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Abstract

Nuclear magnetic resonance (NMR) spectroscopy has become an important technique in
structural biology for characterising the structure, dynamics and interactions of
macromolecules. While a plethora of NMR methods are now available to inform on backbone
and methyl-bearing side-chains of proteins, a characterisation of aromatic side chains is more
challenging and often requires specific labelling or 3C-detection. Here we present a deep
neural network (DNN) named FID-Net-2, which transforms NMR spectra recorded on simple
uniformly 13C labelled samples to yield high-quality 'H-!3C correlation spectra of the aromatic
side chains. Key to the success of the DNN is the design of a complementary set of NMR
experiments that produce spectra with unique features to aid the DNN produce high-resolution
aromatic 'H-3C correlation spectra with accurate intensities. The reconstructed spectra can be
used for quantitative purposes as FID-Net-2 predicts uncertainties in the resulting spectra. We
have validated the new methodology experimentally on protein samples ranging from 7 to 40
kDa in size. We demonstrate that the method can accurately reconstruct high resolution two-
dimensional aromatic 'H-!3C correlation maps, high resolution three-dimensional aromatic-
methyl NOESY spectra to facilitate aromatic '"H-!3C assignments, and that the intensities of
peaks from the reconstructed aromatic 'H-'*C correlation maps can be used to quantitatively
characterise the kinetics of protein folding. More generally, we believe that this strategy of
devising new NMR experiments specifically for analysis using customised DNNs represents a
substantial advance that will have a major impact on the study of molecules using NMR in the

years to come.
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Introduction

Nuclear Magnetic Resonance (NMR) spectroscopy is a ubiquitous technique in material
science, chemistry, structural biology and clinical diagnosis. In bioscience, NMR provides
unprecedented insight into functional motions (/—7) and non-covalent interactions (§—/0) with
atomic resolution. The technique therefore excellently complements Al-generated protein
structures, e.g. from AlphaFold2, as well as structures obtained by cryo-electron microscopy
(CryoEM) (11-13).

Over many decades, a series of developments that include advances in hardware,
sample preparation, and novel NMR pulse sequences have steadily raised the ‘size-limits’ of
proteins that can be studied using solution-state NMR. Specific advances include the
introduction of per-deuteration (/4), "'N-"H TROSY (/5), and methyl-TROSY methods (/6).
Using these techniques, it is now possible to record amide 'N-'H and methyl 3C-'H
correlation maps in megadalton sized proteins. However, studying functional side chains, such
as charged or aromatic side chains, which are often present in enzymatic active sites and within
interaction hotspots, are much more challenging.

We showed recently that employing '*C-detection allows for a characterisation of
charged side chains, such as arginine and lysine, in proteins up to ~40 kDa (/7, 18). For small
proteins 'H-detected NMR methods are available to probe lysine and negatively charged side
chains, which have provided insight into molecular recognition, salt-bridge, and hydrogen-
bond formations (19, 20). These experiments are often performed on uniformly '*C labelled
proteins samples using constant-time (CT) experiments that eliminate the peak splitting arising
due to homonuclear 'Jec couplings in the indirect '*C dimension (21, 22) to record high
resolution ['*C-'H] correlation maps at different backbone and side-chain sites.

Characterisation of aromatic side chains, on the other hand, has generally required

specific labelling (23—26) because of non-uniform 'Jcc couplings and attenuation of signal due
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to substantial transverse relaxation during the constant-time period. There is therefore a clear
need for improved methods to facilitate more detailed analysis of aromatic residues and their
dynamics within proteins over a range of sizes of proteins to promote a greater understanding

of how proteins function and interact.

Deep learning methods have had a substantial impact on all areas of science in recent
years (27), solving key problems in biophysics and computational biology (73, 28). Previous
work from us and others have demonstrated applications of deep neural networks (DNNs) for
transforming and analysing magnetic resonance data including analysing EPR DEER data (29),
reconstructing non-uniformly sampled spectra, peak picking, and virtual homonuclear
decoupling (30-34). Key to the success of these networks has been the ability to simulate an
arbitrary amount of realistic training data (29, 34), overcoming problems of overfitting and
data bottlenecks that often beset these models. A shortcoming that exists in many existing
DNNss in the field, however, is their inability to report reliable and quantitative uncertainties
associated with the transformations.

In this work, we present a new DNN architecture, FID-Net-2, which uses data from a
specially designed set of NMR experiments to not only reconstruct high resolution 'H-!3C
correlation maps of the aromatic side-chains in proteins, but also provide the uncertainty
associated with the resulting spectra. The correlation maps generated by the DNN are free of
the multiplet splittings and line broadenings that traditionally have degraded the quality of such
spectra. We have validated the new DNN based methodology experimentally by accurately
reconstructing high-resolution aromatic 'H-!*C correlation spectra of the ~20 kDa L99A
mutant of T4 lysozyme (L99A-T4L) as well as the 40 kDa Maltose Binding Protein (MBP).
Further, the utility of the new methodology is demonstrated by 1) reconstructing high-resolution

three-dimensional aromatic-methyl NOESY spectra to obtain aromatic 'H-13C assignments and
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ii) quantitating the peak intensities in the reconstructed high-resolution aromatic 'H-!*C
correlation maps recorded with varying exchange times to obtain the forward and reverse rate

constants for the folding of the A39 FF domain from human HYPA/FBP11.

Results

Due to variable 'Jcc couplings (~55 to ~72 Hz) and fast '*C transverse relaxation, constant-
time experiments are not routinely used to record high resolution 3C-'H correlation maps at
various aromatic sites in proteins. Hence, we decided to develop a DNN to transform regular
HSQC-like spectra, which contain multiplet splittings in the indirect (*C) dimension, into a

high-resolution *C-'H correlation map with sharp singlet peaks in the '*C dimension.

Designing a pulse-sequence to aid recognition of the aromatic multiplet structure in
proteins by the DNN

We have previously successfully trained the FID-Net (37) architecture to virtually decouple
and enhance the resolution of '*C-'H correlation spectra reporting on the methyl-groups of
large proteins (35). An initial attempt to use the same strategy for the aromatic region of *C-
'H correlation spectra of medium-to-large proteins was not satisfactory in our hands. We
believe the reason for this is that the aromatic region of *C-'H correlation spectra contains
cross-peaks with different multiplet structures in the '*C dimension, whereas the methyl region
essentially only contains doublets with a near uniform splitting of about ~35 Hz. In the aromatic
region, singlets are observed for histidine '*C?!, doublets for tryptophan '*C?!, and triplets for
tyrosine and phenylalanine '3C® and '3C?, respectively. Hence the DNN (or a human) cannot
differentiate between two singlets with the same 'H chemical shifts separated by ~55 to ~72
Hz from a doublet, making it nearly impossible to train the DNN to perform a robust

transformation between coupled and uncoupled spectra. Similarly, two doublets with the same
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'H chemical shifts, 'Jcc couplings and chemical shifts differing by 'Jcc can be mistaken for a
triplet. To facilitate a robust transformation by the DNN for resolution enhancement, we
decided to take several steps. The first step was to design an NMR experiment that provides
unique information about the multiplet structure of the cross-peaks so that the trained DNN can
uniquely distinguish the multiplet structure of the cross-peak that it is transforming into a
singlet. The DNN should then be able to avoid converting a doublet into two singlets or a triplet

into two singlets.
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Figure 1. Encoding of unique features in *C NMR spectra. (a) The core element of the pulse
sequence that allows for evolution of the scalar couplings and thus encodes unique features of the
multiplet structure. The chemical shift evolution time in the '*C dimension is denoted #. Simulated 1D
spectra showing the expected signals for a singlet (b), doublet (¢) and a triplet (d) when the scalar
couplings have been evolved for 0 ms (red) or 2.3 ms (green). “Jcc was set to 70 Hz while the transverse
relaxation rate was set 5 s™'. (e) One-dimensional "*C slices of a *C,'H correlation spectrum on L99A-
TAL recorded at a temperature of 298K and at a static magnetic field of 16.4 T. The slices are shown
for the cross-peak arising from H31 C*-"H*? for Tcoup of 0.0 ms (red) and 2.3 ms (green).

The multiplet structure of the cross-peaks can be discerned by comparing two spectra:

one corresponding to a normal *C-'H HSQC spectrum and a second one in which the 13C-13C
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couplings have evolved for a small amount of time, Tcoup = 2.3 ms (~1/6 'Jcc) (Figure 1a), in
the indirect (1*C) dimension. During the Tcoup delay, magnetisation arising from a singlet will
not evolve while the two lines of the doublet will evolve with frequencies corresponding to
+Jcc/2 and the time evolution of the two lines can be succinctly represented as {exp(— i ® Jcc
Teoup), €XP(Z T Jcc Teoup) . Along similar lines, the two outer lines of a triplet will evolve with
frequencies corresponding to J/cc while the inner line, that is of twice the hight, will not evolve
its phase, and represented as {exp(— 2i © Jcc Teoup), 2, €Xp(2i T Jec Teoup) § . Ignoring the effects
of relaxation, spectra recorded with tcoup = 0 and 2.3 ms will be indistinguishable from one
another for a singlet. On the other hand spectra recorded with tcoup = 2.3 ms from doublet and
triplet sites will contain a combination of absorptive and dispersive lineshapes, while the Tcoup
= 0 ms spectra only contains absorptive lineshapes. Ideal spectra calculated for the pair of
experiments (red Teoup = 0 ms (red); Teoup = 2.3 ms (green)) are shown in Figure 1b for a singlet,
in Figure 1c for a doublet and in Figure 1d for a triplet. Figure e shows a one-dimensional 1*C
slice extracted from 'H-13C datasets recorded on L99A-T4L using the complementary pair of
experiments described. The slice originates from the '3C%? site of H31, where the spectrum
recorded with teoup = 0.0 ms is in red and the one recorded with Teoup = 2.3 ms is shown in
green. The multiplet pattern arising from the regular spectra (red) in Figure le can arise either
from two singlets or a doublet, but the spectrum recorded with Tcoup = 2.3 ms (green) that
contains a combination of absorptive and dispersive lineshapes shows that it does not originate
from two singlets (Figure 1b vs. 1e) but from a doublet (Figure Ic vs le). Along similar lines
overlapping doublets can be distinguished from a triplet because the two components of the
doublet evolve with frequencies of £Jcc/2 during the teoup = 2.3 ms delay while the components
of the triplet evolve with a different set frequencies namely 0, +'Jcc once again leading to

different lineshapes in the spectra recorded with tcoup = 2.3 ms. To summarise, the unique
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features, or pattern, generated by recording the second spectrum that incorporates evolution

due to the *C-13C coupling allows the DNN to identify the correct spin-system.

Training and assessing the performance of the FID-Net-2 DNN

To improve the spectral reconstruction from the two complementary datasets described above
we made several key changes to the FID-Net architecture that we have devised previously. We
name this new general architecture FID-Net-2. The main difference between the original FID-
Net and the new FID-Net-2 architecture is that two complete 2D planes are processed within
the architecture, as opposed to a sliding window of 1D spectra (Figure S1). Furthermore, FID-
Net-2 outputs two sets of tensors (spectra), one output corresponding to the desired virtually
decoupled and resolution-enhanced 'H,'3C correlation spectrum, I(wu,®@c), and a second tensor
describing the uncertainty of the intensity for each point in the enhanced spectrum, 6(@n,®mc).
The architecture is described in detail in Figure S1. Training a DNN such as FID-Net-2 requires
a large amount of training data. For FID-Net-2 the training data consists of the complementary
HSQC datasets with (2.3 ms) and without evolution due to 'Jcc couplings and a target high-
resolution HSQC spectrum free of splittings in the '*C dimension. FID-Net-2 is then trained so
that it learns to virtually decouple the desired high-resolution *C-'H correlation map from the
complementary HSQC datasets. The desired target high resolution HSQC spectrum free of
splittings in the 3C dimension cannot be experimentally obtained from a uniformly *C
enriched sample and moreover would be infeasible to obtain for all the proteins required for
training even if experimentally accessible. However, as we have now shown in multiple
publications, it is now established that DNNs for transforming experimental NMR spectra can
be trained on synthetic data. The FID-Net-2 model was trained on approximately 30x10° sets

of synthetically generated spectra.
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The loss function (Losstwtal) developed for training FID-Net-2 includes three parts,
Lossiotal = Loss1 + Lossz + Losss. Lossi corresponds to the traditional mean-square-error (MSE)
between the target and predicted intensities. Loss: was designed to ensure a gaussian
distribution of the predicted uncertainties and Loss3 was designed to ensure that the
uncertainties predicted agree with the RMSD between the target and predicted spectra. See
materials and methods for a detailed description of the training procedure. Finally, it should be
noted that FID-Net-2 can reconstruct high-resolution 'H-13C correlation maps from
complementary HMQC or HSQC datasets because the same '*C chemical shift and the 'Jcc
terms of the Hamiltonian are active during the 7 evolution period (**C dimension) in both of

these experiments.

We initially assessed the performance of the trained FID-Net-2 model on sets of
synthetic data, where the advantage is that the ground-truth is known. A summary of this
assessment is shown in Figure 2. Figure 2a shows a representative example where FID-Net-2
is applied to a spectrum expected from an approximately 20 kDa protein at 298K. For such a
case we expect about 50 cross-peaks and transverse relaxation rates of about 45 + 20 s™! in both
the 13C and 'H dimensions. In contrast to other DNN transformations of NMR data, FID-Net-
2 transforms the input and produces two outputs, that is, the desired correlation spectrum
(middle) and the uncertainty associated with the transformation (right). Note that the input

consists of two 2D planes, whereas only one is shown in Figure 2a.


https://doi.org/10.1101/2024.04.01.587635
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.01.587635; this version posted April 2, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

a 20 kDa, 45 - 55 peaks, 298K
» Fid-Net-2 DNN
7 High-resolution spectrum Uncertainties, o
E; - N ) = 3.06 ' :
—— R - - 1 1.5
300 =5 - - < 055 ]
(= = - . 1.0
E e it i 0.10 |
& 200 £ AR
@ 12 B - - - -
100 L o T 05
= : . . u iy = . y . . 0.0
100 200 300 400 100 200 300 400 100 200 300 400
H (pts) H (pts) H (pts)
b 40 kDa, 110 - 115 peaks, 310K
| » Fid-Net-2 DNN
Input High-resolution spectrum Uncertainties, o
- e ] ' - 5 3.06 '
— e — . - s Ni= | 15
so0f e, —— - W, 055 1
— = . T = . - .
%) B 3 3 e — N °e S
= ' F == = e - 0.10 1.0
o 2001 - T § ——— '
2 - i o - - .
=== =-_ = A 05
= s = = * = = .- — ——
o — - - %= -
— = 3 — = = =
T r —r T T T T . T — T T T T 0.0
100 200 300 400 100 200 300 400 100 200 300 400
H (pts) H (pts) H (pts)
¢ 20 kDa, 45 - 55 peaks, 298K d 40 kDa, 110 - 115 peaks, 310K
= 0-84 o RMSD: 1.05 =06 )z RMSD: 1.07 ,
|5} . / )/ ® Y /
2 4 ] o 7"
& 0.6 yd ] 5] /
- 1 / 2] ! 04 s ]
0 0.44 / 5 B e 5
= . 3 g & 3
@02 3%
g 1. =z ] /
00]” “ 0.0-
00 02 04 06 08 -5 0 5 00 02 04 06

Predicted uncertainty, o

(pred - target)/o

Predicted uncertainty, o

(pred - target)/o

Figure 2. (a) Transformation with FID-Net-2 of randomly generated synthetic data corresponding to a
20 kDa protein (298K; 700 MHz). The transverse relaxation rates in the '>C and 'H dimensions were
chosen from a random distribution with mean of 45 s™' and standard deviation of 20 s'. Other parameters
match those in Table S1. (b) Transformation with FID-Net-2 of randomly generated synthetic data
corresponding to a 40 kDa protein (310K; 700 MHz). The transverse relaxation rates in the *C and 'H
dimensions were chosen from a random distribution with mean of 95 s™ and standard deviation of 20 s°
!. Other parameters match those in Table S1. (¢,d) Assessment of the predicted error, where to the left
is the yi v.s. RSMD and to the right is a histogram of the calculated y; = (pred; - target;)/ci, showed a
normal distribution with mean of nearly 0 and standard deviation of nearly 1. The plots in (c) and (d)
are calculated over 10 random spectra, each with a Lossi between 6.0% 107 and 7.0x107, meaning these
data are representing data amongst the worst 40%.
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Firstly, it is seen that FID-Net-2 is able to eliminate the strong solvent signal to produce
well-resolved spectra consisting of singlet cross-peaks. Of note is that the trained FID-Net-2
indeed produces point-by-point uncertainties, o;, that match what is expected, as judged from
a gaussian distribution of y; = (target; — predicted;)/o; , and predicted o; that match the
RMSD obtained from differences between predicted and target spectra (Figure 2c¢). Figure 2b
shows an application of FID-Net-2 to a simulated spectrum of a larger protein with a molecular
mass of about 40 kDa. For such a protein one expects about 110 cross-peaks in the aromatic
region and transverse relaxation rates of about 95 + 20 s™!. Again, the transformation of the
input produces a clean well-resolved spectrum with predicted uncertainties that follow the
desired criteria (Figure 2d). Effectively, Figures 2c,d shows that the implementation of Loss>
and Loss3 was successful.

One could argue that real experimental spectra potentially contain features, or artefacts,
that have not been included in the training data, or that there is the potential that a future user
will obtain data that contains artefacts that have not been included in the simulation data. Thus,
we have not aimed to include every possible artefact that a future user might encounter in the
training data, but instead show that the trained FID-Net-2 model is robust when transforming
data that contains artefact not included in the training set. To test the robustness of FID-Net-2,
and in particular its ability to produce reliable error estimates, we produced synthetic data
where the common artefact of #1-noise encountered in NMR spectroscopy was included (Figure
S2). Although #1-noise was not included in the training data in anyway FID-Net-2 reconstructed
the desired spectrum from the input data and more importantly predicted uncertainties that are
only slightly underestimated from the expected ones (Figure S2). Thus, although this is not a
comprehensive analysis of all possible artefacts, one can expect that, when situations that have
not been included during training are encountered, FID-Net-2 will report larger errors that

agree with the uncertainty of the predicted spectrum.
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Figure 3. Transformation of experimental spectra of L99A-T4L. (a) *C-'"H HSQC spectrum
reporting on the aromatic region of the 18 kDa L99A-T4L (298K; 700 MHz). Correlations with different
coupling multiplicity are clearly visible which leads to severe overlap in this medium size protein. (b)
The high resolution "H-"C map reconstructed by FID-Net-2 from two *C-'H HSQC spectra, recorded
with Teowp = 0.0 and 2.3 ms does not contain the multiplets seen in (a) leading to significantly lower
overlap. (¢) The uncertainty in the intensities of the reconstructed spectrum (b) predicted by FID-Net-
2. (d, e, f) one-dimensional representative slices of the spectra in a, b, and ¢, respectively.

FID-Net-2 reconstructs high-resolution aromatic >C-'H correlation maps from
experimental data

Evaluations and assessments on synthetic data as shown above are important to judge the
limitations of the trained FID-Net-2 model. However, it is by applying FID-Net-2 to real
experimental data that we will truly understand its capabilities. Initially we recorded aromatic
two-dimensional '*C-'H HSQC correlation spectra of the 18 kDa, L99A mutant of lysozyme
from the phage T4 (36) (L99A-T4L) at 16.4 T (700 MHz), Figure S3. Apart from being

relatively large compared to other proteins whose aromatic residues have been examined using
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NMR, L99A-T4L also exhibits conformational exchange that results in differential line-
broadening further testing the ability of FID-Net-2 to reconstruct high-resolution spectra from
coupled spectra. As expected, using a traditional Fourier transform to process the 3C-"H HSQC
data results in *C-'H correlation maps with multiplets in the '3C dimension that show
substantial overlap (Figure 3a). In contrast, when the complementary pair (with and without
the coupling delays) of 3C-'"H HSQC datasets are processed using the FID-Net-2 model, a
well-resolved spectrum of high quality is obtained. Furthermore, the produced uncertainties are
clearly not uniformly distributed over the spectrum as is the case for thermal noise processed
with a linear Fourier transformation. It is well-known that DNNs produce mappings that are
highly non-linear and one cannot therefore simply assess the performance, or accuracy, from
the RMSD of a transformed spectrum in an area without cross-peaks, which is custom for
standard processed spectra. The produced uncertainties in Figure 3c clearly show that the
uncertainties are centred around strong cross-peaks and near highly overlapped peaks. The
aromatic *C-'H correlation maps reconstructed by FID-Net-2 from datasets with differing

coupling delays are both better resolved and contain more signal compared to constant-time

HSQC spectra (Figure S4).

Having evaluated the trained FID-Net-2 model on synthetic data, including synthetic
data with #1-noise, as well as on good-quality experimental data, we sought to further assess
how the trained model behaves when the data contains artefacts that are not included in the
training data. We did so experimentally by deliberately mis-setting the Z; and Z> shims of the
NMR spectrometer to create an inhomogeneous field and thus create lineshapes that deviate
dramatically from the Lorentzian lineshapes used for training (Figure S5). For LO9A-T4L we
recorded C-"H HSQC correlation spectra with optimal shimming and with non-optimal

shimming and subsequently compared peak-intensities and peak-positions, in line with the
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NUScon criteria (37). Excellent correlations are obtained both for peak positions and intensities
(Figure S5) showing that FID-Net-2 can robustly reconstruct spectra from experimental data

recorded under suboptimal conditions.

Applications to larger proteins: FID-Net-2 reconstructs the high-resolution aromatic 3C-

'H correlation map of 40 kDa E. coli Maltose Binding Protein

Recording high resolution aromatic 3C-'H correlation maps for large proteins remains a
challenge due to the short '3C transverse relaxation times that make constant-time HSQC
spectra very insensitive. The HMQC spectrum recorded on 40 kDa E. coli Maltose Binding
Protein in complex with B-Cyclodextrin (MBP) at 310K contains few resolved correlations
(Figure 4a) and a large number of correlations are severely overlapped due to “Jcc splittings in
the indirect dimension. The 'H-!3C correlation map reconstructed by FID-Net-2 however is
much better resolved, once again demonstrating the efficacy of FID-Net-2 at reconstructing
high-resolution aromatic 'H-'*C correlation maps. We have chosen to use HMQC rather than
HSQC type datasets as they are about 10% more sensitive (see Figure S6). The NOESY based
strategy described below can in principle be used for the assignment of the correlations in

Figure 4b but this is beyond the scope of this work.
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Figure 4. Transformation of experimental spectra of the 40 kDa MBP. (a) *C-'H HMQC spectrum
reporting on the aromatic region of the 40 kDa MBP, recorded at 310K and at 700 MHz. Substantial
overlap is observed with few resolved cross-peaks. (b) Processing with the FID-Net-2 model of two
BC-'"H HMQC spectra, recorded with Tcoyy = 0.0 and 2.3 ms. Many well-defined cross-peaks are
observed, and the overlap is substantially less than in a. (¢) A one-dimensional slice of the input *C-'H
HMQC spectrum is compared with the corresponding one-dimensional slice of the output from FID-
Net-2. The uncertainties predicted by the DNN model are shown as a blue filled area.
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Using the 40 kDa MBP protein, with substantial peak overlap, we further assessed the
FID-Net-2 mapping and the estimation of uncertainties. In summary, we recorded two sets of
spectra, one with low signal-to-noise (8 scans) and one set with high signal-to-noise ratio (128
scans). Since these spectra were recorded on the same sample using the same NMR
spectrometer (700 MHz; 310K), one expects that the signal intensities are proportional and that
any deviations are captured by the uncertainties predicted by the trained FID-Net-2 model.
Figure S7 shows an excellent correlation between the two transformed datasets, and it also
shows that the deviations are well captured by the predicted uncertainties, thus providing
further evidence that the trained FID-Net-2 model transforms the data accurately, even noisy

data, and also produces quantitative uncertainties.

Exploiting FID-Net-2 to obtain aromatic 'H-3C assignments from NOESY experiments

Obtaining aromatic 'H and '3C assignments in medium size proteins is challenging because
HSQC-NOESY type spectra have poor resolution in the aromatic '3C dimension due to 'Jec
couplings, while the CT-HSQC-NOESY spectra suffer from poor signal-to-noise due to the
short transverse relaxation times of aromatic '3C nuclei. FID-Net-2 provides a ready solution
to the problem. In order to assign the chemical shifts of the aromatic '*C-'H spectrum of L99A-
T4L, we recorded '*Cwethyl-'>C aromatic-' Haromatic and "H-"3C aromatic-' Haromatic three-dimensional
NOESY spectra (Figure S8) and processed these with FID-Net-2 in the '*Caromatic-'HAromatic
dimensions. A summary of these spectra and the chemical shift assignment procedure that
utilises *C,'H methyl assignments are shown in Figure 5. Figure 5a highlights how the
uncertainties in intensity provided by FID-Net-2 aid in analysing the NOESY spectra. Cross-
peaks with uncertainties that are as large as the signal intensities should be very carefully
assessed, whereas cross-peaks (even weak ones), with small uncertainties can be confidently

interpreted. Based on a previous '’C,'H methyl assignment (38), these two spectra were
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sufficient to assign the correlations seen in the high-resolution aromatic '*C,'H correlation map

(Figure S9).
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Figure 5. Aromatic "H-"*C assignments from NOESY spectra reconstructed using FID-Net-2. (a)
Strips from the "H-"H planes of the 3D "H-">Caromatic-' Haromaic NOESY spectrum of L99A-T4 Lysozyme
(25 °C; 700 MHz) used for the assignment of Trp 138. (b) The residue Trp 138 is highlighted as magenta
sticks on a cartoon representation of the T4 Lysozyme structure [PDB ID: 3dmv] (39). The residues in
close proximity to Trp 138 are shown in cyan sticks and their distances from the aromatic side-chain of
Trp 138 are also shown in the figure. (¢) Strips from the 'H-">C planes of the 3D "*Cyeryl-"*Caromatic-
"Haromatic NOESY spectrum of L99A-T4 Lysozyme (25 °C; 700 MHz) focussing on Trp 138. The
structure of the protein was used to identify aromatic and methyl protons that are close to one another,
following which the complementary pair of 3D NOESY spectra that contain cross peaks between
aromatic and methyl protons that are proximal to one another was used to assign the aromatic 'H and
13C resonances. FID-Net-2 was used to process the "*Caromatic-' Haromatic dimensions.

Quantitative characterisation of protein dynamics using FID-Net-2

Previous DNNs devised to transform NMR spectra were not quantitative with respect to the

intensities of cross-peaks (35) and were not useful to study chemical exchange, characterise
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binding or other studies where accurate peak intensities are necessary. FID-Net-2 was however
trained to be quantitative in this regard. To exploit this aspect of FID-Net-2, we recorded
longitudinal exchange (40) spectra (EXSY/ZZ exchange) on the A39G mutants of the FF
domain (A39G-FF), Figure 6. The aromatic '3C,'H chemical shift assignment of A39G-FF was
obtained using the 3D NOESY spectra described above, Figure S10. A39G-FF exchanges
slowly between the folded state and the unfolded state (4/) and the addition of a small amount
of urea (1 M) increases the unfolded state population giving rise to two sets of peaks in NMR
spectra. As seen in Figure 6b, the FID-Net-2 transformed *C,'H correlation map clearly shows
the two sets of cross-peaks reporting on the exchange between the folded and unfolded states
of A39G-FF. A least-squares analysis of the data provided the exchange rate (kex) and the
population of the unfolded species (pu). To assess the quality of the data, we also recorded
N,'H ZZ exchange spectra and obtained an exchange rate and a population (kex = 4.1 + 0.2
st and pu = 38.7 = 0.8%.) in agreement with those obtained from the FID-Net-2 transformed
spectra (kex = 3.4+ 0.3 s™! and pu=36.3 + 1.7%) thus experimentally demonstrating that spectra

transformed with FID-Net-2 can be used for quantitative analyses.
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Figure 6. Transformations with FID-Net-2 are quantitative. Regular *C-'H correlation map (a)
and the FID-Net-2 reconstructed *C-'H correlation map from a ZZ exchange (Tey= 150 ms) experiment
reporting on the aromatic region of the 7 kDa the A39G mutant FF domain in the presence of 1M Urea
(275K; 600 MHz). Both spectra contain peaks arising from the folded (F) as well as the unfolded (U)
state of the protein. The regular (FFT) spectrum (a) is severely overlapped while the FID-Net-2
reconstructed spectrum (b) is much better resolved allowing one to identify both diagonal (F — F and
U — U) as well as exchange cross-peaks (F = U and U — F) arising from the *C¢*-'"H¢” site in W11.
(¢) Intensities extracted from (b) for various 7xx delays were analysed using the standard Bloch-
McConnnell formalism (42) to obtain the exchange parameters. The dashed lines are drawn using the
best fit parameters (kex = 3.39 £ 0.32 s and py = 36.3 = 1.7 %). (d) Intensities extracted a N ZZ
exchange experiment on the same sample, for diagonal (F = F and U — U) and well as exchange peaks
(F = U and U — F). The dashed lines are drawn using the best fit exchange parameters (kex = 4.08 +
0.17 s™" and py = 38.7 + 0.8 %).

Discussion

Being able to characterise the regulation, interactions, and dynamics of medium and large
proteins in solution is paramount to understanding molecular functions. To that end, it is

imperative to have tools to characterise aromatic side chains in proteins that are critical
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reporters of function because these sites are often located in interaction hot spots, involved with

substrate binding, regulation and catalysis.

Specific isotopic labelling (23-25, 43, 44), has been one of the only means to
characterise aromatic residues in medium-sized proteins. However, these labelling schemes
limit the number of probes available and require the use of specific precursors that often lead
to reduced protein yield of the samples. Here we presented an attractive alternate method to
characterise functional aromatic residues in medium-sized proteins, wherein a pair of
complementary 'H-13C datasets recorded using a uniformly *C-isotopically enriched protein
sample are processed with the FID-Net-2 model to obtain the desired high-resolution aromatic
BBC-H correlation map. It is important to note that this methodology, based on processing with
a deep neural network, offers simultaneous access to all the 1*C-'H spin-pairs in all the aromatic
side chains in the protein and does not require specifically labelled samples. The FID-Net-2
network architecture is itself providing a new way to transforming NMR spectra using DNNss,
because it not only produces resolution enhanced spectra, but also provides a good estimate of
the uncertainty in the intensities of these spectra. We have exploited these abilities of FID-Net-
2 by obtaining chemical shift assignments (L99A-T4L) and characterising chemical exchange
(A39G-FF). We believe that our new methodology will allow for a general and easy

characterisation of functional aromatic side chains in medium-sized proteins.

Two major developments contribute to the success of FID-Net-2: i) the design of new
NMR experiments with the sole goal of aiding the DNN and ii) training the DNN to estimate
uncertainties of the transformed spectra. Datasets with tcoup set to 2.3 ms are recorded solely to
provide unique features for the DNN to analyse. Due to 'Jcc evolutions during Teoup, Spectra
obtained from such datasets will contain dispersive components in the 3C dimension making
them unappealing to a human NMR spectroscopist, but nonetheless useful to the DNN that

utilises the information present in such datasets to reconstruct high resolution 'H-13C
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correlation maps. The uncertainties estimated by FID-Net-2 are crucial to both applications
presented here. Knowledge of the uncertainties was critical for both identifying ‘valid’ cross-
peaks in the NOESY spectra for the purposes of assignment and for obtaining kinetic
parameters from the variation of cross-peak intensities as a function of mixing time. As with
other convolutional neural networks, it is likely that the trained FID-Net-2 model presented in

this study can be re-trained to transform other types of spectra.

It is now clear that processing and transforming NMR spectra with DNNs is a powerful
tool. However, we believe that to truly exploit the potential of DNNs in NMR, it is not enough
to just devise new DNNs that transform existing experimental data, but to devise new
experiments specifically for the DNNs to exploit as we have done here. Concomitantly
developing DNNs and experimental methods will in the future to come allow for new insights,

in Al-assisted NMR spectroscopy and likely also in other related scientific fields.
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Materials and Methods

The FID-Net-2 architecture

Our aim was to develop a DNN to map *C-'H correlation NMR spectra reporting on the
aromatic region of uniformly !*C-labelled proteins into spectra of high resolution. Standard
BBC-H spectra of uniformly labelled proteins are affected by one-bond 3C-13C homonuclear
scalar couplings, line broadenings, and residual solvent signals. The developed DNN will
therefore need to (i) virtually decouple the multiplet structures arising from the homonuclear
couplings, (if) generally enhance the resolution, and (iif) remove solvent signals. Finally, (iv)
we also require that the DNN is able to predict the accuracy with which it does the mapping,
which means that the DNN provides point-by-point uncertainties 6 (win,®@13c), of the predicted
output I(@1n,®13¢c). As noted in the main text and Figure 1, two input spectra are required in
order for this transformation to be robust. It should be noted that the mapping performed by
the developed DNN will not increase the information in the provided data, but will combine
the information in the two input spectra and generate a spectrum that is of high resolution and
easily interpretable by the end-user spectroscopist.

To achieve the above requirements for the DNN, the previous FID-Net architecture (317)
was substantially altered in several ways, including, (i) full 2D planes are transformed as
opposed to using a sliding window, (ii) both the 1*C and 'H dimensions are processed within
the same architecture, (iii) a refinement step in the frequency domain was included in the end,
and (#v) uncertainties are also predicted. Of note is that the last layer of FID-Net-2 produces a
tensor of size (512,400,2), where the first (512,400) plane is the 'H-'3C resolution enhanced
spectrum and the second (512,400) plane is the confidences. A sigmoidal activation, 1/(exp(-
x)+1), is used to ensure that the confidences take values between 0 and 1. Standard deviations

are calculated from the confidence, conf, by:

1
= ~1
0.998 x sigmoid(conf) + 0.001

o
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Finally, the predicted spectrum and the predicted uncertainties, o, are convolved with a sine-
bell window function, with offset of 0.4x, before calculating the losses. The architecture is

detailed in Figure S1.

Synthetic spectra for training FID-Net-2

The FID-Net-2 DNN was trained exclusively on synthetic data, summarised in Figure 2, and
subsequently evaluated on synthetic data and experimentally acquired from protein samples.
The resolution in the '*C dimension was enhanced both with virtual decoupling and by
decreasing the effective transverse relaxation rate. When decreasing the effective transverse
relaxation rate, care must be taken, so that the DNN does not generate artefacts from very broad
features in the spectrum. We found that halving the effective relaxation rate worked well in the
13C-dimension, that is, R2tar = 0.5 R2,inp, where the input rates, R2 inp, were randomly generated
from a normal distribution with mean of 50 s*! and standard deviation of 20 s™' and Ry . is the
target transverse relaxation rate. The multiplet structures of the 3C-13C couplings in the input
spectrum were simulated by generating two sets of coupling constants, Ji c and J>c, that were
each drawn from a normal distribution with mean of 63 Hz and standard deviation of 10 Hz.
Subsequently 20% of Jic and 20% of J>c were set to zero, which results in 64% triplet
structures, 4% singlet structures, and 32% doublet structures. To simulate non-weak couplings,
roofing effects were added by multiplying the FID in the '*C dimension by {cos(n/,ct;) +
01 isin(n]l,ctl)} X {cos(n]zictl) + 0, isin(n]zlctl)}. Here p1 and p»> are factors to include
roofing effects and these are both drawn from a normal distribution with mean of 0 and standard
deviation of 0.08. Each spectrum contained between 40 and 200 cross-peaks, with chemical
shifts uniformly distributed along the '*C-dimension. The 'H chemical shift were generated to
increase the overlap of cross-peaks. Firstly, initial '"H chemical shifts §} were drawn from a

normal distribution with mean of 0 ppm and standard deviation of SW/4. Subsequently, to
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increase the overlap, the final "H chemical shifts were calculated using the following empirical
equation, which also ensures that cross-peaks are not on the edge of the spectrum in the 'H

dimension:

Oy = 0.2 X SW X tanh 2633+03 SW x t h25ﬂ
n= 02X SWxtanh| 3 X SW x tanh ( <

In the 'H dimension, the input simulated data included '"H-'H homonuclear couplings.
Similar to the *C dimension, two sets of coupling constants were generated Jiu with an
average of 8 Hz and a standard deviation of 2 Hz and J> 1 with an average of 4 Hz and a standard
deviation of 2 Hz; 10% of J1 u were set to zero and 50% of J>.z were set to zero. Roofing effects,
that is non-week couplings, were simulated in the same way as for the '3C-dimension. Solvent

signals were simulated in the 'H frequency domain as
lvent(i) = 10 X int {l < ! 09) (1 —-slp) }
=10 X int X ———09)-(1- ;
solvent(i in slp TF 01 slp)x;

where int is a random number drawn from the same normal distribution used to assign peak
intensities, slp is a random number between 0 and 1 (uniform). When the 1D 'H frequency-
domain spectrum contains N points, then x;j is 0/N, ..., (N-1)/N. Half of the solvent residuals
were inverted in the 'H dimension, such that the DNN learned to deal with solvent signals from
both the left and the right side of the spectrum. Finally, the residual solvent signal generated in
frequency domain was Fourier transformed to generate the solvent signal in the time domain,
which was added to the synthetically generated random spectrum.

The FID-Net-2 model was trained on a diverse range of NMR parameters (Table S1)
and so can be used without need for further retraining and the approach can be used with

standard "H-13C HSQC or HMQC pulse sequences.
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Training the FID-Net-2 architecture with synthetic spectra

The FID-Net-2 model was trained on approximately 30x10° sets of spectra, where one set
consisted of a target 2D spectrum (fargef) and two input spectra, without coupling evolution,
inputno-coup, and with 2.3 ms coupling evolution in the '3C dimension, inputcoup. Briefly,
chemical shifts were randomly distributed in the '*C dimension, while more condensed in the
'"H dimension to mimic increased overlap. For the input spectra, we also added random
gaussian noise and a solvent signal akin to a residual water signal. A maximum of 200 cross-
peaks were generated. All training parameters are provided in Table S1. The DNN model,
Figure S1, was developed and trained using the TENSORFLOW 2.11 library (45) with the KERAS
(46). As mentioned in the text specialised loss functions were used to train the network with
the total Loss (LosStwtal = Loss1 + Lossa + Losss). Lossi corresponds to the traditional idea of
minimising the difference between the predicted output spectrum and the target spectrum,
whereas Loss> is restraining a Gaussian distribution of the predicted errors, and Losss is
restraining the calculated uncertainties to match the RMSD between the predicted and target
spectrum, over 200 linear bins. Specifically, the function for Lossi, also referred to as mean-

square-error (MSE) is simply defined as:

1
Loss, = NZ(targeti — predict;)? [1]
i

Where the sum is over all points in the spectrum and N is the total number of points in the 2D
plane (400 x 512). The losses Lossz and Loss; were designed specifically for Fid-Net-2. For

Loss>, a value y; was first calculated as

target; — predict;
Xi = ‘ -, [2]

O;
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where o; is the predicted error (output from FID-Net-2). Our goal was to have y; follow a
standard gaussian distribution with zero mean and standard deviation of 1. To achieve this, the

1/2th, 15t 20d ) 314 and 7/2" momenta of y; were restrained as follows,

2

Loss, = Z (%Z )({") - M, [3]

1 7
me{E, 1; 2; 3,5}

where Mip = (—%)il“e) /\/E, My = 0, M, = 1, Mz = 0, M7 = 23/4 (1 - i) F(z) /\/E, and

['() is the gamma function.

For the calculation of Losss, the predicted errors, ai, were binned into 200 bins (linear),
with the bins equally spaced between 0 and max(c;). Within each of these 200 bins, the average
of the o; was calculated and restrained to be equal to the RMSD between the predicted points

and the target points, for points corresponding to this bin. Specifically,

2

1 1
Loss; = Z N_z o; — N—Z(targeti — predict;)? [4]
b b

b € bins i€b i€b

The model was trained to a total loss of 8.7x10 and Loss; of ca. 5x1073. Below, the trained
model is first assessed on synthetic data and subsequently we evaluate the model on a series of
experimental data.

The ADAM (47) optimiser was used for training with a learning rate that changed
throughout the training, £1=0.9, .=0.98, and ¢=10". Mini-batching was used with 4 set of
spectra in each mini-batch and the weights saved for every 2000 batches. The learning rate, /r,

was calculated as

1
Ir(step) = =———min(a,,a,), where a; =

— -7
2884 — and a, = 3.5 X107 “step

1l
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The parameter, step, is a counter for batches used in training. Thus, after an initial warm-up
period, the largest learning rate used is about 2.45x10°, whereafter the learning rate decays.
The FID-Net-2 architecture was trained on the NMRBox facility (48) using two Nvidia A100

GPUs.
Assessment using synthetic data

Once trained, the performance of the trained FID-Net-2 model was initially evaluated on
synthetically generated data, as shown in Figure 2. Two independent assessments were made,
one to represent a protein of about 20 kDa and one to represent a protein of about 40 kDa.
Parameters used to generate the synthetic spectra were the same as those used for training,
Table S1, except that for the 20 kDa protein only between 45 and 55 cross-peaks were
generated with R>("H) and R>('*C) both drawn from a normal distribution with mean of 45 s'!
and standard deviation of 20 s'!. For the 40 kDa protein 110-120 cross-peaks were generated
with R>('H) and R>(3C) both drawn from a normal distribution with mean of 95 s™! and standard

deviation of 20 s™'.

NMR Samples:

All three [U -'>N'3C] protein samples were prepared by over expressing the proteins in E. coli
BL21(DE3) cells transformed with the appropriate plasmids and grown in M9 medium
supplemented with 1 g/L of "NH4CI and 3 g/L of '3C-glucose as nitrogen and carbon sources
respectively. L99A-T4L (38), A39G-FF (41) and MBP (49) were all purified as described
previously.

The L99A-T4L sample consisted of ~1 mM [U -1>N'3C] protein dissolved in 50 mM
sodium phosphate, 25 mM NaCl, 2 mM EDTA, 2 mM NaNjs, ~99% D,0, pH 5.5 buffer. The

A39G-FF samples consisted of ~1 mM [U -!>N'3C] protein dissolved in 50 mM sodium acetate
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, 100 mM NaCl, 2 mM EDTA, 2% D>O pH 5.7 buffer. The MBP samples consisted of ~0.5
mM [U -NBC] protein dissolved in 20mM sodium phosphate, ImM EDTA, 2mM -

cyclodextrin, 99% D,O, pH 6.5 buffer.

NMR Experiments:

Two-dimensional >C-'H correlation spectra: The 2D HSQC and HMQC datasets of L99A-
T4L (Figure 3) and MBP (Figure 4) used as input for FID-Net-2 were recorded on a 1 mM
(L99A-T4L) or 0.5 mM (MBP) uniformly ['*C,!*N]-labelled samples using the pulse sequences
described in Figure S3a,b, with Tcoup = 0.0 ms and 2.3 ms, on a Bruker 700 MHz Avance 111
spectrometer equipped with Z-gradient triple-resonance TCI cryoprobe. The data was acquired
with 768 and 200 (L99A-T4L) or 128 (MBP) complex points in the 'H and '*C dimensions,
respectively, with spectral widths of 10000 Hz and 5000 Hz. The datasets were recorded as

pseudo-3D spectra. An interscan delay of 1 s was used.

The constant-time experiments (Figure S4) were recorded on a 1 mM L99A-T4L
uniformly ['*C,!*N]-labelled sample using a standard Bruker pulse sequences (hsqcctetgpsp)
with coherence-selection gradients. The data was acquired with 768 and 128 (30.4 ms constant
time) or 60 (15.2 constant-time) complex points in the 'H and '*C dimensions, respectively,
with spectral widths of 10000 Hz and 5000 Hz. An interscan delay of 1 s was used and the data

was recorded at 278K.

HMQC-type Spectra of L99A-T4L used to assess out-of-scope behaivour of FID-Net-
2 and with poor shimming (Figure S5) were recorded on a 1 mM uniformly [!3C,!>N]-labelled
samples using the pulse sequences described in Figure S3a, with teoup = 0.0 ms and 2.3 ms, on
a Bruker 600 MHz Avance HD spectrometer equipped with Z-gradient triple-resonance TCI

cryoprobe. The data was acquired with 768 and 200 complex points in the 'H and *C
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dimensions, respectively, with spectral widths of 9009 Hz and 5000 Hz. The datasets were

recorded as pseudo-3D spectra. An interscan delay of 1 s was used.

Three-dimensional NOESY spectra: The 3D 'H->C-'"H NOESY dataset of L99A-T4L (Figure
5a) used as input for FID-Net-2 were recorded on a uniformly ['*C,!*N]-labelled sample using
the pulse sequences described in Figure S3a,d, with Tcoup = 0.0 ms and 2.3 ms, on a Bruker 700
MHz Avance III spectrometer equipped with Z-gradient triple-resonance TCI cryoprobe. The
data was acquired with 1024, 128, and 96 complex points in 'H, "Hnoesy, and *Caro
dimensions, respectively, with spectral widths of 14280 Hz (‘H), 5000 Hz (*3C), and 8000 Hz
("Hnogsy). Four scans were collected per increment with a recycle delay of 1 s. The mixing

time was 100 ms.

The 3D 'H-*Caro-"*Chmethyl datasets of L99A-T4L (Figure 5¢) and A39G-FF used as
input for FID-Net-2 were recorded on uniformly [!*C,!>N]-labelled samples using the pulse
sequences described in Figure S8, with Tcoup = 0.0 ms and 2.3 ms, on a Bruker 700 MHz Avance
III spectrometer equipped with Z-gradient triple-resonance TCI cryoprobe. The data was
acquired with 1024, 128, and 80 complex points in 'H, Cnogsy, and 3Car dimensions,
respectively, with spectral widths of 14280 Hz ('H), 5000 Hz (*Caro), and 5000 Hz (' Cwetny1).
Four scans were collected per increment with a recycle delay of 1 s. The mixing time was 120

ms for the L99A-T4L sample and 200 ms for the A39F-FF sample.

Longitudinal exchange (EXSY; ZZ exchange) spectra: The longitudinal aromatic '*C,'H
exchange dataset of A39G-FF (Figure 6) was recorded on a 0.5 mM uniformly [!3C,""N]-
labelled samples using the pulse sequences described in Figure S3c, with Teoup = 0.0 ms and 2.3

ms, on a Bruker 600 MHz Avance HD spectrometer equipped with Z-gradient triple-resonance
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TCI cryoprobe. The sample was dissolved in H>O buffer. An interscan delay of 1 s was used
and the data was recorded at 274K. The data was acquired with 768 and 128 complex points in
'H and 3Car dimensions, respectively, with spectral widths of 9009 Hz (‘H), 5000 Hz (!3C).
Sixteen scans were collected per increment with a recycle delay of 1 s. The exchange delays

were 25 ms, 50 ms, 100 ms, 150 ms, 200 ms, 250 ms and 300 ms.

The longitudinal aromatic "N,'H exchange dataset of A39G-FF (Figure 6) was
recorded on a 0.5 mM uniformly ['*C,!>N]-labelled samples using a standard pulse sequence.
An interscan delay of 1 s was used and the data was recorded at 274K. The data was acquired
with 1536 and 128 complex points in '"H and '°N dimensions, respectively, with spectral widths
of 10000 Hz (H), 2136 Hz (!3C). Eight scans were collected per increment with a recycle delay
of 1 s. The exchange delays were 25 ms (duplicate), 50 ms, 100 ms, 150 ms, 200 ms (duplicate),

250 ms, 300 ms, 400 ms, 600 ms, and 800 ms.

Data processing: All experimental NMR spectra were processed with NMRPIPE (50) or using

the python libraries NMRGLUE (5/) and NUMPY.
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Data availability:

The experimental data is available from the corresponding author upon request.

Code availability:

The code for processing '*C-'H HSQC/HMQC spectra with FID-Net-2 is available from the
corresponding author upon request.
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