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Abstract  

Nuclear magnetic resonance (NMR) spectroscopy has become an important technique in 

structural biology for characterising the structure, dynamics and interactions of 

macromolecules. While a plethora of NMR methods are now available to inform on backbone 

and methyl-bearing side-chains of proteins, a characterisation of aromatic side chains is more 

challenging and often requires specific labelling or 13C-detection. Here we present a deep 

neural network (DNN) named FID-Net-2, which transforms NMR spectra recorded on simple 

uniformly 13C labelled samples to yield high-quality 1H-13C correlation spectra of the aromatic 

side chains. Key to the success of the DNN is the design of a complementary set of NMR 

experiments that produce spectra with unique features to aid the DNN produce high-resolution 

aromatic 1H-13C correlation spectra with accurate intensities. The reconstructed spectra can be 

used for quantitative purposes as FID-Net-2 predicts uncertainties in the resulting spectra. We 

have validated the new methodology experimentally on protein samples ranging from 7 to 40 

kDa in size. We demonstrate that the method can accurately reconstruct high resolution two-

dimensional aromatic 1H-13C correlation maps, high resolution three-dimensional aromatic-

methyl NOESY spectra to facilitate aromatic 1H-13C assignments, and that the intensities of 

peaks from the reconstructed aromatic 1H-13C correlation maps can be used to quantitatively 

characterise the kinetics of protein folding.  More generally, we believe that this strategy of 

devising new NMR experiments specifically for analysis using customised DNNs represents a 

substantial advance that will have a major impact on the study of molecules using NMR in the 

years to come. 

 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 2, 2024. ; https://doi.org/10.1101/2024.04.01.587635doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.01.587635
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

Introduction 

Nuclear Magnetic Resonance (NMR) spectroscopy is a ubiquitous technique in material 

science, chemistry, structural biology and clinical diagnosis. In bioscience, NMR provides 

unprecedented insight into functional motions (1–7) and non-covalent interactions (8–10) with 

atomic resolution. The technique therefore excellently complements AI-generated protein 

structures, e.g. from AlphaFold2, as well as structures obtained by cryo-electron microscopy 

(CryoEM) (11–13). 

Over many decades, a series of developments that include advances in hardware, 

sample preparation, and novel NMR pulse sequences have steadily raised the ‘size-limits’ of 

proteins that can be studied using solution-state NMR. Specific advances include the 

introduction of per-deuteration (14), 15N-1H TROSY (15), and methyl-TROSY methods (16). 

Using these techniques, it is now possible to record amide 15N-1H and methyl 13C-1H 

correlation maps in megadalton sized proteins. However, studying functional side chains, such 

as charged or aromatic side chains, which are often present in enzymatic active sites and within 

interaction hotspots, are much more challenging. 

 We showed recently that employing 13C-detection allows for a characterisation of 

charged side chains, such as arginine and lysine, in proteins up to ~40 kDa (17, 18). For small 

proteins 1H-detected NMR methods are available to probe lysine and negatively charged side 

chains, which have provided insight into molecular recognition, salt-bridge, and hydrogen-

bond formations (19, 20). These experiments are often performed on uniformly 13C labelled 

proteins samples using constant-time (CT) experiments that eliminate the peak splitting arising 

due to homonuclear 1JCC couplings in the indirect 13C dimension (21, 22) to record high 

resolution [13C-1H] correlation maps at different backbone and side-chain sites.   

Characterisation of aromatic side chains, on the other hand, has generally required 

specific labelling (23–26) because of non-uniform 1JCC couplings and attenuation of signal due 
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to substantial transverse relaxation during the constant-time period. There is therefore a clear 

need for improved methods to facilitate more detailed analysis of aromatic residues and their 

dynamics within proteins over a range of sizes of proteins to promote a greater understanding 

of how proteins function and interact.  

 

Deep learning methods have had a substantial impact on all areas of science in recent 

years (27), solving key problems in biophysics and computational biology (13, 28). Previous 

work from us and others have demonstrated applications of deep neural networks (DNNs) for 

transforming and analysing magnetic resonance data including analysing EPR DEER data (29), 

reconstructing non-uniformly sampled spectra, peak picking, and virtual homonuclear 

decoupling (30–34). Key to the success of these networks has been the ability to simulate an 

arbitrary amount of realistic training data (29, 34), overcoming problems of overfitting and 

data bottlenecks that often beset these models. A shortcoming that exists in many existing 

DNNs in the field, however, is their inability to report reliable and quantitative uncertainties 

associated with the transformations.  

In this work, we present a new DNN architecture, FID-Net-2, which uses data from a 

specially designed set of NMR experiments to not only reconstruct high resolution 1H-13C 

correlation maps of the aromatic side-chains in proteins, but also provide the uncertainty 

associated with the resulting spectra.  The correlation maps generated by the DNN are free of 

the multiplet splittings and line broadenings that traditionally have degraded the quality of such 

spectra. We have validated the new DNN based methodology experimentally by accurately 

reconstructing high-resolution aromatic 1H-13C correlation spectra of the ~20 kDa L99A 

mutant of T4 lysozyme (L99A-T4L) as well as the 40 kDa Maltose Binding Protein (MBP). 

Further, the utility of the new methodology is demonstrated by i) reconstructing high-resolution 

three-dimensional aromatic-methyl NOESY spectra to obtain aromatic 1H-13C assignments and 
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ii) quantitating the peak intensities in the reconstructed high-resolution aromatic 1H-13C 

correlation maps recorded with varying exchange times to obtain the forward and reverse rate 

constants for the folding of the A39 FF domain from human HYPA/FBP11.   

 

Results 

Due to variable 1JCC couplings (~55 to ~72 Hz) and fast 13C transverse relaxation, constant-

time  experiments are not routinely used to record high resolution 13C-1H correlation maps at 

various aromatic sites in proteins. Hence, we decided to develop a DNN to transform regular 

HSQC-like spectra, which contain multiplet splittings in the indirect (13C) dimension, into a 

high-resolution 13C-1H correlation map with sharp singlet peaks in the 13C dimension.  

 

Designing a pulse-sequence to aid recognition of the aromatic multiplet structure in 

proteins by the DNN 

We have previously successfully trained the FID-Net (31) architecture to virtually decouple 

and enhance the resolution of 13C-1H correlation spectra reporting on the methyl-groups of 

large proteins (35). An initial attempt to use the same strategy for the aromatic region of 13C-

1H correlation spectra of medium-to-large proteins was not satisfactory in our hands. We 

believe the reason for this is that the aromatic region of 13C-1H correlation spectra contains 

cross-peaks with different multiplet structures in the 13C dimension, whereas the methyl region 

essentially only contains doublets with a near uniform splitting of about ~35 Hz. In the aromatic 

region, singlets are observed for histidine 13Cε1, doublets for tryptophan 13Cδ1, and triplets for 

tyrosine and phenylalanine 13Cδ and 13Cε, respectively. Hence the DNN (or a human) cannot 

differentiate between two singlets with the same 1H chemical shifts separated by ~55 to ~72 

Hz from a doublet, making it nearly impossible to train the DNN to perform a robust 

transformation between coupled and uncoupled spectra. Similarly, two doublets with the same 
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1H chemical shifts, 1JCC couplings and chemical shifts differing by 1JCC can be mistaken for a 

triplet. To facilitate a robust transformation by the DNN for resolution enhancement, we 

decided to take several steps. The first step was to design an NMR experiment that provides 

unique information about the multiplet structure of the cross-peaks so that the trained DNN can 

uniquely distinguish the multiplet structure of the cross-peak that it is transforming into a 

singlet. The DNN should then be able to avoid converting a doublet into two singlets or a triplet 

into two singlets. 

 

 

Figure 1. Encoding of unique features in 13C NMR spectra. (a) The core element of the pulse 
sequence that allows for evolution of the scalar couplings and thus encodes unique features of the 
multiplet structure. The chemical shift evolution time in the 13C dimension is denoted t1.  Simulated 1D 
spectra showing the expected signals for a singlet (b), doublet (c) and a triplet (d) when the scalar 
couplings have been evolved for 0 ms (red) or 2.3 ms (green). 1JCC was set to 70 Hz while the transverse 
relaxation rate was set 5 s-1. (e) One-dimensional 13C slices of a 13C,1H correlation spectrum on L99A-
T4L recorded at a temperature of 298K and at a static magnetic field of 16.4 T. The slices are shown 
for the cross-peak arising from H31 13Cδ2-1Hδ2 for τcoup of 0.0 ms (red) and 2.3 ms (green). 
 

The multiplet structure of the cross-peaks can be discerned by comparing two spectra: 

one corresponding to a normal 13C-1H HSQC spectrum and a second one in which the 13C-13C 
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couplings have evolved for a small amount of time, τcoup = 2.3 ms (~1/6 1JCC) (Figure 1a), in 

the indirect (13C) dimension. During the τcoup delay, magnetisation arising from a singlet will 

not evolve while the two lines of the doublet will evolve with frequencies corresponding to 

±JCC/2 and the time evolution of the two lines can be succinctly represented as {exp(− i π JCC 

τcoup), exp(i π JCC τcoup)}. Along similar lines, the two outer lines of a triplet will evolve with 

frequencies corresponding to ±JCC while the inner line, that is of twice the hight, will not evolve 

its phase, and represented as {exp(− 2i π JCC τcoup), 2, exp(2i π JCC τcoup)}. Ignoring the effects 

of relaxation, spectra recorded with τcoup = 0 and 2.3 ms will be indistinguishable from one 

another for a singlet. On the other hand spectra recorded with τcoup =  2.3 ms from doublet and 

triplet sites will contain a combination of absorptive and dispersive lineshapes, while the τcoup 

=  0 ms spectra only contains absorptive lineshapes. Ideal spectra calculated for the pair of 

experiments (red τcoup =  0 ms (red); τcoup =  2.3 ms (green)) are shown in Figure 1b for a singlet, 

in Figure 1c for a doublet and in Figure 1d for a triplet. Figure 1e shows a one-dimensional 13C 

slice extracted from 1H-13C datasets recorded on L99A-T4L using the complementary pair of 

experiments described. The slice originates from the 13Cδ2 site of H31, where the spectrum 

recorded with τcoup =  0.0 ms is in red and the one recorded with τcoup =  2.3 ms is shown in 

green. The multiplet pattern arising from the regular spectra (red) in Figure 1e can arise either 

from two singlets or a doublet, but the spectrum recorded with τcoup = 2.3 ms (green) that 

contains a combination of absorptive and dispersive lineshapes shows that it does not originate 

from two singlets (Figure 1b vs. 1e) but from a doublet (Figure 1c vs 1e). Along similar lines 

overlapping doublets can be distinguished from a triplet because the two components of the 

doublet evolve with frequencies of ±JCC/2 during the τcoup = 2.3 ms delay while the components 

of the triplet evolve with a different set frequencies namely 0, ±1JCC once again leading to 

different lineshapes in the spectra recorded with τcoup = 2.3 ms.  To summarise, the unique 
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features, or pattern, generated by recording the second spectrum that incorporates evolution 

due to the 13C-13C coupling allows the DNN to identify the correct spin-system.  

 

Training and assessing the performance of the FID-Net-2 DNN 

To improve the spectral reconstruction from the two complementary datasets described above 

we made several key changes to the FID-Net architecture that we have devised previously.  We 

name this new general architecture FID-Net-2. The main difference between the original FID-

Net and the new FID-Net-2 architecture is that two complete 2D planes are processed within 

the architecture, as opposed to a sliding window of 1D spectra (Figure S1). Furthermore, FID-

Net-2 outputs two sets of tensors (spectra), one output corresponding to the desired virtually 

decoupled and resolution-enhanced 1H,13C correlation spectrum, I(vH,vC), and a second tensor 

describing the uncertainty of the intensity for each point in the enhanced spectrum, s(vH,vC). 

The architecture is described in detail in Figure S1. Training a DNN such as FID-Net-2 requires 

a large amount of training data. For FID-Net-2 the training data consists of the complementary 

HSQC datasets with (2.3 ms) and without evolution due to 1JCC couplings and a target high-

resolution HSQC spectrum free of splittings in the 13C dimension. FID-Net-2 is then trained so 

that it learns to virtually decouple the desired high-resolution 13C-1H correlation map from the 

complementary HSQC datasets. The desired target high resolution HSQC spectrum free of 

splittings in the 13C dimension cannot be experimentally obtained from a uniformly 13C 

enriched sample and moreover would be infeasible to obtain for all the proteins required for 

training even if experimentally accessible. However, as we have now shown in multiple 

publications, it is now established that DNNs for transforming experimental NMR spectra can 

be trained on synthetic data. The FID-Net-2 model was trained on approximately 30×106 sets 

of synthetically generated spectra.  
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The loss function (Losstotal) developed for training FID-Net-2 includes three parts, 

Losstotal = Loss1 + Loss2 + Loss3. Loss1 corresponds to the traditional mean-square-error (MSE) 

between the target and predicted intensities. Loss2 was designed to ensure a gaussian 

distribution of the predicted uncertainties and Loss3 was designed to ensure that the 

uncertainties predicted agree with the RMSD between the target and predicted spectra.  See 

materials and methods for a detailed description of the training procedure. Finally, it should be 

noted that FID-Net-2 can reconstruct high-resolution 1H-13C correlation maps from 

complementary HMQC or HSQC datasets because the same 13C chemical shift and the 1JCC 

terms of the Hamiltonian are active during the t1 evolution period (13C dimension) in both of 

these experiments.   

We initially assessed the performance of the trained FID-Net-2 model on sets of 

synthetic data, where the advantage is that the ground-truth is known. A summary of this 

assessment is shown in Figure 2. Figure 2a shows a representative example where FID-Net-2 

is applied to a spectrum expected from an approximately 20 kDa protein at 298K. For such a 

case we expect about 50 cross-peaks and transverse relaxation rates of about 45 ± 20 s-1 in both 

the 13C and 1H dimensions. In contrast to other DNN transformations of NMR data, FID-Net-

2 transforms the input and produces two outputs, that is, the desired correlation spectrum 

(middle) and the uncertainty associated with the transformation (right). Note that the input 

consists of two 2D planes, whereas only one is shown in Figure 2a.  
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Figure 2. (a) Transformation with FID-Net-2 of randomly generated synthetic data corresponding to a 
20 kDa protein (298K; 700 MHz). The transverse relaxation rates in the 13C and 1H dimensions were 
chosen from a random distribution with mean of 45 s-1 and standard deviation of 20 s-1. Other parameters 
match those in Table S1. (b) Transformation with FID-Net-2 of randomly generated synthetic data 
corresponding to a 40 kDa protein (310K; 700 MHz).  The transverse relaxation rates in the 13C and 1H 
dimensions were chosen from a random distribution with mean of 95 s-1 and standard deviation of 20 s-

1. Other parameters match those in Table S1. (c,d) Assessment of the predicted error, where to the left 
is the χi v.s. RSMD and to the right is a histogram of the calculated χi = (predi - targeti)/σi, showed a 
normal distribution with mean of nearly 0 and standard deviation of nearly 1. The plots in (c) and (d) 
are calculated over 10 random spectra, each with a Loss1 between 6.0×10-3 and 7.0×10-3, meaning these 
data are representing data amongst the worst 40%. 
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Firstly, it is seen that FID-Net-2 is able to eliminate the strong solvent signal to produce 

well-resolved spectra consisting of singlet cross-peaks. Of note is that the trained FID-Net-2 

indeed produces point-by-point uncertainties, σi, that match what is expected, as judged from 

a gaussian distribution of 𝜒! = (𝑡𝑎𝑟𝑔𝑒𝑡! − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑!)/σ! 	, and predicted σi that match the 

RMSD obtained from differences between predicted and target spectra (Figure 2c). Figure 2b 

shows an application of FID-Net-2 to a simulated spectrum of a larger protein with a molecular 

mass of about 40 kDa. For such a protein one expects about 110 cross-peaks in the aromatic 

region and transverse relaxation rates of about 95 ± 20 s-1. Again, the transformation of the 

input produces a clean well-resolved spectrum with predicted uncertainties that follow the 

desired criteria (Figure 2d). Effectively, Figures 2c,d shows that the implementation of Loss2 

and Loss3 was successful. 

One could argue that real experimental spectra potentially contain features, or artefacts, 

that have not been included in the training data, or that there is the potential that a future user 

will obtain data that contains artefacts that have not been included in the simulation data. Thus, 

we have not aimed to include every possible artefact that a future user might encounter in the 

training data, but instead show that the trained FID-Net-2 model is robust when transforming 

data that contains artefact not included in the training set. To test the robustness of FID-Net-2, 

and in particular its ability to produce reliable error estimates, we produced synthetic data 

where the common artefact of t1-noise encountered in NMR spectroscopy was included (Figure 

S2). Although t1-noise was not included in the training data in anyway FID-Net-2 reconstructed 

the desired spectrum from the input data and more importantly predicted uncertainties that are 

only slightly underestimated from the expected ones (Figure S2). Thus, although this is not a 

comprehensive analysis of all possible artefacts, one can expect that, when situations that have 

not been included during training are encountered, FID-Net-2 will report larger errors that 

agree with the uncertainty of the predicted spectrum. 
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Figure 3. Transformation of experimental spectra of L99A-T4L.  (a) 13C-1H HSQC spectrum 
reporting on the aromatic region of the 18 kDa L99A-T4L (298K; 700 MHz). Correlations with different 
coupling multiplicity are clearly visible which leads to severe overlap in this medium size protein. (b) 
The high resolution 1H-13C map reconstructed by FID-Net-2 from two 13C-1H HSQC spectra, recorded 
with τcoup = 0.0 and 2.3 ms does not contain the multiplets seen in (a) leading to significantly lower 
overlap. (c) The uncertainty in the intensities of the reconstructed spectrum (b) predicted by FID-Net-
2. (d, e, f) one-dimensional representative slices of the spectra in a, b, and c, respectively. 
 

FID-Net-2 reconstructs high-resolution aromatic 13C-1H correlation maps from 

experimental data 

Evaluations and assessments on synthetic data as shown above are important to judge the 

limitations of the trained FID-Net-2 model. However, it is by applying FID-Net-2 to real 

experimental data that we will truly understand its capabilities. Initially we recorded aromatic 

two-dimensional 13C-1H HSQC correlation spectra of the 18 kDa, L99A mutant of lysozyme 

from the phage T4 (36) (L99A-T4L) at 16.4 T (700 MHz), Figure S3. Apart from being 

relatively large compared to other proteins whose aromatic residues have been examined using 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 2, 2024. ; https://doi.org/10.1101/2024.04.01.587635doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.01.587635
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

NMR, L99A-T4L also exhibits conformational exchange that results in differential line-

broadening further testing the ability of FID-Net-2 to reconstruct high-resolution spectra from 

coupled spectra. As expected, using a traditional Fourier transform to process the 13C-1H HSQC 

data results in 13C-1H correlation maps with multiplets in the 13C dimension that show 

substantial overlap (Figure 3a). In contrast, when the complementary pair (with and without 

the coupling delays) of 13C-1H HSQC datasets are processed using the FID-Net-2 model, a 

well-resolved spectrum of high quality is obtained. Furthermore, the produced uncertainties are 

clearly not uniformly distributed over the spectrum as is the case for thermal noise processed 

with a linear Fourier transformation. It is well-known that DNNs produce mappings that are 

highly non-linear and one cannot therefore simply assess the performance, or accuracy, from 

the RMSD of a transformed spectrum in an area without cross-peaks, which is custom for 

standard processed spectra. The produced uncertainties in Figure 3c clearly show that the 

uncertainties are centred around strong cross-peaks and near highly overlapped peaks. The 

aromatic 13C-1H correlation maps reconstructed by FID-Net-2 from datasets with differing 

coupling delays are both better resolved and contain more signal compared to constant-time 

HSQC spectra (Figure S4).    

 

Having evaluated the trained FID-Net-2 model on synthetic data, including synthetic 

data with t1-noise, as well as on good-quality experimental data, we sought to further assess 

how the trained model behaves when the data contains artefacts that are not included in the 

training data. We did so experimentally by deliberately mis-setting the Z1 and Z2 shims of the 

NMR spectrometer to create an inhomogeneous field and thus create lineshapes that deviate 

dramatically from the Lorentzian lineshapes used for training (Figure S5). For L99A-T4L we 

recorded 13C-1H HSQC correlation spectra with optimal shimming and with non-optimal 

shimming and subsequently compared peak-intensities and peak-positions, in line with the 
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NUScon criteria (37). Excellent correlations are obtained both for peak positions and intensities 

(Figure S5) showing that FID-Net-2 can robustly reconstruct spectra from experimental data 

recorded under suboptimal conditions.  

 

Applications to larger proteins: FID-Net-2 reconstructs the high-resolution aromatic 13C-

1H correlation map of 40 kDa E. coli Maltose Binding Protein 

Recording high resolution aromatic 13C-1H correlation maps for large proteins remains a 

challenge due to the short 13C transverse relaxation times that make constant-time HSQC 

spectra very insensitive. The HMQC spectrum recorded on 40 kDa E. coli Maltose Binding 

Protein in complex with β-Cyclodextrin (MBP) at 310K contains few resolved correlations 

(Figure 4a) and a large number of correlations are severely overlapped due to 1JCC splittings in 

the indirect dimension. The 1H-13C correlation map reconstructed by FID-Net-2 however is 

much better resolved, once again demonstrating the efficacy of FID-Net-2 at reconstructing 

high-resolution aromatic 1H-13C correlation maps. We have chosen to use HMQC rather than 

HSQC type datasets as they are about 10% more sensitive (see Figure S6). The NOESY based 

strategy described below can in principle be used for the assignment of the correlations in 

Figure 4b but this is beyond the scope of this work.  
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Figure 4. Transformation of experimental spectra of the 40 kDa MBP.  (a) 13C-1H HMQC spectrum 
reporting on the aromatic region of the 40 kDa MBP, recorded at 310K and at 700 MHz. Substantial 
overlap is observed with few resolved cross-peaks. (b) Processing with the FID-Net-2 model of two 
13C-1H HMQC spectra, recorded with τcoup = 0.0 and 2.3 ms. Many well-defined cross-peaks are 
observed, and the overlap is substantially less than in a. (c) A one-dimensional slice of the input 13C-1H 
HMQC spectrum is compared with the corresponding one-dimensional slice of the output from FID-
Net-2. The uncertainties predicted by the DNN model are shown as a blue filled area. 
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Using the 40 kDa MBP protein, with substantial peak overlap, we further assessed the 

FID-Net-2 mapping and the estimation of uncertainties. In summary, we recorded two sets of 

spectra, one with low signal-to-noise (8 scans) and one set with high signal-to-noise ratio (128 

scans). Since these spectra were recorded on the same sample using the same NMR 

spectrometer (700 MHz; 310K), one expects that the signal intensities are proportional and that 

any deviations are captured by the uncertainties predicted by the trained FID-Net-2 model. 

Figure S7 shows an excellent correlation between the two transformed datasets, and it also 

shows that the deviations are well captured by the predicted uncertainties, thus providing 

further evidence that the trained FID-Net-2 model transforms the data accurately, even noisy 

data, and also produces quantitative uncertainties. 

 

Exploiting FID-Net-2 to obtain aromatic 1H-13C assignments from NOESY experiments 

Obtaining aromatic 1H and 13C assignments in medium size proteins is challenging because 

HSQC-NOESY type spectra have poor resolution in the aromatic 13C dimension due to 1JCC 

couplings, while the CT-HSQC-NOESY spectra suffer from poor signal-to-noise due to the 

short transverse relaxation times of aromatic 13C nuclei. FID-Net-2 provides a ready solution 

to the problem.  In order to assign the chemical shifts of the aromatic 13C-1H spectrum of L99A-

T4L, we recorded 13CMethyl-13CAromatic-1HAromatic and 1H-13CAromatic-1HAromatic three-dimensional 

NOESY spectra (Figure S8) and processed these with FID-Net-2 in the 13CAromatic-1HAromatic 

dimensions. A summary of these spectra and the chemical shift assignment procedure that 

utilises 13C,1H methyl assignments are shown in Figure 5. Figure 5a highlights how the 

uncertainties in intensity provided by FID-Net-2 aid in analysing the NOESY spectra. Cross-

peaks with uncertainties that are as large as the signal intensities should be very carefully 

assessed, whereas cross-peaks (even weak ones), with small uncertainties can be confidently 

interpreted. Based on a previous 13C,1H methyl assignment (38), these two spectra were 
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sufficient to assign the correlations seen in the high-resolution aromatic 13C,1H correlation map 

(Figure S9).  

 

Figure 5. Aromatic 1H-13C assignments from NOESY spectra reconstructed using FID-Net-2. (a) 
Strips from the 1H-1H planes of the 3D 1H-13CAromatic-1HAromatic

 NOESY spectrum of L99A-T4 Lysozyme 
(25 oC; 700 MHz) used for the assignment of Trp 138. (b) The residue Trp 138 is highlighted as magenta 
sticks on a cartoon representation of the T4 Lysozyme structure [PDB ID: 3dmv] (39). The residues in 
close proximity to Trp 138 are shown in cyan sticks and their distances from the aromatic side-chain of 
Trp 138 are also shown in the figure. (c) Strips from the 1H-13C planes of the 3D 13CMethyl-13CAromatic-
1HAromatic

  NOESY spectrum of L99A-T4 Lysozyme (25 oC; 700 MHz) focussing on Trp 138. The 
structure of the protein was used to identify aromatic and methyl protons that are close to one another, 
following which the complementary pair of 3D NOESY spectra that contain cross peaks between 
aromatic and methyl protons that are proximal to one another was used to assign the aromatic 1H and 
13C resonances. FID-Net-2 was used to process the 13CAromatic-1HAromatic dimensions. 
 

Quantitative characterisation of protein dynamics using FID-Net-2 

Previous DNNs devised to transform NMR spectra were not quantitative with respect to the 

intensities of cross-peaks (35) and were not useful to study chemical exchange, characterise 
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binding or other studies where accurate peak intensities are necessary. FID-Net-2 was however 

trained to be quantitative in this regard. To exploit this aspect of FID-Net-2, we recorded 

longitudinal exchange (40) spectra (EXSY/ZZ exchange) on the A39G mutants of the FF 

domain (A39G-FF), Figure 6. The aromatic 13C,1H chemical shift assignment of A39G-FF was 

obtained using the 3D NOESY spectra described above, Figure S10. A39G-FF exchanges 

slowly between the folded state and the unfolded state (41) and the addition of a small amount 

of urea (1 M) increases the unfolded state population giving rise to two sets of peaks in NMR 

spectra. As seen in Figure 6b, the FID-Net-2 transformed 13C,1H correlation map clearly shows 

the two sets of cross-peaks reporting on the exchange between the folded and unfolded states 

of A39G-FF. A least-squares analysis of the data provided the exchange rate (kex) and the 

population of the unfolded species (pU). To assess the quality of the data, we also recorded 

15N,1H ZZ exchange spectra and obtained an exchange rate and a population (kex = 4.1 ± 0.2  

s-1 and pU = 38.7 ± 0.8%.) in agreement with those obtained from the FID-Net-2 transformed 

spectra (kex = 3.4 ± 0.3 s-1 and pU = 36.3 ± 1.7%) thus experimentally demonstrating that spectra 

transformed with FID-Net-2 can be used for quantitative analyses. 
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Figure 6. Transformations with FID-Net-2 are quantitative.  Regular 13C-1H correlation map (a) 
and the FID-Net-2 reconstructed 13C-1H correlation map from a ZZ exchange (TEX = 150 ms) experiment 
reporting on the aromatic region of the 7 kDa the A39G mutant FF domain in the presence of 1M Urea 
(275K; 600 MHz). Both spectra contain peaks arising from the folded (F) as well as the unfolded (U) 
state of the protein. The regular (FFT) spectrum (a) is severely overlapped while the FID-Net-2 
reconstructed spectrum (b) is much better resolved allowing one to identify both diagonal (F ➝ F and 
U ➝ U) as well as exchange cross-peaks (F ➝ U and U ➝ F) arising from the 13C𝜁2-1H𝜁2 site in W11. 
(c) Intensities extracted from (b) for various TEX delays were analysed using the standard Bloch-
McConnnell formalism (42) to obtain the exchange parameters. The dashed lines are drawn using the 
best fit parameters (kex = 3.39 ± 0.32 s-1 and pU = 36.3 ± 1.7 %). (d) Intensities extracted a 15N ZZ 
exchange experiment on the same sample, for diagonal (F ➝ F and U ➝ U) and well as exchange peaks 
(F ➝ U and U ➝ F). The dashed lines are drawn using the best fit exchange parameters (kex = 4.08 ± 
0.17 s-1 and pU = 38.7 ± 0.8 %). 

 

Discussion 

Being able to characterise the regulation, interactions, and dynamics of medium and large 

proteins in solution is paramount to understanding molecular functions. To that end, it is 

imperative to have tools to characterise aromatic side chains in proteins that are critical 
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reporters of function because these sites are often located in interaction hot spots, involved with 

substrate binding, regulation and catalysis. 

Specific isotopic labelling (23–25, 43, 44), has been one of the only means to 

characterise aromatic residues in medium-sized proteins. However, these labelling schemes 

limit the number of probes available and require the use of specific precursors that often lead 

to reduced protein yield of the samples. Here we presented an attractive alternate method to 

characterise functional aromatic residues in medium-sized proteins, wherein a pair of 

complementary 1H-13C datasets recorded using a uniformly 13C-isotopically enriched protein 

sample are processed with the FID-Net-2 model to obtain the desired high-resolution aromatic 

13C-1H correlation map. It is important to note that this methodology, based on processing with 

a deep neural network, offers simultaneous access to all the 13C-1H spin-pairs in all the aromatic 

side chains in the protein and does not require specifically labelled samples. The FID-Net-2 

network architecture is itself providing a new way to transforming NMR spectra using DNNs, 

because it not only produces resolution enhanced spectra, but also provides a good estimate of 

the uncertainty in the intensities of these spectra. We have exploited these abilities of FID-Net-

2 by obtaining chemical shift assignments (L99A-T4L) and characterising chemical exchange 

(A39G-FF). We believe that our new methodology will allow for a general and easy 

characterisation of functional aromatic side chains in medium-sized proteins.  

Two major developments contribute to the success of FID-Net-2: i) the design of new 

NMR experiments with the sole goal of aiding the DNN and ii) training the DNN to estimate 

uncertainties of the transformed spectra. Datasets with τcoup set to 2.3 ms are recorded solely to 

provide unique features for the DNN to analyse. Due to 1JCC evolutions during τcoup, spectra 

obtained from such datasets will contain dispersive components in the 13C dimension making 

them unappealing to a human NMR spectroscopist, but nonetheless useful to the DNN that 

utilises the information present in such datasets to reconstruct high resolution 1H-13C 
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correlation maps. The uncertainties estimated by FID-Net-2 are crucial to both applications 

presented here. Knowledge of the uncertainties was critical for both identifying ‘valid’ cross-

peaks in the NOESY spectra for the purposes of assignment and for obtaining kinetic 

parameters from the variation of cross-peak intensities as a function of mixing time. As with 

other convolutional neural networks, it is likely that the trained FID-Net-2 model presented in 

this study can be re-trained to transform other types of spectra.  

It is now clear that processing and transforming NMR spectra with DNNs is a powerful 

tool. However, we believe that to truly exploit the potential of DNNs in NMR, it is not enough 

to just devise new DNNs that transform existing experimental data, but to devise new 

experiments specifically for the DNNs to exploit as we have done here. Concomitantly 

developing DNNs and experimental methods will in the future to come allow for new insights, 

in AI-assisted NMR spectroscopy and likely also in other related scientific fields. 
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Materials and Methods 

The FID-Net-2 architecture 

Our aim was to develop a DNN to map 13C-1H correlation NMR spectra reporting on the 

aromatic region of uniformly 13C-labelled proteins into spectra of high resolution. Standard 

13C-1H spectra of uniformly labelled proteins are affected by one-bond 13C-13C homonuclear 

scalar couplings, line broadenings, and residual solvent signals. The developed DNN will 

therefore need to (i) virtually decouple the multiplet structures arising from the homonuclear 

couplings, (ii) generally enhance the resolution, and (iii) remove solvent signals. Finally, (iv) 

we also require that the DNN is able to predict the accuracy with which it does the mapping, 

which means that the DNN provides point-by-point uncertainties s (v1H,v13C), of the predicted 

output I(v1H,v13C).  As noted in the main text and Figure 1, two input spectra are required in 

order for this transformation to be robust. It should be noted that the mapping performed by 

the developed DNN will not increase the information in the provided data, but will combine 

the information in the two input spectra and generate a spectrum that is of high resolution and 

easily interpretable by the end-user spectroscopist. 

To achieve the above requirements for the DNN, the previous FID-Net architecture (31) 

was substantially altered in several ways, including, (i) full 2D planes are transformed as 

opposed to using a sliding window, (ii) both the 13C and 1H dimensions are processed within 

the same architecture, (iii) a refinement step in the frequency domain was included in the end, 

and (iv) uncertainties are also predicted. Of note is that the last layer of FID-Net-2 produces a 

tensor of size (512,400,2), where the first (512,400) plane is the 1H-13C resolution enhanced 

spectrum and the second (512,400) plane is the confidences. A sigmoidal activation, 1/(exp(-

x)+1), is used to ensure that the confidences take values between 0 and 1. Standard deviations 

are calculated from the confidence, conf, by: 

𝜎 =
1

0.998 × sigmoid(𝑐𝑜𝑛𝑓) + 0.001 − 1 
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Finally, the predicted spectrum and the predicted uncertainties, σ, are convolved with a sine-

bell window function, with offset of 0.4π, before calculating the losses. The architecture is 

detailed in Figure S1. 

 

Synthetic spectra for training FID-Net-2 

The FID-Net-2 DNN was trained exclusively on synthetic data, summarised in Figure 2, and 

subsequently evaluated on synthetic data and experimentally acquired from protein samples. 

The resolution in the 13C dimension was enhanced both with virtual decoupling and by 

decreasing the effective transverse relaxation rate. When decreasing the effective transverse 

relaxation rate, care must be taken, so that the DNN does not generate artefacts from very broad 

features in the spectrum. We found that halving the effective relaxation rate worked well in the 

13C-dimension, that is, R2,tar = 0.5 R2,inp, where the input rates, R2,inp, were randomly generated 

from a normal distribution with mean of 50 s-1 and standard deviation of 20 s-1 and R2,tar is the 

target transverse relaxation rate. The multiplet structures of the 13C-13C couplings in the input 

spectrum were simulated by generating two sets of coupling constants, J1,C and J2,C, that were 

each drawn from a normal distribution with mean of 63 Hz and standard deviation of 10 Hz. 

Subsequently 20% of J1,C and 20% of J2,C were set to zero, which  results in 64% triplet 

structures, 4% singlet structures, and 32% doublet structures. To simulate non-weak couplings, 

roofing effects were added by multiplying the FID in the 13C dimension by Ccos(𝜋𝐽",$𝑡") +

𝜚"	𝑖 sin(𝜋𝐽",$𝑡")I × Ccos(𝜋𝐽%,$𝑡") + 𝜚%	𝑖 sin(𝜋𝐽%,$𝑡")I. Here ρ1 and ρ2 are factors to include 

roofing effects and these are both drawn from a normal distribution with mean of 0 and standard 

deviation of 0.08. Each spectrum contained between 40 and 200 cross-peaks, with chemical 

shifts uniformly distributed along the 13C-dimension. The 1H chemical shift were generated to 

increase the overlap of cross-peaks. Firstly, initial 1H chemical shifts 𝛿&'  were drawn from a 

normal distribution with mean of 0 ppm and standard deviation of SW/4. Subsequently, to 
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increase the overlap, the final 1H chemical shifts were calculated using the following empirical 

equation, which also ensures that cross-peaks are not on the edge of the spectrum in the 1H 

dimension: 

δ& = 	0.2 × SW × tanhRS
2𝛿&'

SWT
(

U + 0.3 × SW × tanhW
2𝛿&'

SWX 

 In the 1H dimension, the input simulated data included 1H-1H homonuclear couplings. 

Similar to the 13C dimension, two sets of coupling constants were generated J1,H with an 

average of 8 Hz and a standard deviation of 2 Hz and J2,H with an average of 4 Hz and a standard 

deviation of 2 Hz; 10% of J1,H were set to zero and 50% of J2,H were set to zero. Roofing effects, 

that is non-week couplings, were simulated in the same way as for the 13C-dimension. Solvent 

signals were simulated in the 1H frequency domain as  

𝑠𝑜𝑙𝑣𝑒𝑛𝑡(𝑖) = 10 × 𝑖𝑛𝑡 × \𝑠𝑙𝑝 ]
1

𝑥! + 0.1
− 0.9_ − (1 − 𝑠𝑙𝑝)𝑥!` 

where int is a random number drawn from the same normal distribution used to assign peak 

intensities, slp is a random number between 0 and 1 (uniform). When the 1D 1H frequency-

domain spectrum contains N points, then xi is 0/N, …, (N-1)/N. Half of the solvent residuals 

were inverted in the 1H dimension, such that the DNN learned to deal with solvent signals from 

both the left and the right side of the spectrum. Finally, the residual solvent signal generated in 

frequency domain was Fourier transformed to generate the solvent signal in the time domain, 

which was added to the synthetically generated random spectrum.  

The FID-Net-2 model was trained on a diverse range of NMR parameters (Table S1) 

and so can be used without need for further retraining and the approach can be used with 

standard 1H-13C HSQC or HMQC pulse sequences. 
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Training the FID-Net-2 architecture with synthetic spectra 

The FID-Net-2 model was trained on approximately 30×106 sets of spectra, where one set 

consisted of a target 2D spectrum (target) and two input spectra, without coupling evolution, 

inputno-coup, and with 2.3 ms coupling evolution in the 13C dimension, inputcoup. Briefly, 

chemical shifts were randomly distributed in the 13C dimension, while more condensed in the 

1H dimension to mimic increased overlap. For the input spectra, we also added random 

gaussian noise and a solvent signal akin to a residual water signal. A maximum of 200 cross-

peaks were generated. All training parameters are provided in Table S1. The DNN model, 

Figure S1, was developed and trained using the TENSORFLOW 2.11 library (45) with the KERAS 

(46). As mentioned in the text specialised loss functions were used to train the network with 

the total Loss (Losstotal = Loss1 + Loss2 + Loss3). Loss1 corresponds to the traditional idea of 

minimising the difference between the predicted output spectrum and the target spectrum, 

whereas Loss2 is restraining a Gaussian distribution of the predicted errors, and Loss3 is 

restraining the calculated uncertainties to match the RMSD between the predicted and target 

spectrum, over 200 linear bins. Specifically, the function for Loss1, also referred to as mean-

square-error (MSE) is simply defined as: 

𝐿𝑜𝑠𝑠" =
1
𝑁c

(𝑡𝑎𝑟𝑔𝑒𝑡! − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡!)%
!

																																																																									[1] 

Where the sum is over all points in the spectrum and N is the total number of points in the 2D 

plane (400 × 512). The losses Loss2 and Loss3 were designed specifically for Fid-Net-2. For 

Loss2, a value 𝜒! was first calculated as 

𝜒! =	
𝑡𝑎𝑟𝑔𝑒𝑡! − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡!

𝜎!
	,																																																																							[2] 
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where 𝜎! is the predicted error (output from FID-Net-2). Our goal was to have 𝜒! follow a 

standard gaussian distribution with zero mean and standard deviation of 1. To achieve this, the 

1/2th, 1st, 2nd, 3rd, and 7/2th momenta of 𝜒! were restrained as follows,  

𝐿𝑜𝑠𝑠% =	 c gR
1
𝑁c𝜒!)

!

U −𝑀)i
)	∈	,"%;	";	%;	(;	

.
%/

%

																																																		[3] 

where M1/2 = j− "
%
k
"
# Γ j(

0
k /√𝜋,  M1 = 0, M2 = 1, M3 = 0, M7/2 = 2(/0	(1 − 𝑖)	Γ j2

0
k /√𝜋, and 

Γ() is the gamma function. 

 For the calculation of Loss3, the predicted errors, σi, were binned into 200 bins (linear), 

with the bins equally spaced between 0 and max(σi). Within each of these 200 bins, the average 

of the σi was calculated and restrained to be equal to the RMSD between the predicted points 

and the target points, for points corresponding to this bin. Specifically,  

𝐿𝑜𝑠𝑠( =	 c g
1
𝑁3

c𝜎!
!	∈	3

−n
1
𝑁3

c(𝑡𝑎𝑟𝑔𝑒𝑡! − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡!)%
!	∈	3

i
3	∈	4567

%

																																			[4] 

The model was trained to a total loss of 8.7×10-3 and Loss1 of ca. 5×10-3. Below, the trained 

model is first assessed on synthetic data and subsequently we evaluate the model on a series of 

experimental data. 

The ADAM (47) optimiser was used for training with a learning rate that changed 

throughout the training, β1=0.9, β2=0.98, and ε=10-9.  Mini-batching was used with 4 set of 

spectra in each mini-batch and the weights saved for every 2000 batches. The learning rate, lr, 

was calculated as 

𝑙𝑟(𝑠𝑡𝑒𝑝) = 	
1

2884min
(𝑎", 𝑎%) ,				where			𝑎" =

1
s𝑠𝑡𝑒𝑝

				and			𝑎% = 3.5 × 108.𝑠𝑡𝑒𝑝					 
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The parameter, step, is a counter for batches used in training. Thus, after an initial warm-up 

period, the largest learning rate used is about 2.45×10-6, whereafter the learning rate decays. 

The FID-Net-2 architecture was trained on the NMRBox facility (48) using two Nvidia A100 

GPUs. 

Assessment using synthetic data  

Once trained, the performance of the trained FID-Net-2 model was initially evaluated on 

synthetically generated data, as shown in Figure 2. Two independent assessments were made, 

one to represent a protein of about 20 kDa and one to represent a protein of about 40 kDa. 

Parameters used to generate the synthetic spectra were the same as those used for training, 

Table S1, except that for the 20 kDa protein only between 45 and 55 cross-peaks were 

generated with R2(1H) and R2(13C) both drawn from a normal distribution with mean of 45 s-1 

and standard deviation of 20 s-1. For the 40 kDa protein 110-120 cross-peaks were generated 

with R2(1H) and R2(13C) both drawn from a normal distribution with mean of 95 s-1 and standard 

deviation of 20 s-1. 

 

NMR Samples:  

All three [U -15N13C] protein samples were prepared by over expressing the proteins in E. coli 

BL21(DE3) cells transformed with the appropriate plasmids and grown in M9 medium 

supplemented with 1 g/L of 15NH4Cl and 3 g/L of 13C-glucose as nitrogen and carbon sources 

respectively. L99A-T4L (38), A39G-FF (41) and MBP (49) were all purified as described 

previously.  

The L99A-T4L sample consisted of ~1 mM  [U -15N13C] protein dissolved in  50 mM 

sodium phosphate, 25 mM NaCl, 2 mM EDTA, 2 mM NaN3, ~99% D2O, pH 5.5 buffer. The 

A39G-FF samples consisted of  ~1 mM [U -15N13C] protein dissolved in 50 mM sodium acetate 
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, 100 mM NaCl, 2 mM EDTA, 2% D2O pH 5.7 buffer. The MBP samples consisted of ~0.5 

mM [U -15N13C] protein dissolved in 20mM sodium phosphate, 1mM EDTA, 2mM β-

cyclodextrin, 99% D2O, pH 6.5 buffer.  

 

NMR Experiments:    

Two-dimensional 13C-1H correlation spectra: The 2D HSQC and HMQC datasets of L99A-

T4L (Figure 3) and MBP (Figure 4) used as input for FID-Net-2 were recorded on a 1 mM 

(L99A-T4L) or 0.5 mM (MBP) uniformly [13C,15N]-labelled samples using the pulse sequences 

described in Figure S3a,b, with τcoup = 0.0 ms and 2.3 ms, on a Bruker 700 MHz Avance III 

spectrometer equipped with Z-gradient triple-resonance TCI cryoprobe. The data was acquired 

with 768 and 200 (L99A-T4L) or 128 (MBP) complex points in the 1H and 13C dimensions, 

respectively, with spectral widths of 10000 Hz and 5000 Hz. The datasets were recorded as 

pseudo-3D spectra. An interscan delay of 1 s was used. 

 The constant-time experiments (Figure S4) were recorded on a 1 mM L99A-T4L 

uniformly [13C,15N]-labelled sample using a standard Bruker pulse sequences (hsqcctetgpsp) 

with coherence-selection gradients. The data was acquired with 768 and 128 (30.4 ms constant 

time) or 60 (15.2 constant-time) complex points in the 1H and 13C dimensions, respectively, 

with spectral widths of 10000 Hz and 5000 Hz. An interscan delay of 1 s was used and the data 

was recorded at 278K. 

 HMQC-type Spectra of L99A-T4L used to assess out-of-scope behaivour of FID-Net-

2 and with poor shimming (Figure S5) were recorded on a 1 mM uniformly [13C,15N]-labelled 

samples using the pulse sequences described in Figure S3a, with τcoup = 0.0 ms and 2.3 ms, on 

a Bruker 600 MHz Avance HD spectrometer equipped with Z-gradient triple-resonance TCI 

cryoprobe. The data was acquired with 768 and 200 complex points in the 1H and 13C 
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dimensions, respectively, with spectral widths of 9009 Hz and 5000 Hz. The datasets were 

recorded as pseudo-3D spectra. An interscan delay of 1 s was used. 

 

Three-dimensional NOESY spectra: The 3D 1H-13C-1H NOESY dataset of L99A-T4L (Figure 

5a) used as input for FID-Net-2 were recorded on a uniformly [13C,15N]-labelled sample using 

the pulse sequences described in Figure S3a,d, with τcoup = 0.0 ms and 2.3 ms, on a Bruker 700 

MHz Avance III spectrometer equipped with Z-gradient triple-resonance TCI cryoprobe. The 

data was acquired with 1024, 128, and 96 complex points in 1H, 1HNOESY, and 13CAro 

dimensions, respectively, with spectral widths of 14280 Hz (1H), 5000 Hz (13C), and 8000 Hz 

(1HNOESY). Four scans were collected per increment with a recycle delay of 1 s. The mixing 

time was 100 ms.  

The 3D 1H-13CAro-13CMethyl datasets of L99A-T4L (Figure 5c) and A39G-FF used as 

input for FID-Net-2 were recorded on uniformly [13C,15N]-labelled samples using the pulse 

sequences described in Figure S8, with τcoup = 0.0 ms and 2.3 ms, on a Bruker 700 MHz Avance 

III spectrometer equipped with Z-gradient triple-resonance TCI cryoprobe. The data was 

acquired with 1024, 128, and 80 complex points in 1H, 13CNOESY, and 13CAro dimensions, 

respectively, with spectral widths of 14280 Hz (1H), 5000 Hz (13CAro), and 5000 Hz (1CMethyl). 

Four scans were collected per increment with a recycle delay of 1 s. The mixing time was 120 

ms for the L99A-T4L sample and 200 ms for the A39F-FF sample.  

 

Longitudinal exchange (EXSY; ZZ exchange) spectra: The longitudinal aromatic 13C,1H 

exchange dataset of A39G-FF (Figure 6) was recorded on a 0.5 mM uniformly [13C,15N]-

labelled samples using the pulse sequences described in Figure S3c, with τcoup = 0.0 ms and 2.3 

ms, on a Bruker 600 MHz Avance HD spectrometer equipped with Z-gradient triple-resonance 
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TCI cryoprobe. The sample was dissolved in H2O buffer. An interscan delay of 1 s was used 

and the data was recorded at 274K. The data was acquired with 768 and 128 complex points in 

1H and 13CAro dimensions, respectively, with spectral widths of 9009 Hz (1H), 5000 Hz (13C). 

Sixteen scans were collected per increment with a recycle delay of 1 s. The exchange delays 

were 25 ms, 50 ms, 100 ms, 150 ms, 200 ms, 250 ms and 300 ms. 

 The longitudinal aromatic 15N,1H exchange dataset of A39G-FF (Figure 6) was 

recorded on a 0.5 mM uniformly [13C,15N]-labelled samples using a standard pulse sequence. 

An interscan delay of 1 s was used and the data was recorded at 274K. The data was acquired 

with 1536 and 128 complex points in 1H and 15N dimensions, respectively, with spectral widths 

of 10000 Hz (1H), 2136 Hz (13C). Eight scans were collected per increment with a recycle delay 

of 1 s. The exchange delays were 25 ms (duplicate), 50 ms, 100 ms, 150 ms, 200 ms (duplicate), 

250 ms, 300 ms, 400 ms, 600 ms, and 800 ms. 

Data processing: All experimental NMR spectra were processed with NMRPIPE (50) or using 

the python libraries NMRGLUE (51) and NUMPY. 
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Data availability: 
The experimental data is available from the corresponding author upon request. 

 

Code availability: 
The code for processing 13C-1H HSQC/HMQC spectra with FID-Net-2 is available from the 
corresponding author upon request. 

 

References: 
1.  T. R. Alderson, L. E. Kay, NMR spectroscopy captures the essential role of dynamics in 

regulating biomolecular function. Cell. 184, 577–595 (2021). 

2.  A. G. Palmer, Enzyme Dynamics from NMR Spectroscopy. Acc. Chem. Res. 48, 457–465 
(2015). 

3.  T. Xie, T. Saleh, P. Rossi, C. G. Kalodimos, Conformational states dynamically populated by a 
kinase determine its function. Science. 370, eabc2754 (2020). 

4.  L. Mariño Pérez, F. S. Ielasi, L. M. Bessa, D. Maurin, J. Kragelj, M. Blackledge, N. Salvi, G. 
Bouvignies, A. Palencia, M. R. Jensen, Visualizing protein breathing motions associated with 
aromatic ring flipping. Nature. 602, 695–700 (2022). 

5.  J. B. Stiller, R. Otten, D. Häussinger, P. S. Rieder, D. L. Theobald, D. Kern, Structure 
determination of high-energy states in a dynamic protein ensemble. Nature. 603, 528–535 
(2022). 

6.  K. Madhurima, B. Nandi, S. Munshi, A. N. Naganathan, A. Sekhar, Functional regulation of an 
intrinsically disordered protein via a conformationally excited state. Sci. Adv. 9, eadh4591 
(2023). 

7.  V. K. Shukla, L. Siemons, D. F. Hansen, Intrinsic structural dynamics dictate enzymatic activity 
and inhibition. Proc. Natl. Acad. Sci. 120, e2310910120 (2023). 

8.  H. W. Mackenzie, D. F. Hansen, Arginine Side-Chain Hydrogen Exchange: Quantifying 
Arginine Side-Chain Interactions in Solution. ChemPhysChem. 20, 252–259 (2019). 

9.  A. Ceccon, V. Tugarinov, F. Torricella, G. M. Clore, Quantitative NMR analysis of the kinetics 
of prenucleation oligomerization and aggregation of pathogenic huntingtin exon-1 protein. Proc. 
Natl. Acad. Sci. 119, e2207690119 (2022). 

10.  S. Guseva, V. Schnapka, W. Adamski, D. Maurin, R. W. H. Ruigrok, N. Salvi, M. Blackledge, 
Liquid–Liquid Phase Separation Modifies the Dynamic Properties of Intrinsically Disordered 
Proteins. J. Am. Chem. Soc. 145, 10548–10563 (2023). 

11.  S. Vahidi, Z. A. Ripstein, J. B. Juravsky, E. Rennella, A. L. Goldberg, A. K. Mittermaier, J. L. 
Rubinstein, L. E. Kay, An allosteric switch regulates Mycobacterium tuberculosis ClpP1P2 
protease function as established by cryo-EM and methyl-TROSY NMR. Proc. Natl. Acad. Sci. 
117, 5895–5906 (2020). 

12.  V. K. Shukla, G. T. Heller, D. F. Hansen, Biomolecular NMR spectroscopy in the era of artificial 
intelligence. Structure. 31, 1360–1374 (2023). 

13.  J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, 
R. Bates, A. Žídek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A. J. Ballard, A. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 2, 2024. ; https://doi.org/10.1101/2024.04.01.587635doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.01.587635
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 
 

Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. 
Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver, 
O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, D. Hassabis, Highly accurate protein 
structure prediction with AlphaFold. Nature. 596, 583–589 (2021). 

14.  K. H. Gardner, L. E. Kay, The use of 2H, 13C, 15N multidimensional NMR to study the structure 
and dynamics of proteins. Annu. Rev. Biophys. Biomol. Struct. 27, 357–406 (1998). 

15.  K. Pervushin, R. Riek, G. Wider, K. Wüthrich, Attenuated T2 relaxation by mutual cancellation 
of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures 
of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. USA. 94, 12366–
12371 (1997). 

16.  V. Tugarinov, P. M. Hwang, J. E. Ollerenshaw, L. E. Kay, Cross-Correlated Relaxation 
Enhanced 1H−13C NMR Spectroscopy of Methyl Groups in Very High Molecular Weight 
Proteins and Protein Complexes. J. Am. Chem. Soc. 125, 10420–10428 (2003). 

17.  N. D. Werbeck, J. Kirkpatrick, D. F. Hansen, Probing arginine side-chains and their dynamics 
with carbon-detected NMR spectroscopy: application to the 42 kDa human histone deacetylase 
8 at high pH. Angew. Chem. Int. Ed. Engl. 52, 3145–3147 (2013). 

18.  R. B. Pritchard, D. F. Hansen, Characterising side chains in large proteins by protonless 13C-
detected NMR spectroscopy. Nat. Commun. 10, 1747 (2019). 

19.  A. Esadze, C. Chen, L. Zandarashvili, S. Roy, B. M. Pettitt, J. Iwahara, Changes in 
conformational dynamics of basic side chains upon protein–DNA association. Nucleic Acids 
Res. 44, 6961–6970 (2016). 

20.  K. A. Stafford, F. Ferrage, J.-H. Cho, A. G. Palmer, Side Chain Dynamics of Carboxyl and 
Carbonyl Groups in the Catalytic Function of Escherichia coli Ribonuclease H. J. Am. Chem. 
Soc. 135, 18024–18027 (2013). 

21.  J. Santoro, G. C. King, A constant-time 2D overbodenhausen experiment for inverse correlation 
of isotopically enriched species. J. Magn. Reson. 97, 202–207 (1992). 

22.  G. W. Vuister, A. Bax, Resolution enhancement and spectral editing of uniformly 13C-enriched 
proteins by homonuclear broadband 13C decoupling. J. Magn. Reson. 98, 428–435 (1992). 

23.  K. Teilum, U. Brath, P. Lundström, M. Akke, Biosynthetic 13C Labeling of Aromatic Side 
Chains in Proteins for NMR Relaxation Measurements. J. Am. Chem. Soc. 128, 2506–2507 
(2006). 

24.  M. Akke, U. Weininger, NMR Studies of Aromatic Ring Flips to Probe Conformational 
Fluctuations in Proteins. J. Phys. Chem. B. 127, 591–599 (2023). 

25.  U. Weininger, Optimal Isotope Labeling of Aromatic Amino Acid Side Chains for NMR Studies 
of Protein Dynamics. Methods Enzymol. 614, 67–86 (2019). 

26.  B. M. Young, P. Rossi, P. J. Slavish, Y. Cui, M. Sowaileh, J. Das, C. G. Kalodimos, Z. Rankovic, 
Synthesis of Isotopically Labeled, Spin-Isolated Tyrosine and Phenylalanine for Protein NMR 
Applications. Org. Lett. 23, 6288–6292 (2021). 

27.  Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature. 521, 436–444 (2015). 

28.  M. Baek, F. DiMaio, I. Anishchenko, J. Dauparas, S. Ovchinnikov, G. R. Lee, J. Wang, Q. Cong, 
L. N. Kinch, R. D. Schaeffer, C. Millán, H. Park, C. Adams, C. R. Glassman, A. DeGiovanni, J. 
H. Pereira, A. V. Rodrigues, A. A. van Dijk, A. C. Ebrecht, D. J. Opperman, T. Sagmeister, C. 
Buhlheller, T. Pavkov-Keller, M. K. Rathinaswamy, U. Dalwadi, C. K. Yip, J. E. Burke, K. C. 
Garcia, N. V. Grishin, P. D. Adams, R. J. Read, D. Baker, Accurate prediction of protein 
structures and interactions using a three-track neural network. Science. 373, 871–876 (2021). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 2, 2024. ; https://doi.org/10.1101/2024.04.01.587635doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.01.587635
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 
 

29.  S. G. Worswick, J. A. Spencer, G. Jeschke, I. Kuprov, Deep neural network processing of DEER 
data. Sci. Adv. 4, eaat5218 (2018). 

30.  X. Qu, Y. Huang, H. Lu, T. Qiu, D. Guo, T. Agback, V. Orekhov, Z. Chen, Accelerated Nuclear 
Magnetic Resonance Spectroscopy with Deep Learning. Angew. Chemie. 132, 10383–10386 
(2020). 

31.  G. Karunanithy, D. F. Hansen, FID-Net: A versatile deep neural network architecture for NMR 
spectral reconstruction and virtual decoupling. J. Biomol. NMR. 75, 179–191 (2021). 

32.  G. Karunanithy, H. W. Mackenzie, D. F. Hansen, Virtual Homonuclear Decoupling in Direct 
Detection Nuclear Magnetic Resonance Experiments Using Deep Neural Networks. J. Am. 
Chem. Soc. 143, 16935–16942 (2021). 

33.  D.-W. Li, A. L. Hansen, C. Yuan, L. Bruschweiler-Li, R. Brüschweiler, DEEP picker is a deep 
neural network for accurate deconvolution of complex two-dimensional NMR spectra. Nat. 
Commun. 12, 5229 (2021). 

34.  D. F. Hansen, Using Deep Neural Networks to Reconstruct Non-uniformly Sampled NMR 
Spectra. J. Biomol. NMR. 73, 577–585 (2019). 

35.  G. Karunanithy, V. K. Shukla, D. F. Hansen, Solution State Methyl NMR Spectroscopy of Large 
Non-Deuterated Proteins Enabled by Deep Neural Networks. bioRxiv (2023), 
doi:10.1101/2023.09.15.557823. 

36.  A. E. Eriksson, W. A. Baase, J. A. Wozniak, B. W. Matthews, A cavity-containing mutant of 
T4 lysozyme is stabilized by buried benzene. Nature. 355, 371–373 (1992). 

37.  Y. Pustovalova, F. Delaglio, D. L. Craft, H. Arthanari, A. Bax, M. Billeter, M. J. Bostock, H. 
Dashti, D. F. Hansen, S. G. Hyberts, B. A. Johnson, K. Kazimierczuk, H. Lu, M. Maciejewski, 
T. M. Miljenović, M. Mobli, D. Nietlispach, V. Orekhov, R. Powers, X. Qu, S. A. Robson, D. 
Rovnyak, G. Wagner, J. Ying, M. Zambrello, J. C. Hoch, D. L. Donoho, A. D. Schuyler, 
NUScon: a community-driven platform for quantitative evaluation of nonuniform sampling in 
NMR. Magn. Reson. 2, 843–861 (2021). 

38.  G. Bouvignies, P. Vallurupalli, D. F. Hansen, B. E. Correia, O. Lange, A. Bah, R. M. Vernon, 
F. W. Dahlquist, D. Baker, L. E. Kay, Solution structure of a minor and transiently formed state 
of a T4 lysozyme mutant. Nature. 477, 111–117 (2011). 

39.  L. Liu, W. A. Baase, B. W. Matthews, Halogenated Benzenes Bound within a Non-polar Cavity 
in T4 Lysozyme Provide Examples of I⋯S and I⋯Se Halogen-bonding. J. Mol. Biol. 385, 595–
605 (2009). 

40.  M. Tollinger, N. R. Skrynnikov, F. A. A. Mulder, J. D. Forman-Kay, L. E. Kay, Slow dynamics 
in folded and unfolded states of an SH3 domain. J. Am. Chem. Soc. 123, 11341–11352 (2001). 

41.  V. P. Tiwari, Y. Toyama, D. De, L. E. Kay, P. Vallurupalli, The A39G FF domain folds on a 
volcano-shaped free energy surface via separate pathways. Proc. Natl. Acad. Sci. 118, 
e2115113118 (2021). 

42.  H. M. McConnell, Reaction rates by nuclear magnetic resonance. J. Chem. Phys. 28, 430–431 
(1958). 

43.  A. Boeszoermenyi, S. Chhabra, A. Dubey, D. L. Radeva, N. T. Burdzhiev, C. D. Chanev, O. I. 
Petrov, V. M. Gelev, M. Zhang, C. Anklin, H. Kovacs, G. Wagner, I. Kuprov, K. Takeuchi, H. 
Arthanari, Aromatic 19F-13C TROSY: a background-free approach to probe biomolecular 
structure, function, and dynamics. Nat. Methods. 16, 333–340 (2019). 

44.  L.-P. Picard, R. S. Prosser, Advances in the study of GPCRs by 19F NMR. Curr. Opin. Struct. 
Biol. 69, 169–176 (2021). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 2, 2024. ; https://doi.org/10.1101/2024.04.01.587635doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.01.587635
http://creativecommons.org/licenses/by-nc-nd/4.0/


34 
 

45.  M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. 
Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, R. Jozefowicz, Y. 
Jia, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, M. Schuster, R. Monga, S. Moore, D. Murray, 
C. Olah, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, 
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: 
Large-scale machine learning on heterogeneous systems (2015), (available at 
www.tensorflow.org). 

46.  F. and others Chollet, Keras (2015), (available at https://keras.io). 

47.  D. P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization (2014), doi:1412.6980. 

48.  M. W. Maciejewski, A. D. Schuyler, M. R. Gryk, I. I. Moraru, P. R. Romero, E. L. Ulrich, H. 
R. Eghbalnia, M. Livny, F. Delaglio, J. C. Hoch, NMRbox: A Resource for Biomolecular NMR 
Computation. Biophys. J. 112, 1529–1534 (2017). 

49.  K. H. Gardner, X. Zhang, K. Gehring, L. E. Kay, Solution NMR Studies of a 42 KDa Escherichia 
C oli Maltose Binding Protein/β-Cyclodextrin Complex: Chemical Shift Assignments and 
Analysis. J. Am. Chem. Soc. 120, 11738–11748 (1998). 

50.  F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer, A. Bax, Nmrpipe - a 
Multidimensional Spectral Processing System Based on Unix Pipes. J. Biomol. Nmr. 6, 277–
293 (1995). 

51.  J. J. Helmus, C. P. Jaroniec, Nmrglue: an open source Python package for the analysis of 
multidimensional NMR data. J. Biomol. NMR. 55, 355–367 (2013). 

 

 

Acknowledgements: 

Dr Luke Nightingale is acknowledged for helpful discussions. The BBSRC (BB/R000255/1), 

Wellcome Trust (ref. 101569/z/13/z), and the EPSRC are acknowledged for supporting the 

NMR facility at University College London. Access to ultra-high field NMR spectrometers 

was supported by the Francis Crick Institute through provision of access to the MRC 

Biomedical NMR Centre. The Francis Crick Institute receives its core funding from Cancer 

Research UK (FC001029), the UK Medical Research Council (FC001029), and the Wellcome 

Trust (FC001029). This study made use of NMRbox: National Center for Biomolecular NMR 

Data Processing and Analysis (48), a Biomedical Technology Research Resource (BTRR), 

which is supported by NIH grant P41GM111135 (NIGMS). Some computational aspects of 

this work were supported by the Francis Crick Institute (DFH) through provision of access to 

the Scientific Computing STP and the Crick data Analysis and Management Platform (CAMP). 

The Francis Crick Institute (CAMP) receives its core funding from Cancer Research UK 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 2, 2024. ; https://doi.org/10.1101/2024.04.01.587635doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.01.587635
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 
 

(FC010233), the UK Medical Research Council (FC010233), and the Wellcome Trust 

(FC010233). PV acknowledges intramural funding from TIFR Hyderabad (DAE, Government 

of India, Project No. RTI 4007). For the purpose of open access, the author has applied a 

Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version 

arising. This research is supported by the UKRI and EPSRC (EP/X036782/1). 

 

Author information: 

V.K.S., G.K., P.V. and D.F.H designed the research; D.F.H. designed and trained all the DNNs; 

V.K.S. produced all isotope labelled samples; V.K.S., P.V. and D.F.H. performed and analysed 

NMR experiments; V.K.S assigned the chemical shifts. All of the authors analysed the data, 

discussed the results and wrote the paper. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 2, 2024. ; https://doi.org/10.1101/2024.04.01.587635doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.01.587635
http://creativecommons.org/licenses/by-nc-nd/4.0/

