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Redefining the Game: MVAE-DFDPnet’s
Low-Dimensional Embeddings for Superior

Drug-Protein Interaction Predictions
Liang-Yong Xia, Yu Wu, Longfei Zhao, Leying Chen, Shiyi Zhang, Mengdi Wang and Jie Luo

Abstract— Precisely predicting drug-protein interactions
(DPIs) is pivotal for drug discovery and advancing precision
medicine. A significant challenge in this domain is the high-
dimensional and heterogeneous data characterizing drug
and protein attributes, along with their intricate interac-
tions. In our study, we introduce a novel deep learning ar-
chitecture: the Multi-view Variational Auto-Encoder embed-
ded within a cascade Deep Forest (MVAE-DFDPnet). This
framework adeptly learns ultra-low-dimensional embedding
for drugs and proteins. Notably, our t-SNE analysis reveals
that two-dimensional embedding can clearly define clusters
corresponding to diverse drug classes and protein families.
These ultra-low-dimensional embedding likely contribute to
the enhanced robustness and generalizability of our MVAE-
DFDPnet. Impressively, our model surpasses current lead-
ing methods on benchmark datasets, functioning in signifi-
cantly reduced dimensional spaces. The model’s resilience
is further evidenced by its sustained accuracy in predict-
ing interactions involving novel drugs, proteins, and drug
classes. Additionally, we have corroborated several newly
identified DPIs with experimental evidence from the scien-
tific literature. The code used to generate and analyze these
results can be accessed from https://github.com/Macau-
LYXia/MVAE-DFDPnet-V2.

Index Terms— DPI; heterogeneous networks; multi-view;
deep learning; ensemble learning; cascade deep forest

I. INTRODUCTION

Over the past few decades, a myriad of computational
methodologies for the identification of DPIs have been de-
vised, substantially narrowing the search scope for potential
drug and protein candidates. This advancement has markedly
diminished the costs and boosted the efficiency of drug discov-
ery and development processes. Typically, these methodologies
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fall into three distinct classes: ligand-based [1], molecular
docking [2], and machine learning-based methods [3]–[7].
While the ligand-based approach relies on a sufficient number
of known ligands for a given protein; the Molecular docking
approach is limited to available 3D protein structures [8].
Conversely, machine learning-based methods have emerged as
a highly promising avenue for predicting DPIs [9]–[12].

Over the years, the input features for machine learning-
based approaches have evolved from pharmacogenetics, which
comprises information on drugs (i.e., chemical structures) and
proteins (i.e., encoding sequences) represented as feature vec-
tors [13], [14], to similarity network-based input features [15],
and more recently, the trend has shifted toward incorporating
heterogeneous networks that integrate various biological and
pharmacological data [5], [16], [17]. Such heterogeneous data
sources provide a rich and inherently related information,
offering a multi-view perspective for the prediction of novel
DPIs. On one hand, incorporating these diverse data sources
can enrich the feature set and potentially boost prediction accu-
racy. On the other hand, it also increases input dimensionality,
posing challenges for subsequent analyses.

The application of deep learning techniques further en-
hances the power of drug-protein pair prediction models.
DeepWalk [18] built a tripartite, heterogeneous network from
biomedical linked datasets and utilized the network’s node
similarity for prediction. NeoDTI [17] used the neighborhood
information of the network and learned topology preserving
representations of drugs and proteins. deepDTnet [19] adopted
a deep auto-encoder to learn high-quality features from hetero-
geneous networks and then applied positive-unlabeled matrix
completion to predict new DPIs. AOPEDF [20] employed
arbitrary-order proximity to derive a low-dimensional repre-
sentation of drugs and proteins, and subsequently developed a
cascade deep forest classifier to predict new interactions.

While these methods have each made notable strides in
the field, there remains substantial room for improvement.
A particularly challenging task lies in the construction of
compact, low-dimensional embedding of drugs and proteins
that are consistent across different types of drug/protein-
related networks. The use of deep learning as a classifier
is also challenging due to the need to fine-tune numerous
hyperparameters. As such, the construction of low-dimensional
drug and protein embedding, and the design of an effective
deep learning-based pipeline are urgently required for efficient
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and accurate DPIs prediction.
To address these issues, we develop MVAE-DFDPnet, a

network-based framework for DPIs prediction that fuses a
multi-view variational auto-encoder (MVAE) with a cascade
deep forest (CDF). The strengths of MVAE-DFDPnet are
twofold: Firstly, it effectively consolidates individual networks
into a unified low-dimensional embedding representation; sec-
ondly, it employs a deep cascade forest classifier, as described
by Zhou et al. [21], which delivers high-performance classifi-
cation with significantly fewer hyperparameters than tradition-
al deep neural networks. This deep forest allows for automatic
complexity adjustment. The synergy between advanced data
compression and a flexible classification approach culminates
in a robust, sophisticated, and appreciably enhanced model for
drug discovery.

We evaluate MVAE-DFDPnet on benchmark datasets and
compare its performance against several state-of-the-art meth-
ods. Our analysis reveals that MVAE-DFDPnet outperforms
its counterparts in predictive accuracy, achieving this with
a reduced number of drug and protein embedding. We also
evaluate the robustness of MVAE-DFDPnet using previously
unseen drug-protein pairs, demonstrating its high performance
under stringent conditions. Finally, we provide visualizations
of the learned drug and protein embedding and validate novel
interactions predicted by our model.

II. MATERIALS AND METHODS

A. Dataset
We integrated heterogeneous bio-networks as multi-view

data inputs, encompassing four distinct entity types (Drugs,
Proteins, Diseases, and Sideeffect) and 15 different types of
associations; further details are provided in Table I. Our task
was to infer unknown DPIs within a network comprising
732 Food and Drug Administration (FDA)-approved drugs
and 1,915 unique proteins. Within this network, 4,978 known
DPIs are labeled as positive samples, with a corresponding
number of randomly-selected non-interacting (or ’unknown’)
pairs labeled as negative samples. For more details on dataset
collection, readers are referred to the recent works by Luo et
al. [5] and Zeng et al. [19].

TABLE I: Summary of heterogeneous biological networks as
multi-view data.

Category View Association Drug Potein Disease Sideeffect No.of.Egde Database

Drug

1 Drug-Drug 732 - - - 132768 [22]
2 Drug-Disease 732 - 440 - 1208 [22], [23]
3 Drug Sideeffect 732 - - 12904 263805 [24]
4 Drug chemical similarity 732 - - - 118578 [25]
5 Drug therapeutic similarity 732 - - - 240825 [26]
6 Drug sequence similarity 732 - - - 215902 [22]
7 Biological Processes similarity 732 - - - 243812 [27]
8 Cellular Component similarity 732 - - - 271192 [27]
9 Molecular Function similarity 732 - - - 244226 [27]

Protein

1 Protein-Protein - 1915 - - 112468 [28]
2 Protein-Disease - 1915 440 - 23080 [29]
3 Protein sequence similarity - 1915 - - 1705532 [30]
4 Biological Processes similarity - 1915 - - 1611052 [27]
5 Cellular Component similarity - 1915 - - 1665635 [27]
6 Molecular Function similarity - 1915 - - 1653812 [27]

B. Methods
In this paper, we propose a novel network-based method

termed MVAE-DFDPnet, which achieves substantial feature
compression along with a flexible prediction mechanism.

MVAE-DFDPnet takes multi-view data as input. The biolog-
ical interaction network of each view is preprocessed into a
probabilistic co-occurrence (PCO) matrix [19], then calculate
a shifted positive pointwise mutual information (PPMI) matrix
by following Bullinaria and Levy [31]. The next phase involves
inputting a drug/protein’s high-dimensional feature vector into
the MVAE to produce a reduced-dimensionality embedding.
Lastly, a CDF is then employed to predict DPIs using the
concatenated embedding of drug-protein pairs. The output
is a binary indicator that denotes the presence or absence
of an interaction between a specific drug-protein pair. We
sequentially present the stages of our methodology in Fig. 1,
progressing from left to right.

1) Data preprocessing: Our model utilizes heterogeneous
biological networks as inputs, which are subjected to a s-
tandardized preprocessing routine independently to ensure
consistency.

The random surfing model, which we employ to construct
the PCO matrix, is an adaptation of the PageRank algorithm,
originally developed by Google’s founders to rank webpages in
search engine results [32], [33]. We have adapted this model to
elucidate the interconnections among various biological enti-
ties. In a biological context, the ’links’ might signify the inter-
actions or associations between these entities. To construct the
PCO matrix, we start by assuming a random surfer navigating
the biological network. The ’surfer’ randomly moves from
one entity to another, following the edges or ’links’. The
probability that the surfer ends up on a particular node or
entity is calculated. This process is repeated for all entities
in the network, resulting in the PCO matrix. Subsequently,
we convert the PCO matrix into a PPMI matrix, a technique
widely employed in natural language processing and other
domains to delineate semantic correlations among elements
such as words, or in our context, biological entities like genes,
proteins, or diseases, within a network. The PPMI matrix,
informed by the PCO matrix, emerges as a potent instrument
for elucidating complex, non-linear interdependencies and
sparse associations among biological entities. Lastly, we apply
matrix decomposition to the PPMI matrix, deriving novel,
lower-dimensional representations of the network. This step
may reveal concealed structures or patterns, thus offering fresh
perspectives on the biological system under investigation. The
details of data preprocessing steps are described as below:

(i) PCO matrix: Let G = (V,E) denote the network which
contains vertices V and edges E. Suppose the vertex set V
is sorted and has n1 biological entities from category 1 and
n2 biological entities from category 2. It means the size of V
is |V | = n1 + n2, and the first n1 (last n2) vertices belong
categories 1(2). The edge set E contains undirected binary
interaction information, i.e. E = {(vi, vj)|vi, vj ∈ V , ∃ a
known interaction between vi and vj}. The info of E can be
also represented as an adjacency matrix A ∈ {0, 1}|V |×|V |,
where the entry Ai,j = 1 if (vi, vj) ∈ E and Ai,j = 0 other-
wise. We define the operation g(·) that transforms a network’s
adjacency matrix into a PCO matrix g(A) ∈ R|V |×|V |:

g(A) =
T∑

t=1

Pt,

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2024. ; https://doi.org/10.1101/2024.04.01.587541doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.01.587541
http://creativecommons.org/licenses/by/4.0/


XIA et al.: REDEFINING THE GAME: MVAE-DFDPNETS LOW-DIMENSIONAL EMBEDDINGS FOR SUPERIOR DRUG-PROTEIN INTERACTION PREDICTIONS 3

Fig. 1: The schematic flowchart of the MVAE-DFDPnet pipeline. This flowchart elucidates the three key stages: I.
Data preprocessing involves the integration of diverse sources of drug and protein-related information to construct unique,
heterogeneous interaction networks for each view; the creation of a PCO matrix using a random surfing model, capturing
the intricate network topological information of the drugs and proteins; Subsequent conversion of PCO into PPMI matrix.
II.MVAE embeds each column of drug or protein features into a low-dimensional vector that retains the ability to reconstruct
the original topological properties present within every interaction network. III. CDF infers a DPI as a binary value based on
the concatenated learned embedding of the drug-protein pair.

where

Pt = αPt−1A + (1− α)P0 and P0 = I|V |.

The i-th row of P0 is one-hot vector meaning that we start
a random walk from the vertex vi. In each iteration process,
the random surfing process will continue with probability of
α, and there is a 1-α probability to return to the original
vertex and restart this process. So the i-th row of Pt is the
probabilistic distribution of appearance at some vertex after t
transitions starting from vi. Therefore, g(A) collects the co-
occurrence information between vertices during the number of
steps T in the random walk.

(ii) PPMI matrix: We are using the exact same formula
in [19]; here we write this formula in our notations. Given
a network represented by an adjacency matrix A for the
graph G, where Ai,j indicates the strength of the relationship
between nodes vi and vj , a PCO matrix g(A) is first computed,
which often normalizes or thresholds the adjacency matrix to
emphasize significant connections.

We define another entry-wise operation h(·) that transforms
a PCO matrix g(A) into a PPMI matrix h(g(A)) ∈ R|V |×|V |.
For each pair of nodes (vi, vj) in the network, the PPMI value
h(g(A))i,j is calculated as the maximum of the pointwise
mutual information and zero, which can be mathematically
expressed as:
h(g(A))i,j

= max

(
log

(
g(A)i,j ·

∑|V |
k=1

∑|V |
l=1 g(A)k,l∑|V |

v=1

(∑|V |
k=1 g(A)k,v

)
·
(∑|V |

l=1 g(A)v,l

)) , 0)
Here, the numerator represents the joint probability of

observing both vi and vj together (normalized by their in-
dividual probabilities in the network), while the denominator

corresponds to the product of their marginal probabilities. By
applying the log-likelihood ratio and taking the maximum
with zero, PPMI effectively removes negative associations and
emphasizes stronger, more statistically significant relationships
between the nodes.

(iii) Data integration: Now we have a PPMI matrix
h(g(A)) retaining the network topology. The i-th row of
matrix h(g(A)) contains the information of how the entity
vi interacts with all other entities in this network. Since we
focus on only one category or part of biological entities to
embed, we select the rows associated with the entities we are
interested in. Let X denote the sub-matrix, which consists of
selected rows of the PPMI matrix h(g(A)).

We integrate the network information for drug/protein
across multiple views by stacking matrices. Suppose we focus
on Kd-view data for nd drugs, there are Kd networks {Gd

k =
(V d

k , E
d
k)}k∈[Kd] generating PPMI submatrices with selected

rows of nd drug only {Xd
k}k∈[Kd]. Here Xd

k ∈ Rnd×|V d
k |, and

the superscription d means drug. So the integrated multi-view
drug-related data are represented as Xd ∈ Rnd×

∑Kd

k=1 |V
d
k |:

Xd = [Xd
1,X

d
2, ...,X

d
Kd ], (1)

We consider the ith column of Xd> as the feature vector of
drug i to be embedded by multi-view VAE, like the column
framed by a red line in the Fig. 1.

Similarly, we have the superscription p for protein. We
preprocess and then integrate Kp-view data of np proteins
into Xp ∈ Rnp×

∑Kp

k=1 |V
p
k |:

Xp = [Xp
1,X

p
2, ...,X

p
Kp ], (2)
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We have the jth column of Xp> as the feature vector of
protein j to be fed into the next module.

2) MVAE for Embedding: Without loss of generality, we
give as an example MVAE for drug embeddings, exactly
the same model for protein embeddings. MVAE takes one
preprocessed high-dimensional drug feature as input, e.g. drug
i’s feature [Xd]i ∈ R

∑Kd

k=1 |V
d
k | which consists of Kd vectors

corresponding to each drug-related view. Firstly, the input
feature [Xd]i will be embedded into a low-dimensional latent
feature Zd

i ∈ Rrd by a fully-connected neural network.
Then the latent feature Zd

i will be reconstructed back to
Kd vectors of each view respectively by one fully-connected
neural network, {[Xd

k]i}k∈[Kd]. An ideal embedding should
be able to recover raw input vectors of every view. So we
formulate the loss function as:

L =
nd∑
i=1

Kd∑
k=1

f([Xd
k ]i, [X̂

d
k ]i) +KL(q(Zd

i |[Xd
k ]i)||p(Zd

i ))

(3)
where we choose binary cross-entropy as the reconstruction

loss f , and we use the Kullback-Leibler divergence term to
regularize the difference between the learnt latent distribution
and the prior distribution.

Finally, we learn a collection of drug embedding {Zd
i }i∈nd ,

one for each drug. Similarly we have {Zp
j ∈ Rrp}j∈np as

protein embedding.
3) CDF for Prediction: The CDF uses ensemble and

multiple-layer strategies to harness the strengths of various
forest classifiers, which contribute to a powerful and robust
predictive model. The diversity of the classifiers and the multi-
grained scanning strategy allow the model to capture complex
patterns in the data, making it suitable for a wide range
of prediction tasks, including those with high-dimensional
features and complex interactions.

Therefore, we use a CDF to predict DPIs. Specifically, we
feed a concatenated pair embedding of drug i and protein j,
i.e. [Zd

i , Z
p
j ] ∈ Rnd+np

, into L ensemble layers then output
the final binary results or the score between zero and one.

We include different types of binary forest classifiers to
encourage diversity beyond ensembling; each ensemble layer
consists of two XGBoost [34], two Random Forests [35] and
two Extra Trees [36].

Each binary forest classifier outputs two non-negative values
summing up as 1. Additionally, the cascade deep forest boosts
the prediction performance by emphasizing the initial input,
i.e. the drug-protein pair embedding. It means every layer after
the first one takes all outputs of classifiers in the previous
layer, along with the drug-protein pair embedding, as input.
The cascade deep forest also boosts by deepening. The number
of layers N is determined adaptively; during training, we stop
adding layers when there is no noticeable decrease in the
loss value. Finally, we average the outputs of the last layer
to get two non-negative values summing up as 1. These two
values mean the score of ’interacting’ and ’not interacting’
respectively.

Therefore, we take the ’interacting or not’ result associated
with the maximum score as the final binary prediction between

drug i and protein j.
4) Time complexity of proposed MVAE-DFDPnet: With

reduced embedding dimensions, we may achieve smaller num-
ber of neurons in each layer in the time complexity of MVAE
structure; while getting smaller maximum number of splits
considered per feature, and smaller average depth of the tree in
the CDF structure, thus improve overall model time efficiency.
Detailed analysis in Supplementary materials Section A.

III. RESULTS

A. Low-dimensional embedding reveals latent
drug/protein families

The reconstruction loss in each view (as shown in Table II)
suggests that MVAE preserves information effectively. Visu-
alization of the low-dimensional embedding with t-distributed
stochastic neighbor embedding algorithm (t-SNE) [37], [38]
reveals that MVAE captures drugs/proteins information and
successfully separate them into distinct clusters. This is ex-
emplified by the 14 types of drugs by Anatomical Thera-
peutic Chemical (ATC)-based classification in Fig. 2a, and
four classical protein families (i.e. G-protein-coupled receptors
(GPCRs), kinases, nuclear receptors (NRs), ion channels (ICs),
and others.) [39] in Fig. 2b. Taken together, t-SNE analysis
demonstrates that the MVAE learned embedding not only
greatly reduce dimensionality, but may also capture underlying
biological associations within drugs and proteins.

TABLE II: MVAE reconstruction loss (binary Cross-entropy)
across different data views.

Drug View 1 2 3 4 5 6 7 8 9

Value 0.0811 0.0691 0.0853 0.0317 0.0790 0.0968 0.0978 0.0903 0.1242

Protein View 1 2 3 4 5 6

Value 0.0616 0.0417 0.0192 0.0561 0.0606 0.0586

B. MVAE-DFDPnet outperforms baseline methods
We compare MVAE-DFDPnet with the following baseline

methods:
1. KBMF2K uses kernelized Bayesian matrix factorization

with twin kernels for prediction [40].
2. DTINet learns low-dimensional vector representations

from heterogeneous data and then applies inductive ma-
trix completion for prediction [5].

3. NeoDTI utilizes the neighborhood information of the
network for prediction [17].

4. deepDTnet obtains low-dimensional vector representa-
tions auto-encoder algorithm by and utilizes positive-
unlabeled matrix completion algorithm for prediction [19]

5. AOPEDF uses an arbitrary-order proximity and a cascade
deep forest classifier to infer new interactions [20] .

We test different hyper parameters (Supplementary Table
S1 and S2) of MVAE and evaluate the MVAE-DFDPnet
model performance using the area under ROC curve (AUROC)
and the area under the precision-recall curve (AUPR). Since
negative samples are many more compared to positive samples
in our data, we randomly sampled the negative samples to
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(a) Drug

(b) Protein

Fig. 2: Visualization of the learned drug and protein embed-
ding via t-SNE [37], [38]. The visualizations were created
based on embeddings learned through MVAE-DFDPnet. (a)
Drugs color-coded according to the first level of the ATC-
based classification (http://www.whocc.no/atc/). (b) Proteins
color-coded by their corresponding drug target families.

reach ratio of 1:1 in each test. All methods are performed
10 times of random 5-fold cross-validation and computed
the average performance. Fig. 3 shows the average AUROC
and AUPR for each method. The data indicate that MVAE-
DFDPnet surpasses leading-edge methods such as KBMF2K,
DTINet, NeoDTI, deepDTnet, and AOPEDF. Notably, MVAE-
DFDPnet achieves impressive results with drug-protein em-
beddings of merely four dimensions (AUROC = 0.973 and
AUPR = 0.974, as shown in Table III using a pairwise train-
test split), outstripping most prior methods. As the dimension-
ality of the embeddings increases to 200 and 2,000, MVAE-
DFDPnets performance further enhances, yielding an accuracy
on par with the top-performing method, AOPEDF (AUROC
= 0.975 and AUPR = 0.974), while utilizing a significantly
reduced dimensional space for embeddings (200 compared
to AOPEDFs 1,650). The result of compared AOPEDF with
different dimensions is in Supplementary Table S3.

C. Robustness and generalizability of
MVAE-DFDPnet

Random splitting of drug-protein pairs for testing may
result in the inclusion of drugs or proteins in the test set
that have been seen during training, potentially leading to
an overestimation of the model’s performance, and overly
optimistic conclusions. To address this issue, we adjust sample

Fig. 3: Performance comparison of MVAE-DFDPnet against
State-of-the-art methods at various embedding dimensions.

TABLE III: Evaluation performance of MVAE-DFDPnet com-
pared with state-of-art methods. The associated variance is in
parentheses.

Method Embedding Dimension AUROC AUPR

KBMF2K 200 0.937 0.946
DTINet 500 0.932 0.943
NeoDTI 2048 0.971 0.97

deepDTnet 2000 0.963 0.974
AOPEDF 1650 0.975 0.974

MVAE-DFDPnet
4 0.975(0.008) 0.976(0.008)

20 0.982(0.006) 0.984(0.008)
200 0.985(0.006) 0.986(0.008)

2000 0.986(0.006) 0.986(0.006)

splitting to test the MVAE-DFDPnet method on entirely novel
drugs, novel proteins, or both novel scenarios (Fig. 4a). The
AUROC and AUPR remain at 0.9 even when both the protein
and the drug in the test set are entirely new (Fig. 4b). This
demonstrates the robustness of MVAE-DFDPnet in predicting
DPIs for new drugs or proteins, even without prior knowledge
of the drug or protein.

Further, drugs belonging to the same class might be struc-
turally and functionally similar, therefore excluding an entire
drug class in training data would pose an even more chal-
lenging task for DPI prediction. We test MVAE-DFDPnet in
predicting DPIs of each ATC drug class while excluding the
given class of drugs from training data (Fig. 4c), resulting in
most ATC class AUROC and AUPR scores of >0.9 indicating
good generalizability across most drug class. Note that the ab-
sence of antineoplastic drugs in training data has a significant
impact on DPI prediction. The number of drugs in each ATC
drug class (Fig. 4d) is not associated with their impact on the
DPI prediction.

D. MVAE-DFDPnet reveals novel DPIs
We validate novel DPIs with DGIdb database [41]; DGIdb

supports 1,705 known + 1,379 novel DPIs. Among top 60
DGIdb-validated predictions in Supplementary Table S4, we
find that many of them can also be supported by the previously
known experimental or clinical evidence in the literature [42]–
[51].

We visualize the top 100 novel DPIs between 30 drugs
and 40 proteins. As shown in Fig. 5, kinases and their drug
interactions tend to form a cluster that is separated from those
of GPCR and others. In the kinase network, the interactions
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Fig. 4: The performance evaluation results of MVAE-DFDPnet on several challenging scenarios. (a) The schematic diagram
of splitting drug-protein pairs into training and testing sets. (b) The performance of MVAE-DFDPnet to accurately predict the
drug-protein interaction of completely novel drugs, proteins, or both novel. (c) The performance of the MVAE-DFDPnet in
predicting novel drugs of ATC-based classifications. (d) The proportion of drugs in each ATC classification in this study.

Fig. 5: Top 100 novel DPIs predicted by MVAE-DFDPnet. This figure showcases the top 100 novel DPIs as predicted by
our MVAE-DFDPnet model. The drugs are grouped by the first ATC-level code, in this case, Antineoplastic and Nervous
system. Many novel DPI predictions are corroborated by experimental data, database entries, or clinical findings reported in
the literature. DPIs with direct evidence available are marked by red lines, those with putative evidence available are marked
by blue lines; while DPIs lacking such evidence are represented by grey lines.

are between multiple tyrosine kinase inhibitors and kinas-
es, while the majority of the interactions are supported by
previously reported experimental evidence in the literature.
For example, Sunitinib is a multi-target tyrosine kinase in-
hibitor, indicated for the treatment of renal cell carcinoma and
imatinib-resistant gastrointestinal stromal tumor. LIMK1 is an

important member of LIMK/cofilin signaling and participates
in actin reorganization, cell migration, and tube formation.
One research found that the indolin-2-one derivatives potently
inhibit the LIMK1/cofilin signaling pathways, while sunitinib
is a representative drug that emerged from indolin-2-one
[52]. The prediction between Sunitinib and LIMK1 merit
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further studies, which may point to therapy that target cancer
invasive behavior. Similarly, EGFR-mutant non-small cell lung
cancer is known to respond to EGFR inhibitors such as
Gefitinib. A study identified several genetic determinants of
EGFR TKI sensitivity through genome-wide CRISPR-Cas9
screening. Researchers found that sgRNA targeting PKN2
strongly sensitized HCC827 cancer cells to gefitinib treatment.
Another synergic gene RIC8A was found attenuating YAP
signaling, which might be modulated via both LATS1/2 [53].
This demonstrates the potential insights that can be gained
from our novel DPI predictions.

E. Case study: antiepileptic drugs

We attempt to focus on the drugs in our dataset that fall
under the ATC classification system N03A (Nervous sys-
tem/antiepileptics). Antiepileptic drugs (AEDs) are typically
prescribed for chronic, long-term use in patients with epilepsy,
often extending over several years [54]. The prediction scores
for these drugs are generally lower than those of the top 100
interactions previously discussed. Our MVAE-DFDPnet model
was able to computationally identify 440 potential interactions
linking 117 proteins with 12 AEDs. We further illustrated the
top 100 interactions encompassing 10 AEDs and 36 proteins
in Fig. 6. The potential for these predicted interactions to be
supported by existing research seems to correlate positively
with their prediction scores. It is noteworthy that ion channel
modulators such as phenytoin, clonazepam, and vigabatrin
exhibited unique interaction profiles, indicating diverse mech-
anisms of action. Furthermore, our model predicted a wide
range of interactions between most of the AEDs and an array
of GPCRs. This prediction could shed light on the ongoing
discussion around the therapeutic potential of GPCRs for
treating acquired epilepsy [55]. Thus, these findings could
guide the development of new AEDs or therapeutic strategies
and be utilized to repurpose existing drugs for acquired epilep-
sy treatment, potentially accelerating the drug development
process.

IV. CONCLUSION AND FUTURE WORK

In this study, we present a novel deep learning archi-
tecture, MVAE-DFDPnet, tailored for DPIs prediction. This
framework integrates a multi-view variational autoencoder
with a cascading deep forest classifier, offering a refined
and potent method for inferring novel DPIs.Our experimental
results demonstrate the superiority of MVAE-DFDPnet in DPI
prediction, outperforming existing state-of-the-art techniques
while utilizing a significantly reduced dimensionality of drug-
protein embeddings, with good generability and robustness.
Future endeavors may include the integration of addition-
al biological data sources to augment the model’s input
dataset.Further optimization and enhancement of the MVAE-
DFDPnet components could yield even more accurate and
efficient DPI predictions. Lastly, empirical validation of the
DPI predictions in laboratory settings would reinforce the
practical and scientific merits of our approach.

Fig. 6: Antiepileptic drug (AED)-related DPI network featur-
ing the top 100 novel DPIs predicted by MVAE-DFDPnet.
Drugs classified under the N03A antiepileptics category are
represented by yellow hexagons. Proteins are depicted as
squares, each color-coded according to their respective protein
families. DPIs are differentiated by colored lines, each of
which represents the type or availability of supporting evi-
dence.
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