

1 ***Somatic epimutations enable single-cell lineage tracing in native hematopoiesis across the***
2 ***murine and human lifespan***

3 Michael Scherer^{1,†,‡}, Indranil Singh^{2,†}, Martina Braun¹, Chelsea Szu-Tu¹, Michael Kardorff³, Julia
4 Rühle^{1,4}, Robert Frömel^{1,4}, Sergi Beneyto-Calabuig^{1,4}, Simon Raffel³, Alejo Rodriguez-
5 Fraticelli^{2,5,*}, and Lars Velten^{1,4*}

6

7 1 Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG),
8 Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain

9 2 Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science
10 and Technology (BIST), Barcelona, Spain

11 3 Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital
12 Heidelberg, 69120 Heidelberg, Germany

13 4 Universitat Pompeu Fabra (UPF), Barcelona, Spain

14 5 Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain

15 † These authors contributed equally

16 ‡ Present address: Division of Cancer Epigenomics, German Cancer Research Center (DKFZ),
17 Heidelberg, Germany

18 * Shared corresponding authors: alejo.rodriguez-fraticelli@irbbarcelona.org and
19 lars.velten@crg.eu

20

21 **Summary**

22 Current approaches to lineage tracing of stem cell clones require genetic engineering or rely
23 on sparse somatic DNA variants, which are difficult to capture at single-cell resolution. Here,
24 we show that targeted single-cell measurements of DNA methylation at single-CpG resolution
25 deliver joint information about cellular differentiation state and clonal identities. We develop
26 EPI-clone, a droplet-based method for transgene-free lineage tracing, and apply it to study
27 hematopoiesis, capturing hundreds of clonal trajectories across almost 100,000 single-cells.
28 Using ground-truth genetic barcodes, we demonstrate that EPI-clone accurately identifies
29 clonal lineages throughout hematopoietic differentiation. Applied to unperturbed
30 hematopoiesis, we describe an overall decline of clonal complexity during murine ageing and
31 the expansion of rare low-output stem cell clones. In aged human donors, we identified
32 expanded hematopoietic clones with and without genetic lesions, and various degrees of
33 clonal complexity. Taken together, EPI-clone enables accurate and transgene-free single-cell
34 lineage tracing at scale.

35

36 **Introduction**

37 Lineage tracing by genetic or physical labels has been an important tool in developmental and
38 stem cell biology for more than a century¹. Genetic barcoding compatible with single-cell
39 readouts, in particular single-cell RNA-seq, represents the most advanced lineage tracing tool
40 available, as it provides information on the cellular output of hundreds or thousands of stem
41 cell clones together with cell state information on the stem cell itself^{2–9}. These technologies
42 have recently generated new insights into clonal function in healthy, pre-cancerous and
43 cancerous tissues^{10–12}. However, such methods require complex genetic engineering and are
44 therefore restricted in applications, including profiling stem cell fates in native development
45 and in human tissues.

46
47 Recent efforts have focused on developing methods for lineage tracing that rely on
48 endogenous clonal markers (e.g., mutations), do not require genetic engineering, and still
49 allow tracing of many stem cell clones in parallel. Whole genome sequencing provides such a
50 dense lineage picture thanks to the mapping of somatic DNA mutations^{13,14}, but it suffers from
51 very limited throughput and lacks information about the cell state. On the other hand,
52 spontaneous mitochondrial DNA (mtDNA) mutations can be captured by single-cell RNA-seq
53 or ATAC-seq¹⁵⁻¹⁸. However, a recent preprint analyzed both mtDNA and nuclear somatic
54 mutations from clonally expanded hematopoietic stem cells, and found that most apparent
55 mitochondrial genetic variation does not reflect the phylogenetic signal obtained from whole-
56 genome sequencing of the nuclear genome¹⁹, raising doubts whether cellular phylogenies can
57 be faithfully reconstructed with that approach.

58
59 Epimutations, defined as the spontaneous loss/gain of DNA methylation at individual CpG
60 dinucleotides, have been explored as potential clonal labels in cancer²⁰⁻²². The clonal signal
61 present in DNA methylation data is stronger than in gene expression or chromatin accessibility
62 data²³ and clonal signals have been identified in bulk DNA methylation data^{24,25}. On the other
63 hand, DNA methylation is a highly cell-type-specific epigenetic mark²⁶⁻²⁹, and there is no prior
64 evidence that it can be exploited to trace lineages of single cells in healthy tissues. Moreover,
65 single-cell DNA methylation (scDNAm) datasets are typically generated by bisulfite sequencing
66 and related methods, which is expensive, low-throughput, and possibly too noisy to capture
67 epimutations at individual CpGs.

68
69 Here, we demonstrate that a targeted, high-confidence, single-cell readout of DNA
70 methylation at single CpG resolution is sufficient to track clones in adult blood formation
71 (hematopoiesis) and further provides detailed information on cell state. We present a novel
72 method, EPI-Clone, that extracts both clonal and cell state information from targeted single-
73 cell DNA methylation data. EPI-Clone builds upon scTAM-seq, which uses the commercially
74 available Mission Bio Tapestri platform, to read out methylation of several hundred CpGs in
75 up to tens of thousands of single cells at a time, with a dropout rate of ~7%³⁰. We applied EPI-
76 clone to barcoded hematopoietic progenitor and mature myeloid cells, as well as in native
77 human and mouse hematopoiesis and were able to accurately identify clone of origin for most
78 cells. EPI-clone achieved high overlap with ground-truth genetic barcodes and uncovered
79 alterations to the clonal composition and clonal function of hematopoietic stem cells in
80 unperturbed ageing.

81
82 **Results**

83 *DNA methylation states are influenced both by clonal identity and by differentiation state*
84 To create a ground-truth dataset of clonal identity and DNA methylation, we labelled murine
85 hematopoietic stem cells (HSCs) with lentiviral barcodes using the LARRY system². Labeled
86 HSCs were transplanted into lethally irradiated mice, allowed to reconstitute all blood
87 populations, and profiled five months later. Sorted stem and progenitor cells from bone
88 marrow (HSPCs, sorted as Lin-c-Kit+ [LKS] with additional enrichment of Lin-Sca-1+c-Kit+
89 [LSKs]) as well as mature myeloid cells (sorted by the expression of CD11b) were profiled by

90 scTAM-seq (Figure 1a, Figure S1a, b) in five experimental batches (i) Main LARRY experiment
91 with four mice (13,885 cells) (ii) replicate LARRY experiment with two additional mice (7,896
92 cells), (iii) wildtype mouse without LARRY barcodes (7,001 cells), (iv) mature myeloid cells
93 from lung, peripheral blood (PB) and bone marrow (BM) (9,204 cells), and (v) comparison
94 between young and aged wildtype mice (15,907 cells). We designed a panel of 453 CpGs based
95 on bulk HSPC methylome data²⁸ using differential methylation between different stem- and
96 progenitor cell subsets³¹ (Figure 1b). Additionally, we included CpGs in our panel that are
97 variably methylated within HSCs by leveraging read heterogeneity in bulk data³² (Figure S1c,
98 d and Methods). The expression of 20 surface proteins (Table S1) was simultaneously profiled
99 using oligo-tagged antibodies to obtain independent information on cellular differentiation.

100
101 A uMAP display of the data from the main experiment revealed that DNA methylation jointly
102 captures two layers of information: While cells clustered by their clonal identity defined
103 through LARRY barcodes (Figure 1c) they also clustered by differentiation state (Figure 1d,
104 Figure S2a, and see below for how differentiation states were annotated). We hypothesized
105 that different subsets of CpGs might be impacted by clonal identity and differentiation,
106 respectively. We identified differentiation associated, *dynamic* CpGs by testing for the
107 association with the expression of any surface protein, and found that the remaining, *static*
108 CpGs were frequently associated with clonal identity, as defined through LARRY (Figure 1e).
109 *Dynamic* CpGs were enriched in enhancer elements, whereas the *static* CpGs were
110 preferentially located in heterochromatic regions³³ (Figure 1f). Additionally, static CpGs were
111 more often located in late replicating domains³⁴ as compared to dynamic CpGs (Figure 1g).
112 Static CpGs stochastically gain/lose (preferentially lose, Figure 1h) methylation. We thus
113 hypothesize that DNA methylation changes in static CpGs correspond to stochastic, but
114 clonally heritable *epimutations*, which are present at the moment of LARRY barcoding, and
115 remain largely stable through time and differentiation.

116
117 *DNA methylation delivers a high-resolution map of murine hematopoiesis*
118 We next sought to further dissect the two layers of information in our DNA methylation
119 landscape: differentiation state (Figure 2) and clonal identity (Figure 3). We expect
120 epimutations to be clone- and thus batch-specific, since they occur stochastically. Indeed, we
121 found that by integrating methylation data from 28,782 cells across three experiments
122 profiling HSPCs (main and replicate LARRY experiment, native hematopoiesis), clonal
123 information was effectively removed. In the resulting low dimensional embedding, we found
124 that most variation was driven by differentiation along four trajectories (myeloid, erythroid,
125 lymphoid and megakaryocytic differentiation, Figure 2a). A similar landscape was obtained by
126 performing dimensionality reduction using only the *dynamic* CpGs in the main LARRY
127 experiment (Figure S2b). Since we also performed scRNA-seq on the same samples, we could
128 compare the DNAm uMAP with a transcriptomic uMAP (Figure 2b). We observed an overall
129 similar topology with the four main differentiation trajectories. scRNA-seq achieved a higher
130 resolution in the late myeloid progenitors, compared to the stem- and progenitor-cell-focused
131 methylation panel (Figure 1b).

132
133 To annotate cell states from scDNAm data, we used three layers of information: i) bulk
134 methylation profiles (Figure 2c, Figure S2c), ii) the relative methylation states of important

135 lineage-specific transcription factor binding sites (TFBS, Figure 2d) and iii) the expression of
136 surface proteins (Figure 2e, Figure S2d). We identified cell-state-specific demethylation of
137 CpGs neighboring crucial TFBS including Gata2 (an erythroid factor), Ebf1 (lymphoid) and Spi1
138 (myeloid) (Figure 2d, f). scTAM-seq data revealed a cluster of HSCs and early multipotent
139 progenitors (MPP1, also called short-term or active HSCs), several further MPP subsets (MPP2,
140 MPP3, MPP4), myeloid, erythroid, and B cell progenitors, as well as two subsets of
141 megakaryocyte progenitors, one of which was masked in scRNA-seq data (Supplementary
142 Note, Figure S2e, f, g). Taken together, an analysis of *dynamic* CpGs provides a first DNA
143 methylation-based map of murine HSC differentiation at single-CpG resolution and contains
144 two orders of magnitude more cells than two previous, single-cell bisulfite sequencing
145 datasets^{35,36}.

146

147 *EPI-Clone detects clonal identities from DNA methylation data only*

148 We then focused on exploiting the static CpGs to dissect clonal identity. To this end, we
149 developed the EPI-Clone algorithm (Figure 3a). After selecting *static* CpGs based on absence
150 of correlation with surface antigen expression, EPI-Clone performs dimensionality reduction
151 on these CpGs only. We thereby found that expanded clones (>30 cells) marked by single
152 LARRY barcodes clustered separately, with no influence of cell state (Figure 3b, c). By contrast,
153 cells from small clones profiled with less than 30 cells (corresponding to a relative size of 0.2%)
154 were interspersed between clusters (Figure 3d). EPI-Clone identifies cells that belong to
155 expanded clones based on a higher local density in PCA space spanned by the *static* CpGs
156 (Figure 3d). Thereby, EPI-Clone correctly identifies cells from expanded clones with an AUC of
157 the ROC 0.8, using the LARRY clone sizes as ground truth (Figure 3e). Subsequently, EPI-Clone
158 clusters cells from expanded clones by clonal identity, achieving an adjusted Rand Index of
159 0.88 relative to ground-truth clonal barcodes (Figure 3f). Quantitatively and qualitatively
160 similar results were obtained on a biological replicate (Figure S3; AUC: 0.71, adjusted Rand
161 Index: 0.84). Importantly, static CpG methylation remained associated with ground-truth
162 genetic barcodes several months after the lentiviral labelling event, indicating that these
163 epimutations are highly stable over long periods of time.

164

165 While epimutational clonal signals are stably maintained in blood stem and progenitors cells,
166 we wondered whether EPI-Clone is also applicable to mature immune cells. To that end, we
167 collected mature myeloid cells from lung, bone marrow and peripheral blood, as well as stem
168 cells (LSKs) from the same animals and profiled them with scTAM-seq (Figure 3g). The mature
169 myeloid cells clustered downstream of their progenitor cells in a low-dimensional
170 representation spanned by the dynamic CpGs (Figure S4a-d). Using the static CpGs, EPI-Clone
171 again yielded a clonal clustering that recapitulated ground truth clonal labels (Figure 3h, i;
172 Figure S4e-h). Notably, we found no clone-associated clusters in tissue-resident macrophages
173 (Figure 3h, Figure S4h). However, unlike other mature myeloid cells, the tissue-resident
174 macrophages also carried multiple LARRY barcodes (Figure S4i), suggesting that macrophages
175 phagocytose genetic material from other cells, thereby obscuring DNA-based lineage tracing.
176 When removing the macrophages from the dataset, we found a high overlap between EPI-
177 Clone clusters and LARRY barcodes with an Adjusted Rand Index of 0.75 (Figure 3i). The result
178 on the mature myeloid cells shows that clonal information encoded in the DNA methylation
179 state is maintained until differentiated myeloid cells, and that EPI-Clone can associate stem

180 cells to their mature clonal progeny in tissues. Furthermore, it demonstrates that the target
181 panel designed for HSPCs also performs well for identifying mature myeloid cell states in
182 tissues.

183
184 *The number of blood-producing clones decreases with organism aging*
185 Since EPI-clone can provide joint information on cell state of progenitors, clonal identity, and
186 clonally derived progeny, it might be an ideal method to characterize the clonal dynamics of
187 fully unperturbed hematopoiesis. In contrast to the transplantation setting, native
188 hematopoiesis has been described as polyclonal^{8,10}, where several thousand clones contribute
189 at variable rates to blood formation. To investigate whether EPI-clone also identifies clones in
190 native hematopoiesis, we investigated a bone marrow sample from an untreated, young
191 mouse (12 weeks old). We found that 41.6% of cells were part of expanded clones that
192 individually made up 1-4% of total HSPCs (Figure 4a). These clone sizes are in line with a study
193 that genetically barcoded adult hematopoietic clones *in situ*¹⁰ (Figure 4b). The remaining
194 58.4% of cells were classified as belonging to small, non-expanded clones. In conclusion, EPI-
195 clone proves to be an effective transgene-free method to identify hematopoietic clones *in situ*.
196

197 Decades of work have shown that aging provokes clonal expansion with profound loss of clonal
198 diversity. However, much of our understanding of clonal behaviour in aged mammalian blood
199 either comes from transplantation experiments³⁷ or mathematical modelling³⁸, which may not
200 recapitulate steady-state haematopoiesis or lacks the resolution of single-cell lineage analysis.
201 More recently, transgenic barcoding mouse models have provided valuable insight into native
202 hematopoietic development^{10,39-41}, but these complex models have not been applied to
203 ageing, due to experimental constraints and inaccessibility of the models. To tackle this
204 question with EPI-clone, compared the data from the young mouse to a 100-week old mouse.
205 Using the reference low-dimensional representation from the main experiment, we again
206 identified the three differentiation trajectories, and weak shifts in cell type proportions
207 between the young and the old mouse, including an increased ratio of HSCs to MPP3/4, which
208 reflects known changes in the LSK compartment with age^{42,43} (Figure S5a, b). When comparing
209 the EPI-clone output, we observed that in the old mouse 78.7% of cells were part of expanded
210 clones, compared to 41.6% in the young mouse (Figure 4c,d, Figure S6, S7). Expanded clones
211 in the old mouse were also larger, compared to the young mouse (Figure 4d, e). This gradual
212 loss of clonality better mimics human aging, in stark contrast with results from barcoding
213 transplantation experiments (cf. discussion)⁴⁴.
214

215 Next, we measured the distribution of cell types for each clone across the various stem and
216 progenitor clusters. Comparing the ratio of differentiating versus stem cells in the landscape,
217 we first estimated the blood cell output of each of the stem cell clones. We observed a single,
218 large, expanded clone containing mostly immature stem-like cells (Figure 4f, g, h). Five
219 additional clones, smaller in size, also almost exclusively contained stem cells that appear to
220 be dormant or incapable of proceeding with differentiation (Figure 4h, i, j). These clones
221 resemble low-output stem cell clones previously observed in transplantation studies,
222 particularly in old bone-marrow donors^{11,45-49}. Next, we compared the various types of
223 differentiating stem-cell progeny to quantify the changes in stem cell lineage biases. Old mice

224 showed a very moderate increase in the number of myeloid-biased clones, in contrast with
225 results from classic transplantation experiments (Figure 4f, i, j). However, the large, low-output
226 stem cell clones were mostly myeloid biased. This result is in line with previous reports
227 showing an age-dependent intrinsic myeloid shift and loss of differentiation potential on a
228 per-stem-cell basis, and suggests that classic transplantation experiments mostly sampled
229 stem cells from these highly self-renewing but rare low-output clones⁴⁷⁻⁴⁹. In summary, we
230 show that EPI-clone can map high-resolution lineage trajectories in native hematopoiesis
231 across the mouse lifespan and functionally characterize age-related changes in stem cell clone
232 behaviors in a transgene-free manner.

233

234 *Various degrees of oligoclonality shape human blood ageing*

235 Considering the success of EPI-clone to chart unperturbed mouse hematopoiesis, we decided
236 to test its performance in human hematopoiesis. To characterize clonality in healthy human
237 ageing, we designed a panel targeting 498 CpGs with variable methylation between or within
238 blood progenitor populations^{27,50} (Figure S8a,b, Methods), 147 genomic regions commonly
239 mutated in clonal hematopoiesis (CHIP), and 20 regions targeting chromosome Y. We then
240 applied this panel to characterize total bone marrow from two male donors (71 and 77 years
241 old). Samples were further stained with an antibody panel targeting 45 surface proteins to
242 provide a phenotypic characterization. Analysis of the genotyping targets revealed that donor
243 1 had lost chromosome Y in a subset of cells, while donor 2 displayed no genotypic
244 abnormalities (Figure 5a).

245

246 As in mouse, both clonal identity (here defined by loss of chromosome Y [LoY]) and cell state
247 (here defined by surface phenotype) jointly influenced the global methylation profile (Figure
248 5b, c, Figure S8c). LoY occurred in parts of the myeloid cells, CD34+ cells and NK cells. Within
249 each of these cellular compartments, LoY cells clustered apart from the remaining cells. To
250 further separate clonal identity from cell state information present in the DNA methylation
251 data, we applied the EPI-Clone algorithm (Figure S8d,e). In the case of donor 1, EPI-Clone
252 identified 11 clones that, individually, contributed to up to 20% of blood formation. All cells
253 within the largest clone showed LoY, while LoY was also observed in 3 further (sub-)clones,
254 suggesting independent acquisition of these lesions (Figure 5d, e). These results mimic recent
255 reports using colony-based whole genome sequencing in 70-80 year-old human
256 hematopoietic cells, but at a small fraction of the cost and with simultaneous information on
257 cell states¹³. In the case of donor 2, EPI-Clone identified 23 expanded clones that individually
258 contributed to 1.3-6.9% of blood formation, indicating significantly less oligoclonal blood
259 production (Figure 5d, e). Together, these results demonstrate the capability of EPI-Clone to
260 identify hematopoietic clones in humans, and they demonstrate variable, oligoclonal blood
261 formation in individuals older than 70 years.

262

263 **Discussion**

264 Here, we have demonstrated that DNA methylation at a few hundred CpGs is sufficient to
265 simultaneously identify clones and provide detailed information on the cellular state at the
266 level of individual hematopoietic cells. Targeted scDNAm profiling with single-cell, single-CpG
267 resolution permits to capture both layers of information in a high-throughput commercial

268 assay, enabling studies of clonal dynamics and function without need for genetically-
269 engineered mouse models. Ground truth clonal labels are well recapitulated in both mouse
270 experiments (using genetic lineage tracing barcodes as ground truth) and in the human study
271 (using loss of chromosome Y as ground truth). This indicates that clonal somatic epimutations
272 are stable over extended periods of time. In mouse, four to six months elapsed between
273 induction of the ground truth clonal label and the harvesting of cells post-transplantation. In
274 human, previous studies indicate that decades pass between the initial loss of Y and the
275 observation of expanded LoY clones in age¹³. Clonal information was further stable through
276 multiple cell divisions from the stem cell until terminal differentiation. Together, somatic
277 epimutations appear to be a uniquely stable, long-term lineage tracer.

278
279 The robustness of EPI-clone is best evidenced by its capacity to identify high-resolution clonal
280 patterns in native murine hematopoiesis. Using EPI-clone, here we provided a first picture of
281 *in situ* high-resolution clonal dynamics in mouse aging. Mimicking the clonal evolution in
282 human hematopoiesis, murine hematopoiesis shifts from highly polyclonal to oligoclonal
283 blood production, although retaining more overall diversity than in humans¹³. While aged
284 HSCs have been traditionally characterized by functional loss of lymphoid potential and
285 inefficient differentiation, we find that *in situ* these behaviors are notably restricted to a small
286 number of HSC clones, with the majority of clones behaving just like in the young age⁵¹. These
287 rare low-output clones make up a large fraction of the total cells of the HSC compartment
288 (~30%), suggesting that these cells are a major contributor to the phenotypes observed in
289 transplantation studies. Thus, our observations are compatible with the exhausted stem cell
290 theory, which postulates that HSCs functionally decline with subsequent activations and cell
291 divisions, but support that aging is highly heterogeneous at the clonal level, with many clones
292 protected from age-related decline⁵². In the future, EPI-clone may provide clues to the
293 mechanisms of inflammation-driven age acceleration as well as become a platform to test
294 immune rejuvenation interventions⁵³. Critically, we also provide a proof of principle that EPI-
295 clone enables the low-cost and high-throughput characterization of hematopoietic stem cell
296 clones during aging in humans, where genetic barcoding is not applicable, allowing future
297 studies of samples from clinical trials or epidemiological studies.

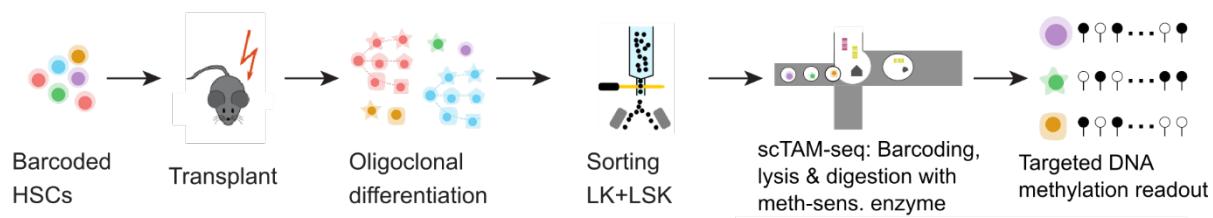
298
299 A final important point relates to where and how epimutations arise and label HSC clones,
300 becoming stable tracers for clonal behaviors. We found that they (i) randomly occur, but
301 remain stable over many cell divisions, (ii) are enriched for heterochromatic and late-
302 replicating domains, and (iii) mainly arise from a fully methylated default state. As a potential
303 explanation, in fast-dividing cells DNMT1 may act insufficiently to copy the DNA methylation
304 state to the nascent DNA strand, especially in late-replicating domains. Consequently, if the
305 cell divides before the copying of DNA methylation, one of the daughter cells will lose the DNA
306 methylation state of the cell of origin (Figure S9). This epimutation will then be passed to all
307 progeny of the cell, especially if it occurs in a silent heterochromatic region without direct
308 functional consequence. A preprinted study of bulk methylome profiles from blood cells in
309 monozygotic twins suggests that clone-associated variation of the methylome may be
310 established during embryonic development²⁵. This would be consistent with the long-term
311 stability of the clonal mark observed in our study.

312

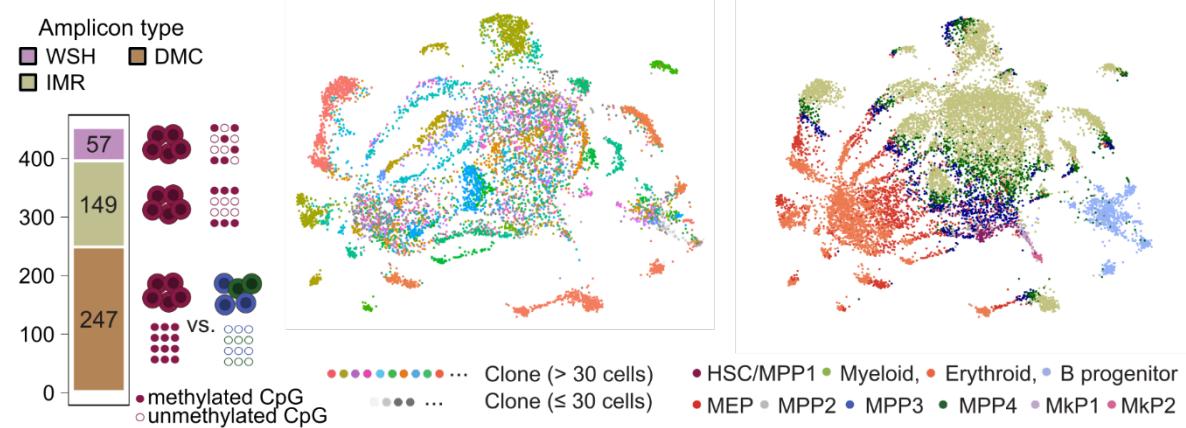
313 *Limitations*

314 While we found that both clonal identity and differentiation state can be identified using only
315 453 CpGs, the targeted nature of scTAM-seq requires the availability of bulk methylome
316 resources and can lead to lower cell-type resolution of some cell types, as observed here in
317 the context of the mouse late myeloid precursors. However, cell-types can be further
318 differentiated based on surface markers. A further limitation of EPI-Clone is that only cells
319 belonging to expanded clones can be assigned to their clone of origin. Cells belonging to
320 clones contributing less than 0.2-1% of cells are identified as not belonging to expanded
321 clones, but their clonal identity can currently not be inferred.

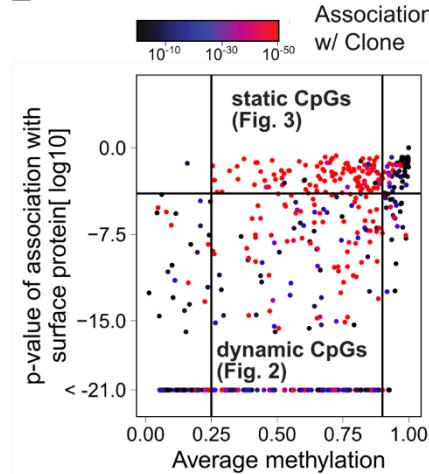
322

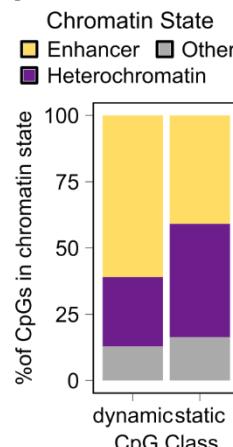

323

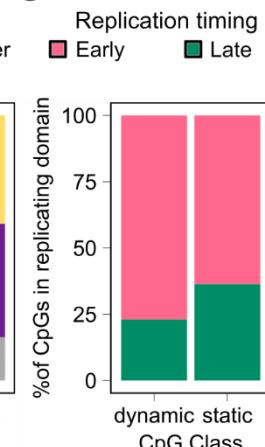
324

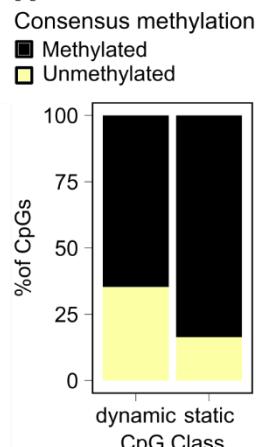

325 **Figures**

326


A


B

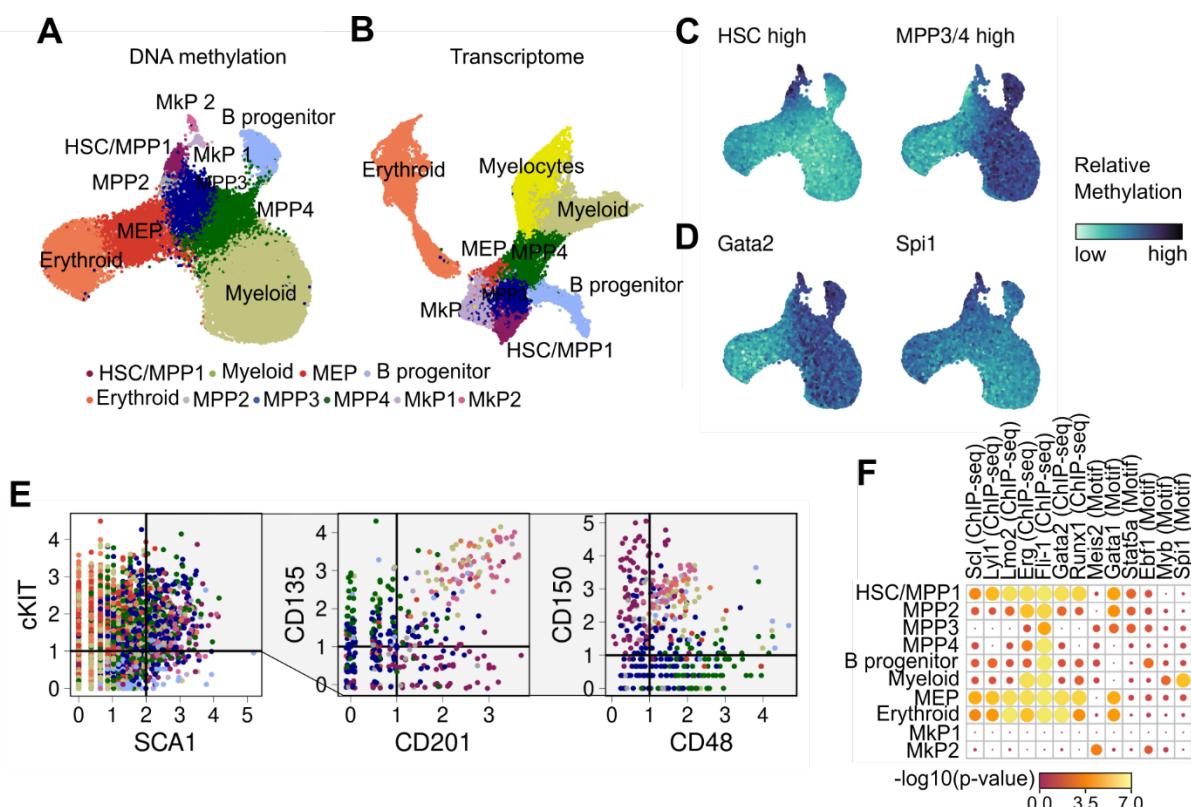

E


F

G

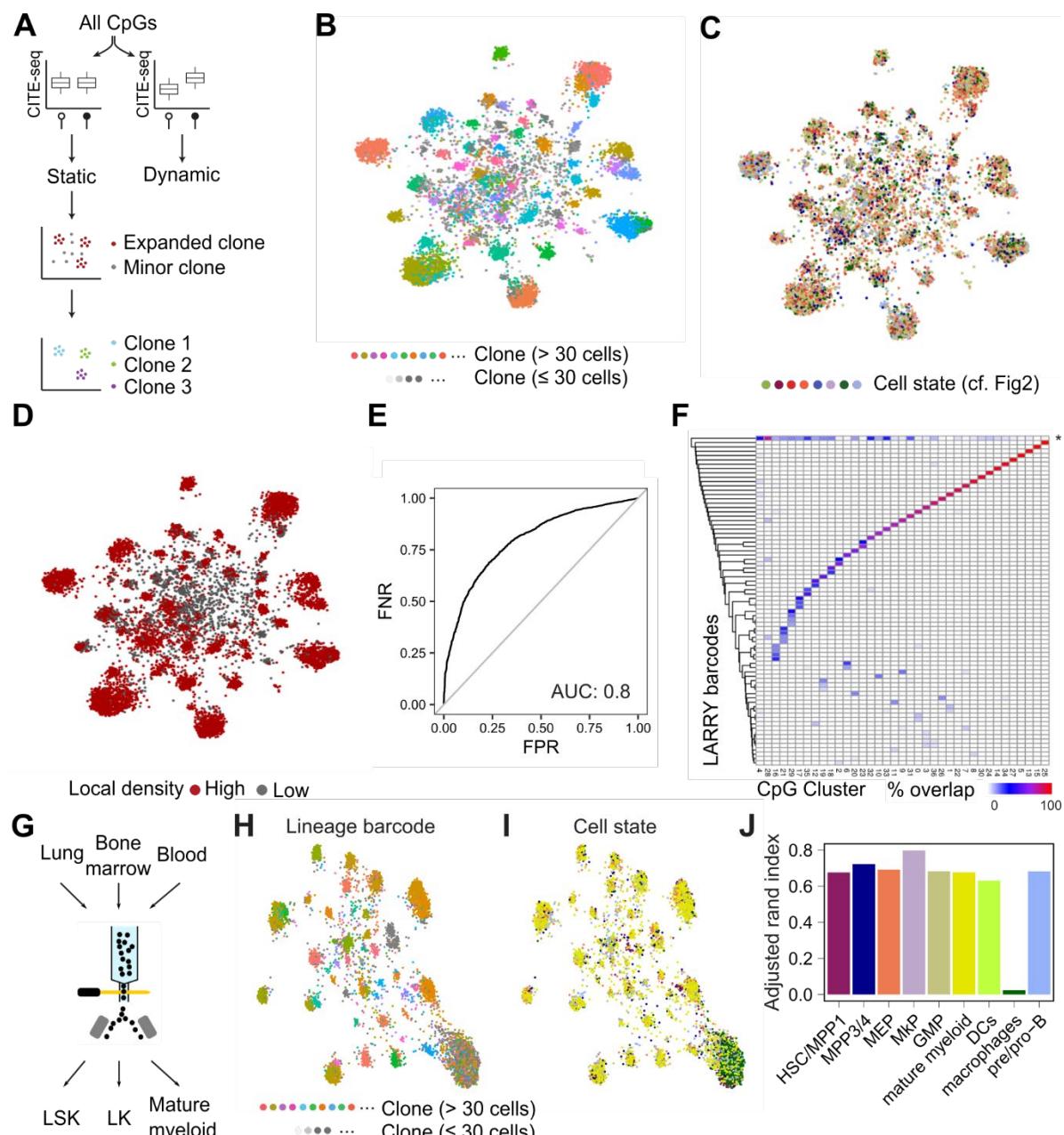
H

327


328 **Figure 1: DNA methylation jointly encodes differentiation and clonal identity. A.** Scheme of
 329 the experimental design. **B.** Overview of the 453 CpGs covered by our based on differential
 330 methylation in bulk data and performance in an undigested control experiment. WSH=within-
 331 sample heterogeneity, DMC=differentially methylated cytosine, IMR=intermediately
 332 methylated region **C.** uMAP of DNA methylation data from HSPCs from the LARRY main
 333 experiment (four mice). The color highlights clone, as defined from the LARRY barcode. **D.**
 334 Same uMAP as in C indicating cell states, see Figure 2 for how cell state was defined. **E.** Scatter
 335 plot depicting, for n=453 CpGs, the average methylation rate (x axis), the statistical association
 336 with surface protein expression (y axis, see Methods) and the statistical association with
 337 LARRY clonal labels (color coded, p value from a chi-square test). The CpGs in the upper/lower
 338 central rectangle were defined as static/dynamic CpGs, respectively. **F, G.** Bar chart depicting
 339 the fraction of static and dynamic CpGs within annotated enhancer/heterochromatin regions

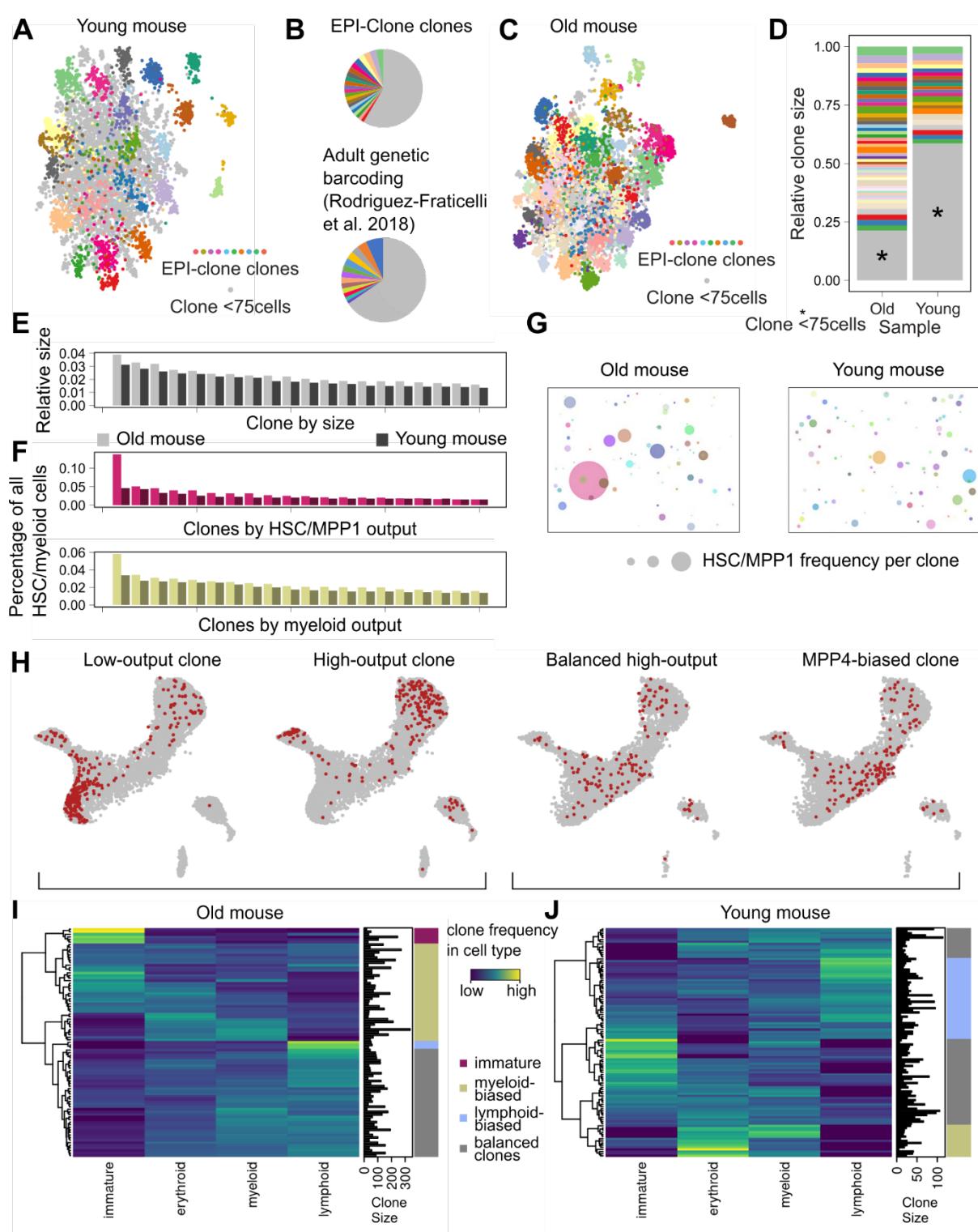
340 and within early/late replicating domains, respectively. **H**. Average methylation state across
341 all profiled cells for the dynamic/static CpGs. CpGs with more than 50% methylated cells were
342 termed methylated, the remaining ones unmethylated.

343


344

345

346


347 **Figure 2: Single-cell DNA methylation profiles deliver a high-resolution map of mouse**
348 **hematopoiesis. A.** uMAP of DNA methylation data for HSPCs from the LARRY main
349 experiment, the LARRY replicate experiment and from native hematopoiesis. Batch correction
350 was applied prior to uMAP. Colors highlight groups identified from unsupervised clustering. **B.**
351 uMAP of transcriptomic data from the same experiments. **C.** uMAP as in A, highlighting
352 relative methylation state of cells across all CpGs that are methylated in HSCs or MPP3/4 in
353 bulk data. **D.** uMAP as in A, highlighting relative methylation states of CpGs located in vicinity
354 of TFBS. **E.** Surface protein expression of Sca1, c-Kit, CD135, CD201, CD48, and CD150. The
355 CD135/CD201 and CD48/CD150 plots only show Lin⁻Sca-1⁺c-KIT⁺ cells and the color codes
356 corresponds to the cell type clusters defined in the DNAm uMAP. **F.** Enrichment of CpGs
357 specifically unmethylated in a cell-type cluster according to the vicinity to the annotated TFBS.
358

359 **Figure 3: EPI-clone reliably identifies clones only from DNA methylation data. A.** Schematic
360 overview of EPI-clone. **B.** uMAP of DNA methylation computed on static CpGs only for the
361 LARRY main experiment, highlighting clonal identity as defined by LARRY barcodes. Only cells
362 carrying a LARRY barcode are shown. **C, D.** Same uMAP as in B highlighting the cells by cell
363 state as defined in Figure 2 (C) and those that were selected as part of expanded clones based
364 on local density in PCA space (D). **E.** Receiver-Operating Characteristics Curve visualizing the
365 performance of classifying cells into expanded and non-expanded clones based on local
366 density in PCA space. **F.** Heatmap depicting the association between LARRY barcode and
367 methylation-based clonal cluster identified by EPI-Clone. The row labeled with an asterisk
368 contains all LARRY clones smaller than 30 cells. **G.** Sorting scheme for the mature myeloid
369 experiment. **H, I.** uMAP representation of the mature myeloid experiment. Cells cluster both
370 by clonal identity (LARRY barcode, H) and cell state (I). **J.** Adjusted rand indices between the
371 ground truth clonal label (LARRY) and the clones identified by EPI-Clone stratified by cell type
372

374

375

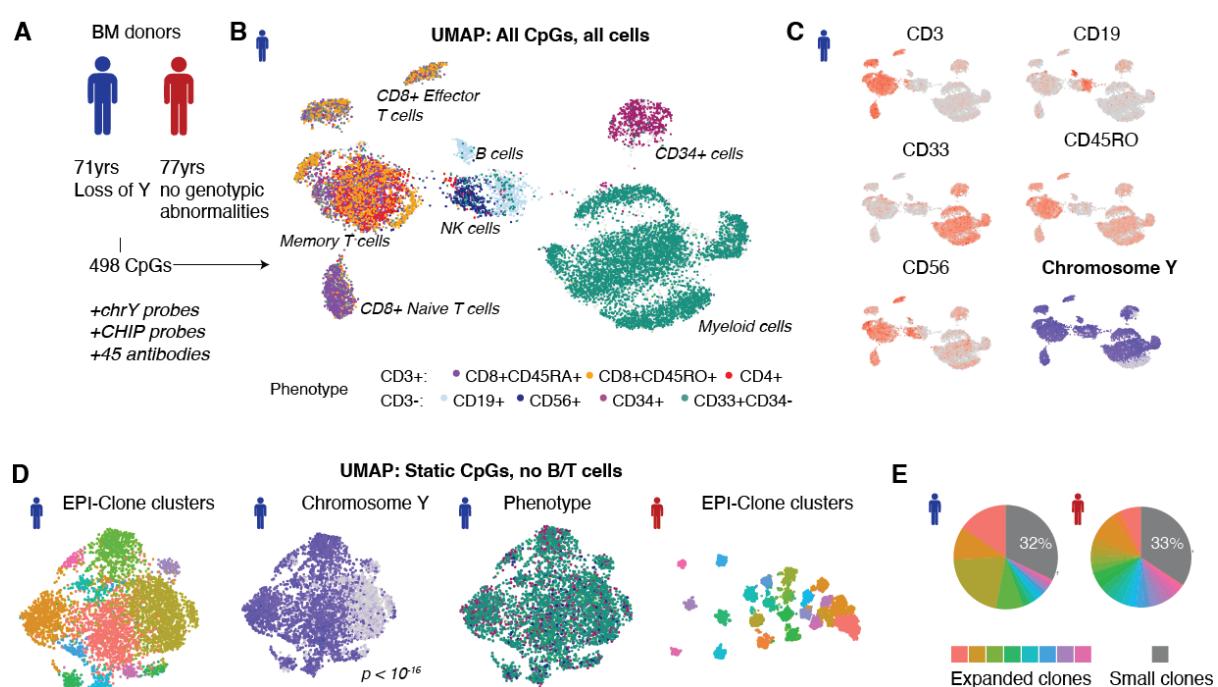
376

377

378

379

380


381

382

Figure 4: Blood production in age is characterized by a decrease in clonal complexity. A.

UMAP based on the static CpGs for a native, young mouse. **B.** Pie charts depicting size of expanded clones identified in this study and in a study where cells were labeled using a DNA barcode in the adult¹⁰. In the EPI-clone pie chart, grey refers to cells that putatively come from small clones (<75 cells); in the lower pie chart, grey refers to clonal labels that are represented in less than 1% of cells (Granulocytes). **C.** UMAP based on the static CpGs and the associated

383 EPI-clone clusters for the old mouse. **D**. Comparison of clone sizes, measured using the
384 percentage of cells in the clone in comparison to all cells, for the old/young mouse. Clones
385 with less than 75 cells are shown in grey. **E**. Comparison of clone sizes for the 20 largest clones.
386 **F**. Comparison of HSC/MPP1 output and myeloid output for the 20 clones with the highest
387 HSC/myeloid output between the young and old mouse. **G**. Bubble plot visualizing the
388 frequency (measured as the square of the HSC/MPP1 frequency) of HSC/MPP1 cells per clone
389 for the old versus the young mouse. **H**. Visualizing clones in the differentiation uMAP for the
390 old (left) and young (right) mouse. Two examples of clones are shown for both mice. **I, J**.
391 Characterizing clonal behavior of all clones (rows) across the different cell types (columns) as
392 a heatmap. The color indicates the relative frequency of the clones toward four main
393 differentiation trajectories. Immature=HSC/MPP1, MPP2; myeloid=MPP4, myeloid
394 progenitors; lymphoid=B cell progenitors; erythroid=MEP, erythroid progenitor. This is shown
395 for the old (I) and young (J) mouse separately.
396

397
398 **Figure 5: Different degrees of oligoclonality in human ageing.** **A.** Experimental design. **B.**
399 uMAP of DNA methylation data for donor 1. See Figure S8 for donor 2. **C.** Expression of surface
400 proteins (red) and presence of chromosome Y amplicons (blue). **D.** EPI-Clone uMAP of static
401 CpGs in all cells except B and T cells, see also Figure 3. From left to right: Donor 1, highlighting
402 clone; Donor 1, highlighting loss of chromosome Y; Donor 2, highlighting clone. P-value is from
403 a Fisher test for the enrichment of LoY in the expanded cluster. **E.** Fraction of total cells
404 stemming from the different expanded clones.

405

406 Data Availability

407 The scDNAm dataset (<https://doi.org/10.6084/m9.figshare.24204750>) and the scRNA-seq
408 dataset (<https://doi.org/10.6084/m9.figshare.24260743.v1>) are available as Seurat objects
409 from Figshare.

410

411 **Code Availability**

412 Code for processing scTAM-seq data, for the EPI-clone algorithm, and for generating all figures
413 of the paper is available from GitHub (<https://github.com/veltenlab/EPI-clone>).

414

415 **Acknowledgements**

416 The authors would like to thank Renée Beekman, Roser Zaurin and Agostina Bianchi for
417 collaboration on the scTAM-seq method, Mission Bio for support with panel designs and
418 the CRG Genomics Unit for assistance with sequencing. This work was funded by the
419 European Hematology Association (EHA Advanced Research Grant to L.V.) and the Asociación
420 Española Contra el Cáncer (AECC lab grant to L.V.). M.S. was supported through the Walter
421 Benjamin Fellowship funded by Deutsche Forschungsgemeinschaft (DFG, German Research
422 Foundation, reference 493935791). I.S. was supported through the European Union's Horizon
423 2020 research and innovation programme under the Marie Skłodowska-Curie grant
424 agreement No 945352. L.V. acknowledges support of the Spanish Ministry of Science and
425 Innovation to the EMBL partnership, the Centro de Excelencia Severo Ochoa and the CERCA
426 Programme / Generalitat de Catalunya. A.R.F has been supported by the Cris Foundation
427 Excellence Award (PR_EX_2020-24), the ERC Starting Grant MemOriStem (101042992), the
428 Spanish National Research Agency (PID2020-114638RA-I00), the Agencia de Gestió d'Ajuts
429 Universitaris i de Recerca (AGAUR, 2017 SGR 1322), and the CERCA Program/Generalitat de
430 Catalunya. A.R.F. acknowledges support from the Institut Català de Recerca i Estudis Avançats
431 (ICREA), the American Society of Hematology (ASH) Scholar Award, the Leukemia Lymphoma
432 Society Special Fellow Career Development Program Award (3391–19), the NIH NHLBI
433 K99/R00 transition to independence award (K99 HL146983), the Ministry of Science Ramon y
434 Cajal Fellowship, and the LaCaixa Junior Fellows Incoming Fellowship.

435

436 **Author contributions**

437 I.S. performed the mouse experiments. C.S.T. and I.S. generated all sequencing libraries. M.S.,
438 M.B., and L.V. analyzed the data and developed EPI-Clone, with conceptual input from I.S. and
439 A.R.F.. M.S. and M.B. created the targeting panels with support by R.F.. J.R. and S.B.C analyzed
440 the scRNA-seq data. M.K. and S.R. provided and characterized the human samples. M.S., I.S.,
441 A.R.F, and L.V. conceptualized the study. M.S., I.S., A.R.F., and L.V. wrote the manuscript with
442 input from all co-authors.

443

444 **Competing interests**

445 A.R.F. serves as an advisor for Retro Bio. The other authors declare no competing interests.

446

447 **Online Methods**

448 *Mice and Animal Guidelines*

449 All procedures involving animals adhered to the pertinent regulations and guidelines.
450 Approval and oversight for all protocols and strains of mice were granted by the Institutional
451 Review Board and the Institutional Animal Care and Use Committee at Parque Científico de
452 Barcelona under protocols CEEA-PCB-22-001-ARF-P1; CEEA-PCB-22-002-ARF-P2. The study is
453 following all relevant ethical regulations. CD45.1 (CD45.1, B6.SJL-Ptprca Pep3b/BoyJ, stock no.

454 002014, The Jackson Laboratory) mice were used as transplantation recipients for CD45.2
455 (BL6/J) donor cells. Both male and female mice, 6-12 weeks of age, were used as donors and
456 recipients. Mice were kept under specific-pathogen free conditions for all experiments.
457

458 *Hematopoietic stem cell isolation*

459 Following euthanasia, bone marrow was harvested from the femur, tibia, pelvis, and sternum
460 through mechanical crushing, ensuring the retrieval of most of the cells. The collected bone
461 marrow cells were then sieved through a 40- μ m strainer and cleansed with a cold 'Easy Sep'
462 buffer containing PBS, 2% fetal bovine serum (FBS), 1 mM EDTA, and Penicillin/Streptomycin
463 followed by lysis of red blood cells using RBC lysis buffer (Biolegend, Catalog no. 420302). At
464 first, mature lineage cells were selectively depleted through the Lineage Cell Depletion Kit,
465 mouse (Miltenyi Biotec, Catalog no. 130-110-470), while the resulting Lin $^{-}$ (lineage-negative)
466 fraction was then enriched for c-Kit expression using CD117 MicroBeads (Miltenyi Biotec,
467 Catalog no: 130-091-224). These cKit-enriched cells were washed, blocked with FcX and
468 stained with following fluorescently labeled antibodies: APC anti-mouse CD117, clone ACK2
469 (Biolegend catalog no. 105812), PE/Cy7 anti-mouse Ly6a (Sca-1) (Biolegend, catalog no.
470 108114); Pacific Blue anti-mouse Lineage Cocktail (Biolegend, catalog no. 133310); PE anti-
471 mouse CD201 (EPCR) (Biolegend, catalog no. 141504); PE/Cy5 anti-mouse CD150 (SLAM)
472 (Biolegend, catalog no. 115912); APC/Cyanine7 anti-mouse CD48 (Biolegend, catalog no.
473 103432). For transplants, EPCR $^{+}$ Lin $^{-}$ Sca-1 $^{+}$ c-Kit $^{+}$ HSCs were sorted via fluorescence-activated
474 cell sorting (FACS) employing a BD FACSAria Fusion with a 70uM nozzle. For single-cell
475 analyses, the c-Kit enriched fraction of cells was additionally stained with the TotalSeq-B
476 antibody cocktail (Table S1), and different compartments were sorted as outlined in Figure
477 S1c.
478

479 *Mature immune cell experiment*

480 For this study, the mouse was anesthetized and perfused. Post perfusion the lungs were
481 extracted from the chest cavity, and a single-cell suspension was prepared through protease
482 and DNase solution in the Lung Dissociation Kit (Miltenyi Biotech, catalog #130-095-927)
483 followed by mechanical dissociation using gentleMACS "C" columns (Miltenyi Biotech, catalog
484 #130-093-237) according to the manufacturer's instructions. The dissociated cells were
485 filtered using a 70 μ m strainer and centrifuged at 400 g for 5 min at room temperature. The
486 supernatant was removed by aspiration and red blood cell lysis was performed using RBC lysis
487 buffer (Biolegend, Catalog no. 420302). Cells were then washed with FACS buffer and pelleted
488 at 400 g for 5 min at 4°C. The supernatant was removed, and the pellet was resuspended in
489 Fluorescence-Activated Cell Sorting (FACS) buffer before being passed through a 40 μ m
490 strainer and stained for the mature myeloid cell marker. Sorted cells were then stained for the
491 TotalSeq-B antibody cocktail together with LSK, LKs, and mature cells from bone marrow and
492 loaded into the Mission Bio Tapestri platform at the recommended concentration.
493

494 *Old and Young native hematopoiesis experiment*

495 For this study, LSK and LKs were extracted and stained as mentioned earlier for mission bio run
496 from young 12-week-old BL6/J (CD45.2) mice and old 100-week-old BL6/J (CD45.2) mice.
497

498 *Transplantation Assay*

499 HSCs were harvested from 8-week-old BL6/J (CD45.2) mice and transduced with GFP or T-
500 Sapphire-tagged LARRY barcode lentiviral libraries and subsequently transplanted into CD45.1
501 recipient mouse via tail-vein injection with 150,000 whole bone marrow cells as support cells,
502 with each recipient mouse receiving a 150 μ l volume of PBS injection. The CD45.1 recipient
503 mouse had been preconditioned with a lethal X-ray radiation dose, administered as two
504 separate sessions of 5 Gy each, with a 2-hour interval between them. To assess the
505 engraftment of donor cells, the percentage of CD45.2+ peripheral blood leukocytes (and the
506 percentage of fluorescent-protein-labeled cells) in the recipient mice was determined. All
507 mice demonstrated stable long-term engraftment until the experimental endpoint.
508 Engraftment analysis, along with the measurement of labeling frequency, was carried out
509 using BD FACS Fusion.

510
511 In vitro cultures of HSCs were done under self-renewing F12-PVA based conditions as
512 described previously⁵⁴. To prepare for cell sorting, 96-well flat-bottom plates from Thermo
513 Scientific were coated with a layer of 100 ng/ml fibronectin (Bovine Fibronectin Protein, CF
514 Catalog: 1030-FN) for 30 minutes at room temperature. Following the sorting process, HSCs
515 were transferred into 200 μ l of complete HSC media supplemented with 100ng/ml
516 recombinant mouse TPO and 10ng/ml recombinant mouse SCF (PeproTech Recombinant
517 Murine TPO Catalogue Number: 315-14; PeproTech Recombinant Murine SCF, Catalogue
518 Number: 250-03) and grown at 37°C with 5% CO₂. During lentiviral library transduction, the
519 first media change took place 24 hours post-transduction. Three days post-labeling, the
520 cultured HSCs were collected and subsequently transplanted into CD45.1 mice.

521
522 *Construction of lentiviral pLARRY vectors*
523 The construction of barcoded libraries was executed in accordance with a previously
524 established protocol (<https://www.protocols.io/view/barcode-plasmid-library-cloning-4hggt3w>). First, the T-Sapphire or EGFP coding sequences, and the EF1a promoter sequences
525 were PCR amplified from pEB1-T-Sapphire and pLARRY-EGFP with primers homologous to the
526 vector insertion site in a custom lentiviral plasmid backbone (Vectorbuilder, Inc) using Gibson
527 assembly (Gibson Assembly® Master Mix, NEB, Ref. E2611L). After magnetic-bead purification,
528 ligated vectors were then transformed into NEB10-beta electroporation ultracompetent *E.coli*
529 cells (NEB® 10-beta Electrocompetent *E. coli*, NEB, Ref.C3020K) and grown overnight on LB
530 plates supplemented with 50 μ g/mL Carbenicillin (Carbenicillin disodium salt, Thermo
531 Scientific Chemicals Ref. 11568616). Colonies were scrapped using LB medium and pelleted
532 by centrifugation. Plasmid maxipreps were performed using the Endotoxin-Free Plasmid Maxi
533 Kit (Machery Nagel), following the manufacturer protocol. pEB1-T-Sapphire was a gift from
534 Philippe Cluzel (Addgene plasmid 103977). pLARRY-EGFP was a gift from Fernando Camargo
535 (Addgene plasmid 140025)

537
538 *Barcode lentivirus library generation and diversity estimation*
539 To barcode pLARRY plasmids and generate a library, a spacer sequence flanked by EcoRV
540 restriction sites was cloned into the plasmid after the WPRE element of the vector. Custom
541 PAGE-purified single-strand oligonucleotides with a pattern of 20 random-bases
542 (GTTCCANNNTGNNNNCANNNNGTNNNNAGNNNN) and surrounded by 25 nucleotides
543 homologous to the vector insertion site were synthesized by IDT DNA Technologies. The
544 assembly of these components and subsequent purification steps were carried out through

545 Gibson assembly (Gibson Assembly® Master Mix, NEB, Ref. E2611L). Six electroporations of
546 the bead-purified ligations were performed into NEB10-beta *E.coli* cells (NEB® 10-beta
547 Electrocompetent *E. coli*, New England BiolabsEB, Ref.C3020K) utilizing a Gene Pulser
548 electroporator (Biorad). Subsequently after transformation the cells were incubated at 37
549 degrees for 1 hour at 220 rpm. Post-incubation, the transformed cells were plated in six large
550 LB-ampicillin agar plates overnight at 30°C. Colonies from all six plates were collected by
551 scraping with LB-ampicillin and then grown for an additional 2h at 225 rpm and 30 °C. Cultures
552 were pelleted by centrifugation, and plasmids were isolated using the Endotoxin-Free Plasmid
553 Maxi Kit (Macheray-Nagel), following the manufacturer protocol.

554
555 For estimating diversity, barcode amplicon libraries were prepared by PCR amplification of the
556 lentiviral library maxiprep using flanking oligonucleotides carrying TruSeq read1 and read2
557 adaptors using 10 ng of the library (Table S2). We used the minimal number of cycles that we
558 could detect by qPCR in order to avoid PCR amplification bias (10-12 cycles). After bead
559 purification, 10 ng of the first PCR product was used as a template for a second PCR to add
560 Illumina P5 and P7 adaptors and indexes (Table S2). Two independent PCRs were sequenced
561 on an Illumina NovaSeq 6000 S4 platform (Novogene UK) to confirm diversity after correction
562 of errors through collapsing with a Hamming-distance of 4. After collapsing, libraries were
563 confirmed to contain at least 50 million different barcodes, with enough diversity for uniquely
564 labeling up to 100,000 HSCs with a minimal false-positive rate.

565
566 *Lentivirus production and Barcode labeling*
567 Lentivirus production and HSPC transduction was performed as described Weinreb et al.²

568
569 *Human samples*
570 Bone marrow samples from healthy volunteers were obtained at the Heidelberg University
571 Hospital after informed written consent using ethic application number S-480/2011. All
572 experiments involving human samples were approved by the ethics committee of the
573 University Hospital Heidelberg and were in accordance with the Declaration of Helsinki.
574 Samples from healthy donors were thawed and stained using CD34 sorting antibody
575 (BioLegend, 343517) and a pool of oligo-conjugated antibodies from the TotalSeq-D Heme
576 Oncology Cocktail from BioLegend (MB53-0053) as well as two additional TotalSeq-D
577 antibodies from BioLegend (CD135, 313325; CD49f, 313641). Samples were then sorted for
578 CD34+ and CD34- populations subjected to scTAM-seq. For Donor 1, 102,000 CD34+ cells and
579 298,000 CD34- cells were pooled and, from this pool, 78,050 cells were loaded onto the
580 Tapestri instrument. For Donor 2, 91,006 CD34+ cells and 476,358 CD34- cells were pooled
581 and, from this pool, 90,650 cells were loaded onto the instrument.

582
583 *Single-cell DNA methylation profiling and single-cell RNA-seq*
584 For profiling DNA methylation at single-cell resolution, we used scTAM-seq³⁰, which leverages
585 the Mission Bio Tapestri technology to investigate up to 1,000 CpGs in up to 10,000 cells per
586 experiment. Briefly, we loaded 120,000-140,000 cells into the Tapestri machine and followed
587 the default Mission Bio DNA+Protein protocol for V2 chemistry (https://missionbio.com/wp-content/uploads/2021/02/Tapestri-Single-Cell-DNA-Protein-Sequencing-V2-User-Guide-PN_3360A.pdf), with modifications: (i) we added a DNA methylation sensitive restriction
588 enzyme (Hhal) to remove non-methylated targets prior to amplification. (ii) we used TotalSeq-
589
590

591 B antibodies and different primers for the amplification of antibody oligonucleotide tags. The
592 default Mission Bio protocol uses a different type of oligonucleotide tag, TotalSeq-D, which
593 are currently not available for mouse antigens. The aging experiment was performed with
594 Tapestri workflow v3 (https://missionbio.com/wp-content/uploads/2023/08/Tapestri-Single-Cell-DNA-Protein-Sequencing-v3-User-Guide_MB05-0018.pdf).
595

596
597 In detail, we added 5 μ L of highly-concentrated Hhal (150,000U/mL, NEB) enzyme and 5 μ L of
598 30 μ M of a custom Antibody Tag Primer specific for the amplification of the oligonucleotide
599 tags of TotalSeq-B antibodies (ACTCGCAGTAGTCTGCTAGGACCGGCCTAAAG) to the Tapestri
600 Barcoding Mix V2 reagent. An incubation at 37°C for 30 minutes was added to the start of the
601 Targeted PCR thermal cycling program to allow for the restriction enzyme digest to take place
602 prior to the PCR amplification step. The use of TotalSeq-B antibodies primarily affected the
603 “Protein Library Cleanup I” section of the protocol where we replaced the 2X Binding &
604 Washing (B&W) Buffer from the kit with the following buffer prepared with nuclease-free
605 water: Tris-HCl (final concentration 10 mM, pH7.5), EDTA (final concentration 1 mM), and NaCl
606 (final concentration 2 M). We used 2 μ L of 5 μ M of our custom Biotin Oligo
607 (/5Biosg/GTGACTGGAGTTCAGACGTGTG/3C6/) to isolate the antibody tags. In addition, during
608 the isolation of antibody tags, we performed the second wash of Streptavidin Beads with 1
609 mL nuclease-free water instead of 1X B&W Buffer. Finally, each tube of Steptavidin Beads was
610 resuspended in 45 μ L of nuclease-free water then transferred and combined into a new tube
611 for a total of 90 μ L. To amplify the final protein target library, we used 5 μ L of 4 μ M of each
612 custom indexed primers (Forward: CAAGCAGAAGACGGCATACGAGAT[i7
613 index]GTGACTGGAGTTCAGACGTGTGCTTCCGATCT 3', Reverse:
614 AATGATAACGGCGACCACCGAGATCTACAC[i5 index]TCGTCGGCAGCGTC). Typically, we performed
615 twice as many reactions to amplify the DNA target library, but this may be increased to achieve
616 sufficient yield. Lastly, we adjusted the AMPure XP reagent to sample ratio in the second size
617 selection step in “DNA Library Cleanup II” from 0.72X to 0.65X.
618

619 Using the stained cells that we used as input to scTAM-seq (Figure S1c), we additionally
620 performed 10x Genomics Chromium Single Cell 3' for transcriptomic profiling of the cells,
621 following the standard protocol. LARRY barcodes were later amplified using a modified
622 version of the protocol described in Weinreb et al. ² (see Table S2 for an updated list of
623 primers).
624

625 *Mouse panel design for scTAM-seq*

626 We aimed at designing a panel harboring CpGs dynamically methylated in HSCs, as well as in
627 more committed progenitors (MPPs). We collected bulk whole-genome bisulfite sequencing
628 data from a previous publication²⁸ profiling DNA methylation in three replicates of HSCs
629 (LSK=Lin⁻Sca-1⁺c-KIT⁺ and CD135⁻CD48⁻CD150⁺CD34⁻), MPP1 (LSK, CD135⁻CD48⁻CD150⁺CD34⁺),
630 MPP2 (LSK, CD135⁻CD48⁺CD150⁺CD34⁺) and a mixture of MPP3 (LSK, CD135⁻CD150⁻
631 CD48⁺CD34⁺) and MPP4 (LSK, CD135⁺CD150⁻CD48⁺CD34⁺). Using this data, we selected CpGs
632 from three classes that are variably methylated in HSPCs (Figure S1c,d): (i) CpGs differentially
633 methylated between the HSCs and the different MPP populations, (ii) CpGs intermediately
634 methylated within HSCs, and (iii) CpGs harboring within-sample heterogeneity in HSCs. The
635 code for selecting CpGs is available from <https://github.com/veltenlab/EPI-CloneSelection>
636

637 (i) *Differentially methylated CpGs (DMCs)*. We used RnBeads³¹ to determine CpGs that
638 are specifically methylated in one of the HSPCs (i.e., in either HSC, MPP1, MPP2,
639 MPP3/4), while being unmethylated in all the remaining HSPC populations. We
640 only focused on CpGs that were covered by at least 10 sequencing reads in all
641 samples and that had a methylation difference of at least 0.2 between the target
642 cell type and the average of the remaining cell types. After sorting the CpGs by the
643 methylation difference between the cell types, we investigated whether the CpG
644 is located in the Hhal cut-sequence (GCGC) and annotated for vicinity to important
645 hematopoietic TFBS.

646 (ii) *Intermediately methylated CpGs (IMCs)*. IMCs have to be non-overlapping with
647 DMCs and are then defined by a DNA methylation level in the bulk samples
648 between 0.25 and 0.75. Such CpGs may be differentially methylated between two
649 sub-cell types of HSCs. IMCs are required to have a low Proportion of Discordant
650 Reads (PDR⁵⁵) together with a high quantitative Fraction of Discordant Read Pairs
651 (qFDRP³²). PDR and qFDRP are measures of within-sample heterogeneity (WSH) in
652 bulk sequencing data and quantify the concordance of methylation states on the
653 same sequencing read (PDR) or of multiple CpGs across different sequencing reads
654 (qFDRP).

655 (iii) *CpGs harboring within-sample heterogeneity (WSH)*. CpGs with high WSH are non-
656 overlapping with DMCs and IMCs. The CpGs are then identified based on high
657 levels of both PDR and qFDRP. These CpGs thus are located in regions showing
658 variable methylation profiles in bulk sequencing data and might represent regions
659 with stochastic methylation in HSCs.

660
661 After identifying all CpGs fulfilling the criteria above, we enriched the selected CpGs for those
662 located in the vicinity (100bp) of at least one TFBS of an important hematopoietic TF (Table
663 S3). We then selected 105 CpGs specifically methylated in HSCs, 70 in MPP1, 70 in MPP2, 75
664 in MPP3/4, 210 IMCs, and 80 WSH (Figure S1c,d). Additionally, we included the following
665 control amplicons: 20 constitutively methylated, 20 constitutively unmethylated and 50
666 amplicons without a Hhal cut-sequence. Control amplicons are required to identify cells from
667 the data, because the remaining amplicons are digested depending on their methylation state.
668 We uploaded this list to the Mission Bio Designer tool (<https://designer.missionbio.com/>) to
669 receive a final list of 663 amplicons and corresponding primer sequences (Table S3). The CpGs
670 were further annotated according to their location in the genome with respect to chromatin
671 states defined in Vu et al., 2023³³.

672
673 *Human panel design for scTAM-seq*
674 The design for the human panel closely followed the guidelines of the mouse panel. Two
675 previously published datasets were used to similarly profile DMCs, IMCs, and WSH. Sites were
676 selected to not include single nucleotide polymorphisms according to dbSNP version 151 and
677 to be located in the Hhal cut sequence.

678 (i) *Differentially methylated CpGs (DMCs)*. We considered peripheral blood and bone
679 marrow samples from the dataset of Farlik et al²⁷. Samples with an average coverage
680 across all CpGs below 1 were removed. Differentially methylated CpGs between HSCs,
681 MPPs, multi-lymphoid progenitors (MLPs; combining MLP0, MLP1, MLP2, MLP3),
682 common lymphoid progenitors (CLPs), common myeloid progenitors (CMPs),

683 granulocyte-macrophage progenitors (GMPs) were computed using *RnBeads*. CpGs
684 with a mean methylation difference higher than 0.1 between the cell types were
685 identified as DMCs.

686 (ii) *Intermediately methylated CpGs (IMCs)*. We performed IMC detection on HSC-
687 enriched lineage-negative (Lin- CD34+ CD38-) samples from eight male donors using
688 the Adelman et al.⁵⁰ dataset. To deal with data sparsity, we set the maximum quantile
689 of missing values per site to 0.005 and removed any sites that exceeded this threshold.
690 IMCs were defined as CpGs with a DNA methylation level between 0.25 and 0.75 in at
691 least 5 samples. When checking for a Hhal cut site we allowed for a maximum of 25
692 CpG sites in the extended region around the IMC.

693 (iii) *CpGs harboring within-sample heterogeneity (WSH)*. We used the same data set to
694 identify CpGs with a variance higher than 0.1 across all samples.

695

696 We additionally created genotyping amplicons that cover mutations in ASXL1, DNMT3A, TET2,
697 TP53, JAK2, IDH2, PPM1D, SF3B1, IDH1, and SRSF2. We used 62 amplicons covering these
698 genes from the Tapestri Single-cell DNA Myeloid Panel by Mission Bio
699 (<https://missionbio.com/products/panels/myeloid/>) as a base panel, excluding amplicons
700 harboring a the Hhal restriction sequence GCGC. We designed further amplicons for exons in
701 the aforementioned genes that had a coverage of less than 60% in the default myeloid panel.
702 To prevent these amplicons from harboring a recognition site, we perfomed a virtual digestion
703 of the exonic sequences using the Hhal cut sequence. We then uploaded a list containing the
704 fragmented genomic regions to the Mission Bio Designer tool, which resulted in 82 additional
705 amplicons. We included 20 amplicons targeting chromosome Y designed according to the
706 additional genotyping amplicons and 50 control amplicons without an Hhal cut-sequence. We
707 uploaded the CpG targets and readily designed genotyping, chromosome Y, and control
708 amplicons using the Mission Bio Designer tool. The final list comprises 665 amplicons and
709 corresponding primer sequences. The resulting 448 CpG targeting amplicons are divided into
710 215 DMC, 145 IML, and 88 WSH amplicons (Table S4).

711

712 *Sequencing*

713 Libraries were sequenced on an Illumina NovaSeq 6000 with 2x100bp (scTAM-seq mouse),
714 2x150bp (scTAM-seq human), 2x50 bp (scRNA-seq) and 2x50 bp (protein libraries) reads. For
715 an overview of the sequencing statistics see Table S5.

716

717 *Data processing*

718 For processing of raw data we used the pipeline available at
719 <https://github.com/veltenlab/scTAM-seq-scripts>. Briefly, barcodes were extracted from the
720 raw sequencing files before alignment to the reference genome subset to the CpG panel.
721 Reads mapping to each of the amplicons were quantified to generate a count matrix and DNA
722 methylation states were determined using a cutoff of one sequencing read as in the original
723 scTAM-seq publication³⁰. We used those cellular barcodes that had more than 10 sequencing
724 reads in at least 70% of the control (non-Hhal) amplicons. Doublets were removed using the
725 DoubletDetection tool (<https://zenodo.org/record/2678042>).

726

727 To determine the primer combinations that reliably amplify in our panel, we performed a
728 single experiment without the restriction enzyme. For this experiment, wildtype Lin- cKIT⁺ cells

729 were used and we determined that 453 of the 573 non-control amplicons (79%) amplified in
730 more than 90% of the cells. These amplicons were used for subsequent analysis.

731
732 For the surface protein data, the Mission Bio pipeline was used to extract sequencing reads
733 for a particular cell-barcode/antibody-barcode combination. We restricted analysis of the
734 protein data to those cellular barcodes identified in the DNA methylation library.

735
736 *Data integration and annotation of cell states*

737 We constructed Seurat⁵⁶ objects for each of the scTAM-seq samples individually using the
738 binary DNA methylation matrix. To integrate all the samples in the main LARRY experiment,
739 we used Seurat's IntegrateData⁵⁶ function. Then, we used Seurat's standard workflow without
740 normalization to obtain a low dimensional representation of our data using uMAP. We
741 removed cells in low-density parts of the uMAP, since we found these cells to be of lower
742 quality using the non-digested control amplicons. To annotate the cell type clusters we
743 obtained as result of the Seurat workflow, we inspected (i) the expression of surface protein,
744 (ii) the DNA methylation states of important lineage-specific TFs, and (iii) the DNA methylation
745 states of CpGs in bulk data. To that end, we first determined sites unmethylated in a cell type
746 cluster using the Wilcoxon Rank Sum test. For those sites, we investigated whether they are
747 in the vicinity of any of the 39 TFs in Table S3 and computed enrichment p-values with the
748 Fisher exact test. A full vignette is available at <https://github.com/veltenlab/EPI-clone>.

749
750 In the case of the mature cell and aging experiments, we did not perform batch integration,
751 since both samples were processed as one batch. To remove the effect of clone on the
752 differentiation UMAP, we computed the low-dimensional representation only on CpGs not
753 significantly (Chi-Square test p-value after Bonferroni correction larger than 1×10^{-8}) associated
754 with the LARRY barcode. Annotation of the cell type clusters was analogously performed using
755 bulk methylation values, de-methylation of TFBS, and surface protein expression.

756
757 For the aging experiment, we used the static CpGs selected in the main LARRY experiment to
758 perform clonal clustering. We then selected the clones with more than 75 cells, due to the
759 larger overall cell number in the aging experiment (Mission Bio Tapestri version v2 vs. v3, Table
760 S5). For comparing the clonal output across the two experiments, we quantified the
761 contribution of each clone towards the three lineages and visualized this as a heatmap or as
762 barcharts.

763
764 For the human experiment, the data of each patient was investigated separately. Analysis was
765 conducted as described above, but cell types were annotated exclusively using surface protein
766 expression.

767
768 For the scRNA-seq dataset, we used cellranger to generate transcriptomic and surface protein
769 count matrices, which were used as input to Seurat. Harmony⁵⁷ was used for batch integration
770 and the cell type annotation was performed using known hematopoietic marker genes
771 together with the expression of surface proteins.

772
773 *Processing of LARRY Barcodes*
774 Sequencing reads mapping to the amplicon harboring the LARRY barcode were extracted from
775 the raw sequencing reads using the fluorophore sequence:

776 GCTAGGAGAGACCATATGGGATCCGAT. The LARRY barcode was determined using the base pairs
777 following the GFP sequence, given that the sequence matches the rules by which the barcode
778 was constructed. Barcode extraction was performed using a modified version of the scripts
779 provided in the original LARRY publication² (<https://github.com/AllonKleinLab/LARRY>).
780 Barcodes supported by less than 5 sequencing reads were discarded and LARRY barcodes with
781 a Hamming distance lower than 3 were merged for each of the experimental batches
782 individually.

783
784 Notably, each cell can harbor more than one unique LARRY barcode due to multiple lentiviral
785 infections. In these cases, groups of LARRY barcodes get jointly passed on to the progeny. To
786 call clones in this setting, we computed for any pair of LARRY barcodes the extent to which
787 these two barcodes were observed in an overlapping set of cells (formally, a Jaccard index).
788 LARRY barcodes were then clustered according to this distance metric. We used a permutation
789 test to determine LARRY barcodes that are merged together to a clone. When LARRY barcodes
790 were merged, cells were assigned to the merged clone if any constituent LARRY barcode was
791 observed.

792
793 *Clustering by clone (EPI-Clone)*
794 The EPI-Clone algorithm is divided into three steps, (i) identification of static CpGs, (ii)
795 identification of cells from expanded clones and (iii) clustering of cells from expanded clones.
796 A detailed, step-by-step vignette is available at <https://github.com/veltenlab/EPI-clone>. In
797 brief:

798 (i) *Identification of static CpGs.* For each combination of CpG and surface protein, EPI-
799 Clone performs a Kolmogorov-Smirnov test to investigate if cells with methylated
800 CpG differ in surface antigen expression relative to cells with unmethylated CpG.
801 CpGs with no significant antigen association according to a Bonferroni criterion are
802 then selected, if their average methylation across all cells is less than 90% but
803 higher than 25% in mouse and higher than 5% in human. In the main LARRY
804 experiment from figure 2/3, this resulted in the identification of 110 CpGs. In the
805 human experiment depicted in figure 5, 113 CpGs were identified.

806 (ii) *Identification of cells from expanded clones.* PCA is performed on all CpGs from
807 step (1). In the reduced dimensional space obtained by the first n=100 PCs, the
808 average Euclidean distance to the k=5 nearest neighbors is determined. Effects of
809 cell state, batch and sequencing depth on this measure of local density are then
810 removed by linear regression. We observed that smoothing the resulting quantity
811 locally over twenty nearest neighbors additionally improved performance. Optimal
812 parameters n and k of this step were identified by systematic grid search, using
813 LARRY barcodes as a ground truth; they can also be justified by the consideration
814 that n needs to be large (since there is little co-variation between stochastic clonal
815 epi-mutations), and k needs to be small (since the goal here is to identify cells
816 interspersed between clusters of clones).

817 (iii) *Clustering of expanded clones.* Cells from expanded clones were clustered using
818 the standard Seurat workflow, again in a space spanned by n=100 PCs.

819
820
821 **References**

822 1. Kretzschmar, K., and Watt, F.M. (2012). Lineage Tracing. *Cell* **148**, 33–45.

823 10.1016/j.cell.2012.01.002.

824 2. Weinreb, C., Rodriguez-Fraticelli, A., Camargo, F.D., and Klein, A.M. (2020). Lineage
825 tracing on transcriptional landscapes links state to fate during differentiation. *Science*
826 (80-). 367, eaaw3381. 10.1126/science.aaw3381.

827 3. Naik, S.H., Perié, L., Swart, E., Gerlach, C., van Rooij, N., de Boer, R.J., and
828 Schumacher, T.N. (2013). Diverse and heritable lineage imprinting of early
829 hematopoietic progenitors. *Nature* 496, 229–232. 10.1038/nature12013.

830 4. Chan, M.M., Smith, Z.D., Grosswendt, S., Kretzmer, H., Norman, T.M., Adamson, B.,
831 Jost, M., Quinn, J.J., Yang, D., Jones, M.G., et al. (2019). Molecular recording of
832 mammalian embryogenesis. *Nature* 570, 77–82. 10.1038/s41586-019-1184-5.

833 5. Bowling, S., Sritharan, D., Osorio, F.G., Nguyen, M., Cheung, P., Rodriguez-Fraticelli,
834 A., Patel, S., Yuan, W.-C., Fujiwara, Y., Li, B.E., et al. (2020). An Engineered CRISPR-
835 Cas9 Mouse Line for Simultaneous Readout of Lineage Histories and Gene Expression
836 Profiles in Single Cells. *Cell* 181, 1410-1422.e27. 10.1016/j.cell.2020.04.048.

837 6. Kalhor, R., Kalhor, K., Mejia, L., Leeper, K., Graveline, A., Mali, P., and Church, G.M.
838 (2018). Developmental barcoding of whole mouse via homing CRISPR. *Science* (80-).
839 361. 10.1126/science.aat9804.

840 7. Junker, J.P., Spanjaard, B., Peterson-Maduro, J., Alemany, A., Hu, B., Florescu, M., and
841 Van Oudenaarden, A. (2016). Massively parallel clonal analysis using CRISPR/Cas9
842 induced genetic scars. *bioRxiv*.

843 8. Pei, W., Feyerabend, T.B., Rössler, J., Wang, X., Postrach, D., Busch, K., Rode, I.,
844 Klaproth, K., Dietlein, N., Quedenau, C., et al. (2017). Polylox barcoding reveals
845 hematopoietic stem cell fates realized in vivo. *Nature* 548, 456–460.
846 10.1038/nature23653.

847 9. Pei, W., Shang, F., Wang, X., Fanti, A.-K., Greco, A., Busch, K., Klaproth, K., Zhang, Q.,
848 Quedenau, C., Sauer, S., et al. (2020). Resolving Fates and Single-Cell Transcriptomes
849 of Hematopoietic Stem Cell Clones by PolyloxExpress Barcoding. *Cell Stem Cell* 27,
850 383-395.e8. 10.1016/j.stem.2020.07.018.

851 10. Rodriguez-Fraticelli, A.E., Wolock, S.L., Weinreb, C.S., Panero, R., Patel, S.H., Jankovic,
852 M., Sun, J., Calogero, R.A., Klein, A.M., and Camargo, F.D. (2018). Clonal analysis of
853 lineage fate in native hematopoiesis. *Nature* 553, 212–216. 10.1038/nature25168.

854 11. Rodriguez-Fraticelli, A.E., Weinreb, C., Wang, S.-W., Migueles, R.P., Jankovic, M.,
855 Usart, M., Klein, A.M., Lowell, S., and Camargo, F.D. (2020). Single-cell lineage tracing
856 unveils a role for TCF15 in hematopoiesis. *Nature* 583, 585–589. 10.1038/s41586-
857 020-2503-6.

858 12. Fennell, K.A., Vassiliadis, D., Lam, E.Y.N.N., Martelotto, L.G., Balic, J.J., Hollizeck, S.,
859 Weber, T.S., Semple, T., Wang, Q., Miles, D.C., et al. (2021). Non-genetic
860 determinants of malignant clonal fitness at single-cell resolution. *Nature* 601.
861 10.1038/s41586-021-04206-7.

862 13. Mitchell, E., Spencer Chapman, M., Williams, N., Dawson, K.J., Mende, N., Calderbank,
863 E.F., Jung, H., Mitchell, T., Coorens, T.H.H., Spencer, D.H., et al. (2022). Clonal
864 dynamics of hematopoiesis across the human lifespan. *Nature* 606, 343–350.
865 10.1038/s41586-022-04786-y.

866 14. Lee-Six, H., Øbro, N.F., Shepherd, M.S., Grossmann, S., Dawson, K., Belmonte, M.,
867 Osborne, R.J., Huntly, B.J.P., Martincorena, I., Anderson, E., et al. (2018). Population
868 dynamics of normal human blood inferred from somatic mutations. *Nature* 561, 473–
869 478. 10.1038/s41586-018-0497-0.

870 15. Ludwig, L.S., Lareau, C.A., Ulirsch, J.C., Christian, E., Muus, C., Li, L.H., Pelka, K., Ge, W., Oren, Y., Brack, A., et al. (2019). Lineage Tracing in Humans Enabled by Mitochondrial Mutations and Single-Cell Genomics. *Cell* **176**, 1325–1339.e22. 10.1016/j.cell.2019.01.022.

871 16. Lareau, C.A., Ludwig, L.S., Muus, C., Gohil, S.H., Zhao, T., Chiang, Z., Pelka, K., Verboon, J.M., Luo, W., Christian, E., et al. (2021). Massively parallel single-cell mitochondrial DNA genotyping and chromatin profiling. *Nat. Biotechnol.* **39**, 451–461. 10.1038/s41587-020-0645-6.

872 17. Beneyto-Calabuig, S., Merbach, A.K., Kniffka, J.-A., Antes, M., Szu-Tu, C., Rohde, C., Waclawiczek, A., Stelmach, P., Gräßle, S., Pervan, P., et al. (2023). Clonally resolved single-cell multi-omics identifies routes of cellular differentiation in acute myeloid leukemia. *Cell Stem Cell* **30**, 706–721.e8. 10.1016/j.stem.2023.04.001.

873 18. Weng, C., Yu, F., Yang, D., Poeschla, M., Liggett, L.A., Jones, M.G., Qiu, X., Wahlster, L., Caulier, A., Hussmann, J.A., et al. (2024). Deciphering cell states and genealogies of human hematopoiesis. *Nature* **627**, 389–398. 10.1038/s41586-024-07066-z.

874 19. Chapman, M.S., and Campbell, P. (2023). Mitochondrial mutation, drift and selection during human development and ageing. *researchsquare*. 10.21203/rs.3.rs-3083262/v1.

875 20. Gaiti, F., Chaligne, R., Gu, H., Brand, R.M., Kothen-Hill, S., Schulman, R.C., Grigorev, K., Risso, D., Kim, K.-T., Pastore, A., et al. (2019). Epigenetic evolution and lineage histories of chronic lymphocytic leukaemia. *Nature* **569**, 576–580. 10.1038/s41586-019-1198-z.

876 21. P. E. de Souza, C., Andronescu, M., Masud, T., Kabeer, F., Biele, J., Laks, E., Lai, D., Ye, P., Brimhall, J., Wang, B., et al. (2020). Epiclomal: Probabilistic clustering of sparse single-cell DNA methylation data. *PLOS Comput. Biol.* **16**, e1008270. 10.1371/journal.pcbi.1008270.

877 22. Chaligne, R., Gaiti, F., Silverbush, D., Schiffman, J.S., Weisman, H.R., Kluegel, L., Gritsch, S., Deochand, S.D., Gonzalez Castro, L.N., Richman, A.R., et al. (2021). Epigenetic encoding, heritability and plasticity of glioma transcriptional cell states. *Nat. Genet.* **53**, 1469–1479. 10.1038/s41588-021-00927-7.

878 23. Li, L., Bowling, S., McGeary, S.E., Yu, Q., Lemke, B., Alcedo, K., Jia, Y., Liu, X., Ferreira, M., Klein, A.M., et al. (2023). A mouse model with high clonal barcode diversity for joint lineage, transcriptomic, and epigenomic profiling in single cells. *Cell*. 10.1016/j.cell.2023.09.019.

879 24. Gabbutt, C., Schenck, R.O., Weisenberger, D.J., Kimberley, C., Berner, A., Househam, J., Lakatos, E., Robertson-Tessi, M., Martin, I., Patel, R., et al. (2022). Fluctuating methylation clocks for cell lineage tracing at high temporal resolution in human tissues. *Nat. Biotechnol.* **40**, 720–730. 10.1038/s41587-021-01109-w.

880 25. Kreger, J., Mooney, J.A., Shibata, D., and Maclean, A.L. (2024). Developmental hematopoietic stem cell variation explains clonal hematopoiesis later in life. *bioRxiv*. 10.1101/2024.03.02.583106.

881 26. Izzo, F., Lee, S.C., Poran, A., Chaligne, R., Gaiti, F., Gross, B., Murali, R.R., Deochand, S.D., Ang, C., Jones, P.W., et al. (2020). DNA methylation disruption reshapes the hematopoietic differentiation landscape. *Nat. Genet.* **52**, 378–387. 10.1038/s41588-020-0595-4.

882 27. Farlik, M., Halbritter, F., Müller, F., Choudry, F.A., Ebert, P., Klughammer, J., Farrow, S., Santoro, A., Ciaurro, V., Mathur, A., et al. (2016). DNA Methylation Dynamics of

917 Human Hematopoietic Stem Cell Differentiation. *Cell Stem Cell* 19, 808–822.
918 10.1016/j.stem.2016.10.019.

919 28. Cabezas-Wallscheid, N., Klimmeck, D., Hansson, J., Lipka, D.B., Reyes, A., Wang, Q.,
920 Weichenhan, D., Lier, A., von Paleske, L., Renders, S., et al. (2014). Identification of
921 Regulatory Networks in HSCs and Their Immediate Progeny via Integrated Proteome,
922 Transcriptome, and DNA Methylome Analysis. *Cell Stem Cell* 15, 507–522.
923 10.1016/j.stem.2014.07.005.

924 29. Kremer, L.P., Cerrizuela, S., Eid, M., Shukairi, A., Ellinger, T., Straub, J., Dehler, S.,
925 Korkmaz, A., Weichenhan, D., Plass, C., et al. (2022). Single-cell triple-omics uncovers
926 DNA methylation as key feature of stemness in the healthy and ischemic adult brain.
927 *bioRxiv*, 2022.07.13.499860.

928 30. Bianchi, A., Scherer, M., Zaurin, R., Quililan, K., Velten, L., and Beekman, R. (2022).
929 scTAM-seq enables targeted high-confidence analysis of DNA methylation in single
930 cells. *Genome Biol.* 23, 229. 10.1186/s13059-022-02796-7.

931 31. Müller, F., Scherer, M., Assenov, Y., Lutsik, P., Walter, J., Lengauer, T., and Bock, C.
932 (2019). RnBeads 2.0: comprehensive analysis of DNA methylation data. *Genome Biol.*
933 20, 55. 10.1186/s13059-019-1664-9.

934 32. Scherer, M., Nebel, A., Franke, A., Walter, J., Lengauer, T., Bock, C., Müller, F., and
935 List, M. (2020). Quantitative comparison of within-sample heterogeneity scores for
936 DNA methylation data. *Nucleic Acids Res.* 48, e46–e46. 10.1093/nar/gkaa120.

937 33. Vu, H., and Ernst, J. (2023). Universal chromatin state annotation of the mouse
938 genome. *Genome Biol.* 24, 153. 10.1186/s13059-023-02994-x.

939 34. Marchal, C., Sasaki, T., Vera, D., Wilson, K., Sima, J., Rivera-Mulia, J.C., Trevilla-García,
940 C., Nogues, C., Nafie, E., and Gilbert, D.M. (2018). Genome-wide analysis of
941 replication timing by next-generation sequencing with E/L Repli-seq. *Nat. Protoc.* 13,
942 819–839. 10.1038/nprot.2017.148.

943 35. Nam, A.S., Dusaj, N., Izzo, F., Murali, R., Myers, R.M., Mouhieddine, T.H., Sotelo, J.,
944 Benbarche, S., Waarts, M., Gaiti, F., et al. (2022). Single-cell multi-omics of human
945 clonal hematopoiesis reveals that DNMT3A R882 mutations perturb early progenitor
946 states through selective hypomethylation. *Nat. Genet.* 10.1038/s41588-022-01179-9.

947 36. Hui, T., Cao, Q., Wegrzyn-Woltosz, J., O'Neill, K., Hammond, C.A., Knapp, D.J.H.F.,
948 Laks, E., Moksa, M., Aparicio, S., Eaves, C.J., et al. (2018). High-Resolution Single-Cell
949 DNA Methylation Measurements Reveal Epigenetically Distinct Hematopoietic Stem
950 Cell Subpopulations. *Stem Cell Reports* 11, 578–592. 10.1016/j.stemcr.2018.07.003.

951 37. Verovskaya, E., Broekhuis, M.J.C., Zwart, E., Ritsema, M., van Os, R., de Haan, G., and
952 Bystrykh, L. V. (2013). Heterogeneity of young and aged murine hematopoietic stem
953 cells revealed by quantitative clonal analysis using cellular barcoding. *Blood* 122, 523–
954 532. 10.1182/blood-2013-01-481135.

955 38. Ashcroft, P., Manz, M.G., and Bonhoeffer, S. (2017). Clonal dominance and
956 transplantation dynamics in hematopoietic stem cell compartments. *PLOS Comput.
957 Biol.* 13, e1005803. 10.1371/journal.pcbi.1005803.

958 39. Sun, J., Ramos, A., Chapman, B., Johnnidis, J.B., Le, L., Ho, Y.-J., Klein, A., Hofmann, O.,
959 and Camargo, F.D. (2014). Clonal dynamics of native haematopoiesis. *Nature* 514,
960 322–327. 10.1038/nature13824.

961 40. Busch, K., Klapproth, K., Barile, M., Flossdorf, M., Holland-Letz, T., Schlenner, S.M.,
962 Reth, M., Höfer, T., and Rodewald, H.-R. (2015). Fundamental properties of
963 unperturbed haematopoiesis from stem cells in vivo. *Nature* 518, 542–546.

964 10.1038/nature14242.

965 41. Urbanus, J., Cosgrove, J., Beltman, J.B., Elhanati, Y., Moral, R.A., Conrad, C., van Heijst,
966 J.W., Tubeuf, E., Velds, A., Kok, L., et al. (2023). DRAG in situ barcoding reveals an
967 increased number of HSPCs contributing to myelopoiesis with age. *Nat. Commun.* **14**,
968 2184. 10.1038/s41467-023-37167-8.

969 42. Beerman, I., Bhattacharya, D., Zandi, S., Sigvardsson, M., Weissman, I.L., Bryder, D.,
970 and Rossi, D.J. (2010). Functionally distinct hematopoietic stem cells modulate
971 hematopoietic lineage potential during aging by a mechanism of clonal expansion.
972 *Proc. Natl. Acad. Sci. U. S. A.* **107**, 5465–5470. 10.1073/pnas.1000834107.

973 43. Sudo, K., Ema, H., Morita, Y., and Nakauchi, H. (2000). Age-associated characteristics
974 of murine hematopoietic stem cells. *J. Exp. Med.* **192**, 1273–1280.
975 10.1084/jem.192.9.1273.

976 44. Verovskaya, E., Broekhuis, M.J.C., Zwart, E., Ritsema, M., van Os, R., de Haan, G., and
977 Bystrykh, L. V (2013). Heterogeneity of young and aged murine hematopoietic stem
978 cells revealed by quantitative clonal analysis using cellular barcoding. *Blood* **122**, 523–
979 532. 10.1182/blood-2013-01-481135.

980 45. Kuribayashi, W., Oshima, M., Itokawa, N., Koide, S., Nakajima-Takagi, Y., Yamashita,
981 M., Yamazaki, S., Rahmutulla, B., Miura, F., Ito, T., et al. (2021). Limited rejuvenation
982 of aged hematopoietic stem cells in young bone marrow niche. *J. Exp. Med.* **218**.
983 10.1084/JEM.20192283.

984 46. Ganuza, M., Hall, T., Finkelstein, D., Wang, Y.-D., Chabot, A., Kang, G., Bi, W., Wu, G.,
985 and McKinney-Freeman, S. (2019). The global clonal complexity of the murine blood
986 system declines throughout life and after serial transplantation. *Blood* **133**, 1927–
987 1942. 10.1182/blood-2018-09-873059.

988 47. Dykstra, B., Olthof, S., Schreuder, J., Ritsema, M., and de Haan, G. (2011). Clonal
989 analysis reveals multiple functional defects of aged murine hematopoietic stem cells.
990 *J. Exp. Med.* **208**, 2691–2703. 10.1084/jem.20111490.

991 48. Wahlestedt, M., Erlandsson, E., Kristiansen, T., Lu, R., Brakebusch, C., Weissman, I.L.,
992 Yuan, J., Martin-Gonzalez, J., and Bryder, D. (2017). Clonal reversal of ageing-
993 associated stem cell lineage bias via a pluripotent intermediate. *Nat. Commun.* **8**,
994 14533. 10.1038/ncomms14533.

995 49. Konturek-Ciesla, A., Dhapola, P., Zhang, Q., Säwén, P., Wan, H., Karlsson, G., and
996 Bryder, D. (2023). Temporal multimodal single-cell profiling of native hematopoiesis
997 illuminates altered differentiation trajectories with age. *Cell Rep.* **42**, 112304.
998 10.1016/j.celrep.2023.112304.

999 50. Adelman, E.R., Huang, H.T., Roisman, A., Olsson, A., Colaprico, A., Qin, T., Lindsley,
1000 R.C., Bejar, R., Salomonis, N., Grimes, H.L., et al. (2019). Aging human hematopoietic
1001 stem cells manifest profound epigenetic reprogramming of enhancers that may
1002 predispose to leukemia. *Cancer Discov.* **9**, 1080–1101. 10.1158/2159-8290.CD-18-
1003 1474.

1004 51. Goodell, M.A., and Rando, T.A. (2015). Stem cells and healthy aging. *Science* (80-.).
1005 350, 1199–1204. 10.1126/science.aab3388.

1006 52. Walter, D., Lier, A., Geiselhart, A., Thalheimer, F.B., Huntscha, S., Sobotta, M.C.,
1007 Moehrle, B., Brocks, D., Bayindir, I., Kaschutnig, P., et al. (2015). Exit from dormancy
1008 provokes DNA-damage-induced attrition in haematopoietic stem cells. *Nature* **520**,
1009 549–552. 10.1038/nature14131.

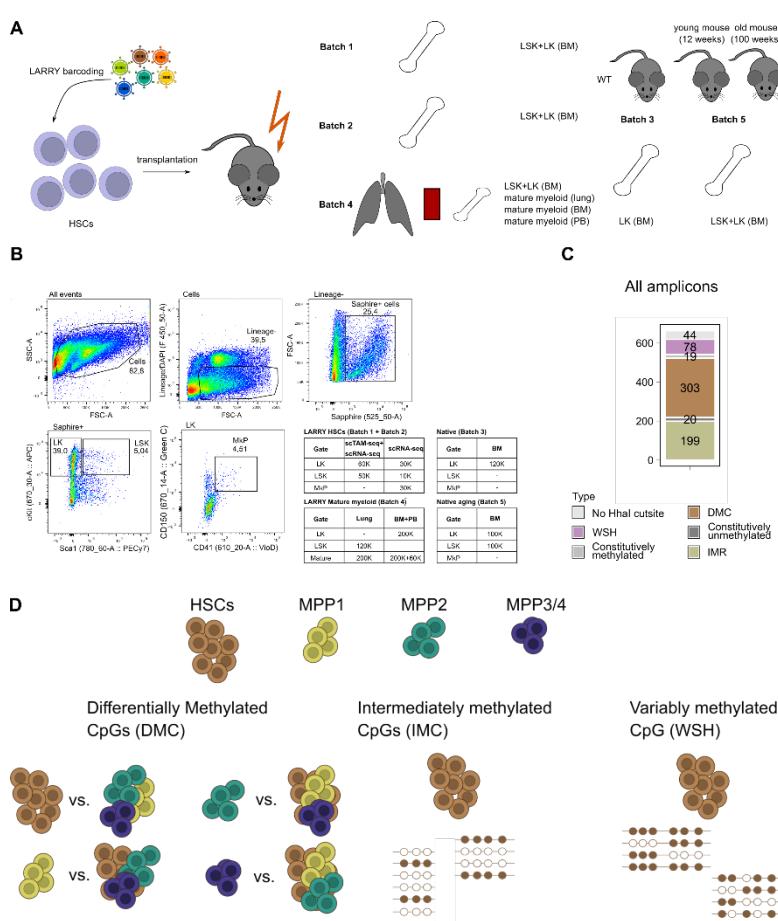
1010 53. Ho, T.T., Dellorusso, P. V, Verovskaya, E. V, Bakker, S.T., Flach, J., Smith, L.K., Ventura,

1011 P.B., Lansinger, O.M., Héault, A., Zhang, S.Y., et al. (2021). Aged hematopoietic stem
1012 cells are refractory to bloodborne systemic rejuvenation interventions. *J. Exp. Med.*
1013 218. 10.1084/jem.20210223.

1014 54. Wilkinson, A.C., Ishida, R., Kikuchi, M., Sudo, K., Morita, M., Crisostomo, R.V.,
1015 Yamamoto, R., Loh, K.M., Nakamura, Y., Watanabe, M., et al. (2019). Long-term ex
1016 vivo haematopoietic-stem-cell expansion allows nonconditioned transplantation.
1017 *Nature* 571, 117–121. 10.1038/s41586-019-1244-x.

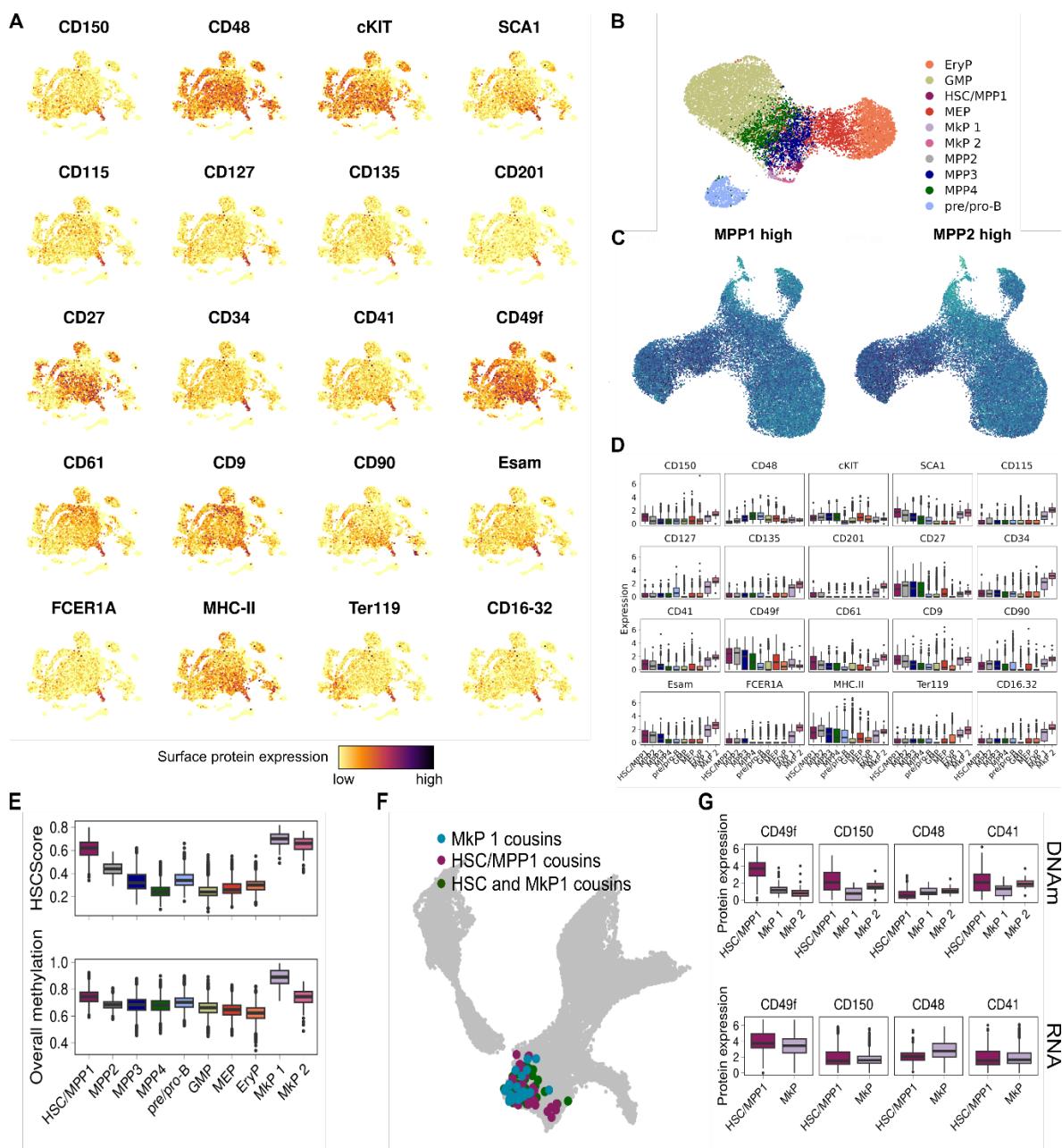
1018 55. Landau, D.A., Clement, K., Ziller, M.J., Boyle, P., Fan, J., Gu, H., Stevenson, K., Sougnez,
1019 C., Wang, L., Li, S., et al. (2014). Locally Disordered Methylation Forms the Basis of
1020 Intratumor Methylome Variation in Chronic Lymphocytic Leukemia. *Cancer Cell* 26,
1021 813–825. 10.1016/j.ccr.2014.10.012.

1022 56. Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., Zheng, S., Butler, A., Lee, M.J.,
1023 Wilk, A.J., Darby, C., Zager, M., et al. (2021). Integrated analysis of multimodal single-
1024 cell data. *Cell* 184, 3573-3587.e29. 10.1016/j.cell.2021.04.048.

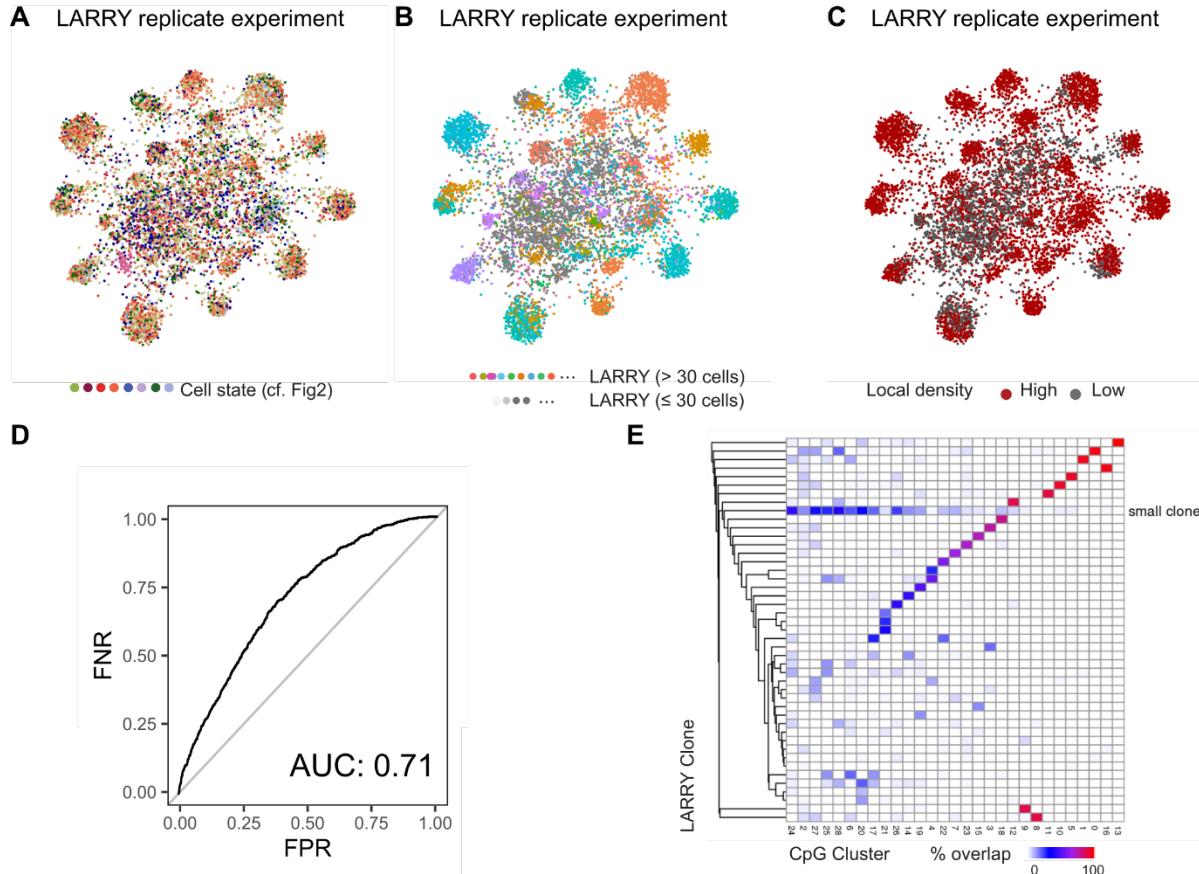

1025 57. Korsunsky, I., Millard, N., Fan, J., Slowikowski, K., Zhang, F., Wei, K., Baglaenko, Y.,
1026 Brenner, M., Loh, P., and Raychaudhuri, S. (2019). Fast, sensitive and accurate
1027 integration of single-cell data with Harmony. *Nat. Methods* 16, 1289–1296.
1028 10.1038/s41592-019-0619-0.

1029

1030

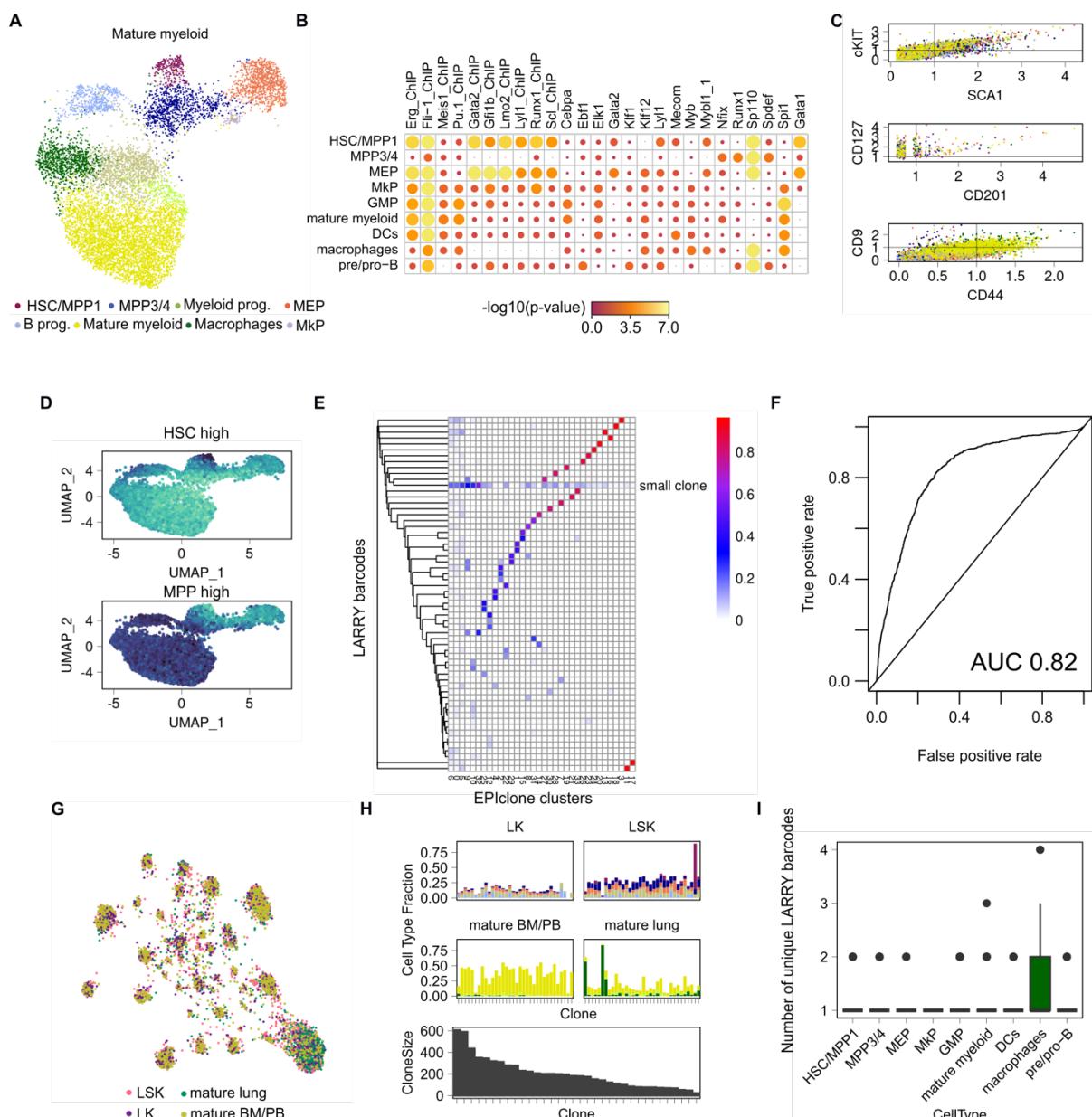

1031 **Supplementary Figures**

1032


1033

1034 **Figure S1: Overview of experimental design, CpG panel and FACS scheme. A.** Overview of
 1035 experimental design. Data generation involved five experimental batches (i) main LARRY
 1036 experiment (LK, LSKs), (ii) replicate LARRY experiment (LK, LSK), (iii) native hematopoiesis (LK),
 1037 (iv) mature myeloid cells from lung, bone marrow (BM) and peripheral blood (PB), and (v)
 1038 aging experiment for native hematopoiesis. **B.** FACS scheme employed for the main LARRY
 1039 experiments. The table shows the number of cells from different gates used as input for the
 1040 experiments. **C.** Distribution of the CpGs covered by all 663 amplicons in our panel. For
 1041 abbreviations, see panel D. **D.** Schematic overview of the CpG selection for scTAM-seq. Bulk
 1042 DNA methylation data was collected from Cabezas-Wallscheid et al., 2014. We identified three
 1043 classes of CpGs, which we included in the final panel design shown in Figure 1b: DMCs, IMCs,
 1044 and WSH. The lines represent sequencing reads, where filled circles stand for methylated and
 1045 unfilled circles for unmethylated CpGs, respectively.

1046
1047 **Figure S2: ScTAM-seq delivers a high-resolution map of murine hematopoiesis. A.** The uMAP
1048 from Figure 1C/D is color coded by the expression of 20 surface proteins measured using
1049 oligonucleotide-tagged antibodies. **B.** uMAP defined only on the *dynamic* CpGs. The plot
1050 shows all 13,885 cells from the main LARRY experiments. Indicated in colors are the cell type
1051 labels defined in Figure 2. **C.** Relative methylation state of cells in amplicons specifically
1052 methylated in MPP1/MPP2 in bulk data. **D.** Expression of the 20 surface proteins across all the
1053 cell types as boxplots. The expression values were normalized using the centered-log-ratio
1054 normalization. **E.** HSC score defined on the methylation states of CpGs methylated in HSCs in
1055 bulk DNAm data and overall methylation state across all CpGs assayed. **F.** RNA uMAP as in
1056 main Figure 1G, highlighting HSC and MkP cells that harbor the same LARRY barcodes
1057 observed in the specific DNA methylation clusters HSC and MkP 1. These cells are cousins to
1058 the cells classified as HSC/MkP1 in the DNA methylation experiment. **G.** Surface protein
1059 expression of the MkP clusters and HSCs in both the DNAm (upper panel) and RNA (lower
1060 panel) modality.


1061

1062

1063 **Figure S3: Validation of EPI-clone's capability on a biological replicate. A, B, C.** Clonal tSNE
1064 as in Figure 3B and C, computed for a biological replicate of the LARRY experiment. Indicated
1065 are the cell state (A) and the LARRY barcode (B). C highlights cells that were selected as part
1066 of expanded clones, based on local density in PCA space. **D.** Receiver-Operating Characteristics
1067 Curve characterizing the performance of the local density criterion in selecting expanded
1068 clones for the biological replicate. **E.** Overlap between clones defined using EPI-clone and
1069 ground truth labels for the biological replicate.

1070

1071

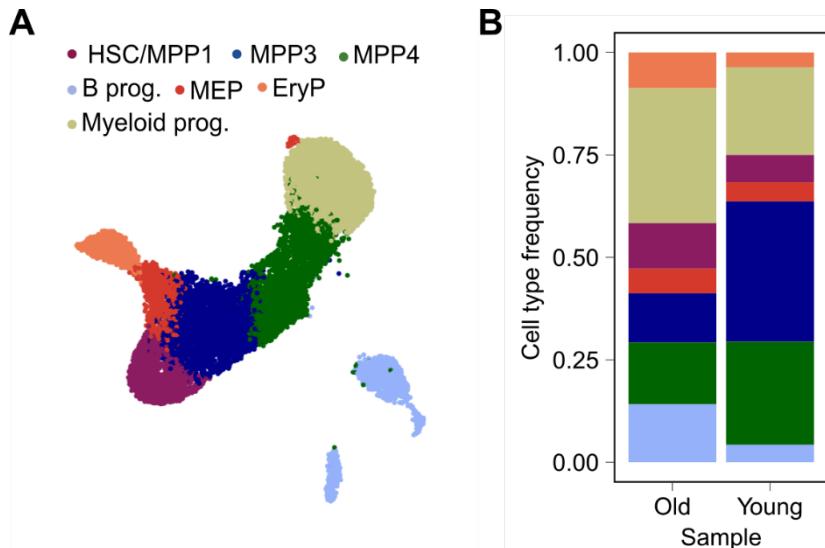

1072

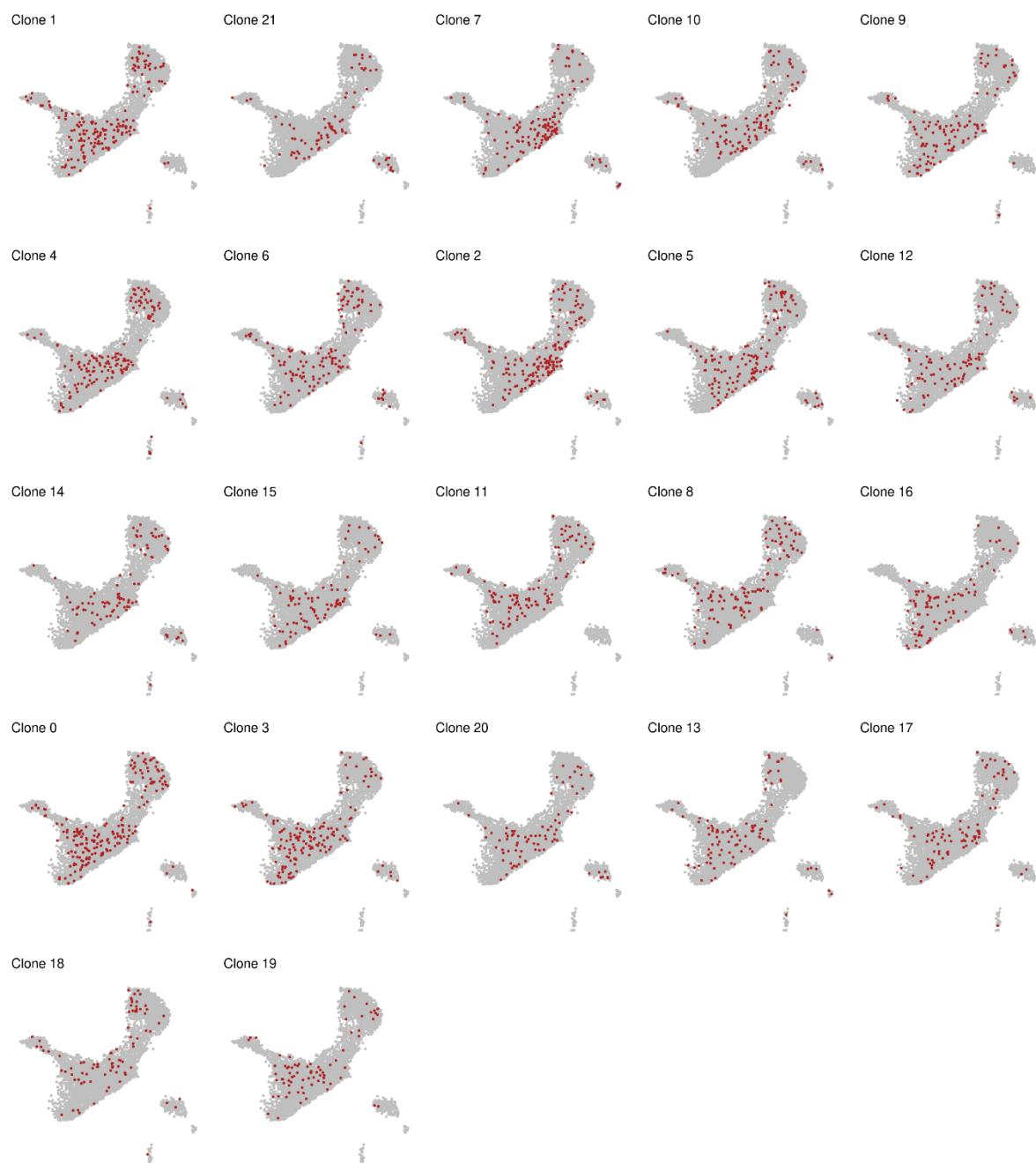
Figure S4: EPI-Clone's performance in mature myeloid cells. A. uMAP based on dynamic CpGs showing the differentiation state of mature myeloid cells and their progenitors. **B.** Enrichment of CpGs specifically unmethylated in a cell-type cluster according to the vicinity to the annotated TFBS. **C.** Expression of surface proteins in the different cell type clusters for stem-cell-specific markers (cKIT, SCA1, CD201) and markers of mature myeloid cells (CD9, CD44). **D.** uMAP as in A, highlighting relative methylation state of cells across all CpGs that are methylated in HSCs or MPP3/4 in bulk data. **E.** Overlap between clones defined using EPI-clone and ground truth clonal labels for the mature myeloid experiment. **F.** Receiver-Operating Characteristics Curve characterizing the performance of the local density criterion in selecting expanded clones for the mature myeloid experiment. **G:** uMAP representation as in Figure 3h visualizing the different cellular compartments including progenitors (LSK, LK) and mature cells from lung and BM/PB. **H.** Cell type distribution and clone sizes in different clones identified by EPI-Clone and stratified by cellular compartment **I.** Number of unique LARRY barcodes per cell type cluster.

1086

1087

1088

1089


1090 **Figure S5: Cell type distributions in the old versus the young mouse. A.** UMAP based on the
1091 dynamic CpGs depicting the cell types identified in the aging experiment (combing young and
1092 old mouse). **B.** Comparison of cell type distributions in the old versus the young mouse.

1093

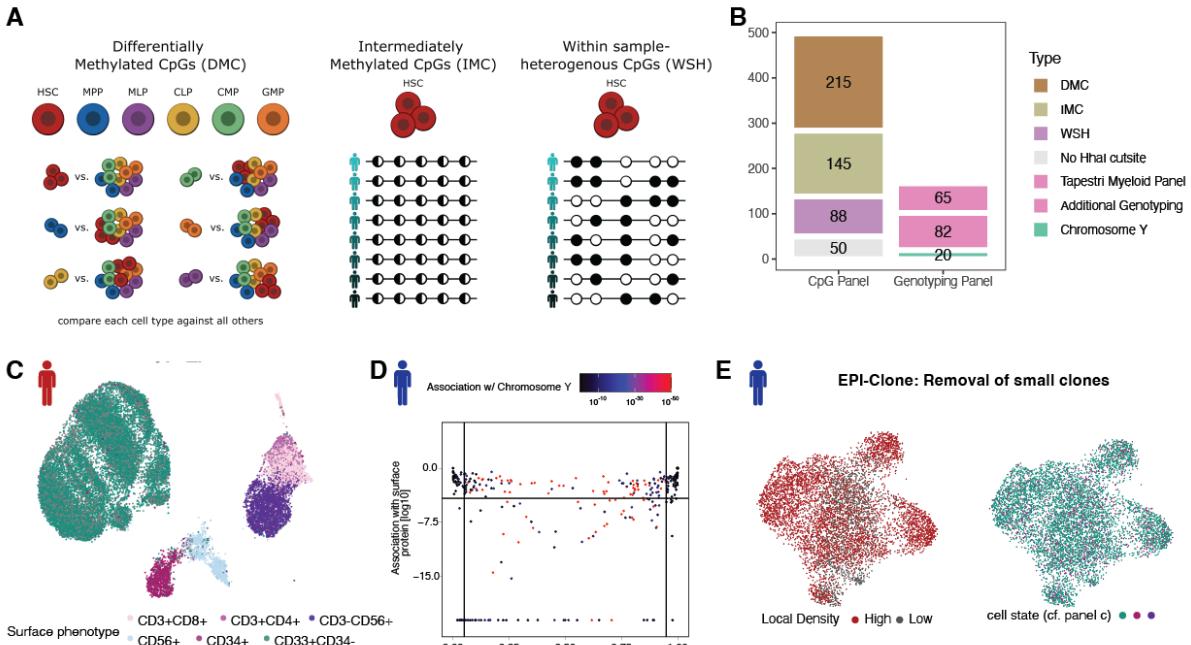

1094
1095
1096

Figure S6: Visualization of clones in the differentiation uMAP for the old mouse.

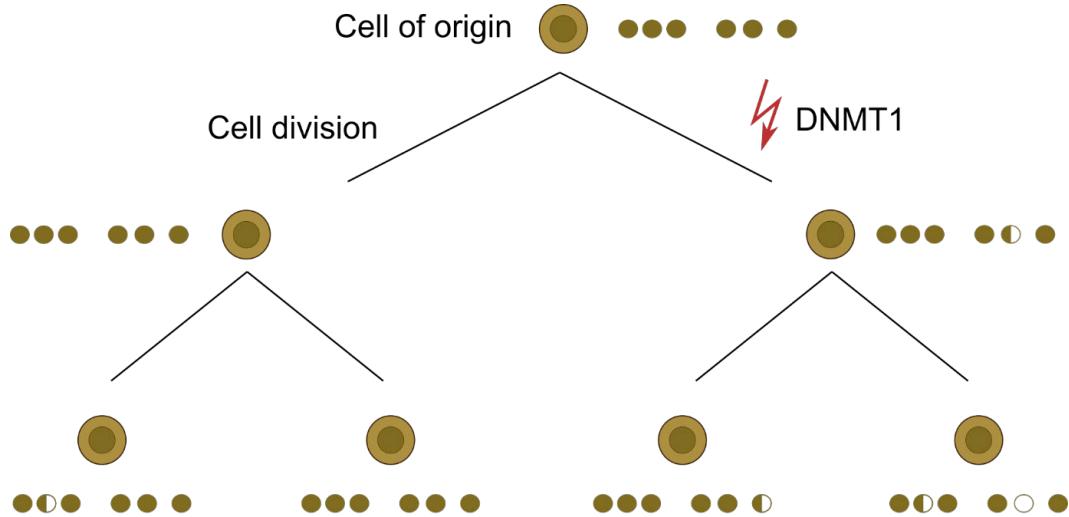

1097
1098

Figure S7: Visualization of clones in the differentiation uMAP for the young mouse.

1099
1100
1101
1102
1103
1104
1105
1106

Figure S8: Application of EPI-Clone to human bone marrow samples. A. Scheme illustrating selection of target CpGs, see also Methods. **B.** Bar chart illustrating the composition of the panel. **C.** tSNE of all CpGs for donor 2, see also main figure 5b. **D.** Selection of static and dynamic CpGs for donor 1, see also main figure 1e. **E.** Identification of small clones, see also main figure 3c,d.

1107
1108
1109
1110
1111
1112
1113
1114
1115

Figure S9: Model for the origin of epimutations. From a fully methylated default state in the cell of origin, epimutations randomly occur as loss of methylation. One potential explanation is the insufficient function of DNMT1 for copying the methylation state to the daughter strand, causing a methylation loss on one of the strands. In a subsequent cellular division, DNA methylation is then lost on both strands.

Supplementary Tables

Table S1: TotalSeq-B antibodies used for generating surface protein expression libraries.

1116 Table S2: List of primers used for constructing and amplifying LARRY barcodes.
1117 Table S3: List of all amplicons and CpGs covered by the scTAM-seq murine panel with further
1118 annotations.
1119 Table S4: Sequencing statistics for scTAM-seq and scRNA-seq libraries.
1120

1121 **Supplementary Note: Characterization of MkP 1 and MkP 2 in single-cell DNA methylation**
1122 **data**

1123 Unexpectedly, in DNA methylation data we observed two clearly distinct populations with a
1124 surface phenotype of LSK-CD49f-CD150+CD48-CD41+CD61+, consistent with a
1125 megakaryocyte progenitor identity (Figure S2D). Interestingly, both these populations
1126 resembled HSCs according to bulk methylome profiles (Figure S2E), but differed with regard
1127 to their overall methylation level: MkP2 was highly methylated, expressed more CD41, and
1128 down-regulated CD49f, relative to HSCs and MkP1 (Figure S2E, S2G). In the scRNA-seq data,
1129 no distinct sub-clusters of megakaryocyte precursors were observed. To characterize the gene
1130 expression of these putative MkP populations, we made use of the LARRY barcode information
1131 that was shared between the RNA-seq and the scTAM-seq experiment.

1132 We observed that MkP1 cells from the methylation experiment had cousins in the scRNAseq
1133 experiment that fell into all precursor states, with a particular enrichment of cells near the
1134 HSC to megakaryocyte precursor interface (Figure S2F). In particular, these cells were in cycle,
1135 lacked expression of myeloid or HSC markers, and instead expressed a large number of genes
1136 associated with suppression of HSC proliferation (Apoe, Tgfb3, Zeb2, Auts2, Ezh2), and also
1137 the transcription factors Gata1 and Dach2, as well as the megakaryocyte markers Itga2b at
1138 low levels. The close relationship between these cells and the bona fide,
1139 Vwf+Itga2b+CD41+CD61+ megakaryocyte progenitors suggests that this population
1140 corresponds to a cycling intermediate between HSCs and MkPs. By contrast, MkP2 expressed
1141 megakaryocyte markers more highly. Possibly, these cells methylate their DNA extensively to
1142 prepare for endomitosis. Notably, we did not observe any overlapping lineage barcodes
1143 between MkP2 cells and cell in the scRNA-seq modality.

1144 Together this finding highlights that some cell states may be more visible in the DNAm
1145 modality compared to scRNA-seq.
1146