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Abstract 40 

The ability of SARS-CoV-2 to evade antiviral immune signaling in the airway 41 

contributes to the severity of COVID-19 disease. Additionally, COVID-19 is influenced by age 42 

and has more severe presentations in older individuals.  This raises questions about innate 43 

immune signaling as a function of lung development and age.  Therefore, we investigated the 44 

transcriptome of different cell populations of the airway epithelium using pediatric and adult 45 

lung tissue samples from the LungMAP Human Tissue Core Biorepository. Specifically, lung 46 

lobes were digested and cultured into a biomimetic model of the airway epithelium on an air-47 

liquid interface. Cells were then infected with SARS-CoV-2 and subjected to single-cell RNA 48 

sequencing. Transcriptional profiling and differential expression analysis were carried out using 49 

Seurat.  50 

The clustering analysis identified several cell populations: club cells, proliferating 51 

epithelial cells, multiciliated precursor cells, ionocytes, and two biologically distinct clusters of 52 

ciliated cells (FOXJ1high and FOXJ1low). Interestingly, the two ciliated cell clusters showed 53 

different infection rates and enrichment of processes involved in ciliary biogenesis and function; 54 

we observed a cell-type-specific suppression of innate immunity in infected cells from the 55 

FOXJ1low subset.  We also identified a significant number of genes that were differentially 56 

expressed in lung cells derived from children as compared to adults, suggesting the differential 57 

pathogenesis of SARS-CoV-2 infection in children versus adults. We discuss how this work can 58 

be used to identify drug targets to modulate molecular signaling cascades that mediate an innate 59 

immune response and begin to understand differences in COVID-19 outcomes for pediatric vs. 60 

adult populations. 61 

 62 
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Importance 63 

Viral innate immune evasion leads to uncontrolled viral spread in infected tissues and 64 

increased pathogenicity in COVID-19. Understanding the dynamic of the antiviral signaling in 65 

lung tissues may help us to understand which molecular signals lead to more severe disease in 66 

different populations, particularly considering the enhanced vulnerability of older populations. 67 

This study provides foundational insight into the age-related differences in innate immune 68 

responses to SARS-CoV-2, identifying distinct patterns of infection and molecular signaling in 69 

different cell populations of airway epithelial cells from pediatric and adult lung tissues. The 70 

findings provide a deeper understanding of age-related differences in COVID-19 pathology and 71 

pave the way for developing targeted therapies. 72 

 73 

Introduction 74 

SARS-CoV-2, the virus responsible for the COVID-19 pandemic, is a positive-sense, 75 

single-stranded RNA virus that belongs to the coronaviridae family. SARS-CoV-2 binds host 76 

receptors for entry, and once inside the cell, the virus hijacks the host cell’s machinery to 77 

replicate its genome and produce viral proteins. Newly synthesized viral proteins and genomes 78 

assemble to create virions, which are then released from the cell where they can infect 79 

neighboring cells (1). During this process, host cell mechanisms for detecting the virus are in a 80 

race to prevent it from spreading to other cells. Viral infection induces secretion of type I and 81 

type III interferon, which leads to the induction of antiviral genes in the neighboring cells, 82 

making them resistant to viral infection through paracrine signaling (2-4). The balance between 83 

interferon secretion and viral spread determines the state of the innate immune response (2, 4). 84 
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A primary method for preventing the uncontrolled spread of SARS-CoV-2 after an 85 

organism has been infected is the robust induction of innate antiviral signaling cascades. Similar 86 

to other respiratory RNA viruses like Influenza, SARS-CoV-2 suppresses the antiviral host 87 

response. However, it has been demonstrated that SARS-CoV-2 can suppress the host's antiviral 88 

response to a much greater extent than influenza in animal models (5). Furthermore, the antiviral 89 

interferon response has been inversely correlated with COVID-19 pathology (3, 6, 7).  90 

Unsurprisingly, the inverse correlation between interferon secretion and severe 91 

coronavirus-related pathology is exacerbated in older age groups (7). In COVID-19, children 92 

generally experience milder acute illness; however, post-acute sequelae and Multisystem 93 

Inflammatory Syndrome in Children (MIS-C) occur in 1 of approximately 3,000 to 4,000 94 

pediatric cases (8-10). One of the objectives of the present study was, therefore, to compare 95 

innate immune responses to SARS-CoV-2 in cells from children versus adults, with the goal of 96 

identifying and understanding age-related differences in these signaling pathways.  97 

Interferon is the chief regulator of antiviral paracrine signaling, a mechanism by which 98 

cells adjacent to virus-infected cells can be driven into an antiviral state, thereby reducing viral 99 

spread. Many studies have interrogated this subject using cell lines, which don’t originate from 100 

the lung, or require the transduction of a known SARS-CoV-2 entry factor to support viral 101 

infection (5, 11, 12). Here, we have examined how these antiviral pathways are regulated after 102 

SARS-CoV-2 infection in primary human lung epithelial cells, using a biomimetic model 103 

cultured on an air-liquid interface that preserves the pseudostratification and differentiated 104 

functions of the normal lung epithelium. 105 

SARS-CoV-2 infection is predominantly initiated and spread through cells in the airway 106 

epithelium. The respiratory epithelium comprises many different cell types, and SARS-CoV-2 107 
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virions infect those cells as they move throughout the respiratory system (13).  Interestingly, the 108 

most commonly cited host entry factors for SARS-CoV-2 have heterogenous expression on cell-109 

types along the respiratory system and within the cells of the same type (14). Mild and 110 

asymptomatic infections are typically restricted to ciliated and goblet cells in the nasal passages 111 

or upper respiratory tract (14), while more severe illnesses and pathology occur when the virus 112 

travels down to the parenchyma, infecting and injuring type II alveolar cells, disrupting the 113 

epithelial layer and reducing gas exchange – resulting in shortness of breath and respiratory 114 

distress (1). Therefore, investigating the host response to SARS-CoV-2 in cells of the conducting 115 

airway is important in understanding and preventing severe COVID-19 pathology. Due to the 116 

heterogeneity of cell types in the lung epithelium, we utilized single-cell RNA sequencing to 117 

discern cell-type-specific host responses in cultured primary lung epithelial cells.  118 

 119 

Materials and Methods 120 

Ethics statement 121 

 122 

Donor lungs were provided through the federal United Network of Organ Sharing via 123 

the National Disease Research Interchange and the International Institute for Advancement of 124 

Medicine. With written consent, dissociated lung cells from deceased donors were entered into the 125 

LungMAP program’s biorepository and were utilized in this study. The University of Rochester’s 126 

Institutional Review Board approved and oversaw this study (RSRB00047606). 127 

 128 

Primary human cells 129 
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The LungMAP program’s biorepository was utilized in this study. The University of 130 

Rochester’s Institutional Review Board approved and oversaw this study (RSRB00047606). The 131 

study cohort included five infants (under six months old) and two adult donors (over fifty years 132 

old). All donors were male, two had an unknown race, and five were white. Pathologist notes 133 

from all donors showed normal lung structure; all pediatric donors had normal lung 134 

development, and both adult donors had some signs of chronic inflammation.  None of the 135 

pathologist notes indicated a lung-associated cause of death.  136 

 137 

Viruses   138 

The following reagents were deposited by the Centers for Disease Control and Prevention 139 

and obtained through BEI Resources, NIAID, NIH: SARS-Related Coronavirus 2, Isolate Hong 140 

Kong/VM20001061/2020, NR-52282. SARS-CoV-2 was propagated and titered using African 141 

green monkey kidney epithelial Vero E6 cells (American Type Culture Collection, CRL-1586) in 142 

Eagle’s Minimum Essential Medium (Lonza, 12-125Q) supplemented with 2% fetal bovine 143 

serum (FBS) (Atlanta Biologicals), 2 mM l-glutamine (Lonza, BE17-605E), and 1% penicillin 144 

(100 U/ml) and streptomycin (100 ug/ml). Virus stocks were stored at − 80°C. All work 145 

involving infectious SARS-CoV-2 was performed in the Biosafety Level 3 (BSL-3) core facility 146 

of the University of Rochester, with institutional biosafety committee (IBC) oversight.  147 

 148 

Cell culture on air-liquid interface  149 

Primary human lung cells were cultured on an air-liquid interface as described (15, 16). 150 

Briefly, lung tissue issues were digested with a protease cocktail, and adherent cells were 151 

expanded with bronchial epithelial cell growth medium (Lonza, CC-3170) and then transferred 152 
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to a collagen-coated transwell plate (Corning, 3470) until each well reached a transepithelial 153 

electrical resistance (TEER) measurement of >300 ohms. Cells were then placed on an air-liquid 154 

interface (ALI) by removing media from the apical layer of the transwell chamber and 155 

continuing to feed cells on the basolateral layer as they differentiate. Cells were differentiated for 156 

4-5 weeks at ALI before experiment use. 157 

 158 

SARS-CoV-2 infections of airway epithelial cells  159 

The apical layer of primary lung cells cultured at the air-liquid interface for 4-5 weeks 160 

was inoculated with SARS-CoV-2 (BEI, NR-52281, hCoV-19/USA-WA1/2020) at an MOI of 5 161 

(titered in VeroE6 cells) in phosphate-buffered saline containing calcium and magnesium 162 

(PBS++; Gibco, 14040-133) and incubated at 37°C for 1.5 hours. Next, the infectious solution 163 

was removed, and the apical layer was washed with PBS++ (PBS with added calcium and 164 

magnesium). Cells were then incubated for 48 hours. 165 

 166 

SARS-CoV-2 inactivation and scRNA-seq sample preparation  167 

Primary human lung cells infected with SARS-CoV-2 were prepared for scRNA-seq 168 

using a method described by this group (17, 18). Briefly, cultured cells were washed by 169 

dispensing and aspirating 37°C HEPES buffered saline solution (Lonza, CC-5022) and then 170 

dissociated with 0.025% Trypsin/EDTA (Lonza, CC-5012) for 10 min at 37°C. Dissociated cells 171 

were aspirated using a wide-bore pipette tip and placed in a tube containing ice-cold Trypsin 172 

Neutralization Solution (Lonza, CC-5002); this was repeated to maximize cell collection. Cells 173 

were then pelleted by centrifugation (300 x g for 5 min), resuspended in chilled HEPES, and 174 
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centrifugally pelleted again. Next, the supernatant was removed using a wide-bore pipette tip, 175 

and the cell pellet was resuspended in 100 µl of chilled 1X DPBS. Next, 1 ml of a chilled 1:1 176 

methanol acetone mixture was added to the cells dropwise with continuous gentle agitation. Cells 177 

were incubated on ice for 1 hour, washed in PBS++, counted, and finally resuspended in a cold 178 

SSC cocktail (3× Lonza AccuGENE SSC, BMA51205 + 0.04% BSA + 1mM DTT + 0.2 U/ µl  179 

RNase1 inhibitor).  180 

 181 

Library preparation and sequence mapping 182 

Following SARS-CoV-2 inactivation and rehydration, cell suspensions were processed to 183 

generate single-cell RNA-Seq libraries using Chromium Next GEM Single Cell 3′ GEM, Library 184 

and Gel Bead Kit v3.1 (10x Genomics), per the manufacturer’s recommendations, as 185 

summarized below. To minimize the addition of the rehydration buffer, a maximum of 4 µl cell 186 

suspension was used in the GEM (Gel Bead-in-Emulsion) generation step. Subsequently, 187 

samples were loaded on a Chromium Single-Cell Instrument (10x Genomics, Pleasanton, CA, 188 

USA) to generate single-cell GEMs. GEM reverse transcription (GEM-RT) was performed to 189 

produce a barcoded, full-length cDNA from poly-adenylated mRNA. After incubation, GEMs 190 

were broken, the pooled GEM-RT reaction mixtures were recovered, and cDNA was purified 191 

with silane magnetic beads (DynaBeads MyOne Silane Beads, PN37002D, ThermoFisher 192 

Scientific). PCR further amplified the purified cDNA to generate sufficient material for library 193 

construction.  Enzymatic fragmentation and size selection was used to optimize the cDNA 194 

amplicon size, and indexed sequencing libraries were constructed by end repair, A-tailing, 195 

adaptor ligation, and PCR. The final libraries contain the P5 and P7 priming sites used in 196 

Illumina bridge amplification. Sequence data were generated using Illumina’s NovaSeq 6000. 197 
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Samples were demultiplexed and counted using 10x Cell Ranger version 6.0.1 with standard 198 

parameters. Samples were aligned against a combined reference containing the 10x provided 199 

human reference (GRCh38-2020-A) and NCBI GenBank SARS-CoV-2 reference sequence 200 

MT644268.  201 

 202 

Quality control and cell clustering 203 

Analysis of scRNA-seq data was done using the Seurat v.4 R package (19). Cells 204 

expressing greater than 6000 genes or over 10% mitochondrial genes were omitted from the 205 

analysis. Sample integration was performed using the recommended scRNA-seq integration 206 

pipeline with canonical correlation analysis (CCA). Linear dimension reduction using principal 207 

component analysis (PCA) was then performed on the integrated data to determine the 208 

appropriate number of dimensions for Seurat’s clustering algorithm. 209 

 210 

Cell cluster annotation 211 

Cell clusters were annotated using the Seurat v.4 R package (19). For each cluster, we 212 

performed the Wilcoxon Rank Sum test with a log fold change threshold of at least 0.25. 213 

Differentially expressed genes (DEGs) that are specific to each cluster were used for enrichment 214 

analysis with ToppGene Suite’s ToppCell Atlas to determine the cell type of each cluster (20). 215 

Functional analysis of DEGs was performed with the clusterProfiler 4.2 R package alongside 216 

Gene Ontology terms for biological processes (21). Cluster annotations were further performed 217 

for each cell using gene set enrichment analysis against a database of known cell type markers 218 
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with the scType R package (22). Finally, cell assignment proportions were compared using the 219 

Chi-square test and visualized using the dittoSeq R package version 1.8.1 (23). 220 

 221 

Trajectory and pseudotime analysis 222 

Normalized gene expression data, cluster assignments, UMAP embeddings, and 223 

partitions were converted from Seurat objects to a monocle object for trajectory and pseudotime 224 

analysis using the Monocle3 R package version 1.3.1 (24). Trajectory analysis was performed 225 

with the Seurat-assigned clusters on the entire dataset by assigning all cells to the same partition 226 

in Monocle3. Pseudotime was calculated using the basal cells as the root cluster when ordering 227 

cells. Pseudotime comparisons were performed with the Wilcoxon Rank Sum test with a 228 

Benjamini-Hochberg corrected adjusted p-value of less than .05. 229 

 230 

Cell-cell communication analysis 231 

Cell-cell communication analysis was performed using the Liana framework from the 232 

Liana R package version 0.1.12 (25). A Robust Rank Aggregate score was calculated using 233 

algorithms from the following methods: NATMI, iTalk (logFC Mean), Connectome,  234 

SingleCellSignalR, and CellphoneDB (26-31). Context deconvolution was performed using the 235 

standard Liana framework in conjunction with Tensor-cell2cell and SingleCellSignalR (28, 32). 236 

Finally, footprint enrichment analysis with ligand-receptor pairs was performed using genesets 237 
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from PROGENy and decoupleR R packages as recommended from the Liana context 238 

factorization pipeline (33, 34).  239 

 240 

Age and infection differential expression analysis 241 

Differential gene expression analyses for age and infection were conducted using the 242 

MAST method in the FindMarkers function in the Seurat R package. The differentially expressed 243 

genes had log fold change >= 0.2 and a Benjamini-Hochberg corrected p-values <.05 (35). 244 

Differential pathway analysis was performed using the FindMarkers function using the MAST R 245 

package (version 1.22.0) with a Benjamini-Hochberg corrected p-value threshold of less than 246 

.001 for the mock vs. infected contrast and .0001 for the age contrast (35). Cluster-specific 247 

intersections were visualized using the UpSetR (version 1.4.0) and ComplexUpset (version 248 

1.3.3) R packages (36, 37). 249 

 250 

Gene functional annotation 251 

Enrichment of DEGs from each cluster was performed and visualized using the 252 

clusterProfiler 4.2 R package (21). Over-representation analysis with clusterProfiler was used 253 

with genesets from the Kyoto Encyclopedia of Genes and Genomes (KEGG) 2021 pathway 254 

database with disease-associated pathway manually omitted (38). Gene set enrichment analysis 255 

was performed using the AUCell R Package version 1.18.1. AUCell scores were calculated using 256 

the top 10% of ranked genes in each cell against the KEGG genesets, a manually curated list of 257 
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antiviral genes, and a geneset from a published overexpression screen of interferon-stimulated 258 

genes (39, 40). Cluster-specific intersections were visualized using the UpSetR (version 1.4.0) 259 

and ComplexUpset (version 1.3.3) R packages (36, 37). 260 

 261 

 262 

Results 263 

Primary lung epithelial cells cluster into six cell types, including two 264 

distinct ciliated cell clusters 265 

 Single-cell RNA sequencing (scRNA-seq) data from 52,482 cells from pediatric and 266 

adult donors with or without SARS-CoV-2 infection clustered into six cell populations (Fig. 1A) 267 

(Fig. 1A, SFig. 1). Annotation of these six cell populations using overrepresentation analysis 268 

(ORA) and gene set enrichment analysis (GSEA) revealed that primary human epithelial cells 269 

cultured on an air-liquid interface differentiated into FOXJ1low ciliated cells, club cells, 270 

FOXJ1high ciliated cells, basal cells, multiciliated precursor cells, and ionocytes (Fig. 1B-C). 271 

Functional enrichment analysis of cluster markers supported the underlying biological processes 272 

associated with those cell populations (Fig. 1D). Ciliated cell clusters had significant enrichment 273 

of pathways involved in cilium assembly, cilium organization, and microtubule-based movement 274 

(Fig. 1D). More transient cell populations (basal cells and multiciliated precursors) showed 275 

enrichment in pathways involving cell division (Fig. 1D). In total, our primary human epithelial 276 

cells cultured on an air-liquid interface differentiated into 35,279 (67.22%) FOXJ1low ciliated 277 

cells, 9,194 (17.52%) club cells, 4,138 (7.89%) FOXJ1high ciliated cells, 2,879 (5.49%) basal 278 
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cells, 725 (1.38%) multiciliated precursor cells, and 267 (.51%) ionocytes (Fig. 1E-F).  These 279 

proportions of cell populations were similar across most donors (Fig. 1F).  280 

We found that the proportion of cells in each cluster was the same in control samples as 281 

well as samples infected with SARS-CoV-2 ( adjusted p>0.05 )(Fig.1G)(SFig. 1A). Similarly, 282 

the proportions of cells in each population were not significantly different between pediatric and 283 

adult donors (Fig. 1H)(SFig. 1B). Further investigation of cell cycle scoring revealed that there 284 

were no significant differences in the proportion of cells in G1, G2M, or S phase between each 285 

donor, donor age, or treatment status (SFig. 2A-G). Although a high proportion of FOXJ1low 286 

ciliated cells were found to have a G2M cell cycle score, this was due to low-level expression of 287 

a small subset of genes. 288 

The lung epithelium primarily consists of fully differentiated cells, but injury can cause 289 

cells to dedifferentiate into their progenitors (41-43). We were interested to see if there were 290 

differences in cell differentiation among age cohorts or treatment status. Trajectory analysis of 291 

the main partition revealed that the differentiation trajectory of our cells began with the most 292 

“stem-like” cell type, basal cells, and continued onto club cells, multiciliated precursors, 293 

FOXJ1low ciliated cells, and finally FOXJ1high ciliated cells (Fig.2). Trajectories of all the cells 294 

from each sample showed no obvious differences in cell trajectories between any age or 295 

treatment status. Further, we found that the two ciliated cell types were related and did not arise 296 

from two different branches. Rather, FOXJ1high ciliated cells arise from FOXJ1low ciliated cells.  297 

Indeed, our pseudotime analysis revealed that FOXJhigh ciliated cells were the most terminally 298 

differentiated cell type, followed by FOXJ1low ciliated cells, multiciliated precursors, club cells, 299 

ionocytes, and finally basal cells (which were defined as the root cells in our analysis) (42-44) 300 

(Fig. 2)(SFig. 3).  301 
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 302 

FOXJ1low ciliated cells exhibit distinctly low ligand-receptor 303 

communication patterns 304 

Intercellular communication is vital in preserving homeostasis and serves as one of the 305 

primary mechanisms for eliciting an immune response in complex biological systems such as the 306 

airway epithelium.  To investigate intercellular communication in our primary cells, we 307 

aggregated cell-cell communication scores from several methods. Ionocytes had many inferred 308 

ligand-receptor interactions when top receptors are ordered by magnitude and then specificity; 309 

these interactions occur with ionocytes, suggesting regulatory feedback, or basal cells (Fig 3A).  310 

When quantifying the frequency of inferred outgoing signals through ligand expression,  311 

basal cells had the highest frequency (2201), followed by club cells (1809), multiciliated 312 

precursors (1739), FOXJ1high ciliated cells (1695), ionocytes (1601), and FOXJ1low ciliated cells 313 

(339)(Fig. 3B)(Table 1). Basal cells were also found to have the highest frequency of inferred 314 

signal reception (2016) followed by ionocytes (1917), multiciliated precursors (1843), club cells 315 

(1815), FOXJ1high ciliated cells (1698), and FOXJ1low ciliated cells (95)(Fig. 3B)(Table 1)(SFig. 316 

4). Interestingly, the most numerous cell population,  FOXJ1low ciliated cells, had very few 317 

inferred intrapopulation and interpopulation ligand-receptor interactions as a sender or receiver 318 

(Fig. 3B)(Table 1). However, FOXJ1low ciliated cells were ~3.5 times more likely to send signals 319 

rather than receive them (Fig. 3B)(Table 1). 320 

 When comparing the top 25 most significant ligand-receptor pairs identified by all the 321 

cell-cell communication algorithms, we found 13 (34%) pairs common across age and infection 322 

comparisons. Additionally, there were few context-specific ligand-receptor pairs for each group; 323 
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one in mock samples (C3-GRM7), one in SARS-CoV-2-infected samples (PROS1-TYRO3), two 324 

in pediatric samples (GDF15-RET, VEGFB-RET), and six in adult samples (MMP1-CD44, 325 

TGFB1-CAV1, TGFB1-SDC2, TIMP3-CD44, DSC3-DSG3, SDC2-PTPRJ)(Fig. 3C).  326 

To better understand the drivers behind these age or treatment-dependent differences, we 327 

performed cell-cell communication analysis on each sample to generate a tensor of ligand-328 

receptor interactions and decomposed the tensor into communication patterns. The ionocyte 329 

cluster did not have enough representation in all samples, so we excluded ionocytes from 330 

samples with low counts in downstream analysis. After tensor deconvolution, we found ten 331 

significant factors that inform cell-cell communication patterns with distinct ligand-receptor pair 332 

expression patterns (Fig. 3D)(SFig. 5). Factor loadings were compared between treatment status 333 

and age. Surprisingly, we found no significant differences between treatment statuses. Still, 334 

factor 2 and factor 10 were significantly different between age groups (Fig. 3E)(Fig. 3F)(SFig. 335 

6)(SFig. 7). Further exploration of the pathways associated with each factor revealed that factor 2 336 

and 10 were downstream signaling typically involved in an antiviral response (Fig. 3G). Factor 2 337 

was associated with increased NFB activity and low MAPK, PI3K, and TRAIL signaling, while 338 

factor 10 was associated with reduced TRAIL signaling. These age-related differences in 339 

antiviral signaling prompted us to explore the differences in our age cohorts. 340 

 341 

Age-related differences varied by cluster and infection status 342 

 Comparisons of cluster-specific gene-expression changes revealed several differences 343 

between adult and pediatric donors. Using only the cells from mock-infected samples, we found 344 

that the total number of DEGs and the number of unique DEGs varied between clusters; notably, 345 
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only a single gene was detected across all 6 cell types (RPS26), and only 22 genes were detected 346 

when we excluded the smallest cluster, ionocytes, from this analysis (SFig. 7A). Similar to the 347 

uninfected samples, we found that the total number of DEGs and the number of unique DEGs 348 

varied between clusters. There were 81 genes that were unique to ciliated cell populations, while 349 

basal and club cells had the highest combined number of DEGs in common. There were only 350 

three genes (RPS26, AL627171.2, and SARS-CoV-2) differentially expressed between adult and 351 

pediatric donors across all cell populations (SFig. 7B). Geneset enrichment analysis of combined 352 

mock and infected data showed that age-related DEGs in ciliated cells were highly related to 353 

ribosomal activity. In contrast, ciliated cells, basal cells, club cells, and multiciliated precursor 354 

cells showed differences in the coronavirus disease and antigen processing and presentation 355 

genesets (SFig. 8D)(SFig. 8E). 356 

When comparing the age-related DEGs for each cluster in infected and mock samples, we 357 

found some interesting functional differences. The majority of age-related DEGs in FOXJ1low 358 

ciliated cells were found in both mock and infected samples, while all other cell populations 359 

showed a stronger age-related difference in mock samples (Fig. 4A, C, E, and G). In FOXJ1low 360 

ciliated cells, age-related DEGs had the strongest association in “Coronavirus disease” and 361 

“Ribosome” pathways, which were enriched in both treatment conditions alongside the “Antigen 362 

processing and presentation” pathway (Fig. 4B). Club cells, however, showed an age-related 363 

enrichment in “Coronavirus disease” and “Antigen processing and presentation” in both 364 

treatments, but “Ribosome” pathway enrichment was only found in the infected samples. On the 365 

other hand, we observed an age-related enrichment in the “Ribosome” and “Coronavirus 366 

disease” pathways in infected samples, while “Antigen processing and presentation” was 367 
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enriched in both treatments from FOXJ1high ciliated cells. Conversely, basal cells had little 368 

overlap in pathway enrichment between mock and infected samples (Fig. 4G, H)  369 

 Broadly, the large numbers of DEGs between adult and pediatric populations narrowed 370 

in SARS-CoV-2-infected samples compared to mock samples (Fig. 4A, C, E, and G). Cluster-371 

specific functional analysis of age-associated DEGs in mock only, infected only, and in both 372 

sample sets showed that many of the age-related DEGs in control samples were related to protein 373 

synthesis, while age-related DEGs in infected samples were metabolism-related (Fig. 4B, D, F, 374 

and H). In addition, the largest clusters (FOXJ1low ciliated cells, club cells, and FOXJ1high 375 

ciliated cells) all had age-related differences in “Antigen Processing and Presentation” in mock 376 

and infected samples. Perhaps the most striking finding to emerge from these analyses was that 377 

the annotated transcript for SARS-CoV-2 was consistently higher in pediatric samples compared 378 

to adult samples, with the highest difference between pediatric vs. adult samples being detected 379 

in FOXJ1low ciliated cells (a 3.120 log fold change).  380 

 381 

FOXJ1low ciliated cells are highly infected by SARS-CoV-2 382 

Common SARS-CoV-2 entry factors ACE2, TMPRSS2, NRP1, AXL, FURIN, and 383 

CTSL showed heterogeneous expression levels across cell populations. The commonly cited 384 

entry factor, ACE2, had very low expression in all clusters. Interestingly, TMPRSS2 and CTSL 385 

were the most commonly expressed entry factors, with around 10-30% of cells expressing them 386 

in all clusters with the highest distribution and average expression level in FOXJhigh ciliated cells 387 

(Fig. 5A). When comparing the expression level and percentage of cells expressing each gene by 388 

infection status in each cluster, there were no significant differences in gene expression among 389 
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common SARS-CoV-2 entry factors ACE2, TMPRSS2, NRP1, AXL, FURIN, CTSL (SFig. 9A). 390 

Despite evidence of low expression of SARS-CoV-2 entry factors in cells from both mock and 391 

infected samples, FOXJ1low ciliated cells had the highest overall expression of SARS-CoV-2 392 

transcripts in qualitative and quantitative analysis (Fig. 5B)(Fig. 5C).  393 

Comparisons of mock and infected samples resulted in the identification of cluster-394 

specific infection-related DEGs. Similar to our age-related analysis, we found that the total 395 

number of DEGs and the number of unique DEGs varied between clusters; FOXJ1low ciliated 396 

cells had 17 total and 6 unique genes (.35 distinct proportion), club cells had 170 total and 65 397 

unique genes (.38 distinct proportion), FOXJ1high ciliated cells showed 280 total and 175 unique 398 

genes (.63 distinct proportion), basal cells had 30 total and 11 unique genes (.37 distinct 399 

proportion), multiciliated precursor cells had 5 total and 0 unique genes, while ionocytes showed 400 

2 total and 0 unique genes (Fig. 5D). We found only two genes that were differentially expressed 401 

between mock and infected samples across all cell populations; the transcript for SARS-CoV-2 402 

and SCGB3A1, a gene that encodes a secreted protein involved in regulating epithelial cell 403 

proliferation, differentiation, morphogenesis, and defines secretory cell subsets (45, 46) (Fig. 404 

5D). Strikingly, there were no ciliated-cell-specific DEGs between mock and infected samples. 405 

Moreover, ciliated cells only had 9 infection-related DEGs in common (Fig. 5E).  406 

Investigation into the DEGs revealed that FOXJ1low ciliated cells (the most susceptible to 407 

SARS-CoV-2 infection) had a muted antiviral response to SARS-CoV-2. In contrast, FOXJ1high 408 

ciliated cells (which were less susceptible to the virus) had DEGs associated with a robust 409 

antiviral response (ISG15, MX1, and IFI27), dysregulated mucus secretion (MUC5B and 410 

BPIFB1), and down-regulated ciliogenesis (HYDIN) (Fig. 5F).  411 
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Stark differences in the host responses from each ciliated cell type prompted us to 412 

perform differential functional analysis between the two ciliated cell types. Metabolic and 413 

translation-relevant signaling pathways were significantly different between FOXJ1low ciliated 414 

cells and FOXJ1high ciliated cells (Fig. 6A).  However, FOXJ1high ciliated cells had more 415 

significant enrichment of pathways involved in ciliogenesis and cilia motility (Fig. 6B). These 416 

differences in biological functions are typically indicated by cilium subtypes, which is evident in 417 

the microanatomy of the cilium itself (Fig. 6C). FOXJ1high ciliated cells had enrichment in 418 

axoneme assembly, dynein binding, and microtubule motor movement, typical of  9+2 cilium 419 

microanatomy (Fig. 6B). In contrast, FOXJ1low ciliated cells were not enriched in the 420 

compartments and showed a much lower level of canonical ciliated cell marker expression (Fig. 421 

6B)(SFig. 10A) (SFig. 10B).  422 

 423 

Cell-type-specific responses to SARS-CoV-2 infection 424 

After finding many differences in the DEGs, we were interested in understanding how 425 

cluster-specific DEGs contributed to functional responses. Functional enrichment of each 426 

cluster’s DEGs after infection showed a stark difference in enriched pathways (Fig. 7A). Despite 427 

FOXJ1low ciliated cells having the highest proportion of infected cells, all cell populations 428 

showed significant enrichment of the “Coronavirus disease” pathway, with the lowest p-value in 429 

club cells. Overall, FOXJ1high ciliated cells had a response pattern more similar to club cells than 430 

FOXJ1low ciliated cells (Fig. 7A). When interrogating the expression of interferon-related 431 

transcription factors and key genes, we found that all cell populations had low expression levels 432 

of factors mediating an interferon response regardless of infection status. (Fig. 7B). Also, no 433 
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clusters significantly differed in type 1 or 3 interferon-related genes in infected samples 434 

compared to mock (Fig. 7C).  435 

 Further, we extended the pathway analysis by incorporating all expressed genes for each 436 

cell independently (see methods). The comparison of the cell-specific pathway activities found 437 

more differences across age than the infection status (Fig. 7D and E). The ciliated cell clusters, 438 

club cells, and basal cells had significantly different pathway activities across infection status, 439 

with club cells having the most (38 pathways); we detected only 6 common pathways between 440 

all clusters, including the “Coronavirus disease” pathway (Fig. 7D). Both ciliated populations 441 

and club cells had significant activity in  “ISGs,” a previously described list of over 200 442 

interferon-stimulated genes (Fig. 7F)(39, 40). Pathway scoring at the single cell level revealed 443 

that FOXJ1low and FOXJ1high ciliated cells both had significant activity in the “Rig-I-like 444 

receptor signaling pathway” along with basal cells (Fig. 7A and F). Club cells and FOXJ1high 445 

ciliated cells had significant activity in “Cytosolic DNA-sensing” and “JAK-STAT signaling” 446 

pathways, while FOXJ1high ciliated cells were the only population to have activity in the “NOD-447 

like receptor signaling pathway”(Fig. 7F). FOXJ1low ciliated cells were the only population to 448 

have significant activity in “TNF signaling” (Fig. 7F). There were 15 shared age-associated 449 

differences in pathways all clusters, and an additional 31 shared pathways between all clusters 450 

excluding the smaller ionocyte population (Fig. 7E). Club and basal cells had the most 451 

differences between age cohorts, and shared the most differentially active pathways (Fig. 7E). 452 

There were dramatic differences in the “ISGs” and “Antigen processing and presentation” 453 

pathways in all major cell populations (both ciliated cell clusters, club cells, and basal cells), 454 

“Coronavirus disease” in club cells and FOXJ1low ciliated cells, and “Type 1 IFNs” in club cells 455 

only (SFig. 10).  456 
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 457 

 458 

Discussion 459 

 Understanding the host response to SARS-CoV-2 infection is critical in developing 460 

effective strategies for preventing and treating COVID-19. The lung epithelium is the primary 461 

target of SARS-CoV-2 infection, and early prevention strategies targeting these cells can 462 

therefore be expected to determine disease severity and outcome. Inefficient or dysregulated host 463 

responses to SARS-CoV-2 infection in lung epithelial cells can lead to severe lung damage and 464 

respiratory failure, which are the leading causes of mortality in COVID-19 patients. Moreover, 465 

some of the earliest epidemiological evidence from the COVID-19 pandemic showed that age is 466 

a significant risk factor for severe COVID-19 (47-50). Therefore, investigating age-related host 467 

responses in lung epithelial cells is crucial for understanding the underlying mechanisms of 468 

increased susceptibility, pathogenesis, and severity of COVID-19 in different populations. Here, 469 

we employed single-cell RNA sequencing (scRNA-seq) to investigate the transcriptomic profiles 470 

of primary lung epithelial cells from pediatric and adult populations in response to SARS-CoV-2. 471 

Our scRNA-seq analysis revealed six cell types in air-liquid interface cultures derived from 472 

primary human lung tissue: two ciliated cell types (FOXJ1low and FOXJ1high), club cells, basal 473 

cells, multiciliated precursors, and ionocytes (Fig. 1).  474 

Trajectory and pseudotime analysis were used to investigate the differentiation pathways 475 

of various cell types in our cell culture system. Basal cells are known as the most “stem-like” 476 

cells in the lung epithelium (43, 44). Trajectory analysis showed that basal cells differentiated 477 

into all of the other cell populations and confirmed that the ciliated cell populations were not two 478 
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distinct branches of ciliated cells; instead, they were at different levels of differentiation, with 479 

FOXJ1high ciliated cells being the most terminally differentiated. Density plots of 7 canonical 480 

ciliated cell markers confirmed that the most differentiated ciliated cells were located within the 481 

FOXJ1high ciliated cell cluster (SFig. 10).  482 

One drawback of using scRNA-seq analysis to understand viral infections on adherent 483 

cells is the absence of spatial data. This is especially true as infection-induced paracrine 484 

signaling elicits responses in the neighboring cells. Cell-cell communication analysis attempts to 485 

recapitulate multicellular coordination by inferring intercellular communication from the 486 

expression of genes associated with such communication (25). Using aggregated scores from 487 

various cell-cell communication methods, we found that FOXJ1low ciliated cells had very little 488 

interpopulation and intrapopulation communication. While we expected cell communication 489 

patterns or expression of specific ligand-receptor pairs to change between infected and 490 

uninfected samples, no significant differences were observed. Notably, age was a significant 491 

factor in communication patterns (Fig. 3E)(Fig. 3F). Overall, footprint analysis of the ligand-492 

receptor pairs in the factors that were different between age cohorts revealed that adult donors 493 

were more associated with cell communication patterns that resulted in signaling leading to high 494 

NFB activity, and low MAPK, PI3K, and TRAIL activity in the adult donors (Fig. 3G). To our 495 

knowledge, this finding is novel in human age-related pulmonary biology.  496 

Our data reveals cluster-specific differences in adult and pediatric samples (SFig. 8). 497 

When splitting the groups by infection status to remove infection-related variability, we were 498 

surprised to find that age-related differences were more prevalent in uninfected samples 499 

compared to infected samples in every cluster (Fig. 4A)(Fig. 4B)(Fig.S10). We found that the 500 

geneset for “Coronavirus disease” was differentially enriched between the age cohorts in both 501 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2024. ; https://doi.org/10.1101/2024.04.02.587663doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.02.587663
http://creativecommons.org/licenses/by/4.0/


mock and infected samples in FOXJ1low ciliated cells and club cells, while  FOXJ1high ciliated 502 

and basal cells only had age-related enrichment in the infected samples (Fig. 4B)(Fig. 4D)(Fig. 503 

4F)(Fig. 4H). Generally, we interpreted this age-related  504 

Similar to recent publications assessing the expression of SARS-CoV-2 entry factors 505 

along the airway epithelium, we found that our cells had very low expression of ACE2, 506 

TMPRSS2, NRP1, AXL, FURIN, and CTSL entry factor genes (Fig. 5A)(14, 51). Although this 507 

low expression was sufficient for SARS-CoV-2 infection in all cell populations, with the 508 

majority of infected cells belonging to the FOXJ1low ciliated cell population (Fig. 5B)(Fig. 5D).  509 

However, FOXJ1high ciliated cells showed the most robust responses to infection and followed 510 

more canonical antiviral signaling responses (Fig. 5D)(Fig. 7A) (Fig. 7F). Overall, FOXJ1low 511 

ciliated cells seem to have inhibited transcription at the global level, leading to little overlap 512 

between the DEGs after infection between the two ciliated cell populations (Fig. 6A)(Fig. 5E).  513 

The stark differences in the ciliated cell population’s response to SARS-CoV-2 prompted 514 

us to compare the ciliated cell types to understand the pathogenic phenotype of the FOXJ1low 515 

ciliated cells. We found that FOXJ1low ciliated cells were more metabolically active, while 516 

FOXJ1high ciliated cells were more active in cilium motility and ciliogenesis. Other studies have 517 

shown that SARS-CoV-2 may induce a marginal upregulation in metabolic activity (52, 53). 518 

Interestingly, the differences in axoneme assembly, ciliogenesis, dynein binding, and 519 

microtubule motor activity mirrored the microanatomy of 9+2 vs. 9+0 cilium modalities (Fig. 520 

6A)(Fig. 6B). FOXJ1high ciliated cells were more similar to the microanatomy of motile cilia. In 521 

contrast, FOXJ1low ciliated cells aligned more with primary or nodal cilium (Fig. 6B). Using 522 

scanning electron microscopy, other groups have found that low FOXJ1 expression in ciliated 523 

cells is associated with a reduction in motile cilia and mucociliary clearance functionality 524 
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through impairments of cilia sweeping coordination (54, 55). However, our trajectory and cell 525 

phase analysis show similar proportions of FOXJ1low cells in mock and infected samples. 526 

Previous studies have shown that lung injury, through various means, can cause the 527 

dedifferentiation of ciliated cells and reduced FOXJ1 expression (41, 42, 44, 55-57). The process 528 

for obtaining primary lung epithelial cells on an air-liquid interface is strenuous in itself and 529 

could be a latent factor in these models. This may be important in that FOXJ1low ciliated cells 530 

could be transient and only present after lung injury (or cellular stress, in our in vitro model); 531 

whether or not these ciliated cell types are abundant in healthy lung tissue remains to be seen 532 

(15, 17, 18, 58, 59). However, there has been some evidence that ciliated cells with low 533 

expression of FOXJ1 are associated with Bronchiectasis, a condition where the walls of the 534 

bronchi are thickened from inflammation and infection (60).  535 

 We found that traditional gene enrichment methods using a one-sided Fisher’s Exact Test 536 

or a Hypergeometric test using differentially expressed genes yielded few enriched pathways. 537 

However, updated rank-based methods significantly reduced false negatives due to intercellular 538 

and inter-sample variability. In addition, these methods captured significant functional 539 

differences in our comparative analyses on the effects of age and infection status (Fig. 7D)(Fig. 540 

7E). This was particularly important when investigating common antiviral signaling pathways. 541 

 Interferon signaling through interferon expression and the induction of hundreds of 542 

interferon-stimulated genes (ISGs) is well-documented to be an antiviral protective mechanism; 543 

ISGs suppress viral replication and activation of downstream immune signaling (6, 11, 39, 40, 544 

61-68). However, many studies have found very few known interferon-related genes to be 545 

expressed after SARS-CoV-2 infection (2-6, 11, 68-70). In our study, we utilized a geneset of 546 

previously published ISGs with rank-based scoring to examine indirect type I and type III 547 
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interferon signaling (39, 40). Using this method, we found significant interferon signaling in a 548 

broader sense when examining the breadth of genes associated with an interferon response, 549 

rather than induction of type I and III interferon genes in isolation (Fig. 7F). After infection, the 550 

host response patterns for ciliated cell types were vastly different. FOXJ1high ciliated cells 551 

exhibited expression patterns more similar to club cells while FOXJ1low ciliated cells were more 552 

similar to basal cells. This suggests that more transient cell types of the lung epithelium may 553 

have a muted response to SARS-CoV-2. 554 

 Some limitations of this study include limited donors. Thus, while many of the age-555 

related differences are significant for our cohort, larger future sample sizes may give us more 556 

insight into these differences. Additionally, this study relies entirely on RNA and does not 557 

include any protein data. Without protein data, the actual functional outcomes of SARS-CoV-2 558 

infection cannot be inferred because the presence of RNA does not necessarily correlate with 559 

protein expression; SARS-CoV-2 and other viral pathogens typically have mechanisms that 560 

interfere with protein translation (71, 72).  Nevertheless, our findings provide important insights 561 

into the cellular and molecular mechanisms of SARS-CoV-2 infection in lower lung epithelial 562 

cells. Specifically, we found that cellular responses to the virus vastly differ between cell types, 563 

highlighting the importance of targeted approaches in developing effective therapeutics and 564 

prevention strategies for COVID-19. 565 

Data availability statement 566 

The datasets presented in this study were deposited in the National Center for 567 

Biotechnology Information’s Gene Expression Omnibus database and are available upon request. 568 
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 783 

Fig 1. Clustering and annotation of scRNA-seq data from primary lung epithelial cells. (A) 784 

Heatmap of integrated gene expression of cluster markers from 52,482 cells annotated by 785 
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assigned cluster, treatment status, donor age category, and cell cycle phase. (B) Uniform 786 

Manifold Approximation and Projection (UMAP) of all cells colored by cluster annotation. (C) 787 

Circular treemap of cell annotations. Circles are colored and clustered by higher-level 788 

annotations, and subclustered sizes are a function of the number of cells assigned to the 789 

subcluster. (D) Gene ontology (GO) analysis of cluster markers using Biological Process terms. 790 

(E) Bar plot of cell number in each cluster. (F) Stacked bar plot of cluster proportions for each 791 

sample. (G) Stacked bar plot of cluster proportions by treatment status. (H) Stacked bar plot of 792 

cluster proportions by age category. 793 
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Fig 2. Trajectory analysis and pseudotime comparisons. (A) UMAPs separated by covariates 798 

with calculated trajectory in chartreuse, and colored by pseudotime representing differentiation 799 

from dark blue to yellow (more differentiated). (B) Boxplots of the range of pseudotime in each 800 

cluster, colored by cluster annotation shown in Figure 1. 801 

 802 
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Fig 3. Cell-cell communication analysis. (A) Dot plots of ligand-receptor pairs (y-axis) show 804 

the source cell type sending the signal on top and the receiving cell populations on the bottom. 805 

(B) Heatmap of the frequencies of interactions for each pair of potentially communicating cell 806 

types. Annotation bar plot on top (“receiving”) and right (“sending”) is the total number of 807 

interactions per cell type. (C) Venn diagram of top 25 ligand-receptor pairs across infection and 808 

age. (D) Heatmap of top 5 ligand-receptor loadings for each Factor. (E and F) Boxplots of age-809 

related factor loadings with adult samples in green and pediatric samples in grey. (G) Dotplot of 810 

footprint enrichment analysis of downstream pathways. 811 

 812 

 813 

 814 

Fig 4. Age-related differential expression analysis. (A-H) Venn diagrams and dot plots of 815 

differentially expressed genes in pediatric vs adult donors present in mock (CTRL, green) and 816 

22
1

57
25 36 26

77 86
116

1 9
28

53 31

476

340

10

299

28 14

77
40

375

215

5 12

419

5

60

0

100

200

300

400

500

In
te

rs
e

c
ti
o

n
 s

iz
e

050010001500

Set size

Ionocytes
Multiciliated Precursors

FOXJ1low Ciliated Cells
Basal Cells
Club Cells

FOXJ1high Ciliated Cells

group

3

76
38

13

53

1

81

21 10

111

15 35 1

179

216
43

5
32

2

98

309

3 8

209

4
38

0

100

200

300

400

500

In
te

rs
e

c
ti
o

n
 s

iz
e

0200400600

Set size

Ionocytes
Multiciliated Precursors

FOXJ1low Ciliated Cells
FOXJ1high Ciliated Cells

Basal Cells
Club Cells

group

M
o

c
k

S
A

R
S

-C
o

V
-2

FOXJ1high

Ciliated Cells
Basal 

Cells

FOXJ1low

Ciliated Cells
Club 
Cells

Cell adhesion molecules

Coronavirus disease

Mineral absorption

Toxoplasmosis

Proteasome

Spliceosome

Non-alcoholic fatty liver disease

Oxidative phosphorylation

Thermogenesis

Moc
k

(35
3)

SA
RS

-C
oV

-2 (83
)

1e-02

1e-03

1e-04

p.adjust

Cell adhesion molecules

Fluid shear stress and atherosclerosis

Viral myocarditis

Phagosome

Antigen processing and presentation

Coronavirus disease

Ribosome

Spliceosome

Proteasome

Non-alcoholic fatty liver disease

Thermogenesis

Oxidative phosphorylation

Moc
k

(50
1)

SA
RS

-C
oV

-2
(10

4) Bo
th

(97
)

Gene Ratio

0.2

0.4

1e-031e-04

p.adjust

Epithelial cell signaling in Helicobacter pylori infection

Phagosome

Antigen processing and presentation

IL-17 signaling pathway

Coronavirus disease

Ribosome

Focal adhesion

Spliceosome

Regulation of actin cytoskeleton

Adherens junction

Protein processing in endoplasmic reticulum

Moc
k

(45
4)

SA
RS

-C
oV

-2 (70
) Bo

th

(14
6)

Gene Ratio

0.2

1e-03
1e-04

p.adjust

Viral myocarditis

Phagosome

Antigen processing and presentation

Coronavirus disease

Non-alcoholic fatty liver disease

Thermogenesis

Oxidative phosphorylation

Ribosome

Proteasome

Moc
k

(84
)

SA
RS

-C
oV

-2 (50
) Bo

th

(14
1)

Gene Ratio

0.2

0.4

1e-021e-031e-04

p.adjust

Viral myocarditis

Phagosome

Antigen processing and presentation

Coronavirus disease

Non-alcoholic fatty liver disease

Thermogenesis

Oxidative phosphorylation

Ribosome

Proteasome

Moc
k

(84
)

SA
RS

-C
oV

-2 (50
) Bo

th

(14
1)

Gene Ratio

0.2

0.4

1e-021e-031e-04

p.adjust

Coronavirus disease

Ribosome

Tight junction

Propanoate metabolism

SA
RS

-C
oV

-2 (2) Bo
th

(1)

Gene Ratio

0.6

0.8

1

Ribosome

Thermogenesis

Non-alcoholic fatty liver disease

Spliceosome

Oxidative phosphorylation

Proteasome

Moc
k

(10
6) Bo

th
(9)

Gene Ratio

0.2

1e-02

1e-03

1e-04

p.adjust

A

B

A B C D

E F G H

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 2, 2024. ; https://doi.org/10.1101/2024.04.02.587663doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.02.587663
http://creativecommons.org/licenses/by/4.0/


SARS-CoV-2-infected (red) samples for FOXJ1low ciliated cells (A and B), club cells (C and D), 817 

FOXJ1high ciliated cells (E and F), and basal cells (G and H). 818 

819 

820 

Table 1. Sender and receiver cell frequencies. Frequency table of the predicted sender and 821 

receiver cell communication. 822 

823 
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Fig 5. Cell-type-specific responses to SARS-CoV-2 infection. (A) Dotplot of scaled average825 

gene expression for indicated SARS-CoV-2 host entry factors. (B) Ridge plot of log2 normalized 826 

SARS-CoV-2 expression in each cluster. (C) UMAPs of log2 normalized SARS-CoV-2 827 

expression (purple) in each cell, split by treatment status. (D) An upset plot of DEGs in mock vs. 828 

infected cells by cluster. (E) Venn diagram of the intersection of treatment-related DEGs 829 

between ciliated cell clusters. (F) Word clouds of DEGs in ciliated cell clusters. The font size of 830 

the gene names is a function of the log fold change between CTRL and SARS-CoV-2 samples. 831 

832 

833 

834 
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Fig 6. Ciliated cell functional comparison. (A and B) Dot plots of differentially enriched GO 835 

terms in FOXJ1low ciliated cells compared to FOXJ1high ciliated cells (A) and enriched terms in 836 

FOXJ1high ciliated cells compared to FOXJ1low ciliated cells (B). (C) Diagram of a cross-section 837 

of a ciliary axoneme. Three ciliary arrangements are shown: motile cilium (9+2) on the left, 838 

nodal cilium (9+0) in the center, and primary cilium (9+0) on the right. 839 

 840 
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Fig 7. SARS-CoV-2 infection and cell-type-specific host responses. (A) Heatmap of -log10 842 

adjusted p-values of differentially enriched KEGG pathways by cluster (y-axis) between mock 843 

and SARS-CoV-2-infected samples. (B) Heatmap of log2 normalized expression of indicated 844 

genes associated with a type I and type III interferon response, annotated by cluster and 845 

treatment status. (C) Violin plot of major transcription factors and intermediary genes associated 846 

with type I and III interferon responses. (D and E) An upset plot of differentially enriched 847 

AUCell scores of KEGG pathways between mock and SARS-CoV-2 treated samples (D) and 848 

pediatric vs. adult samples (E) by cluster. (F) Heatmap of -log10 adjusted p-values of significant 849 

differentially enriched AUCell scores of KEGG pathways by cluster between mock and SARS-850 

CoV-2-infected cells. Pathways in red are typically associated with antiviral responses. 851 

 852 

 853 

Supplementary Figures 854 

 855 

 856 

SFig. 1. Cell cluster distribution. (A) UMAP of cells colored by sample. (B and C) UMAPs of 857 

cells are colored by cluster and split by treatment status (B) and age category (C). 858 

 859 

 860 

SFig. 2. Cell cycle phase scoring. (A) UMAP of cells colored by cell cycle phase. (B) Stacked 861 

bar plot of cell cycle proportions by sample. (C) Stacked bar plot of cell cycle proportions by 862 

cluster. (D and F) UMAPs of cells are colored by cell cycle phase and split by age category (D) 863 

and treatment status (F). (E and G) Stacked bar plots of cells colored by cell cycle phase and 864 
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divided by age category (E) and treatment status (G). (H) Heatmap of integrated gene expression 865 

of highly variable cell cycle markers, annotated by cluster and cell cycle phase assignment. 866 

 867 

 868 

SFig. 3. Lung epithelial cell pseudotime comparisons.  (A and B) Boxplots of the range of 869 

pseudotime in each cluster, split by age category (A) and treatment status (B). 870 

 871 

 872 

SFig. 4. Cell-cell communication frequency. (A-D) Heatmap of the frequencies of interactions 873 

for each pair of potentially communicating cell types. Annotation bar plot on top (“receiving”) 874 

and right (“sending”) is the total number of interactions per cell type subsetted by mock samples 875 

(A), SARS-CoV-2-infected samples (B), pediatric samples (C), and adult samples (D). 876 

 877 

 878 

 879 

SFig. 5. Overview of context factorization. “Age” and “Treatment” bar plots refer to the 880 

related context loadings. The “Interactions” histogram is the frequency of individual ligand-881 

receptor pairs. “Senders” is the bar plot of loadings from sender cells. “Receivers” is the bar plot 882 

of loadings from receiving cells. 883 

 884 

 885 

SFig. 6. Age-related comparative context factorization. Boxplots of treatment (A) and age-886 

related (B) factor loadings. 887 
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 888 

 889 

 890 

SFig. 7. Heatmaps of factor loadings. (A) Sample-related factor loadings. (B and C) Sender 891 

and receiver loadings for factors 2 (B) and 10 (C). 892 

 893 

SFig. 8. Age-related analysis of combined data. (A - C) Upset plot of differentially expressed 894 

genes in pediatric vs adult donors present in each cluster subsetted by mock-infected samples 895 

(A), SARS-CoV-2-infected samples (B), and all samples combined (C).  (D) Heatmap of log10 896 

transformed adjusted p-values of enriched KEGG pathways from differentially expressed genes 897 

in pediatric vs. adult samples. (E) Dot plot of gene ontology biological process GO terms 898 

differentially expressed genes in pediatric vs adult donors present in each cluster. 899 

 900 

 901 

 902 

SFig. 9. SARS-CoV-2 entry factor expression. (A) Dotplot of the percentage of cells 903 

expressing the indicated SARS-CoV-2-related host entry factors split by mock-infected samples 904 

(CTRL, green) and SARS-CoV-2-infected samples (purple). (B) UMAP of log2 normalized gene 905 

expression of indicated SARS-CoV-2-related host entry factors. 906 

 907 

 908 

SFig. 10. Exploring the pathogenic phenotype of ciliated cells. (A and B) UMAPs (A) and 909 

violin plots (B) of log2 normalized expression of canonical ciliated cell markers.  910 
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