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Abstract

In the quest for accelerating de novo drug discovery, the development of efficient and accurate
scoring functions represents a fundamental challenge. This study introduces iScore, a novel
machine learning (ML)-based scoring function designed to predict the binding affinity of
protein-ligand complexes with remarkable speed and precision. Uniquely, iScore circumvents
the conventional reliance on explicit knowledge of protein-ligand interactions and full picture
of atomic contacts, instead leveraging a set of ligand and binding pocket descriptors to evaluate
binding affinity. This approach avoids the inefficient and slow conformational sampling stage,
thereby enabling the rapid screening of ultra-huge molecular libraries, a crucial advancement
given the practically infinite dimensions of chemical space. iScore was rigorously trained and
validated using the PDBbind 2020 refined set, CASF 2016, and CSAR NRC-HiQ Setl/2,
employing three distinct ML methodologies: Deep Neural Network (iScore-DNN), Random
Forest (iScore-RF), and eXtreme Gradient Boosting (iScore-XGB). A hybrid model, iScore-
Hybrid, was subsequently developed to incorporate the strengths of these individual base
learners. The hybrid model demonstrated a Pearson correlation coefficient (R) of 0.78 and a
root mean square error (RMSE) of 1.23 in cross-validation, outperforming the individual base
learners and establishing new benchmarks for scoring power (R = 0.814, RMSE=1.34), ranking

power (p = 0.705), and screening power (success rate at top 10% = 73.7%).
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1. Introduction:

Molecular docking is undoubtedly the most widely used technique in structure-based computer
aided drug discovery that aims to predict the binding mode and binding affinity of small organic
molecules toward a target protein.! The performance (speed and accuracy) of a molecular
docking program strongly depends on its two main components, sampling and scoring.?
Sampling refers to a search algorithm that evaluates a finite number of ligand conformations
within and around the binding site of a target protein to elucidate the ligand binding mode.
Scoring refers to a class of computational methods, called scoring functions, that are formulated
to predict the binding affinity of each ligand conformation within the protein binding site.® The
performance of a scoring function can be determined by three evaluation metrics:* “scoring
power” that indicates the degree of correlation in the predicted versus experimentally
determined binding affinity values, “ranking power” that is the capability of the scoring
function to accurately rank a given set of active ligands with respect to their predicted binding
affinity values, toward a particular protein target, and “screening power” that refers to the
ability of the scoring function to identify the true ligand with the highest affinity against a given
protein target among a set of random decoy molecules. While the scoring part of a typical
molecular docking calculation is relatively fast, the sampling part is time consuming,
computationally expensive, and inefficient.> Therefore, in traditional molecular docking and
virtual screening, the calculation time and cost scale exponentially with increasing number and
degree of freedom of molecules under evaluation. On the other hand, the size of available
molecular databases for virtual screening is extremely limited (several million up to a few
billion molecules) that covers only a tiny part of the actual chemical space which is predicted

to be as large as ~10% feasible drug-like molecules.®

Traditional scoring functions can be categorized into the three main classes force-field based,
empirical, and knowledge-based, depending on the way they are formulated.” Despite
significant improvements in the last decade, several recent studies clearly show that the
performance of traditional scoring functions is quite limited in both scoring power and ranking
power aspects.® On the other hand, the most successful scoring approaches such as free energy
perturbation (FEP) techniques,® are very sensitive to the force field selection and ligand
parameterization. Moreover, a wider application of FEP methods has been seriously limited
because of their very high computational demands, even for small size libraries. Recent
breakthroughs in Machine Learning (ML) algorithms and big data mining along with an

exponential growth of computing power, have led to promising applications of ML techniques
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in development of novel scoring functions.'® ML-based scoring functions have demonstrated
remarkable performance in various benchmarking studies,'! and are in general several orders

of magnitude faster than traditional scoring functions.

Regardless of classification, all scoring functions developed to date share a common obstacle
that is they need a clear picture of explicit protein-ligand interactions (i.e., hydrogen bonds,
polar and hydrophobic interactions, Van der Waals contacts, etc.). It implies a prerequisite slow
and expensive sampling attempt prior to scoring calculation. Hence, even though modern ML-
based scoring functions are significantly faster and more accurate, their implementation in a
molecular docking pipeline could barely resolve the aforementioned drawbacks because of the
vital sampling stage bottleneck.

In this study, we introduce a novel ML-based scoring function (iScore) that quickly and
precisely predicts the binding affinity of protein-ligand complexes without the need for
knowledge of explicit intermolecular interactions. Instead, iScore predicts the protein-ligand
binding affinity based on a combination set composed of the ligand and binding pocket
descriptors. Therefore, the sampling stage can be skipped, which leads to a massive saving in
time and resources. On the other hand, since the iScore architecture is independent of explicit
intermolecular interactions, it can be employed to score and rank a huge library of de novo
small molecules against a protein target of interest, that greatly assists researchers to evaluate
“unseen” regions of chemical space. iScore has been trained on the PDBbind 20202 refined
set using three different ML approaches: Deep Neural Network (iScore-DNN), Random Forest
(iScore-RF), and eXtreme Gradient boosting (iScore-XGB). Furthermore, a hybrid scoring
function (iScore-Hybrid) has been developed by combining and taking advantage of these three
base-learners. The scoring power, ranking power, and screening power performances of iScore
have been extensively tested and compared to other traditional and ML-based scoring functions
using three different test sets: PDBbind 2016 core set (Comparative Assessment of Scoring
Functions, CASF-2016),* and two datasets from Community Structure- Activity Resource
(CSAR NRC-HiQ Setl and CSAR NRC-HiQ Set2).!® The authors believe that iScore opens

the door to a new era of de novo drug discovery and pharmaceutics.
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2. Materials and Methods

2.1. Dataset preparation

The iScore models have been trained on the PDBbind 2020 refined set as training dataset.?
The PDBbind 2020 refined set consists of 5,316 protein-ligand complexes along with the
associated experimental affinity data and is a cherry-picked subset of the PDBbind 2020
general set with over 23,496 complexes, by selecting the complexes without any obvious
structural issues or steric clashes, crystal resolution < 2.5 A, R-factor < 0.25, non-covalent
ligand binding, and affinity data reported as either Kq or Ki; in the range of 10 mM to 1 pM. A
full description of the criteria used for selecting the PDBbind refined set can be found in the
original paper.* The PDBbind 2016 core set, the first test set in our study and in the CASF-
2016 benchmarking, was selected from the PDBbind refined set by applying even stricter
criteria as follows: (1) The PDBbind refined set was subjected to a sequence similarity
clustering with a similarity cutoff of 90% and only the clusters containing more than 5 members
were considered, (2) five representative complexes were selected for each remaining cluster
based on their affinity data, with the highest and lowest affinities having at least 100-fold
difference, and three additional complexes, (3) the ligands should not be identical or
stereoisomers throughout the PDBbind core set, (4) the electron density map and the ligand
binding pose in each complex should be of high quality. It resulted in 285 protein-ligand
complexes clustered into 57 clusters in the PDBbind 2016 core set. Other two test datasets used
in this study are CSAR NRC-HiQ Setl and CSAR NRC-HiQ Set2 containing 176, and 167

high quality protein-ligand complexes, respectively.

Prior to database preparation, the overlapping complexes between the PDBbind 2020 refined
set and PDBbind 2016 core set were removed from the training set. In addition, the overlapping
complexes between PDBbind 2020 refined set and CSAR NRC-HiQ Set1/Set2 were removed
from the latter. The crystal structures were subsequently prepared using the PrepWizard in the
Schrodinger 2023-2 program package (https://www.schrodinger.com/). Hydrogen atoms were
incorporated, and missing side chain atoms were added using Prime. After fixing the potential
structural defects, water molecules were removed from the complexes and the protonation
states of ionizable residues were determined at pH = 7.0 by using PROPKA.** The correct
protonation states of the ligand molecules were determined at pH = 7.0 using Epik.!® The
prepared complexes were further refined using the OPLS4 force field'® in a restrained
minimization procedure with an RMSD threshold of 0.3 A for all heavy atoms. The complexes

which failed during the preparation stage were discarded. The final prepared datasets contain
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4898 (PDBbind 2020 refined set), 285 (PDBbind 2016 core set), 68 (CSAR NRC-HiQ Setl),
and 75 (CSAR NRC-HiQ Set2) complexesrespectively. The PDB codes in each dataset are
listed in Table S1.

2.2. Descriptor Calculations

2.2.1. Ligand descriptors

The 3D structures of the ligand molecules were converted to the corresponding canonical
Simplified Molecular-Input Line-Entry System (SMILES)*’ strings and subsequently a series
of 81 1D/2D molecular descriptors were calculated using the RDKit library
(https://www.rdkit.org) in Python such as: logarithm of partition coefficient (MolLogP),
molecular refractivity (MolMR), exact molecular weight (ExactMolWt), number of heavy
atoms (HeavyAtomCount), number of hydrogen bond acceptors (NumHAcceptors), number of
hydrogen bond donors (NumHDonors), number of rotatable bonds (NumRotatableBonds), etc.
A full list of the molecular descriptors used in this study is presented in Table S2. Figure S1
shows the histogram distribution of some molecular descriptors of the ligands in the training

set along with the logarithmic form of the experimental binding affinity values (pKaf).
2.2.2. Binding pocket descriptors

The FPocket!® tool was employed to calculate 41 descriptors of the protein binding pocket such
as pocket volume (pock_vol), number of alpha spheres (nb_AS), mean alpha sphere radius
(mean_as_ray), mean alpha sphere solvent accessibility (mean_as_solv_acc), Polarity Score
(polarity_score),  Hydrophobicity = Score  (hydrophobicity score), Charge  Score
(charge_score), Volume Score (volume_score), amino acid composition, etc. The protein
binding pocket was explicitly defined by all atoms situated at a certain cutoff distance from the
ligand molecule (3-7 A). The initial assessments showed that a cutoff distance of 5 A resulted
in the best training and binding affinity prediction performance. A full list of the binding pocket
descriptors is presented in Table S2. Figure S2 shows the histogram distribution of some
descriptors of the binding pocket in the training dataset. Furthermore, FPocket suggests an
intuitive estimation of the volume of potential ligands (LigVolgr) which was used in this study
as a descriptor in training of the scoring models and as a key feature in training of the Ultra-
Fast Screening (UFS) model which was used to improve the screening power performance by

further filtering false positives (section 2.4.3).
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2.3. Machine Learning Algorithms

iScore has been trained using three different ML approaches: Deep Neural Network (DNN),*°
Random Forest (RF),? and eXtreme Gradient boosting (XGB).?! In this study, the
hyperparameters of the iScore-RF and iScore-XGB models were automatically tuned with the
Bayesian optimization (BO)?? technique implemented in the Scikit-learn? version 1.0.2, while
Keras version 2.4.3 (https://keras.io)** was employed for hyperparameter optimization of the
iScore-DNN model. A 3-fold cross-validation was used to evaluate various hyperparameter
combinations, and root mean squared error (RMSE) was utilized as the object function. The

maximum number of iterations was set to 200.
2.3.1. Deep Neural Network (DNN)

The Keras package version 2.4.3 in Python 3 was employed to build the iScore-DNN model.
The DNN model consists of five layers: an input layer with 350 neural nodes, three hidden
layers with 250, 150, and 50 neural nodes, and an output single node layer. The RELU?®
activation function was used for all layers except the output layer where a LINEAR activation
function was employed. The loss function and evaluation metric were set to Mean-Absolute-
Error and Mean-Squared-Error, respectively. An Inverse-Time-Decay scheduler with an initial
learning rate of 0.001, decay rate of 0.3, and decay steps of 8000 was used to properly lower
the learning rate during the training process with Adam optimizer and 100 epochs. iScore-DNN
was trained through 10x10-fold cross validation (XV) with random data shuffling in each XV

loop. The final output was an average value over 100 DNN XV models.
2.3.2. Random Forest (FR)

The Scikit-learn package version 1.0.2 in Python 3 was used to build the iScore-RF model. The
random forest consisted of 200 decision trees (n_estimators) with min_samples_split
(minimum number of samples required to split an internal node) = 2, min_samples_leaf
(minimum number of samples required to be at a leaf node) = 1, max_features (number of
features to consider when looking for the best split) = “auto”. The criterion was set to Mean-
Squared-Error and the estimators were allowed to expand until all leaves were pure. iScore-RF
was trained through 10x10-fold XV with a random data shuffling in each XV loop. The final

output was an average value over 100 RF XV models.

2.3.3. eXtreme Gradient Boosting (XGB)
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The XGBoost package version 1.5.2 in Python 3 was used to build the iScore-XGB model. The
hyperparameters of the XBG trainer are n_estimators (number of estimators) = 1000,
learning_rate = 0.01, subsample (Subsample ratio of the training instances prior to growing
estimators) = 0.7, colsample_bytree (subsample ratio of columns when constructing each tree)
= 1.0, max_depth (maximum depth of an estimator) = 8, and objective (regression type) =
“reg:squarederror”. iScore-XGB was trained through 10x10-fold XV with a random data

shuffling in each XV loop. The final output was an average value over 100 XGB XV models.
2.3.4. Hybrid Model

A hybrid scoring function (iScore-Hybrid) was developed by combining the iScore-DNN,
iScore-RF, and iScore-XGB models. For this purpose, the average predicted affinity values
over 100 XV of each model (iScore-DNN, iScore-RF, and iScore-XGB) along with
experimental affinity data were fed into a DNN trainer. The iScore-Hybrid model consists of
four layers: an input layer with 100 neural nodes, two hidden layers with 50 and 10 neural
nodes, and an output single node layer. The RELU activation function was used for all layers
except the output layer where a LINEAR activation function was employed. The loss function
and evaluation metric were set to Mean-Absolute-Error and Mean-Squared-Error, respectively.
An Inverse-Time-Decay scheduler with an initial learning rate of 0.001, decay rate of 0.3, and
decay steps of 8000 was used to properly lower the learning rate during the training process
with Adam optimizer and 100 epochs. iScore-Hybrid was trained through 10x10-fold XV with
a random data shuffling in each XV loop. The final output was an average value over 100 DNN
XV models.

2.4. Evaluation Metrics

2.4.1. Scoring power

“Scoring power” indicates the degree of correlation in the predicted versus experimentally
determined binding affinity values. Hence, the Pearson correlation coefficient (R) was
computed as a quantitative indicator of the scoring power (Eq. 1).* The root mean squared error
(RMSE) of the regression was also considered as additional indicator (Eq. 2).*

i =i —y)

R = 1
VTG — 02 50— ) .

Z?(xi - yi)z )

n

RMSE =


https://doi.org/10.1101/2024.04.02.587723
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.02.587723,; this version posted April 3, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

where, x;, y;, X, and ¥ are the estimated and experimental binding affinities of the i"" complex
and the corresponding average values, respectively. The summation upper limit (n) is the total
number of complexes i.e., 4898 (PDBbind 2020 refined set), 285 (PDBbind 2016 core set), 68
(CSAR NRC-HiQ Setl), and 75 (CSAR NRC-HiQ Set2).

2.4.2. Ranking power

“Ranking power” refers to the capability of the scoring function in ranking a given set of active
ligands, with respect to their predicted binding affinity values, towards a particular protein
target. The PDBbind 2016 core set contains 285 protein-ligand complexes clustered into 57
clusters. Each cluster contains a particular target receptor and 5 different active binders where
the difference between binding affinities of the strongest and weakest binders is at least 100-
fold. Figure S3 shows a boxplot of experimental binding affinity values for each of the 57
clusters in the PDBbind 2016 core set. The Spearman ranking correlation (p, Eq. 3)* was used
as an indicator of the ranking power (as in the CASF-2016 benchmarking) since in contrast to
scoring power, ranking power does not request a linear correlation between experimental and

predicted binding affinity values.

) EHn Ty = T)
JEG — TR S Gy — )2

@)

where, rx;, ry;, 7x, and 7y are the rank of the estimated and experimental binding affinities of
the i complex and the corresponding average values, respectively. The summation upper limit
(n) is the total number of samples in each cluster, that is five in this case. The average Spearman
ranking correlation, < p >, was subsequently calculated over all 57 target proteins in the
PDBbind 2016 core set.

2.4.3. Screening power

“Screening power” indicates the ability of a scoring function to identify the true binder with
the highest affinity against a given protein target among a set of random decoy molecules. The
first quantitative reference metric of screening power is the success rate of identifying the
ligand with highest affinity against each 57 target receptors, in the PDBbind 2016 core set,
among the 1, 5, and 10% predicted top candidates. The second indicator is the success rate of

identifying all binders with experimental binding affinity values less than 10 mM (pK,; = 2),
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10 uM (pK4; = 5), 1 uM (pK4 = 6),0.1 uM (pK4 = 7),0.01 uM (pK; = 8),and 1 nM (pK,; =
9), among the 1, 2, 3, 5, and 10% top candidates over all 285 complexes. There are 285, 213,
167, 117, 75, and 39 binders with experimental binding affinity values less than 10 mM, 10
UM, 1 uM, 0.1 uM, 0.01 puM, and 1 nM in the PDBbind 2016 core set, respectively.

The screening power performance of the iScore models was further improved by a “Ultra-Fast
Screening” (UFS) stage prior to the binding affinity prediction. In the UFS stage, the ligands
that volumetrically do not match with a given receptor’s binding pocket (too big or too small)
will be filtered out. One of the features that FPocket tool predicts, after receptor’s binding
pocket evaluation, is an intuitive estimation of the volume of potential binders (LigVolgp) that
strongly correlates with the receptor’s binding pocket volume (pock _vol) (Figure 1a). Hence,
an RF-based regression model was trained to calculate LigVolgr based on 2D molecular
descriptors (LigVolpred). From the correlation graph, 99% prediction band (Figure 1b) was
calculated upon 3x10-fold XV and was used in the UFS stage, so that only the ligands with
predicted volumes (LigVolpred) Within the 99% prediction band of the LigVolgpr value were
allowed to pass to the scoring stage. The trained RF volume-predictor was tested on three test
sets used in this study (PDBbind 2016 core set, CSAR NRC-HiQ Setl and Set2) and the results
show a very close to perfect correlations (Figures 1c — 1e).
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Figure 1. (a) The strong correlation between the LigVolge and pock_vol. (b) The correlation

between LigVolpred estimated from 2D molecular descriptors and LigVolsp with 99% prediction

band region calculated upon 3x10-fold XV on the training set. The performance of the RF
volume predictor on (c) the PDBbind 2016 core set, (d) the CSAR NRC-HiQ Setl and (e) the
CSAR NRC-HiQ Setl. The Pearson correlation coefficients (R) are shown in each graph.
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2.5. Results
2.5.1. Training

Figures 2a-2d show the 25%-75% boxplot presentation and distribution of Pearson (R) and
Spearman (p) correlation coefficients along with the mean, median and standard deviation (SD)
values for the models trained with different ML algorithms (base-learners) and the hybrid
model, upon 10x10-fold XV training campaign. The mean Pearson coefficients are 0.75, 0.75,
0.77, and 0.78 for the iScore-DNN, iScore-RF, iScore-XGB, and iScore-Hybrid models
respectively. The SD profile of the Pearson coefficient is similar for all models and lies in the
range of 0.01- 0.02. As the figures indicate, the mean Spearman coefficients (p) are slightly
lower than the mean Pearson coefficients, but the same SD values have been observed. Figure
2e shows the RMSE statistics for three base-learners along with the hybrid model. The mean
RMSE values are 1.32, 1.30, 1.25, and 1.23 for iScore-DNN, iScore-RF, iScore-XGB, and
iScore-Hybrid models, respectively. The SD profiles of the RMSE metric are similar and cover
the range of 0.04 — 0.05. The results clearly show that iScore-Hybrid outperforms the base-
learners with higher mean Pearson and Spearman correlation coefficients and lower mean

RMSE value upon the cross-validation training campaign.

To further understand the better performance of iScore-Hybrid over the three base-learners, the
plots of the squared error (squared difference between the experimental and the predicted
pKaff) versus the experimental pKas (Figure 3) associated to each model, have been deeply
explored. As Figure 3 illustrates, there are three distinct regions which are quantitatively
distinguished after fitting the data into a Piecewise Linear function with three segments
(PWL3). The first region (green area) is the trust-zone in the mid-range pKas Spectrum where
the PWL3 function forms a horizontal line indicating the most reliable range of pKas that the
model can predict at the maximum accuracy (minimum error). The other two regions are at the
two ends of the experimental pKas (yellow areas) where the PWL3 function forms nonzero-
slope lines. One can elucidate the overall performance of the models by comparing three
determinative factors: the trust-zone’s length (the bigger the better) and height (the lower the
better) and the absolute slope of the lines in the nonzero-slope regions (the lower the better).
The maximum trust-zone’s length is 5.82 [3.37, 9.19] and is found for iScore-DNN, while the
corresponding value is 3.30 [4.64, 7.94], 3.45 [4.55, 8.00], and 3.91 [4.20, 8.11] for iScore-RF,
iScore-XGB, and iScore-Hybrid, respectively. One the other hand, iScore-DNN has the
maximum trust-zone’s height of 1.53 followed by 1.12 (iScore-Hybrid), 0.99 (iScore-XGB),

and 0.97 (iScore-RF). Moreover, the minimum absolute slope of the lines in the nonzero-slope
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regions belong to iScore-Hybrid which are 1.60 and 0.98 at the low and high affinity limits,
respectively. The corresponding values are (1.63 and 1.38), (2.00 and 1.54), and (3.27 and
2.05), for iScore-XGB, iScore-RF, and iScore-DNN, respectively. Therefore, in the context of
the trust-zone length, iScore-Hybrid showed a better performance than two base-learners
iScore-RF and iScore-GXB. In the context of the trust-zone height, iScore-Hybrid outperforms
iScore-DNN by a considerable margin. Interestingly, iScore-Hybrid also showed the best
performance at the low and high affinity limits where the base-leaners suffer from lower
prediction accuracy.
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Figure 2. Boxplot presentation and distribution of Pearson (R; green) and Spearman (p; blue)
correlation correlations along with the mean, median and standard deviation (SD) values for
the (a) iScore-DNN, (b) iScore-RF, (c) iScore-XGB, and (d) iScore-Hybrid upon 10x10-fold
XV training campaign. (e) The RMSE statistics for the base-learners along with the hybrid
model.

30 30
! ¥ r - iScore-DNN! " i - iScore-RF

—— PWL3 Fit . —— PWL3 Fit
25+ = 254

Squared error
&

! A
L
Squared error
&

1

Experimental pK ¢ Experimental pK ¢

- iScore-XGB : ! i |+ iScore-Hybrid|
— PWL3 Fit = PWL3 Fit

254 . g 25 4

Squared error
&

1
Squared error
B
L

Experimental pK_« Experimental pK 4

Figure 3. Squared error versus experimental pKas obtained from each model upon 10x10-fold
XV training. The Piecewise Linear function with three segments (PWL3) fitted into the data
are shown in red. The green and yellow areas illustrate the trust-zone and nonzero-slope

regions, respectively.

2.5.2. Benchmarks

The scoring, ranking, and screening power performances of the iScore models were extensively
tested and compared to other traditional and ML-based scoring functions on three different test
sets: PDBbind 2016 core set (scoring, ranking, and screening power), and CSAR NRC-HiQ

Setl and Set2 (scoring performance).
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2.5.2.1. Scoring power

Figures 4a and 4b illustrate the scoring power performance of the iScore models versus 40
traditional and modern ML-based scoring functions in terms of the Pearson correlation
coefficient and RMSE metrics tested on the PDBbind 2016 core set, respectively. As these
figures show, iScore-Hybrid outperforms the base-learners in the context of both scoring power
metrics (R = 0.814 and RMSE = 1.34) and stands among the top scoring functions. Two major
competitors are graphDelta?® and Kgeep?’. graphDelta is a ML graph-based scoring function
that employs a message passing neural network (MPNN) for modeling protein—ligand
interactions. graphDelta yielded the best scoring power metrics on the PDBbind 2016 core set
with R = 0.87 and RMSE = 1.05. Kgeep is also an ML-based scoring function which uses a 3D-
convolutional neural network for predicting the ligand binding affinities. Kgeep demonstrated a
very good scoring power performance on the PDBbind 2016 core set with R = 0.82 and RMSE
= 1.27. Nonetheless, these scoring functions, like any other scoring functions published up to
now, require a full picture of the protein-ligand interactions which imposes critical limitations
on their speed and applicability as discussed earlier. Figures 4c and 4d compare the Pearson
correlation coefficient and RMSE metrics of the iScore models against modern ML-based
scoring functions, tested on the CSAR NRC-HiQ Setland Set2, respectively. While iScore-
Hybrid is amongst the top 3 best performing scoring functions on the PDBbind 2016 core set,
it is at the top of the list when tested on the CSAR NRC-HiQ Setl (R = 0.834 and RMSE =
1.27) and Set2 (R = 0.767 and RMSE = 1.32). The iScore base-learners also outperform the
other scoring functions including graphDelta (R = 0.74, 0.65 and RMSE = 1.59, 1.52) and Kgeep
(R =0.72,0.75 and RMSE = 2.08, 1.91). As the test results indicate (Figure 4), iScore-XGB
and iScore-DNN are the best performing base-learners in terms of the Pearson correlation
coefficient and RMSE metrics on all three test sets, respectively.

Figure 5 illustrates the squared error (squared difference between the experimental and the
predicted pKasr) versus the experimental pKas associated to each iScore model obtained on the
PDBbind 2016 core set. The trust-zone’s lengths of iScore-Hybrid and iScore-DNN are similar
(~ 2.1 [6.0, 8.1]) while iScore-RF and iScore-XGB showed a higher value (~ 2.5 [5.5, 8.0]).
One the other hand, iScore-Hybrid has the minimum trust-zone’s height of 0.48 followed by
0.56 (iScore-DNN), 0.59 (iScore-RF), and 0.60 (iScore-XGB). Furthermore, iScore-Hybrid
shows the best performance at the low and high affinity limits where the absolute slope of the
lines in these regions are 1.10 and 1.67, respectively. The corresponding values are (1.12 and
1.72), (1.68 and 2.48), and (1.56 and 2.06), for iScore-DNN, iScore-RF, and iScore-XGB,
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respectively. Therefore, except the trust-zone’s length, iScore-Hybrid outperforms the base-

learners.
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Figure 4. Scoring power performance of the iScore models compared to other scoring
functions tested on (a, b) the PDBbind 2016 core set; and (c, d) the CSAR NRC-HiQ Setl and

Set2. Scoring functions are ranked by the Pearson correlation coefficients in descending order.
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Figure 5. The squared error versus the experimental pKas obtained from each model upon
testing on the PDBbind 2016 core set. The Piecewise Linear function with three segments
(PWL3) fitted into the data are shown in red. The green and yellow areas illustrate the trust-

zone and nonzero-slope regions, respectively.

2.5.2.2. Ranking power

Figures 6a-6d show the disaggregated and average (vertical red dashed lines) ranking
Spearman correlation coefficients (p) over the 57 targets in the PDBbind 2016 core set
evaluated by the iScore base-learners and the hybrid model. Figure 6e illustrates the raking
power performance of the iScore models (based on the average Spearman correlation
coefficient) and compares those with several other scoring functions. As this figure shows,
iScore-Hybrid (<p> = 0.705) outperforms not only the base-learners but all other scoring
functions in the ranking campaign. As Figure 6e indicates, iScore-Hybrid is followed by
iScore-RF (<p> = 0.702), iScore-DNN (<p> = 0.691), and iScore-XGB (<p> = 0.690),
respectively. It is worth mentioning that the ranking power performances of iScore models are
significantly better than Kgeep (<p> = 0.51) which was one of the major competitors in the

scoring power campaign.
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Figure 6. The ranking power performance of (a) iScore-DNN, (b) iScore-RF, (c)-iScore-XGB,
and (d) iScore-Hybrid on the CASF-2016 test set based on the Spearman correlation coefficient
of individual targets. (e) A comparison between the ranking power performance of the iScore
models and other scoring functions based on the average Spearman correlation coefficients

(vertical red dashed lines in (a)-(d)) over all targets.

2.5.2.3. Screening power

Figure 7(a) shows the screening power performance of iScore in terms of success rate of
identifying the highest affinity ligand of each of the 57 target receptors in the PDBbind 2016
core set, among the 1, 5, and 10% top candidates. Figure 7(a) demonstrates that the screening
performance of iScore (73.7% for iScore-Hybrid, iScore-XGB, and iScore-NDD and 68.4%
for iScore-RF) is considerably better than all other scoring functions in the screen power
campaign. Figure 7(b) illustrates the success rate of identifying all binders with the
experimental binding affinity values less than 10 mM (pK; = 2), 10 uM (pK; = 5), 1 uM
(pK4 = 6), 0.1 uM (pK; = 7), 0.01 uM (pK; = 8), and 1 nM (pK; = 9), among the 1, 2, 3,
5, and 10% top candidates over all 285 complexes in the PDBbind core set. As this figure
shows, the success rate of iScore increases as the pKq of the binder increases. For instance, the
success rate of iScore-Hybrid is 51.9, 61.5, 68.9, 81.2, 85.3, and 92.3% for identifying all
binders with experimental binding affinity values less than 10 mM, 10 uM, 1 uM, 0.1 uM, 0.01
UM, and 1 nM, among the 10% top candidates.

ss b en |Scsore Hg(béld i (b)
- IScore-,
Score pkd> 9 iScore-DNN
ASP@GOLD iScore-RF
Che -mPLP@som
cawwsAdc@uoE iScore-Hybrid
ChemScore pk >8 iScore-XGB
GlideScore? d |Scsore Dgﬁ
IScore-
o
S ke 71 B
nﬁg{n’%gsg p d iScore- DNN
el it iScore-RF
- ‘:unu@os
nnnnnn IGRMOE iScore-H: bnd
LUDI2@0S k.>6 iScore-,
- :gégg: piky> Score DNN
ore201 iScore-RF
PMFM@DS
wuu@us iScore-Hybrid
pk,> 5 iScorexGB B 10%
ChomScore@SYBYL d iScore-DNN o
''''''' iScore-RF - 5%
MF@SYBYL - 3%
X-Sce
X-ScoroHS. iScore-H brld Do
oro@SYBYL pk,>2 { iScore- I 2%
G-Score@SYBYL |Score-DNN - 1%
BSA iScore-RF 0

T T
40 60
Success rate (%)

20

40 60
Success rate (%)

Figure 7. (a) Comparison between screening power performance of iScore and other scoring
functions in success rate of identifying the highest affinity ligand of each of the 57 target

receptors in the PDBbind 2016 core set, among the 1, 5, and 10% top candidates. (b) the success
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rate of identifying all binders with experimental binding affinity values less than 10 mM
(pK4 = 2),10 uM (pK; = 5), 1 uM (pK; = 6), 0.1 uM (pKy = 7), 0.01 uM (pK,; = 8), and
1nM (pK; = 9), among the 1, 2, 3, 5, and 10% top candidates over all 285 complexes in the
PDBbind core set.

2.5.3. Speed performance

iScore was trained using a single compute node on the Alvis supercomputer allocated by the
C3SE supercomputing facility with one NVIDIA Tesla A100 HGX GPU (40GB RAM), 32
core Intel(R) Xeon(R) Gold 6338 CPU @ 2GHz, and 256GB DDR4 RAM. iScore is capable
of screening >8000 compound/s (~700 million screenings a day) on a single compute node: 32
core AMD Ryzen 9 7950X CPU, NVIDIA RTX A4000 GPU (16GB RAM), and 32GB DDR5
RAM.

2.6. Conclusions

This work introduces iScore, a cutting-edge ML-based scoring function designed to predict the
binding affinity of protein-ligand complexes with unprecedented precision and speed. Unlike
traditional scoring functions that rely heavily on the explicit knowledge of intermolecular
interactions, iScore leverages a novel approach. It utilizes a combination of ligand and binding
pocket descriptors, thereby bypassing the need for extensive conformational sampling. This
methodological innovation not only saves significant computational time and resources but
also provides the applicability to evaluate vast molecular libraries, offering a leap towards a
more efficient exploration of the chemical space. The benchmarking of iScore across multiple
datasets highlights its robustness and superior performance over traditional and advanced
scoring functions. Notably, the development of the hybrid iScore model (iScore-Hybrid),
which integrates the strengths of individual base learners, sets new benchmarks in scoring,
ranking, and screening capabilities essential for drug discovery processes. The innovation of
iScore is further underscored by its practical implications. The ability to screen over 8000
compounds per second on a single GPU translates to the screening of 700 million compounds
daily, illustrating the scalability and efficiency of iScore in handling ultra-large molecular
libraries. This capability is critical in accelerating the drug discovery process, from initial
screening to identification of lead compounds. The promising results of iScore not only sets a
new standard in scoring function development but also open a new era in the utilization of

machine learning technologies for drug discovery.
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Data Availability

The training datasets, pre-trained models, and instruction for the retraining is available by

contacting the authors.
Supporting Information

Additional information regarding the pdb codes used for the training and benchmarking,
database analysis, and molecular and binding pocket descriptors are available in the supporting

information.
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