

1 A species difference in glycerol-3-phosphate metabolism
2 reveals metabolic adaptations in hares
3 **Author list:** Kateryna Gaertner¹, Mügen Terzioglu¹, Craig Michell^{2,3}, Riikka
4 Tapanainen², Jaakko Pohjoismäki², Eric Dufour^{1#} and Sina Saari^{1#}

5 ¹ Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland,
6 ² Department of Environmental and Biological Sciences, University of Eastern Finland,
7 Joensuu, Finland, ³ King Abdullah University of Science and Technology, Makkah,
8 Saudi Arabia

9 #Corresponding authors: sina.saari@tuni.fi & eric.dufour@tuni.fi

10

11 **Short title:** Cellular metabolic differences in hares

12

13 **Abstract**

14

15 The temperate climate adapted brown hare (*Lepus europaeus*) and the cold-adapted
16 mountain hare (*Lepus timidus*) are evolutionarily closely related and interfertile. Still,
17 their cultured skin fibroblasts show clear differences in the expression of genes related
18 to basic cellular metabolism. To study this further, we utilized targeted metabolomics
19 analysis, metabolite tracing, and high-resolution respirometry, and identified significant
20 differences in metabolic pathways associated with adaptive thermogenesis, including
21 a higher rate of glycerol 3-phosphate (G3P) production in the mountain hare. We
22 therefore investigated mitochondrial heat production and its dependence on G3P in
23 the two hare species. The mountain hare maintained lower mitochondrial temperature
24 and had weaker thermal change following OXPHOS inhibition. Manipulating
25 mitochondrial glycerol 3-phosphate dehydrogenase (GPD2) levels demonstrated its
26 role in mitochondrial thermogenesis and revealed species-specific function in
27 maintaining mitochondrial membrane potential. This study unveils previously
28 undocumented and unexpected species differences in the mitochondrial properties of
29 fibroblasts that could indicate differences in metabolic adaptability. These findings also
30 demonstrate the utility of cell culture models in assessing trait differences between
31 species and their evolutionary significance, contributing to a deeper understanding of
32 metabolic adaptation in animals and underscoring the potential of *in vitro* approaches
33 for eco-physiological studies.

34

35

36

37 **Keywords:** mitochondria, G3P, metabolism, thermogenesis, hares

38

39 **Abbreviations:** $\Delta\psi_m$, mitochondrial membrane potential; ATP, adenosine
40 triphosphate; BSA, bovine serum albumin; CDS, coding DNA sequence; Cr, creatine;
41 DMEM, Dulbecco's Modified Eagle Medium; DPBS, Dulbecco's phosphate-buffered
42 saline; ECM, extracellular matrix; ex, excitation; em, emission; FA, fatty acids; FCCP,
43 carbonyl cyanide-p-trifluoromethoxyphenylhydrazone; G3P, glycerol-3-phosphate;
44 GPD2, mitochondrial glycerol-3-phosphate dehydrogenase; h, hours; HI-FBS, heat
45 inactivated fetal bovine serum; min, minutes; MTG, Mito Tracker Green; MTT,
46 methylthiazolyldiphenyl-tetrazolium bromide; MTY, Mito thermo yellow; NB, NucBlue;
47 PCr, phosphocreatine; RT, room temperature; ROI, region of interest; SRB,
48 sulforhodamine B sodium salt; TMRM, tetramethylrhodamine methyl ester; TBS-T, tris
49 buffered saline plus 0.1% Tween 20; TCA, tricarboxylic acids cycle; P/S,
50 penicillin/streptomycin

51

52

53 Introduction

54

55 Fibroblasts are one of the most common and essential cell types, shaping the
56 connective tissue that surrounds different organs. Skin fibroblasts are part of the first
57 line of defense against external stressors such as cold (1). They participate in wound
58 healing (2), while providing, maintaining, and remodeling the extracellular matrix (3).
59 Since their central role in tissue maintenance and repair requires plasticity and
60 proliferative capacity, fibroblasts associate with hyperproliferative pathologies such as
61 fibrosis (1) and cancer progression, where their metabolic rewiring contribute to tumor
62 metastases (4).

63 Although research on wildlife-derived cells remains limited, there is ample evidence to
64 suggest that fibroblasts of different species have evolved distinct features. Studies
65 comparing skin fibroblasts from tropical and temperate bird species have linked higher
66 chemical and oxidative tolerance to longer species lifespans and lower metabolic rates
67 (5,6). Similarly, skin fibroblasts derived from rodent species with different life history
68 exhibit species-specific tolerance to chemical stressors even in animals collected from
69 the same habitat (7,8). These examples demonstrate that cells harbor species-specific
70 traits, plasticity, and metabolic adaptation even when comparing related species living
71 in the same natural habitat.

72 Understanding metabolic adaptation at the cellular level could provide new insights on
73 how animals can survive in a changing environment (9). In the face of climate change,
74 many ecosystems are rapidly changing, challenging their host species, particularly
75 those that are restricted to the affected habitats. Simultaneously, environmental
76 changes provide favorable conditions for new species to thrive. Finland presents a

77 typical example of a subarctic region, where the continental European brown hare
78 (*Lepus europaeus*) is expanding its range of habitat, thereby competing with the
79 resident mountain hare (*Lepus timidus*) and causing it to retreat northward (10,11).
80 The mountain hare has evolved in the harsh conditions of circumpolar arctic and
81 subarctic habitats, being separated by 3 million years of evolution from the brown hare
82 (12), which in turn has adapted to the temperate regions of open steppe and bushlands
83 of the southern Palearctic (13). It is still unclear whether climate change, human
84 impact, species-specific characteristics (e.g. litter-size differences), or a combination
85 of these factors have enabled the current expansion of the brown hare's range in
86 northern Europe (11,14).

87 Given the distinct evolutionary trajectories of the mountain hare and the brown hare,
88 we investigated their cellular metabolic features using skin fibroblasts isolated from a
89 sympatric population of these two hare species in Finland. We identified species-
90 specific differences in the cell physiology of brown and mountain hare fibroblasts (15).
91 Specifically, brown hare fibroblasts showed higher proliferation rates and faster wound
92 closure. At the molecular level these properties were associated with species-specific
93 variation in the duration of the cell cycle phases as well as differences in the
94 electrochemical properties of mitochondria (15). While changes in the cell cycle
95 progression are likely linked to cell proliferation and wound healing capacity,
96 differences in mitochondrial properties like maintenance of membrane potential may
97 be rooted in the metabolic acclimation of these two species of hare.

98 Mitochondria are metabolic hubs, that act not only as a terminal step for metabolic
99 degradation linked to energy production, but also provide essential biosynthetic
100 intermediates for cell growth and proliferation. In addition, mitochondria act as central
101 signalling organelles, directly and indirectly influencing e.g., cell death, nuclear gene

102 expression via transcription factors and chromatin modifications, as well as metabolic
103 switches from anabolic to catabolic states (16).

104 Here we reveal differences between the two hare species related to mitochondrial
105 metabolism and bioenergetics. Using targeted metabolomics, we show that cells
106 derived from the mountain hare have significantly higher levels of metabolites known
107 to associate with NADH recycling, energy storage, and adaptive thermogenesis,
108 including glycerol-3-phosphate (G3P) (17,18). Metabolic flux analyses confirm a
109 higher rate of G3P production in mountain hare cells, and high-resolution respirometry
110 confirmed species differences in G3P-driven mitochondrial respiration. In addition, our
111 study unveils previously undocumented and unexpected species differences in
112 mitochondrial thermogenesis and membrane potential associated with G3P energetic
113 metabolism. Altogether, this study reveals unforeseen species differences in fibroblast
114 metabolism, supporting the idea that animal speciation translates into measurable
115 metabolic differences in cell culture.

116

117 Results

118

119 Our previous study of brown hare (*Lepus europaeus*, LE) and mountain hare (*Lepus*
120 *timidus*, LT) fibroblast biological functions identified species-specific differences in cell
121 proliferation, cell cycle and wound healing, and mitochondrial metabolism (15). To
122 better understand the species-specific traits underlying these differences, we
123 performed targeted metabolomics analysis. Out of 147 identified metabolites
124 seventeen were found significantly different between the two species, ten of which
125 were present at higher levels in LE cell lines and seven in LT cell lines (Figure 1A,
126 Table S1). Amongst the seven metabolites present at significantly higher levels in LT

127 cells, were the three components of the creatine kinase system, creatine (Cr),
128 phosphocreatine (PCr), and creatinine. The creatine kinase (CK/PCr) system converts
129 mitochondrial ATP and Cr into PCr which serves as a stock of rapidly deployable
130 energy for the cell (19). Creatinine is a product of the spontaneous degradation of Cr
131 and PCr. Recent studies have identified alternative thermogenic function of the
132 CK/PCr system, namely creatine-dependent thermogenesis in mitochondria of brown
133 adipocytes (reviewed in (20)). However, to our knowledge, such system has not been
134 previously described in skin fibroblasts. Another metabolite linked with the regulation
135 of energy metabolism; glycerol 3-phosphate (G3P) was also present at significantly
136 higher levels in the LT cells. As a substrate for the glycerol-3-phosphate (G3P) shuttle,
137 G3P sits at the crossroad between glycolysis, fatty acid metabolism and oxidative
138 phosphorylation. The G3P shuttle transfers the reducing power from cytosolic NADH
139 to the mitochondrial respiratory chain via G3P dehydrogenase 1 (GPD1, cytosolic) and
140 G3P dehydrogenase 2 (GPD2, mitochondrial) (18). Notably, the use of this G3P
141 shuttle is known to generate heat (18,21). Succinyl- and Malonyl-CoA were present at
142 significantly lower levels in LT cells. Fatty acid synthesis roots in Succinyl-CoA, an
143 intermediate of the tricarboxylic acid cycle (TCA) which provides Coenzyme A for
144 Malonyl-CoA synthesis. Importantly, Malonyl-CoA is the main inhibitor of fatty acid
145 catabolism. Altogether, these observations suggest species-specific differences in
146 creatine metabolism and in OXPHOS activity connected to G3P.

147 These findings prompted us to re-analyze previous transcriptomics results (15)
148 focusing on genes related to G3P- and creatine-metabolism. Some transcripts were
149 detected in one species only (Figure 1B), suggesting an extremely low expression or
150 a strong divergence from the consensus sequences in the other species. In the
151 creatine pathway, the mitochondrial Glycine amidinotransferase (*GATM*) responsible

152 for synthesizing guanidinoacetate, the precursor for creatine, as well as two alkaline
153 phosphatases converting PCr in creatine + P were only found in the LT cells. These
154 species-specific transcriptional differences in the creatine pathway support an
155 increase in the synthesis of creatine and of the cycling between creatine and PCr in
156 the LT cells (Figure S1). Associated to the G3P metabolism, *ARK1A1*, an Aldo-keto
157 reductase capable of converting glycerol into glyceraldehyde was one of the genes
158 found in the LT cells only. *ARK1B1* and *ARK1B10*, the two other enzymes catalyzing
159 this reaction were highly upregulated in LT cells compared to LE. In contrast, *PGP*,
160 which converts G3P to glycerol was found only in the LE samples, and *GK* and *GK5*,
161 which catalyze the opposite reaction were present at higher level in the LE cells
162 compared to LT (Figure 1B). These observations suggest strong differences in the
163 influx and effluxes associated to G3P but fail to explain why G3P itself is present at
164 higher levels in the LT fibroblasts.

165 We thus compared the ability of the LT and the LE cell lines to grow on various
166 substrates using the Biolog Phenotype MicroArray™ (22). Cells were grown on 96-
167 well plates pre-loaded with a single energy source per well. As the culture medium
168 was mainly devoid of energy sources, cell growth depended on the substrates
169 provided in the wells. Using formazan dye, we periodically measured the cellular
170 NADH levels in each well for 70 hours as a proxy for cell growth and metabolic activity.
171 NADH accumulation was generally weaker in LT cells (Figure 1C), which could be
172 indicative of a lower metabolic efficacy and likely relates to their slower growth rate
173 (15). Nine metabolites provided notably higher NADH levels than the others: D-
174 maltose, a-D-glucose, D-Mannose, Maltotriose, D-Fructose, Inosine, D-Galactose,
175 Uridine and Adenosine (Table S2). This signature shows strong similarities with many

176 human cell lines (22,23). Surprisingly though, G3P substrate was not significantly
177 preferred by the LT cells.

178 To verify the differences in G3P levels between the two species and assess the
179 connection between G3P levels and glucose metabolism, we performed metabolic
180 tracing using ¹³C glucose, in which all six carbon atoms are replaced by heavy ¹³C.
181 We measured the proportion of heavy carbons transferred from ¹³C glucose to Ribose-
182 5-P (+5 ¹³C), DHAP (+3 ¹³C), G3P (+3 ¹³C), lactate (+3 ¹³C), citrate, succinate (+2 ¹³C)
183 and phosphoserine (+3 ¹³C) (Figure S2). Upon addition of ¹³C glucose, we observed
184 a rapid surge in G3P labeling followed by an increase in dihydroxyacetone phosphate
185 (DHAP) labeling after 1.5 h in the LT cells (Figure 1D), supporting a glycolytic origin of
186 the G3P and corroborating the metabolomics finding.

187 G3P is a key intermediate for the recycling of cytosolic NADH to NAD⁺ by the G3P
188 shuttle. This role is intimately linked to the mitochondrial OXPHOS (Figure 1E) *via* the
189 mitochondrial GPD2 enzyme (21). Western blot analysis of GPD2 excluded a
190 differential expression of this protein between the LT and LE fibroblasts (Figure 2A).
191 While GPD2 appeared as a double band, suggesting the existence of a modified or
192 non-processed isoform, each potential isoform was present in similar amounts in both
193 species. In contrast, species-specific GPD2 coding sequence differences were found
194 at position 187 and 241 (Figure S3A). Compared to the asparagine in the mountain
195 hare, the presence of a serine at position 187 in the brown hare GPD2 caused a
196 lowered homology with the consensus motif for FAD dependent oxidoreductases
197 (Figure S3B), possibly indicative of lower catalytic activity.

198 GPD2 converts G3P into DHAP through a reaction coupled to the mitochondrial
199 OXPHOS. This allows the measurement of GPD2 activity by recording the oxygen

200 consumption (OCR) in the presence of exogenous G3P and ADP (Figure 1E). To
201 correct for the imprecision in cell count and potential variations in OXPHOS content
202 per cells, G3P-dependent respiration was normalized to either Complex I- or to
203 Complex IV-driven respiration. G3P-driven respiration was ~25% higher in the LT
204 permeabilized fibroblasts, whether normalized to Complex I- (Figure 2B) or complex
205 IV-driven (Figure S4A) respiration, indicating an increased capacity to use G3P as a
206 respiratory substrate. This difference was further increased in the absence of
207 normalization (~38%, Figure S4B). High activity of GPD2 in cultured fibroblasts has
208 historically been linked to their high glycolytic metabolism (24). However, this
209 hypothesis is inconsistent with our findings: G3P flux and GPD2 activity were higher
210 in the LT cell lines although there were no differences in glucose flux to lactate
211 between the two species. Compared to the malate-aspartate shuttle the G3P shuttle
212 is less efficient, producing only two molecules of ADP per NADH instead of three, the
213 remaining energy being dissipated as heat (18,21). Suspecting that higher G3P shuttle
214 capacity could be linked to increased thermogenesis in LT cells, we measured
215 changes in intramitochondrial temperature using Mito Thermo Yellow (MTY). MTY is
216 a thermosensitive fluorescent dye which accumulates inside the mitochondrial matrix
217 and changes fluorescence as an inverse function of temperature i.e., higher MTY
218 signal indicates lower mitochondrial temperature (25–27). After inhibition of Complex
219 I by rotenone the drop in mitochondrial temperature (ΔT°) was 35% lower in the LT
220 cells (Figure 2C). In simplified terms, this difference in ΔT° can be explained in two
221 opposite ways: either the temperature of LT mitochondria was lower before the
222 addition of rotenone, or their temperature after rotenone addition dropped less than in
223 LE.

224 To test which hypothesis is correct and verify the connection between GPD2 activity
225 and mitochondrial energetics, we knocked down GPD2 in the LE and LT fibroblasts.
226 Comparison between *Lepus* and *Homo sapiens* GPD2 consensus sequences allowed
227 the selection of a shRNA from existing human libraries that matched both *Lepus*
228 species as well as the human coding sequence. Silencing GPD2 caused a significant
229 decrease in GPD2 protein level to 60% and 44% of the WT levels respectively in LE3
230 and LT1 fibroblast cell lines (Figure 2D). In LE3 and LT1 permeabilized fibroblasts,
231 GPD2-KD led to a small decline in respiratory chain activity (Figure S4C), indicating
232 possible changes in OXPHOS function caused by GPD2 silencing. The decrease in
233 GPD2 protein level was associated with a very strong decrease in G3P-driven
234 respiration whether we normalized it to the activity of other OXPHOS complexes or
235 not (Figure 2E, Figures S4D-E). Mitochondrial thermogenic capacity (ΔT°) of the
236 GPD2-KD fibroblasts was assessed as previously mentioned. It was consistently lower
237 in the GPD2-KD lines (Figure 2F) although the decrease was rather modest (12-27%)
238 compared to GPD2-KD effect on respiration (Figure 2E). This weak effect of GPD2 on
239 mitochondrial thermogenic capacity would suggest it has marginal importance in
240 thermal adaptation and therefore that species difference in ΔT° are due to the
241 differences in their basal mitochondrial temperature. To assess this inference, we
242 performed comparative measurements of MTY staining using live cells imaging. The
243 LT mitochondria reproducibly and significantly showed higher MTY signal in our cell
244 culture conditions, indicating that they are colder than LE ones (Figure 3A-B).
245 Moreover, GPD2-KD cells showed a small but consistent decrease in their basal
246 mitochondrial temperature somewhat proportional to the decrease in ΔT° (compare
247 Figure 3B and 2F). Altogether, it suggests that most of the mitochondria from LE and

248 LT species function at different temperatures, which are only marginally influenced by
249 GPD2 activity.

250 Since GPD2 did not appear critical in establishing basal mitochondrial temperatures,
251 we assessed whether it could have a different species-specific role. Our previous
252 comparative analysis of respiratory chain activity showed a strong difference in
253 mitochondrial membrane potential ($\Delta\Psi_m$) between the two hare species, with the LT
254 fibroblasts having considerably higher $\Delta\Psi_m$ (15). To assess if the mitochondrial
255 membrane potential is connected to the GPD2 activity, we analyzed the effect of
256 GPD2-KD on $\Delta\Psi_m$ by flow cytometry of TMRM stained cells. In accordance with our
257 previous results (15), LT cells maintained ~40% higher $\Delta\Psi_m$ compared to LE cells and
258 their $\Delta\Psi_m$ was more resilient to Complex I inhibition (Figure 3C) . GPD2 knockdown
259 led to a clear decrease of $\Delta\Psi_m$ in both species (Figure 3C). However significant
260 differences could be observed between species. In LE fibroblasts, the knockdown of
261 GPD2, the abolition of Complex I activity, or a combination of the two led to the same
262 decrease in $\Delta\Psi_m$, suggesting that these activities cannot complement each other,
263 each needing the other to maintain $\Delta\Psi_m$. In contrast, in LT cells abolishing Complex I
264 activity or knocking-down GPD2 caused an intermediate drop in $\Delta\Psi_m$, which was
265 further decreased when the two interventions were combined, suggesting the $\Delta\Psi_m$
266 effect of one is at least partly independent of the other.

267

268 Discussion

269
270 By combining targeted metabolomics, metabolic tracing, high resolution respirometry
271 and subcellular thermometry we have uncovered species-specific metabolic and

272 bioenergetic differences in fibroblasts extracted from two closely related hare species,
273 the mountain hare (*Lepus timidus*) and the brown hare (*Lepus europaeus*). Mountain
274 hare fibroblasts have higher steady-state levels of G3P and higher flow of glucose
275 towards G3P. This was associated with a stronger G3P-driven respiratory capacity in
276 permeabilized cells. Finally, we demonstrate species-specific difference in how G3P
277 influences mitochondrial membrane potential and to a lesser extent thermal
278 homeostasis. We suggest that these differences reflect, at the cellular level, the
279 environmental pressures and adaptive responses that have shaped the evolution of
280 these two species.

281 In our previous study (15), we established and characterized a cell culture model,
282 identifying genetic and physiological species differences in fibroblast cell lines
283 extracted from a sympatric population of brown hares and mountain hares in Finland.
284 The most striking outcome of this study was the higher growth rate and wound healing
285 capacity of brown hare cells, which was associated with a lower mitochondrial
286 membrane potential ($\Delta\Psi_m$). These results suggested species-specific strategies in
287 cellular energy metabolism between the two species, although we could not establish
288 a connection between the mitochondrial and physiological species differences. To
289 address this gap, in the present study, a comparative analysis of the fibroblast
290 metabolome of the two species was established. It resulted in a small number of
291 metabolites (17/143) that were present at significantly different levels. Brown hare cells
292 showed higher levels of amino acid and fatty acid -related metabolites which may be
293 connected to their enhanced proliferation abilities (28), as also observed in our
294 previous study (15). Mountain hare cells present higher levels of G3P, and creatine
295 pathway -related metabolites, both known to be complementary sources of ATP,
296 respectively, from *de novo* mitochondrial production and storage of mitochondrial ATP

297 in the form of PCr. Synthesized from carbohydrates, amino acids, as well as from
298 triglycerides, G3P can be metabolized in the mitochondria by GPD2 to generate ATP
299 and heat, or used for synthesis of glycerolipids, or triglycerides. Increased G3P
300 availability is therefore often seen as a hallmark of improved metabolic flexibility (25).
301 This led us to hypothesize that mountain hare cells might have sacrificed growth in
302 exchange for enhanced metabolic adaptability to external stressors such as cold.
303 Whether the cell lines from the two species differ also in their long-term energy storage
304 e.g., lipids, remains to be studied.

305 Metabolic tracing of ^{13}C glucose showed a great proportion of the carbons being
306 directed to lactate in both species. This glycolytic switch is a classic and reversible
307 adaptive change in cells maintained under high glucose conditions, especially in
308 fibroblasts (29). Despite this metabolic reprogramming in cells from both species, the
309 flux of glucose to G3P was significantly higher in LT fibroblasts. In addition, the
310 proportion of labelled dihydroxyacetone-phosphate (DHAP), the direct precursor of
311 G3P, was also higher in LT fibroblasts, although at a later timepoint. This is consistent
312 with the activation of the G3P shuttle, where cytosolic NADH is used by the GPD1 to
313 convert DHAP originating from ^{13}C glucose metabolism into G3P. G3P is then
314 metabolized by the mitochondrial GPD2 returning to the cytosol as DHAP. Assuming
315 that GPD2 activity is the rate limiting G3P shuttle reaction, activation of this cycle
316 should lead to the successive accumulation of G3P and then DHAP, as we see in LT
317 fibroblasts. Indeed, the G3P shuttle has been described as limited by GPD2 protein
318 levels and allosteric regulations in mammalian tissues (18). GPD2 regulation is
319 complex, being activated by cytosolic Ca^{2+} and to a lesser extent other divalent
320 cations, while inhibited by glyceraldehyde 3-phosphate, palmitoyl-CoA and free fatty
321 acids. Since western blot analyses showed no difference in GPD2 protein level

322 between the two species, one would privilege the second hypothesis. However, GPD2
323 sequence differs between the LT and LE species at two amino acid positions, one of
324 which comparatively decreases *in silico* matching of the LE sequence with the
325 consensus sequence for FAD dependent oxidoreductases. It is possible that the
326 differences in protein activity originate from the species differences in their sequences.
327 Recently, the human GPD2 was purified and characterized *in vitro* (30) and a similar
328 procedure could be used to compare the catalytic properties but also allosteric
329 regulation of the brown and mountain hare enzymes.

330 G3P-driven respiration was significantly higher in mountain hare cells which confirmed
331 that the two species have different GPD2 capacity. GPD2 is the rate limiting step in
332 the G3P shuttle which participates in the reoxidation of cytosolic NADH and the
333 regulation of NADH/NAD ratio (18). Two major mechanisms, the malate-aspartate-
334 and the G3P shuttles can transfer NADH reducing power from the cytosol to the
335 mitochondria, where it fuels ATP production by the OXPHOS system. Unlike the
336 malate-aspartate shuttle which allows a net transfer of cytosolic NADH to the Complex
337 I, the G3P shuttle branches on the quinone downstream of Complex I, releasing the
338 energy which would have been used to pump protons at Complex I as heat (18).

339 MTY thermometry reliably assesses the relative (before vs after treatment)
340 temperature of mitochondria (31,32). As mitochondrial temperature can drop to that of
341 their environment, (37°C in mammalian cells), but not further, one can also infer the
342 absolute temperature of mitochondria before treatment. For example, a drop of 15°C
343 in temperature induced by rotenone treatment would imply that mitochondrial
344 temperature was at least 52°C before the treatment. This method led to the finding
345 that mitochondrial temperature of human fibroblasts was $\geq 50^\circ\text{C}$ (31), an estimation
346 which was confirmed in various human and animal cell types (32). With the same

347 approach we observed a drop of $\sim 15^{\circ}\text{C}$ and $\sim 10^{\circ}\text{C}$, respectively, in Complex I inhibited
348 mitochondria from brown and mountain hare fibroblasts, suggesting initial
349 temperatures of $\geq 52^{\circ}\text{C}$ and $\geq 47^{\circ}\text{C}$. These estimates are in good agreement with
350 previous knowledge from other cell models (31,32). Alternatively, the activity of the
351 G3P shuttle, which is theoretically independent of Complex I, could preserve
352 mitochondrial temperature in mountain hare, limiting the drop induced by Complex I
353 inhibition.

354 Knocking down GPD2 strongly decreased G3P shuttle activity in permeabilized cells
355 but only slightly lowered basal mitochondrial temperature. If GPD2 activity is
356 thermogenic, as previously shown (33), why does it have so little impact on
357 mitochondrial temperature despite significantly lower activity? In the reported studies,
358 GPD2 effects on temperature are measured in whole animals or cells. The MTY
359 thermometric dye is located in the mitochondrial matrix, thereby detecting
360 intramitochondrial temperature. As GPD2 is sitting inside the intermembrane space,
361 the heat produced by the activity of the enzyme may radiate outside of mitochondria.
362 Such thermogenic directionality could be dependant on properties of GPD2 itself or its
363 environment, including the structure and composition of the inner and outer
364 mitochondrial membranes. Further explorations of this theory would require the use of
365 thermosensitive intermembrane space reporters, or to compare the temperature in the
366 vicinity of the inner and outer mitochondrial membranes.

367 In contrast to its species-independent effect on mitochondrial temperature, GPD2-KD
368 had strikingly different impact on mitochondrial membrane potential. In LE fibroblasts,
369 either Complex I inhibition or knocking down of GPD2 was enough to suppress $\Delta\Psi_m$
370 efficiently, while in LT fibroblasts, the combination of the two was needed to obtain the
371 same effect. The associations of GPD2 with other mitochondrial membrane proteins

372 and higher assemblies including OXPHOS complexes has been speculated but is yet
373 to be shown (18). Formation of supercomplexes is presumed to provide for example
374 more efficient substrate channeling and minimize electron leak. Reverse activity of the
375 ATP synthase where the complex consumes ATP to pump H^+ outside of the
376 mitochondrial matrix, is known to participate in $\Delta\Psi_m$ maintenance, particularly in
377 situations of OXPHOS deficiency (34). Species-specific difference in the reverse flow
378 through ATP synthase may explain in part the effect of GPD-KD on $\Delta\Psi_m$. Different
379 effects of GPD2-KD on the $\Delta\Psi_m$ in the two hare species point to different associations
380 with at least Complex I. Complex I and high $\Delta\Psi_m$ are both strongly linked to ROS-
381 production (18). Variation in GPD2-related ROS production has been found between
382 tissues, the significance of which seems to be independent of GPD2 expression,
383 further supporting the idea of different associations with the OXPHOS complexes
384 (18,35).

385

386 Conclusions

387

388 Our study shows divergent metabolic strategies between fibroblasts extracted from
389 two evolutionary distinct hare species, the European brown hare (*Lepus europaeus*,
390 LE) and the mountain hare (*Lepus timidus*, LT). One of the main findings is the
391 difference in glycerol 3-phosphate (G3P) metabolism and activity of the mitochondrial
392 glycerol 3-phosphate dehydrogenase (GPD2). This is also the first study to present
393 variation in thermogenic properties of skin-derived fibroblasts, with LE fibroblasts
394 showing higher basal mitochondrial temperature compared to LT. The mechanisms
395 behind the different role of GPD2 activity in the two species remains to be studied but
396 it is suggested to be due to differences in the structure of the active site and/or

397 associations between the enzyme and the OXPHOS complexes such as Complex I.
398 Unveiling these mechanisms may help to understand the evolution of cellular
399 metabolic traits and more importantly, their plasticity and predict how they may
400 advance or hamper the survival of the organism in a stochastically changing climate.

401

402 Materials and Methods

403
404 **Ethics statement**

405 The study did not involve experimentation on live animals. All experiments were
406 performed using cultured cell lines. Both species of hare are legal game animals in
407 Finland and the sampling was previously described (15) hence no ethical assessment
408 was required.

409 **Cell lines and cell culture**

410 Four immortalized mountain hare (LT 1, 4, 5, 6) and brown hare (LE 1, 2, 3, 4)
411 fibroblast cell lines were generated through SV40 transformation as previously
412 described (15). The chromosomal integrity and the gene expression of the
413 immortalized fibroblast was verified using high throughput sequencing and
414 transcriptomics, none of the cell lines presented genetic abnormality and their
415 transcriptome signature remained that of skin fibroblasts (36). Cells were grown in
416 standard cell culture conditions (37 °C, 5 % CO₂, ~95 % relative humidity). DMEM-Hi
417 glucose growth medium (# D6546) supplemented with 10 % (vol/vol) heat-inactivated
418 fetal bovine serum (HI-FBS, # F7524), 1 % L-glutamine (# G7513, Sigma-Aldrich), and
419 1 % penicillin/streptomycin (P/S, # 15140122, Gibco) was used to culture the cells.
420 Stable glycerol-3-phosphate dehydrogenase 2 (GPD2) knock-down (KD) cell lines

421 were generated from parental mountain hare (LT1) and brown hare (LE3) cell lines by
422 lentiviral transduction of shRNA (TRCN0000028617 and TRCN0000028579 MISSION®
423 shRNAs, Sigma-Aldrich) followed by puromycin-resistant marker selection.

424 **Immunoblotting**

425 Cells were tested for the expression of GPD2 protein using Western blot as previously
426 described (15). Briefly, protein samples (30 µg) were loaded on 4 - 20 % gels (#
427 4561093, Bio-Rad), run at 100 V and transferred to nitrocellulose membranes (#
428 1704158, Bio-Rad). Blots were blocked in 5 % milk diluted in tris buffered saline plus
429 0.1 % Tween 20 (TBS-T) and probed with GPD2 polyclonal antibody (# 17219-1-AP,
430 Proteintech) diluted 1:2000 in blocking solution at 4 °C overnight followed by
431 incubation with peroxidase-linked goat anti-rabbit IgG (1:10000, # PI-1000-1, Vector
432 Laboratories). Chemiluminescent substrate (# 34095, Thermo Scientific) was applied
433 to visualize immunoreactive bands in ChemiDoc XRS+ Imaging System (Bio-Rad).
434 Blots were washed with TBS-T, re-probed with mouse monoclonal anti-Vinculin
435 antibody (1:10000, # V9264, Sigma-Aldrich) followed by peroxidase-conjugated horse
436 anti-mouse IgG (1:10000, # PI-2000, Vector Laboratories) and imaged as described
437 above. Images were captured and analysed using Image Lab 6.0.1 software. GPD2
438 protein expressions were normalized to Vinculin. Three individual experiments were
439 performed for each cell line, with additional two experiments for LT1, LE3 and for the
440 established GPD2-KD cell lines.

441 **Flow cytometry**

442 Cells were collected by trypsinization, pelleted at 250 g for 3 min and resuspended
443 with DPBS (# D8537, Sigma-Aldrich) at 1x10⁶ cells/ml. All samples, excluding a
444 negative control, were stained with 20 nM TMRM (# T668, Invitrogen), a mitochondrial

445 dye used to estimate mitochondrial membrane potential ($\Delta\psi_m$), in the presence of
446 50 μ M Verapamil (# V4629, Sigma-Aldrich), an efflux pump inhibitor (37) for 20 min at
447 37 °C. Half of the samples were treated with 0.075 μ M rotenone (# R8875; Sigma-
448 Aldrich), a mitochondrial Complex I inhibitor. After incubation, cells were pelleted and
449 washed with DPBS twice, resuspended with DPBS containing 2 % FBS, and median
450 fluorescent intensities of TMRM (Ex 561 nm, Em 584) were measured with CytoFlex
451 S flow cytometer (Beckman Coulter). For each studied cell line four independent
452 experiments with three technical repeats were performed as described above. Data
453 were analysed using BD FlowJo 10.7.2 software.

454 **High-resolution respirometry**

455 Cells were grown until 80 % confluence and collected by trypsinization. For each
456 measurement, 5×10^6 cells were resuspended in the respiration buffer (225 mM
457 sucrose; 75 mM mannitol; 10 mM KCl; 10 mM KH₂PO₄; 5 mM MgCl₂; 10 mM Tris
458 base; 1 mg/ml BSA; pH 7.4) and transferred into the oxygen-calibrated chamber of
459 Oxytherm respirometer (Hansatech Instruments). Cell membranes were
460 permeabilised with 55 μ M digitonin. Mitochondrial respiration was assessed by
461 additions of substrates and inhibitors in the following order: pyruvate + glutamate +
462 malate (5 mM each; # P8574, # G5889, # M7397; Sigma-Aldrich), ADP (1 mM; #
463 117105; Calbiochem), rotenone (0.15 μ M; # R8875; Sigma-Aldrich), glycerol 3-
464 phosphate, G3P (10 mM; # 94124; Sigma-Aldrich), antimycin A (90 ng/ml; # A8674;
465 Sigma-Aldrich), ascorbate (700 μ M; # A4034; Sigma-Aldrich), N,N,N',N'-tetramethyl-
466 p-phenylenediamine (300 μ M, # T7394; Sigma-Aldrich) and potassium cyanide (200
467 μ M; # 60178; Sigma-Aldrich). Oxygen consumption (pmol.sec⁻¹.ml⁻¹) was
468 normalized to the cell count (i.e., per million of cells) as well as to the Complex I and
469 Complex IV driven respiration. For each cell line, seven independent experiments

470 were performed as described above. Statistics were performed using a nested glm
471 (response variable ~ species/cell line) and fitting a gamma distribution. When only one
472 cell line was included per species, a one-way anova was preferred.

473 **Spectrofluorometry**

474 Mitochondrial temperature was measured using spectrofluorometry as previously
475 described (36). Briefly, cells were stained for 15 min at 37 °C with 100 nM Mito Thermo
476 Yellow (MTY), a thermosensitive fluorescent probe (38), trypsinized and washed with
477 DPBS. Around 5×10^6 cells resuspended in DPBS were transferred into a quartz
478 cuvette with 10 mm optical path (Hellma Analytics, Germany). The cuvette was placed
479 in a Peltier chamber pre-set to 38 °C that allows for precise and rapid temperature
480 control inside a fluorometer system (PTI QuantaMasterTM, LPS-220B, Horiba).
481 Kinetic measurements of MTY fluorescence signal (Ex 542 nm, Em 562 nm) were
482 collected using FelixGX software. Once the fluorescence signal stabilized, the cells
483 were treated with 0.075 µM rotenone. After the fluorescence signal reached a steady
484 state, the temperature was changed to 41 °C, and then back to 38 °C, which allowed
485 for MTY fluorescence signal calibration. Three independent experiments were
486 performed for each cell line, with additional two experiments for LT1, LE3 and for the
487 established GPD2-KD cell lines.

488 **Imaging**

489 Cells were seeded on poly-d-lysine coated glass coverslips (# P35GC-1.5-14-C,
490 MatTek) and grown in standard cell culture conditions for 48 h. Cell nuclei were stained
491 with NucBlue (NB, # R37605, Invitrogen) as specified by manufacturer, and
492 mitochondria with either 100 nM MTY for 15 min or 100 nM MitoTracker Green FM
493 (MTG, # M7514, Invitrogen) for 30 min at 37 °C. Stained cells were washed with DPBS

494 and maintained in FluoroBrite DMEM (# A1896701, Gibco) supplemented with 1% P/S
495 to preserve cell fitness throughout the imaging process. Culture dishes were placed
496 inside the microscope onstage incubator pre-set to maintain standard cell culture
497 conditions during live-cell imaging. Relative z-stacks of cells stained with NB (Ex 405,
498 Em 450/50), MTY (Ex 488, Em 540/30) and MTG (Ex 488, Em 525/50) were acquired
499 from five non-overlapping imaging fields using Nikon's A1R+ confocal laser scanning
500 microscope system (Nikon Eclipse Ti2-E), Perfect Focus System® and Nikon 60x /
501 1.27 water-immersion objective (CFI SR Plan Apo IR 60XC WI). The detector (A1-
502 DUG GaAsP Multi Detector Unit) settings were adjusted for each channel to avoid
503 image saturation and kept constant for all experiments. Images were deconvolved
504 using Huygens Essential (SVI; Hilversum) and analyzed in Fiji-ImageJ (39).
505 Midsections from acquired z-stacks were used to measure mean MTY signal
506 intensities of individual cells. For visualization purpose, SD z-projections were created,
507 background was subtracted, brightness and contrast were adjusted. Adjustment
508 settings were kept constant to obtain representative figures.

509 **Metabolic phenotyping**

510 All cell lines (4 LT and 4 LE lines) were collected by trypsinization, counted with EVE™
511 automatic cell counter (NanoEntek) and inoculated in IF-M2 medium (# 72302, Biolog)
512 supplemented with 5% HI-FBS, 1% P/S and 0.3 mM L-glutamine. Cells were seeded
513 at density 2x10⁴ cells/well on 96-well plates containing carbohydrate/carboxylate
514 substrates (PM-M1, # 13101, Biolog) and cultured under standard cell culture
515 conditions for 48 h. A redox dye mix MB (# 74352, Biolog) was added into each well
516 at 10 µl/well. Absorbance of NADH signal accumulation (562 nm) was measured with
517 pre-warmed to 37°C Elmer EnVision 2104 plate reader (Perkin) immediately after
518 adding the dye (0 h) and at time points 3 h, 7 h, 21 h, 27 h, 48 h, 54 h. Between the

519 measurements, cells were maintained in the incubator under standard cell culture
520 conditions. Absorbance values above 4 were regarded as aberrant and removed.
521 Comparison of substrate usage between hare species was done in R (version 4.3.1)
522 using *opm* package (40). Modelling of NADH accumulation was obtained by fitting an
523 exponential plateau model ($[\text{Nadh}]_{\text{((t))}} = [\text{Nadh}]_{\text{max}} - ([\text{Nadh}]_{\text{max}} - [\text{Nadh}]_{\text{0}}) e^{-kt}$). We compared maximum NADH levels ($[\text{Nadh}]_{\text{max}}$), controlling for
525 family-wise error-rate to measure the differences in NADH production. For each
526 timepoint and species, the signal from each well was averaged to obtain $(\text{Lt}_m)^-$ and
527 $(\text{Le}_m)^-$. For each metabolite (m) and timepoint, relative differences $((\text{Le}_m)^- - (\text{Lt}_m)^-) / ((\text{Le}_m)^- + (\text{Lt}_m)^-)$ were calculated, averaged and plotted.
528

529 **Metabolomics**

530 All cell lines were seeded 6-well plates and grown for 3 days till reaching 80 %
531 confluence. The medium was changed 4 h before polar metabolites extraction. The
532 plates were removed from the incubator and put on dry ice. Cells were rinsed with ice-
533 cold 150 mM NH4AcO (pH 7.3) and incubated with 1 ml/well 80 % MeOH at -80 °C for
534 45 min to aid quenching and protein precipitation. Cells were scraped from individual
535 wells and collected in Eppendorf tubes (n = 6). Samples were vortexed and centrifuged
536 at 1.6×10^4 g for 15 min at 4 °C. Supernatants were transferred into fresh Eppendorf
537 tubes, dried using vacuum concentrator (ScanVac MaxiVac, LaboGene) and stored at
538 -80 °C. Cell pellets were lysed in 0.1M NaOH, and protein concentrations were
539 estimated using BCA assay kit (# 23225, Thermo Scientific) as specified by
540 manufacturer. Samples were sent for targeted analysis to UCLA Metabolomics Center
541 (Los Angeles, USA). Samples 42 (LT5), 44 and 46 (LT6) were excluded due
542 chromatographic aberrations (i.e., metabolite retention shift). Eleven metabolites with

543 less than 50% of non-zero measures per group were excluded from the analysis. For
544 each sample metabolite levels were normalized by protein content. Metabolites were
545 either compared using Student's T-test with no FDR correction and no normalization
546 (Figure 1A); or normalized by the median, auto-scaled, and compared using SAM
547 (Significance Analysis of Metabolomics) with FDR correction ($p < 0,05$)(41). SAM
548 analysis identified 6 significantly elevated metabolites in LT (same as in Figure 1A
549 excluding homocysteine) and 14 metabolites with significantly lower levels (same as
550 in Figure 1A excluding deoxycytosine and including HMG-CoA, carbamoyl-aspartate,
551 4-OH-phenyllactate, sarcosine, glutamate and aspartate).

552 **¹³C-glucose tracing**

553 Two mountain hare cell lines (LT 5 and 6) and two brown hare (LE 3 and 4) were
554 seeded on 6-well plates and grown for 3 days till reaching 80 % confluency. Before
555 extraction, the medium was changed to DMEM without glucose (# 01-057-1A
556 Sartorius) supplemented with 25 mM final concentration of ¹³C-glucose (# CLM-1396-
557 1, Cambridge Isotope Laboratories). After 30 min and 120 min exposures, the
558 metabolites were extracted as described above. Samples were sent for flux analysis
559 to FIMM Metabolomics Unit at University of Helsinki (Helsinki, Finland). For each
560 isotope, the levels were divided by the total amount of labelled metabolites
561 detected in the sample at the given time. The variation in this proportion were then
562 analyzed in R using a linear mixed model: lmer(metabolite ~ Timept * Genotype +
563 (1|strain)). Note that fluxes of ¹³C-glucose to phosphoserine were not analyzed due to
564 a very low number of reliable measures.

565 **Transcriptomics**

566 We pooled all genes having GO-terms related to 3P with those as involved in Glo3P
567 metabolism from the KEGG library (n=146) and did the same for the genes related to
568 Cr and its metabolic pathway (n=13). The transcriptomes of the LT and LE cells have
569 been published earlier (19). The raw sequence reads are available through BioProject
570 accession PRJNA826339.

571 **Protein sequence**

572 Sequence alignments were perform using ApE v3.1.4. Comparison with known
573 consensus sequences were performed using MyHits (<http://myhits.isb-sib.ch>) (42).

574 **Statistics**

575 Before analyses, normality and lognormality tests were used (i.e., d'Agostini &
576 Pearson and Shapiro-Wilk). Normal and lognormal distributions were compared using
577 a maximum likelihood method and generated QQ plots. If lognormal distribution was
578 more likely, the data was log2 transformed and statistical analysis was done on logs.
579 Possible outliers were identified and removed using Grubb's (alpha = 0.2) or ROUT
580 (FDR 2 %) methods depending on the number of expected outliers. For comparisons
581 between two groups (i.e., species), unpaired Student's t test (assuming equal
582 variance) was performed. For comparisons between multiple groups, one- or two- way
583 ANOVA was performed with subsequent Tukey's multiple comparisons test, and
584 adjusted p values were reported. Statistical tests were conducted at a 5% significance
585 level. GraphPad Prism 9.0.0 was used for statistical analyses and graphical
586 representation of the obtained results if not otherwise stated.

587 Analyses of the respirometry and ¹³C-glucose tracing data were performed using R
588 4.3 in RStudio 2023.03.1.0. Species was set as a predictor of interest, in which cell
589 line was set a nested factor. The effect response variable was analyzed using glm or

590 Imer as presented in the corresponding methods. To identify the best type of
591 distribution, we used gamlss 5.4.12 library of distributions from the Generalized
592 Additive Models for Location Scale and Shape (43). The distributions were ranked
593 using corrected generalized Akaike Information Criteria (AIC). For each data set, the
594 distribution with the lowest AIC score compatible with glm or Imer was selected. The
595 the importance of each predictor and eventual interaction was assessed using
596 ANOVA. Key results are reported in the figure legends (*P < 0.05; **P < 0.01;
597 ***P < 0.001; ****P < 0.0001; ns, non-significant).

598

599 Acknowledgements

600 Authors acknowledge the support provided by Johanna ten Hoeve at UCLA
601 Metabolomics center, US; Anni I. Nieminen at Biocenter Finland and HiLIFE-funded
602 FIMM Metabolomics Unit, Helsinki, Finland; Young-Tae Chang at POSTECH,
603 Republic of Korea, for providing MTY dye; Howy Jacobs for invaluable feedback and
604 insightful discussions; Teemu O. Ihalainen at Tampere Imaging Facility (TIF),
605 Tampere University, Finland for helping with the imaging.

606

607 **Data Availability:** All relevant data are within the paper and its Supplementary
608 Information files.

609 **Competing interests:** The authors have declared no competing interests.

610

611 **Funding:** S.S. was funded by AFM Telethon (23527), Alfred Kordelin Foundation
612 (200340) and Tampere Institute of Advanced Studies. E.D. and J.P. were funded by
613 the Academy of Finland (R'Life 329264). The funders had no role in study design,
614 data collection and analysis, decision to publish, or preparation of the manuscript.

615

616 **List of supplementary files**

617 Supplementary table S1

618 Supplementary table S2

619 Supplementary table S3

620 References

- 622 1. Talbott HE, Mascharak S, Griffin M, Wan DC, Longaker MT. Wound healing, fibroblast
623 heterogeneity, and fibrosis. *Cell Stem Cell*. 2022 Aug;29(8):1161–80.
- 624 2. Unger C, Felldin U, Rodin S, Nordenskjöld A, Dilber S, Hovatta O. Derivation of Human Skin
625 Fibroblast Lines for Feeder Cells of Human Embryonic Stem Cells. *Curr Protoc Stem Cell Biol*
626 [Internet]. 2016 Feb [cited 2024 Jan 15];36(1). Available from:
627 <https://currentprotocols.onlinelibrary.wiley.com/doi/10.1002/9780470151808.sc01c07s36>
- 628 3. Lendahl U, Muhl L, Betsholtz C. Identification, discrimination and heterogeneity of fibroblasts.
629 *Nat Commun*. 2022 Jun 14;13(1):3409.
- 630 4. Shani O, Raz Y, Monteran L, Scharff Y, Levi-Galibov O, Megides O, et al. Evolution of fibroblasts in
631 the lung metastatic microenvironment is driven by stage-specific transcriptional plasticity. *eLife*.
632 2021 Jun 25;10:e60745.
- 633 5. Harper JM, Wang M, Galecki AT, Ro J, Williams JB, Miller RA. Fibroblasts from long-lived bird
634 species are resistant to multiple forms of stress. *J Exp Biol*. 2011 Jun 1;214(11):1902–10.
- 635 6. Jimenez AG, Harper JM, Queenborough SA, Williams JB. Linkages between the life-history
636 evolution of tropical and temperate birds and the resistance of their cells to oxidative and non-
637 oxidative chemical injury. *J Exp Biol*. 2012 Jan 1;jeb.079889.
- 638 7. Harper JM, Salmon AB, Leiser SF, Galecki AT, Miller RA. Skin-derived fibroblasts from long-lived
639 species are resistant to some, but not all, lethal stresses and to the mitochondrial inhibitor
640 rotenone. *Aging Cell*. 2007 Feb;6(1):1–13.
- 641 8. Salmon AB, Akha AAS, Buffenstein R, Miller RA. Fibroblasts From Naked Mole-Rats Are Resistant
642 to Multiple Forms of Cell Injury, But Sensitive to Peroxide, Ultraviolet Light, and Endoplasmic
643 Reticulum Stress. *J Gerontol A Biol Sci Med Sci*. 2008 Mar 1;63(3):232–41.
- 644 9. Norin T, Metcalfe NB. Ecological and evolutionary consequences of metabolic rate plasticity in
645 response to environmental change. *Philos Trans R Soc B Biol Sci*. 2019 Mar
646 374(1768):20180180.
- 647 10. Levänen R, Thulin CG, Spong G, Pohjoismäki JLO. Widespread introgression of mountain hare
648 genes into Fennoscandian brown hare populations. Castiglia R, editor. *PLOS ONE*. 2018 Jan
649 13(1):e0191790.
- 650 11. Thulin C. The distribution of mountain hares *Lepus timidus* in Europe: a challenge from brown
651 hares *L. europaeus*? *Mamm Rev*. 2003 Mar;33(1):29–42.
- 652 12. Angerbjorn A, Flux JEC. *Lepus timidus*. *Mamm Species*. 1995 Jun 23;(495):1.
- 653 13. Bock A. *Lepus europaeus* (Lagomorpha: Leporidae). Harris JM, Hamilton MJ, editors. *Mamm*
654 *Species*. 2020 Dec 23;52(997):125–42.
- 655 14. Pohjoismäki JLO, Michell C, Levänen R, Smith S. Hybridization with mountain hares increases the
656 functional allelic repertoire in brown hares. *Sci Rep*. 2021 Aug 4;11(1):15771.

657 15. Gaertner K, Michell C, Tapanainen R, Goffart S, Saari S, Soininmäki M, et al. Molecular
658 phenotyping uncovers differences in basic housekeeping functions among closely related species
659 of hares (*Lepus* spp., Lagomorpha: Leporidae). *Mol Ecol*. 2023 Aug;32(15):4097–117.

660 16. Martínez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology and
661 disease. *Nat Commun*. 2020 Jan 3;11(1):102.

662 17. Kazak L, Rahbani JF, Samborska B, Lu GZ, Jedrychowski MP, Lajoie M, et al. Ablation of adipocyte
663 creatine transport impairs thermogenesis and causes diet-induced obesity. *Nat Metab*. 2019 Feb
664 25;1(3):360–70.

665 18. Mráček T, Drahota Z, Houštěk J. The function and the role of the mitochondrial glycerol-3-
666 phosphate dehydrogenase in mammalian tissues. *Biochim Biophys Acta BBA - Bioenerg*. 2013
667 Mar;1827(3):401–10.

668 19. Wyss M, Kaddurah-Daouk R. Creatine and Creatinine Metabolism. *Physiol Rev*. 2000 Jul
669 1;80(3):1107–213.

670 20. Kazak L, Cohen P. Creatine metabolism: energy homeostasis, immunity and cancer biology. *Nat
671 Rev Endocrinol*. 2020 Aug;16(8):421–36.

672 21. Beignon F, Gueguen N, Tricoire-Leignel H, Mattei C, Lenaers G. The multiple facets of
673 mitochondrial regulations controlling cellular thermogenesis. *Cell Mol Life Sci*. 2022
674 Oct;79(10):525.

675 22. Bochner BR, Siri M, Huang RH, Noble S, Lei XH, Clemons PA, et al. Assay of the Multiple Energy-
676 Producing Pathways of Mammalian Cells. Tomé D, editor. *PLoS ONE*. 2011 Mar 24;6(3):e18147.

677 23. Žigon P, Mrak-Poljšak K, Lakota K, Terčelj M, Čučnik S, Tomsic M, et al. Metabolic fingerprints of
678 human primary endothelial and fibroblast cells. *Metabolomics*. 2016 May;12(5):92.

679 24. Chretien D, Rustin P, Bourgeron T, Rötig A, Saudubray JM, Munnich A. Reference charts for
680 respiratory chain activities in human tissues. *Clin Chim Acta*. 1994 Jul;228(1):53–70.

681 25. Dhoundiyal A, Goeschl V, Boehm S, Kubista H, Hotka M. Glycerol-3-Phosphate Shuttle Is a Backup
682 System Securing Metabolic Flexibility in Neurons. *J Neurosci*. 2022 Sep 28;42(39):7339–54.

683 26. Sun Y, Rahbani JF, Jedrychowski MP, Riley CL, Vidoni S, Bogoslavski D, et al. Mitochondrial TNAP
684 controls thermogenesis by hydrolysis of phosphocreatine. *Nature*. 2021 May 27;593(7860):580–
685 5.

686 27. Russell AP, Ghobrial L, Wright CR, Lamon S, Brown EL, Kon M, et al. Creatine transporter (SLC6A8)
687 knockout mice display an increased capacity for in vitro creatine biosynthesis in skeletal muscle.
688 *Front Physiol [Internet]*. 2014 Aug 26 [cited 2024 Jan 15];5. Available from:
689 <http://journal.frontiersin.org/article/10.3389/fphys.2014.00314/abstract>

690 28. Currie E, Schulze A, Zechner R, Walther TC, Farese RV. Cellular Fatty Acid Metabolism and Cancer.
691 *Cell Metab*. 2013 Aug;18(2):153–61.

692 29. Lemons JMS, Feng XJ, Bennett BD, Legesse-Miller A, Johnson EL, Raitman I, et al. Quiescent
693 Fibroblasts Exhibit High Metabolic Activity. Goodell MA, editor. *PLoS Biol*. 2010 Oct
694 19;8(10):e1000514.

695 30. Syngkli S, Das B. Purification and characterization of human glycerol 3-phosphate
696 dehydrogenases (mitochondrial and cytosolic) by NAD+/NADH redox method. *Biochimie*. 2023
697 Nov;214:199–215.

698 31. Chrétien D, Bénit P, Ha HH, Keipert S, El-Khoury R, Chang YT, et al. Mitochondria are
699 physiologically maintained at close to 50 °C. Lane N, editor. *PLOS Biol*. 2018 Jan
700 25;16(1):e2003992.

701 32. Terzioglu M, Veeroja K, Montonen T, Ihalainen TO, Salminen TS, Bénit P, et al. Mitochondrial
702 temperature homeostasis resists external metabolic stresses. *eLife*. 2023 Dec 13;12:RP89232.

703 33. Silva JE. Thermogenic Mechanisms and Their Hormonal Regulation. *Physiol Rev*. 2006
704 Apr;86(2):435–64.

705 34. Acin-Perez R, Benincá C, Fernandez Del Rio L, Shu C, Baghdasarian S, Zanette V, et al. Inhibition of
706 ATP synthase reverse activity restores energy homeostasis in mitochondrial pathologies. *EMBO J*.
707 2023 May 15;42(10):e111699.

708 35. Mráček T, Pecinová A, Vrbačký M, Drahota Z, Houštěk J. High efficiency of ROS production by
709 glycerophosphate dehydrogenase in mammalian mitochondria. *Arch Biochem Biophys*. 2009
710 Jan;481(1):30–6.

711 36. Gaertner K, Michell C, Tapanainen R, Goffart S, Saari S, Soininmäki M, et al. Molecular
712 phenotyping uncovers differences in basic housekeeping functions among closely related species
713 of hares (*Lepus* spp., Lagomorpha: Leporidae). *Mol Ecol*. 2022 Nov;me.16755.

714 37. Morganti C, Bonora M, Ito K, Ito K. Electron transport chain complex II sustains high
715 mitochondrial membrane potential in hematopoietic stem and progenitor cells. *Stem Cell Res*.
716 2019 Oct;40:101573.

717 38. Arai S, Suzuki M, Park SJ, Yoo JS, Wang L, Kang NY, et al. Mitochondria-targeted fluorescent
718 thermometer monitors intracellular temperature gradient. *Chem Commun*. 2015;51(38):8044–7.

719 39. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source
720 platform for biological-image analysis. *Nat Methods*. 2012 Jul;9(7):676–82.

721 40. Vaas LAI, Sikorski J, Hofner B, Fiebig A, Buddruhs N, Klenk HP, et al. opm: an R package for
722 analysing OmniLog® phenotype microarray data. *Bioinformatics*. 2013 Jul 15;29(14):1823–4.

723 41. Xia J, Psychogios N, Young N, Wishart DS. MetaboAnalyst: a web server for metabolomic data
724 analysis and interpretation. *Nucleic Acids Res*. 2009 Jul 1;37(Web Server):W652–60.

725 42. Pagni M, Ioannidis V, Cerutti L, Zahn-Zabal M, Jongeneel CV, Hau J, et al. MyHits: improvements
726 to an interactive resource for analyzing protein sequences. *Nucleic Acids Res*. 2007 May
727 8;35(Web Server):W433–7.

728 43. Stasinopoulos DM, Rigby RA. Generalized Additive Models for Location Scale and Shape
729 (GAMLSS) in *R*. *J Stat Softw* [Internet]. 2007 [cited 2024 Jan 15];23(7). Available from:
730 <http://www.jstatsoft.org/v23/i07/>

731
732
733

FIGURE LEGENDS

Figure 1: Hare fibroblasts present differences in metabolites related to energy cycling. (A) Seven metabolites are present in significantly higher level in *Lepus timidus*. On the left side: heatmap clustering analysis of the metabolites present at significantly higher levels (logFC) in *L. timidus* (LT, in blue) and in *L. europaeus* (LE, in yellow) fibroblasts. On the right side: distribution of the 147 metabolites identified in LT and LE fibroblast lines. Positive and negative values on the y-axis respectively indicate higher levels in LT and in LE. The significant differences are highlighted (uncorrected Student's t-test, alpha = 0,05; n = 17/147) and sorted from the most significantly changed at the top and bottom to less significant towards the center. Metabolite levels were corrected based on protein quantitation. n= 6 per fibroblast line (LT 5: n=5; LT 6: n=4), 4 fibroblast lines per species. (B) Transcriptomic analysis suggests differences in G3P metabolism between the two *Lepus* species. Simplified map of the metabolic pathway centered around G3P. The colour code for highlighting the enzymes is the same as in panel A. * Significant before FDR correction, ** < FDR 0,05. (C) LE fibroblasts present generally higher metabolic rates than LT. NADH buildup in LE and LT fibroblasts. Each dot corresponds to one well of a 96 plate where no substrate (-) or a single metabolite (see Supplementary table 2 for a list), is provided to the cells as the unique source for carbon metabolism. The boxed position corresponds to G3P. The intensity of the signal corresponds to the averaged amount of NADH accumulated after 48h of growth for the given species. N = 4 measures per genotype. (D) LT fibroblasts present higher flux of glucose to G3P. Proportion of ¹³C glucose converted into DHAP (upper panel) and G3P (lower panel) in LT (blue) and LE (yellow) fibroblast cells (calculated as, at each timepoint and for each sample,

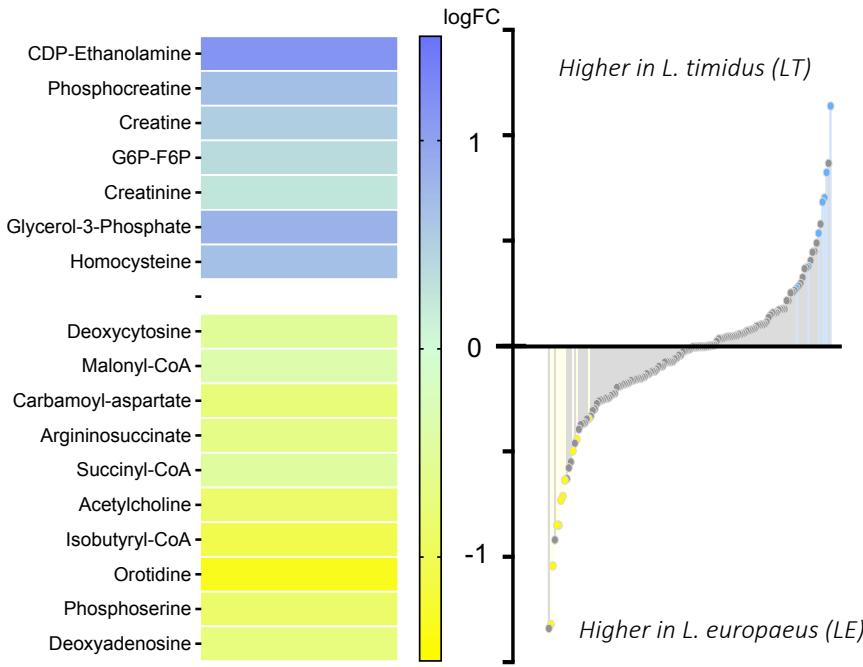
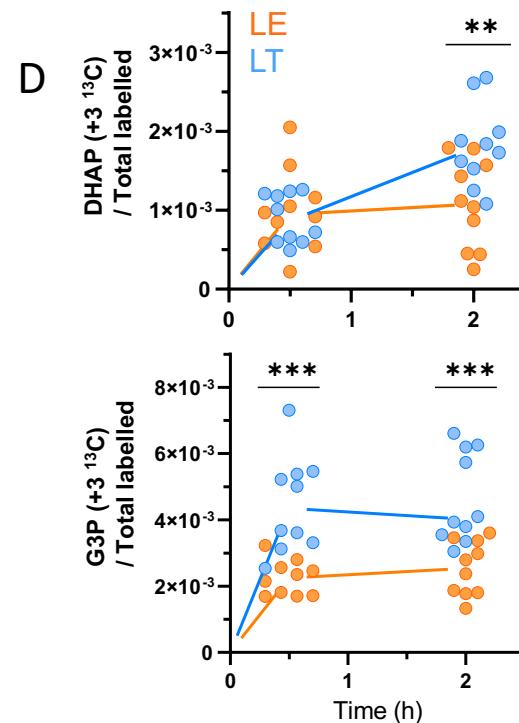
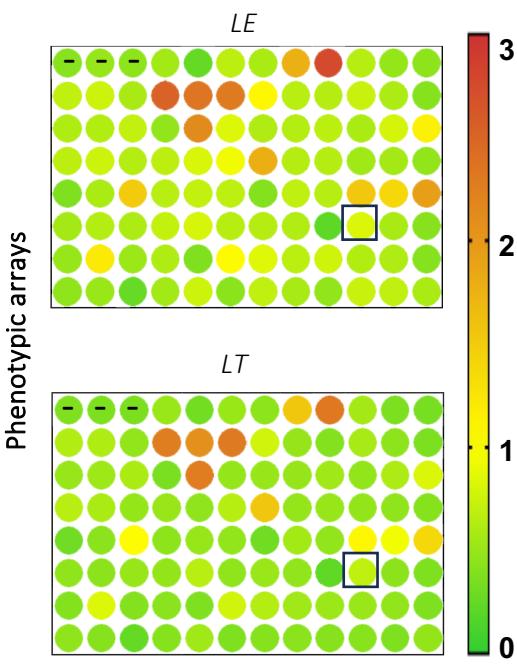

intensity of the ^{13}C -labelled metabolite of interest / sum of the intensities of all measured ^{13}C -labelled metabolites). Two cell lines per genotype, 5 measurements per cell line.

Figure 2: GPD2 activity is higher in LT fibroblasts. (A) Western blot quantitation of GPD2 protein in LE and LT fibroblasts. No significant differences were detected in the protein level of GPD2 between the two species. (B) GPD2-driven respiration is higher in LT fibroblasts. (C) LT fibroblasts have lower decrease in mitochondrial temperature than LE cells after Complex I inhibition with rotenone. (D) Western blot quantitation of GPD2 protein in LE and LT fibroblasts with GPD2 knock-down. Protein level of GPD2 was significantly lower in both LE and LT GPD2-KD cell lines. (E) GPD2-driven respiration in GPD2-KD cell lines is significantly decreased in both LE and LT GPD2-KD cell lines. (F) GPD2 knock-down leads to lower decrease in mitochondrial temperature in both LE and LT cells after Complex I inhibition with rotenone compared to WT cells. The decrease was only found significant in LT cells. *p-value < 0.01, **p-value < 0.001, ***p-value < 0.0001. WT = wild type.


Figure 3: Hare fibroblasts present different basal mitochondrial temperature and membrane potential that are affected by knocking down of GPD2. (A) Visualization of MitoThermo Yellow (MTY) staining in LE and LT WT and GPD2-KD cells by confocal microscopy. Upper row: Intensity of the MTY signal is visually stronger in the GPD2-KD cell lines. Lower row: MitoTracker Green (MTG) staining demonstrates no differences in the mitochondrial network between the cell lines. NB = NucBlue. Scale bar 20 μm . (B) Quantitation of MTY signal from confocal images. LE cells show higher basal mitochondrial temperature compared to LT cells. Knocking

down of GPD2 led to lower basal temperature in both species with a more significant drop in LE cells. (C) Quantitation of mitochondrial membrane potential ($\Delta\psi_m$) by TMRM. In LE cells both rotenone and GPD2-KD led to similar drop in $\Delta\psi_m$. In LT cells, both knock-down of GPD2 and Complex I inhibition were required to drop $\Delta\psi_m$ at the level of LE cells.



A

B

C

E

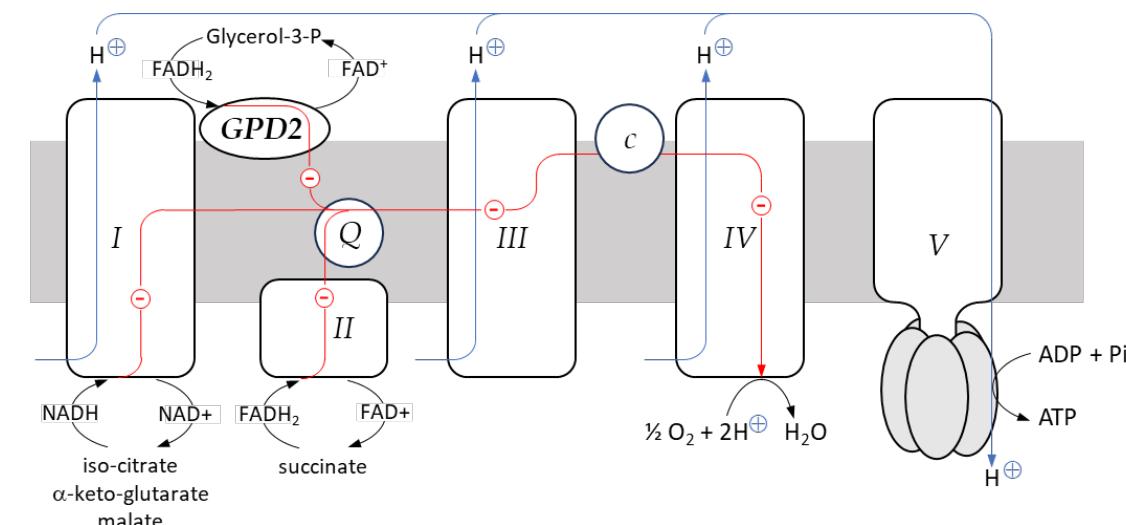
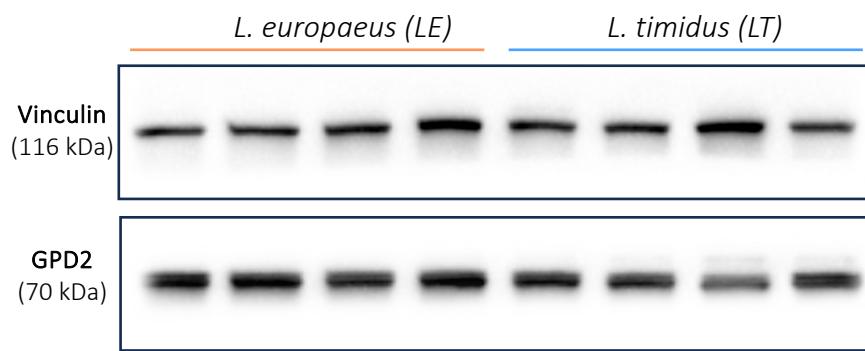
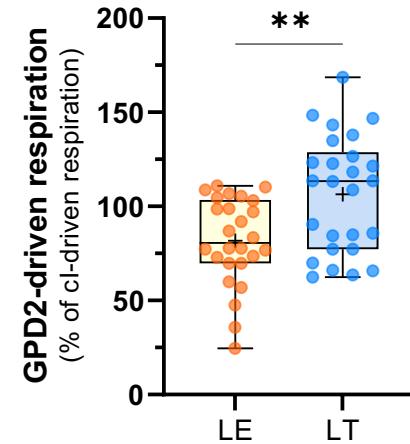
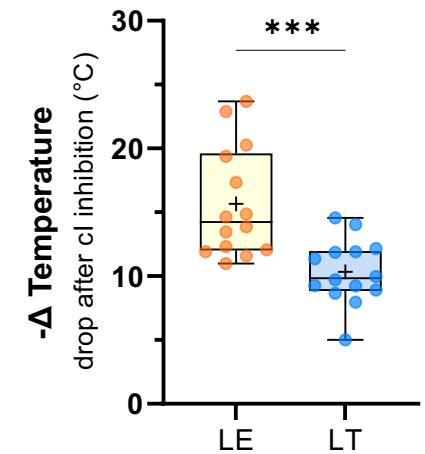
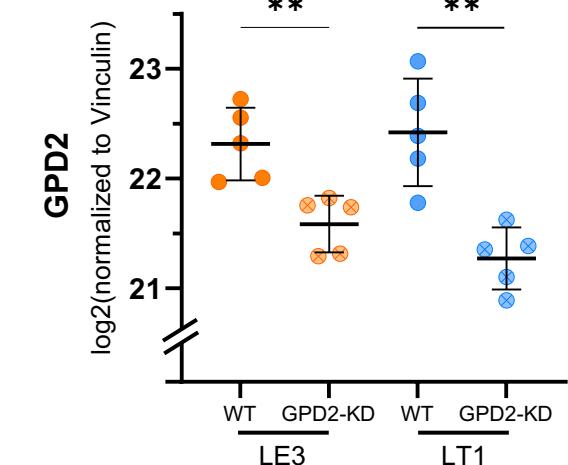
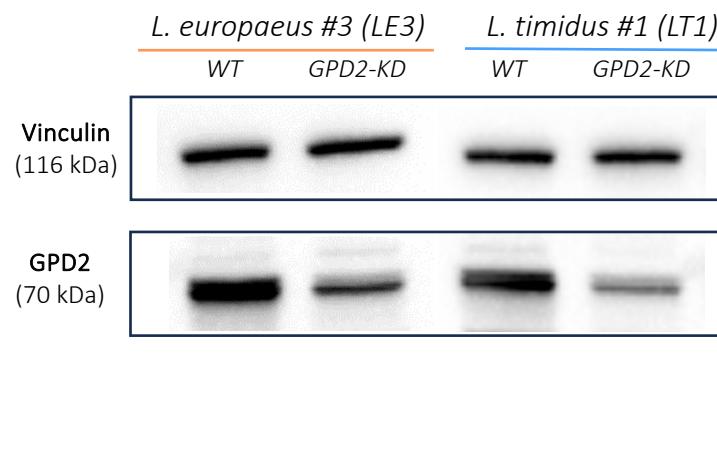




Figure 1.


A



B


C

D

E

F

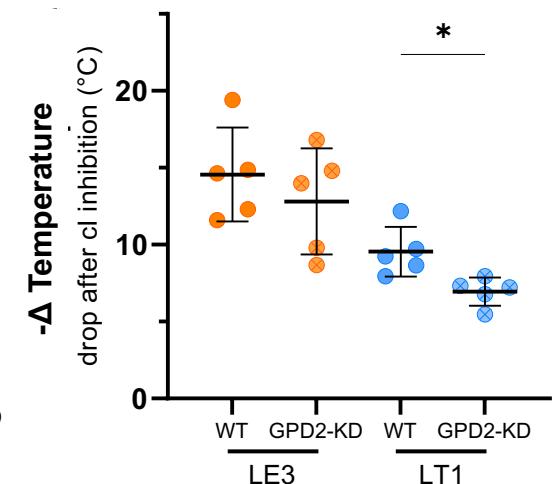
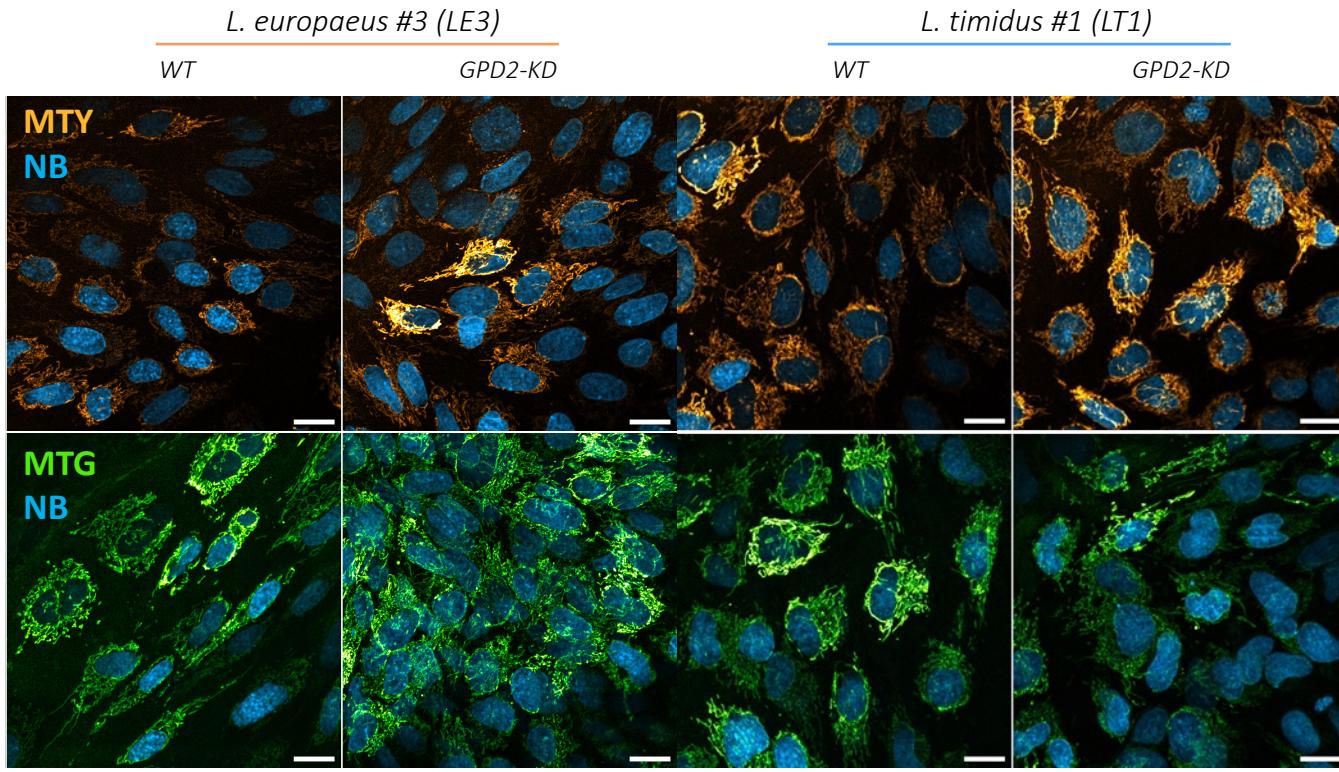
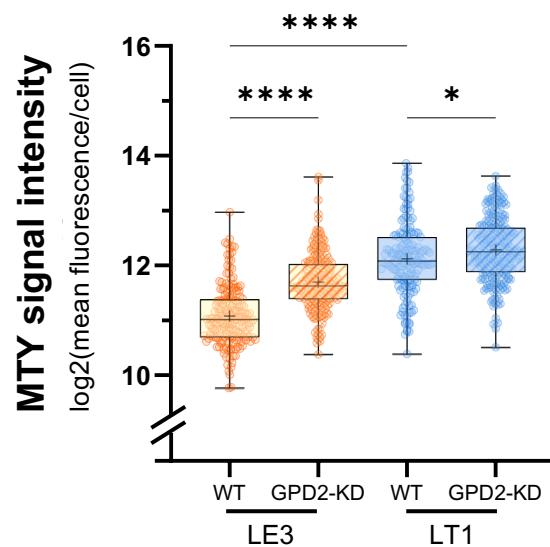
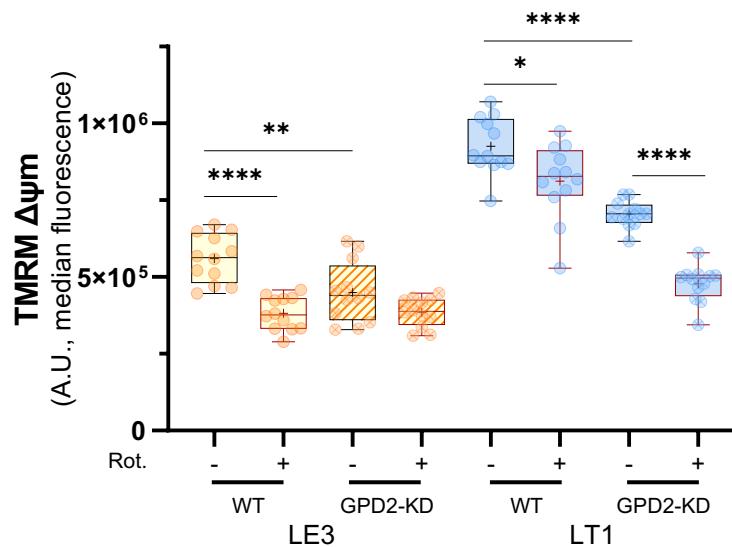





Figure 2.

A**B****C****Figure 3.**