

High-throughput screening of human genetic variants by pooled prime editing

AUTHORS AND AFFILIATIONS

*Michael Herger¹, *Christina M. Kajba¹, Megan Buckley¹, Ana Cunha², Molly Strom², and Gregory M. Findlay¹

¹The Genome Function Laboratory, The Francis Crick Institute, London, United Kingdom

²Viral Vector Core, Human Biology Facility, The Francis Crick Institute, London, United Kingdom

*These authors contributed equally

Correspondence to G.M.F. (greg.findlay@crick.ac.uk)

1 ABSTRACT

2

3 Understanding the effects of rare genetic variants remains challenging, both in coding and non-
4 coding regions. While multiplexed assays of variant effect (MAVEs) have enabled scalable
5 functional assessment of variants, established MAVEs are limited by either exogenous expression
6 of variants or constraints of genome editing. Here, we introduce a pooled prime editing (PE)
7 platform in haploid human cells to scalably assay variants in their endogenous context. We first
8 optimized delivery of variants to HAP1 cells, defining optimal pegRNA designs and establishing
9 a co-selection strategy for improved efficiency. We characterize our platform in the context of
10 negative selection by testing over 7,500 pegRNAs targeting *SMARCB1* for editing activity and
11 observing depletion of highly active pegRNAs installing loss-of-function variants. We next assess
12 variants in *MLH1* via 6-thioguanine selection, assaying 65.3% of all possible SNVs in a 200-bp
13 region spanning exon 10 and distinguishing LoF variants with high accuracy. Lastly, we assay
14 362 non-coding *MLH1* variants across a 60 kb region in a single experiment, identifying
15 pathogenic variants acting via multiple mechanisms with high specificity. Our analyses detail how
16 filtering for highly active pegRNAs can facilitate both positive and negative selection screens.
17 Accordingly, our platform promises to enable highly scalable functional assessment of human
18 variants.

19

20 KEY WORDS

21

22 prime editing (PE); multiplexed assay of variant effect (MAVE); *MLH1*; *SMARCB1*; saturation
23 mutagenesis; functional genomics; genome editing technology; cancer predisposition

24 **INTRODUCTION**

25
26 Experiments to determine how genetic variants alter function can inform mechanisms, provide
27 evidence for causal associations underlying human disease, and improve computational tools for
28 variant effect prediction^{1–3}. Attempts to leverage human genetic data for both biological discovery
29 and precision medicine, however, have been hindered by a shortage of functional evidence.
30 Despite improving performance of computational predictors^{4–6}, rare variants are still highly
31 challenging to interpret, both in coding and non-coding regions. Most variants observed in humans
32 have never been assayed for functional effects, and hundreds to thousands of variants of
33 uncertain significance (VUS) have been reported in each of many clinically actionable genes^{7,8}.
34

35 Multiplexed assays of variant effect (MAVEs) have emerged as a means of providing functional
36 evidence of variant effects at scale^{9,10}. Key to their success is the ability to test many variants all
37 in a single experiment. While numerous MAVEs have demonstrated high predictive power for
38 identifying disease-associated variants^{11–13}, technologies using genome editing to install variants
39 have proven particularly accurate at detecting loss-of-function (LoF) variants in disease genes^{14–}
40 ¹⁶, owing to advantages conferred by assaying variants in their native genomic context. For
41 instance, endogenous levels of expression are maintained and variants with disruptive effects on
42 both splicing and protein function can be readily identified.
43

44 However, current methods for assaying pools of variants via genome editing all have limitations.
45 Saturation Genome Editing (SGE) leverages homology-directed DNA repair (HDR) to install
46 hundreds of variants per experiment¹⁷. Yet, suboptimal scalability arises from low HDR rates in
47 many cell types, as well as the requirement that variants be confined to a single region (100-200
48 bp) per experiment. Consequently, many separate SGE libraries are required to cover complete
49 coding sequences¹⁶. Base editing screens are highly scalable and offer the advantage of being
50 able to target sites genome-wide^{18,19}, yet are limited by the fact that most substitutions cannot be
51 made by a single base editor and by the potential of unintended editing at target sites to confound
52 results.
53

54 We reasoned that prime editing (PE) systems may constitute a way forward by enabling virtually
55 any short variant anywhere in the genome to be installed²⁰. Prime editors are Cas9 nickases
56 coupled to reverse transcriptase domains that create programmed edits via reverse transcription
57 (RT). A single prime editing guide RNA (pegRNA) determines both the site of nicking and the
58 variant to be edited into the genome. Original PE systems displayed lower efficiencies than
59 evolved base editors used in recent screening applications²¹, but recent innovations have boosted
60 the performance of PE in human cells. These include engineered prime editors for greater
61 activity²², improved design of pegRNAs²³, and manipulation of host repair pathways to increase
62 desired PE outcomes²².
63

64 Whether these improved PE systems enable scalable and accurate functional characterization of
65 variants genome-wide has yet to be established. Saturation Prime Editing (SPE) was the first
66 implementation of PE for assaying variant libraries²⁴. This work established that saturation
67 mutagenesis of defined loci could be achieved with PE, and that variants could be assayed for

68 functional effects with high accuracy. However, this required testing individual pegRNAs for
69 activity prior to library design and direct sequencing of edited loci for effect quantification. More
70 recently, PE screening using lentiviral delivery of pegRNAs was described, but effects of
71 established pathogenic and benign variants were not readily distinguishable²⁵. Therefore, while
72 the potential of PE to introduce virtually any short variant at any locus in a cost-effective manner
73 may prove ideal for testing large variant libraries, at present it remains unclear to what extent
74 large PE screens are feasible. Challenges to overcome include, for instance, observing effects of
75 variants that are recessive at the cellular level, and achieving sufficiently high editing rates such
76 that variant effects can be accurately inferred from quantifying selection on pegRNAs.

77
78 Here, we set out to optimize a platform for engineering large numbers of variants with PE and to
79 rigorously assess the platform's potential to assay variants in both coding and non-coding regions,
80 using both negative and positive selection. Our findings show that with stringent filtering for highly
81 active pegRNAs, variants leading to functional effects can be accurately identified, suggesting
82 that with further improvement and scaled implementation this platform will enable functional
83 characterization of human variants genome-wide.

84

85 RESULTS

86

87 A pooled prime editing screening platform for efficient installation of diverse edits

88

89 We sought to develop a high-throughput screening platform that enables the functional
90 interrogation of diverse genetic variants installed via prime editing (**Figure 1A**). To this end, we
91 created a monoclonal HAP1 cell line with stable expression of the optimized prime editor PEmax²²
92 via lentiviral integration (**Figure 1B**). HAP1 is a near-haploid human cell line with high value in
93 genetic screening because recessive variant effects can be efficiently assayed²⁶. Since HAP1
94 cells are mismatch repair (MMR) proficient, a second HAP1 line was generated with concomitant
95 expression of a dominant negative MLH1 protein (MLH1dn) shown to enhance prime editing
96 efficiency²².

97

98 We reasoned that akin to other pooled CRISPR screening modalities^{18,19,27}, genomic integration
99 and deep sequencing of pegRNAs over time could serve as a functional readout, provided each
100 pegRNA efficiently introduces the variant it encodes. Such a system would afford highly scalable
101 interrogation of variant effects without being confined to a single locus or gene per experiment.

102

103 Towards optimizing PE efficiencies, we leveraged engineered pegRNAs (epegRNAs)²³.
104 Specifically, we incorporated the structured RNA motif tevopreQ₁ as a stabilizing 3' extension cap.
105 Hereafter, epegRNAs modified in this manner will be referred to simply as pegRNAs.

106

107 pegRNA design tools such as PRIDICT and DeepPrime^{28,29} now offer predictions of editing
108 efficiency for user-defined variants. However, our work predates these models, so we designed
109 pegRNAs using PEGG³⁰. To maximize our chances of including an efficient pegRNA for each
110 variant, in our libraries we allowed up to nine different pegRNA designs per variant, with diverse
111 spacer and 3' extension sequences.

112
113 We reasoned that an integrated readout of pegRNA activity may be important for accurate variant
114 scoring due to the large variability of PE efficiencies within pegRNA pools. Therefore, downstream
115 of each pegRNA, we included 55 bp of genomic target sequence to serve as a surrogate target
116 (ST), capable of informing pegRNA editing efficiency after genomic integration (**Figure 1C**). STs
117 have been previously employed for pooled base editing³¹ and (pe)gRNA activity screens³².
118
119 We experimentally tested the following strategies to further optimize variant installation via PE: 1)
120 enrichment via co-selection, 2) use of optimized pegRNA scaffolds, and 3) incorporation of PAM-
121 disruptive synonymous edits in pegRNA design. Co-selection systems enable the enrichment of
122 intended edits by co-editing a second locus leading to a selectable phenotype. This strategy has
123 been shown to increase rates of intended edits in NHEJ- and HDR-mediated editing³³, as well as
124 in base editing and prime editing^{34,35}. In our system, we adopted a PE co-selection strategy in
125 which a SNV within *ATP1A1*, a HAP1-essential gene, leads to resistance against the Na⁺/K⁺-
126 ATPase inhibitor ouabain³⁵.
127
128 First, we identified a pegRNA which efficiently installs T804N with a silent, PAM-disruptive
129 mutation in HEK293T cells (**Figure S1**). We next determined editing and ouabain selection
130 performance with this pegRNA when expressed stably in our HAP1 PE lines, observing 10.4% of
131 cells with the intended T804N mutation at the earliest timepoint post-transduction (**Figure 1D**).
132 Continued culture of cells for 7 more days in the absence of ouabain resulted in a 3.3-fold increase
133 in T804N editing to 34.6%, indicating that stable expression of all PE components leads to
134 continuous accumulation of edits. After 7 days of ouabain selection, 84.4% of alleles contained
135 both T804N and the silent PAM mutation. This experiment validates efficient *ATP1A1* editing and
136 ouabain selection in our HAP1-based PE system, enabling assessment of ouabain-based co-
137 selection during screening.
138
139 Structurally stabilized guide RNA (gRNA) scaffolds have been shown to enhance various Cas-
140 based activities³⁶⁻³⁸. We compared the performance of four different scaffold designs with a set
141 of 973 pegRNAs installing 160 multi-nucleotide variants (MNVs) in *SMARCB1* (up to 9 pegRNAs
142 per variant). This experiment was conducted via lentiviral delivery of pooled pegRNA libraries to
143 HAP1:PEmax+MLH1dn. Editing rates for each pegRNA-scaffold combination were assessed 7
144 days post-transduction via deep sequencing of pegRNA-ST cassettes to quantify the percentage
145 of ST reads containing correct edits (**Supplementary Table 1**). Incorrect pegRNA-ST cassettes
146 (e.g., due to recombination or errors in synthesis or sequencing) were discarded from analysis
147 (see **Methods**, **Figure S2**).
148
149 pegRNAs with the original gRNA scaffold³⁹ achieved a median editing rate of 0.6% (**Figure 1E**).
150 All stabilized scaffolds performed better than the original. The F+E scaffold, comprising an A-U
151 flip and stem extension³⁶, achieved a 2.4-fold improvement in median PE efficiency over the
152 original scaffold (**Figure 1F**). 87% of all pegRNAs exhibited higher or equal editing activity using
153 the F+E scaffold. Swapping the flipped A-U bases in the F+E scaffold with a G-C pair (v1)³⁷ lead
154 to a comparable increase in editing (median 2.1% correct ST editing; **Figure 1E**). Further
155 stabilization by introducing a superstable loop within the first hairpin of the scaffold (v2), as

156 reported in the t-lock design³⁸, did not increase pegRNA activities. In summary, stabilized pegRNA
157 scaffold designs proved optimal for obtaining maximal PE efficiency across a large number of
158 pegRNAs.

159
160 Next, we investigated whether SNVs are most efficiently introduced as individual mutations or
161 with additional edits. Previous work has suggested that programming silent mutations in addition
162 to each target SNV may be advantageous because MNVs are less efficiently recognized by the
163 MMR machinery²². To test this in our platform, we designed two pegRNA libraries, one encoding
164 191 distinct SNVs on their own and the other programming the same set of SNVs with 1 or 2
165 additional silent mutations, creating 166 corresponding MNVs in total. The libraries were pooled
166 to a total of 2,188 pegRNAs and assayed in HAP1:PEmax+MLH1dn to measure ST editing rates
167 for each pegRNA on day 10 (**Supplementary Table 2**).

168
169 Only the best-performing pegRNAs per variant were analyzed to account for differences in how
170 restrictive pegRNA design may be for either SNVs or MNVs. It is established that mutations within
171 the protospacer adjacent motif (PAM) are more efficiently installed by PE and, indeed, we found
172 that PAM-disruptive edits achieved 2.1- or 1.6-fold higher editing as SNVs or MNVs, respectively
173 (**Figure 1G**). Overall, however, we observed higher editing rates for SNVs than MNVs
174 independent of PAM disruption (median 61% increase in editing comparing SNVs to MNVs;
175 **Figure 1H**). As most SNVs were installed more efficiently as single substitutions, we proceeded
176 with screening libraries designed in this manner.

177
178 **High-throughput essentiality screening of SMARCB1 variants**

179
180 We next analyzed whether our pooled PE platform would enable the functional interrogation of
181 variants via negative selection (**Figure 2A**). Specifically, we asked whether sequencing of
182 pegRNA-ST cassettes alone could accurately define variants with deleterious effects (i.e. without
183 needing to perform endogenous target site sequencing).

184
185 SMARCB1 encodes a core subunit of the BAF (BRG1/BRM-associated factor) chromatin
186 remodeling complex and inactivating mutations are known to drive diverse cancers⁴⁰. SMARCB1
187 is also among ~2,200 essential genes in HAP1⁴¹, meaning LoF variants should be depleted in
188 culture. We independently confirmed SMARCB1 essentiality in HAP1 by observing depletion of
189 frameshifting indels after Cas9-mediated editing (**Figure S3**).

190
191 Exons 8 and 9 of SMARCB1 fully encode the C-terminal coiled-coil domain (CTD), which harbors
192 recurrently observed missense mutations in cancers and the rare developmental disorder Coffin-
193 Siris syndrome^{40,42}. We designed a pegRNA pool to install all possible SNVs in two 200-bp regions
194 across exons 8 and 9 (**Figure 2B**). Additionally, we included MNVs encoding nonsense mutations
195 as well as 3-bp deletions of every codon within the target regions.

196
197 We programmed variant-level redundancy in the pegRNA library, allowing a maximum of 9
198 pegRNA designs per variant, which was possible for most SNVs (**Figure 2C**). Although pegRNA
199 coverage for some mutations was lower due to the scarcity of NGG-PAM sequences, we

200 successfully designed pegRNAs for nearly all intended SNVs (99.5%), MNVs (100%) and
201 deletions (100%).

202
203 In total, 10,954 pegRNAs programming 1,194 SNVs, 55 MNVs, and 55 deletions were cloned into
204 a lentiviral expression vector with the F+E scaffold. In addition to STs, the cassette included the
205 co-selection pegRNA (*ATP1A1-T804N*) for optional enrichment of edited cells. The resulting
206 library was introduced to HAP1:PEmax+MLH1dn via lentiviral transduction (multiplicity of infection
207 (MOI) less than 0.5) and deep sequencing of pegRNA-ST cassettes was performed on days 4,
208 10, 20, 27, and 34 to measure pegRNA frequencies and editing dynamics. To test the co-selection
209 strategy, one pool of cells was treated with ouabain on day 5, and two replicate pegRNA libraries
210 without co-selection were also maintained (see **Methods**). We observed strong correlations for
211 pegRNA frequencies and ST editing percentages between replicate libraries and across
212 timepoints (**Figures S4A and S4B**).

213
214 We assessed PE efficiency of pegRNAs designed to introduce SNVs across both target regions
215 (exons 8 and 9). First, to assess variant-level editing activity from sequencing of pegRNA-ST
216 cassettes, ST editing percentages were averaged across all pegRNAs encoding the same edit
217 and mapped to the genomic coordinate of each variant. This revealed highly variable PE
218 efficiencies within the pegRNA pool (**Figure S4C**). 40% of pegRNAs had ST editing rates above
219 10%. We also checked the top-performing pegRNA per SNV and found that 89.9% of all SNVs
220 were installed with at least 10% ST editing by at least one pegRNA (**Figure 2D**). Editing rates
221 across target regions were highly variable, except for a few regions of lower PE efficiencies that
222 coincided with low pegRNA coverage.

223
224 We next asked which pegRNA features correlated with higher PE efficiencies. Of pegRNA
225 features analyzed, RTT homology length was most strongly correlated with ST editing on day 10
226 ($R = 0.43$, $r = 0.37$), followed by PBS length and PBS GC-content (**Figure 2E**). On the contrary,
227 total RTT length and nick-to-edit distance were negatively correlated with ST editing. We also
228 observed a modest correlation with CRISPICK scores (i.e., predictions of gRNA on-target
229 activity)^{37,43}. Finally, we retrospectively computed PRIDICT scores²⁸ where possible for our
230 pegRNAs, and found a reasonable correlation with experimentally determined activities,
231 demonstrating the value of this tool for future pegRNA design (**Figures S4D and S4E**).

232
233 One potential advantage of stably expressing all PE components is that intended edits may
234 accumulate in culture over time. Indeed, for all libraries tested we observed a continued increase
235 in ST editing with prolonged cell culture (**Figure 2F**). Median ST editing rates across the pegRNA
236 pool increased from a modest 4.1% on day 4 to 34% on day 34 for samples without co-selection.
237 Overall ST editing was highest with the addition of ouabain-mediated co-selection on day 5,
238 reaching a median efficiency of 45% by day 34. This was a modest improvement compared to
239 samples without co-selection. Notably, ST editing percentages across all samples were bimodal
240 by day 34. For instance, with co-selection, 33.0% of pegRNAs showed greater than 75% editing,
241 while 30.6% of pegRNAs showed less than 10% editing.

242

243 For optimal scalability, it would be ideal if the presence of a variant in the genome could be inferred
244 from sequencing of the pegRNA-ST cassette alone, but for this to work effectively, ST editing
245 rates must accurately reflect endogenous target (ET) editing rates. To assess this, we sequenced
246 ETs in *SMARCB1* amplified from the same cells used to measure pegRNA frequencies and ST
247 editing. In the ouabain co-selected day 10 sample, we identified 79% of all intended variants at
248 frequencies greater than background (defined via sequencing of unedited controls). Because
249 multiple pegRNAs were used to engineer each variant, we used the variant-level ST editing rate
250 calculated for each set of pegRNAs encoding a single variant for comparison to endogenous
251 variant frequencies (**Figures 2G and S4F**), observing a correlation of $r = 0.53$ for all variants, and
252 $r = 0.69$ for MNVs and DELs. This demonstrates ST editing can be used as a reasonable proxy
253 for identifying pegRNAs that install variants with high activity.

254
255 Observing that nearly all variant frequencies in ETs slowly increased during the 34-day
256 experiment, it was unclear whether selection against pegRNAs encoding LoF variants could be
257 determined from sequencing pegRNAs alone (**Figures S4G and S4H**). To investigate this, we
258 calculated a pegRNA score for each pegRNA in the library, defined as its day 34 frequency
259 normalized to its day 10 frequency (**Supplementary Table 3**). We also calculated variant-level
260 function scores by averaging scores from pegRNAs installing the same variant (**Supplementary**
261 **Table 4**).

262
263 Given selection is predicted to be strongest against the most active pegRNAs encoding LoF
264 variants, we explored how different ST editing activity filters impact our ability to separate signal
265 from noise. If no threshold is applied, or only a lax threshold set to 10% ST editing on day 10,
266 there is no clear separation between pegRNAs installing nonsense variants and synonymous
267 variants (**Figure 2H**). However, using an ST editing threshold of 30%, pegRNAs encoding
268 nonsense and canonical splice variants score distinctly lower than pegRNAs encoding
269 synonymous variants. This trend becomes more pronounced if only highly active pegRNAs are
270 retained, with a mean nonsense pegRNA score of -3.70 when using a stringent ST editing
271 threshold of 75%. While effects of negative selection are readily apparent for highly active
272 pegRNAs, imposing a stringent threshold excludes most pegRNAs tested, resulting in a
273 considerable reduction in the number of variants successfully assayed (**Figure 2H**). Nevertheless,
274 applying an ST editing threshold of 75% enables many variants predicted to be LoF (i.e.,
275 nonsense, canonical splice) to be distinguished by low pegRNA scores and low function scores
276 (**Figures 2I-J and S5**).

277
278 Among 164 variants scored with this filter, we identified 12 significantly depleted variants,
279 including 3 nonsense and 2 canonical splice variants, using a false discovery rate (FDR) of 0.05
280 to call LoF variants (see **Methods**). LoF missense variants clustered within a highly conserved α -
281 helix of the SMARCB1 CTD. We also scored the intronic SNV c.1119-12C>G as LoF, which is
282 annotated as a VUS in ClinVar⁷ but has been hypothesized to disrupt splicing⁴⁴. Indeed, our
283 functional data and a SpliceAI score⁴ of 0.96 corroborate this effect. Overall, these examples
284 illustrate how select LoF variants efficiently installed by PE can be functionally identified via
285 negative selection and suggest that further improvements to editing efficiency will enable many
286 more variants to be assessed in this manner.

287

288 Accurate determination of variant effects on *MLH1* function

289

290 We next used our platform to assay variants across *MLH1*, a tumor suppressor gene encoding a
291 subunit of the MMR pathway. Germline pathogenic variants in *MLH1* predispose patients to
292 several types of cancer, including colorectal and endometrial carcinoma, and nearly 2,000 VUS
293 in *MLH1* have been reported in ClinVar⁷. Unlike *SMARCB1*, *MLH1* is not essential in HAP1.
294 However, it has been shown that loss of MMR pathway function in HAP1 leads to partial 6-
295 thioguanine (6TG) resistance⁴⁵. Therefore, 6TG selection may enable positive selection of
296 pegRNAs encoding LoF variants. One advantage of this approach is that selection can be initiated
297 after an extended period of editing, therefore increasing the fraction of edited cells at the onset of
298 selection.

299

300 To assess 6TG selection, we performed dilution series in wildtype (WT) HAP1,
301 HAP1:PEmax+MLH1dn, and HAP1:PE2+MLH1-knockout (KO) cells (**Figure S6A**). Compared to
302 WT, HAP1:PE2+MLH1-KO cells were highly resistant to low doses of 6TG, whereas
303 HAP1:PEmax+MLH1dn cells were only mildly resistant. Reasoning that use of
304 HAP1:PEmax+MLH1dn cells for screening may lead to more efficient prime editing but less
305 efficient selection, we performed screens in both HAP1:PEmax and HAP1:PEmax+MLH1dn using
306 different 6TG concentrations (1.2 µg/ml and 1.6 µg/ml, respectively). Screens were also
307 performed both with and without ouabain co-selection.

308

309 Our first screen aimed to identify LoF SNVs in exon 10 of *MLH1*. The exon 10 library consisted of
310 2,696 pegRNAs encoding 598 variants, including nearly all possible SNVs (96%) in a 200-bp
311 region spanning exon 10 and flanking intronic regions, as well as 22 nonsense MNVs (**Figure**
312 **3A**). Libraries were designed, cloned, transduced, and sequenced as for *SMARCB1* experiments,
313 with genomic DNA (gDNA) samples collected on days 4, 13, 20, and 34. Ouabain co-selection
314 was performed from day 13 to day 20, and 6TG selection was initiated on day 20 prior to
315 harvesting surviving cells on day 34. Sequencing of both pegRNA-ST cassettes and endogenous
316 loci was performed.

317

318 We first compared ST editing and ET editing across cell lines and co-selection strategies. We
319 observed higher editing at both STs and ETs in the HAP1:PEmax+MLH1dn cell line compared to
320 HAP1:PEmax (**Figure S6B**). In both lines, ouabain co-selection modestly improved editing at day
321 20. For instance, the median ST editing rate on day 20 was 11.9% in ouabain-treated
322 HAP1:PEmax+MLH1dn cells, compared to 9.1% in cells without ouabain, and in the same line,
323 the median variant frequency in ET sequencing increased from 2.4×10^{-4} to 3.0×10^{-4} with addition
324 of ouabain. As before, editing rates of individual pegRNAs were highly variable. For instance,
325 40% of pegRNAs had ST editing percentages over 25% in ouabain-treated
326 HAP1:PEmax+MLH1dn cells.

327

328 To investigate whether LoF variants could be identified from changes in pegRNA frequencies over
329 time, we calculated pegRNA scores as the log2-ratio of day 34 pegRNA frequency over day 20
330 pegRNA frequency (**Supplementary Table 5**). As before, function scores for individual variants

331 were obtained by averaging scores of all pegRNAs encoding the same variant with ST editing
332 rates greater than a specified threshold (**Supplementary Table 6**). To assess performance for
333 identifying LoF variants, we defined synonymous variants as putatively neutral (pNeut) and
334 nonsense and canonical splice variants as putatively LoF (pLoF), then calculated area under the
335 receiver operating characteristic curve (AUC) measurements using a continuous range of ST
336 editing thresholds. This approach revealed thresholds that enable accurate detection of pLoF
337 variants across all 4 screening conditions (**Figure 3B**). AUCs reached 1.00 in 3 of 4 screens using
338 more stringent thresholds. For example, an AUC of 1.00 was reached using an ST editing
339 threshold of 22% for pegRNAs assayed in HAP1:PEmax with co-selection (**Figure 3B**), while
340 maintaining 20% of pegRNAs designed.

341
342 To include more pegRNAs in analysis, relatively lax ST editing thresholds were set at 5% for
343 experiments in HAP1:PEmax, and at 25% for experiments in HAP1:PEmax+MLH1dn. While more
344 stringent filters may perform optimally for a single condition, this approach allowed more pegRNA
345 scores to be compared across screen conditions (**Figure S7A**).
346

347 We assessed how well pegRNA scores and function scores were correlated between conditions,
348 both before and after filtering pegRNAs on ST editing rates (**Figure S8A-C**). Correlations of
349 pegRNA scores improved with filtering, in turn resulting in well correlated function scores. To
350 determine a final function score for each variant, we required the variant to have been assayed
351 in at least two conditions. This approach led to function scores for 401 out of 598 variants for
352 which pegRNAs were designed, determined from 967 retained pegRNAs.
353

354 To define LoF variants, we defined an empirical null distribution from synonymous variants and
355 set the FDR to 0.01 (**Methods**). Mapping function scores to their genomic position reveals a
356 cluster of LoF missense variants near the end of exon 10 (**Figure 3C**). These missense variants
357 localize to a highly conserved β -sheet in the MLH1 structure (PDB: 4P7A, **Figure 3D**), revealing
358 residues intolerant to mutation.
359

360 To orthogonally validate our exon 10 results, we compared function scores for missense variants
361 to CADD scores, observing a Pearson's correlation of $r = 0.50$ (**Figure 3E**). As many variants in
362 exon 10 have been reported in ClinVar, we also compared function scores across pathogenicity
363 categories. While 57% of "pathogenic" and "likely pathogenic" variants in the region had function
364 scores greater than 2.0, no "benign" or "likely benign" variants scored over 2.0 (**Figure 3F**). This
365 suggests our platform may enable scalable identification of new pathogenic variants. Indeed,
366 7.5% of VUS tested in this region were LoF in our assay.
367

368 Depending on intended use, more stringent filtering of pegRNAs based on ST editing may be
369 implemented. For example, we repeated analyses only on variants with average ST editing rates
370 greater than 36%, corresponding to the lowest threshold at which $AUC = 1.00$ for distinguishing
371 pLoF from pNeut variants. This approach improved the correlation to CADD scores ($r = 0.64$) and
372 resulted in non-overlapping score ranges for $n = 5$ pathogenic SNVs and $n = 9$ benign SNVs
373 (**Figure S9**).
374

375 Finally, we performed sequencing of the endogenous *MLH1* exon 10 region to quantify variants'
376 enrichment in genomic DNA following selection (**Figures 3G and S10A-B**). The highest scoring
377 variants, as determined by pegRNA-based function scores, were also highly enriched in
378 endogenous DNA. The correlation between function score and endogenous function score
379 (defined as the log2-ratio of post-6TG frequency over pre-6TG frequency for each variant in ET
380 sequencing) increased from 0.68 to 0.77 when analyzing only variants with average ST editing
381 percentages greater than 36%. In summary, these experiments demonstrate successful
382 identification of LoF variants with relatively high SNV coverage in a single genomic region, while
383 once more highlighting the importance of stringent pegRNA filtering.

384

385 **Screening all short non-coding *MLH1* variants in ClinVar in a single experiment**

386

387 Non-coding variants are challenging to interpret clinically and have proven difficult to assay at
388 scale via genome editing, especially when distributed over large sequence spaces. To evaluate
389 whether our PE platform could be used for high-throughput assessment of non-coding variants,
390 we designed a pegRNA library encoding all non-coding *MLH1* variants smaller than 10 bp and
391 reported in ClinVar. This library consisted of 3,748 pegRNAs covering 874 variants distributed
392 across 60 kb of *MLH1*, with many variants located near intron-exon boundaries (**Figure 4A**).

393

394 Using the same strategy as for the *MLH1* exon 10 experiment, including repeating screens across
395 four conditions and filtering pegRNAs by activity, we derived final function scores for 362 of the
396 874 variants tested (**Supplementary Tables 7,8**). Compared to the results for exon 10, we
397 observed modestly improved correlations of pegRNA scores and function scores across
398 conditions (**Figures S8D-F**). Once more, filtering of pegRNAs by ST editing was critical to see
399 clear differences between pLoF variants and pNeut variants, defined for this experiment as
400 canonical splice site variants and intronic variants more than 8 bp from any exon, respectively
401 (**Figure S7B**). The screen that best discriminated pLoF variants was performed in HAP1:PEmax
402 with ouabain treatment (**Figure S11**), again confirming an advantage of co-selection.

403

404 Importantly, the vast majority of ClinVar-pathogenic variants assayed had function scores greater
405 than 1.5 (median = 4.87, S.D. = 2.90; **Figure 4B**). In contrast, nearly all benign variants scored
406 neutrally (median = -0.22, S.D. = 1.45), while scores of VUS spanned a wide range (median =
407 0.34, SD = 1.72). Using a stringent threshold to determine LoF variants ($q < 0.01$; **Figure 4C**), we
408 called 54% of ClinVar-pathogenic variants as LoF and only 2.4% of ClinVar-benign variants as
409 LoF (AUC = 0.89 for distinguishing pathogenic and benign).

410

411 As intronic variants deemed LoF are likely to impact splicing, we compared function scores to
412 SpliceAI scores for orthogonal validation (**Figure 4D**). While the highest scoring variants by
413 SpliceAI tended to have high function scores, many variants with intermediate SpliceAI scores
414 (0.25-0.75) also scored as LoF. Overall, only 2 of $n = 96$ intronic variants with SpliceAI scores
415 less than 0.05 were LoF in our screen, suggesting predictive models of splicing will be valuable
416 for prioritizing intronic variants for functional assessment. Whereas many LoF variants disrupt
417 canonical splice sites, LoF variants were also observed in splice regions (3-8 bp from an exon),

418 deeper in introns, in the 5' UTR, and upstream of the transcriptional start site (TSS) (**Figure 4E**).
419 Most variants in these regions lack definitive interpretations in ClinVar.
420

421 One such variant is c.885-3C>G, a VUS upstream of exon 11 predicted by SpliceAI to potentially
422 cause acceptor site loss (SpliceAI score = 0.73) . This variant scored comparably to known
423 pathogenic variants adjacent to exon 11 in our screen (**Figure 4E**, middle). One notable variant
424 deep within intron 15, c.1732-264A>T, is deemed “likely pathogenic” in ClinVar and scores
425 intermediately by SpliceAI (0.39). This variant also scored as LoF in our assay (function score =
426 4.96; **Figure 4E**, right), corroborating its pathogenicity. In the *MLH1* 5'-untranslated region (5'-
427 UTR), we scored c.-7_1del, an 8-bp deletion that disrupts the initiation codon as LoF, as well as
428 3.6% of other variants assayed in the 5'-UTR or upstream of the TSS.
429

430 To validate LoF effects of specific variants, we performed amplicon sequencing of edited regions,
431 using the same gDNA from HAP1:PEmax cells from which pegRNAs were sequenced. Indeed,
432 LoF variants including c.885-3C>G, c.1732-264A>T, and c.-7_1del were strongly enriched in their
433 respective regions post-6TG selection, corroborating pegRNA-based function scores (**Figures**
434 **S10C** and **S10D**). The lack of enrichment seen for nearly all SNVs in the 5'UTR and upstream
435 region was consistent with the low function scores of these variants. Notably, one variant in close
436 proximity to the TSS, c.-219G>T, was deemed LoF in the screen but not strongly enriched in ET
437 sequencing, indicating that its pegRNA-derived function score may be conflated by CRISPR
438 inhibition (CRISPRi) or some other unintended effect. While this example illustrates the
439 importance of validating hits, this experiment nevertheless shows that our PE platform can be
440 used to identify LoF variants acting via diverse mechanisms across large non-coding regions.
441

442 DISCUSSION

443

444 Here, we demonstrate a PE platform that enables scalable functional interrogation of coding and
445 non-coding variants in haploid human cells. We optimize key components of this platform for more
446 efficient editing, demonstrate negative selection against LoF variants in an essential gene, and
447 score a total of 763 variants in *MLH1*, newly identifying LoF variants in both coding and non-
448 coding regions. Further, we extensively characterize the relationship between editing activity and
449 the ability to accurately score variants.
450

451 In the context of well-established MAVEs for assessing variants by genome editing, such as base
452 editing screens^{18,19}, saturation genome editing via HDR¹⁷, and saturation prime editing²⁴, our
453 platform offers the advantage of being able to install any set of short variants virtually anywhere
454 in the genome, provided an active pegRNA can be designed.
455

456 Current limitations stem from the fact that only a limited fraction of pegRNAs lead to robust editing.
457 This explains the incomplete scoring of variants for which we designed pegRNAs. As we show
458 for variants in both *SMARCB1* and *MLH1*, separation of signal from noise depends strongly on
459 discerning more active pegRNAs, as editing percentages vary highly. In our platform, this is made
460 possible via inclusion of STs with each pegRNA assayed. Nevertheless, in these proof-of-concept
461 experiments we observed higher false negative rates for LoF variants than demonstrated in recent

462 MAVE implementations^{16,45}. We show this effect can be mitigated via more stringent pegRNA
463 filtering, though this comes at a cost of reduced coverage.

464

465 Many variants throughout the *MLH1* gene had mildly positive function scores but did not pass the
466 FDR cutoff ($q < 0.01$), and therefore were not deemed LoF. It remains to be determined whether
467 such variants may be hypomorphic alleles. Alternatively, low endogenous editing rates may limit
468 the strength of positive selection measurable via sequencing of pegRNAs alone. In the future,
469 scoring multiple highly active pegRNAs per variant will improve precision.

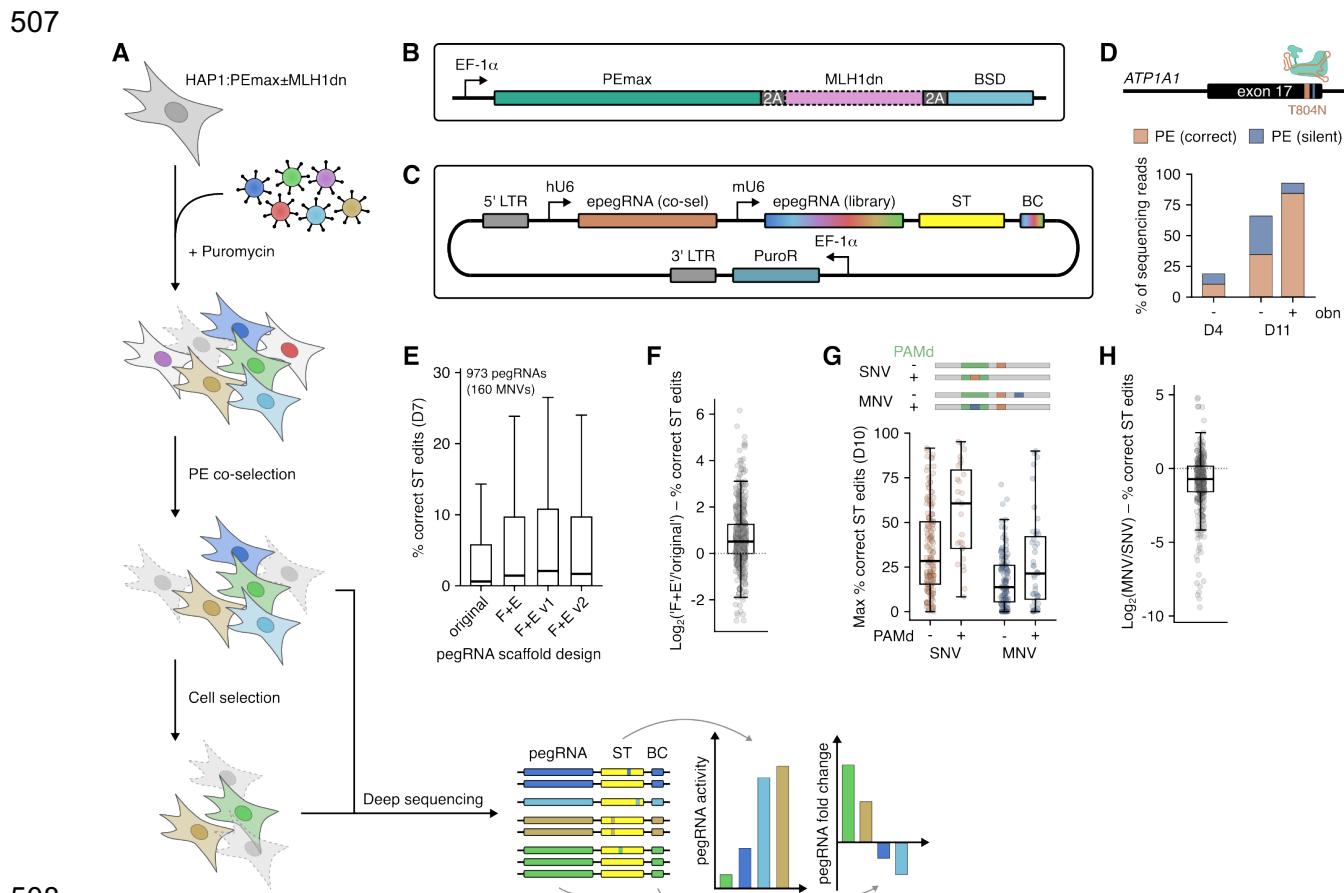
470

471 Importantly, as PE reagents continue to improve and pegRNA design tools mature, we anticipate
472 a larger fraction of pegRNAs in future experiments will produce accurate data. Based on this work,
473 specific recommendations for performing future PE screens in HAP1 include: 1.) allowing ample
474 time for edits to accrue, 2.) using a stabilized pegRNA scaffold, such as F+E v1, and 3.) including
475 STs to filter out inactive pegRNAs. Though we saw a consistent benefit of ouabain co-selection,
476 increases in editing rates were modest, suggesting this optimization may not always be necessary
477 depending on the application. Implementing recently described pegRNA scoring tools^{28,29} in
478 experimental design promises to improve coverage and reduce the number of pegRNAs with low
479 editing activities.

480

481 While the strong selection for LoF variants afforded by 6TG proved valuable for scoring *MLH1*
482 variants accurately, ultimately, additional assays will enable variants to be studied in more
483 genomic regions. By establishing requirements for identifying LoF variants via negative selection,
484 we illustrate a path forward for screening variants in over 2,000 genes that are essential in
485 HAP1⁴¹. We envision this may be particularly valuable for prioritizing sets of variants identified in
486 clinical sequencing for further study, and for testing effects of variants predicted to act via specific
487 mechanisms across a large number of genes.

488


489 For assays of variants observed in patients, there remains a need for rigorous clinical
490 benchmarking prior to using assay results to aid variant classification. With more data, there will
491 be opportunities to refine function scores to better reflect variant-level confidence, incorporating
492 both strength of pegRNA selection and ST editing rate. While we showed one strategy for
493 validating variant effects by endogenous locus sequencing, in the future, improved pegRNA
494 design will likely allow multiple, orthogonally designed pegRNAs per variant to be tested, either
495 together or in successive experiments to validate hits.

496

497 We predict that implementing key improvements we have outlined will ultimately make data from
498 genome-wide PE screens valuable for variant classification, as has been established for other
499 MAVEs. Further, scaling this framework to test computationally prioritized sets of non-coding
500 variants may yield data sets suited for training and refining predictive models. By presenting a
501 means of engineering and assaying defined human variants across large sequence spaces, our
502 platform for pooled PE promises to substantially improve identification of variants underlying
503 human disease.

504 **FIGURES AND FIGURE LEGENDS**

505 **Figure 1**

508
509

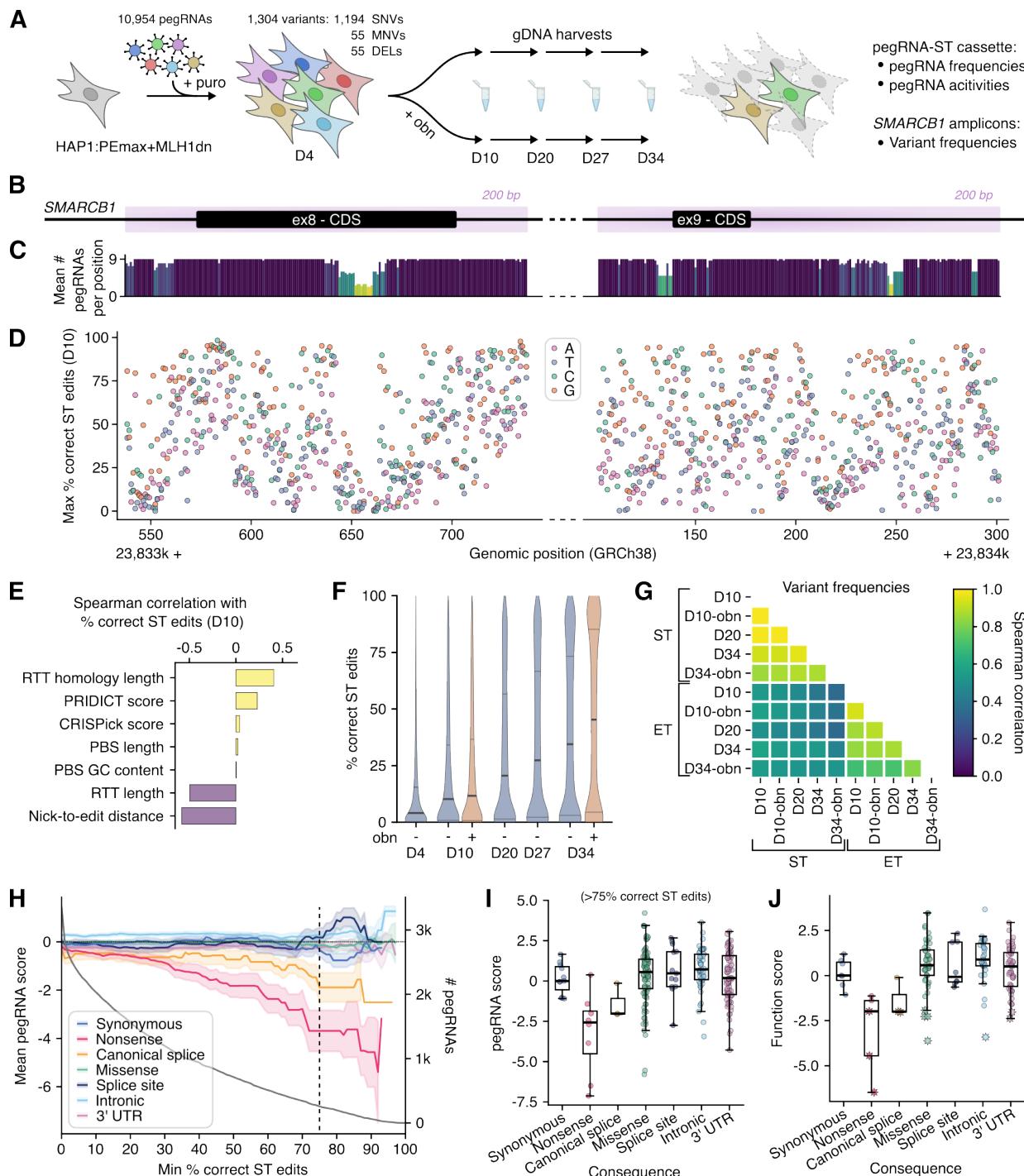
510 **Figure 1. Development of a pooled PE screening platform in HAP1.**

511 (A) Schematic of the screening workflow, comprising lentiviral delivery of pegRNAs, puromycin selection, 512 optional enrichment for edited cells via co-selection, functional selection (e.g. essentiality, drug treatment), 513 deep sequencing of lentiviral cassettes, and quantification of pegRNA activities from surrogate targets (STs) 514 and pegRNA frequency changes reflecting selective effects. Function scores for variants are determined 515 from pegRNA frequency changes, using ST editing percentages to filter out inefficient pegRNAs.

516 (B) Schematic of the construct stably integrated into the HAP1 genome for 2A-coupled expression of 517 PEmax, MLH1dn, and the blasticidin S resistance cassette, expressed from a minimal EF-1 α promoter.

518 (C) Schematic of the vector for lentiviral delivery of pegRNA libraries. Each vector encodes a pegRNA to 519 install a resistance mutation for co-selection and a pegRNA from the library to engineer a variant to be 520 assayed. Each vector also includes a surrogate target (ST) matching the genomic sequence where the 521 variant is to be introduced and a pegRNA-specific barcode (BC).

522 (D) Enrichment of cells with the PE-mediated T804N edit in exon 17 of *ATP1A1* in response to ouabain 523 (obn) treatment, as determined by amplicon sequencing. Percentages of reads with correct PE (T804N) or 524 partial PE (silent mutation only) are shown.


525 (E) Boxplot of ST editing percentages for 973 pegRNAs using different scaffolds (bold line, median; boxes, 526 interquartile range (IQR); whiskers extend to points within 1.5x IQR; outliers not shown).

527 (F) Boxplot of log₂-fold-changes in ST editing percentages per variant using pegRNAs with the F+E scaffold 528 compared to matched pegRNAs with the original scaffold (data from E).

529 (G) Schematic of SNV and MNV types showing target edit (orange) and additional silent mutation (blue).
530 Boxplot of correct ST editing percentages for the top pegRNA per variant grouped by edit type and PAM
531 disruption (PAMd).
532 (H) Boxplot of log2-fold-changes in ST editing percentages comparing MNV- and SNV-pegRNA pairs
533 (data from G).

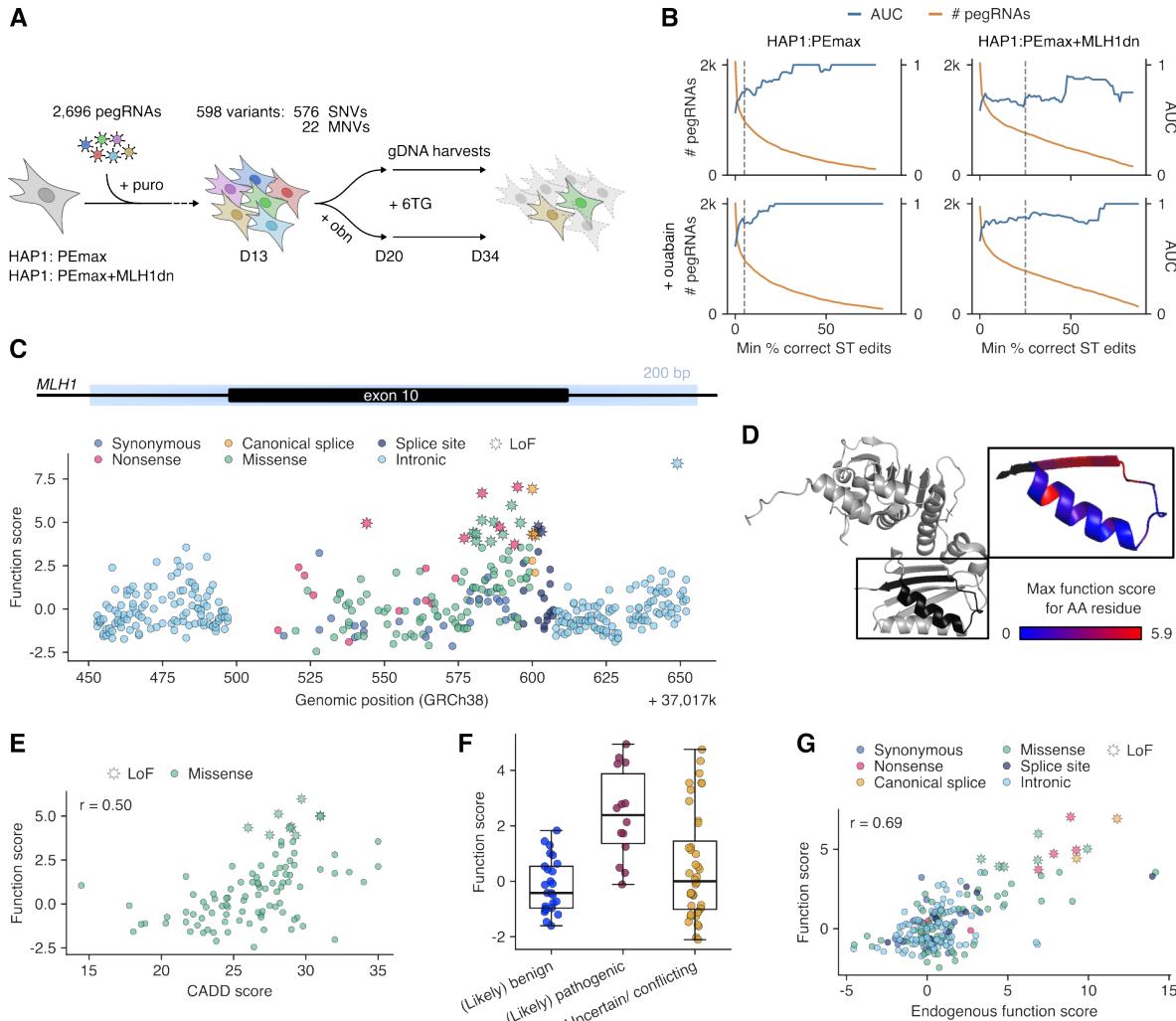
534 **Figure 2**

535

536

537

538 **Figure 2. Near saturation mutagenesis of SMARCB1 regions by pooled PE.**


539 (A) Schematic of the experimental workflow for SMARCB1 essentiality screening using pooled PE,
540 comprising lentiviral delivery of pegRNAs to HAP1:PEmax+MLH1dn cells (D0), and culture until D34 with
541 sequential harvesting for deep sequencing of pegRNA-ST cassettes and SMARCB1 target regions.

542 (B) Illustration of target regions (light purple) for saturation mutagenesis, centered on SMARCB1 exons 8
543 and 9.

544 (C) For each genomic position, the average number of pegRNAs per SNV included in the library is
545 plotted. pegRNA coverage per variant was capped at 9.
546 (D) The maximum ST editing rate for each SNV 10 days post-transduction is plotted by position.
547 (E) Spearman correlation of correct ST editing percentages with different pegRNA features for a pool of
548 8,612 pegRNAs programming SNVs, MNVs and deletions (DELs) across *SMARCB1*. ST editing
549 percentages were averaged across D10 duplicates without ouabain before correlation analysis.
550 (F) Violin plots of ST editing percentages observed across the pegRNA pool at multiple timepoints, with
551 and without ouabain (obn) co-selection. Bold line indicates the median and dashed lines the interquartile
552 ranges.
553 (G) Heat map of Spearman correlation coefficients determined between surrogate target (ST) and
554 endogenous target (ET) variant frequencies across samples. ST variant frequencies were computed as
555 the fraction of all STs containing a given variant. ET variant frequencies were adjusted with a variant-level
556 background-correction based on negative control sample sequencing.
557 (H) Mean log2-fold-change in pegRNA frequency (D34 over D10) in ouabain-treated samples, by variant
558 consequence. Mean values are plotted as a function of ST editing thresholds used for pegRNA filtering.
559 Bands correspond to 95% confidence intervals, and the gray curve shows the number of pegRNAs
560 passing frequency and ST editing thresholds. The dashed vertical line corresponds to 75% correct ST
561 edits, chosen as the threshold for analysis in (I and J). pegRNAs with frequencies lower than 6×10^{-5} on
562 D10 were excluded from analysis. (I) pegRNA log2-fold-change between D34-ouabain and D10-ouabain
563 samples, grouped by consequence. (J) pegRNA scores from (I), averaged per variant (function scores).
564 Significantly scored variants (FDR<0.05) are indicated with stars. (Boxplots: bold line, median; boxes,
565 IQR; whiskers extend to points within 1.5x IQR).

566 **Figure 3**

567

568

569 **Figure 3. Pooled prime editing of *MLH1* exon 10 identifies disease-associated variants.**

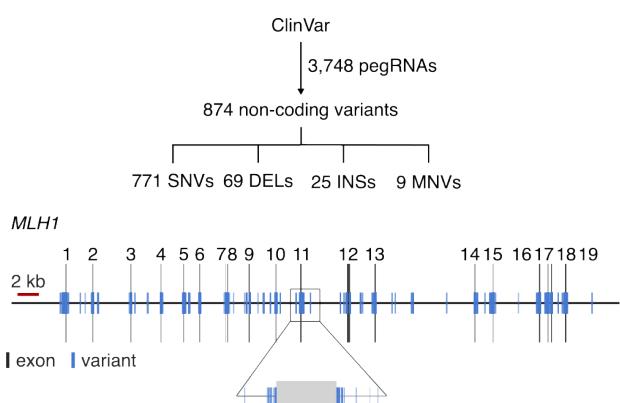
570 **(A)** Experimental workflow of *MLH1* 6TG selection screens, comprising lentiviral delivery of pegRNAs to
571 HAP1:PEmax and HAP1:PEmax+MLH1dn cells, ouabain co-selection (D13-D20), cell harvesting before
572 (D20) and after (D34) 6TG challenge, and deep sequencing of pegRNA-ST cassettes and the *MLH1* target
573 region.

574 **(B)** For each condition, AUC measurements for pLoF variant identification are plotted as a function of ST
575 editing threshold. For this analysis, synonymous variants were defined as pNeut and nonsense and
576 canonical splice variants as pLoF.

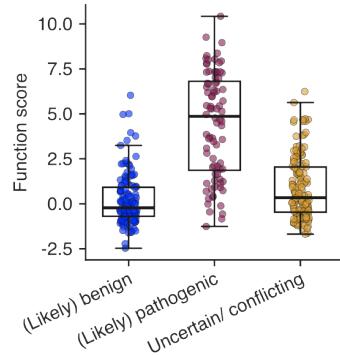
577 **(C)** Function scores for $n = 401$ variants are plotted by genomic position and colored by variant
578 consequence. Significantly scored variants (q-value less than 0.01) are indicated with stars.

579 **(D)** The highest function score of all missense variants assayed at each amino acid position is shown on
580 the *MLH1* structure (PDB: 4P7A).

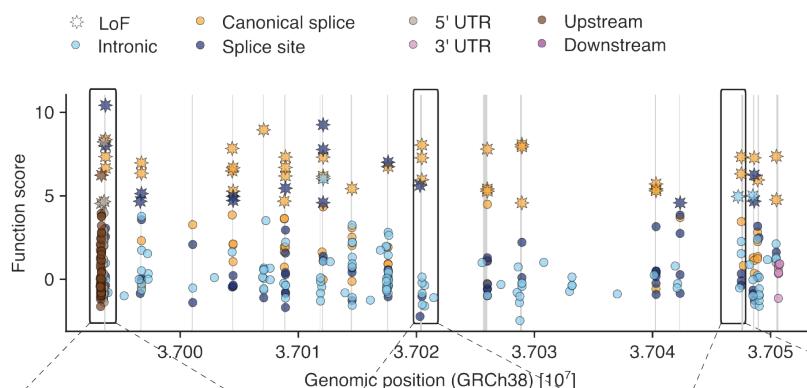
581 **(E)** Correlation between function scores and CADD scores for $n = 98$ missense variants (Pearson's $r =$
582 0.50).

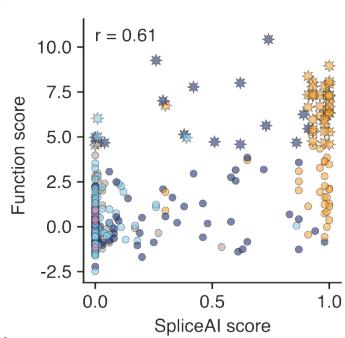

583 **(F)** Function scores of $n = 79$ variants present in ClinVar, grouped by pathogenicity annotation.

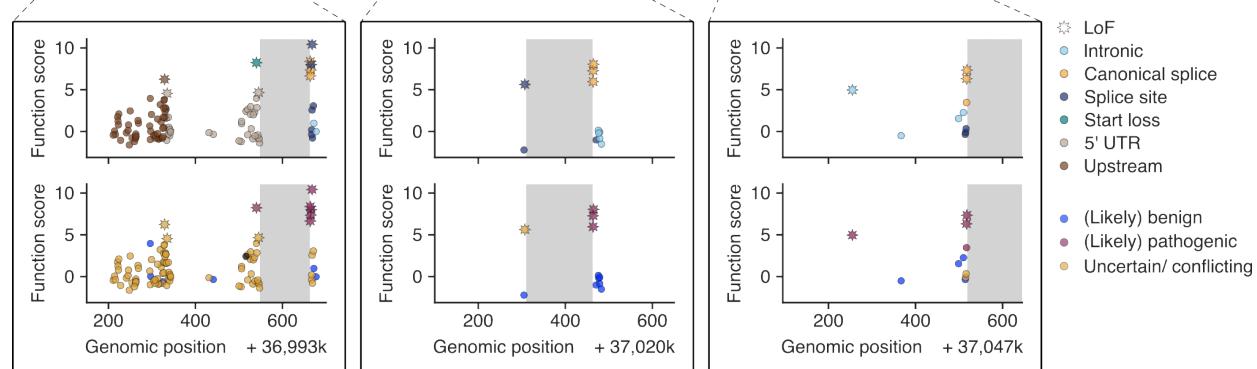
584 **(G)** Correlation between function scores (pegRNA-derived) and endogenous function scores for $n = 205$
585 variants.


586 **Figure 4**

587


A


B


C

D

E

588

589

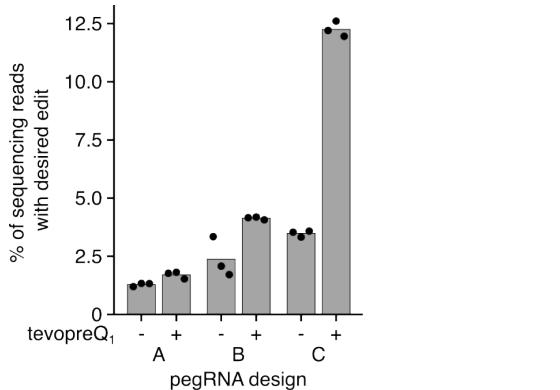
590 **Figure 4. Screening all non-coding *MLH1* variants in ClinVar for LoF effects.**

591 (A) A library of 3,748 pegRNAs was designed to install 874 non-coding variants from ClinVar including 771
 592 SNVs, 69 deletions (DELs), 25 insertions (INSs), and 9 MNVs. Variants, represented by blue lines, span
 593 the entire *MLH1* locus.

594 (B) Function scores are plotted for $n = 357$ variants, grouped by pathogenicity annotation in ClinVar.

595 (C) Function scores are plotted for $n = 362$ variants by genomic position and color-coded by variant
 596 consequence. Stars indicate variants with q -values less than 0.01.

597 (D) The correlation between function scores of SNVs and spliceAI scores is plotted ($n = 296$).


598 (E) Detailed results for select regions are shown: exon 1 and upstream (left), exon 11 (middle), and intron
 599 15 (right). Exonic regions are in gray, and variants are colored by consequence (upper panels) or ClinVar
 600 annotation (lower panels).

601 **SUPPLEMENTARY FIGURES**

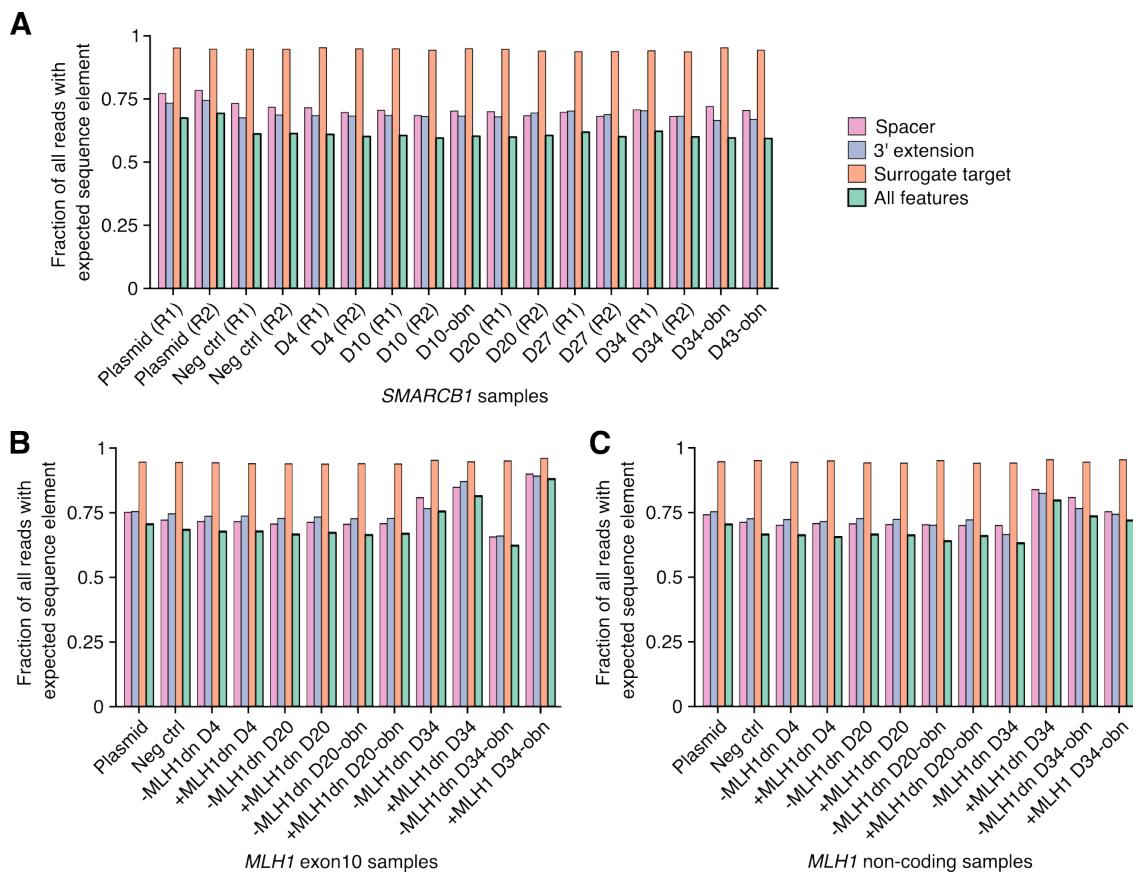
602

603 **Supplementary Figure 1**

604

A: GCAAACATTCCACTACCACT...GACAT**T**CCCCAGA**a**-GGTAGTGGAAATG
B: GCAAACATTCCACTACCACT...GGTGAC**A**TCCCCAGT-GGTAGTGGAAATGT
C: GCCCAAGTCAATGCAGAGGA...GGGA**a**TGTCAC**t**ATCC-TCTGCATTGACTT

605


606

607 **Supplementary Figure 1. pegRNA optimization for ATP1A1-T804N edit in HEK293T.**

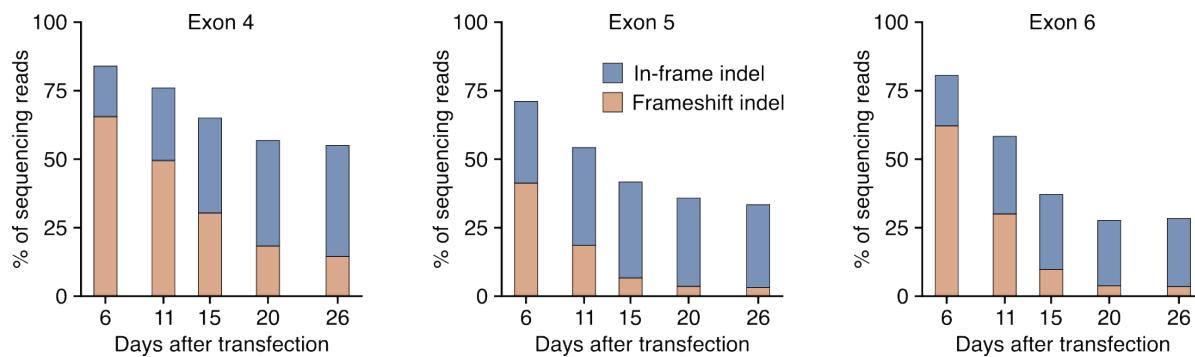
608 Comparison of PE efficiencies in HEK293T cells for installation of the T804N edit in *ATP1A1* using three
609 pegRNA designs with and without the tevopreQ₁ motif. Values correspond to percentages of correct editing
610 4 days after transfection of pegRNA and PEmax-MLH1dn plasmids as determined by CRISPResso2⁴⁶
611 analysis of NGS reads. Individual transfection replicates are shown as dots. Below are sequences of
612 pegRNA designs in the format "spacer...RTT-PBS", with programmed variants highlighted in red.

613 **Supplementary Figure 2**

614

615

616


617 **Supplementary Figure 2. NGS read pre-processing of pegRNA-ST cassettes across experiments.**

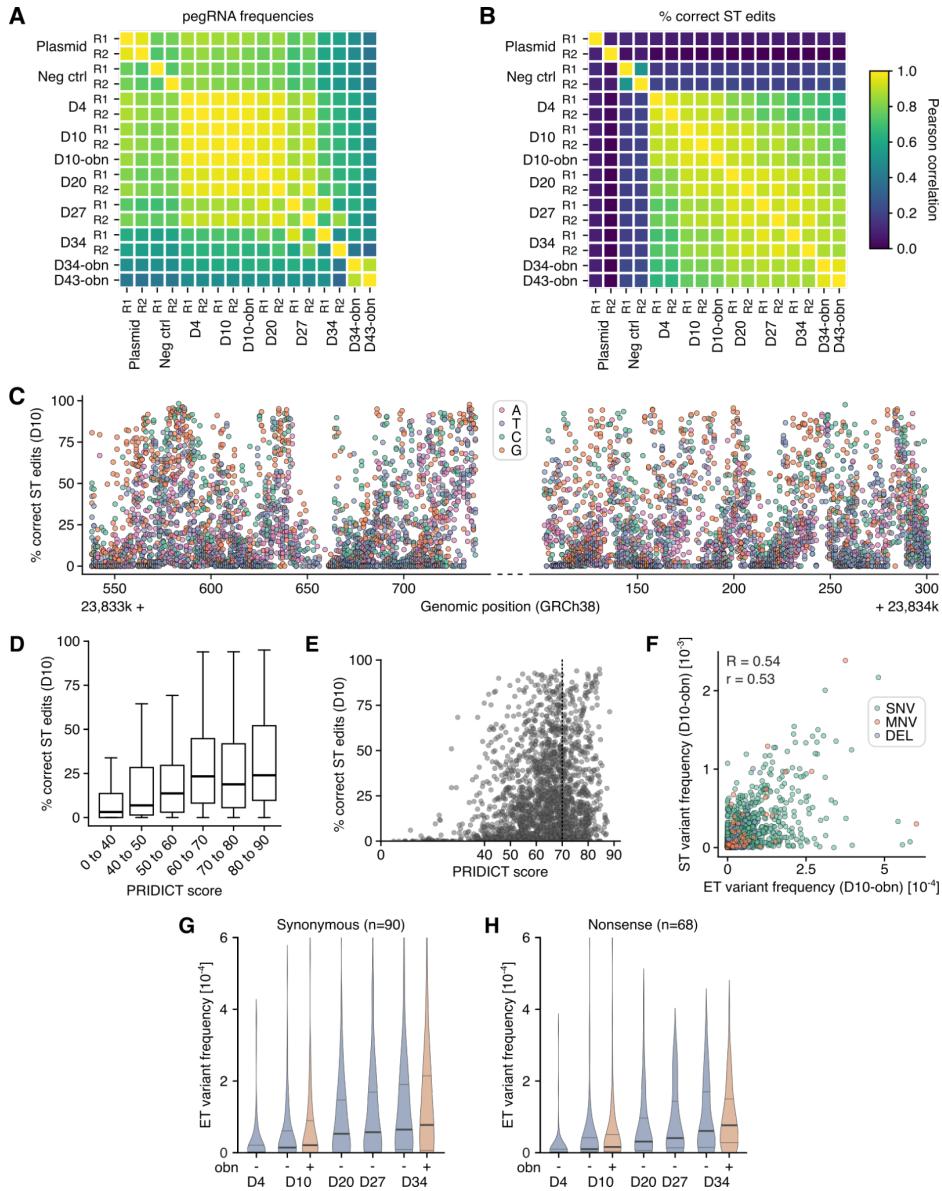
618 Results from pre-processing pegRNA-ST cassette sequencing reads for each sample across experiments:

619 **SMARCB1 (A)**, **MLH1 exon 10 (B)**, and **MLH1 non-coding (C)**. Values correspond to the fraction of reads
620 containing each correct sequence element (spacer, 3' extension, surrogate target or all elements) expected
621 in the pegRNA construct, as identified by the read's pegRNA-specific barcode. Spacer and surrogate target
622 sequences were allowed to differ by up to two base substitutions from the expected sequence to account
623 for sequencing errors.

624 **Supplementary Figure 3**

625

626


627

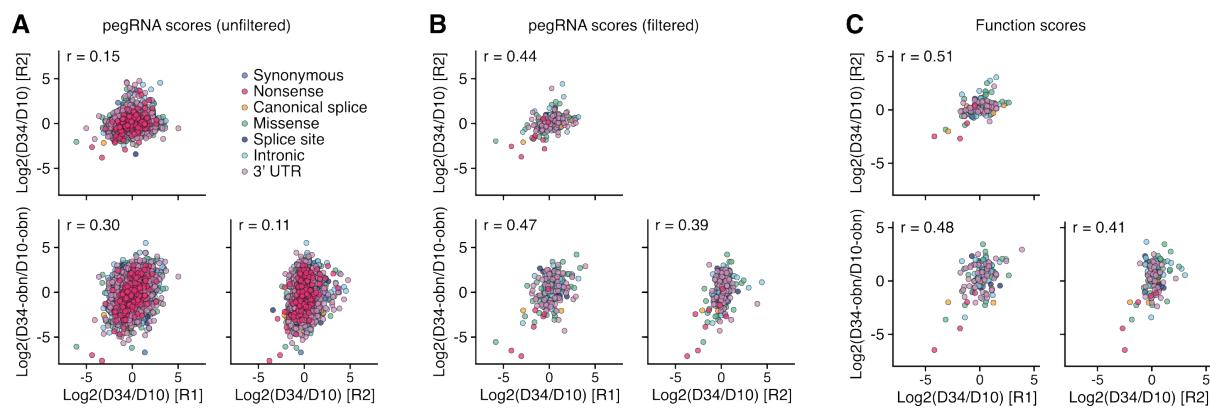
628 **Supplementary Figure 3. SMARCB1 essentiality in HAP1.**

629 A time course was performed to assess in-frame and frameshifting indel percentages in exons 4, 5, and 6
630 of SMARCB1 after Cas9-mediated editing in HAP1 cells. Indel rates were quantified from NGS reads using
631 CRISPResso2.

632

633 **Supplementary Figure 4**
634

635

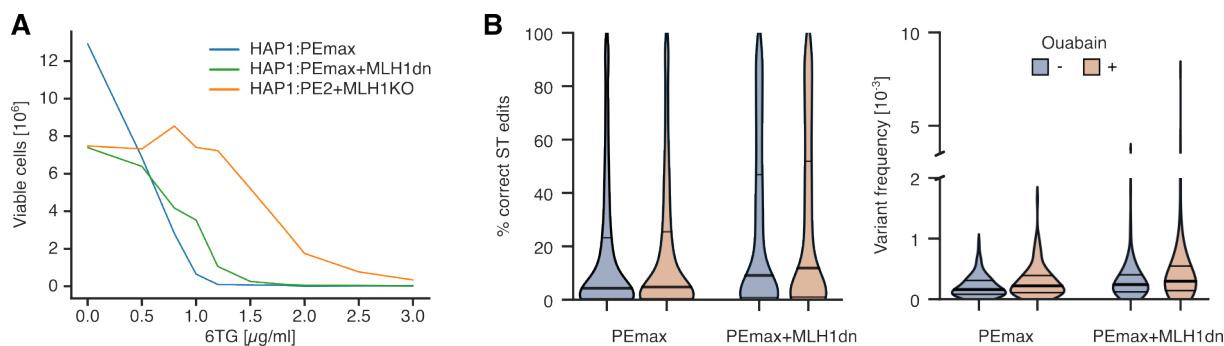

636

637 **Supplementary Figure 4. Characterization of pooled SMARCB1 variant installation.**

638 (A and B) Heatmap of pairwise Pearson correlation coefficients between pegRNA frequencies (A) and
639 correct ST editing percentages (B) across all collected samples of the SMARCB1 variant screen, including
640 the pegRNA plasmid pool (Plasmid) and transduced HAP1 wildtype cells (Neg ctrl).
641 (C) Scatter plot of correct ST editing percentages 10 days post-transduction for each pegRNA ($n = 6,902$)
642 targeting SMARCB1 regions, colored by nucleotide substitution.
643 (D and E) Boxplot and scatter plot showing correct ST editing percentages on day 10 as a function of
644 pegRNA PRIDICT scores. In (D), bold line, median; boxes, IQR; whiskers extend to points within 1.5x IQR.
645 In (E), the dashed vertical line marks the recommended PRIDICT threshold of 70.
646 (F) The correlation between ST editing and ET editing for each variant is plotted. Variants are colored by
647 edit type and Spearman (R) and Pearson (r) correlation coefficients are shown.
648 (G and H) Variant frequencies at ETs across samples are plotted for all synonymous (G) and nonsense (H)
649 variants. Frequencies were background corrected using NGS data from negative control samples. Similar
650 enrichment of variants is observed over time for both synonymous and nonsense variants.

651 **Supplementary Figure 5**

652


657 Correlation plots of unfiltered (**A**) and filtered (**B**) pegRNA scores and function scores (**C**) for the *SMARCB1*
658 variant screen between experiments with and without ouabain co-selection. Scores were calculated for
659 pegRNA depletion between D10 and D34. pegRNAs passing filters were those with frequencies greater
660 than 6×10^{-5} in D10 samples and correct ST editing percentages greater than 75%. Pearson correlation
661 coefficients (*r*) are shown for each pairwise comparison.

662

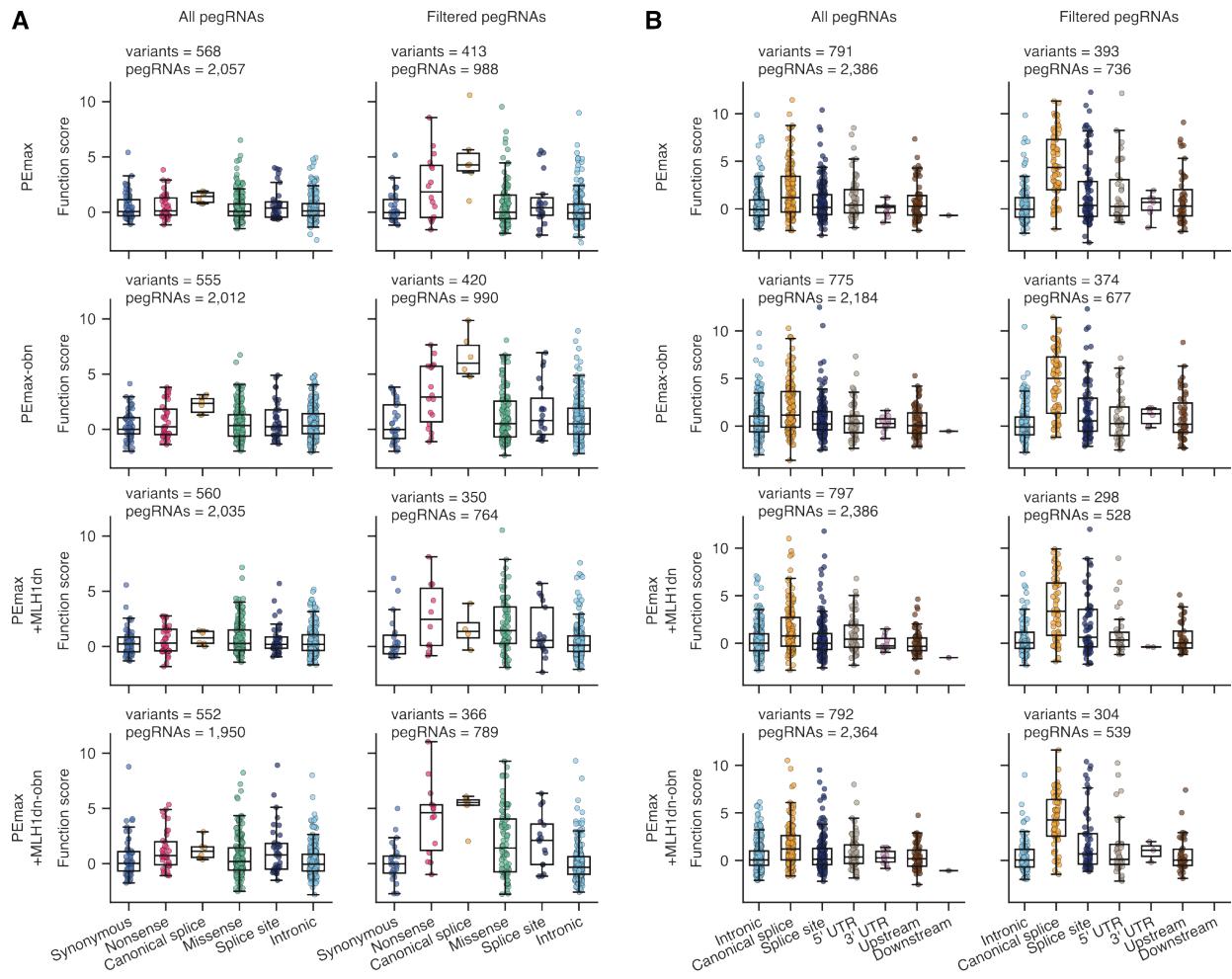
663

664 **Supplementary Figure 6**

665

666

667


668 **Supplementary Figure 6. Effects of 6TG on growth and editing rates compared across HAP1 lines**
669 **with modified MMR function.**

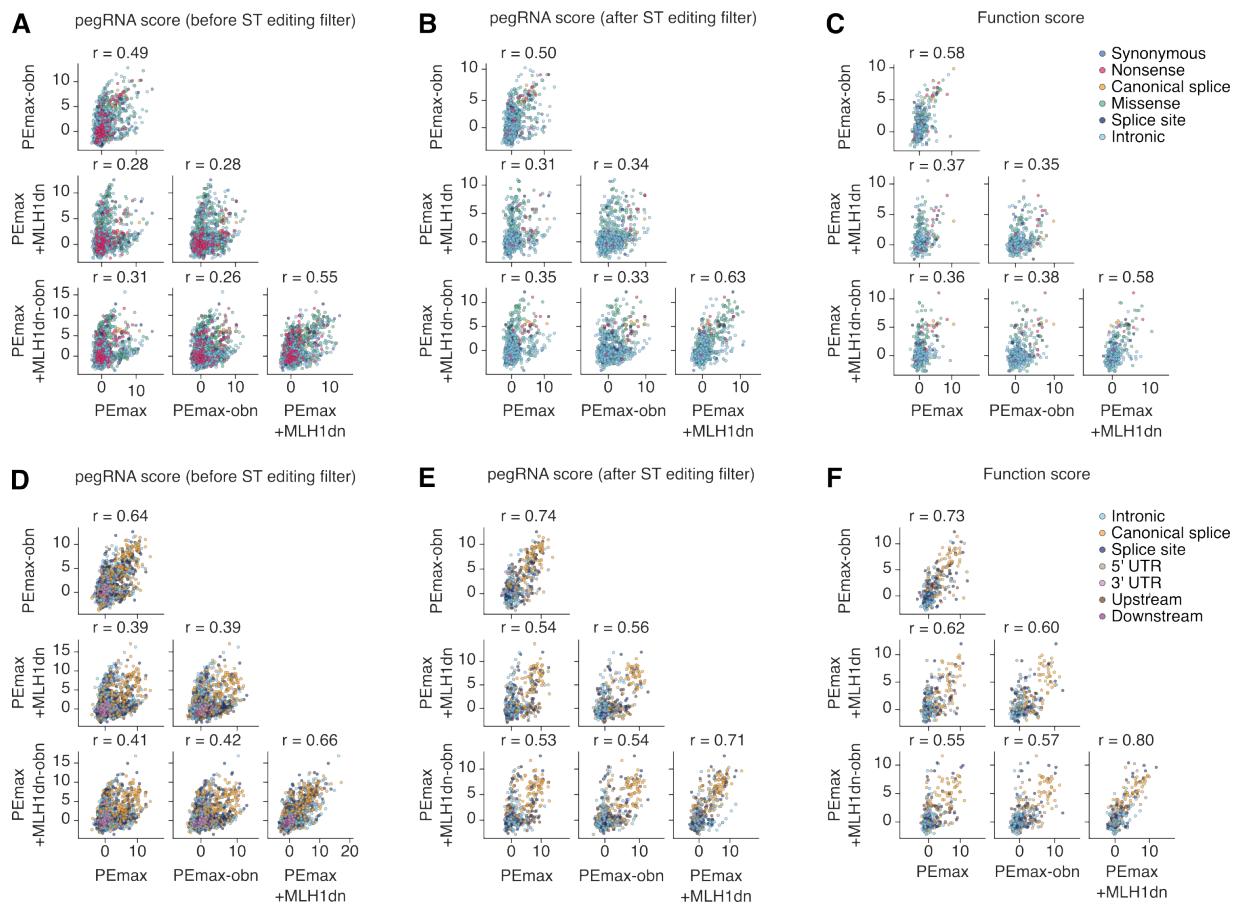
670 (A) Viable cell counts are plotted by 6TG dose following 6 days treatment for HAP1:PEmax,
671 HAP1:PEmax+MLH1dn, and HAP1:PE2+MLH1KO.

672 (B) Distributions of correct ST editing percentages for pegRNAs observed at frequencies greater than
673 1.4×10^{-4} in D20 samples (left), and distributions of ET variant frequencies in D20 samples (right) are shown
674 for each condition. ET variants for which the log2-ratio of D20 frequency over D4 frequency was below 1.0
675 were excluded to limit potential impacts of sequencing error.

676 Supplementary Figure 7

677

678

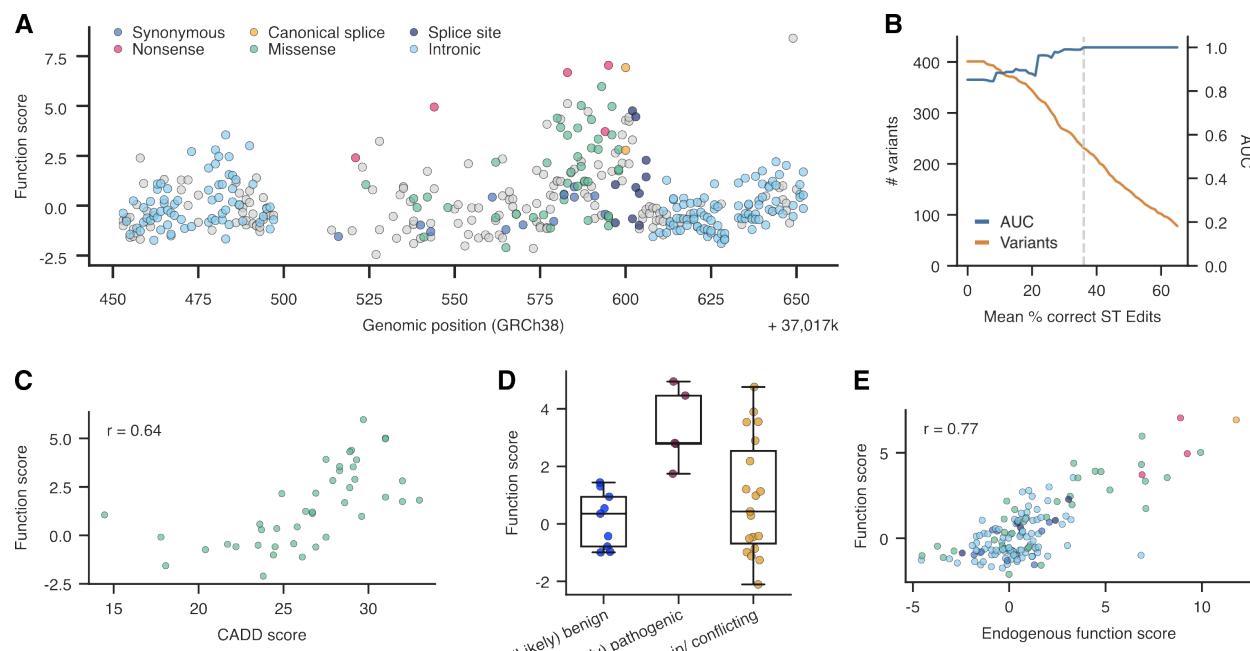

679

Supplementary Figure 7. Filtering pegRNAs based on ST editing enables identification of LoF variants.

682 For each *MLH1* experiment, function scores were calculated for each variant assayed, using either all
683 pegRNAs observed above a frequency threshold, or only the subset of those with correct ST editing
684 percentages above a set threshold. Function scores, grouped by variant consequence, are shown before
685 and after pegRNA filtering for the *MLH1* exon 10 screen (**A**) and the *MLH1* non-coding screen (**B**). ST
686 editing thresholds to filter pegRNAs were set to 5% for HAP1:PEmax cells and 25% for
687 HAP1:PEmax+MLH1dn cells.

688 **Supplementary Figure 8**

689


690
691

692 **Supplementary Figure 8. pegRNA score and function score reproducibility across experiments.**

693 Correlations of unfiltered and filtered pegRNA scores and function scores across conditions for the *MLH1*
694 exon 10 screen (**A-C**) and the non-coding screen (**D-F**) are shown. Correct ST editing thresholds were set
695 to 5% for HAP1:PEmax cells and 25% for HAP1:PEmax+MLH1dn cells to remove inactive pegRNAs and
696 produce function scores from the filtered set. Pearson correlation coefficients (r) are shown for each
697 comparison.

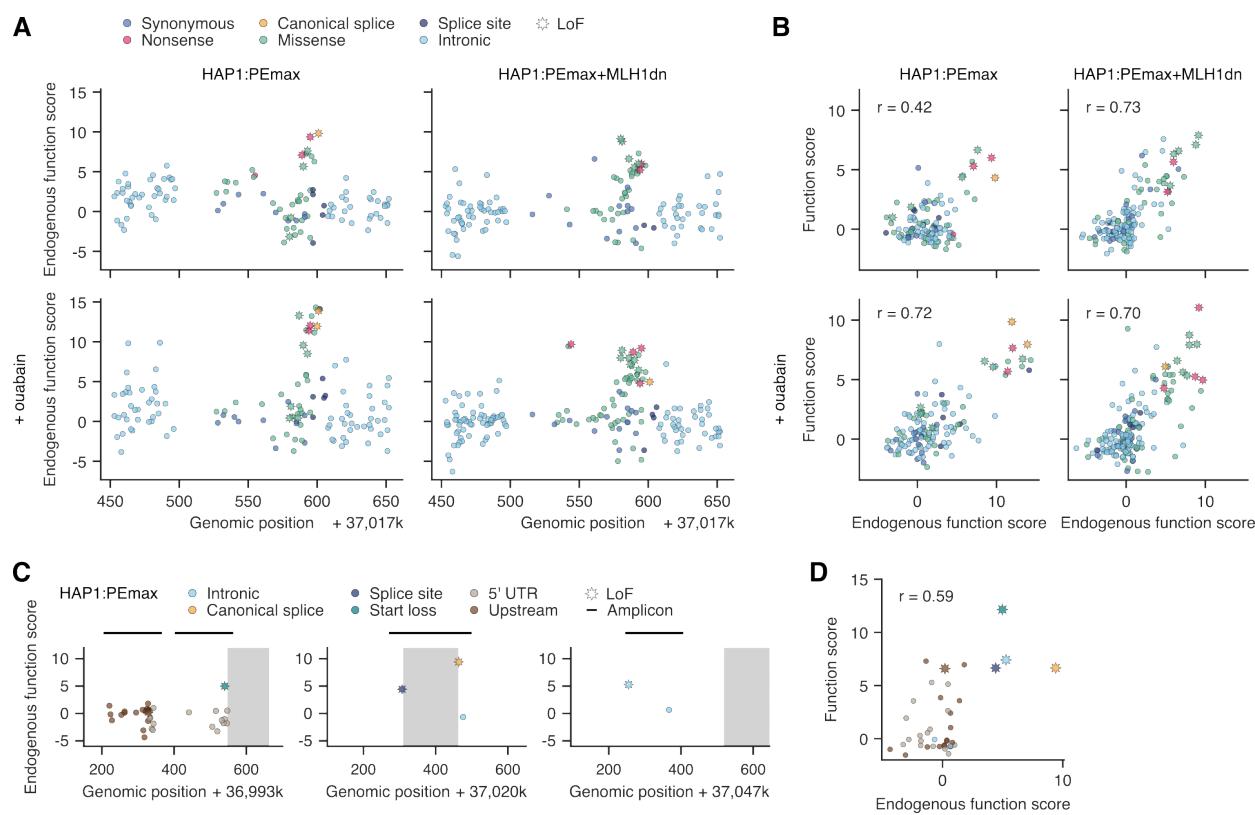
698 **Supplementary Figure 9**

699

700
701

702 **Supplementary Figure 9. More stringent filtering of pegRNAs further improves data quality for**
703 **variants assayed in *MLH1* exon 10.**

704 (A) Function scores for $n = 231$ variants scored using an average correct ST editing threshold of 36% are
705 plotted by position. (Gray dots indicate variants scored in Figure 3C with ST editing percentages below
706 36%.)

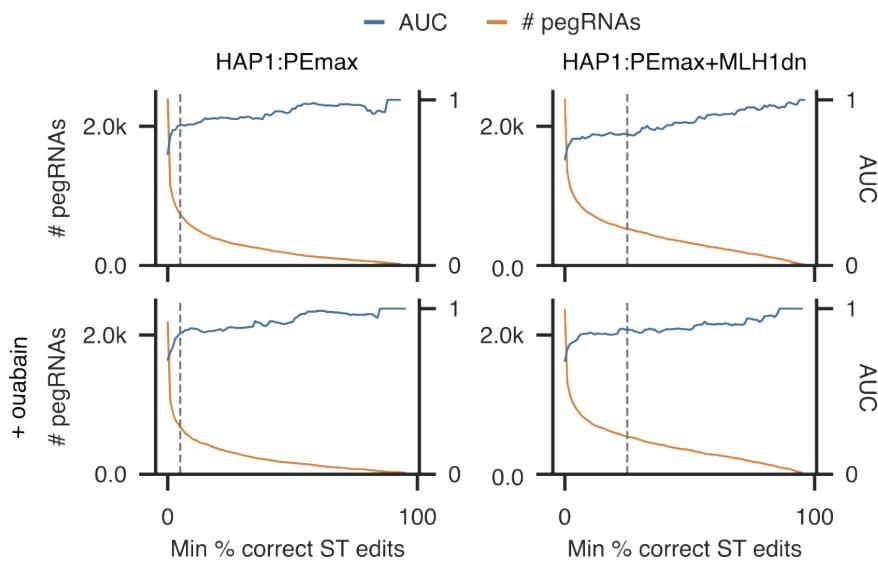

707 (B) AUC values for distinguishing LoF variants (blue) are plotted as a function of the mean ST editing
708 threshold applied. For this analysis, synonymous variants were defined as neutral and nonsense and
709 canonical splice variants as LoF. The orange line indicates the number of variants retained at each
710 threshold, and the dashed line indicates the high-stringency threshold of 36%, above which AUC = 1.0.

711 (C) The correlation between function scores and CADD scores is plotted for $n = 42$ missense variants
712 passing the high-stringency threshold.

713 (D) The boxplot shows function scores for $n = 33$ variants passing the high-stringency threshold by ClinVar
714 pathogenicity status (bold line, median; boxes, IQR; whiskers extend to points within 1.5x IQR).

715 (E) The correlation between function scores (pegRNA-derived) and endogenous function scores is plotted
716 for $n = 141$ variants passing the high-stringency threshold.

717 **Supplementary Figure 10**
718


719
720

721 **Supplementary Figure 10. Amplicon sequencing of edited MLH1 loci validates functional effects of**
722 **variants installed via PE.**

723 (A) Endogenous function scores of exon 10 variants are plotted by genomic position across conditions.
724 Variants deemed LoF via pegRNA sequencing of all conditions are starred.
725 (B) Correlations between function scores and endogenous function scores are plotted for each experiment.
726 (C) Endogenous function scores are plotted by genomic position for each non-coding region validated.
727 Endogenous function scores were derived by sequencing edited loci in HAP1:PEmax cells pre- and post-
728 6TG selection.
729 (D) Correlation between function scores and endogenous function scores from HAP1:PEmax for regions in
730 (C).

731 **Supplementary Figure 11**

732

733

734

735 **Supplementary Figure 11. Accurate identification of LoF variants in the *MLH1* non-coding screen is**
736 **facilitated by implementing ST editing thresholds.** AUC measurements for distinguishing pLoF variants
737 (blue line) are plotted as a function of ST editing threshold, shown for each experimental condition. The
738 number of pegRNAs retained at each ST editing threshold is plotted in orange. For these experiments,
739 pNeut variants were defined as intronic variants greater than 8 bp from exonic sequence and pLoF variants
740 were defined as canonical splice site variants.

741 **METHODS**

742

743 Plasmids

744 For transient co-expression of PEmax and MLH1dn we used the pCMV-PEmax-P2A-hMLH1dn
745 plasmid (*Addgene* #174828). The pU6_pegRNA-GG-Acceptor plasmid (*Addgene* #132777) was
746 modified to exchange the mRFP1 cassette with a BsmBI cloning cassette, allowing for
747 straightforward insertion of pegRNAs. Gibson assembly reactions to create these plasmids were
748 performed using NEBuilder HiFi DNA Assembly Master Mix (New England Biolabs, #E2621L).

749

750 For stable integration of PEmax with and without MLH1dn, a lentiviral vector was prepared by
751 PCR amplification of the corresponding cassettes from pCMV-PEmax-P2A-hMLH1dn and
752 subsequent insertion into pLenti-PE2-BSD (*Addgene* #161514), which had been digested with
753 EcoRI and XbaI (#R0145S & #R3101S, *NEB*). Single pegRNAs were stably integrated using
754 lentiviral vectors cloned by assembling pegRNA oligo duplexes into BsmBI-digested (#R0739L,
755 *NEB*) Lenti_gRNA-Puro (*Addgene* #84752). The dual-pegRNA lentiviral vector, used for pegRNA
756 library cloning, was prepared by amplification of a gene fragment encoding the mU6 promoter
757 and a BsmBI cloning site (*Twist Bioscience*) followed by assembly into a KflI- and Eco72I-
758 digested (#FD2164 & #FD0364, *Thermo Scientific*) Lenti_gRNA-Puro plasmid with a pre-inserted
759 co-selection pegRNA under the hU6 promoter. For bacterial amplification of pegRNA scaffolds,
760 oligo duplexes, encoding the different scaffold designs (original, F+E, F+E v1, F+E v2) and
761 flanking BsmBI recognition sites, were inserted into the KpnI-digested (#R3142S, *NEB*)
762 pU6_pegRNA-GG-Acceptor plasmid via Gibson assembly.

763

764 All-in-one CRISPR knock-out constructs targeting *MLH1* exon 10 and *SMARCB1* exons 4, 5, and
765 6 were generated from pSpCas9(BB)-2A-Puro (PX459 V2.0, *Addgene* #62988) via insertion of
766 spacer sequences into the BbsI cloning site (#R3539L, *NEB*). **Supplementary Table 9** contains
767 sequences for all oligos used in this study.

768

769 Cell culture

770 HEK293T cells were cultured in Dulbecco's Modified Eagle Medium (DMEM) (#10564011, *Gibco*)
771 supplemented with 10% fetal bovine serum (FBS) (#A5256701, *Gibco*) and 1% Penicillin-
772 Streptomycin (Pen-Strep) (#15140122, *Gibco*). Cells were cultured at 37 °C with 5% CO₂ and
773 passaged using Versene solution (#15040066, *Thermo Fisher*). HAP1 cells were cultured in
774 Iscove's Modified Dulbecco's Medium (IMDM) (#12440053, *Gibco*) supplemented with 10% FBS,
775 1% Pen-Strep, and 2.5 µM 10-deacetyl-baccatin-III (DAB) (#S2409-SEL, *Stratech*) at 37 °C with
776 5% CO₂. Cells were passaged every 2-3 days using 0.25% trypsin-EDTA (#25200056, *Gibco*) to
777 keep them below 80% confluence. For culture of HAP1:PEmax cell lines, media was additionally
778 supplemented with 5 µg/mL blasticidin S (R21001, *Gibco*). All cell lines were confirmed to be free
779 of mycoplasma.

780

781 SMARCB1 indel depletion in HAP1

782 Approximately 4×10^6 HAP1 cells were transfected using Xfect Transfection Reagent (#631318,
783 *Takara Bio*) for each pSpCas9(BB)-2A-Puro construct. 24h after transfection, the culture media
784 was exchanged and supplemented with 1 μ g/mL puromycin (#13884, *Cayman Chemical*).
785 Approximately 10^7 cells were harvested on days 6, 11, 15, 20, and 26 after transfection and stored
786 at -80 °C. Cell pellets were processed for extraction and purification of genomic DNA using
787 DNeasy Blood and Tissue Kit (#69506, *Qiagen*). Target loci were amplified from purified gDNA
788 by PCR using NEBNext Ultra II Q5 Master Mix (#M0544X, *NEB*). Adapters for dual-indexed
789 Illumina sequencing were attached in a second PCR step. Sequencing reads were processed
790 using the Cas9 mode of CRISPResso2 and its default parameters⁴⁶.

791

792 pegRNA library design

793 All pegRNA libraries were designed using a Jupyter Notebook implementation of the open-source
794 python package PEGG³⁰. For *SMARCB1* and *MLH1* saturation mutagenesis libraries, all possible
795 SNVs in a 200 bp window centered on each target exon were created. We additionally introduced
796 nonsense mutations at each codon via multinucleotide substitutions. For *SMARCB1* saturation
797 mutagenesis libraries, we also included single-codon deletions. MNVs for the experiment
798 comparing editing rates of SNVs and MNVs were designed from a random subset of the SNVs
799 programmed as part of the *SMARCB1* saturation mutagenesis experiment. Up to two additional
800 synonymous mutations were programmed in the four neighboring codons nearest the target
801 codon. ClinVar variants within *MLH1* were accessed on 11/29/2022, filtering for short variants
802 (less than 10 bp) with variant start positions mapping to non-coding regions.

803

804 *SMARCB1*-targeting libraries were designed to include up to 9 pegRNAs per variant, while *MLH1*
805 libraries contained up to 12 pegRNAs per variant. To diversify the set of pegRNAs per variant, we
806 enforced the use of distinct spacer sequences (3 distinct spacers for *SMARCB1* pegRNAs and 2
807 distinct spacers for *MLH1* pegRNAs, respectively) and selected the 3 top-scoring pegRNAs within
808 each set of pegRNA designs using a common spacer. All pegRNAs were appended with the
809 tevopreQ₁ motif followed by a T₇ termination sequence. Additionally, each pegRNA was coupled
810 to a 55-nt surrogate target (ST) sequence (replicating the endogenous target) and a unique 16-nt
811 pegRNA barcode. The scaffold sequence was replaced with a BsmBI cloning cassette for ordering
812 oligos, and pegRNA oligos were divided into multiple sub-libraries, each with a unique 10-nt library
813 barcode at the oligo's 3' end to allow specific amplification of individual libraries from the oligo
814 pool. To create oligos of equal size (243 nt), a stuffer sequence was inserted between the T₇
815 termination sequence and ST sequence. Finally, designed pegRNA oligos containing BsmBI
816 recognition sites that would interfere with cloning were discarded. pegRNA oligo libraries were
817 ordered and synthesized as a custom oligo pool (*Twist Bioscience*).
818

819 pegRNA library cloning

820 pegRNA libraries were cloned from oligo pools into lentiviral vectors in a two-step procedure.
821 pegRNAs were amplified from the oligo pool via PCR using KAPA HiFi HotStart ReadyMix
822 (#KK2602, *Roche*). pegRNA oligo subsets were specifically amplified from the oligo pool using
823 primers specific for the library BC (**Supplementary Table 9**). Thermocycling was performed
824 according to guidelines for KAPA HiFi HotStart ReadyMix except for elongated extension steps

825 of 2 min. PCR products were purified and concentrated using AMPure XP SPRI Reagent
826 (#A63881, *Beckman Coulter*) and subsequently by agarose gel electrophoresis to isolate 260 bp
827 amplicons.

828
829 The dual pegRNA lentiviral vectors with pre-integrated co-selection pegRNAs were prepared for
830 pegRNA library cloning by BsmBI-digestion and Quick CIP (#M0525L, *NEB*) treatment followed
831 by gel purification. pegRNA oligo amplicons were assembled with the cut lentiviral vector via
832 NEBuilder HiFi DNA Assembly Master Mix. The assembled plasmid pool was purified and
833 concentrated with AMPure XP SPRI Reagent and used for transformation of Electrocompetent
834 Endura Cells (#60242-2, *Biosearch Technologies*) following manufacturer's instructions and a
835 previously published protocol⁴⁷. The plasmid pool was extracted and purified using ZymoPURE II
836 Plasmid Maxiprep Kit (#D4202, *Zymo Research*).
837

838 A second cloning step was next required to insert a pegRNA scaffold sequence. Therefore, the
839 plasmid pool was subjected to BsmBI-digestion, Quick CIP treatment, and gel-electrophoretic
840 purification. Separately, pegRNA scaffolds were prepared for cloning by BsmBI-digestion of
841 pScaffold plasmids followed by gel purification. The digested vector library and the pegRNA
842 scaffold were ligated using T4 DNA Ligase (#M0202, *NEB*). SPRI-purified and concentrated
843 ligation product was used for transformation of Electrocompetent Endura Cells, as before, and
844 plasmid pools were purified for lentivirus production. A 1,000-fold coverage of pegRNA library
845 size was ensured at each transformation step, with the exception of the *MLH1* non-coding library,
846 where the minimum coverage exceeded 250-fold at each step.
847

848 For cloning of the pegRNA pool to compare performance of different scaffolds, the first step of
849 pegRNA library cloning remained the same. Scaffolds for all tested designs were prepared from
850 corresponding pScaffold plasmids via BsmBI-digest and pooled at equimolar ratios. This scaffold
851 mix was used in the subsequent ligation reaction with the BsmBI-digested plasmid pool before
852 proceeding as detailed above.
853

854 The pegRNA pool for the *SMARCB1* variant screen was cloned into two lentiviral vectors with
855 distinct co-selection pegRNAs. One vector encoded the *ATP1A1-T804N* pegRNA for ouabain co-
856 selection, while the other vector contained a *HPRT1-A161E* pegRNA. Lentiviral particles were
857 produced from both plasmid pools, which were subsequently used for transductions in *SMARCB1*
858 variant screening experiments. Although intended to provide an alternative possible co-selection
859 strategy, the pegRNA pool in the *HPRT1-A161E* co-selection vector served only as a duplicate
860 library for assaying variants without co-selection.
861

862 Lentivirus production and titering

863 For lentivirus production, each transfer plasmid was mixed with packaging and envelope plasmids
864 (pLP1, pLP2, VSV-G) to 33 µg total DNA which was used for transfection of 2×10^7 HEK293T cells
865 in a 15-cm culture dish with Lipofectamine 2000 (#11668019, *Invitrogen*). Viral supernatants were
866 collected 2 days and 3 days post-transfection, before pooling and concentrating with PEG-8,000

867 (#V3011, *Promega*). Aliquots of concentrated lentivirus were stored at -80 °C until used. Aliquots
868 of lentivirus particles were titered by ddPCR as described⁴⁸.
869

870 Generation of HAP1 PE cell lines

871 HAP1:PEmax and HAP1:PEmax+MLH1dn cell lines were generated via transduction of 3×10^6
872 HAP1 cells at low MOI (less than 0.3) with lentiviral particles packaged using pLenti_PEmax-BSD
873 transfer plasmids with and without MLH1dn expression. 2 days after transduction, the media was
874 replaced with media containing 5 µg/mL blasticidin. Selection of transduced cells was performed
875 for 14 days before expanding single clones. Final clones were chosen based on functional
876 validation of PE activity via *ATP1A1* editing followed by ouabain selection. Complete genomic
877 integration of the PEmax+MLH1dn sequence was validated via PCR of this cassette from
878 genomic DNA followed by gel electrophoresis.
879

880 The HAP1:PE2+MLH1KO line was used only for titering 6TG dose. It was created by first
881 transducing parental HAP1 cells with pLenti-PE2-BSD at low MOI (as for PEmax cell lines), then
882 transfecting successfully transduced cells with a pX459 construct targeting *MLH1*. Individual
883 clones were isolated and screened by Sanger sequencing, and a line with a frameshifting indel in
884 exon 18 was selected.
885

886 *ATP1A1-T804N* pegRNA optimisation

887 Around 10^5 HEK293T cells were co-transfected with pCMV-PEmax-P2A-hMLH1dn and
888 pU6_pegRNA plasmids (6 different pegRNA designs) using Xfect Transfection Reagent. 4 days
889 after transfection, cells were harvested and gDNA was extracted and purified. The target locus
890 was amplified from gDNA by PCR using NEBNext Ultra II Q5 Master Mix (#M0544L, *NEB*).
891 Adapters for dual-indexed Illumina sequencing were attached in a second PCR step. Sequencing
892 reads were processed using the prime editing mode of CRISPResso2 to determine the fraction
893 of reads with desired edits.
894

895 *ATP1A1-T804N* enrichment with ouabain

896 Approximately 10^7 HAP1:PEmax+MLH1dn cells were transduced at low MOI (approximately 0.1)
897 with lentivirus particles produced from a Lenti_pegRNA-Puro plasmid encoding the *ATP1A1-T804N*
898 pegRNA under the hU6 promoter. Cell selection was initiated 1 day later by
899 supplementation of the culture media with 1 µg/mL puromycin and was maintained for 3 days. On
900 day 4 post-transduction, the cell pool was split in two for continued culture with and without
901 ouabain treatment. Selection of cells with the *ATP1A1-T804N* edit was started by addition of 5
902 µM ouabain (#O3125, *Sigma-Aldrich*) and maintained until the end of the experiment. Cells were
903 harvested for gDNA extraction and purification on days 4 and 11 post-transduction. The target
904 locus was PCR amplified and sequenced by NGS. The fraction of sequencing reads with perfect
905 and partial editing were determined via counting matches for corresponding 18-nt subsequences
906 and dividing by total number of sequencing reads.
907

908 6TG dose titration

909 1.2×10^7 HAP1:PEmax, HAP1:PEmax+MLH1dn, and HAP1:PE2+MLH1KO cells were treated for
910 6 days with a range of 6TG (#A4882, *Sigma-Aldrich*) concentrations: 0 μ M, 0.5 μ M, 0.8 μ M, 1 μ M,
911 1.2 μ M, 1.5 μ M, 1.8 μ M, 2 μ M, 2.5 μ M, 3 μ M, 3.5 μ M, 4 μ M. Viable cells post drug challenge were
912 counted using the Vi-Cell analyzer (Beckman).
913

914 Pooled PE screening

915 For all pooled PE screens, prepared pegRNA lentivirus aliquots were thawed on ice and used to
916 transduce HAP1:PEmax lines at low MOIs (0.1-0.5), maintaining an average pegRNA coverage
917 of at least 1,000-fold for each library. As a negative control, we also transduced HAP1 cells not
918 expressing PEmax at a higher MOI of approximately 10, achieving 100x pegRNA coverage. One
919 day after transduction, the culture media was exchanged and supplemented with 1 μ g/mL
920 puromycin for 3 days of selection, at which point MOIs were confirmed by examining cell
921 confluence. Aliquots of cells were harvested periodically throughout the experiment, ensuring at
922 least 1,000-fold average coverage of the library at each timepoint. Negative control samples were
923 harvested at the earliest timepoint (D4 or D5) and served to determine background variant rates
924 in STs. Additional experimental details for each pooled PE experiment are as follows:
925

926 pegRNA scaffold activity screen:

927 Approximately 4×10^7 HAP1:PEmax+MLH1dn cells were treated with lentivirus particles, achieving
928 an MOI of approximately 0.1. The negative control sample (transduced HAP1 cells without PEmax
929 expression) was harvested on D5, while the experimental pool was harvested on D7 to allow
930 additional time for editing.
931

932 SNV vs. MNV pegRNA activity screen:

933 pegRNA library cloning, lentivirus production, and screening were carried out in duplicate. The
934 pegRNA library was tested in HAP1:PEmax+MLH1dn cells as part of the larger *SMARCB1* variant
935 screen and analyzed separately. Comparison of SNV and MNV ST editing rates was performed
936 using non-ouabain-treated samples harvested on D10, whereas the negative control sample was
937 processed on D4.
938

939 SMARCB1 saturation mutagenesis screen:

940 *SMARCB1* pegRNA library cloning, lentivirus production, and transduction of
941 HAP1:PEmax+MLH1dn cells were performed in duplicate (once cloned into a vector co-
942 expressing the *HPRT1*-A161E pegRNA and once cloned into a vector co-expressing the *ATP1A1*-
943 T804N pegRNA for ouabain co-selection). To achieve at least 1,000-fold average coverage of the
944 pegRNA library ($n = 12,211$ pegRNAs), total cell numbers were maintained above 1.3×10^7
945 throughout the experiment. After completion of puromycin selection 4 days post-transduction, the
946 cell pools were split into two. One pool was maintained in media containing 5 μ M ouabain while
947 the remaining two duplicates were left untreated. Cells were passaged every 2-3 days and pellets
948 of at least 3×10^7 cells were harvested on days 4, 10, 20, 27, and 34 post-transduction. The
949 negative control sample was processed on D4.
950

951 MLH1 exon 10 and non-coding variant screens:

952 The same experimental procedure was applied for the *MLH1* exon 10 saturation mutagenesis
953 and non-coding ClinVar variant screens. Lentiviral aliquots of pegRNA pools were used for
954 transduction of both HAP1:PEmax and HAP1:PEmax+MLH1dn cell lines (D0). To achieve at least
955 1,000-fold average coverage of the pegRNA library ($n = 2,696$ pegRNAs for the exon 10 pool and
956 $n = 3,748$ pegRNAs for the non-coding ClinVar pool), at least 4×10^6 cells were maintained
957 throughout the experiment and harvested at each sampling. Puromycin selection was completed
958 by D4 and on D13 the cell pools were split into two. One cell pool per cell line was treated with 5
959 μM ouabain while the other was left untreated, resulting in a total of four cell pools per experiment
960 (HAP1:PEmax and HAP1:PEmax+MLH1dn each with and without ouabain co-selection). 20 days
961 post-transduction, 6TG was added to the culture media at a concentration of 1.2 $\mu\text{g/ml}$ for
962 HAP1:PEmax and 1.6 $\mu\text{g/ml}$ for HAP1:PEmax+MLH1dn. Cells were passaged every 2-3 days
963 with addition of fresh selection media until D34. Cell pellets of at least 10^7 cells were harvested
964 on D4, D20 (pre-selection), and D34 (post-selection). The negative control sample was harvested
965 on D4.

966

967 Cell pellets were processed for gDNA extraction and deep sequencing of both pegRNA-ST
968 cassettes and ETs was performed. For *SMARCB1* and *MLH1* exon 10 saturation mutagenesis
969 screens, both pegRNA-ST cassettes and ETs were sequenced, while for screens in which only
970 pegRNA activity was assessed only the pegRNA-ST cassette was sequenced. For the *MLH1* non-
971 coding variant screen the pegRNA-ST cassette was sequenced across all conditions. Additionally,
972 the following amplicons were sequenced from HAP1:PEmax cells without co-selection to validate
973 selective effects for a subset of variants: 164 bp spanning the transcription start site, 138 bp of
974 the 5'UTR extending into exon 1, 197 bp including exon 11 and adjacent intronic sequence, and
975 133 bp within intron 15. The same regions were sequenced from control cells (unedited) to
976 quantify baseline sequencing error.

977

978 Extraction of genomic DNA and PCR amplification

979 Extraction of gDNA from cell pellets was performed using the DNeasy Blood and Tissue Kit
980 (#69504, *Qiagen*) following the supplier's protocol. For amplicon sequencing, genomic sites of
981 interest were amplified by PCR using KAPA HiFi HotStart ReadyMix. Up to 2.5 μg gDNA was
982 used as template per 100 μL PCR volume and reaction mixtures were supplemented with MgCl₂
983 (#AM9530G, *Invitrogen*) added to a concentration of 5 mM. Reactions were supplemented with
984 SYBR Safe (#S33102, *Invitrogen*) and run on a real-time PCR machine to prevent overcycling.
985 Enough reactions were performed and subsequently pooled to maintain at least 1,000-fold
986 average coverage of each pegRNA library when amplifying both pegRNA-ST cassettes and ETs.
987 Primer annealing temperatures for all reactions were predetermined using gradient PCR prior to
988 sample processing. pegRNA-ST amplicons were sequencing-ready after purification of the first
989 PCR from gDNA. ET amplicons were pooled across independent reactions, SPRI-purified and
990 used as template in subsequent PCRs to introduce Illumina sequencing adapters and sample
991 indexes. For the *MLH1* exon 10 experiment, 1 additional PCR was performed for sample indexing,
992 whereas for the *MLH1* non-coding experiment, an additional nested PCR to install sequencing
993 adapters was performed prior to sample indexing.

994 Illumina sequencing

995 Dual-indexed amplicons with Nextera or TruSeq adapters were sequenced using either an
996 Illumina NextSeq 500 300-cycle kit or an Illumina NovaSeq 6000 SP 300-cycle kit. For deep
997 sequencing of pegRNA-ST cassettes, the length of read 1 was set to 182 nt to capture the full
998 pegRNA sequence and the length of read 2 was set to 118 nt to cover the ST, pegRNA BC and
999 library BC sequences.

1000

1001 Sequencing data analysis

1002 All bcl files were demultiplexed and converted to fastq files using bcl2fastq2.

1003

1004 ET analysis:

1005 Sequencing reads of ETs from pooled PE screens were processed using DiMSum (–
1006 vsearchMinQual 5, –maxSubstitutions 3, otherwise default parameters)⁴⁹. Variant counts were
1007 further processed with custom Python scripts available on GitHub. Variants not programmed by
1008 pegRNAs within the pool were discarded.

1009

1010 SMARCB1 ET variant frequencies were corrected for sequencing error by subtraction of
1011 background frequencies observed in the negative control sample (non-transduced wildtype cells),
1012 with any resulting negative value set to zero. A small number of variants were highly abundant in
1013 the negative control sample, likely owing to site-specific sequencing error. Therefore, variants
1014 with negative control frequencies above 4×10^{-4} were excluded from further analysis. Variant
1015 frequencies were averaged across duplicate samples where available.

1016

1017 For *MLH1* ET analyses, log2-ratios of variant frequency on D20 over D4 (saturation screen) or
1018 D20 over negative control (non-transduced wildtype cells) (non-coding screen) were calculated.
1019 Variants with log2-ratios below 1 were excluded from analysis (i.e., those not enriched over the
1020 course of editing). Endogenous function scores were calculated for variants that received a
1021 pegRNA-derived function score, as log2-ratios of variant frequency on D34 over D20 (post- and
1022 pre-6TG selection, respectively), normalized to the median score of synonymous variants (exon
1023 10 screen) or intronic variants annotated as benign in ClinVar (non-coding screen). For the exon
1024 10 screen, normalized endogenous function scores were averaged across conditions to yield a
1025 single endogenous function score per variant. These scores were once more normalized to the
1026 median synonymous score to produce a final endogenous function score per variant.

1027

1028 pegRNA-ST read processing:

1029 A custom bash script was run on demultiplexed fastq files to extract and write new fastqs for each
1030 sequence element, including the protospacer, scaffold, 3' extension, ST, pegRNA BC, and library
1031 BC using cutadapt (version 4.4). Using a custom Python script, sequence elements of each read
1032 were queried against a list of expected pegRNA-ST cassettes and reads with non-matching
1033 combinations of elements were discarded. For STs, only the 3' end of each sequence was used
1034 for cross-checking such that reads with edited STs would not be discarded. Matches with up to
1035 10% substitutions per element were allowed (to accommodate sequencing errors), however
1036 recombined pegRNA-ST cassettes were recognised and discarded in this step. For each sample,

1037 sequencing reads with identical pegRNA identities were tallied to determine pegRNA counts.
1038 Next, ST reads were grouped by pegRNA identity and queried for correct editing by searching for
1039 a string comprising the intended PE edits flanked by 5 bp on either side. Percentages of correct
1040 ST edits were calculated as the number of STs with correct editing over the total number of STs
1041 for each pegRNA with at least 10 sequencing reads. pegRNAs with greater than 5% correct ST
1042 editing in the negative control sample were excluded from downstream analyses.
1043

1044 Calculation of pegRNA scores and function scores:

1045 For each sample, pegRNA counts were incremented by 1 and converted to frequencies. To
1046 measure the change in pegRNA frequency during selection, pegRNA scores were calculated as
1047 the log2-ratio of pegRNA frequency in the post-selection sample over pegRNA frequency in the
1048 pre-selection sample. To avoid assigning scores to poorly sampled pegRNAs, pegRNAs were
1049 filtered on pegRNA frequency in pre-selection samples. Where indicated, pegRNAs were also
1050 filtered for editing activity using the percentage of correct ST editing observed for each pegRNA.
1051

1052 For the *SMARCB1* variant screen, pegRNA filtering thresholds were set to 6×10^{-5} for pegRNA
1053 frequency and 75% correct ST editing for pegRNA activity. For *MLH1* variant screens, pegRNA
1054 frequency thresholds were set to 1.4×10^{-4} (exon 10 screen) or 1.0×10^{-4} (non-coding screen).
1055 Activity thresholds were set to 5% correct ST editing for all *MLH1* screens performed in
1056 HAP1:PEmax cells and to 25% correct ST editing for all screens performed in
1057 HAP1:PEmax+MLH1dn cells. PegRNA scores were normalized to the median pegRNA score of
1058 synonymous variants for the *SMARCB1* and *MLH1* saturation mutagenesis screens, or to the
1059 median pegRNA score of intronic variants for the *MLH1* non-coding screen.
1060

1061 Function scores for each variant were computed by averaging pegRNA scores for all pegRNAs
1062 programming the same variant. For the *SMARCB1* screen, this was achieved by averaging
1063 normalized pegRNA scores for each variant. For *MLH1* screens, unnormalized pegRNA scores
1064 from each experimental condition were used to determine condition-specific function scores.
1065 These were then normalized to the median function score of synonymous variants (exon 10
1066 screen) or to the median function score of intronic variants (non-coding screen) in each condition,
1067 prior to averaging function scores across conditions. Function scores averaged across conditions
1068 were once more normalized to the median function score of synonymous variants (saturation
1069 screen) or intronic variants (non-coding screen), and final function scores were assigned from
1070 variants scored in at least two conditions.
1071

1072 A high-stringency pegRNA activity filter was used to re-analyze the *MLH1* exon 10 screen. This
1073 was set to the mean ST editing threshold above which the range of pLoF (i.e., nonsense and
1074 canonical splice) variant scores is non-overlapping with the range of pNeut (i.e., synonymous)
1075 variant scores, corresponding to 36% mean ST editing per variant.
1076

1077 To classify variants in each screen as LoF, a normal distribution of neutral function scores was
1078 modeled from synonymous variants (*SMARCB1* and *MLH1* exon 10 screens) or intronic variants
1079 (*MLH1* non-coding screen) to calculate p-values for each function score. To correct for multiple
1080 hypothesis testing, the Benjamini-Hochberg (BH) procedure was applied. Variants with q-values

1081 less than 0.05 for the *SMARCB1* screen and less than 0.01 for the *MLH1* screen were deemed
1082 LoF variants.

1083

1084 AUC analysis:

1085 AUC measurements for separating pLoF and pNeut variants by function score were computed
1086 over a continuous range of ST editing thresholds. At each ST editing threshold sampled, function
1087 scores were re-calculated from the set of pegRNAs with ST editing percentages above threshold.
1088 For the *MLH1* exon 10 screen, synonymous variants were defined as pNeut and nonsense and
1089 canonical splice variants as pLoF. For the *MLH1* non-coding screen, intronic variants were
1090 defined as pNeut and canonical splice variants as pLoF.

1091

1092 To define a high-stringency ST editing threshold for the exon 10 screen, AUC measurements for
1093 distinguishing LoF variants by function score were computed over a continuous range of mean
1094 ST editing thresholds. Mean ST editing rates were calculated by averaging the editing rates of
1095 pegRNAs programming the same variant across conditions. The high-stringency analysis
1096 excluded pegRNAs with ST editing rates less than 5% in PEmax cell lines or less than 25% in
1097 PEmax-MLH1dn cell lines, as these were removed prior.

1098

1099 Comparing function scores with orthologous data sets

1100

1101 The crystal structure of human *MLH1* (PDB: 4P7A) was imported to PyMol. Maximum function
1102 scores for missense variants tested at each amino acid position were calculated and used to
1103 color-code residues. Negative function scores were set to 0.0 for this analysis.

1104

1105 *MLH1* variant pathogenicity assertions were retrieved from ClinVar in August 2023. For
1106 benchmarking of function scores, variants deemed “pathogenic” or “likely pathogenic” were
1107 grouped together, as were variants deemed “benign” or “likely benign”. Variants deemed to be of
1108 “uncertain significance” or with “conflicting interpretations of pathogenicity” were also grouped
1109 together as VUS.

1110

1111 CADD scores (v1.6)⁵⁰ and annotations were obtained for all *SMARCB1* and *MLH1* SNVs
1112 (<https://cadd.gs.washington.edu/download>), inclusive of SpliceAI scores. A single maximum
1113 SpliceAI score was determined for each variant from independent scores for “acceptor gain”,
1114 “acceptor loss”, “donor gain”, and “donor loss” scores and used for comparison to function scores.
1115 Variant “consequence” annotations for MNVs, deletions, and insertions were manually curated.
1116 The variant c.-7_1del was annotated as a 5'-UTR variant throughout analyses except where
1117 explicitly indicated “start loss”.

1118 **DATA AND CODE AVAILABILITY**

1119

1120 All experimental data including pegRNA frequencies, pegRNA scores, ST editing rates, and
1121 function scores are available in Supplementary Information. Raw NGS data (.fastq files) will be
1122 deposited to a public archive and made available prior to publication.

1123

1124 Custom scripts used in this study are available on GitHub:
1125 <https://github.com/FrancisCrickInstitute/PooledPEScreen>.

1126

1127

1128 **ACKNOWLEDGEMENTS**

1129

1130 We thank the Crick's Advanced Sequencing Scientific Technology Platform (STP) for performing
1131 sequencing and the Crick's Cell Services STP for maintenance of cell lines.

1132

1133 This work was supported by the Francis Crick Institute which receives its core funding from
1134 Cancer Research UK (CC2190), the UK Medical Research Council (CC2190), and the Wellcome
1135 Trust (CC2190). For the purpose of Open Access, the authors have applied a CC BY public
1136 copyright license to any Author Accepted Manuscript version arising from this submission.

1137

1138 **AUTHOR CONTRIBUTIONS**

1139

1140 M.H., C.M.K., and G.M.F. conceived the project and designed experiments; C.M.K. and M.H.
1141 performed experiments and analyzed the data; M.H., C.M.K., M.B., A.C., M.S., and G.M.F.
1142 performed initial optimizations and derived key reagents; G.M.F. supervised the project; and
1143 M.H., C.M.K., and G.M.F. wrote the manuscript with input from all authors.

1144

1145 **DECLARATION OF INTERESTS**

1146

1147 We declare no competing interests.

REFERENCES

1. Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., Grody, W.W., Hegde, M., Lyon, E., Spector, E., et al. (2015). Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. *Genet. Med.* 17, 405–424.
2. Gray, V.E., Hause, R.J., Luebeck, J., Shendure, J., and Fowler, D.M. (2018). Quantitative Missense Variant Effect Prediction Using Large-Scale Mutagenesis Data. *Cell Syst* 6, 116–124.e3.
3. Lappalainen, T., and MacArthur, D.G. (2021). From variant to function in human disease genetics. *Science* 373, 1464–1468.
4. Jaganathan, K., Kyriazopoulou Panagiotopoulou, S., McRae, J.F., Darbandi, S.F., Knowles, D., Li, Y.I., Kosmicki, J.A., Arbelaez, J., Cui, W., Schwartz, G.B., et al. (2019). Predicting Splicing from Primary Sequence with Deep Learning. *Cell* 176, 535–548.e24.
5. Gao, H., Hamp, T., Ede, J., Schraiber, J.G., McRae, J., Singer-Berk, M., Yang, Y., Dietrich, A.S.D., Fiziev, P.P., Kuderna, L.F.K., et al. (2023). The landscape of tolerated genetic variation in humans and primates. *Science* 380, eabn8153.
6. Cheng, J., Novati, G., Pan, J., Bycroft, C., Žemgulytė, A., Applebaum, T., Pritzel, A., Wong, L.H., Zielinski, M., Sargeant, T., et al. (2023). Accurate proteome-wide missense variant effect prediction with AlphaMissense. *Science* 381, eadg7492.
7. Landrum, M.J., Lee, J.M., Benson, M., Brown, G., Chao, C., Chitipiralla, S., Gu, B., Hart, J., Hoffman, D., Hoover, J., et al. (2016). ClinVar: public archive of interpretations of clinically relevant variants. *Nucleic Acids Res.* 44, D862–D868.
8. Miller, D.T., Lee, K., Chung, W.K., Gordon, A.S., Herman, G.E., Klein, T.E., Stewart, D.R., Amendola, L.M., Adelman, K., Bale, S.J., et al. (2021). ACMG SF v3.0 list for reporting of secondary findings in clinical exome and genome sequencing: a policy statement of the American College of Medical Genetics and Genomics (ACMG). *Genet. Med.* 23, 1381–1390.
9. Gasperini, M., Starita, L., and Shendure, J. (2016). The power of multiplexed functional analysis of genetic variants. *Nat. Protoc.* 11, 1782–1787.
10. Findlay, G.M. (2021). Linking genome variants to disease: scalable approaches to test the functional impact of human mutations. *Hum. Mol. Genet.* 10.1093/hmg/ddab219.
11. Kircher, M., Xiong, C., Martin, B., Schubach, M., Inoue, F., Bell, R.J.A., Costello, J.F., Shendure, J., and Ahituv, N. (2019). Saturation mutagenesis of twenty disease-associated regulatory elements at single base-pair resolution. *Nat. Commun.* 10, 3583.
12. Scott, A., Hernandez, F., Chamberlin, A., Smith, C., Karam, R., and Kitzman, J.O. (2022). Saturation-scale functional evidence supports clinical variant interpretation in Lynch syndrome. *Genome Biol.* 23, 266.
13. Fayer, S., Horton, C., Dines, J.N., Rubin, A.F., Richardson, M.E., McGoldrick, K.,

Hernandez, F., Pesaran, T., Karam, R., Shirts, B.H., et al. (2021). Closing the gap: Systematic integration of multiplexed functional data resolves variants of uncertain significance in BRCA1, TP53, and PTEN. *Am. J. Hum. Genet.* *108*, 2248–2258.

14. Findlay, G.M., Daza, R.M., Martin, B., Zhang, M.D., Leith, A.P., Gasperini, M., Janizek, J.D., Huang, X., Starita, L.M., and Shendure, J. (2018). Accurate classification of BRCA1 variants with saturation genome editing. *Nature* *562*, 217–222.
15. Meitlis, I., Allenspach, E.J., Bauman, B.M., Phan, I.Q., Dabbah, G., Schmitt, E.G., Camp, N.D., Torgerson, T.R., Nickerson, D.A., Bamshad, M.J., et al. (2020). Multiplexed Functional Assessment of Genetic Variants in CARD11. *Am. J. Hum. Genet.* *107*, 1029–1043.
16. Radford, E.J., Tan, H.-K., Andersson, M.H.L., Stephenson, J.D., Gardner, E.J., Ironfield, H., Waters, A.J., Gitterman, D., Lindsay, S., Abascal, F., et al. (2023). Saturation genome editing of DDX3X clarifies pathogenicity of germline and somatic variation. *Nat. Commun.* *14*, 7702.
17. Findlay, G.M., Boyle, E.A., Hause, R.J., Klein, J.C., and Shendure, J. (2014). Saturation editing of genomic regions by multiplex homology-directed repair. *Nature* *513*, 120–123.
18. Hanna, R.E., Hegde, M., Fagre, C.R., DeWeirdt, P.C., Sangree, A.K., Szegletes, Z., Griffith, A., Feeley, M.N., Sanson, K.R., Baidi, Y., et al. (2021). Massively parallel assessment of human variants with base editor screens. *Cell* *184*, 1064–1080.e20.
19. Cuella-Martin, R., Hayward, S.B., Fan, X., Chen, X., Huang, J.-W., Taglialatela, A., Leuzzi, G., Zhao, J., Rabadian, R., Lu, C., et al. (2021). Functional interrogation of DNA damage response variants with base editing screens. *Cell* *184*, 1081–1097.e19.
20. Anzalone, A.V., Randolph, P.B., Davis, J.R., Sousa, A.A., Koblan, L.W., Levy, J.M., Chen, P.J., Wilson, C., Newby, G.A., Raguram, A., et al. (2019). Search-and-replace genome editing without double-strand breaks or donor DNA. *Nature* *576*, 149–157.
21. Coelho, M.A., Cooper, S., Strauss, M.E., Karakoc, E., Bhosle, S., Gonçalves, E., Picco, G., Burgold, T., Cattaneo, C.M., Veninga, V., et al. (2023). Base editing screens map mutations affecting interferon- γ signaling in cancer. *Cancer Cell* *41*, 288–303.e6.
22. Chen, P.J., Hussmann, J.A., Yan, J., Knipping, F., Ravisankar, P., Chen, P.-F., Chen, C., Nelson, J.W., Newby, G.A., Sahin, M., et al. (2021). Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. *Cell* *184*, 5635–5652.e29.
23. Nelson, J.W., Randolph, P.B., Shen, S.P., Everette, K.A., Chen, P.J., Anzalone, A.V., An, M., Newby, G.A., Chen, J.C., Hsu, A., et al. (2022). Engineered pegRNAs improve prime editing efficiency. *Nat. Biotechnol.* *40*, 402–410.
24. Erwood, S., Bily, T.M.I., Lequyer, J., Yan, J., Gulati, N., Brewer, R.A., Zhou, L., Pelletier, L., Ivakine, E.A., and Cohn, R.D. (2022). Saturation variant interpretation using CRISPR prime editing. *Nat. Biotechnol.* *40*, 885–895.
25. Ren, X., Yang, H., Nierenberg, J.L., Sun, Y., Chen, J., Beaman, C., Pham, T., Nobuhara, M., Takagi, M.A., Narayan, V., et al. (2023). High-throughput PRIME-editing screens identify functional DNA variants in the human genome. *Mol. Cell* *83*, 4633–4645.e9.

26. Carette, J.E., Raaben, M., Wong, A.C., Herbert, A.S., Obernosterer, G., Mulherkar, N., Kuehne, A.I., Kranzusch, P.J., Griffin, A.M., Ruthel, G., et al. (2011). Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. *Nature* **477**, 340–343.
27. Shalem, O., Sanjana, N.E., Hartenian, E., Shi, X., Scott, D.A., Mikkelsen, T., Heckl, D., Ebert, B.L., Root, D.E., Doench, J.G., et al. (2014). Genome-scale CRISPR-Cas9 knockout screening in human cells. *Science* **343**, 84–87.
28. Mathis, N., Allam, A., Kissling, L., Marquart, K.F., Schmidheini, L., Solari, C., Balázs, Z., Krauthammer, M., and Schwank, G. (2023). Predicting prime editing efficiency and product purity by deep learning. *Nat. Biotechnol.* **41**, 1151–1159.
29. Yu, G., Kim, H.K., Park, J., Kwak, H., Cheong, Y., Kim, D., Kim, J., Kim, J., and Kim, H.H. (2023). Prediction of efficiencies for diverse prime editing systems in multiple cell types. *Cell* **186**, 2256–2272.e23.
30. Gould, S.I., Wuest, A.N., Dong, K., Johnson, G.A., Hsu, A., Narendra, V.K., Levine, S.S., Liu, D.R., and Sánchez Rivera, F.J. (2023). High throughput evaluation of genetic variants with prime editing sensor libraries. *bioRxiv*, 2022.10.26.513842. [10.1101/2022.10.26.513842](https://doi.org/10.1101/2022.10.26.513842).
31. Sánchez-Rivera, F.J., Diaz, B.J., Kastenhuber, E.R., Schmidt, H., Katti, A., Kennedy, M., Tem, V., Ho, Y.-J., Leibold, J., Paffenholz, S.V., et al. (2022). Base editing sensor libraries for high-throughput engineering and functional analysis of cancer-associated single nucleotide variants. *Nat. Biotechnol.* **40**, 862–873.
32. Kim, H.K., Yu, G., Park, J., Min, S., Lee, S., Yoon, S., and Kim, H.H. (2021). Predicting the efficiency of prime editing guide RNAs in human cells. *Nat. Biotechnol.* **39**, 198–206.
33. Ren, C., Xu, K., Segal, D.J., and Zhang, Z. (2019). Strategies for the Enrichment and Selection of Genetically Modified Cells. *Trends Biotechnol.* **37**, 56–71.
34. Li, S., Akrap, N., Cerboni, S., Porritt, M.J., Wimberger, S., Lundin, A., Möller, C., Firth, M., Gordon, E., Lazovic, B., et al. (2021). Universal toxin-based selection for precise genome engineering in human cells. *Nat. Commun.* **12**, 497.
35. Levesque, S., Mayorga, D., Fiset, J.-P., Goupil, C., Duringer, A., Loiselle, A., Bouchard, E., Agudelo, D., and Doyon, Y. (2022). Marker-free co-selection for successive rounds of prime editing in human cells. *Nat. Commun.* **13**, 5909.
36. Chen, B., Gilbert, L.A., Cimini, B.A., Schnitzbauer, J., Zhang, W., Li, G.-W., Park, J., Blackburn, E.H., Weissman, J.S., Qi, L.S., et al. (2013). Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. *Cell* **155**, 1479–1491.
37. Sanson, K.R., Hanna, R.E., Hegde, M., Donovan, K.F., Strand, C., Sullender, M.E., Vaimberg, E.W., Goodale, A., Root, D.E., Piccioni, F., et al. (2018). Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities. *Nat. Commun.* **9**, 1–15.
38. Riesenberg, S., Helmbrecht, N., Kanis, P., Maricic, T., and Pääbo, S. (2022). Improved gRNA secondary structures allow editing of target sites resistant to CRISPR-Cas9 cleavage. *Nat. Commun.* **13**, 1–8.

39. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E. (2012). A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. *Science* 337, 816–821.
40. Cooper, G.W., and Hong, A.L. (2022). SMARCB1-Deficient Cancers: Novel Molecular Insights and Therapeutic Vulnerabilities. *Cancers* 14, 10.3390/cancers14153645.
41. Blomen, V.A., Májek, P., Jae, L.T., Bigenzahn, J.W., Nieuwenhuis, J., Staring, J., Sacco, R., van Diemen, F.R., Olk, N., Stukalov, A., et al. (2015). Gene essentiality and synthetic lethality in haploid human cells. *Science* 350, 1092–1096.
42. Filatova, A., Rey, L.K., Lechler, M.B., Schaper, J., Hempel, M., Posmyk, R., Szczaluba, K., Santen, G.W.E., Wieczorek, D., and Nuber, U.A. (2019). Mutations in SMARCB1 and in other Coffin-Siris syndrome genes lead to various brain midline defects. *Nat. Commun.* 10, 2966.
43. Doench, J.G., Fusi, N., Sullender, M., Hegde, M., Vaimberg, E.W., Donovan, K.F., Smith, I., Tothova, Z., Wilen, C., Orchard, R., et al. (2016). Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. *Nat. Biotechnol.* 34, 184–191.
44. Hadfield, K.D., Newman, W.G., Bowers, N.L., Wallace, A., Bolger, C., Colley, A., McCann, E., Trump, D., Prescott, T., and Evans, D.G.R. (2008). Molecular characterisation of SMARCB1 and NF2 in familial and sporadic schwannomatosis. *J. Med. Genet.* 45, 332–339.
45. Jia, X., Burugula, B.B., Chen, V., Lemons, R.M., Jayakody, S., Maksutova, M., and Kitzman, J.O. (2021). Massively parallel functional testing of MSH2 missense variants conferring Lynch syndrome risk. *Am. J. Hum. Genet.* 108, 163–175.
46. Clement, K., Rees, H., Canver, M.C., Gehrke, J.M., Farouni, R., Hsu, J.Y., Cole, M.A., Liu, D.R., Joung, J.K., Bauer, D.E., et al. (2019). CRISPResso2 provides accurate and rapid genome editing sequence analysis. *Nat. Biotechnol.* 37, 224–226.
47. Sanjana, N.E., Shalem, O., and Zhang, F. (2014). Improved vectors and genome-wide libraries for CRISPR screening. *Nat. Methods* 11, 783–784.
48. Wang, Y., Bergelson, S., and Feschenko, M. (2018). Determination of Lentiviral Infectious Titer by a Novel Droplet Digital PCR Method. *Hum. Gene Ther. Methods* 29, 96–103.
49. Faure, A.J., Schmiedel, J.M., Baeza-Centurion, P., and Lehner, B. (2020). DiMSum: an error model and pipeline for analyzing deep mutational scanning data and diagnosing common experimental pathologies. *Genome Biol.* 21, 207.
50. Rentzsch, P., Schubach, M., Shendure, J., and Kircher, M. (2021). CADD-Splice-improving genome-wide variant effect prediction using deep learning-derived splice scores. *Genome Med.* 13, 31.

SUPPLEMENTAL INFORMATION

Supplementary Table 1. Rates of ST editing by pegRNA scaffold library.

Supplementary Table 2. Rates of ST editing for comparison of SNVs and MNVs.

Supplementary Table 3. *SMARCB1* ST editing rates and pegRNA scores.

Supplementary Table 4. Function scores derived for variants in *SMARCB1*.

Supplementary Table 5. ST editing rates and pegRNA scores for the *MLH1* exon 10 screen.

Supplementary Table 6. Function scores for the *MLH1* exon 10 screen.

Supplementary Table 7. ST editing rates and pegRNA scores for the *MLH1* non-coding screen.

Supplementary Table 8. Function scores for the *MLH1* non-coding screen.

Supplementary Table 9. Oligonucleotides used in this study.