

1 Population growth poses a significant threat to forest

2 ecosystems: a case study from the Hindu Kush-

3 Himalayas of Pakistan

4 Naveed Alam ^{1,*}, Zahid Ullah ², Bilal Ahmad ¹, Ahmad Ali ², Kashmala Syed ²

5 ¹ Institute of Agriculture Sciences & Forestry, University of Swat, Charbagh 19120, Pakistan

6 ² Center for Plant Sciences and Biodiversity, University of Swat, Charbagh 19120, Pakistan

7 * Correspondence: naveedalam@uswat.edu.pk ([N.A.](#))

8

9 **Abstract:** Human population growth and associated increases in anthropogenic activities pose a
10 significant threat to forest ecosystems by diminishing the natural ecosystem services these systems
11 provide. Malam Jabba is located in District Swat Pakistan's Hindu Kush-Himalayan temperate zone,
12 which is renowned for ecotourism and skiing and is rich in timber-producing tree species, medicinal
13 plants, and unique biodiversity; however, the majority of Swat Valley's population relies on Malam
14 Jabba forests for their timber & fuelwood requirements. We examined how the deforestation rate
15 increased with increasing human population density in Pakistan's Malam Jabba area of the Hindu Kush-
16 Himalayas. To identify the forest cover, remote sensing, and geographic information systems were used
17 (RS & GIS). The study area's vegetation was analyzed with the Normalized Divergence Vegetation
18 Index (NDVI) using multitemporal satellite images for the years 1980, 2000, and 2020. The deforestation
19 rate from 1980 to 2020 was then determined using the decay model, and the MATLAB program was
20 used to predict the deforestation rate for the following two decades in relation to the anticipated growth
21 in the human population. Our result revealed that, in the last two decades, the average rate of
22 deforestation increased from 0.7% to 1.93% per year, while the human population of District Swat
23 increased from 1.2 to 2.3 million at a rate of 9% per year. The decay model predicts that the study area's
24 deforestation rate will increase to 2.5% per year over the next two decades due to the forecasted 11.6%

25 per year population growth rate. Human population growth in District Swat, Pakistan has seriously
26 threatened the nearby forest ecosystems, and a future increase in human population will further
27 accelerate anthropogenic activities like unsustainable tourism, fuel and timber wood collection and
28 urbanization. Based on our results, we recommend that: (i) in addition to reforestation programs and
29 sustainable use of forest resources, the government should implement a long-term forest management
30 plan (ii) where the density of forest cover can be sustained at an equilibrium level dependent of
31 population growth pressure (iii) and areas with extreme human pressure should be designated as most
32 important for in situ conservation approach.

33 Keywords: Remote Sensing; Deforestation; Anthropogenic activities, Hindukush- Himalayan Forest.

34

35

36 1. Introduction

37 Forests provide ecological and socioeconomic services to sustain approximately 60% of global
38 biodiversity [1] and directly contribute to the fulfillment of human society's fundamental needs [2,3].
39 More than two billion people rely on forests for their basic survival needs, including food, fuelwood,
40 shelter, medicine, and forage for domestic animals [4]. Forests play a crucial role in sustaining
41 ecosystem health and ecological services, and more forest cover will be necessary for the current era to
42 mitigate climate changes and environmental challenges [5-7]. Forests are the main source of ecotourism
43 which is the largest growing industry of the world, which can uplift the rural economy of the country
44 and provide livelihood opportunities for the local communities [8]. According to the Kyoto Protocol
45 and the United Nations Framework Convention on Climate Change, forests are essential for carbon
46 storage and economic incentives for the country [9-10].

47 Despite their direct and indirect importance for human well-being, forest ecosystems are diminishing
48 and disappearing at an alarming rate in many parts of the world due to human activities [11,12].
49 Notably, the natural resources in Hindu Kush-Himalayas are degrading more rapidly than in other

50 parts of the world but still have received less attention internationally than other ecosystems [13,14].
51 There is a need for routine and timely forest cover assessments to determine current conditions and
52 forecast the effects of future environmental changes [15,16]. Natural resource managers and
53 environmental policymakers have recognized that the conservation of biological diversity depends on
54 protecting and managing intact natural habitats. Such recognition has increased the significance and
55 urgency of international efforts to preserve biodiversity and forest resources [17]. Consequently, the
56 proposed work aimed to detect changes in forest cover over the past four decades to comprehend the
57 pattern of forest cover change, identify the factors responsible for this change, and provide a foundation
58 for forest conservation and management.

59 Due to the pressing need to quantify forest resources, numerous assessment techniques have been
60 developed in recent years. We outline here a promising workflow that combines the technologies of
61 geographic information systems (GIS) and remote sensing (RS) in order to monitor long-term shifts in
62 the composition of the forest cover [18]. The application of RS necessitates the use of multitemporal and
63 multispectral data to observe the type, quantity, and geospatial location of land use change [19,20],
64 which is essential for studying the effects of anthropogenic activities and other environments variables
65 on plant communities [21]. In contrast, GIS is computer software is used for evaluating, storing, and
66 analyzing RS data [19]. Satellite images are a modern tool for observing ecological disasters and
67 tracking changes in forest cover over a wide area [20]. The ATCOR tool in ERDAS software can correct
68 the topographic and atmospheric errors in satellite images, improve accuracy and reduce error [18].
69 Normalized Difference Vegetation Index (NDVI) distinguishes green vegetation from other land
70 features based on chlorophyll content [19]. ArcGIS model builder analyzes the NDVI data further for a
71 comprehensive forest cover quantification [20]. For the development of conservation and management
72 policy, large-scale monitoring of forest resources is essential, whereas small-scale monitoring is
73 required for its implementation [22,23].

74 Human population growth is directly related to economic insecurity, social problems, unsustainable
75 resource consumption, and anthropogenic disturbances in agricultural expansion, unsustanible

76 ecotourism, urbanization, and deforestation [24]. The decay model is the most accurate method for
77 predicting carrying capacity because it considers the strain that growing populations, under linear
78 population growth, places on natural resources, such as an increase in the rate of deforestation and
79 other environmental disturbances [25]. The decay model determines the relationship between
80 exponential population density growth and deforestation.

81 2. Materials and Methods

82 2.1. Study Area

83 The study area Malam Jabba (34° 47' 57" N, 72° 34' 19" E) is situated in Hindu Kush- Himalayas
84 mountains at elevations between 2000 to 3000 meters above sea level in District Swat of Northern
85 Pakistan. It is a well-known summer resort surrounded by dense, moist temperate coniferous forests
86 containing numerous commercially, medicinally, and ecologically significant plant species, providing
87 a habitat for hundreds of birds and animals. Historically, this region has been home to the Gandhara
88 civilization and its rich culture, where lush green forests and rangelands were likely the primary
89 reasons for their settlements. Malam Jabba forests are experiencing immense anthropogenic pressure
90 in the form of fuel and timber wood collection due to human population growth in the nearby central
91 city of District Swat; heavy grazing, unmanaged ecotourism activities, and agriculture expansion have
92 further threatened the local ecosystem [26,27].

93 2.2 Research Approach and Methodology

94 Remote Sensing (RS) data were acquired and processed by using Geographic Information System (GIS)
95 to evaluate long-term forest degradation for the years 1980, 2000, and 2020 [18-20]. Data collected by
96 optical satellites with a high resolution are an essential source for various fields of research, including
97 natural resource management, land cover change detection, conservation biology, and population
98 studies [19]. While gathering satellite data, however, factors such as the terrain and atmospheric effects
99 can obscure and otherwise degrade the quality of satellite images [28]. ATCOR tool in ERDAS was used
100 for satellite imagery from 1980, 2000, and 2020 to remove atmospheric and topographic effects. During

101 the atmospheric correction, different values from metadata were utilized, including solar azimuth
102 angle, elevation angle, solar zenith angle, and the angle between the sun and moon [29]. Normalized
103 Divergence Vegetation Index (NDVI) was used to detect forest cover. The NDVI indices were selected
104 from the unsupervised classification menu in ERDAS, and the algorithm was executed on the corrected
105 images from 1980, 2000, and 2020 at regular intervals to obtain NDVI values. Specifically, red and
106 infrared pixel-level brightness values from Landsat images were utilized for this purpose. The results
107 fell from -1 to 1, with positive values indicating more biomass in plants and negative values indicating
108 less biomass. This index was utilized for all vegetation types to obtain forest biomass values. In order
109 to examine NDVI values for forest cover, Global Positioning System (GPS) and Google Earth training
110 samples were gathered. After comparing a training sample with NDVI-classified images from 1980,
111 2000, and 2020, we obtained maps and NDVI values for the corresponding imageries, with a maximum
112 value of 0.7 for forest classes [30,31].

113 2.3. Data Collection

114 Primary Data were collected from U.S. Geological Survey (USGS).Landsat-5(TM) images for the year
115 1980, Landsat-7 (ETM+) images for the year 2000, Landsat-8 (OLI) images for the year 2020, and Digital
116 Elevation Model (DEM) data with a resolution of 30m x 30m from USGS Earth Explorer were collected
117 to evaluate forest degradation for the years 1980, 2000, and 2020 (Table.1) [28]. To confirm satellite data,
118 field trips were conducted to obtain the Global Positioning System (GPS) data on the ground
119 positioning of vegetation cover [30]. Population data was collected from census report-2017 of Pakistan
120 Bureau of Statistics as a secondary data [32].

121 Table 1. Details on the Landsat data with specifications.

S.no	Platforms	Perio	Number of	Data size per band	Spatial
		ds	bands	(pixels)	resolution
1	Landsat-5 (TM)	1980	7	1334×1511	30m

2	Landsat-7 (ETM+)	2000	8	1334×1511	30m
3	Landsat-8 (OLI)	2020	11	1334×1511	30m
4	DEM (SRTM)		1	1334×1511	30m

122

123 2.4 Data Processing

124 A composite was created by stacking the satellite images, each with a unique band structure. Then a
125 projection transformation using the UTM WGS-84 41N coordinate system was applied prior to
126 subsetting. Landsat satellite images were layered, and the “clip” tool in ArcGIS was then used to isolate
127 the study area. The study area was divided into sub-scenes with a pixel size of 1334 x 1511 for each
128 color channel in the original dataset [28]. The NDVI statistics (Table 2) were computed utilizing
129 multitemporal satellite images from 1980, 2000, and 2020. As vegetation’s green color indicates the
130 amount of chlorophyll in leaves, chlorophyll’s spectral response to the electromagnetic spectrum is its
131 reflectance, which is strongest in near-infrared and weakest in the red due to chlorophyll absorption
132 [30].

133 Table 2. Statistics of NDVI images.

S. No	Year	Min	Max	Mean	St. Dev
1	Oct-1980	-0.3333	1	0.5207	0.2347
2	Oct-2000	-1	0.9813	0.4806	0.1975
3	Oct-2020	-0.0149	0.9981	0.5933	0.1325

134

135 ArcGIS’s model builder was used for analyzing NDVI values to calculate forest cover and correct the
136 topographical errors. The tool facilitates the creation, editing, and management of geoprocessing
137 models; it also permits multiple geoprocessing tools to be utilized sequentially in the automation of
138 various tasks. Various tools from the ArcTools box were used to construct the model for this study,
139 including a raster calculator, a clip tool, a raster to polygon tool, a select tool, an added field tool, a

140 geometry calculator, a smoothing tool, a layer to KM tool, and a tool for discovering topological flaws
141 [33,34]. In the study's model , blue represents the input of satellite images being added with some tool
142 from the toolbox in ArcGIS, and green is the resultant data after calculation in ArcGIS.

143 2. 5 Statistical Analysis and Future Forecast

144 The normalized difference vegetation index for assessing vegetation cover, is represented by the
145 equation [30-31].

$$\frac{(\text{NIR} - \text{RED})}{(\text{NIR} + \text{RED})} \quad (1)$$

146 NIR= the brightness value of the near-infrared band.

147 For predicting future population growth and its effect on forest cover in the form of deforestation,
148 MATLAB 7.10 software was utilized [35]. Using the exponential growth model equation [36,37], we
149 determined the rates of population increase and deforestation for the next two decades.

$$\frac{dP^t}{dt} = P(0) e^{kt} \quad (2)$$

150 3. Results

151 3.1. Forest cover maps

152 Based on NDVI values, the total forest cover for each year was mapped in 2D and 3D
153 using Arc Map and Arc Scene (Figure 1). In ArcMap, forest maps were generated at the scale of
154 1: 125,000, while the ArcScene and DEM were used to generate a 3D map of forest cover in the
155 consistent years. The figure shows total forest cover in 8298.039313 polygon area in 1980,
156 2357.536113 polygon area in 2000, and 609.553980 polygon area in 2020. The polygon area was
157 calculated in ArcGIS, as shown in Table 3 and Figure.2.

158

159 .

160 3.2. Forest Cover Change

161 Deforestation was defined as the transformation of forest cover into barren land. Our research indicates
162 that between 1980 - 2000, forest cover decreased at an annual rate of 0.7%, from 15 003 ha to a minimum
163 12 859 ha. From October 2000 to October 2020, the total forest cover decreased at an average annual rate
164 of 1.93 % to reach 7894 ha. From 1980 to October 2020, a total of 6509 ha was affected by deforestation
165 at a rate of 1.40 % annually (Figure 2, Table. 3)

166 Table 3. Forest Cover of Study Area & Average Deforestation.

S. No	Forest Cover (ha)	Average Rate of Deforestation (ha)		deforestation
		15003	-	
1	12859	2144	0.7%	
2	7894	4965	1.93%	
3	15003	6509	1.4%	
4				

175 In Southeast Asia, the human population has multiplied in the last two decades, and in the study area
176 it has increased at an average rate of 9.1% (Figure 4). As a result of population growth, pressure on
177 forest resources has increased mainly in the form of timber and fuelwood collection, and our findings
178 show that because of increased anthropogenic activities and unsustainable use of forest resources,
179 forest cover has decreased from 12859 ha to 7894 ha at an average rate of 1.93 ha/year (Figure 2 and 4)
180 The census report-2017 of Pakistan Bureau of Statistics, states that Swat District currently has 2,309,570
181 residents (Figure 3). The average yearly population growth rate from 1980 to 2000 was 8.9%; this
182 increased to 9.1% for the years leading up to 2020. The exponential/decay model predicts that the
183 population will increase exponentially to 5.7 million by 2040 at 11.6% per year. Anthropogenic activities
184 will rise in tandem with population growth, leading to a deforestation rate increase of 2.5% per year

185 and a loss of forest cover of 4,000 hectares (Figure 6 and 7). In 1851 the total population density was
186 0.283720 million; in 1961, it was 0.344860 million; in 1972, it was 0.520710 million; in 1981, it reached
187 0.715940 million; in 1998, it increased to more than a million, and reached to 1.257600 million and finally
188 in 2021 it was recorded 2.309570 million. The decay model shows that District Swat's population density
189 will reach 5.7 million in 2040. The decay model has also forecasted the forest cover (y-axis) was 15003
190 hectors in 1980 has been reduced to 12859 hectors in the year 2000, and 7894 hectors in 2020 and will
191 exponentially increase in deforestation will reduce the forest cover to 4000 hectors in 2040 (Figure 6).

192 4. Discussion

193 Northern Pakistan's Hindu Kush-Himalayan mountains are replete with temperate forests, and in
194 addition to their many other benefits, these forests are among the country's primary natural resources
195 [38,39]. To meet their basic needs, local communities depend on forest resources, such as firewood,
196 animal feed, building materials, food, and medicine. In addition, the sale of forest products like
197 fuelwood, timber, medicinal plants, wild fruits, and vegetables provides a means of subsistence
198 [14,27,40]. Despite the tremendous importance of forests for human society, forest ecosystems are
199 threatened due to increasing human density and the unsustainable use of natural resources [14,23,24].
200 It is essential to determine the current status forest ecosystem and identify the significant drivers of
201 deforestation for sustainable forest management [16]. The use of GIS and RS and proven to be the most
202 convenient source of studying land use changes over a large area [18-20]. However, terrain and
203 atmospheric effects degrade the quality of the images, which can be corrected with ERDAS software
204 [28]. The Normalized Difference Vegetation Index (NDVI) was used to delineate the forest cover from
205 RS satellite imagery across considerable time intervals [29], where the Decay model of exponential
206 growth rate was able to determine the future projection and correlation of two parameters [35]. Our
207 findings sought to describe the phenomenon of increased deforestation that has occurred in the study
208 area over the last 40 years. From October 1980 to October 2000, the rate of deforestation was 0.7% per
209 year, reducing the total forest area from 15,003 hectares to 12,859 hectares. From October 2000 to

210 October 2020, the total forest cover decreased to 7,894 hectares at a rate of 1.93 percent annually. From
211 October 1980 to October 2020, the average deforestation rate was 1.4%, indicating that the rate of
212 deforestation is significantly higher than that reported by many authors in the nearby Hindu Kush-
213 Himalayan mountains [41-43]. Deforestation is a major ecological issue in Northern Pakistan's
214 Hindu Kush-Himalayas Mountains. The main drivers of deforestation is population density, distance
215 from the main town, and administration boundary [42]

216 Our findings indicate that population growth is the primary cause of deforestation in the study area.
217 According to the 2017 district census report [32], the population of Swat district increased from 0.7 to
218 2.3 million over the last 40 years at an annual rate of 9% [44]. The decay model projection shows that
219 the Swat district population will increase exponentially to 5.4M at a rate of 11.6% per year and predict
220 a further loss of 2.5% per annum.[41] Population growth indicates that forest resources will be more at
221 risk if long-term management planning in the study area is not implemented [45,46]. Numerous authors
222 have previously reported on the severe effects of anthropogenic activities resulting from population
223 growth. According to our findings, the population density of the study area will increase exponentially
224 to 5.4 M with an average annual increase rate of 11.6% by 2040, while the forest density will further
225 decrease to 4000 ha, as predicted by the decay model. The local people have limited sources of income,
226 and non-timber forest products (NTFPs) are their primary income source. Continued practices of
227 deforestation will further worsen their poverty and life standard. The carrying capacity of forests
228 declines at a rate proportional to the pressures exerted on them by a growing population; nevertheless,
229 an equilibrium level of forest cover can be maintained as a function of the population [47]. Unplanned
230 and uncontrolled urbanization that has led to overpopulation in urban areas has had a catastrophic
231 effect on the structure and function of ecosystems and has upset the natural ecological equilibrium [48].
232 Human population growth is associated with numerous anthropogenic activities that substantially
233 contribute to deforestation, such as socioeconomic conditions that lead to illegal logging, agricultural
234 expansion to feed hungry mouths, and increased fuel wood collection to meet rising energy demands
235 [49]. Although ecotourism determines the economic value of the forest ecosystem (50), unsustainable

236 tourism disturbance impacts the forest vegetation, and forest sites exposed to unsustainable tourism
237 affect vegetation structure and diversity [51]. It is evident from different studies that unsustainable
238 ecotourism have a negative impact on the environment including biodiversity and forest cover.
239 Excessive visitors may disturb the fragile soils, vegetations and can cause wildlife conflicts [52].
240 Thus, it is essential to improve the conservation effort [42]. Priority areas for biodiversity conservation
241 should be identified based on human population pressure, habitat status, and management activities
242 [45]. The confluence of climate change and human population pressure threatens the resilience of
243 ecosystem services [46]. Reforestation programs will be necessary to increase the amount of forest, and
244 local communities should be urged to use forest resources sustainably. Alternative methods should
245 also be introduced to lessen the demand for forest resources [4,52].

246 5. Conclusions
247 Deforestation threatens forest ecosystems worldwide, particularly in developing nations, causing a
248 negative impact on the environment and the economy. According to local studies and international
249 statistics, Pakistan has experienced significant deforestation, and the Malam Jabba forests of District
250 Swat are no exception. To detect forest cover change over the past three decades, multispectral satellite
251 images were analyzed using geospatial information systems (GIS) and remote sensing (RS) techniques
252 to evaluate the effects of various anthropogenic activities in the study area. Supervised land cover
253 classification and normalized difference vegetation indices (NDVIs) were applied to Landsat 5, 7, and
254 8 geospatial satellite images from 1980, 2000, and 2020. Our findings show that in the past two decades,
255 the study area's population has increased at a rate of 9.1% per year, which has led to an increase in
256 anthropogenic activities such as road construction, hotel expansion, housing construction, fuel and
257 timber wood extraction, overgrazing, poorly managed ecotourism, war and conflict, and shifting
258 socioeconomic structure. Between 2000 and 2020, the annualized rate of deforestation increased from
259 0.7% to 1.93 % due to population growth-induced ecological imbalances. According to the exponential
260 decay model, the District Swat's population will increase exponentially to 5.7 million by 2040, at an

261 annual rate of 11.6%. Increasing human activities will further impact the forest cover as the human
262 population increases. According to the decay model, the forest cover in the study area will decrease to
263 4,000 hectares at a rate of 2.5 due to increasing population density and human activity. To ensure the
264 long-term viability of natural forest resources, it is advised that local citizens, non-governmental
265 organizations (NGOs), and the government departments responsible for conservation and
266 management should work together to ensure community-based sustainable forest management. The
267 government should provide alternative timber and fuel wood options to the local community.
268 Awareness of the local community is essential for sustainable ecotourism, using natural resources, and
269 successful joint forest management programs. The government should designate as a site for in-situ
270 conservation the moist temperate forest of the study area, which contains timber trees, abundant floral
271 diversity, and economically significant medicinal plants with sustainable ecotourism which will help
272 to conserve these valuable forests.

273 Author Contributions: "Conceptualization, Naveed Alam; writing—original draft preparation, methodology,
274 software, validation, Zahid Ullah; formal analysis, investigation, Bilal Ahmad.; resources, data curation, Kashmala
275 Syed writing—review and editing, Naveed Alam; writing—original draft preparation, Ahmad Ali; visualization,
276 Kashmala Syed.; supervision, project administration, Naveed Alam; funding acquisition, Naveed Alam. All
277 authors have read and agreed to the published version of the manuscript."

278 Funding: Funded by Higher Education Commission of Pakistan (HEC) through Start-up Research Grant Program
279 (SRGP) – R&D Division No: 21-1095/SRGP/R&D/HEC/2016

280 Institutional Review Board Statement: Not applicable

281 Data Availability Statement: Data are available upon reasonable request

282 Acknowledgments: We are grateful to the Higher Education Commission (HEC) of Pakistan for funding this
283 research project through Start-up Research Grant Program (SRGP) – R&D Division No: 21-
284 1095/SRGP/R&D/HEC/2016

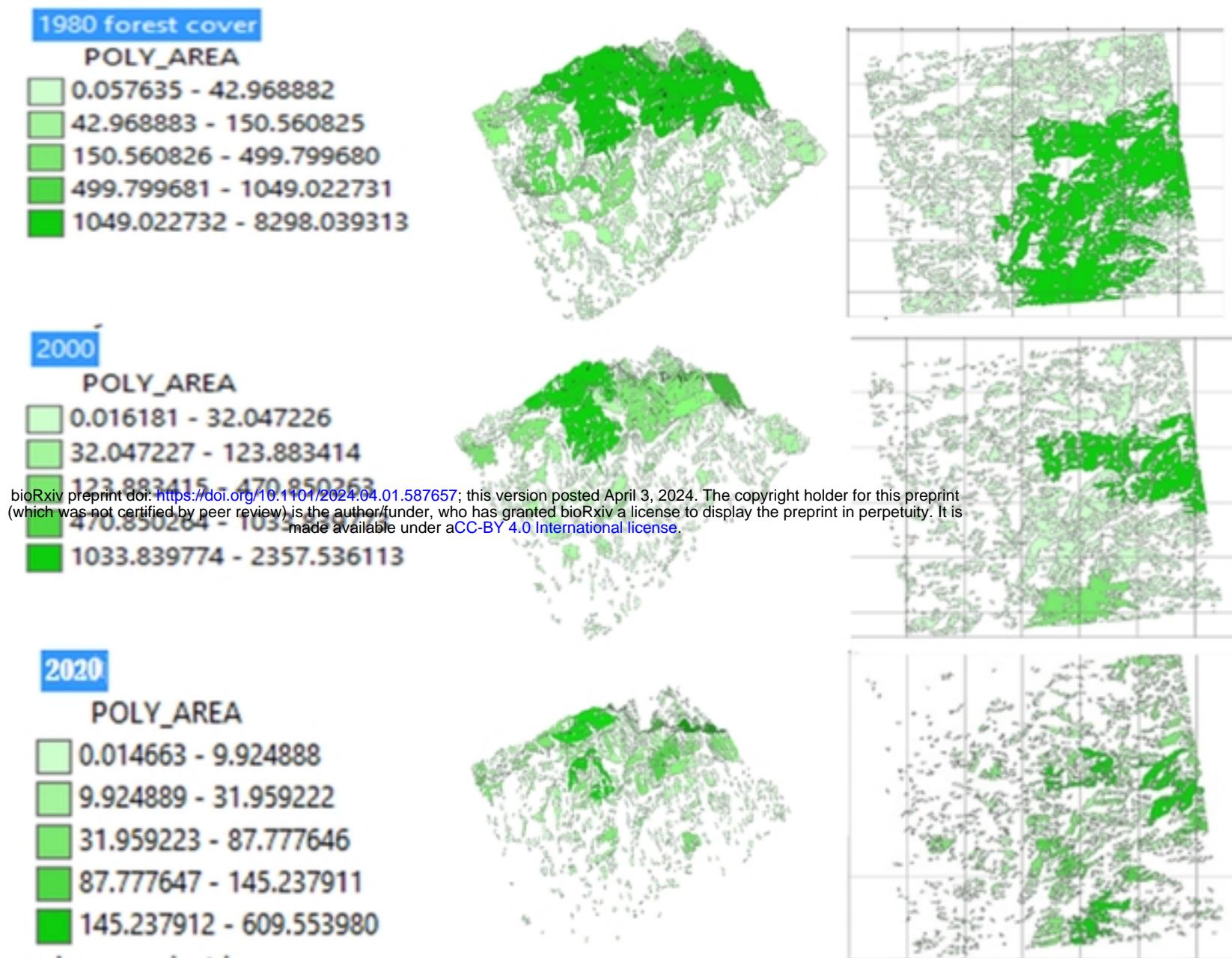
285 Conflicts of Interest: The authors declare no conflict of interest

286 **References**

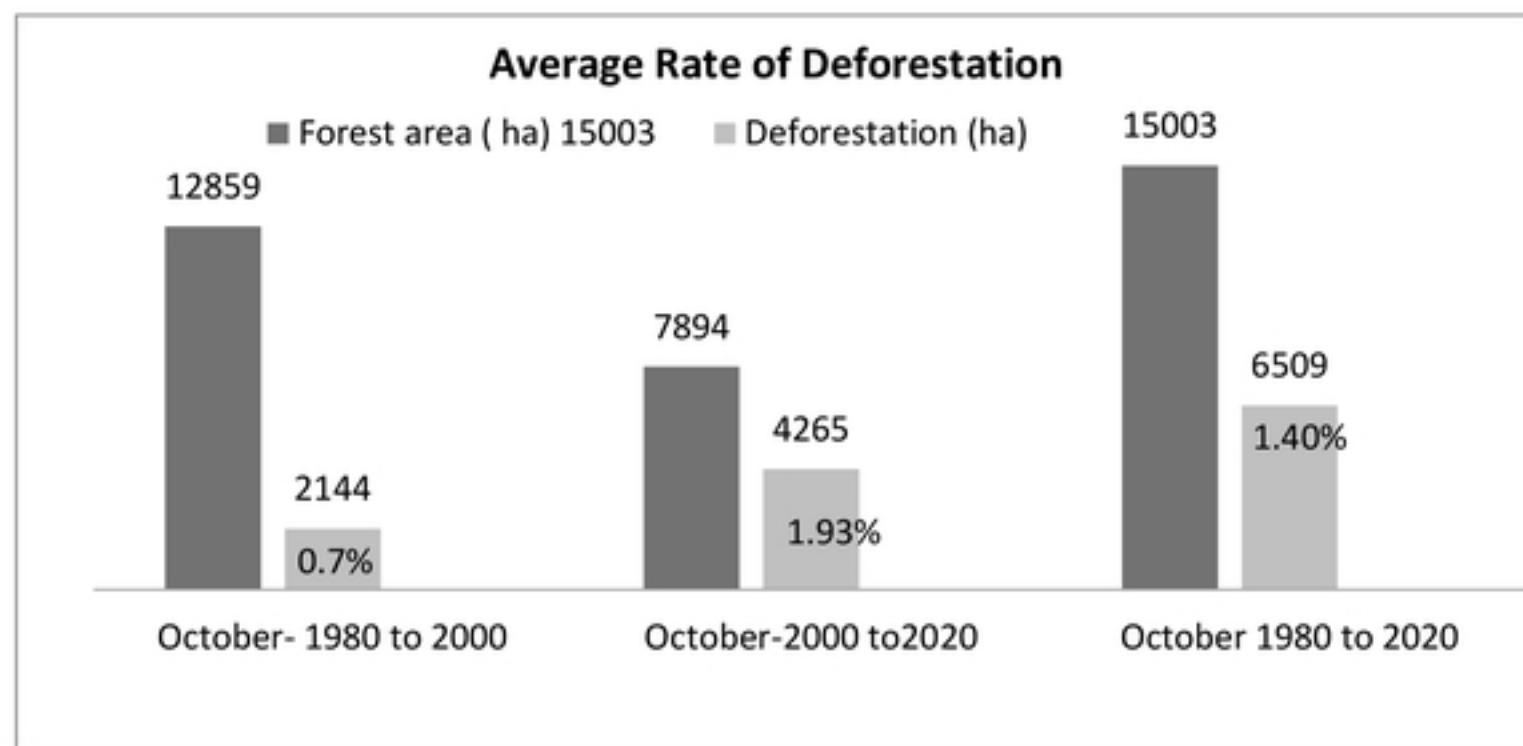
- 287 1. Food and Agriculture Organization. World agriculture: towards 2015/2030: an FAO
288 perspective. FAO; 2003.
- 289 2. Haines-Young R, Potschin M. The links between biodiversity, ecosystem services and
290 human well-being. *Ecosystem Ecology: a new synthesis*. 2010;1:110-139.
- 291 3. Felton A, Felton AM, Wam HK, Witzell J, Wallgren M, Löf M, et al. Forest biodiversity
292 and ecosystem services from spruce-birch mixtures: The potential importance of tree
293 spatial arrangement. *Environmental Challenges*. 2022;6:100407.
- 294 4. Raza G, Shaukat Ali, Hussain A, Abbas Q, Khan G, Khan M, et al. Dependence of
295 rural livelihoods on forest resources in Naltar Valley, a dry temperate mountainous
296 region, Pakistan. *Global Ecology and Conservation*. 2019;20:e00765.
- 297 5. Messier C, Bauhus J, Doyon F, Maure F, Sousa-Silva R, Nolet P, et al. The functional
298 complex network approach to foster forest resilience to global changes. *Forest
299 Ecosystems*. 2019;6(1):1-16.
- 300 6. Zhang L, Sun P, Huettmann F, Liu S. Where should China practice forestry in a
301 warming world?. *Global Change Biology*. 2022;28(7):2461-2475.
- 302 7. Ahmad B, Wang YH, Hao J, Liu YH, Bohnett E, Zhang KB. Variation of Carbon
303 Density Components with Overstory Structure of Larch Plantations in Northwest
304 China and its Implication for Optimal Forest Management. *Forest Ecology and
305 Management*. 2021;496:119399.

- 306 8. Nega D, Damtie M, Workie A, Gebrewold Weldesenbet E. An assessment of
307 ecotourism potential for Community Based Ecotourism Development: The case of
308 Alemsaga Priority State Forest, South Gondar, Ethiopia. African Journal of
309 Hospitality, Tourism and Leisure. 2019;8(4):1-18.
- 310 9. Nizami SM. The inventory of the carbon stocks in sub tropical forests of Pakistan for
311 reporting under Kyoto Protocol. Journal of Forestry Research. 2012;23(3):377-384.
- 312 10. Ahmad B, Ali A, Rabbi F, Alam N, Siraj M, Mehmood K, et al. Estimation of Wood
313 Volume, Carbon Stock and Rotation Age In Subtropical Pine Forests of Malakand,
314 Khyber Pakhtunkhwa. Pakistan Journal of Botany. 2022;54(5).
- 315 11. Watson JE, Evans T, Venter O, Williams B, Tulloch A, Stewart C, et al. The exceptional
316 value of intact forest ecosystems. Nature ecology & evolution. 2018;2(4):599-610.
- 317 12. Fearnside PM. Deforestation in Brazilian Amazonia. Oxford University Press; 2017.
- 318 13. Walker B. Conserving biological diversity through ecosystem resilience.
319 Conservation biology. 1995;9(4):747-752.
- 320 14. Hamayun M. Ethnobotanical profile of Utror and Gabral valleys, district Swat,
321 Pakistan. Ethnobotanical Leaflets. 2005;2005(1):9.
- 322 15. Ustin SL, Roberts DA, Gamon JA, Asner GP, Green RO. Using Imaging spectroscopy
323 to study ecosystem processes and properties. AIBS Bulletin. 2004;54(6):523-534.

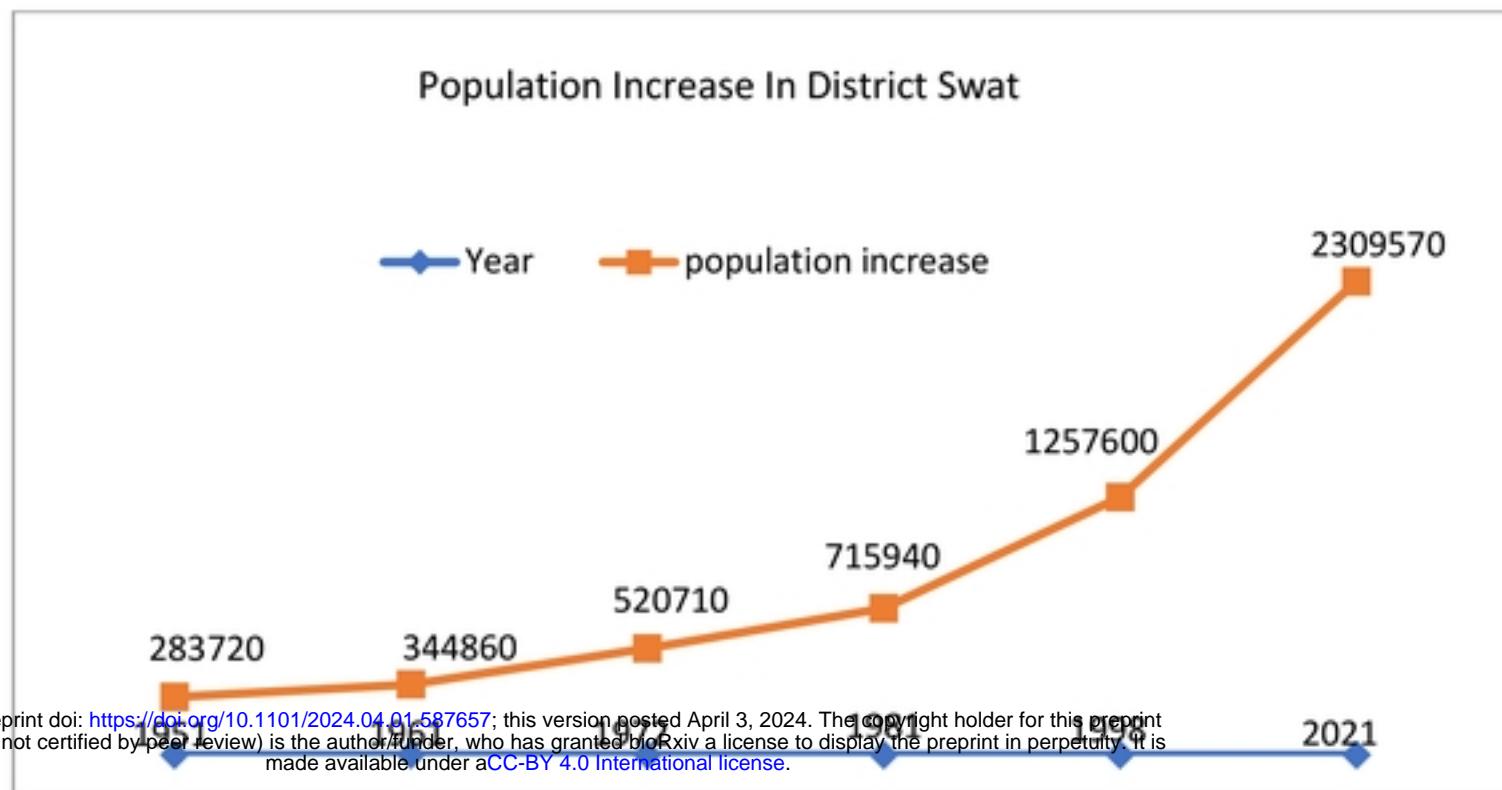
- 324 16. Liu SQ, Bo Z, Xia CZ, Ahmad B, Ming Z, Jian C, et al. Forest biomass carbon pool
325 dynamics in Tibet Autonomous Region of China: Inventory data 1999-2019. Plos one.
326 2021;16(5):e0250073.
- 327 17. IUCN Species Survival Commission, Kyne PM, Simpfendorfer CA. A collection and
328 summarization of available data on deep water chondrichthyans: Biodiversity life
329 history and fisheries.
- 330 18. Faruque MJ, Vekerdy Z, Hasan MY, Islam KZ, Young B, Ahmed MT, et al. Monitoring
331 of land use and land cover changes by using remote sensing and GIS techniques at
332 human-induced mangrove forests areas in Bangladesh. Remote Sensing Applications:
333 Society and Environment. 2022;25:100699.
- 334 19. Joshi C, De Leeuw J, van Duren IC. Remote sensing and GIS applications for mapping
335 and spatial modelling of invasive species. Proceedings of ISPRS. 2004;35:B7.
- 336 20. Wang X, Zhang B, Zhang K, Zhou J, Ahmad B. The spatial pattern and interactions of
337 woody plants on the temperate savanna of Inner Mongolia, China: The effects of
338 alternating seasonal grazing-mowing regimes. PLoS ONE. 2015;10:e0133277.
- 339 21. Thapa A, Cohen J, Guffey S, Higgins-D'Alessandro A. A review of school climate
340 research. Review of educational research. 2013;83(3):357-385.
- 341 22. Chazdon RL, Guariguata MR. Natural regeneration as a tool for large-scale forest
342 restoration in the tropics: prospects and challenges. Biotropica. 2016;48(6):716-730.


- 343 23. Koehl M, Paivinen R. Definition of a system of nomenclature for mapping European
344 forests and for compiling a Pan-European Forest Information System. EUR
345 16416. Luxembourg: Office of Official Publications of the European Countries; 1996.
- 346 24. Tong M, Yan Z, Chao L. Research on a grey prediction model of population growth
347 based on a logistic approach. *Discrete Dynamics in Nature and Society*. 2020.
- 348 25. Qureshi S, Yusuf A, Aziz S. Fractional numerical dynamics for the logistic population
349 growth model under Conformable Caputo: a case study with real observations.
350 *Physica Scripta*. 2021;96(11):114002.
- 351 26. Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ. Land use,
352 land-use change and forestry: a special report of the Intergovernmental Panel on
353 Climate Change. Cambridge University Press; 2000.
- 354 27. Sher H, Al_yemeni M. Economically and ecologically important plant communities
355 in high altitude coniferous forest of Malam Jabba, Swat, Pakistan. *Saudi Journal of*
356 *Biological Sciences*. 2011;18(1):53-61.
- 357 28. Kneissl T, Van Gasselt S, Neukum G. Measurement of strike and dip of geologic layers
358 from remote sensing data—New software tool for ArcGIS. *41st Annual Lunar and*
359 *Planetary Science Conference*. 2010;1533:1640.
- 360 29. Rihan M, Naikoo MW, Ali MA, Usmani TM, Rahman A. Urban heat island dynamics
361 in response to land-use/land-cover change in the coastal city of Mumbai. *Journal of*
362 *the Indian Society of Remote Sensing*. 2021;49(9):2227-2247.

- 363 30. Abdullah MJY. Application of Remote Sensing for Vegetation Cover Change
364 Assessing Based on (NDVI) index. Doctoral dissertation, Sudan University of Science
365 & Technology; 2022.
- 366 31. Population-census report 2017. Pakistan Bureau of Statistics.
367 <https://www.pbs.gov.pk/content/population-census>.
- 368 32. Islam M, Jimmy AN, Alam M, Khan NA. The use of multi-temporal Landsat
369 normalized difference vegetation index (NDVI) data for assessing forest cover change
370 of Lawarchara National Park. Environment, Development and Sustainability.
371 2021;23(12):17702-17722.
- 372 33. Nugroho RH. Aplikasi ArcGIS Model Builder untuk Analisis Intensitas Pemanfaatan
373 Ruang. Geo Spatial Proceeding. 2021.
- 374 34. Khan F, Das B, Mishra RK. An automated land surface temperature modelling tool
375 box designed using spatial technique for ArcGIS. Earth Science Informatics.
376 2022;15(1):725-733.
- 377 35. Okeke F, Karnieli A. Methods for fuzzy classification and accuracy assessment of
378 historical aerial photographs for vegetation change analyses. Part II: Practical
379 application. International Journal of Remote Sensing. 2007;27(9):1825-1838.
- 380 36. Barnes RFW. Deforestation trends in tropical Africa. African Journal of Ecology.
381 1990;28(3):161-173.


- 382 37. Letcher RA, Croke BFW, Jakeman AJ. Integrated assessment modeling for water
383 resource allocation and management: A generalised conceptual framework.
384 Environmental Modelling & Software. 2007;22(5):733-742.
- 385 38. Galicia L, Zarco-Arista AE. Multiple ecosystem services, possible trade-offs and
386 synergies in a temperate forest ecosystem in Mexico: a review. International Journal
387 of Biodiversity Science, Ecosystem Services & Management. 2014;10(4):275-288.
- 388 39. Giergiczny M, Jacobsen J, Glenk K, Meyerhoff J, Abildtrup J, Agimass F, et al. Shaping
389 the future of temperate forests in Europe: why outdoor recreation matters.
- 390 40. Abdullah SN, Malik KF, Noor R, Arif M, Khan W. Ethnobotanical diversity of Moist
391 Temperate Mountain Forests: A Case Study from Ayubia National Park, Western
392 Himalayas, Pakistan. In: Biodiversity, Conservation and Sustainability in Asia.
393 Springer, Cham; 2022. pp. 857-871.
- 394 41. Shehzad K, Qamer FM, Murthy MSR, Abbas S, Bhatta LD. Deforestation trends and
395 spatial modelling of its drivers in the dry temperate forests of northern Pakistan—A
396 case study of Chitral. Journal of Mountain Science. 2014;11(5):1192-1207.
- 397 42. Ahmad A, Nizami SM. Carbon stocks of different land uses in the Kumrat valley,
398 Hindu Kush Region of Pakistan. Journal of forestry research. 2015;26(1):57-64.
- 399 43. Qasim M, Hubacek K, Termansen M, Khan A. Spatial and temporal dynamics of land
400 use pattern in District Swat, Hindu Kush Himalayan region of Pakistan. Applied
401 Geography. 2011;31(2):820-828.

- 402 44. Shi H, Singh A, Kant S, Zhu Z, Waller E. Integrating habitat status, human population
403 pressure, and protection status into biodiversity conservation priority setting.
404 Conservation biology. 2005;1273-1285.
- 405 45. Aukema JE, Principe NG, Husak GJ, Lopez-Carr D. Biodiversity areas under threat:
406 overlap of climate change and population pressures on the world's biodiversity
407 priorities. PloS one. 2017;12(1):e0170615.
- 408 46. Misra AK, Lata K, Shukla JB. Effects of population and population pressure on forest
409 resources and their conservation: a modeling study. Environment, development and
410 sustainability. 2014;16(2):361-374.
- 411 47. Alshaybani SAA, Aydin M. Effects of Population Pressure on Forest Resources in
412 Trabzon-Turkey and How to Conserve them. Journal of Global Scientific Research.
413 2022;7(4):2217-2226.
- 414 48. Niu L, Cheng Z. Impact of tourism disturbance on forest vegetation in Wutai
415 Mountain, China. Environmental monitoring and assessment. 2019;191(2):1-11.
- 416 49. Krieger DJ. Economic value of forest ecosystem services: a review.
- 417 50. Legese D, Diriba A. The Effect of Population Dynamics On Forest Cover In Daro Lebu
418 Wereda, West Hararghe Zone, Oromia Region, Ethiopia.
- 419 51. Sobhani P, Esmaeilzadeh H, Sadeghi SMM, Marcu MV. Estimation of Ecotourism
420 Carrying Capacity for Sustainable Development of Protected Areas in Iran.
421 International Journal of Environmental Research and Public Health. 2022;19(3):1059.


- 422 52. Isbell F, Calcagno V, Hector A, Connolly J, Harpole WS, Reich PB, et al. High plant
- 423 diversity is needed to maintain ecosystem services. *Nature*. 2011;477(7363):199.

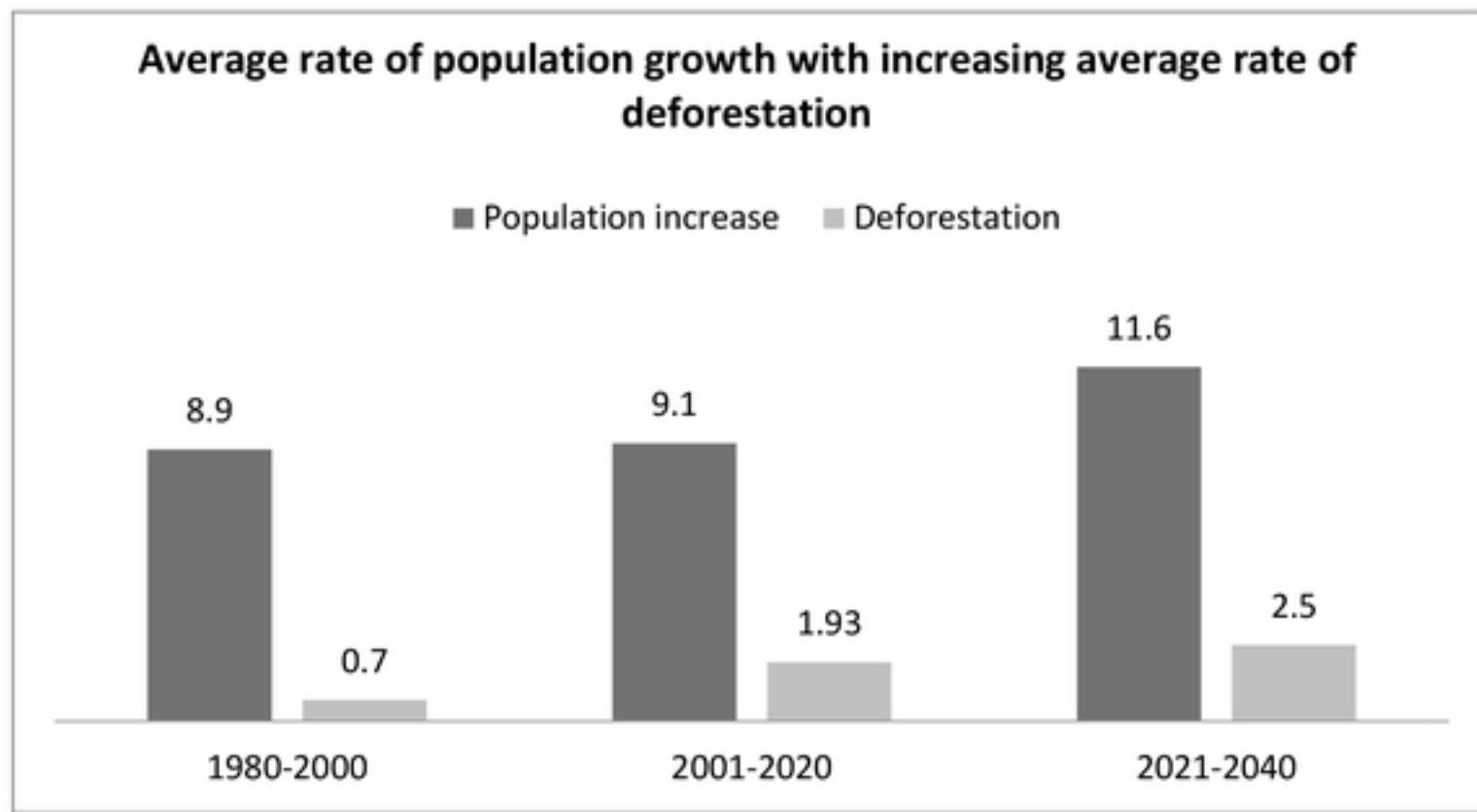

Figure 1. 2D and 3D maps showing total forest cover in the years 1980, 2000, and 2020.

Figure 2. Deforestation rate as measured by total hectares of forest and total forest loss.

Figure 3. Population Growth within the Study Area.

Figure 4. Average population growth and deforestation rates.

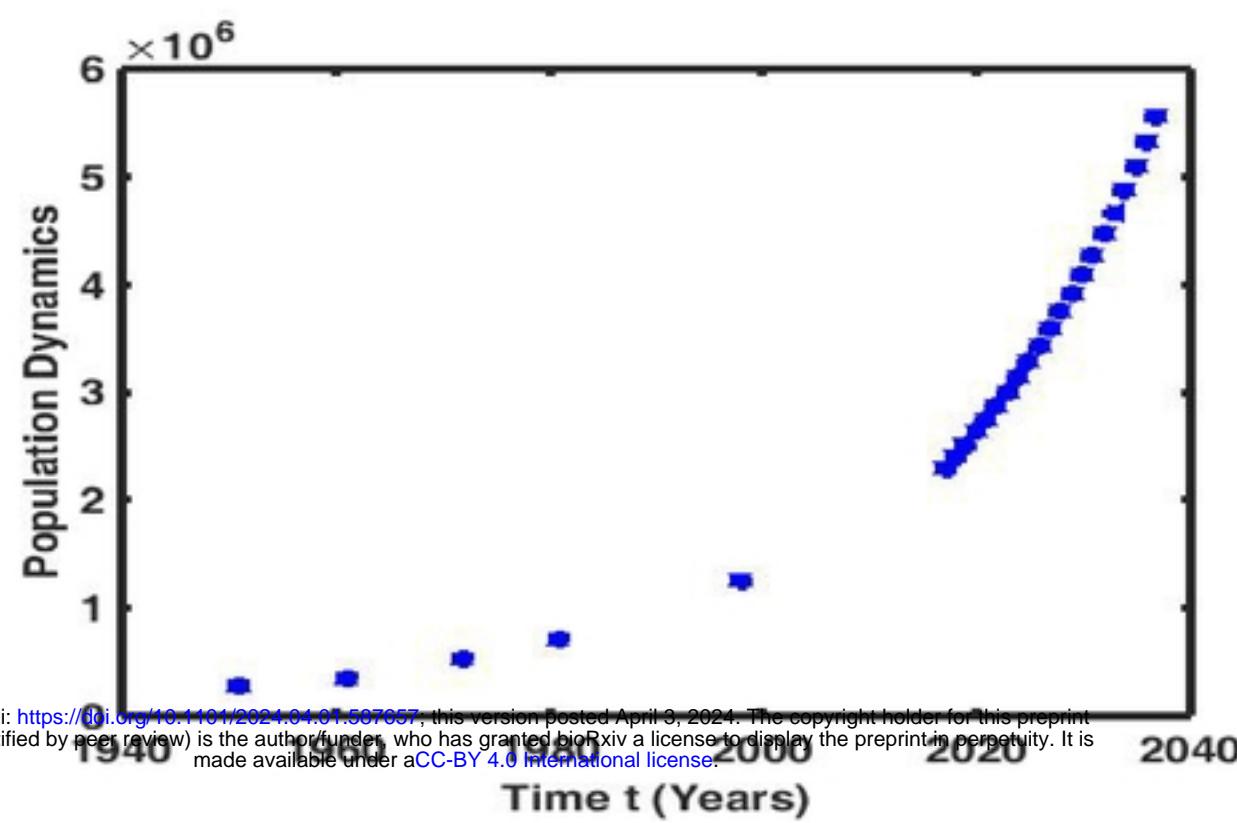


Figure 5. Decay model showing population increase in the year 2040.

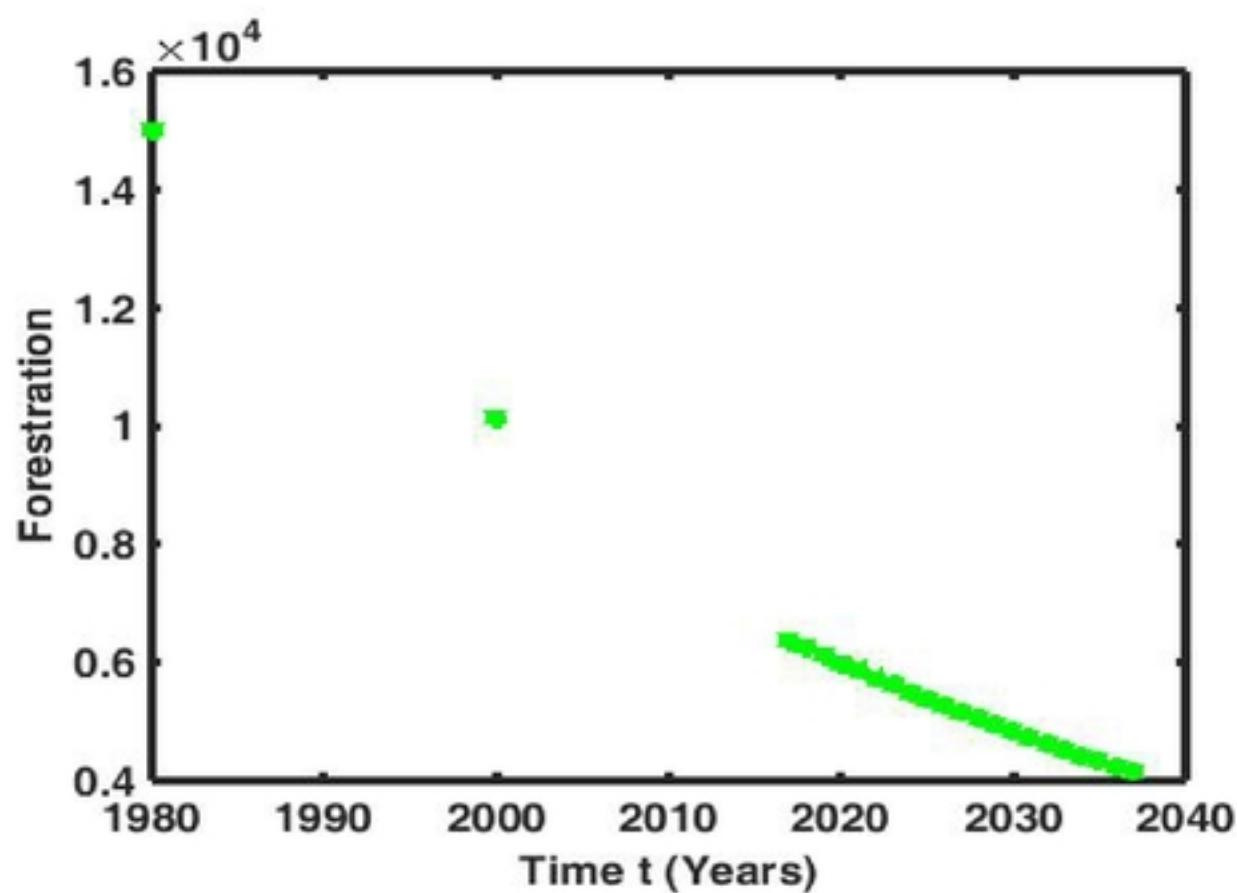


Figure 6. Decay model showing Forest Cover in 2040.