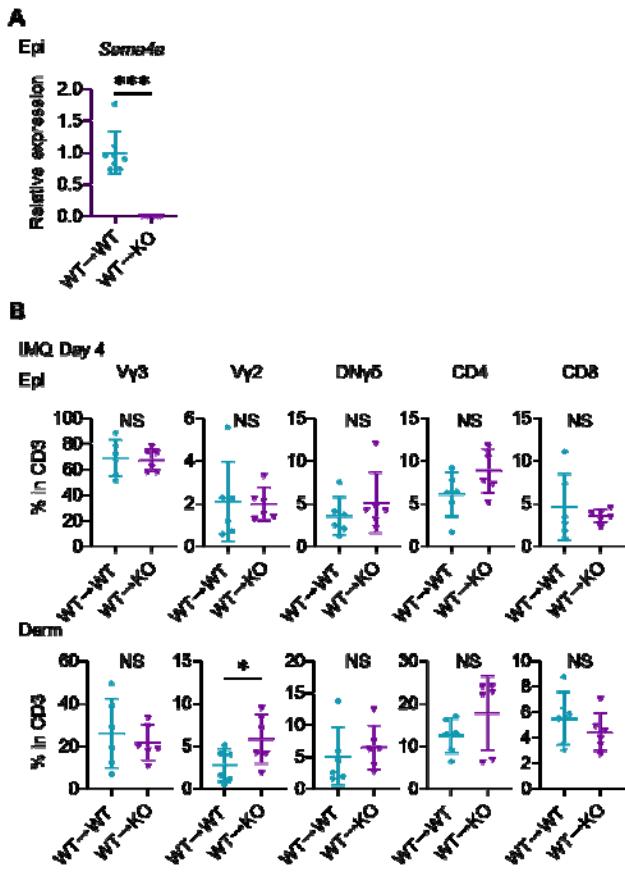
934 mice and KO mice for 4 consecutive days. Samples for following analysis were

935 collected on Day 4. **(B and C)** Ear thickness **(B)** and Epi and Derm thickness **(C)** of WT

936 mice and KO mice on Day 4 ($n = 12$ per group). **(D and E)** The percentages of V γ 3, V γ 2,

937 DN γ δ , CD4, and CD8 T cells **(D)** and those with IL-17A production **(E)** in CD3 fraction

938 in the Epi (top) and Derm (bottom) of WT and KO ears ($n = 5$ per group). Each dot


939 represents the average of 4 ear specimens. **B-E**: * $p < 0.05$, ** $p < 0.01$. NS, not
940 significant.

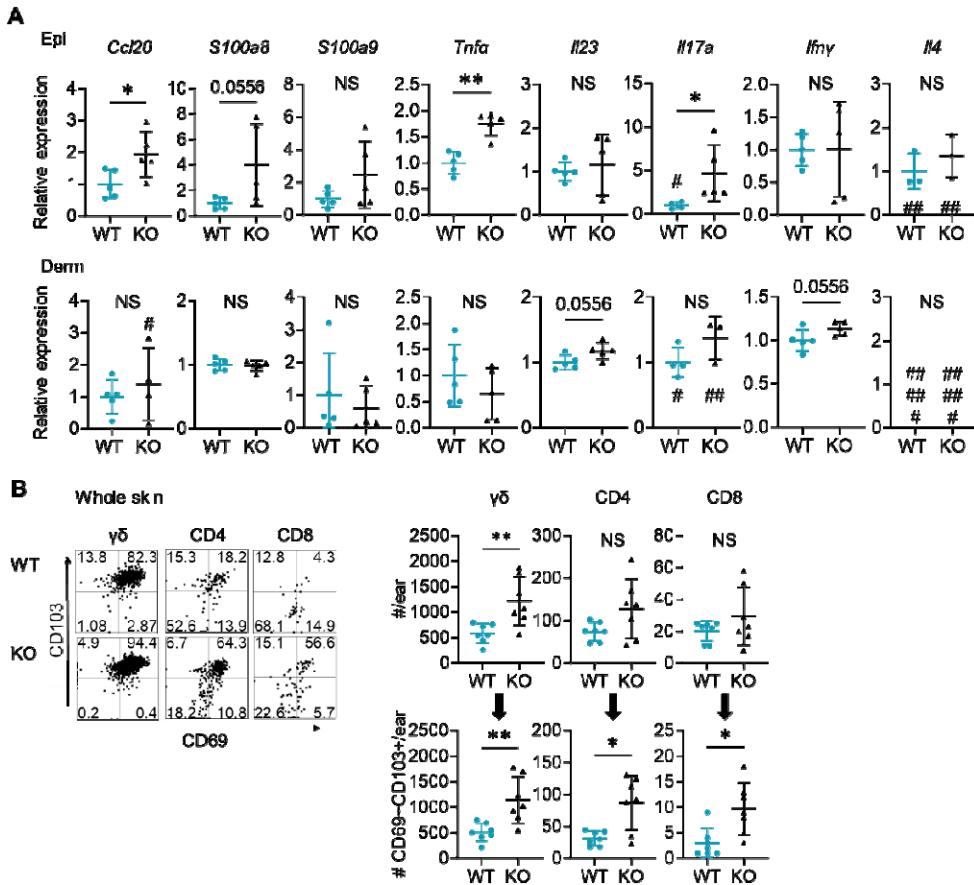
941

942 Figure 2-figure supplement 2-source data 1

943 Excel file containing quantitative data for Figure 2-figure supplement 2.

944

946 **Figure 3-figure supplement 1: T cells' fractions infiltrating in the chimeric mice ear.**


947 (A) *Sema4a* expression in the Epi of WT→ WT mice and WT→ KO mice ($n = 8$ for
948 WT→ WT, $n = 7$ for WT→ KO). (B) The percentages of V γ 3, V γ 2, DN γ δ , CD4, and
949 CD8 T cells in CD3 fraction from IMQ Day 4 Epi (top) and Derm (bottom) of the ears
950 from WT→ WT mice and WT→ KO mice ($n = 6$ per group). Each dot represents the
951 average of 4 ear specimens. **A-B:** * $p < 0.05$, *** $p < 0.001$. NS, not significant.

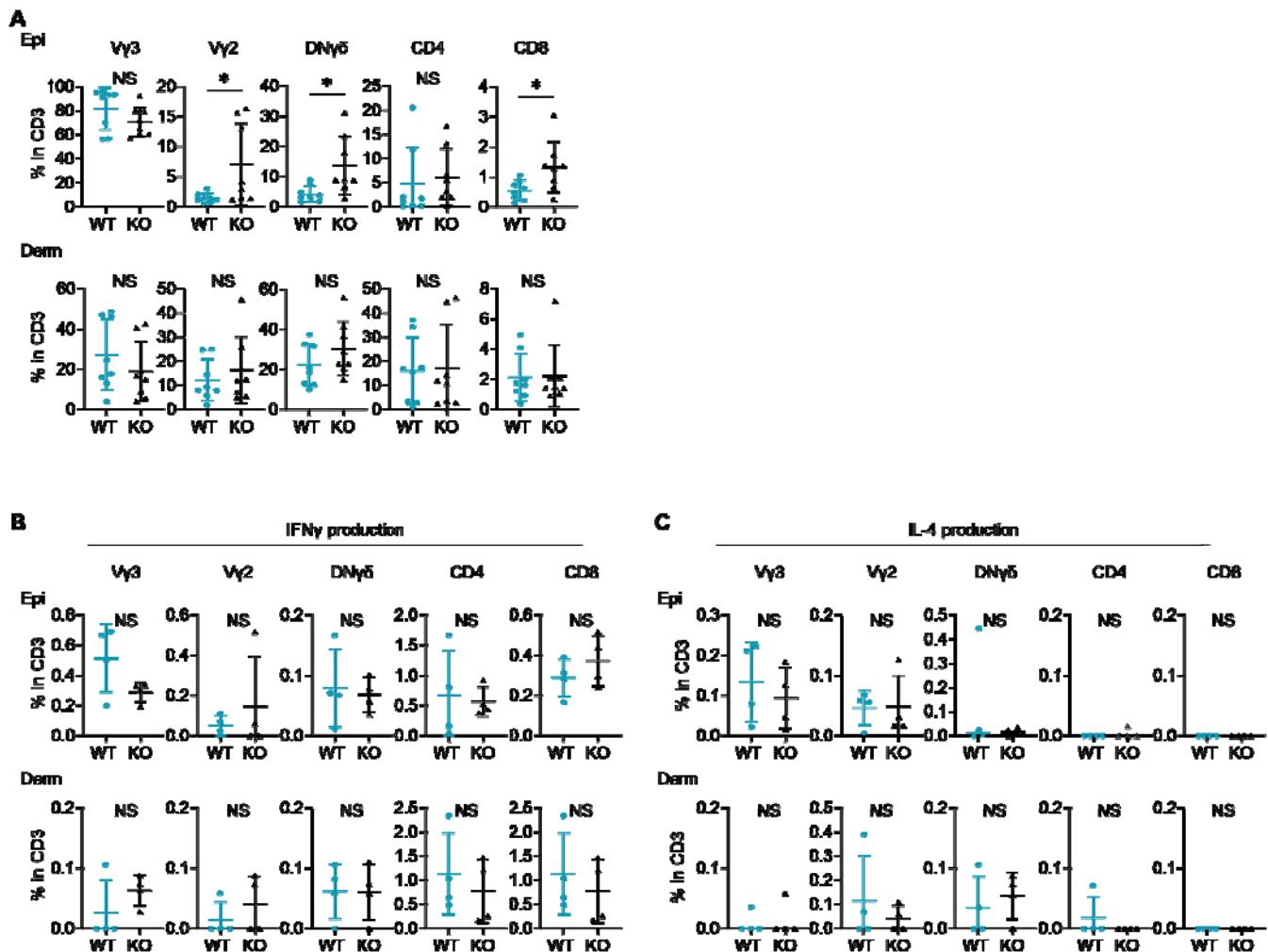
952

953 Figure 3-figure supplement 1-source data 1

954 Excel file containing quantitative data for Figure 3-figure supplement 1.

955

957 **Figure 4-figure supplement 1: Naive Sema4AKO skin shows upregulation of**
958 **psoriasis related genes and an increase in resident memory T cells.**


959 **(A)** Relative expression of psoriasis-associated genes in Epi (top) and Derm (bottom) of
960 WT mice and KO mice ($n = 5$ per group, #: not detected). **(B)** Representative dot plots
961 showing CD69 and CD103 expression in the indicated T cell fractions from whole skin.
962 The graphs show T cell counts per ear (top) and those with resident memory phenotype
963 (bottom) ($n = 7$ per group). Each dot represents the average of 4 ear specimens. **A-B:** * p
964 < 0.05 , ** $p < 0.01$. NS, not significant.

965

966 Figure 4-figure supplement 1-source data 1

967 Excel file containing quantitative data for Figure 1-figure supplement 1.

968

969

970 **Figure 4-figure supplement 2: Expression of IFN γ and IL-4 is comparable between**

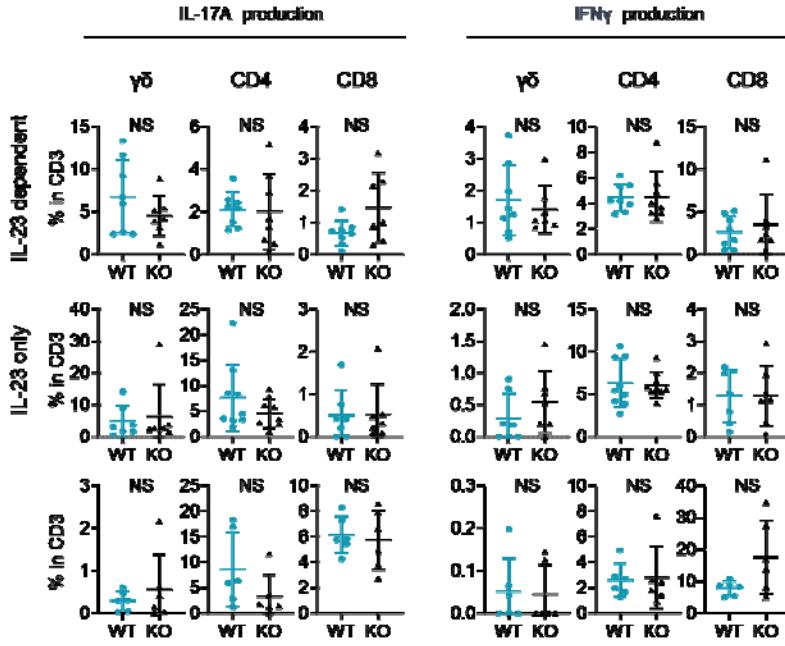
971 **naive WT and Sema4AKO skin.**

972 (A) The percentages of V γ 3, V γ 2, DN γ δ , CD4, and CD8 T cells in CD3 fraction from

973 naive WT and KO mice. (B and C) The graphs presenting the percentages of IFN γ (B)

974 and IL-4 (C) -producing V γ 2, DN γ δ , CD4, and CD8 T cells in CD3 fraction in the Epi

975 (top) and Derm (bottom) of naive WT mice and KO mice ($n = 4$ per group). A-C: Each


976 dot represents the average of 4 ear specimens. * $p < 0.05$. NS, not significant.

977

978 Figure 4-figure supplement 2-source data 1

979 Excel file containing quantitative data for Figure 4-figure supplement 2.

980

981

982 **Figure 4-figure supplement 3: Comparable T17 differentiation potential under**

983 **Th17-skewing conditions between WT mice and Sema4AKO mice.**

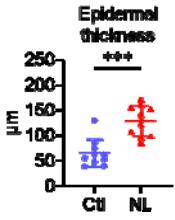
984 Splenic T cells were cultured for 2 weeks, followed by flow cytometry analysis. The

985 accumulated data display the percentages of IL-17A-producing (right) and IFN γ -

986 producing (left) $\gamma\delta$, CD4, and CD8 T cells within CD3 fraction under various

987 conditions: IL-23 dependent Th17-skewing condition (top), IL-23 only Th17-skewing

988 condition (middle), and IL-23 independent Th17-skewing condition (bottom). NS, not


989 significant.

990

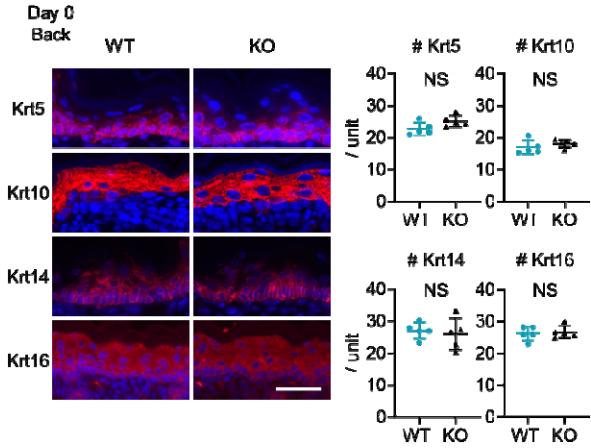
991 Figure 4-figure supplement 3-source data 1

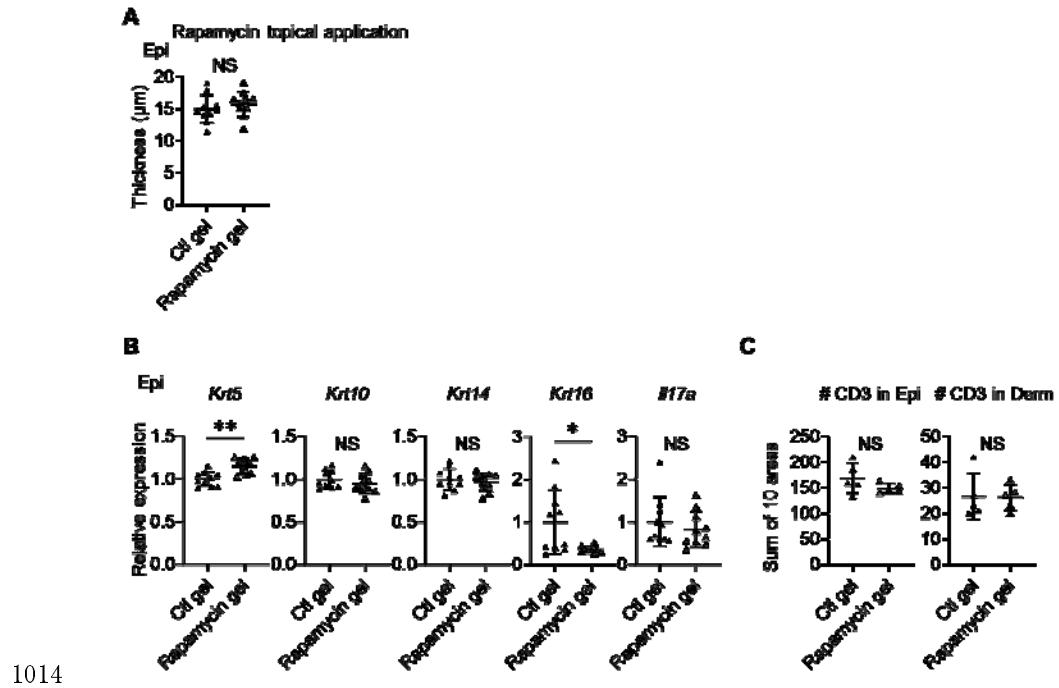
992 Excel file containing quantitative data for Figure 4-figure supplement 3.

993

994

995 **Figure 5-figure supplement 1: The epidermis of psoriatic non-lesion is thicker than
996 that of control skin.**


997 Epidermal thickness of Ctl and psoriatic NL ($n = 10$ per group). *** $p < 0.001$.

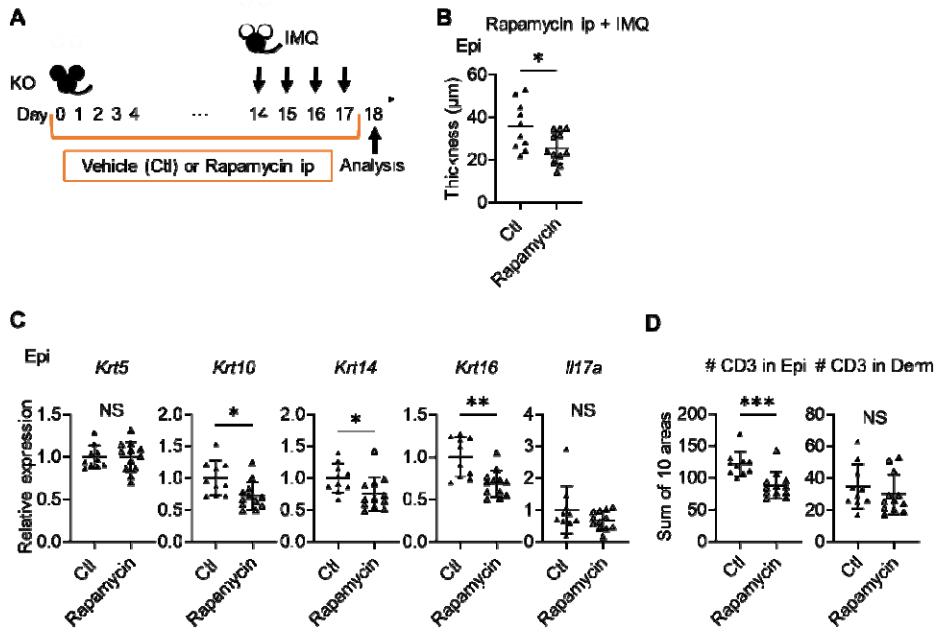

998

999 Figure 5-figure supplement1-source data1

1000 Excel file containing quantitative data for Figure 5-figure supplement1.

1001

1014 **Figure 7-figure supplement 1: Topical application of rapamycin gel yields partially**
1015 **similar results to intraperitoneal treatment.**


1016
1017 (A) Comparison of Epi thickness between vehicle (Ctl) gel-treated right ears and
1018 rapamycin gel-treated left ears of Sema4AKO mice ($n = 10$ per group). (B) Relative
1019 expression of keratinocyte differentiation markers and *Il17a* in Sema4AKO Epi under
1020 Ctl gel or rapamycin gel treatments ($n = 5$ per group). (C) The number of T cells in the
1021 Epi (left) and Derm (right), under Ctl gel or Rapamycin gel treatments ($n = 5$ per group).
1022 Each dot represents the sum of numbers from 10 unit areas across 3 specimens. **A-C:** * p
1023 < 0.05, ** p < 0.01. NS, not significant.

1024

1025 Figure 7-figure supplement 1-source data 1

1026 Excel file containing quantitative data for Figure 7-figure supplement 1.

1027

1029 **Figure 7-figure supplement 2: Rapamycin treatment reduced the epidermal**
1030 **swelling observed in IMQ-treated Sema4AKO mice.**

1031 (A) Experimental scheme. (B) The Epi thickness on Day 18. ($n = 10$ for Ctl, $n = 12$ for
1032 Rapamycin). (C) Relative expression of keratinocyte differentiation markers and *Il17a*
1033 in Sema4AKO Epi ($n = 10$ for Ctl, $n = 12$ for Rapamycin). (D) The number of T cells in
1034 the Epi (left) and Derm (right), under Ctl or rapamycin and IMQ treatments ($n = 10$ for
1035 Ctl, $n = 12$ for Rapamycin). Each dot represents the sum of numbers from 10 unit areas
1036 across 3 specimens. **A-C:** $*p < 0.05$, $**p < 0.01$. NS, not significant.

1037

1038 Figure 7-figure supplement 2-source data 1

1039 Excel file containing quantitative data for Figure 7-figure supplement 2.

Table S1 Patient information

Psoriasis severity is defined by the total body surface area (BSA) affected: <3% BSA for mild, 3%-10% BSA for moderate, and >10% BSA for severe disease.

Fig. 1, D and E Analysis of Sema4A expression by immunohistochemistry

Fig. S4 Epidermal thickness

Psoriasis (n = 10)

Age	Gender	Body site	Severity
66	Male	Leg	Severe
55	Male	Trunk	Moderate
80	Female	Trunk	Severe
72	Male	Trunk	Moderate
30	Male	Trunk	Severe
72	Female	Leg	Moderate
63	Male	Arm	Mild
38	Male	Trunk	Mild
35	Male	Leg	Mild
71	Male	Trunk	Moderate

Control (n = 10)

Age	Gender	Body site
76	Male	Neck
52	Female	Leg
66	Female	Leg
33	Male	Leg
68	Female	Trunk
57	Female	Leg
65	Male	Trunk
41	Female	Trunk
51	Female	Trunk
66	Female	Trunk

Fig 1F Analysis of Sema4A expression by qRT-PCR

Epidermis

Psoriasis (n = 7)

Age	Gender	Body site	Severity
71	Male	Leg	Moderate
76	Female	Neck	Mild
38	Female	Trunk	Moderate
49	Female	Trunk	Moderate
61	Male	Arm	Mild
68	Female	Trunk	Moderate
72	Male	Leg	Mild

Control (n = 10)

Age	Gender	Body site
57	Female	Leg
69	Female	Trunk

66	Female	Trunk
86	Female	Trunk
53	Female	Trunk
84	Male	Neck
37	Female	Trunk
46	Female	Trunk
51	Female	Trunk
46	Female	Trunk

Dermis

Psoriasis (n = 6)

Age	Gender	Body site	Severity
76	Female	Neck	Mild
38	Female	Trunk	Moderate
49	Female	Trunk	Moderate
61	Male	Arm	Severe
68	Female	Trunk	Moderate
72	Male	Leg	Severe

Control (n = 6)

Age	Gender	Body site
69	Female	Trunk
86	Female	Trunk
84	Male	Neck
37	Female	Trunk
51	Female	Trunk
46	Female	Trunk

Fig 1G

Analysis of Sema4A expression by flow cytometry

	Cell type	Average of age	Male (n =)	Female (n =)
Psoriasis (n = 13)	CD4 T cell, CD8 T cell, and monocyte	56.1	9	4
Control (n = 13)	CD4 T cell and CD8 T cell	52.2	6	7
Control (n = 11)	Monocyte	54.1	6	5

Fig 1H

Analysis of Serum Sema4A by ELISA

	Average of age	Male (n =)	Female (n =)
Psoriasis (n = 60)	55.3	43	17
Control (n = 20)	52.1	11	9

Fig 6A

Pictures of p-S6, S6, p-Akt, and Akt staining

Psoriasis (n = 1)

Age	Gender	Body site	Severity
30	Male	Trunk	Severe

Control (n = 1)

Age	Gender	Body site
66	Female	Trunk

Analysis of p-S6, S6 expression by immunohistochemistry

Psoriasis (n = 9)

Age	Gender	Body site	Severity
66	Male	Leg	Severe
55	Male	Trunk	Moderate
80	Female	Trunk	Severe
72	Male	Trunk	Moderate
30	Male	Trunk	Severe
72	Female	Leg	Moderate
38	Male	Trunk	Mild
35	Male	Leg	Mild
71	Male	Trunk	Moderate

Control (n = 9)

Age	Gender	Body site
76	Male	Neck
66	Female	Leg
33	Male	Leg
68	Female	Trunk
57	Female	Leg
65	Male	Trunk
41	Female	Trunk
51	Female	Trunk
66	Female	Trunk

1040

1041

Table S2
Antibodies used for immunohistochemical, immunofluorescence, and western blot analyses

Target	Clone	Species	Supplier	Catalog	Dilution ratio	Incubation	Incubation
						IHC, IF	WB
Sema4A	Polyclonal	Rabbit	Abcam	ab70178	100	30 min	RT
phospho-S6 (Ser235/236)	D57.2.2E	Rabbit	Cell Signaling	4858	400	2000	overnight
S6	5G10	Rabbit	Cell Signaling	2217	100	1000	overnight
phospho-Akt (Ser473)	D9E	Rabbit	Cell Signaling	4060	50	1000	overnight
Akt	C67E7	Rabbit	Cell Signaling	4691	300	1000	overnight
Keratin 5	Polyclonal	Rabbit	BioLegend	905503	800		4 °C
Keratin 10	Polyclonal	Rabbit	BioLegend	905403	400		4 °C
Keratin 14	Polyclonal	Rabbit	BioLegend	905303	400		4 °C
Cytokeratin 16	8L6R4	Rabbit	Invitrogen	MA5-42892	100		4 °C
CD3	CD3-12	Rat	Bio-Rad	MCA1477	100		4 °C
Rabbit IgG H&L (Alexa Fluor 555)	Polyclonal	Donkey	Abcam	ab150074	1000	30 min	RT
Rat IgG H&L (Alexa Fluor 555)	Polyclonal	Donkey	Abcam	ab150154	1000	30 min	RT
β-actin	AC-15	Mouse	Sigma-Aldrich	A5441		5000	overnight
Anti-Mouse IgG, HRP-Linked Whole Ab	Monoclonal secondary	Sheep	Cytiva	NA931		10000	1 hour
Anti-Rabbit IgG, HRP-Linked Whole Ab	Polyclonal secondary	Donkey	Cytiva	NA934		10000	1 hour

RT: Room temperature

IHC: immunohistochemistry

IF: immunofluorescence

WB: western blot

1042

1043

Table S3

Primer sequences of real-time quantitative PCR used in human sample experiments

Gene Symbol	Forward primer (5'-3')	Reverse primer (5'-3')
<i>GAPDH</i>	GTCTCCTCTGACTTCAACAGCG	ACCACCTGTTGCTGTAGCCAA
<i>SEMA4A</i>	TCTGCTCCTGAGTGGTGTGATG	AAACCAGGACACGGATGAAG

Primer sequences of real-time quantitative PCR in murine sample experiments

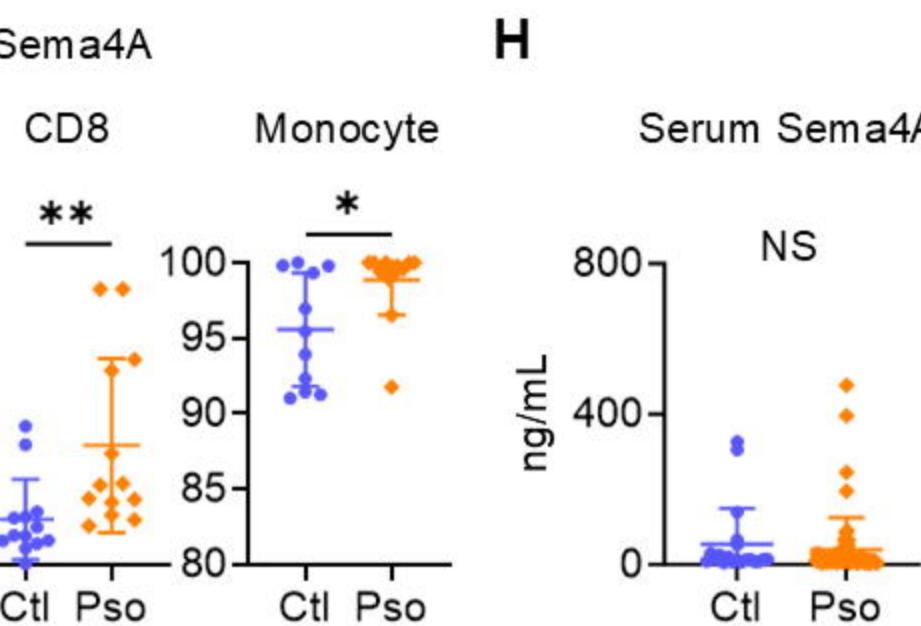
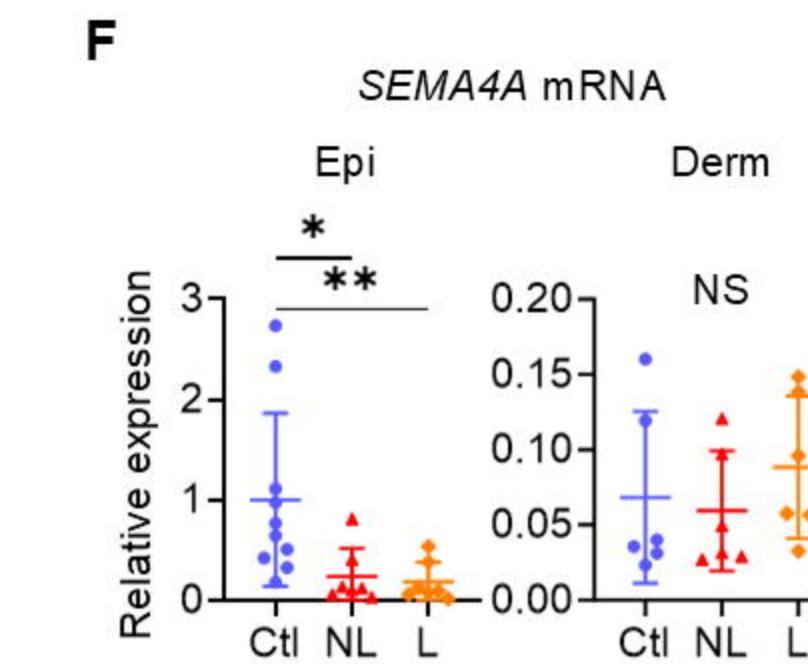
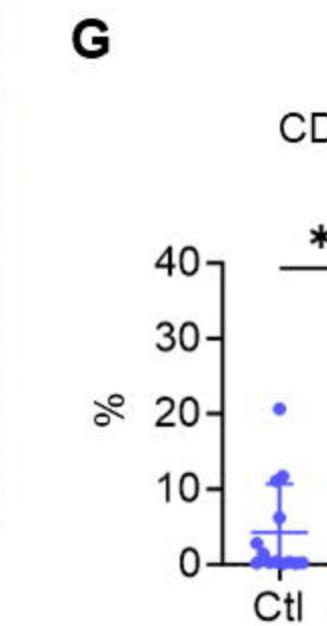
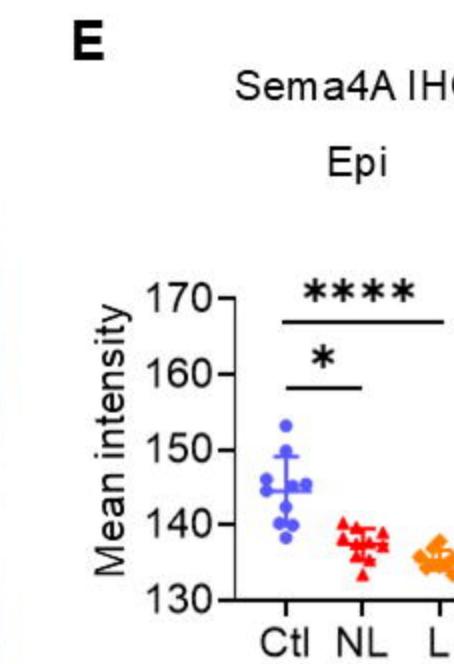
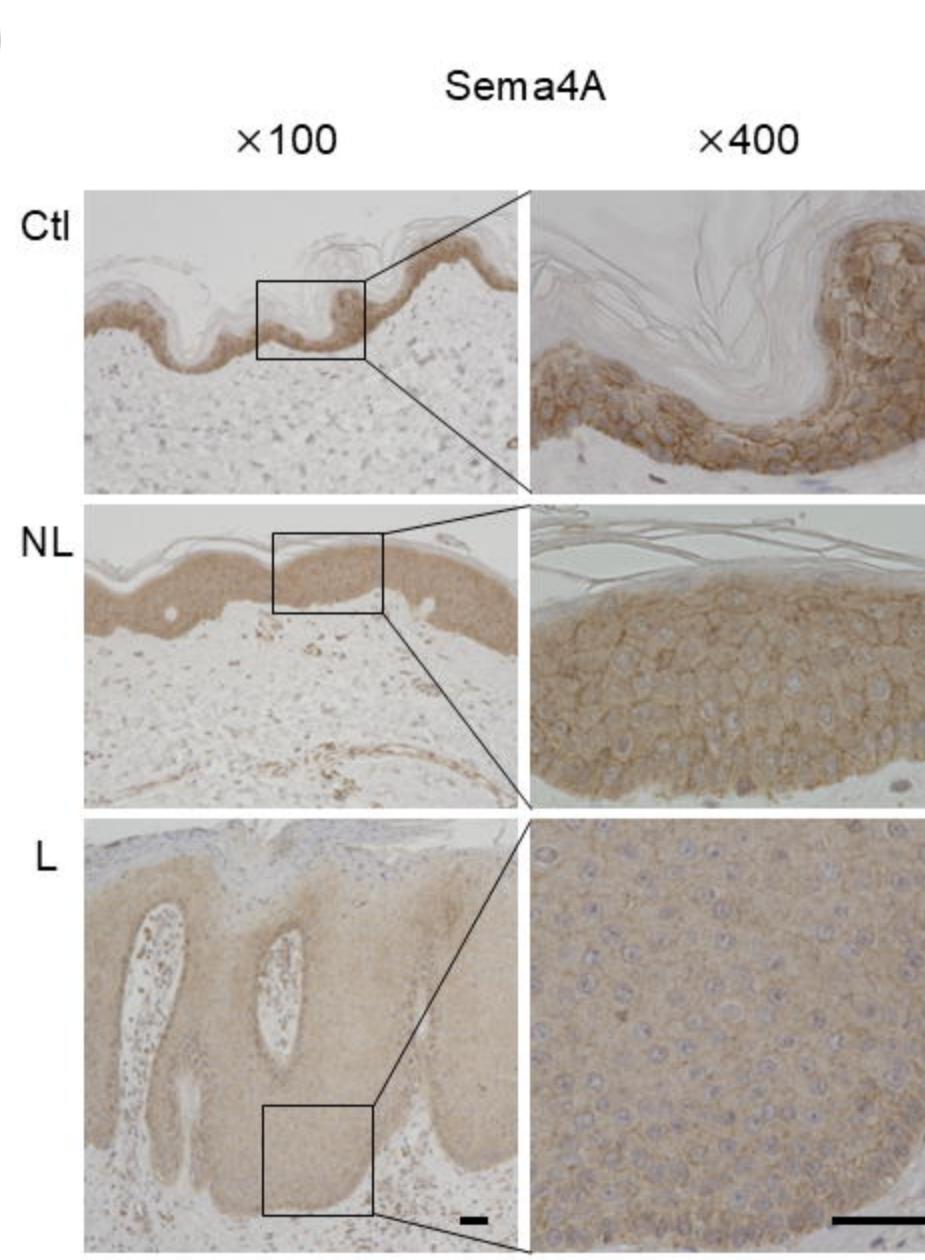
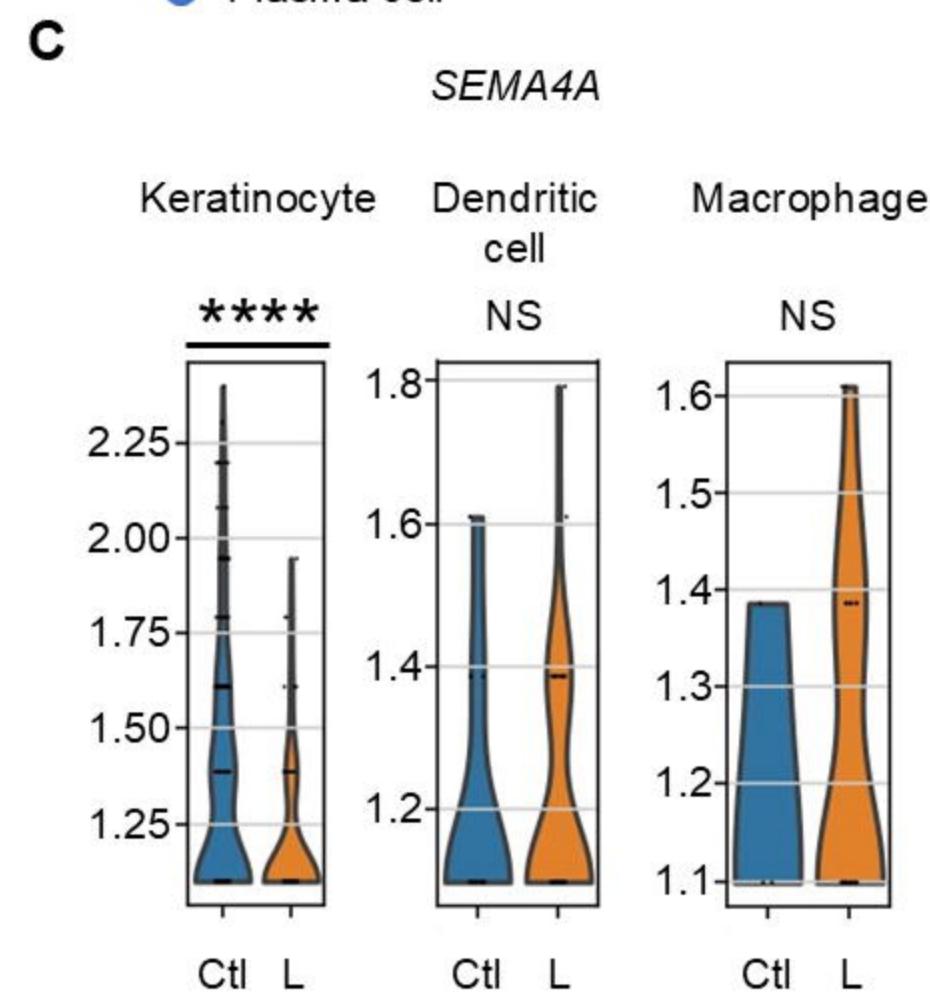
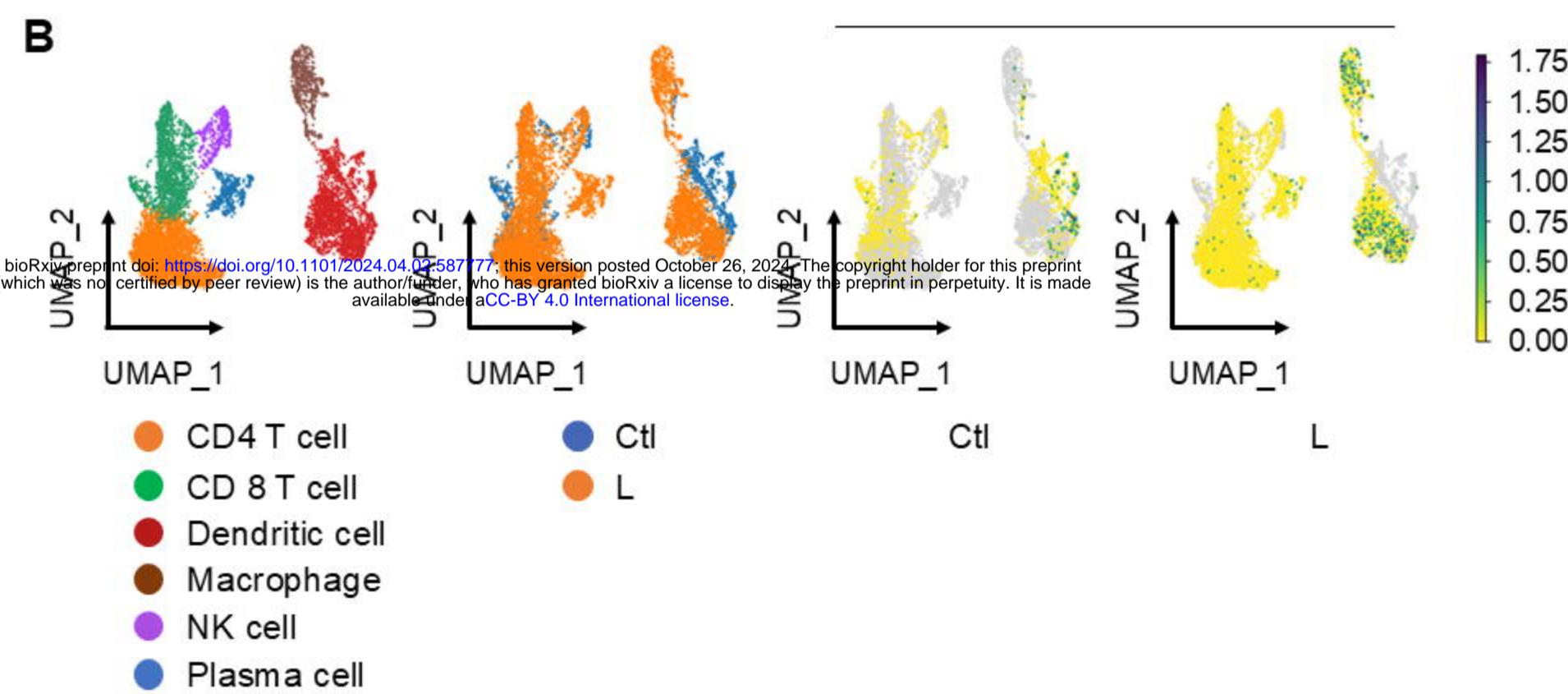
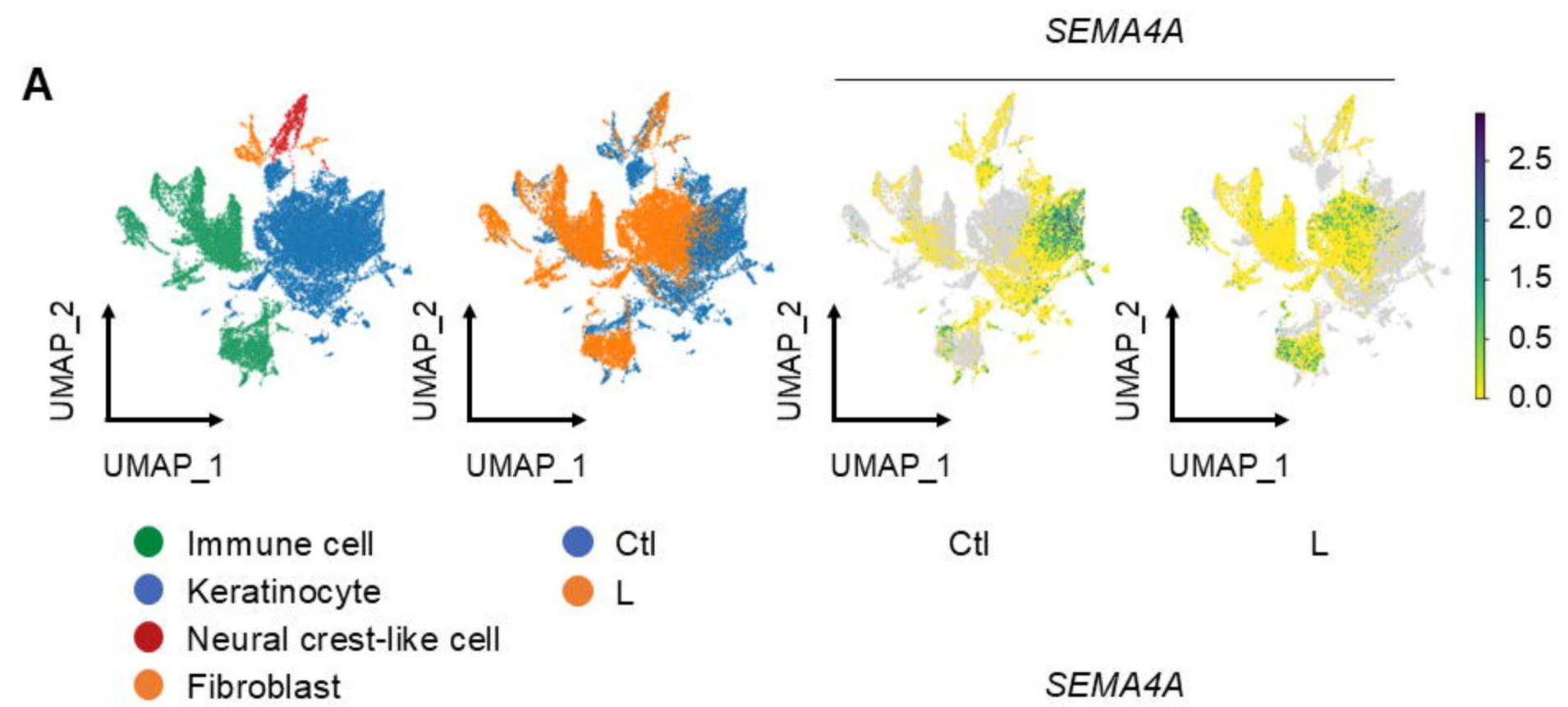
Gene Symbol	Forward primer (5'-3')	Reverse primer (5'-3')
<i>Gapdh</i>	TGTGTCGGTCTGGATCTGA	TTGCTTGAAGTCGCAGGAG
<i>Krt5</i>	CAGAGCTGAGGAACATGCAG	CATTCTAGCCGTGGTACG
<i>Krt10</i>	CGTACTGTTCAAGGTCTGGAG	GCTTCAGCGATTGTTCA
<i>Krt14</i>	CGTACTGTTCAAGGTCTGGAG	GCTTCAGCGATTGTTCA
<i>Krt16</i>	TGAGCTGACCCCTGTCCAGA	TGAGCTGACCCCTGTCCAGA
<i>Filaggrin</i>	GGAGGCATGGTGGAACTGA	TGTTTATCTTTCCCTCACTTCTACATC
<i>Loricrin</i>	TCACTCATTTCCCTGGTGCTT	GTCTTCCACAAACCCACAGGA
<i>Sema4a</i>	ATGGCCCTACCATCCCTGG	AGCAGCGTGTCAAAGTCTCG
<i>Ccl20</i>	ATGGCCTGCGGTGGCAAGCGT	CATCTCTTGACTCTTAGGC
<i>S100a8</i>	TGCGATGGTGTATAAAAGTGG	GGCCAGAACGCTCTGCTACTC
<i>S100a9</i>	CACCCCTGAGCAAGAAGGAAT	TGTATTATGAGGGCTTCATT
<i>Ifny</i>	ATCTGGAGGAACTGGCAAAA	TTCAAGACTCAAAGAGTCTGAGGTA
<i>Tnfa</i>	GCCTCCCTCTCATCAGTCT	CACTGGTGGTTGCTACGA
<i>Il4</i>	ACAGGAGAAGGGACGCCAT	GAAGCCCTACAGACGAGCTCA
<i>Il17a</i>	CTGTGTCTCTGATGCTGTTG	ATGTGGTGGTCCAGCTTTC
<i>Il23</i>	TCCCTACTAGGACTCAGCCAAC	GCTGCCACTGCTGACTAGAA

1044

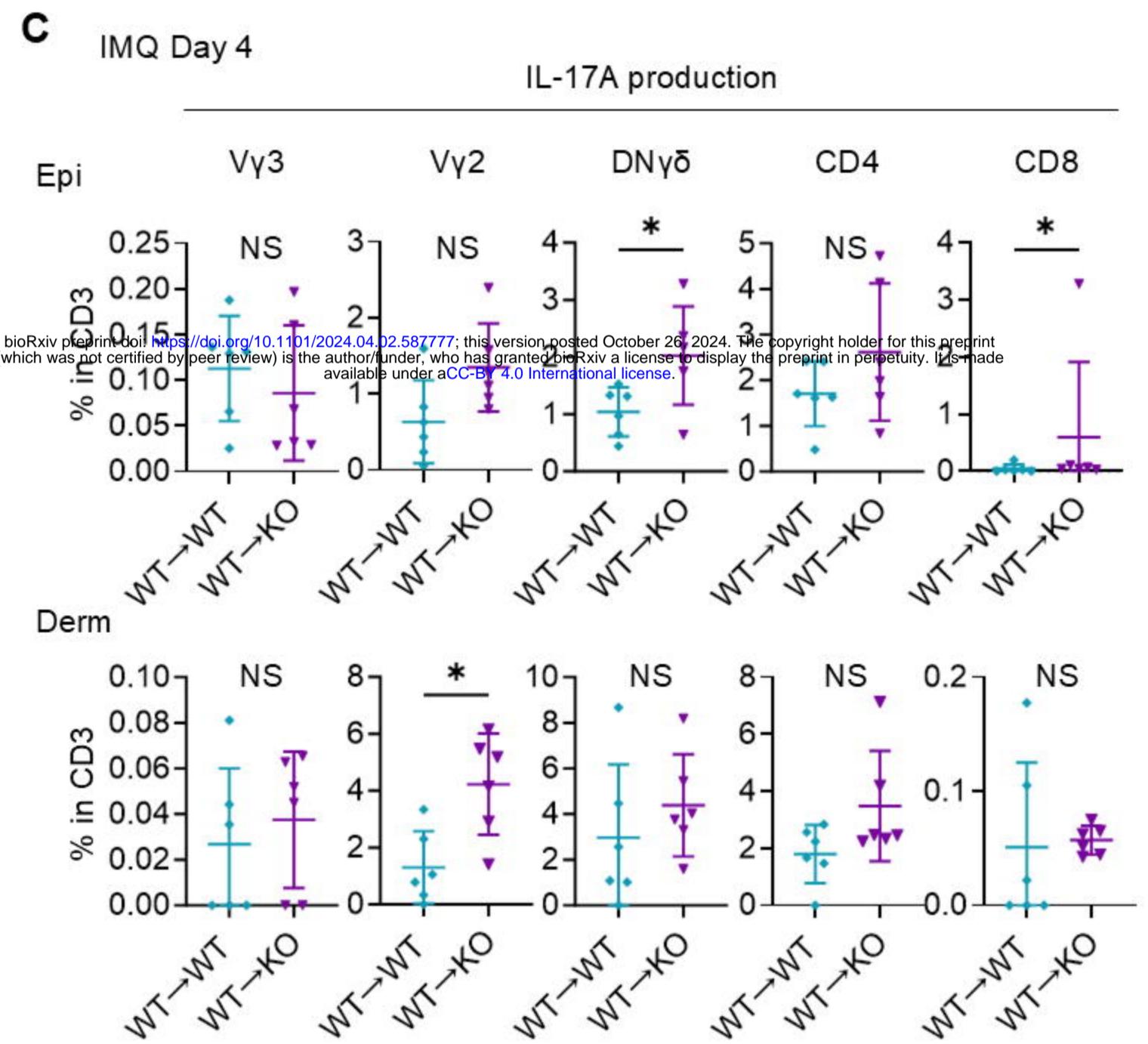
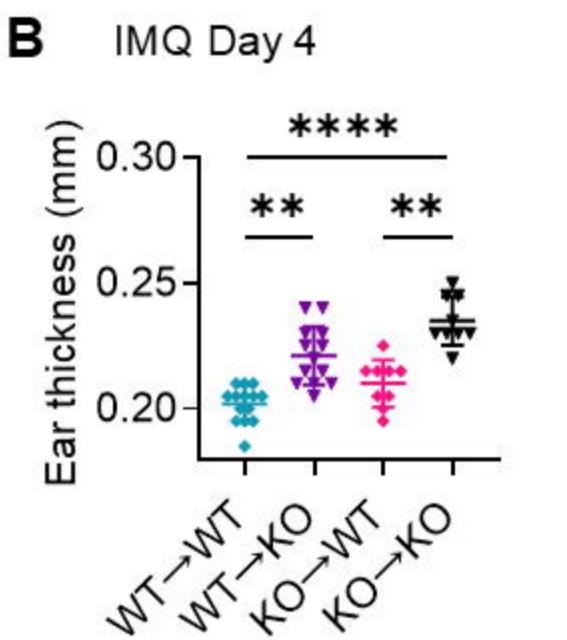
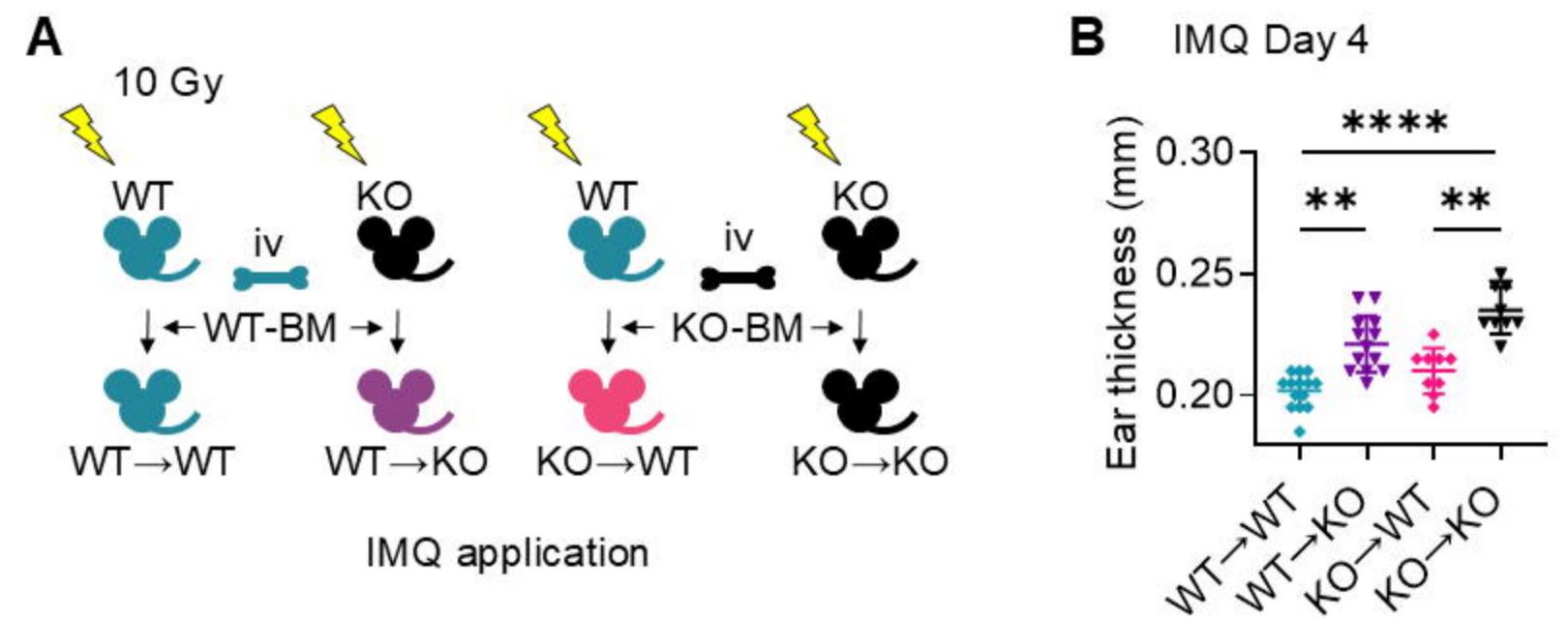
1045

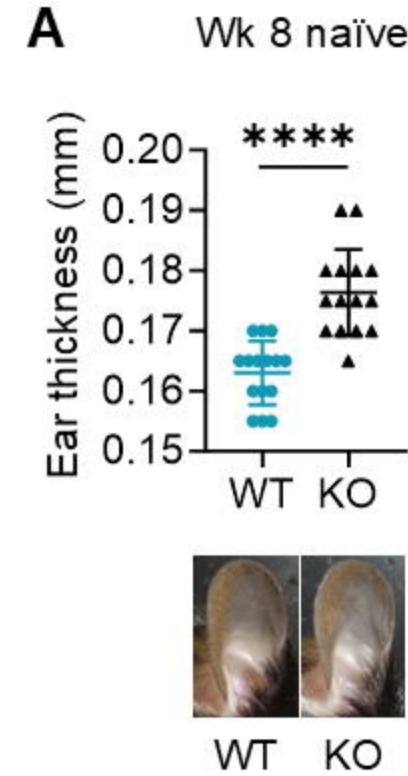
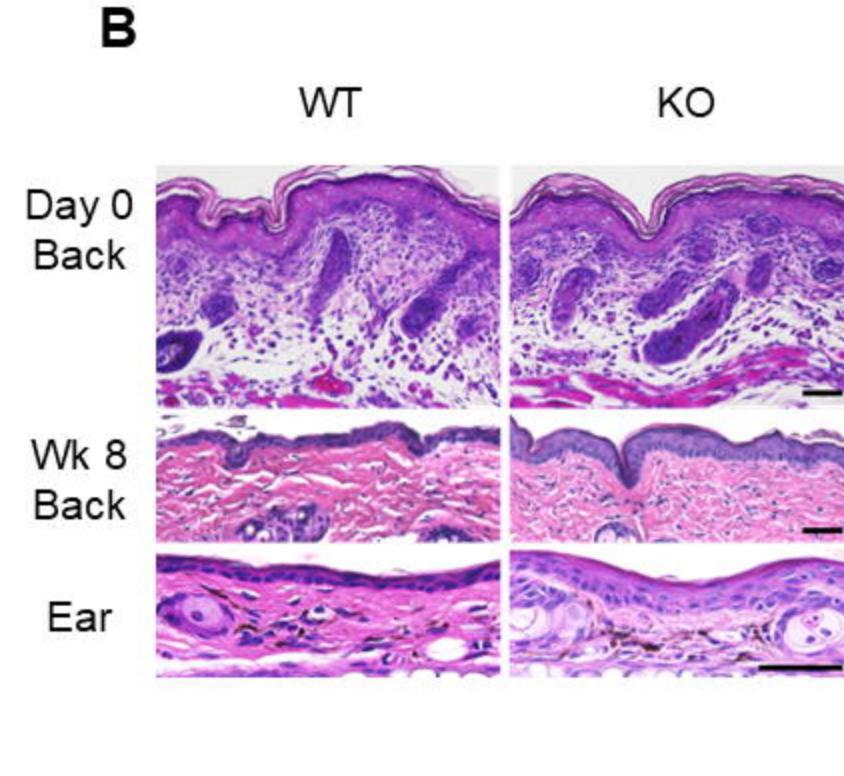
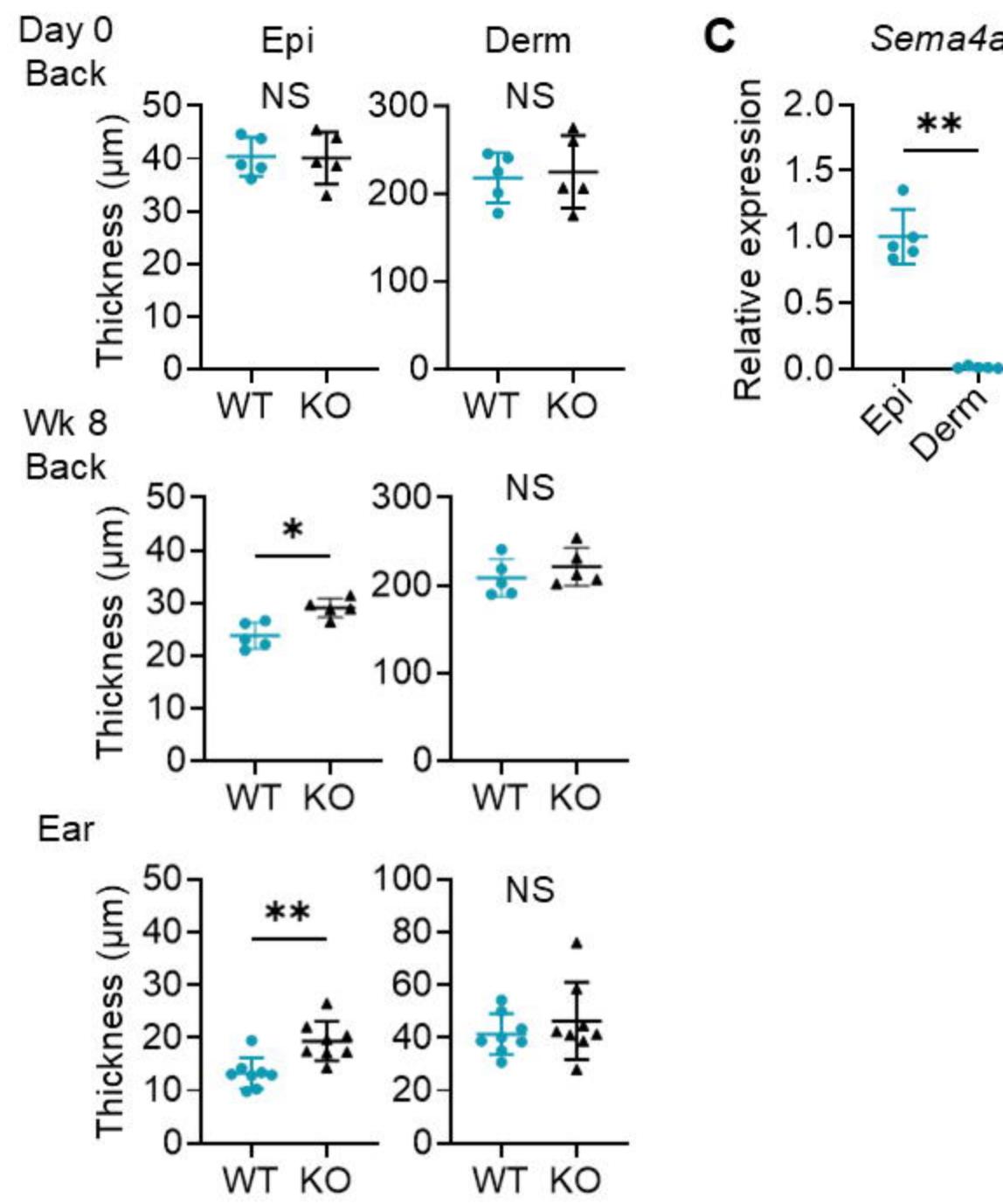
Table S4
Antibodies used for flow cytometry analysis

Target	Clone	Species	Supplier	Catalog
CD3	OKT3	Mouse	BioLegend	317335
CD4	RPA-T4	Mouse	BioLegend	300512
CD8a	RPA-T8	Mouse	eBioscience	47-0088-42
CD11c	3.9	Mouse	BioLegend	301628
SEMA4A	5E3/SEMA4A	Mouse	BioLegend	148404
CD3ε	145-2C11	Armenian Hamster	BioLegend	100328
CD4	GK1.5	Rat	BioLegend	100406
CD8a	53-6.7	Rat	BioLegend	100714
CD16/32	93	Rat	BioLegend	101301
CD69	H1.2F3	Armenian Hamster	BioLegend	104514
CD103	2E7	Armenian Hamster	BioLegend	121422
TCR Vγ2	UC3-10A6	Armenian Hamster	BioLegend	137705
TCR Vγ3	536	Syrian Hamster	BD Biosciences	743241
TCRγδ	GL3	Armenian Hamster	BioLegend	118124
IFNγ	XMG1.2	Rat	BioLegend	505813
IL-4	11B11	Rat	BD Biosciences	562915
IL-17A	TC11-18H10.1	Rat	BioLegend	506925

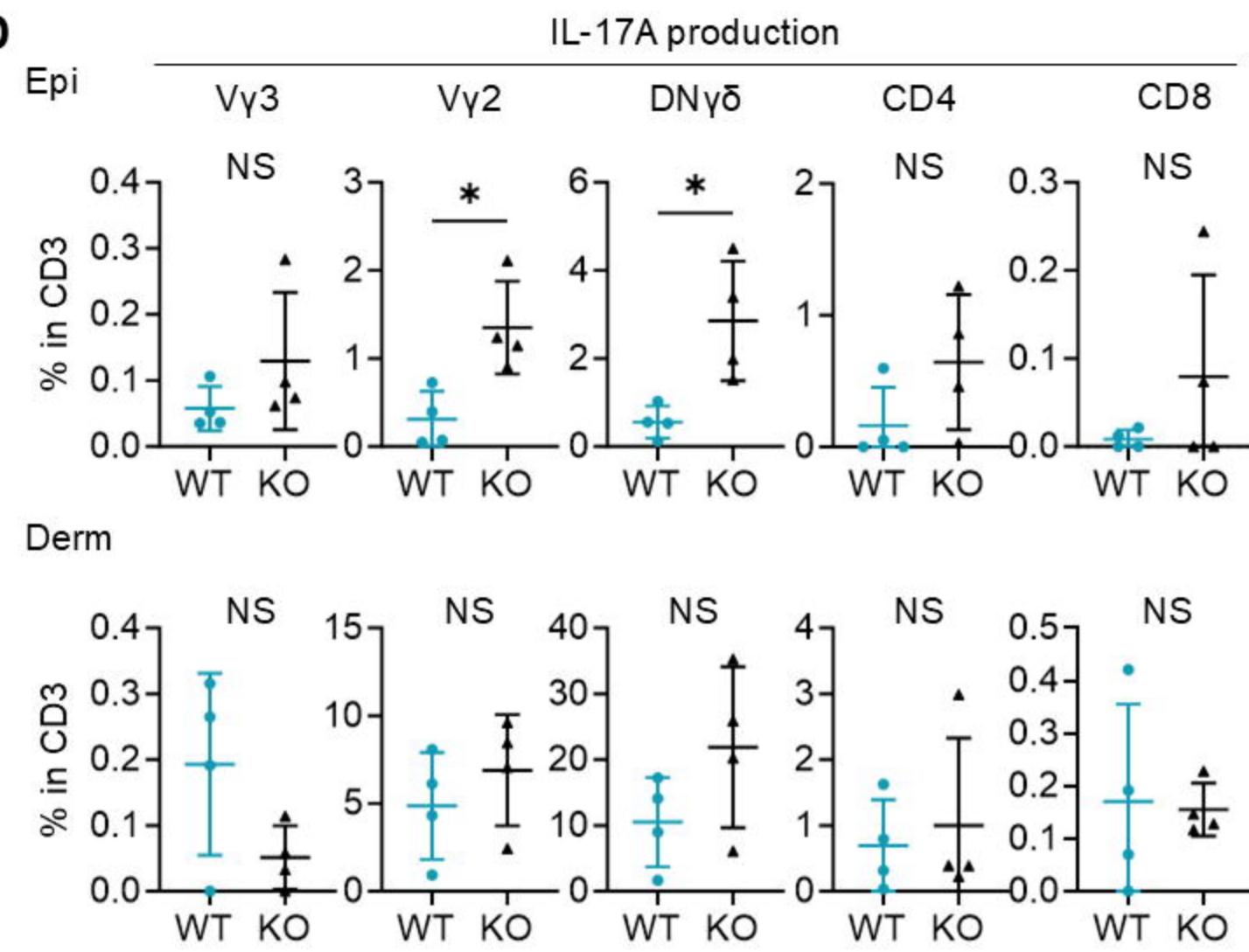
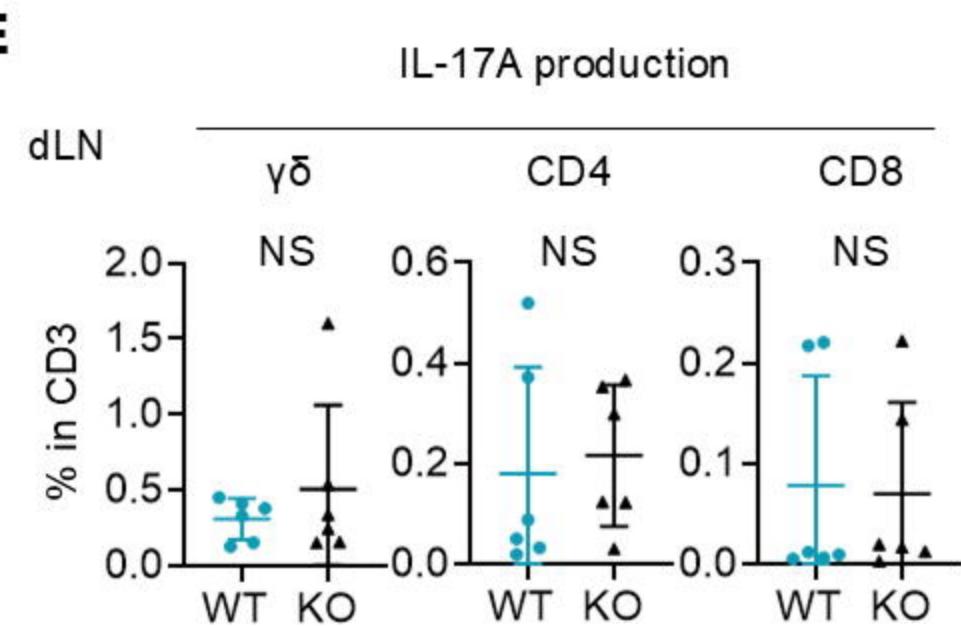








1046

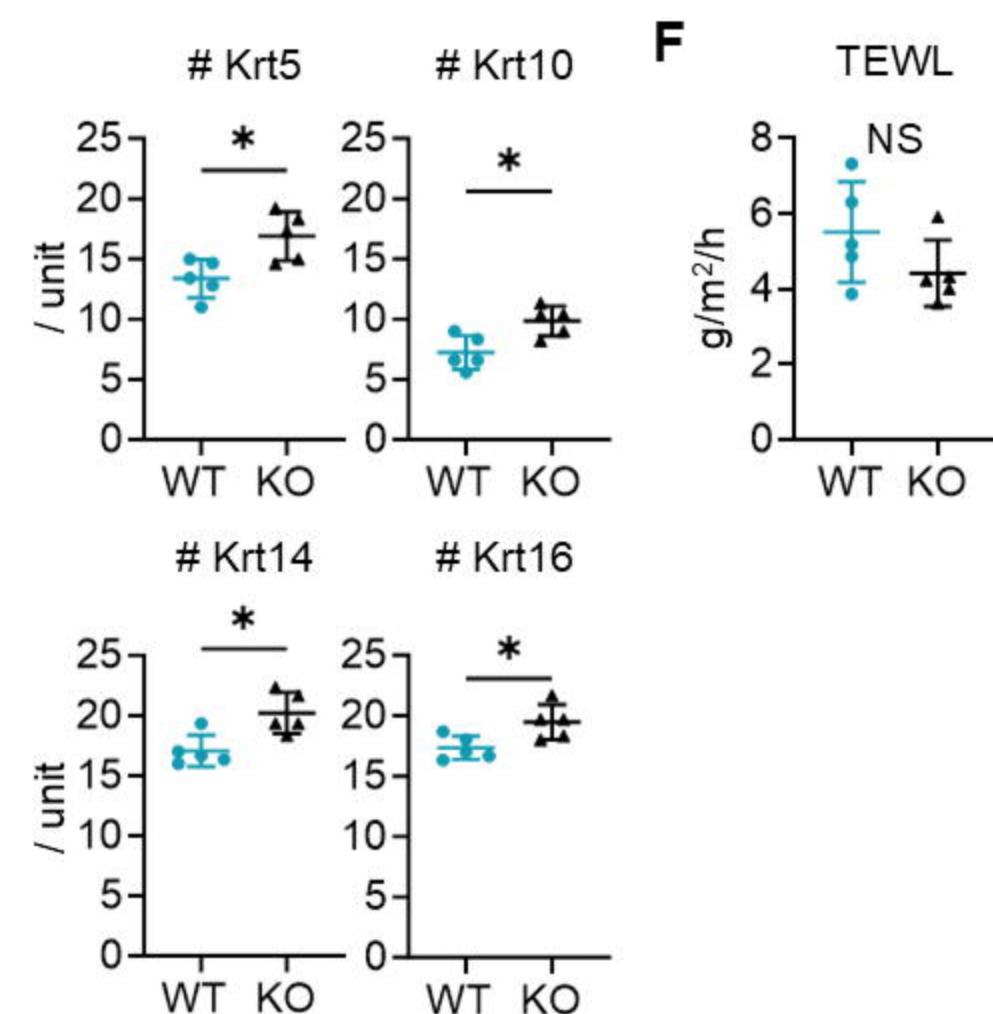
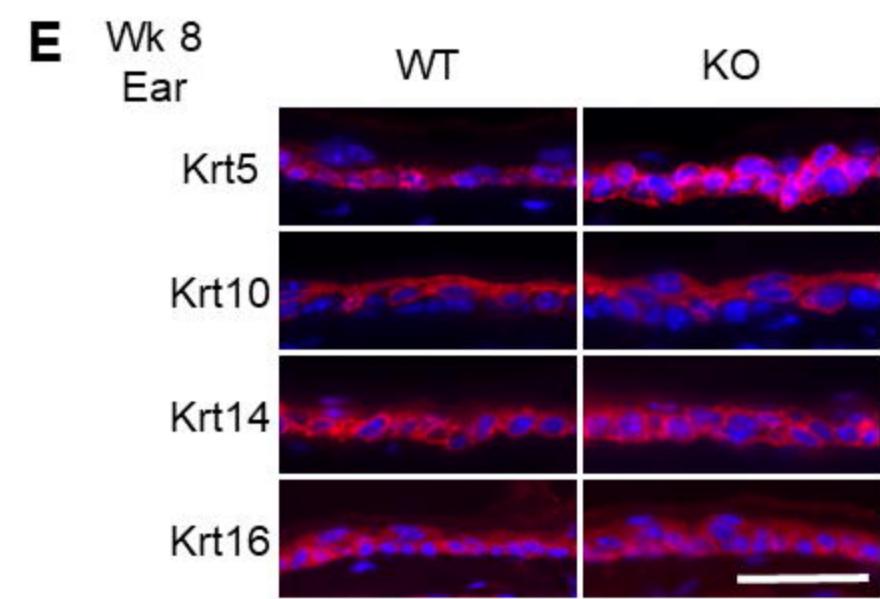
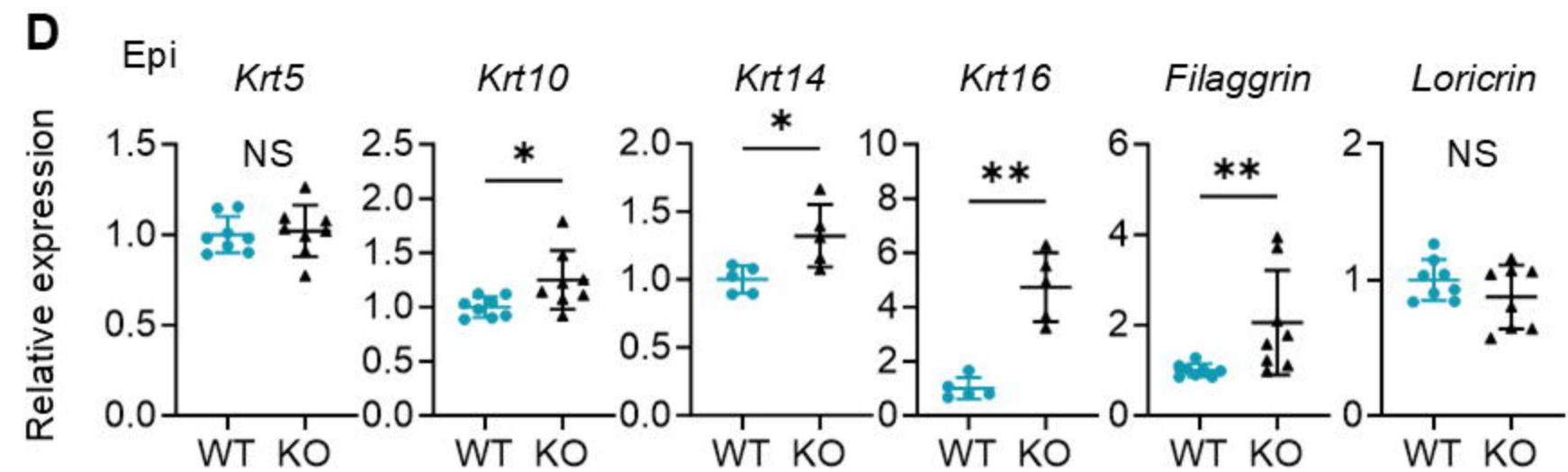
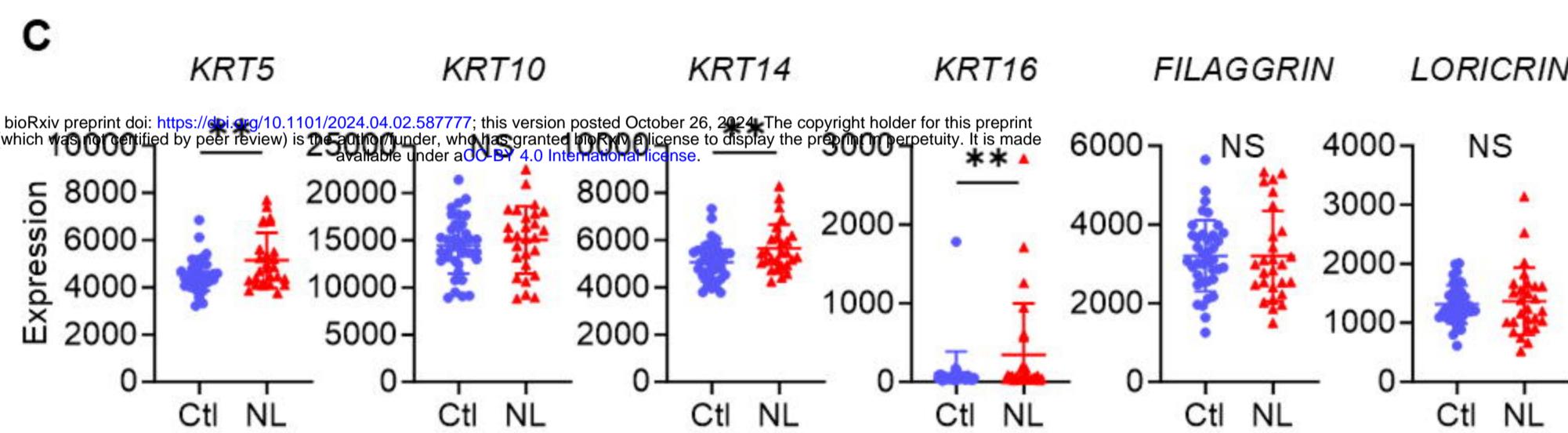
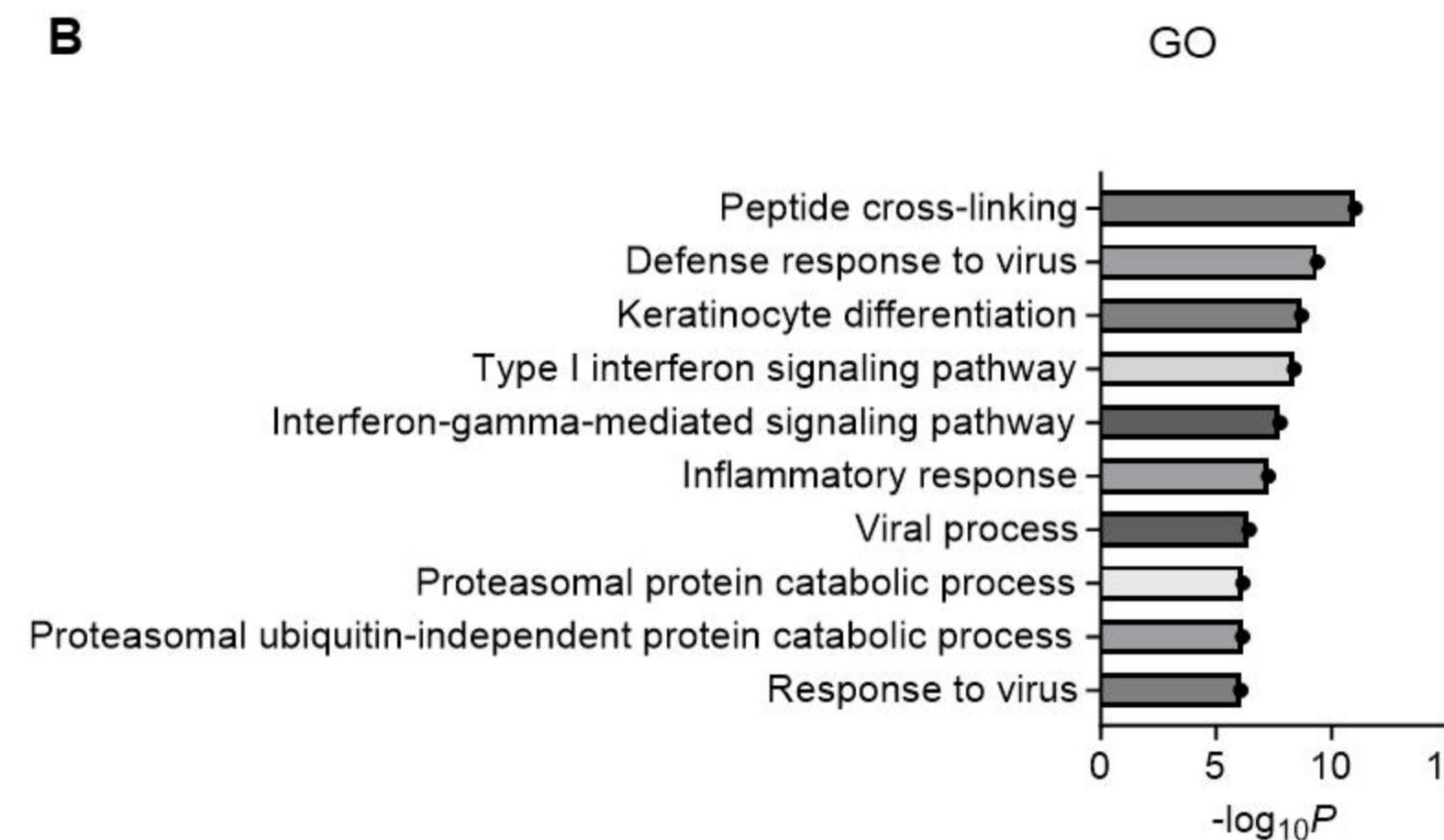
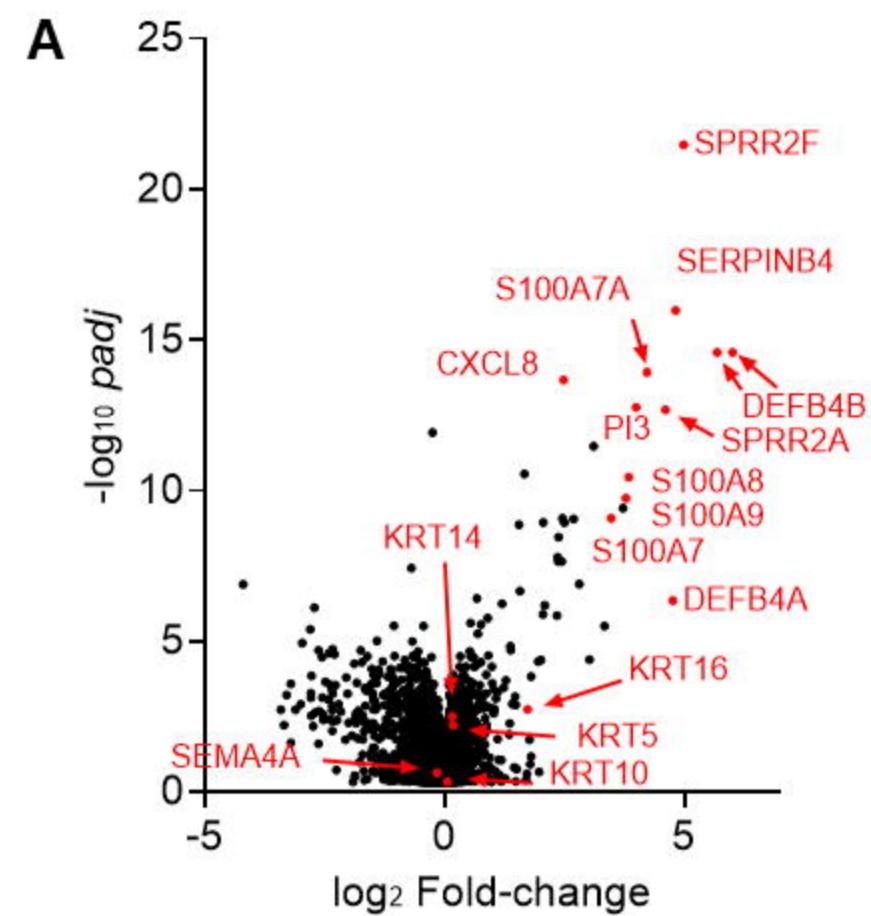
1047

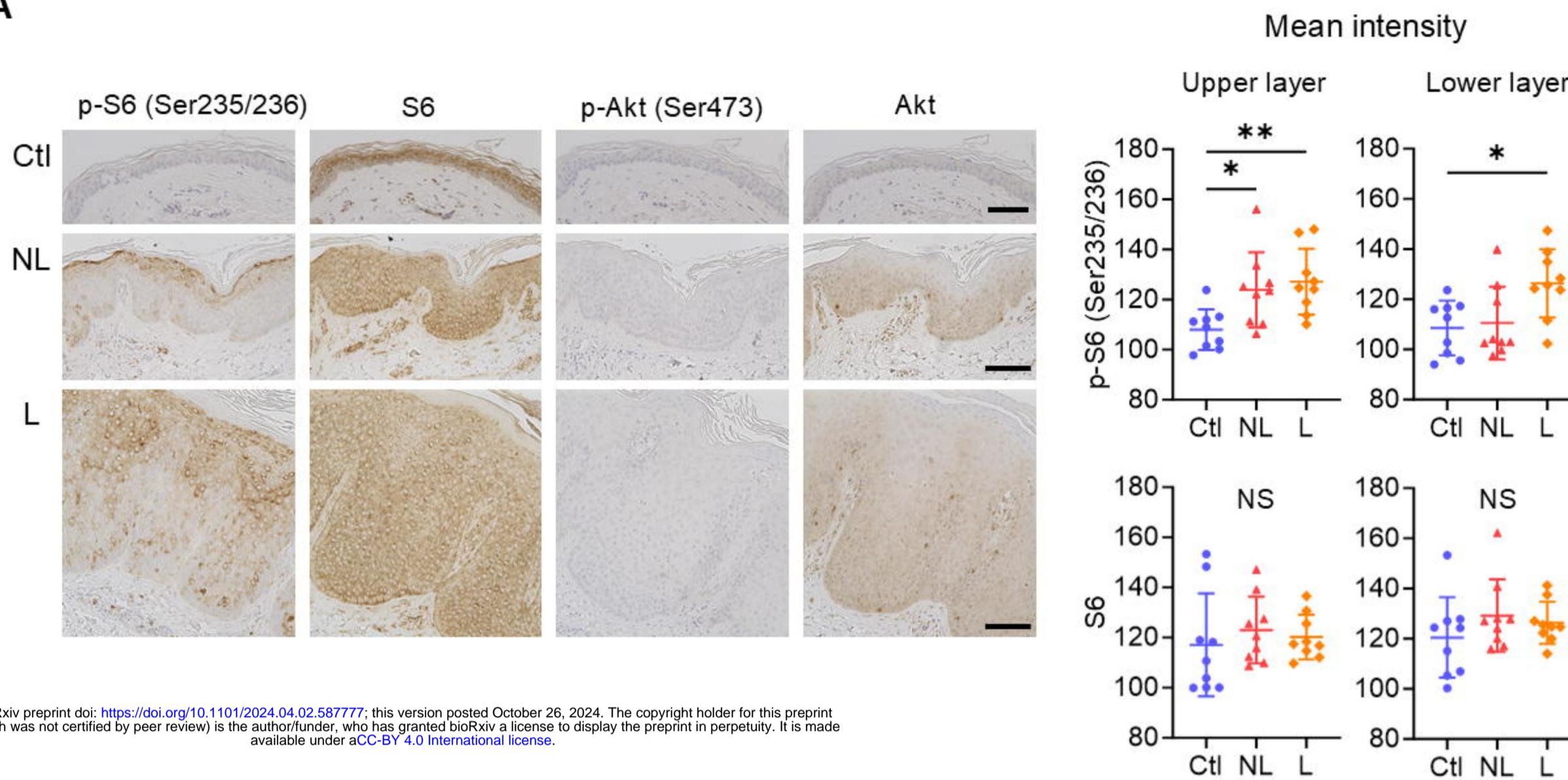



Table S5
Mouse recombinant cytokines




Cytokines	Supplier	Catalog
IL-1 β	BioLegend	575102
IL-6	BioLegend	575702
IL-23	BioLegend	589002
TGF β 1	BioLegend	763102

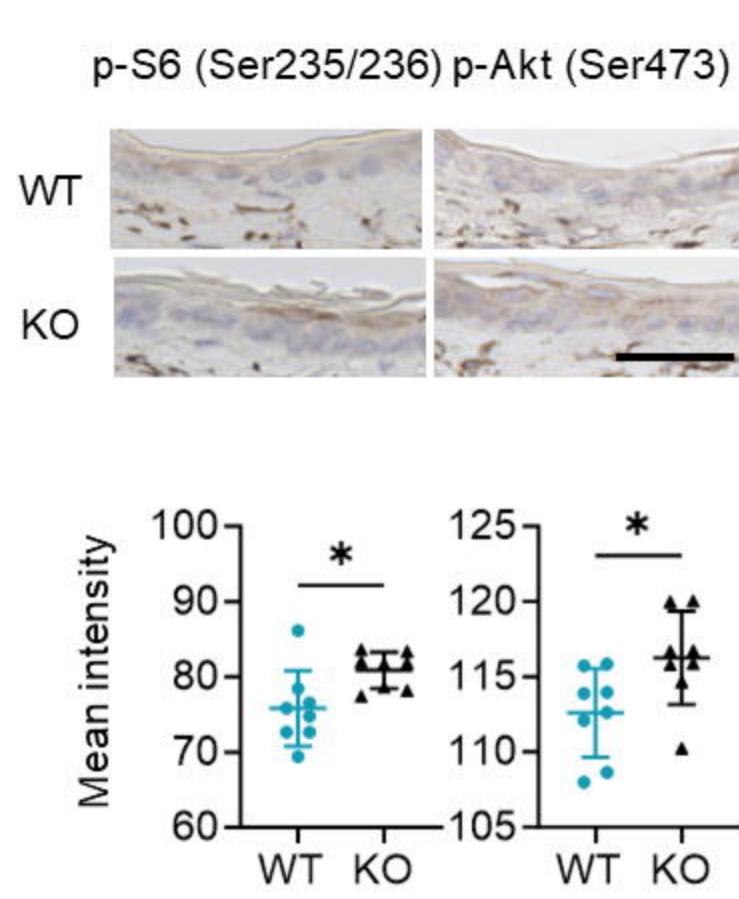
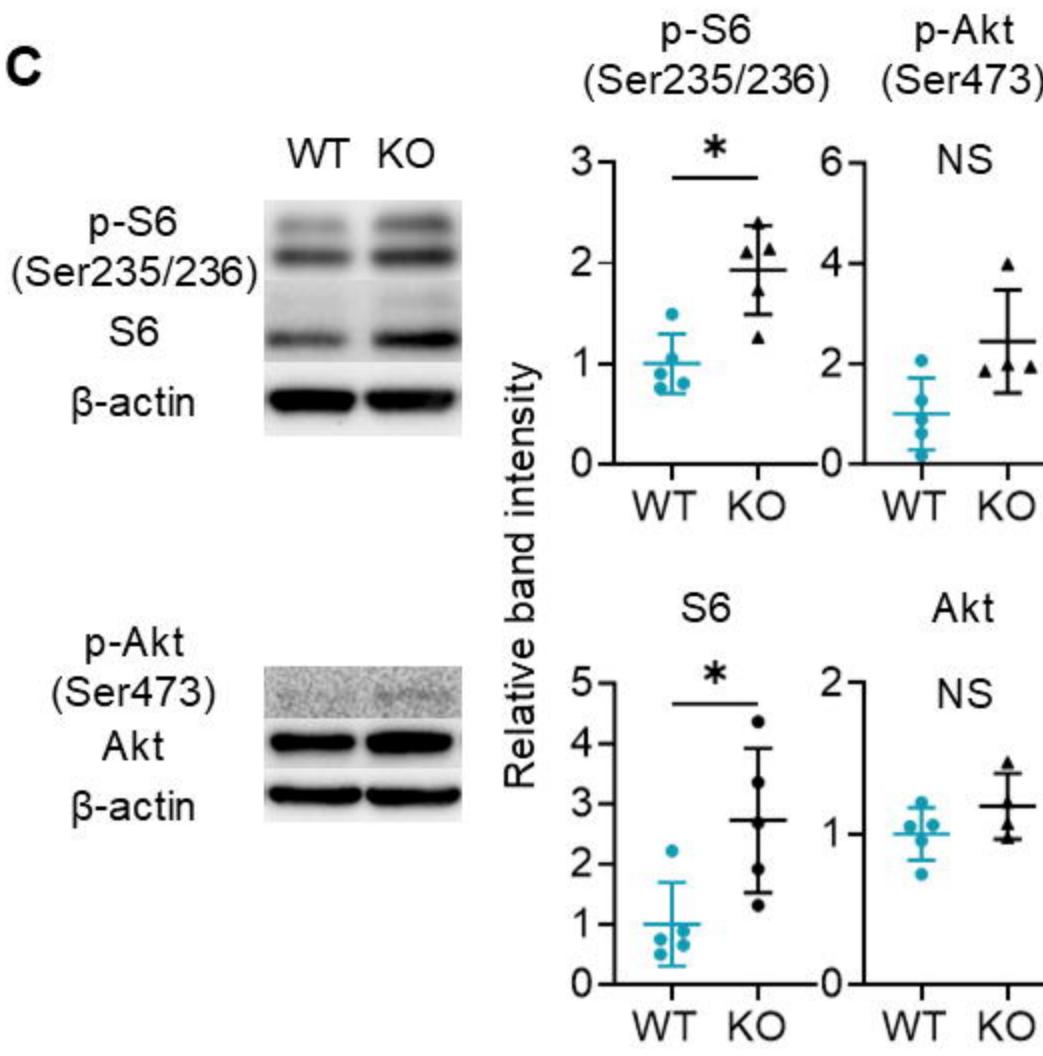
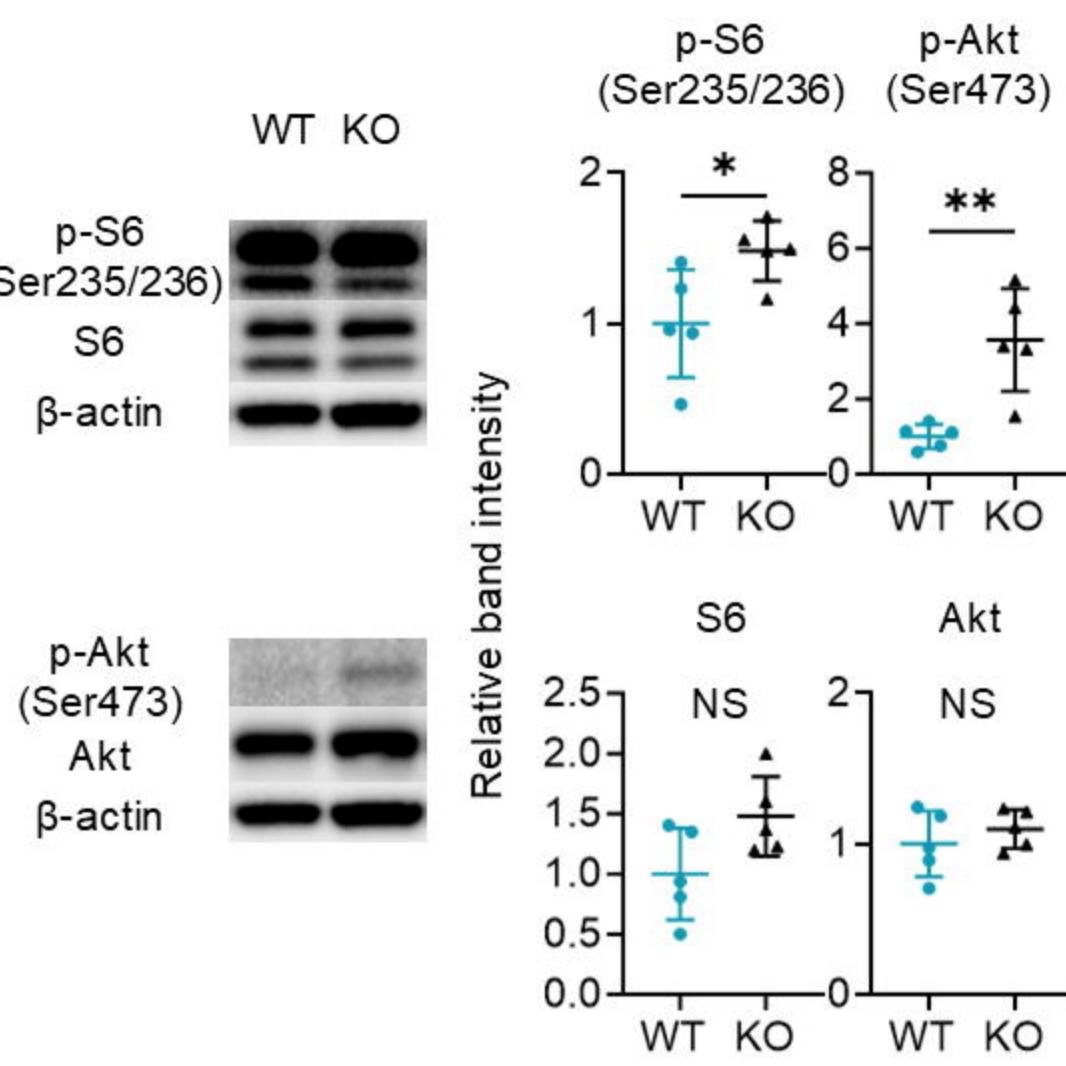
1048

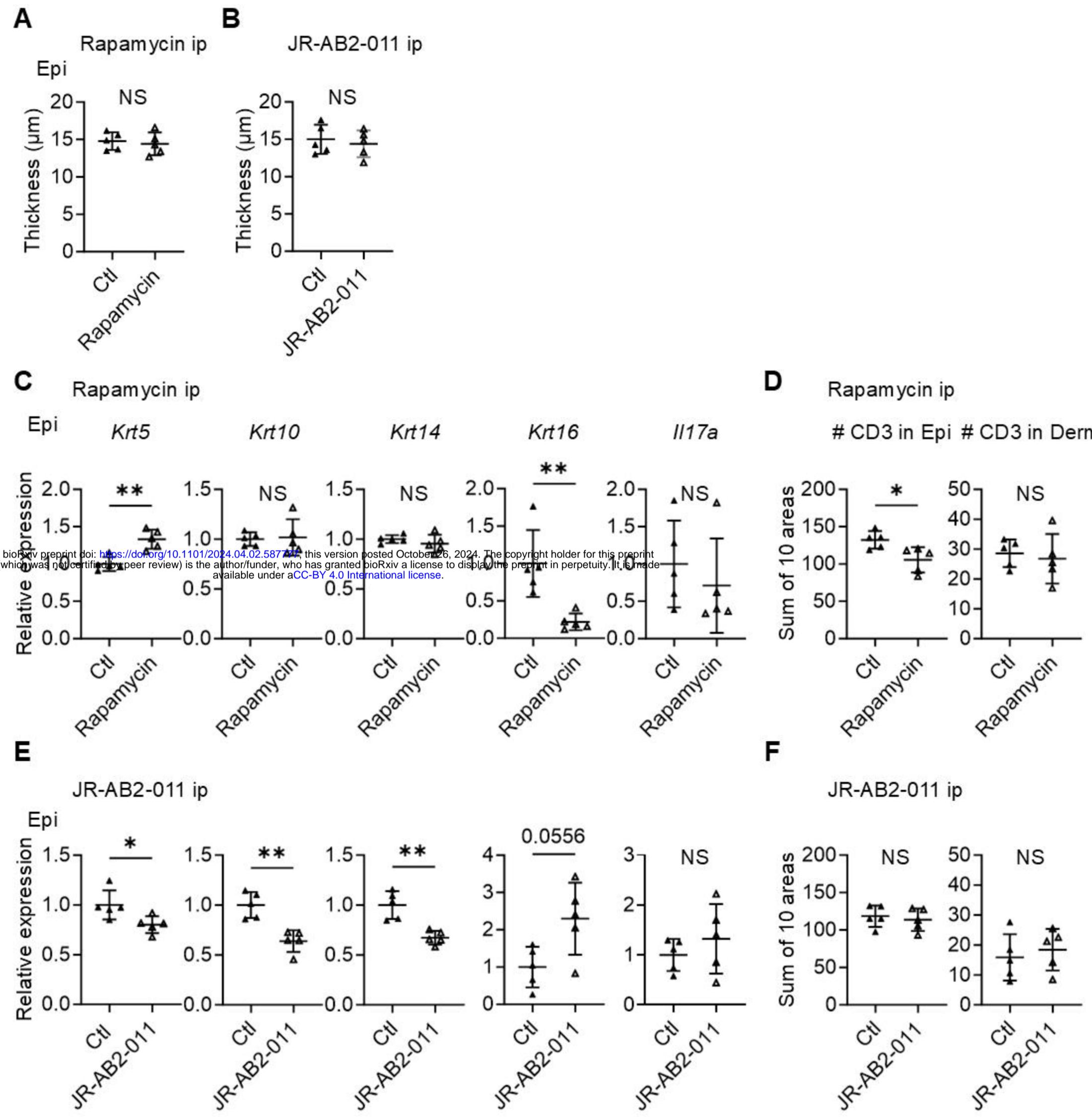





A**B****C**




bioRxiv preprint doi: <https://doi.org/10.1101/2024.04.02.587777>; this version posted October 26, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.


D**E**

A

bioRxiv preprint doi: <https://doi.org/10.1101/2024.04.02.587777>; this version posted October 26, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

B**C****D**

