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Abstract

In constructing Gene Regulatory Networks (GRNs), it is crucial to consider cellu-
lar heterogeneity and differential gene regulatory modules. However, traditional
methods have predominantly focused on cellular heterogeneity, approaching the
subject from a relatively narrow scope. We present HyperG-VAE, a Bayesian deep
generative model that utilizes a hypergraph to model single-cell RNA sequenc-
ing (scRNA-seq) data. HyperG-VAE employs a cell encoder with a Structural
Equation Model to address cellular heterogeneity and build GRNs, alongside a
gene encoder using hypergraph self-attention to identify gene modules. Encoders
are synergistically optimized by a decoder, enabling HyperG-VAE to excel in
GRN inference, single-cell clustering, and data visualization, evidenced by bench-
marks. Additionally, HyperG-VAE effectively reveals gene regulation patterns
and shows robustness in varied downstream analyses, demonstrated using B cell
development data in bone marrow. The interplay of encoders by the overlapping
genes between predicted GRNs and gene modules is further validated by gene set
enrichment analysis, underscoring that the gene encoder boosts the GRN inference.
HyperG-VAE proves efficient in scRNA-seq data analysis and GRN inference.
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1 Introduction

Gene Regulatory Networks (GRNs) within single-cell RNA sequencing (scRNA-seq)
datasets present a sophisticated interplay of transcription factors (TFs) and target
genes, uniquely capturing the modulation of gene expression and thereby delineating
the intricate cellular functions and responses within diverse cell populations [1]. GRNs
illuminate core biological processes and underpin applications from disease modeling
to therapeutic design [2, 3, 4], empowering researchers to interpret the mechanisms
of gene interactions within cells and leverage this understanding for medical and
biotechnological innovations [5, 6].

Numerous methodologies have emerged for inferring GRNs from single-cell tran-
scriptomic data. The algorithms emphasize co-expression networks in a statistical way
(e.g., PPCOR [7] and LocaTE [8]) or aim to decipher causal relationships between
TF's and their target genes based on the analysis of the gene interactions among cells
(e.g., DeepSEM [9] and PIDC [10]). Despite their achievements, these algorithms still
have inherent limitations. Specifically, these approaches mainly focus on cellular het-
erogeneity and overlook the critical importance of simultaneously considering cellular
heterogeneity and gene module information in the model design. Generally, from the
view of underlying principles, we can divide the methodologies into deep learning meth-
ods and traditional statistical algorithms. Many deep learning (e.g., DeepTFni [11] and
DeepSEM [9]) based methodologies primarily build upon foundational models [12, 13].
The frequent oversight in these models is the inherent relationships between cells and
genes, as informed by domain expertise. This often leads to models that compromise on
explainability and narrow their application scope. For the traditional statistical algo-
rithms, such as Bayesian networks [14, 15] and ensemble methods [16, 17, 18], it can be
computationally expensive, and it remains a challenge to extend these methodologies
to encompass broader nonlinear paradigms.

Additionally, the scRNA-seq data is frequently marred by noise and incompleteness,
attributable to phenomena such as amplification biases inherent to reverse transcription
and PCR amplification processes [19, 20|, as well as the issue of low quantities of
nucleic acids in single cells [21]. To get a more robust GRN, several methodologies
[22, 23] leverage multi-omic datasets, capturing kinds of cellular information to enrich
the model’s comprehensiveness. However, integrating multi-omic datasets presents
substantial challenges, particularly regarding harmonizing data from disparate sources
and platforms and could also introduce additional noise [24].

To address the problems and construct a reliable GRN, we model scRNA-seq data
as a hypergraph and present Hypergraph Variational Autoencoder (HyperG-VAE), a
Bayesian deep generative model to process the hypergraph data. Distinct from current
approaches, HyperG-VAE simultaneously captures cellular heterogeneity and gene
modules ! through its cell and gene encoders individually during the GRNs construction.
Two encoders employ variational inference to learn stochastic representations of genes
and cells, offering a more flexible and robust approach to manage real-world data
complexities. This could be particularly effective in handling noise in scRNA-seq
datasets, a capability that has been demonstrated in previous studies [25, 26]. Within
a shared embedding space, the dual encoders of our model interact, boosting its
cohesiveness. The joint optimization manner elucidates gene regulatory mechanisms
within gene modules across various cell clusters, thereby augmenting the model’s
ability to delineate complex gene regulatory interactions and significantly improving
its explainability.

Our study evaluates the performance of HyperG-VAE in various scRNA-seq appli-
cations. These include i. GRN inference, ii. cell embedding, iii. gene embedding, and
iv. gene regulation hypergraph construction. Through benchmark comparisons, encom-
passing tasks like GRNs inference, data visualization, and single-cell clustering, we
establish that HyperG-VAE outperforms existing state-of-the-art methods. Additionally,
HyperG-VAE demonstrates its utility in elucidating the regulatory patterns governing
B cell development in bone marrow. Our model also excels in learning gene expression

n gene regulatory networks (GRNs) analysis, gene modules refer to clusters of genes that are regulated
together by the same set of transcription factors.


https://doi.org/10.1101/2024.04.01.586509
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.01.586509; this version posted April 2, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

modules and cell clusters, which connect the gene encoder and cell encoder individu-
ally to boost gene regulatory hypergraph prediction. This integrated functionality of
HyperG-VAE improves our comprehension of single-cell transcriptomic data, ultimately
providing better insights into the realm of GRNs inference.

2 Results

Framework overview. We introduce HyperG-VAE, a Bayesian deep generative model
specifically designed to address the complex challenge of gene regulation network
inference using scRNA-seq data, which is represented as a hypergraph (Fig.1 and
Methods). Our HyperG-VAE takes into account the interplay between gene modules
and cellular heterogeneity, allowing for a more accurate representation of cell-specific
regulatory mechanisms. This interplay could be incorporated in a hypergraph to capture
the nuanced interactions of genes across diverse cellular states. In the hypergraph, we
conceptualize genes expressed within individual cells as nodes, interconnected through
unique hyperedges (cells) (Fig.1b).

HyperG-VAE incorporates two encoders: a cell encoder and a gene encoder, enabling
it to learn the hypergraph representation HY (Fig.1c). The cell encoder generates
cell representations H¥ in the form of hypergraph duality, facilitating the embedding
of high-order relations via structural equation layers. GRN construction (Fig.1d) is
realized in this structural equation layers through a learnable causal interaction matrix.
In addition, the cell encoder can adeptly capture the gene regulation process in a
cell-specific manner, elucidating a clearer landscape of cellular heterogeneity (Fig.1e).
The gene encoder is specifically designed to process observed gene representations,
denoted as HY. Given that genes within a module generally manifest consistent
expression profiles across cells, we employs a multi-head self-attention mechanism that
is specifically designed for hypergraph in this work. This not only discerns varying
gene expression levels but also assigns appropriate weights to the genes expressed in
the same cell during the message-passing phase. Thus, the gene encoder enhances the
model’s ability to understand and integrate the intricate interdependencies among genes,
thereby aiding in the effective embedding of gene clusters (Fig.1f). Finally, a hypergraph
decoder is utilized to reconstruct the original topology of the hypergraph (Fig.1g)
using the learned latent embedding of genes and cells. Utilizing the reconstructed
hypergraph and the learned inter-gene relationships, we can also infer a gene regulatory
hypergraph (Fig.1g). This hypergraph encompasses gene regulatory modules that span
across various cell stages.

HyperG-VAE enhances the GRNs inference by incorporating the above two
encoders to mutually augment each other’s embedding quality (Fig.1c) while preserv-
ing the high-order gene relations among cells, constrained by hypergraph variational
evidence lower bound (Methods). Specifically, the cell encoder incorporates a structure
equation model (SEM) on gene coexpression space to infer the GRNs; the learning
of gene modules by the gene encoder aids in the inference of GRNs, since the gene
module conceivably incorporates TF-target regulation patterns. By integrating the
embedding of genes and cells through joint learning, we observe the substantial
performance of downstream tasks (Fig.1d-g), including the inference of GRNs, cell
clustering, gene clustering, and interplay characterization between gene modules and
cellular heterogeneity, among others.
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Fig. 1: Caption is shown below the figure.

Fig. 1 | Overview of the HyperG-VAE. a, HyperG-VAE, which takes expression
value matrix derived from single-cell RNA-seq data as input. In the provided table,
four cells exhibit expression across fifteen genes, with color gradients indicating varying
gene expression levels (white circles mean no expression). b, The colored circles with
serial numbers denote distinct genes, expressed within specific cells, functioning as
interlinked nodes. These nodes are interconnected by a singular hyperedge (small
dashed ellipses) symbolizing the cell (triangle). Together, these nodes and hyperedges
form a hypergraph structure. Node coloration reflects a composite of gene expression
levels of the given gene across cells; for instance, gene 3 manifests a blend of green
and blue hues. The largest dashed ellipse is the genome shared by all cells. ¢, The
neural network architecture of HyperG-VAE, two encoders are designed to process the
provided input matrix. The cell encoder uses the Structural Equation Model (SEM) to
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discern cellular heterogeneity and form the GRN, while the gene encoder, employing a
hypergraph self-attention mechanism, focuses on gene module analysis. The decoder
subsequently reconstructs the input matrix, leveraging the shared latent space of both
gene and cell embeddings. Inferred gene regulation hypergraph integrates cellular and
gene representations, drawing on relationships derived from the learned GRN. d-g,
Downstream tasks that can be pursued by HyperG-VAE include GRN construction,
clustering both cells and genes, and modeling the interplay between gene modules and
cellular heterogeneity. Further details are provided in the legend, located in the upper
right of the figure.

HyperG-VAE achieves accurate prediction of GRNs. We evaluate the perfor-
mance on GRNSs inference of HyperG-VAE based on the setting of BEELINE framework
[27]. Our evaluation encompassed seven scRNA-seq datasets. This includes two cell lines
from human and five mouse cell lines (More details can be found in the Supplementary).
Furthermore, the EPR and AUPRC are used to evaluate the GRNs performance based
on four kinds of ground truth: STRING [28], Non-specific ChIP-seq [29, 30, 31], Cell-
type-specific ChIP-seq [32, 33, 34], and loss-/gain-of-function (LOF/GOF) groundtruth
network [34]. As recommended by Pratapa et al. [27], our analysis for each dataset prior-
itized the most variable transcription factors and the top N most-varying genes, where
N is set to 500 and 1,000. We selected seven state-of-the-art baseline algorithms based
on the evaluation of BEELINE to compare with HyperG-VAE, they are DeepSEM [9],
GENIE3 [17], PIDC [10], GRNBoost2 [18], SCODE [35], ppcor [7] and SINCERITIES
[36]. Introduction and settings of the algorithms can be found in the Supplementary.
Overall, HyperG-VAE demonstrates a discernible enhancement in performance
when compared with other baseline methods in terms of both AUPRC and EPR
metrics (Fig.2 and Extended Data Fig.1). For scaled results of datasets composed
of all significantly varying TFs and the 500 most-varying genes (as shown in Fig.2),
HyperG-VAE surpasses the other seven benchmarked methods in 42 of the 44 (95%)
evaluated conditions. Compared with the second-best method (DeepSEM), HyperG-
VAE enhances results by at least 10% in 19 out of the 44 benchmarks. Furthermore,
in comparison to other commendable approaches such as PIDC and GENIE3, our
approach registered significant enhancements. For PIDC, 38 out of 44 instances showed
improvements of over 10%, with 27 surpassing 30% and 22 going beyond 50%. Similarly,
with GENIE3, 33 out of 44 instances marked at least a 10% enhancement, 26 surpassed
30%, and an impressive 20 recorded at least a 50% increase. For scaled results of datasets
composed of all significantly varying TFs and the 1000 most-varying genes (Extended
Data Fig.1), HyperG-VAE achieves the best prediction performance on 84% (37/44) of
the benchmarks. In comparison to the runner-up method, DeepSEM, HyperG-VAE
outperforms by a margin of at least 10% in 17 of the 44 evaluated benchmarks. Notably,
the average enhancement in EPR stands at 11.35%, while that in AUPRC is 7.16%.
With single-cell sequencing data, robustly inferring GRNs from limited cells is piv-
otal, especially for capturing rare cellular phenotypes and transient states [11, 9]. Here,
we explore the fluctuations in EPR performance and the robustness of HyperG-VAE
when confronted with limited training data (Extended Data Fig.2a). We constructed
mESC datasets [37] composed of all significantly varying TFs and the 500 and 1000
most-varying genes respectively and evaluated the accuracy based on four unique
groundtruth benchmark by randomly subsampling single cells following the BEELINE
benchmark [27]. Upon adjusting the number of subsampled single cells to 400, 300, 200,
100, and 50, we registered average performance retentions of 94%, 92%, 91%, 80%, and
53%, respectively. Remarkably, when training with cell counts exceeding 100, a robust
79.17% (19/24) retained more than 90% of their performance, and for counts greater
than 50, a compelling 87.50% (28/32) maintained above 80% efficacy. When utilizing
cell-type-specific ChIP-seq as the benchmark, the performance remains notably stable,
with an average performance retention of 93%. Furthermore, when assessed against
the other three ground truths and the training cell count exceeds 50, there’s only a
modest decline in efficacy, averaging 88% performance retention in comparison to the
median value derived from all cells. Beyond performance evaluation, we also examined
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HyperG-VAE’s scalability with expansive datasets (Extended Data Fig.2b).
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Fig. 2: Caption is shown below the figure.
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Fig. 2 | Benchmarks of different GRN inference methods on experimental
single-cell RN A-seq datasets by EPR and AUPRC scores. We contrast the
scaled performance of HyperG-VAE against seven alternative algorithms. The overall
figure shows results for datasets composed of all significantly varying TFs and the
500 most-varying genes. These evaluations span seven datasets, delineated by four
unique ground-truth benchmarks: a-b) STRING, c-d) Non-specific ChIP-seq, e-f)
Cell-type-specific ChIP-seq, and LOF/GOF. For each figure pair, the left denotes the
median AUPRC results, and the right represents the median EPR outcomes. Notably,
results inferior to random predictions are omitted from these visualizations. EPR
is defined as the odds ratio of the true positives among the top K predicted edges
between the model and the random predictions where K denotes the number of edges
in ground-truth GRN. AUPRC ratio is defined as the odds ratio of the area under the
precision-recall curve (AUPRC) between the model and the random predictions.

HyperG-VAE reveals the gene regulation patterns of B cell development in
bone marrow. To evaluate HyperG-VAFE’s proficiency in elucidating GRNs and to
assess the effectiveness of both cell clustering embedding and gene module embedding
components within HyperG-VAE, we deployed HyperG-VAE on scRNA-seq data of
B cell development in bone marrow [38] (More details of the data can be found in
the Supplementary), as illustrated in Fig.3. The progression of B cell development
from hematopoietic stem cells follows a sequential yet adaptable developmental path-
way governed by interactions among environmental stimuli, signaling cascades, and
transcriptional networks [39]. Throughout this developmental trajectory, transcription
factors play a pivotal role in regulating cell cycle, differentiation, and advancement
to subsequent developmental stages. These critical checkpoints encompass the initial
commitment to lymphocytic progenitors, the specification of pre-B cells, progression
through immature stages, entry into the peripheral B-cell pool, B cell maturation, and
subsequent differentiation into plasma cells [40]. Each of these regulatory nodes is con-
trolled by complex transcriptional networks, which along with sensing and signalling
systems determine the final outcomes.

HyperG-VAE uncovers the cell embedding by dimensionality reduction and dis-
tinctly segregates the primary cell types across various stages of bone marrow B cell
development (Fig.3a). Significantly, HyperG-VAE also effectively captures the linear
progression of B cell development, spanning from early pro B, late pro B, large pre B,
small pre B, immature B, to mature B cells. In our pursuit to unveil the gene regulation
patterns in developmental B cells, our HyperG-VAE, in conjunction with SCENIC [41],
successfully identifies established master regulators associated with different develop-
mental stages (Fig.3b, Extended Data Fig.3), including pre-pro B (Runx2), pro B
(Ebfl, Lefl), large pre B (Myc, Hmgb2), small pre B (Tcf3, Sox4), immature B (Relb,
Egrl), mature B (Nfkb2), and plasma cells (Cebpb, Prdm1).

Furthermore, we conducted a benchmark assessment to compare the performance of
HyperG-VAE against SCENIC using its default settings. By the reference of ChIP-seq
database [33], the accuracy was evaluated based on the degree of overlap coefficient
between the ChIP-seq coverage and the predicted target genes from both methods.
Our HyperG-VAE, when combined with SCENIC, demonstrates superior performance
compared to the standard SCENIC approach, exhibiting higher accuracy in detecting
TF-target patterns for the key transcription factors (as illustrated in Fig.3c). The
comprehensive gene regulation network spanning the developmental B cells in the
bone marrow is depicted in Fig.3d. We find that the GRNs show TF-target regulation
patterns in two ways: transcript factors co-binding to shared predicted enhancers (the
inner circle in Fig.3d) and TF-specific target genes (the outer circle in Fig.3d). We
also observe that the cooperativity between TFs is stronger within cell types along the
development path, indicating that some TF's are involved in multiple stages of B cell
development.
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Fig. 3 | GRN prediction by HyperG-VAE across developmental B cell states
in bone marrow. a, t-SNE visualization of cell embedding on the bone marrow B
cell dataset, the embedding is learned by the cell encoder of HyperG-VAE. Black
lines depict the trajectory from Pre-Pro B cells to Mature B cells. b, The accuracy
of GRN prediction by cross-validation with publicly available ChIP-seq datasets.
The overlap coefficient quantifies the concordance between sets of target genes for
each transcription factor, as derived from GRN prediction and ChIP-seq database
respectively. The x-axis represents the difference value of overlap coeflicients between
HyperG-VAE and SCENIC (default). Pink lines indicate superior performance by
HyperG-VAE, while blue lines favor the default SCENIC. The dot-plot illustrates the
overlap coeflicient of the more effective approach for each regulon, depicted on a color
gradient. ¢, Heat map/dot-plot showing TF expression of the regulon on a color scale
and cell-type specificity (RSS) of the regulon on a size scale. Cell states are arranged
in a sequence that reflects the progression of bone marrow B cell development stages.
d, The GRN visualization for the bone marrow B cell dataset with ten states from
Pre-Pro B state to plasma state, as delineated by HyperG-VAE; inner circle shows the
co-binding of shared target genes while outer circle presents TF-focused target genes.

Gene expression module learning enhances HyperG-VAE in GRN inference.
Our HyperG-VAE model augments the GRNs prediction by integrating gene space
learning, as depicted in Fig.1lc. HyperG-VAE uncovers the gene expression modules
visualized by Uniform Manifold Approximation and Projection (UMAP) [42] in Fig.4a.
By associating these gene modules with the key transcription factors and corresponding
target genes of pathways along B cell development, we annotate the gene modules with
specific cell types, indicating that these gene clusters are activated in different stages
of developmental B cells (Fig.4a,b).

We further apply gene set enrichment analysis (GSEA) [43] (Methods) to investigate
the gene clusters (Fig.4e, Supplementary Fig.1-4). The pathways identified through
GSEA validate the accuracy of our gene cluster annotations. For example, large pre
B cells (cluster preBCRi B) is associated with signals initiating diverse processes
which include proliferation and recombination of the light chain gene [44]; the GSEA
results show the related pathways: lymphocyte proliferation, cell activation, and B
cell receptor signaling pathway. Immature B cells exhibit B cell central tolerance,
which is governed by mechanisms such as receptor editing and apoptosis [45]. The
pathways identified in the corresponding gene clusters includes antigen processing and
presentation of exogenous peptide antigen, DNA damage response, regulation of cell
killing and apoptotic signalling pathway. Plasma cells are terminally differentiated B-
lymphocytes that secrete immunoglobulins, also known as antibodies [46]. Considering
the substantial demands placed on these cells for secretory biological processes, the
pathways associated with the relevant gene cluster shed light on the cellular response
to endoplasmic reticulum stress.

We show that the gene modules are associated with different biological pathways
during B cell development in the bone marrow. These gene modules implicitly incorpo-
rate the gene regulation patterns leading to different cell types. On the other hand,
distinct cell types of B cell clustering are engaged in various immunological environ-
ments [39, 47], resulting in different signalling pathways for B cell activation and fate
decisions. We exemplify this joint relationship with an example involving B cells at the
large pre-B stage, as shown in Fig.4c,d. This specific cell state (Fig.4c) is characterized
by gene regulation patterns associated with cell proliferation, reflected by the regulon
Phf8(+) [48]. The corresponding gene cluster (Fig.4d) is linked to a Molecular Complex
Detection (MCODE) network which belongs to the lymphocyte proliferation pathway
(4e) and shares target genes with the Phf8(+4) regulon.

Therefore, our HyperG-VAE reciprocally integrates these two concepts: cell cluster-
ing and gene module detection, in the aim of revealing Gene Regulatory Networks
(GRNs). Concretely, the cell embedding process groups together similar cells that
share common pathways, while the gene modules aggregate genes exhibiting similar
regulation patterns, thereby enhancing the accuracy of GRNs computations.
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heatmap illustrates normalized overlap values between gene clusters and TF regulons
from different B cell states. Lighter colors indicates larger overlap scores. ¢, t--SNE visu-
alization of cellular embeddings with highlighted "PreBCRi B’ cell state, together with
the associated regulon "Phf8_(+)’ and related target genes. d, Pathway enrichment
analysis on gene cluster 5 with associated Molecular Complex Detection (MCODE)
network components. e, Pathway enrichment analysis of different gene clusters. The
pathways in shade show the dominant gene programs for each gene cluster.

HyperG-VAE constructs the cell-type-specific GRN on B cell development
in bone marrow. We have demonstrated that gene modules associated with various
biological pathways correspond to distinct cell types within bone marrow development
in B cells. Essentially, these distinct gene regulation patterns influence cell fate com-
mitment, leading to the development of diverse cell types with varying gene regulation
profiles. Thus, we employ HyperG-VAE to investigate each individual state of develop-
mental B cells and construct a more accurate GRN for B cell at specific developmental
stages, as illustrated in Fig.5. B cell development in the bone marrow can be broadly
categorized into four states: pro-B, large pre-B, small pre-B, and mature B [40]. These
four stages are visualized using UMAP, as depicted in Fig.5b. For each of these states,
we employed HyperG-VAE to compute GRNs and uncover the predominant regulatory
patterns, as illustrated in Fig.5a-c. HyperG-VAE effectively reveals the key transcrip-
tion factors and their associated target genes within each cell state. For example, in
the pro-B state, Ebfl [49] and Pax5 [50] play significant roles, while Myc [38] stands
out in the large pre-B state, Bach2 [51, 38] is crucial in the small pre-B state, and KIf2
[52] and Ctcf [53] are notable in the mature state.

The aforementioned transcription factors, along with their respective target
genes, collectively constitute the regulons that characterize the four major cell states,
allowing for the construction of a gene regulatory hypergraph at the cell clustering
level (Fig.5a,b). For each major state, we overlap the top-predicted target genes by
HyperG-VAE (Fig.5b) with the differentially expressed genes (DGEs, Fig.5e) and
identify the principal marker genes (Fig.5d). Specifically, Ebfl and Pax5 are essential
in the pro-B state of bone marrow to maintain an early B cell phenotype characterized
by the expression of B cell-specific genes such as Vpreb and Iglll for surrogate light
chain production [49, 50]. In the large pre-B stage, the enriched regulons encompass the
transcription factor Myc [38] and other genes related to the cell cycle, such as Mki67,
Cenpf, Cenpa, and Hmgb2. Additionally, nucleosome-related genes, such as Hist1h2ae
and Hist1h3c, are also enriched in this state due to the high rate of cell proliferation.
In the small pre-B stage, both Bach2 and Btgl restrain cell proliferation [54, 55]. It is
noteworthy that the mature state markers H2-Abl, H2-Ebl, H2-Aa and Cd74 are
assigned as target genes in the pro-B, suggesting that these genes may be actively
repressed in the early B cell development stage.
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Fig. 5 | Cell-type-specific GRN analysis of development B cells in bone
marrow. a, The sankey diagram shows significant regulons and corresponding target
genes of different states along B cell development in bone barrow, with normalized
enrichment score (NES) encoded by color shade and area under the curve (AUC) score
by dot size. b, Gene regulatory hypergraph at the cell clustering level, illustrating
the four principal B cell states as four hyperedges. Conserved transcription factors
are highlighted with red dots, and target genes are depicted as diamonds, where size
reflects the logFC in gene expression of a given state compared to others. Highly
expressed genes are labeled in the figure. ¢, The motif of significant TFs along the
four principal stages. d, Heatmap displays the expression of the top genes, ranked by
logFC, across cells classified into four distinct cell states. The genes are selected by the
overlap of top logFC genes and predicted target genes. The genes’ color corresponds
to the cell states in which the regulation pattern is predicted. e. Volcano plot of
differentially expressed genes of different states. The blue inverted triangles denote
down-regulated genes, and the red triangles denote up-regulated genes.
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Fig. 6: Caption is shown below the figure.

Fig. 6 | Benchmarks of single cell clustering and embedding. a, The cell
clustering performance of HyperG-VAE on the single-cell datasets compared with
six baseline methods on four key metrics: NMI, ARI, COM, and HOM. b, UMAP
visualization of latent representations on the Zeisel dataset for different methods. NMI,
normalized mutual information (the higher the value the better); ARI, adjusted rand
index (the higher the value the better); COM, completeness (the higher the value the
better); HOM, homogeneity (the higher the value the better).
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HyperG-VAE addresses cellular heterogeneity and learns the cell represen-
tation. Cellular heterogeneity is a hallmark of complex biological systems, manifesting
as diverse cell types and states within scRNA-seq datasets [56]. We hypothesize that the
latent space inferred by the cell encoder of HyperG-VAE captures this biological vari-
ability among cells. Leveraging domain expertise, we can map these clusters to known
cell types or states, ensuring that the computational predictions align with manual
inspection and annotation. To evaluate the performance, we applied HyperG-VAE to
three biologically relevant scRNA-seq datasets, including an Alzheimer’s disease (AD)
dataset [57], a colorectal cancer dataset [58], and the widely-used mouse brain dataset,
known as the Zeisel dataset [59] (More details can be found in the Supplementary). To
benchmark HyperG-VAE, we also compared its low-dimensional embeddings with those
of six other algorithms: autoCell [60], DCA [61], scVI [62], DESC [63], SAUCIE [64],
scVAE [65]. We followed the Louvain algorithm [66] to cluster all the single cells into
an identical number of clusters for each method (Methods). To assess the precision of
clustering against established reference labels, we employed four metrics: the adjusted
Rand index (ARI), normalized mutual information (NMI), homogeneity (HOM), and
completeness (COM). These metrics span a scale from 0, indicating random cluster-
ing, to 1, signifying perfect alignment with reference clusters, with superior values
indicating enhanced accuracy.

Overall, the performance of HyperG-VAE surpasses that of its counterparts, as
evidenced in Fig.6a. Specifically, for the Zeisel dataset, the clusters generated using
HyperG-VAE align more closely with the existing cell-type annotations, registering
an NMI of 83.1% and an ARI of 83.7%. In comparison, the next best-performing
algorithm, autoCell, recorded an NMI of 78.0% and an ARI of 80.6%. Furthermore,
we evaluated HyperG-VAE’s latent space to determine its ability to capture the
biological diversity among individual cells in the Zeisel dataset, as illustrated in
Fig.6b. We visualized the data embedding by UMAP. Compared to other algorithms,
the distinct separation observed with HyperG-VAE across most clusters indicates
effective clustering, suggesting that HyperG-VAE’s cell encoder adeptly distinguishes
between various cell states or types. While algorithms such as autoCell, scVI, and
scVAE have achieved results that are comparable, the differentiation between their
clusters is not as pronounced as with HyperG-VAE. For the remaining algorithms, the
substantial overlap among clusters hinders the classifier from producing optimal results.
Specifically, compared to other methodologies founded on conventional single-layer
Variational Autoencoders (VAEs), the enhanced visualization capabilities of HyperG-
VAE underscore the potential benefits of incorporating gene modules in cell embedding
processes.

3 Discussion

In this work, we introduce HyperG-VAE, a sophisticated model designed for the con-
struction of Gene Regulatory Networks (GRNSs). Uniquely, HyperG-VAE leverages a
hypergraph framework, wherein genes expressed within individual cells are represented
as nodes connected by distinct hyperedges, capturing the latent gene correlations
among single cells. As a key algorithmic innovation of HyperG-VAE, the transformation
of scRNA-seq data into a hypergraph offers unique advantages compared to existing
GRNSs inference methods. These advantages include improved modeling of cellular het-
erogeneity, enhanced analysis of gene modules, increased sensitivity to gene correlations
among cells, and improved visualization and interpretation of GRNs. This direct use
of hypergraph, as opposed to traditional pairwise methods like Star-Expansion (SE)
and Clique-Expansion (CE) [67], captures complex multi-dimensional relationships
more effectively, avoiding the increased complexity and information loss associated
with SE and CE. By maintaining the hypergraph’s original form, HyperG-VAE pre-
serves the data’s full complexity and integrity, enhancing analytical depth and reducing
computational demands.

In addition to modelling scRNA-seq data into a hypergraph, HyperG-VAE effec-
tively integrates gene modules and cellular heterogeneity, demonstrating superior
performance compared to existing methods. On the one hand, our study reveals that
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HyperG-VAE outperforms related existing state-of-the-art algorithms in GRNs infer-
ence, cell-type classification, and visualization tasks respectively, as evidenced by its
enhanced performance across several widely recognized benchmark datasets. On the
other hand, we also utilize HyperG-VAE on scRNA-seq data of B cell development in
bone marrow [38] to evaluate its performance in a biologically relevant context. Firstly,
HyperG-VAE achieves accurate prediction of GRNs and successfully identifies key mas-
ter regulators and target genes across different developmental stages. Meanwhile, we
cross-validated our results with publicly available ChIP-seq datasets [33], further demon-
strating HyperG-VAE’s robust performance in predicting regulons based on GRNs
inference. Secondly, subsequent evaluations across various tasks further highlighted the
effectiveness of HyperG-VAE’s carefully designed encoder components, with their syn-
ergistic interaction significantly bolstering the model’s overall performance. Specifically,
the cell encoder within HyperG-VAE predicts the GRNs through a structural equation
model while also pinpointing unique cell clusters and tracing the developmental lin-
eage of B cells.; the gene encoder uncovers gene modules that implicitly encapsulate
patterns of gene regulation, thereby enhancing the accuracy of GRNs predictions. To
demonstrate this interaction, we highlight the shared genes between gene clusters and
the predicted target genes within cell clusters. These shared genes are notably present
in pathways identified by GSEA analysis, signifying the connections between gene
modules identified by gene encoders and cell clusters delineated by cell encoders.

Our HyperG-VAE leveraging the self-attention mechanism has undeniably propelled
models to achieve remarkable performance [68, 69, 70]. However, despite its prowess, self-
attention-based models still have inherent limitations. Specifically, the self-attention’s
quadratic complexity concerning sequence length presents challenges. For sequences of
length N, it necessitates O(NN?) computations, rendering it computationally demanding
and memory-inefficient, especially for longer sequences. Future efforts to address this
limitation will explore to adapt the techniques of attention matrix sparse factorization
and positive orthogonal random features, as demonstrated in studies [71, 72], to ease
computational demands.

Our proposed model HyperG-VAE holds promise as a foundational framework,
adaptable to a multitude of biological contexts in future research endeavors. While
our study primarily emphasizes the interrelationships between genes and cells of RNA-
seq data using a hypergraph constructed, there is the possibility of evolving into a
heterogeneous hypergraph VAE by incorporating other omics data such as scATAC-seq
datasets. Such an advancement would facilitate the seamless integration of multi-omics
datasets, bolstering tasks such as data integration and GRNs construction. Additionally,
while the present model does not explicitly use metadata for genes and cells, future
enhancements that integrate this metadata into the hypergraph-centric framework
could significantly improve the representations of nodes (genes) and hyperedges (cells).
The weights assigned to these hyperedges can also be factored into the model’s learning
phase, offering a more comprehensive analysis. In the generative phase of HyperG-
VAE, gene-cell interactions proceed through a cohesive mechanism, facilitating the
development of a robust GRN underscored by the interplay between gene modules
and cell clusters. Moreover, advancing to a single-cell-level, fine-grained gene relation
hypergraph application study could further enhance our understanding of single-
cell datasets analysis. Furthermore, subsequent research could explore the dynamic
construction of temporal GRNs on chronological single cell data, drawing upon the
foundational principle of simultaneously considering cellular heterogeneity and gene
modules, as demonstrated in this work.

Overall, HyperG-VAE provides a competitive solution for GRNs construction
and related downstream works. The consideration of hypergraph helps in effectively
capturing the intricate interconnections within complex scenarios. Its inherent versatility
allows HyperG-VAE to be adaptable to a wide range of biological contexts, notably
including the integration and GRN construction of multi-omics datasets.

4 Methods

Preliminaries
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Notation. Given a hypergraph G = {V, €}, where V = {v1,..., v} denotes the
set of nodes, and € = {ey,...,e,} is the set of hyperedges. Within the hypergraph
framework, it is possible for numerous nodes to be interconnected by a solitary
hyperedge. Aligning the hypergraph framework with the gene regulation networks
(GRNs) paradigm, the expressed genes are mapped as nodes while individual cells
stand in as the hyperedges, thus crafting a representation of the cellular architecture as
a hypergraph. And, we hope to learn a causal interaction matrix A by HyperG-VAE
to approximate the regulatory network A among genes in real world. Both A and
A are square matrices, where the elements within these matrices signify the levels
of regulatory interaction between pairs of genes. In the context of hypergraphs,
let HY € R™*" represent the expression matrix of scRNA-seq dataset, where m
represents the number of cells and n indicates the number of genes. and M signify the
m X n incidence matrix. The matrix M is also of size m x n. If node i is linked to
hyperedge j (gene i expressed in cell j), then H); > 0 and M;; = 1. In the absence of
such a link, both H)j and M;; are set to 0. For the hypergraph G, its dual is defined

as G = {V,E}. Here, ¥V = € and & comprises sets é; where each é; corresponds to
edges in £ that contain node v;. As a direct consequence, the feature matrix of the
dual, H® € R"*™ _is the transpose of the feature matrix HY € R™*" of G.

Structural Equation Model. Within the dual of scRNA-seq expression matrix
H¢, we employ the Structural Equation Model (SEM) [73], a statistical approach
that integrates factor analysis and multiple regression, to model causal relationships
and deduce the intricate dynamics present within gene regulatory networks (GRNs),
considering both observed and latent gene interactions. Specifically, our approach is
rooted in the Linear SEM:

H® = ATH® + Z, (1)
Here, Z € R™*4 is the intrinsic noise component following a Gaussian distribution
denoted by M (0, I). The adjacent matrix A indicates the conditional dependencies
among genes. This characteristic implies a mechanism to derive H¢ from the noise
matrix Z, expressed as: _
HE = (I- A7)z, (2)
This expression elucidates the relationship between H€ and Z while highlighting the
underlying network structure of the GRN as captured by the matrix A.

Hypergraph Variational Evidence Lower Bound

The input scRNA-seq expression matrix HY is often noisy and incomplete due to
factors like amplification biases during reverse transcription and PCR amplification
[19, 74, 20], can compromise the efficacy of basic autoencoders. These autoencoders
risk overfitting to training data by solely penalizing reconstruction error, which are
influenced by suboptimal expression matrices [75]. To relief the problem, within HyperG-
VAE, the hypergraph’s stochastic distribution is tailored to emphasize the latent spaces
of nodes and hyperedges, rather than merely relying on observed inputs. Specifically,
the node and hyperedge latent spaces are independently derived using distinct encoders
and are subsequently refined according to equation (3): related proof could be found
in Supplementary A.

L(HY;0,)) =E, [logp(HY | ZV,Z%;XV)]
—aKL(q(ZYV | HY;8Y) || p(ZY)) (3)
— BKL(¢(Z* | H®;6%) || p(Z¥)),

As a crucial loss function of HyperG-VAE, the Evidence Lower Bound (ELBO)
is formulated with respect to the observed hypergraph node matrix HY and the
parameters @ and A which need to be estimated. Specifically, the expectation term,
E,, is the likelihood of the model’s reconstruction of the node matrix using the latent
representations for nodes ZY and hyperedges Z€. Moreover, the Kullback-Leibler
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(KL) divergence assesses the deviation of the learned latent distribution, ¢(Z" | H"),
from a designated prior p(Z*®). The coefficients o and § modulate the magnitude of
this regularization.

HyperG-VAE Node Encoder

For the expression matrix HY, each row h; delineates the expression profile of a gene
across diverse cells. Concurrently, a particular gene might manifest across numerous
cells and associate with other genes via distinct hyperedges eg.

In the message-passing phase, row weights should account for expression coherence:
genes within the same module typically exhibit consistent expression profiles across
cells [76, 77], warranting higher weights than genes with more variable expressions.

Based on the basic idea of GAT [78], we have devised a novel attention computation
mechanism tailored for hypergraph, which enables (implicitly) specifying different
weights to different nodes share a common hyperedge ey.

A scoring function e: R™ x R® — R computes a score for two genes share a
common hyperedge (h;, h;), which indicates the importance of the expression profiles
of two genes v; and v;, which belong to the same hyperedge eg:

e (h,h$Y) = LeakyReLU (o™ - [Wh{|IWh{] ), (4)
where a € RQ”/, W € R"X" are trainable parameters, and || denotes vector

concatenation. These attention scores are normalized across all hyperedges using
softmax, and the attention function is defined as:

M M
a;j = softmax; (e (hg), h;n)) _ - :xp e(;;?g (;:(L;) ;),,21))) (5)
ircen A

We denote the coefficient matrix, whose entries are o, if (hz(-l), h;l,)) € ek, and 0
otherwise. Then, GAT computes a weighted average of the transformed features of the
neighbor nodes followed by a non-linearity o as the new representation of h;, using
the normalized attention coefficients:

R — (Zje% aij - (MQMTh§l))W) , (6)

In layer (14 1), the representation of h; is denoted by hEH_l). The hyperedge weight
matrix £ € R"*" is set as the identity matrix, due to the lack of prior knowledge
regarding cell relationships. In this paper, we refer to equation (4) to (6) as the
computation of each layer in an L-layer HyperG-VAE node encoder. We also leveraged
the multi-head attention mechanism, akin to the strategy used in Vaswani et al. [68]
to stabilize the learning process of self-attention.

Through the message-passing layers, the input node features of H V could be
represented as ZV, two individual fully connected layers are then employed to estimate
the means pY and variances oV of ¢(ZV | HY;6Y):

wY :ZVW‘Y+bx, (7)

¥ =ZYWy +bY, (8)

where Wl)’, WY € Réewtxd_ q is the dimensionality of the final node embedding ZV,
which is sampled by the following process:

z¥=pY+oY 0k, (9)
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where € ~ N(0, I) and is scaled element-wise by o¥. The collective set of parame-
ters, encapsulated within @V, offers the posterior estimates for ¢(ZY | HY;0V).

HyperG-VAE Hyperedge Encoder
Based on the equation (1) and nonlinear version of the SEM proposed by [79], the
encoder part of the SEM variational autoencoder could be represented as:

Z = fo((I = AT) f1(HF)), (10)
here, the functions f; and f,, parameterized for potential non-linear transformations,
adeptly act upon H € and Z , respectively.

Based on equation (10), to encode the high-order semantics and complex relations
represented in the form of hyperedges, a hyperedge encoder first conducts a non-linear
feature transformation from the observed embedding H¢ into a common latent space
ZE, which is as follows:

Z€ = (I - AT) fe(HEXVWE +b%), (11)

While the gene expression profile is given by h;, X V e R™*/ denotes the initial f-
dimensional gene features matrix. Due to the absence of this detailed feature information
in our dataset, XY is simplified as an identity matrix, I. fe stands for multilayer
neural network, W€ is the learnable weight matrices, and b€ is bias.

Given the fused hyperedge embedding Z€, two individual fully connected layers
are then employed to estimate the means pu& and variances o€ of ¢(Z¢ | HY; 6%):

n = ZEWE +of, (12)

ot = ZfWE +bE, (13)

where Wf , WE ¢ Réoued’ ' is the dimensionality of the Z€, which is sampled by
the following process:

zf =pf +6f0e, (14)

where € ~ N(0, I) and is scaled element-wise by o€. The collective set of parame-
ters, encapsulated within @€, offers the posterior estimates for ¢(Z¢ | HY; 6%).

Generative Model
In the decoding phase, the hypergraph is reconstructed utilizing the latent space
representations, ZY and Z¢, acquired from the node and hyperedge encoders,
respectively.

To keep the nonlinear SEM of the hyperedge encoder, we first reconstruct the
representation of H € and we use the corresponding decoder of equation (10):

H® = fy((I — AT) "' f5(2)), (15)

In this work, we can represent the inner content of f, as:

’

ZE — (I—AT)ilfg/(Z‘gWEI +E), (16)

where W€ is the learnable weight matrices, and b is bias. Correspondingly, we
can get the estimated means pu€ and variances € based on Z¢:

Ng :Zngf J’_blgt? (17)
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’

of =z¢WE 1+t (18)

where W‘f , W& € Rowxd g is the dimensionality of the final hyperedge

representation Zgl, which is sampled by the following process:

’ ’ ’7

78 = uf +0f oe (19)

where € ~ N(0, ) and is scaled element-wise by o€ .
Finally, the estimated hypergraph based on distributions p(HY | ZV, Z¢; \Y) is
represented as:

HY =2Y 0 2% . (20)

GRN inference

Central to HyperG-VAE, the gene regulatory network is elucidated by the learned
causal interaction matrix A, as outlined in equation (11). Crucially, the absolute
values within matrix A convey the potential links between genes, underscoring their
probability of interrelations. Furthermore, leveraging the state-of-the-art efficacy of
HyperG-VAE as reflected across diverse benchmarks, we amalgamate it with SCENIC
[41], which is a method renowned for its robustness in GRNs analysis-complements
our model by leveraging its ability to distill biologically meaningful gene regulations.
This confluence, juxtaposing the precision inherent in HyperG-VAE with SCENIC’s
profound insights, furnishes us with a deep learning-based GRNs imbued with biologi-
cal interpretability.

Experimental setup

HyperG-VAE was devised to infer gene regulatory networks from scRNA-seq data
without relying on cell type annotations. Before feeding into the model, the scRNA-seq
expression data underwent log-transformation followed by Z-normalization to ensure
optimal data representation. For the initialization of the gene interaction matrix,
denoted as A, the matrix diagonal was set to zeros, while the other entries followed
a Gaussian distribution V' (1/(m — 1), €2). Here, m represents the number of genes,
and € is a small value introduced to prevent entrapment in local optima.

We chose a two-step alternative optimization approach. The RMSprop algorithm
[80] was selected initially for tuning the weights within the HyperG-VAE layers over
specific epochs. Then, in a separate phase, the weight matrix fi, which plays a
critical role in our architecture, was fine-tuned over another set of epochs, employing
a differential learning rate strategy. This bifurcated approach not only fortified the
model’s robustness but also ensured granular weight updates in both the matrix and
the neural layers. We utilized the kaiming uniform technique [81] to initialize MLPs,
crucially defining the initial conditions of our model. The gene (node) encoder, taking
the constructed hypergraph as input, employs the Xavier uniform initialization [82] for
optimal training. During training, the model’s objective function was guided by a multi-
faceted loss: a reconstruction component to maintain data fidelity, two KL divergences
(sourced from both the node encoder and the hyperedge encoder) to ensure latent
variable alignment with a priori distributions, and a penalty promoting sparsity in the
adjacency matrix. This ensured both accuracy in reconstruction and interpretability in
inferred gene interactions.

This holistic framework was crafted in Python and leaned heavily on the compu-
tational prowess of the PyTorch framework [83], complemented by scanpy [84] for
preliminary data handling. Key hyperparameters are selected based on a grid search
strategy, more details could be checked in Supplementary Table 1.
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Datasets and data processing Datasets used for GRN evaluation. We evaluate
the performance on GRN inference of HyperG-VAE based on the setting of BEELINE
framework [27]. Our evaluation encompassed seven scRNA-seq datasets. This includes
two cell lines from human, human embryonic stem cells (hESC) [85] and human
mature hepatocytes (hHHEP) [86]. Additionally, five mouse cell lines are studied here:
mouse dendritic cells (mDC) [87], mouse embryonic stem cells (mESC) [37], mouse
hematopoietic stem cells with erythroid-lineage (mHSC-E) [88], mouse hematopoi-
etic stem cells with granulocyte-monocyte-lineage (mHSC-GM) [88] and mouse
hematopoietic stem cells with lymphoid-lineage (mHSC-L) [88]. Furthermore, the EPR
and AUPRC the GRN performance based on four kinds of groundstruth: STRING
[28], Non-specific ChIP-seq [29, 30, 31], Cell-type-specific ChIP-seq [32, 33, 34], and
loss-/gain-of-function (LOF/GOF) groundtruth network [34]. Following the guidelines
outlined by Pratapa et al. [27], our dataset-specific analysis emphasized the most vari-
able transcription factors and considered the top N most-varying genes, with N being
500 and 1,000. We meticulously adhered to the raw data preprocessing steps detailed in
their work and, for evaluation, disregarded any edges that did not originate from TF's.

scRNA-seq datasets of Bone marrow developmental B cells. We assess the
overarching capability of HyperG-VAE in modeling gene regulatory networks pivotal
to B cell development and transformation based on previously published bone marrow
developmental B cells datasets [38]. The raw sequencing data in this study were
processed using the CellRanger pipeline (version 3.1.0, 10X Genomics), where the
“mkfastq” function demultiplexed three Illumina libraries (mRNA transcript expression
(RNA), mouse-specific hashtag oligos (HTO), and cell surface marker levels using
antibody-derived tags (ADT)) and “count” aligned reads to the mouse genome (mm10)
to generate count tables. Analysis was carried out in R using the Seurat package [89],
involving filtering of the RNA dataset to include only GEMs expressing more than
300 genes and excluding those with high mitochondrial RNA levels. Normalization
was performed using a centered-log ratio method. Doublets were identified in GEMs
using both DoubletFinder and HTODemux methods; however, due to discrepancies
in classification and challenges with DoubletFinder in identifying similar doublets,
subsequent analyses relied solely on HTODemux classifications. GEMs identified as
multiplets or negative were removed, leaving a refined dataset of wildtype (WT)
singlets, which expressed a median of 1409 genes with 3548 counts. These WT singlets
then underwent a transformation process using Seurat’s “SCTransform” function,
factoring in the percentage of mitochondrial expression, to prepare a high-quality,
normalized dataset for further study.

Datasets used for cellular heterogeneity study. We assessed the efficacy of
HyperG-VAE by applying it to three pertinent scRNA-seq datasets: an Alzheimer’s
disease (AD) study [57], a colorectal cancer investigation [58], and the renowned mouse
brain dataset, often referred to as the Zeisel dataset [59]. HyperG-VAE processes raw
scRNA-seq gene expression profiles directly. The initial phase of data preprocessing
involves rigorous data filtering and quality control. Considering the significant dropout
rates characteristic of scRNA-seq expression datasets, only genes with non-zero
expression in over 1% of cells and cells with non-zero expression in more than 1% of
genes are retained. Subsequently, genes are ranked based on their standard deviation,
and the top 2,000 genes in terms of variance are selected for further analysis.

SCENIC and Chip-Atlas setting

In our approach to further filter reliable gene regulatory networks (GRN) from single-
cell RNA-sequencing data, we integrated HyperG-VAE with SCENIC, focusing on
discerning crucial gene co-expression modules. Specifically, only the top 0.5% of gene
pairs predicted by HyperVAE, based on their co-expression significance, are channeled
into SCENIC for rigorous regulon analysis. Using the MusMusculus genome reference,
our model evaluates regulatory regions defined as 500 bp upstream, 5-kb, and 10-kb
centered around each gene’s transcription start site (T'SS), collectively referred to as
gene-motif rankings. The analysis adopts criteria for GRN derivation of SCENIC: a
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feature AUC (default: 0.05), gene rank threshold (default: 5,000), and a normalized
enrichment score (NES) threshold (default: 3.0).

To validate the predicted regulons, we cross-verified our computational results
with publicly available ChIP-seq datasets [33]. Following the foundational settings
of SCENIC, we specifically tailored the study to the M. musculus (mm9) genome.
Furthermore, in our evaluation approach, we incorporated multiple transcription start
sites (T'SS) ranges, including 1k, 5k, and 10k, to ensure a comprehensive understanding
of gene expression.

Latent representation visualization and clustering

In both HyperG-VAE and the comparative methodologies, if the size of hidden embed-
dings exceeded 10, we commenced by extracting the foremost 10 principal components
(PCs) via principal component analysis. Subsequently, a cell neighborhood graph was
computed, setting the “n_neighbors” parameter to 30. Visualization of dataset results
was then performed in a two-dimensional space using the default parameters of the
UMAP algorithm. For cell clustering, the Louvain algorithm was employed, and the
“resolution” parameter was fine-tuned using a binary search to yield a cluster count
consistent with cell-type annotations.

Gene set enrichment analysis (GSEA)

For the analysis of gene clusters, we employed the default settings of Metascape [43].
Specifically, enrichment analysis for given gene lists encompassed pathway and process
assessments using GO Biological Processes, GO Cellular Components, GO Molecular
Functions, and DisGeNET ontologies. The entire genome served as the background for
enrichment. Terms meeting stringent criteria: p-value < 0.01, minimum count of 3, and
enrichment factor > 1.5 (ratio of observed to expected counts)were selected. Statistical
rigor was maintained by employing cumulative hypergeometric distribution for p-value
calculation, Banjamini-Hochberg procedure for g-value adjustment, and Kappa scores
for hierarchical clustering. Clusters, defined by sub-trees with a similarity exceeding
0.3, were identified based on membership similarities. Each cluster is represented by
its most statistically significant term. This comprehensive approach ensures robust
and reliable insights into gene function and pathway associations.

Metric used in this paper

EPR. EPR is defined as the odds ratio of the true positives among the top K predicted
edges between the model and the random predictions where K denotes the number of
edges in ground-truth GRN.

AUPRC. AUPRC ratio is defined as the odds ratio of the area under the precision-
recall curve (AUPRC) between the model and the random predictions.

Overlap coefficient. The Overlap coefficient is a similarity measure related to the
Jaccard Similarity, but whereas the Jaccard Similarity considers both the intersection
and union of two sets, the Overlap Coefficient only considers the intersection relative
to the smaller set. It’s used to quantify the overlap between two sets. Given two sets,
A and B, the Overlap Coefficient O is defined as:

|AN B|
min(| A, |Bl)

The value of the Overlap Coefficient lies between 0 and 1: A value of 1 indicates
that the sets are identical, and 0 indicates that the sets have no elements in common.

O(A,B) =

NES. The Normalized Enrichment Score (NES) quantifies the enrichment of a given
motif at the top of a ranking compared to motifs generated by chance. Mathematically,
NES is defined as:

AUCmotif - mean(AUCall motifs)

NES =
S-d-(AUCall motifs)
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where AUC,,,01if represents the Area Under the Curve for the top 0.5% of the ranked
motifs for the gene of interest, and the mean and standard deviation are calculated
across the AUCs of all motifs in the dataset. A higher NES indicates a more significant
enrichment of the motif in the given context.

NMI. NMI (Normalized Mutual Information) quantifies the mutual dependence
between two clustering assignments, offering a value between 0 (completely indepen-
dent assignments) and 1 (identical assignments).

ARI. ARI (Adjusted Rand Index) is an adjusted variant of the Rand Index that gauges
clustering similarity while accounting for random agreement. Its values range from -1
(perfect disagreement) to 1 (perfect agreement), with 0 indicating random agreement.

HOM. HOM (Homogeneity) evaluates whether each cluster comprises solely members
of a single class. It ranges from 0 (poor homogeneity) to 1 (perfect homogeneity).

COM. COM (Completeness) assesses if all members of a given class are confined
to the same cluster, with scores spanning from 0 (low completeness) to 1 (perfect
completeness).

5 Data availability

We provide all datasets used and analyzed in this study. The gene experimental scRNA-
seq datasets were downloaded from Gene Expression Omnibus with the accession
numbers GSE81252 (hHEP dataset [86]), GSE75748 (hESC dataset [85]), GSE98664
(mESC dataset [37]), GSE48968 (mDC dataset [87]), GSE81682 (mHSC dataset
), dataset [85]), GSE98664 (mESC dataset [37]), GSE48968 (mDC dataset [87]),
GSE81682 (mHSC dataset ), GSE168158 (bone marrow developmental B cells dataset
[38]), GSE138852(Alzheimer’s disease (AD) dataset [57]), GSE81861( colorectal cancer
dataset [58]), and GSE60361 (Zeisel dataset [59]).

The full TF list used in the parts related to SCENIC can be found on the GitHub
of pySCENIC https://github.com/aertslab/pySCENIC/tree/master/resources.

The ChIP-seq datasets can be accessible through link https://chip-atlas.org/.

The motif logo for the regulon used in this paper is available at
https://motifcollections.aertslab.org/.

6 Code availability

The codes generated in the study are available in  GitHub
(https://github.com/guangxinsuuu/HyperG-VAE.)
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Extended Data Fig. 1 | Summary of EPR and AUPRC results for experi-
mental single-cell RNA-seq datasets. The overall figure shows results for datasets
composed of all significantly varying TFs and the 1000 most-varying genes. Within
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each row of illustrations, we contrast the scaled performance of HyperG-VAE against
seven alternative algorithms. These evaluations span seven datasets, delineated by
four unique ground-truth benchmarks: a-b) STRING, c-d) Non-specific ChIP-seq, e-f)
Cell-type-specific ChIP-seq, and LOF/GOF. For every figure pair, the left denotes the
median AUPRC results, and the right represents the median EPR outcomes. Notably,
results inferior to random predictions are omitted from these visualizations. EPR
is defined as the odds ratio of the true positives among the top K predicted edges
between the model and the random predictions where K denotes the number of edges
in ground-truth GRN. AUPRC ratio is defined as the odds ratio of the area under the
precision-recall curve (AUPRC) between the model and the random predictions.
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Extended Data Fig. 2: The EPR performance of HyperG-VAE with the limited
number of training cells. And, running time and memory cost of different
methods on the simulated datasets. a, mESC datasets composed of all significantly
varying TFs and the 500/1000 most-varying genes are evaluated based on four unique
groundtruth benchmarks: STRING, Non-specific ChIP-seq, Cell-type-specific ChIP-seq,
and LOF/GOF. The visualization captures the median (represented by the internal
line), the interquartile range (shown by the box), and the whiskers (which stretch
to 1.5 times the interquartile range). Different colored boxes correspond to distinct
training cell numbers, while the green markers within the boxes signify the mean values.
Notably, the red dashed line represents the median EPR value across all cell counts.
b, Running time of training HyperG-VAE and other GRN inference methods on a
simulated dataset with 1000 cells when the number of genes for each cell increased.
¢, Running time for training HyperG-VAE and other GRN inference methods on a
simulated dataset with 1000 genes for each cell when the number of cells increased. d,
Memory cost of training HyperG-VAE and other embedding methods on a simulation
dataset with 1000 cells when the number of genes for each cell increased. e, Memory
cost of training HyperG-VAE and other embedding methods on a simulation dataset
with 1000 genes for each cell when the number of cells increased.
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Extended Data Fig. 3: Regulon specificity score for each bone marrow B cell
state. The top five regulons in each cell type are highlighted in red and labeled on the

plot. The specificity score is shown on the y-axis.
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A Hypergraph Variational Evidence Lower Bound

In the process of HyperG-VAE, latent node embeddings ZV and high-order relation
embeddings Z€ are first generated independently from a parameter-free prior dis-
tribution, typically a Gaussian. The observed data points HY are then generated
conditionally, based on these latent embeddings, with each data point being conditioned
on its corresponding latent node embedding ZY and high-order relation embeddings
Z¢ | parameterized by A. The objective of HyperG-VAE is to optimize these parame-
ters A to maximize the log-likelihood of the observed data. To derive a lower bound
for the log-likelihood, known as the Evidence Lower Bound (ELBO). HyperG-VAE
leverages Jensen’s Inequality as follows:

log p(HY; A) = log / / p(HY,ZY,Z%;\)dzVdz*¢
zZv JZE

% \% E.
> E, [bgp(H ZY, Z ,A)} (1)

q(ZV,Z¢|HV;0)
= E(HV;&)\)7

where q(ZV, Z¢|HV; 6) is the variational posterior used to approximate the true
posterior p(ZY, Z€|HY), and 0 is the parameter that we need to estimate in the
learning phase. The Evidence Lower Bound (ELBO) on the marginal likelihood of HY
denoted as L(HY; 0, \), is derived by applying the logarithmic product rule to the joint
probability distribution, facilitating a tractable lower bound for model optimization:

LHY;0,)) —E, [log <p(H"|Z"7Z£;A)p(Z"728)>}

A2V, Z5|HY0)

= E,[logp(HY|ZY, Z*; N)] (2)
— KL(q(ZYV|HY;6Y)||]p(ZY))

- KL(q(Z%|HY;6%)||p(Z?)),

In the variational autoencoder framework, specifically within the HyperG-VAE, the
Kullback-Leibler (KL) divergence acts as a regularization factor. It aligns the variational
distribution ¢(:|-; @) with the prior distribution p(-), reinforcing the model’s adherence
to initial assumptions. Concurrently, the expected log-likelihood of reconstruction,
expressed as E [log p(-|\)], dictates the fidelity of data reconstruction from latent
embeddings, which are shaped by the learned distribution. The parameter A, crucial
to this reconstruction, is optimized during the learning phase. This dual mechanism
ensures that while the model is incentivized to replicate observed data accurately,
it remains regularized by the prior, establishing a balance pivotal to the ELBO’s
effectiveness in training variational models like HyperG-VAE.

HY and H¢ are transposed relations. To better tailor the learning process to
specific objectives, weighting components within a loss function, as in Beta-VAE [1],
offers nuanced control over regularization, fostering more interpretable and generalizable
models. And we will get the ELBO used in HyperG-VAE as:

CL(HY:0.3) = E, [log p(HY | Z¥, Z8;AV)]
—aKL(q(ZYV | HY;0Y) || p(ZY)) 3)
— BKL(q(Z® | H:6%) || p(Z°))
B Hyperparameter

Hyperparameters tuned in this paper can be found in Supplementary Table 1.
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Hyperparamters Values
« I, 10
B 0.1, 0.2
w 0.1
Learning rate 0.001, 0.01, 0.0001
Weight decay 0.1
Batchsize 64, 128, 256
Dropout rate 0, 0.5
# of heads 6, 8
# of training epochs 70

Supplementary Table 1: Summary of
tuned hyperparameters

C Gene expression module learning enhances
HyperG-VAE in GRN inference

We further input gene lists of corresponding gene clusters of bone marrow B cell
learned by gene cluster within Metascape [2], protein-protein interaction enrichment
analysis has been carried out with the following databases: STRING [3], BioGrid [4],
OmniPath [5], and InWeb_IM [6]. Only physical interactions in STRING (physical
score larger than 0.132) and BioGrid are used (details). The resultant network contains
the subset of proteins that form physical interactions with at least one other member
in the list. If the network contains between 3 and 500 proteins, the Molecular Complex
Detection (MCODE) algorithm [7] has been applied to identify densely connected
network components. The MCODE networks identified for individual gene lists have
been gathered and are shown in Supplementary Figure 1-4.

For each given gene list that input in the Metascape for enrichment analysis, pathway
and process enrichment analysis have been carried out with the following ontology
sources: KEGG Pathway, GO Biological Processes, Reactome Gene Sets, Canonical
Pathways, CORUM, WikiPathways, and PANTHER Pathway. All genes in the genome
have been used as the enrichment background. Terms with a p-value < 0.01, a minimum
count of 3, and an enrichment factor > 1.5 (the enrichment factor is the ratio between
the observed counts and the counts expected by chance) are collected and grouped
into clusters based on their membership similarities. More specifically, p-values are
calculated based on the cumulative hypergeometric distribution [8], and g-values are
calculated using the Benjamini-Hochberg procedure to account for multiple testings
[9]. Kappa scores [10] are used as the similarity metric when performing hierarchical
clustering on the enriched terms, and sub-trees with a similarity of > 0.3 are considered
a cluster. The most statistically significant term within a cluster is chosen to represent
the cluster. More details could be found in Supplementary Table 2-5.
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Supplementary Figure 1: The MCODE network identified for Plasma B gene lists.

D Details of the single-cell datasets used in the paper

Here, we summarize an overview of the single-cell datasets employed in our analyses.
Details about the datasets utilized for gene regulatory network (GRN) benchmark
predictions are presented in Supplementary Table 6-7. Furthermore, the datasets
encompassing B cell data from bone marrow, as well as those applied in cell clustering
and visualization, are delineated in Supplementary Table 8.

E Overview and Implementation Details of GRN
Inference Algorithms in the Current Study

In this research, we provide a concise overview and operational specifics of the GRN
inference methodologies employed. The algorithms include DEEPSEM [29], PIDC [30],
GENIE3 [31], GRNBoost2 [32], PPCOR [33], SCODE [34], and SINCERITIES ([35].

DEEPSEM. DeepSEM is a deep generative model designed to simultaneously
infer Gene Regulatory Networks (GRNs) and interpret single-cell RNA sequencing
(scRNA-seq) data meaningfully. Utilizing a neural network adaptation of the structural
equation model (SEM), DeepSEM explicitly captures the regulatory interactions
between genes. In benchmarking, DeepSEM outperforms or matches leading methods
in GRN inference, scRNA-seq data visualization, clustering, and simulation.

PIDC. Using multivariate information theory, the study introduces PIDC, an
efficient algorithm that identifies gene regulatory relationships in single-cell gene
expression datasets. By leveraging partial information decomposition (PID), PIDC
captures higher-order information, making it superior to algorithms based solely on
pairwise mutual information. The algorithm’s performance is demonstrated using
simulated and experimental data. PIDC also provides insights into network inference
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Supplementary Figure 2: The MCODE network identified for Kappapre B gene lists.

OAMIGO3 OPRRC2B OLyz

variables and factors.

GENIE3. GENIES3 is a top-performing algorithm designed to infer genetic
regulatory networks (GRNs) from genomic data. By treating the GRN prediction
as individual regression challenges, it predicts gene interactions using tree-based
methods. Through this approach, GENIE3 can identify potential regulatory links
between genes, creating a comprehensive network. Notably, it efficiently deciphers the
GRN of Escherichia coli, manages complex interactions, and delivers directed network
outcomes, making it a vital tool in GRN analysis.

GRNBoost2. GRNBoost2, built on the GENIE3 architecture, is an algorithm
designed to infer Gene Regulatory Networks (GRNs) from large gene expression
datasets using gradient boosting. To handle the computational challenges posed by
voluminous data from technologies like single-cell RNA-seq, the Arboreto framework is
introduced.

PPCOR. In the context of gene regulatory network predictions, PPCOR utilizes
both partial and semi-partial correlations between genes. Adhering to the BEELINE
[36] standards, we derived the gene interaction score from the absolute value of the
semi-partial correlation between gene pairs.

SCODE. SCODE is an innovative algorithm designed to infer Gene Regulatory
Networks (GRN) from single-cell RNA-Seq data during differentiation. Utilizing ordi-
nary differential equations, SCODE effectively reconstructs expression dynamics and
has demonstrated superior or competitive performance against existing benchmarks.
Notably, compared to alternative methods, SCODE operates with significantly reduced
runtimes, making it a promising tool for advanced single-cell GRN analyses.
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Supplementary Figure 3: The MCODE network identified for PreBCRi B gene lists.

SINCERITIES. SINCERITIES is a novel method designed for the reconstruc-
tion of Gene Regulatory Networks (GRN) from single cell transcriptional profiles,
specifically focusing on time-stamped cross-sectional data. It utilizes regularized
linear regression to determine directed gene-gene interactions based on temporal
changes in gene expression distributions. Furthermore, it discerns the nature of gene
regulations (activation or repression) using partial correlation analyses. When tested,
SINCERITIES outperformed several other GRN inference tools like TSNI, GENIE3,
and JUMP3 in accuracy, efficiency, and computational complexity. Its application to
real-world data identified BATF as a potential regulator of erythroid development.

F An Introduction to the Cell Embedding Algorithm
and its Implementation in This Investigation

In this research, we provide a concise overview and operational specifics of the cell
clustering methodologies employed. The algorithms include autoCell [37], DCA [3§],
scVI [39], DESC [40], SAUCIE [41], scVAE [42]

autoCell. Utilizing a variational autoencoding network, it adeptly handles the
sparse nature of scRNA-seq data, facilitating dropout imputation and crucial feature
extraction. The tool not only enhances cell trajectory identification but also aids in
pinpointing disease-specific gene networks, making it a comprehensive solution for
scRNA-seq data analysis.

DCA. DCA, or Deep Count Autoencoder, is a denoising method tailored specifi-

cally for scRNA-seq datasets, addressing challenges like noise due to amplification
and dropout. Employing a negative binomial noise model, DCA effectively captures

10
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Supplementary Figure 4: The MCODE network identified for Immature B gene lists.

the intricate gene-gene dependencies and considers the overdispersion and sparsity
inherent to the data. Demonstrated to outpace other imputation methods in both
quality and speed, DCA is scalable, suited for extensive datasets with millions of cells,
and significantly augments biological discovery.

scVI. Single-cell variational inference (scVI) is a scalable framework designed to
probabilistically represent and analyze gene expression in individual cells, addressing
the challenges of technical noise and bias inherent in single-cell transcriptome measure-
ments. Utilizing stochastic optimization and deep neural networks, scVI efficiently
aggregates data across similar cells and genes, approximating the fundamental dis-
tributions of observed expression values while factoring in batch effects and limited
sensitivity. The framework excels in various single-cell analysis tasks such as batch
correction, visualization, clustering, and differential expression.

DESC. DESC is an unsupervised deep embedding algorithm designed to cluster
scRNA-seq data, addressing the challenges posed by the increasing number of cells
and batch effects. Through iterative self-learning, DESC effectively mitigates batch
effects, provided the technical variations across batches are overshadowed by genuine
biological differences. With its capability to provide biologically interpretable soft
clustering, DESC reveals both discrete and pseudotemporal cellular structures, offering
a balanced blend of clustering accuracy, stability, and scalability.

SAUCIE. SAUCIE is a deep neural network designed for the analysis of large
single-cell datasets, effectively addressing challenges related to batch effects and
diverse sample preparations. By utilizing specialized regularizations, SAUCIE ensures
interpretability in its learned features, allowing for denoised, batch-corrected data
representation, unsupervised clustering, and insightful exploration of complex datasets,
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_browser

Cell-type hESC, hHep ChIP-Atlas [14] https://maayanlab.cloud/H

specific ChIP-seq ’ ChEA [16] armonizome/dataset/CHE
A+Transcription+Factor+T
argets

lof/gof mESC ESCAPE [15] Eggkggﬁgﬁggiﬁﬁet/
https://www.ncbi.nlm.nih.g

scATAC-seq Mouse cortex Fang et al. [17] ov/geo/query/acc.cgi?acc

=GSE126724

snmC-seq (DMR)

Mouse cortex

Luo et al. [1§]

https://www.ncbi.nlm.nih.g
ov/geo/query/acc.cgi?acc
=GSEGSE97179
Supplmentary Tables in
Luo et al.

Supplementary Table 6: Summary of ground truth GRN networks used in the

GRN predictions.

Dataset # of cells | # of genes | GEO
Human embryonic stem cells (hESC) [19] | 759 17735 GSE75748
Human mature hepatocytes (hHep) [20] 426 11515 GSE81252
Mouse dendritic cells (mDC) [21] 384 7371 GSE48968
Mouse embryonic stem cells (mESC) [22] | 422 18385 GSE98664
Erythroid lineages mouse

hematopoietic stem cells (mHSC-E) [23] 1072 4762 GSES1682
Lymphoid lineages mouse

hematopoietic stem cells (mHSC-L) [23] 848 4762 GSES1682
Granulocyte-macrophage lineages

mouse hematopoietic stem cells 890 4762 GSE81682
(mHSC-GM) [12]

Mouse cortex VISp (L2/3 IT, L4,

15 IT, L BT, L6 IT, 16 OT) [24] 6456 31301 GSE115746

Supplementary Table 7: Summary of scRINA-seq datasets used in GRN

prediction.

such as the immune response of dengue patients.

scVAE. Utilizing raw count data, scVAE offers a direct approach to analyzing
single-cell RNA sequencing (scRNA-seq), negating the necessity for preprocessing.
This method facilitates likelihood-based model comparisons, learns latent cellular
representations, and adeptly captures variability across diverse cell populations.
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Dataset # of cells/nuclei | # of filtered genes | # of cell types | Download link

B cell https://www.ncbi.nlm.n

development data 3902 14003 10 ih.gov/geo/query/acc.c

in bone marrow [25] gi?acc=GSE168158
http://www.ncbi.nlm.ni

Zeisel [26] 3005 2000 7 h. gov/geo/query/acc.c
gi?a cc= GSE60361
https://www.ncbi.nlm.nih .g

Li [27] 561 2000 9 ov/geo/query/acc.cgi
? acc=GSE81861
https://www.ncbi.nlm.nih.g

AD [28] 13214 2000 8 ov/geo/query/acc.cgi?ac
c=GSE138852

Supplementary Table 8: Summary of datasets used in embedding visualization and clustering.

G Detalils of predicted regulons in bone marrow B
cell states revealed through simultaneous GRN
analysis

The target genes of transcription factor Irf7 are: Pltp, Tiparp, Gba, Sec24d,
Ifi44, Scarb2, Oasl2, Oasll, Rilpll, Uspl8, Klirdl, Isoc2b, Stard10, Irf7, Bcl2alb,
Rsad2, Mpegl.

The target genes of transcription factor Atf6 are: Itm2c, Xprl, Atf6, Fcerlg,
Secl6a, Coblll, Fndc3b, Tiparp, Pdeddip, Sec24d, Col27al, Tmem214, Fam69a,
Golga3, Hiplr, Gadd4ba, Tacstd2, Cd9, Klrdl, Ceacaml, Rgsl0, Ccndl, Erichl,
Vps37a, Ttcl3, Anxa2, Ccr9, Sfil, Trim7, Sec24a, Pik3r5, Ernl, Trim65, Slc38al0,
Dusp22, Fyb, Z{p945, Nlrc4, Ahnak, Mpegl.

The target genes of transcription factor Tcf712 are: Pcp4ll, Bmf, Akr1b10,
Usp4rT.

The target genes of transcription factor Lefl are: Lrp4, Ragl, Sdc4, Tifa,
Lefl, 1d3, 1116, Myb, Gsel, Rcbtb2, Cwfl1912, Ebfl, Msi2, Cythl, Hesl, St3gal6, Tcf4.

The target genes of transcription factor Ddit3 are: Tram2, Dnajb2, Ier5,
Hsd11bl, Bmf, Cebpb, Lamp2, Tmem164, Abcal, Epsl5, Heyl, Zfp324, Tmem91, Atf5,
Smpdl3a, Ddit3, Cog2, Zmymb, Birc2, Atp6v0Oal, Dnajb9, Parpl4, Nsun3, Hspal3,
Rpl3l, Akap8l, Slc22al12, 1700018L02Rik.

The target genes of transcription factor Phf8 are: Edem3, Phf8, Etv3,
Rab25, Steap4, Affl, Nr2c2, Hest, Atgl612, Usp4d7, Ttcl3, Tsc22d1, Icaml, Myole,
Zbtb38, Pik3r5, Atp6v0al, Zfyvel6, Pcnx, Myol0, Prml1, Ergicl, Dhx57, Slc41al.

The target genes of transcription factor Xbpl are: Tram2, Gpr55, Nek7,
Dnm3, Mia3, 1110008P14Rik, Ubr3, Mapllc3a, Edem2, Slpi, Zbpl, Ssr4, Tmem154,
Famd46c, Erp44, Ddost, Cpeb2, Srp72, Tesc, Bhlhal5, Rpnl, Edem1, Gprl9, Kcnn4,
P1d3, Fxyd5, Isg20, Cited2, Enppl, Tspanl5, Gliprl, Tmbim4, Mt3, Spcsl, Fndc3a,
Dnajc3, Srpr, Rexo2, Ppib, Ubab, Manf, Xbpl, Cdc42se2, Gm2a, Evi2a, Slc35bl,
Atp6v0al, Ccrl0, Wipil, Pycrl, Gzma, Sdcl, Laptmd4a, Pqlc3, Dhrs7, Fut8, Selll,
Derll, Tg, Grina, Trabd, Fkbpll, Itgb7, Prrl3, Tnfrsfl7, Eaf2, Tapbp, H2-Ke6,
Epcam, Ndfipl, Cst6, Oospl, Nikb2.

The target genes of transcription factor KI1f3 are: Cr2, Etv3, Usp53, Abcal,
Heyl, Vampl, Utrn, Tmcc3, Rasgrp3, 3110002H16Rik, Slcl14al.

The target genes of transcription factor Ebfl are: Atplbl, H3f3a, Ogt,
Tmsbdx, KIf3, Igfl, Ebfl, H3f3b, Sox4, Gadd45g, Cplx2, Tspanl3, H2-D1.
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The target genes of transcription factor Myc are: Ephx1, Thnsll, Carl,
Hivep3, 5730409E04Rik, Trim62, Srm, KIhI8, Tpstl, Snx10, Agpl, Snca, Mgll, Tnni3,
Kcenn4, Nkg7, Trim3, Futl0, Nfix, Ccll7, Rab4a, Nrgn, Hyal2, Ccl5, Ccl4, Odcl,
Tnfaip2, Myc, Cacnali, Amigo2, Celal, Ergicl, Tspo2.

The target genes of transcription factor Bach2 are: Rgs2, 4930523C07Rik,
Atplbl, Zeb2, Gpcepdl, Tifa, Bach2, Bel7a, Clgaltl, Cecr2, Prcl, Iqgapl, Arhgapl?7,
Fam5b3b, Irf2, Cdkn3, Dnajc7, Myl4, Bptf, Nfkbia, Cerk, and Rsphl.

The target genes of transcription factor Tcf3 are: 4930523C07Rik, Fcrla,
Zeb2, Cytip, Tifa, Lmo4, Cecr2, Fam129c, Clint1, Myl4, Cplx2, Nfkbia, Foxn3, Cerk,
and Snn.

The target genes of transcription factor Pax5 are: 4930523C07Rik, Resdl,
Slprl, Bankl, Bach2, Pax5 itself, Zcchell, Foxpl, Cotll, Cythl, Tnrc6b, Klhi24, and
Arid1b.

The target genes of transcription factor KI1f13 are: Stk17b, St8sia4, Ralgps2,
4930523C07Rik, Atplbl, Ferla, Gpepdl, Samhdl, Ctsz, Tsc22d3, S100all, Ppp3ca,
Lmo4, Cd72, Smap2, Hvenl, Clgaltl, Fam3c, Cecr2, Pou2f2, Blvrb, KIf13 itself, Irf8,
Cbfa2t3, Cdkn3, Dbnl, Pelil, Cdc42se2, Tnfrsf13b, Spns3, Msi2, Arl5c, Dnajc7, Sox4,
Ly86, Dok3, Map3kl, H2-DMa, H2-Ab1, and H2-Aa.

The target genes of transcription factor Sox4 are: Atplbl, Resdl, Ferla,
Zeb2, Ragl, Dstn, Ogt, Txnip, Tifa, Bach2, Pnrcl, Bcl7a, Foxpl, Mgstl, Ypel3,
Famb3b, Myb, Marcks, Sec63, Vpreb3, Phip, Ebfl, Clintl, Gas7, Arl5c, Dnajc7, Sox4
itself, Cplx2, Tspanl13, Nipbl, and Tcf4.

The target genes of transcription factor Foxpl are: Clkl, Sp100, St8sia4,
Ralgps2, 4930523C07Rik, Atplbl, Ferla, Arhgap30, Zeb2, Slc12a6, Dusp2, Ctsz, Ogt,
Tmsb4x, Ashll, S100all, Ctss, Tifa, Lmo4, Lyn, Bach2, Pax5, Zcchcll, Smap2, Rhoh,
Actb, Gimapl, Foxpl itself, Blvrb, Akapl3, Iqgapl, Ypel3, Pycard, Fam53b, Lspl,
Marcks, Sec63, Psap, Btgl, Irf2, Jund, Bnip3l, Cwf1912, Pou2afl, Spg21, Rel, Gas7,
Arl5e, Ikzt3, Dnajc7, Limd2, H3f3b, Tspanl3, Nfkbia, Nipbl, Xrcc6, Aridlb, H2-Aa,
H2-Ebl, Ltb, H2-Q7, and Secllc.

The target genes of transcription factor Spib are: Clkl, Btg2, Ptprc, Ral-
gps2, 4930523C07Rik, Atplbl, Ferla, H3f3a, Zeb2, Cytip, Dstn, Ctsz, Ogt, Tsc22d3,
Tmsb4dx, Ashll, S100all, Lmo4, Lyn, Pax5, Kritl, Hvenl, Bel7a, Actb, Clgaltl,
Foxpl, Itpr2, Slclab, Pou2f2, Pafah1b3, Iqgapl, Sbkl, Marcks, Tcf3, Irf2, Jund, KIf2,
Cbfa2t3, Prkcd, Bnip3l, Pou2afl, Rel, Clintl, Gm2a, Limd2, Bptf, Arid4b, Sox4,
Jarid2, Dok3, Zfp3611, Secllc, and Ehd1.

The target genes of transcription factor Myb are: Zeb2, Lefl, Lmo4, Cplx2,
and Piml.

The target genes of transcription factor KIf2 are: Ralgps2, Satl, Tmsb4x,
Ctss, Txnip, Lmo4, Foxpl, Pou2f2, Blvrb, Arhgapl7, Psap, Irf2, Jund, Ly86, and
H2-T23.

The target genes of transcription factor Relb are: Rgs13, Dnajcl, Lmo2,
Ganc, Cd40, Arhgap4, Slprl, Srp72, Rpia, Relb, Nfkbid, 114il1, Foxo3, Erichl, Junb,
Pxk, Colba3, Icaml, Sorll, Myolg, Lgals8, Cd83, Cd180, Gpr65, Btla, H2-DMb2,
H2-T24, Klhl14, Gramd3, Msdadc, and Nfkb2.

The target genes of transcription factor Hivep3 are: Wnt10a, Chpf, Srpk3,
Hivep3, Fosb, Nfkbid, I14i1, Cend1, Pkib, Mfhasl, Smpd3, Egr3, Icam1, Cd83, Prr7,
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Cdcl4b, Myc, St3gall, Slec39a7, Klhl14, Setbpl, and Nfkb2.

The target genes of transcription factor Egrl are: Dnajb2, Serpine2, Rgs13,
Duspl0, Etl4, Cd40, Mllt3, Prdm2, Hspbl, Relb, 114i1, Agbll, Prmt2, Junb, Rab4a,
Atxn7, Egr3, Tgfbr2, B230217C12Rik, Hdac9, Gxyltl, Pou6fl, and Egrl itself.

The target genes of transcription factor Nfkb2 are: A530032D15Rik,
Xprl, Duspl0, Secl6a, Rasgrpl, Ganc, Hck, Pim2, Fam46¢c, Agl, Ddx58, Hivep3, Sfn,
Gimap3, Exoc6b, Igsecl, Relb, Apoe, Zfp36, 114i1, Trim30b, Olfr482, Il4ra, Arid5b,
Derl3, Stat6, Fcer2a, Extl3, Casp4, Myolg, Ccrl0, Hivepl, Cd83, Pcnx, Pla2g6, Btla,
Fam120b, Fgd2, Nfkbie, Tmem63b, Crb3, Rasgrp3, Cd274, and Calhm?2.

The target genes of transcription factor Hivepl are: Tmem163, Cacnale,
Ragl, Cd40, Zmynd8, 1112a, Z{p296, 114i1, 1116, Atgl612, Swap70, Sbf2, Usp47, Slc12a3,
Tk2, Colba3, Spg21, Bcl2alb, Gas7, Rnf167, Grn, Kdmlb, Trib2, Daam1, Calcocol,
Socsl, Gtpbp2, Camk2a, and Ehd1.

The target genes of transcription factor Cebpb are: Nacc2, Reln, Prdm1,
Nol3, Pla2g6, and Mgat3.

The target genes of transcription factor Prdml are: Ctlad, Nacc2, Cebpb,
Zbpl, Lmna, Dennd2d, Clec2g, and Cib2.

The target genes of transcription factor Runx2 include: Raphl, Pikfyve,
Gmppa, Rgll, Fcerlg, Mia3, Bmyc, Surf4, Pltp, Cybb, Irakl, Fndc3b, Notch2, Sec24d,
Pink1, Isglh, Wisl, Scarb2, Fam69a, Tpst2, Cardl1, Aloxbap, Tes, Zfp467, Rassf4,
Kctd14, Nucb2, Plekhal, Ccdc6, Slc41a2, Dtx3, Sec24c, Rebtbl, Tsc22d1, Hyoul,
Anxa2, Scap, Snrk, Ccr9, Rnf215, Sertad2, Slfn5, Slfn8, Scpepl, Slc38al0, Fyb, Baspl,
Cd200r1, Alcam, Crybg3, Gnptg, Sikl, Haao, Kenk12, Map3k8, Sill, Cep120, Slc22al2,
Msd4abc, Osbp, Mpegl, Entpdl, and Fam45a.

The transcription factor Mef2c regulates the following genes: Statl, ler5,
Rrbpl, Sdc4, Ctsz, Ctss, Smap2, Gimapl, Capg, Ptpn6, Ccnd2, Cd22, 1121r, Aldoa,
Irf2, Cotll, Irf8, Tsc22d1, Etsl, Rel, Bellla, Hexb, Cyth4, Tapbp, H2-DMb2, H2-Abl,
H2-Ebl, Ltb, Cd74, Ehd1, and Pdcd4.

The transcription factor Hmgb2 regulates the following genes: Atplbl,
H3f3a, Cdca8, Actb, Prcl, Cdkl, Btgl, Hmgb2, Cdkn3, Nrgn, Tmem108, Ebfl,
Hist3h2a, Top2a, Hist1hlb, Hist1hlc, Cks2, and H2-D1.

H Details of predicted regulons in bone marrow B
cell states revealed through cell type-specific
GRN analysis

The transcription factor Stat5a regulates the following genes: Tcf4, Cplx2,
Cdknla, Prdx4, Tkt, Tmed2, Commd7, Eeflel, Wnk1, Pds5a, and Txnll.

The transcription factor Mef2c regulates the following genes: Hist1h2ae,
Top2a, Cenpf, Ube2¢, Cenpa, Nusapl, Hmgb2, Cdkl, Ucp2, Foxpl, and Smc4.

The transcription factor Ebfl regulates the following genes: Vpreb2,
Vprebl, Iglll, 4930523C07Rik, Bfsp2, Slc25al, Cd24a, Rhoh, Cd79b, Hhex, Cd69,
Blnk, BC028528, Rbms1, Sox4, Pitpncl, Ankfyl, Arntl, Tra2a, Cd79a, Tifa, Yiflb,
Mxd4, Lrmp, Foxpl, Agpat3, Jun, Cd37, Smap2, Srpl4, Fam53b, H2-Ob, Jmjdlc.

The transcription factor Pax5 regulates the following genes: Vpreb2,
Vprebl, Hoxa7, Iglll, Cd74, H2-Eb1, H2-Aa, Rgs18, Tcf4, Tpd52, 4930523C07Rik,
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H2-Abl, Bfsp2, Med13l, Spib, Slc25al, Cd24a, Rhoh, MIIt3, Luzpl, Cd69, Z{p3612,
Thca, Blnk, BC028528, Pitpncl, Serpl, Ankfyl, Rdx, Arntl, Tra2a, Cd79a, Tifa, Yiflb,
Cotll, Zebl, Cregl, Mxd4, Lrmp, Arl5c, Foxpl, Dtnbpl, Agpat3, Cecr2, Jun, B2m,
1110008P14Rik, Mygl, Ogt, Smap2, Srpl14, Famb3b, Arf6, Jmjdlc.

The transcription factor Myb regulates the following genes: Cenpf, Top2a,
Hist1h2ae, Hmgb2, Mki67, Hist1h3c, Neil3, Hist1h3i, Ube2c, Hist2h2ac, Cenpa, Cdca?,
Hist1h4h, Btgl, H2afv, Cd79a, Ctcf, Snrpf, Snrpc, Rdx, Acsl5, Lrmp, Ebfl, Hibadh,
Pcbp2, Topl, Clkl, Zeb2, Gnbl, Ucp2, Hnrnpm, Foxpl, Myb, Ndufv3, Bcl7a, Fam53b,
Ubap?2l, Paip2.

The transcription factor Myc regulates the following genes: Tmem97,
Psatl, Myc, Gesh, Timm8al, Srfbpl, Nop58, Gart, NaalO, Cdv3, Eifde, Mrto4, Apexl,
Ndufaf4, H2-K1, Fam162a, Nop56, Agpat5, Smnl, Polr2l, Eeflel, Tomm5, Ebnalbp2,
Mrps5, Rps19bpl, Prdx6, Nudt19, Lsm12, Txnrd3, Aprt, Aen, Nip7, Rpnl, Rsl24d1,
Fxyd5, Prmt3, Glrx3, Enol, Glrx5, Bola2, Pdcd5, Ptpnl8, Txndc9, Ccnd2, Eif5b,
Adh5, Gtf3c6, Phgdh, Tmed2, Psmel, Polrld.

The transcription factor Bach2 regulates the following genes: Dnajc7,
Atplbl, Lmo4, Cdk6, Nusapl, Fcrla, Bach2, Rrm2, Cdkl, Sec63, Hist1h4d, Spns3,
Vpreb3, Rgs2, Ebfl, Zeb2, Famb3b, Smc4, Sox4, Nfkbia, Tpd52, Dcaf7, Srpk2, Btgl,
Cmcl, Actn4, Greel0, Cnn3, Jund, Dcps, Etfb, Spcs3, Fkbp3, Mrps34, Myb, Cd79b,
Tcf3, Poled, Prcp, Atg3, Rtn3, Klhl24, Sael, Snrpdl, Stagl, Hmgb2, Rab10, Hspal4,
Calr, St13, Trim35, Pgkl, Prkarla, Mtf2, Aridla, Med30, Marcks, Pkn2, Capnsl,
Cde69, Eef2k, Nrdl, Foxpl, Selplg, Drapl, Rapgef6, Magoh, Olal, Lsm3, Zmynd8,
Ddah2, Srsf7, Cfdpl, Hplbp3, Hspab, Hsp90aal, Ndufa9, Cnpy2, Uspl5, Sdha, Calml,
Ndufb6, Stambpll, Ctcf, Jun, Atfl, Dck, Slfn2, Dnaja2, H2-T23, Sbnol, Arntl, Chd4,
Tpm4, Tmsb4x, Cdcbl, Eif3i, Brd2, Rael, Gabpbl, Psmd12, Srpl4, Actr3, Pdapl,
Matr3, Rpl36a, Unc93bl, Hsp90bl, Diablo, Rplpl, Ddx39b, Akirin2, Napa, Cct8, Raly,
Mocs2, Rabl4.

The transcription factor Tcf3 regulates the following genes: Dnajc7, Ebfl,
Btgl, Lgalsl, Fkbp3, Spg2l, Tcf3, Gondl, Fkbp2, Claspl, Ppp3cb, Zcche7, Cisd2,
Foxpl, Rapgef6, Hint1l, Gapdh, Serf2, Ddx42, Ssscal, Slc25al1, Rbm39, Chd2.

The transcription factor KIf2 regulates the following genes: Cd52, Hmgbl,
KIf3, Ralgps2, Cd2, Cd79b, Tmsbdx, Tsc22d3, Smap2, Zfp706, Wasf2, Tcpl1112, Jund,
Farsb, Sec61g, H2-K1, H2-D1, Satl, and Aridla.

The transcription factor Ctcf regulates the following genes: Fcrll, Ctss,
Nasp, H2afv, Gimap6, Vpreb3, Rnaseh2a, Dbi, Exosc3, Ppplcb, Mrpl34, Cox7a2, Ferla,
Corola, Tcpl, Ndufc2, Hnrnpm, Smap2, Ubnl, Pdcd4, Tomm?7, Nup50, Dmxl11, Cox6al,
Aco2, Ssr3, Zc3h13, Ufml, Fam103al, Mapkapl, Mrps12, Prkarla, Cmpkl, H2-D1,
Mapk1, Ptpda2, Cuedc2, Stk4, Tomm?22, Arhgapl7, Trappcl0O, Dctn6, and Cct5.

hHep mDC mHSC-E mHSC-L hESC mESC mHSC-GM

HyperVAE 3.49 3.57 6.61 3.75 2.30 3.32 7.89
DeepSEM 2.50 2.92 6.59 3.12 2.20 2.79 7.22
PIDC 2.48 2.73 5.41 2.85 - - -
GENIE3 - - - - - 3.25 6.68
GRNBoost2 - - - 2.85 1.52 - -
SCODE - - - - - 1.66 1.25
ppcor 1.10 1.01 1.90 1.05 - - -
SINCERITIES - - - - 1.98 - -

Supplementary Table 9: EPR, of Non-specific Chip-seq with top 500 most varying
genes. Values below the performance of random predictors have been excluded
from the table.
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mHSC-E  mHSC-GM mHSC-L hSEC mDC mESC hHep

HyperVAE 4.10 4.67 4.995 4.375 5.58 4.95 4.68
DeepSEM 3.56 4.09 4.68 4.34 5.07 4.62 4.14
PIDC - - 4.185 3.955 4.77 - -
GENIE3 2.76 4.01 - - - - 3.18
GRNBoost2 - - - 3.605 - - -
SCODE - - - - - - 3.78
ppcor 1.16 1.03 1.545 - - - -
SINCERITIES - - - 3.955 3.30 3.30 -

Supplementary Table 10: AUPRC of Non-specific Chip-seq with top 500 most
varying genes. Values below the performance of random predictors have been
excluded from the table.

mHSC-E  mHSC-GM mHSC-L hSEC mDC mESC hHep

HyperVAE 5.53 3.71 8.52 9 7.74 2.38 4.26
DeepSEM 4.49 2.96 7.57 8.26 7.31 1.94 3.89
PIDC 4.12 3.62 8.08 - - - -
GENIE3 - - - 8.49 717 2.16 -
GRNBoost2 - - - - - - 3.71
SCODE - - 3.94 1.43 - - -
ppcor 1.09 1.09 - - - - -
SINCERITIES - - - - 1.43 1.09 1.24

Supplementary Table 11: EPR of STRING with top 1000 most varying genes.
Values below the performance of random predictors have been excluded from

the table.

mHSC-E~ mHSC-GM mHSC-LL hSEC mDC mESC hHep
HyperVAE 2.49 1.96 1.48 2.16 6.53 7.47 7.48
DeepSEM 2.10 1.68 1.41 2.22 5.44 6.28 7.33
PIDC 2.01 1.90 1.58 2.06 5.09 6.27 -
GENIE3 - - - - - 6.27 -
GRNBoost2 1.67 - - - - - 7.07
SCODE - - - 1.15 2.09 1.3 -
ppcor - - - - - - -
SINCERITIES - 1.04 1.01 1.15 - - 1.04

Supplementary Table 12: AUPRC of STRING with top 1000 most varying genes.
Values below the performance of random predictors have been excluded from
the table.

I The list of ten gene clusters predicted by the gene
encoder of HyperG-VAE based on bone marrow B
cells

In gene cluster 0, the following genes are included: Tram2, Ccdc150, Ankrd44,
Wnt10a, Serpine2, Sp140, Gigyf2, Gm7967, Ubxn4, Xprl, 4930523C07Rik, F5, Sh2d1bl,
Fcgr3, Arhgap30, B930036N10Rik, Ifi209, Ephx1, Wdr26, Degsl, Gm15867, Thnsll,
Nacc2, Secl6a, Zeb2, Cytip, Rapgef4, Clqgtnf4, Ragl, Ganc, Cendbpl, Pdia3, Dusp2,
Zc3h6, Smox, Lrrn4, Gm14167, Slc9a8, Zbpl, Z{p968, Ppdpf, Pcmtd2, B630019K06Rik,
Xlr4c, Srpk3, Irakl, Gm5127, Gm15261, Fndc3b, Mgarp, Siah2, Slc33al, Tmem154,
S100a6, S100a8, S100al11, Cd160, Pde4dip, Notch2, Pifo, Cd53, Agl, Uspbh3, Sec24d,
Mcub, Zfp292, Tgfbrl, Col27al, Jun, Cdc20, Hivep3, 5730409E04Rik, Fucal, Clqa,
Tnfrsf18, Cdk14, Cacna2dl, Fgl2, Kmt2e, Cenpa, Gm9903, Acox3, Gm42726, Rhoh,
Rbm47, Affl, Lrre8c, Ficd, Bcel7a, Tmem?248, Dnaafb, Gngll, Clgaltl, Impdhl,
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hESC hHep mDC mESC mHSC-E mHSC-GM mHSC-L

HyperVAE 2.3 2.0 1.64 2.17 6.35 7.35 7.14
DeepSEM 2.04 1.74 1.58 2.02 5.77 6.98 7.22
PIDC 1.95 1.92 1.57 1.89 4.8 - -
GENIE3 - - - - - 6.83 6.88
GRNBoost2 - - - - - - -
SCODE - - - - - - -
ppcor 1.02 - - - - - -
SINCERITIES - 1.14 1.02 1.09 - - -

Supplementary Table 13: AUPRC of STRING with top 500 most varying genes.
Values below the performance of random predictors have been excluded from

the table.

mHSC-L. mESC hHep mDC mHSC-GM mHSC-E hESC
HyperVAE 3.92 3.71 3.2 3.6 6.49 6.76 2.43
DeepSEM 3.3 3.25 2.71 3.39 6.03 6.08 2.32
PIDC - - 2.44 2.95 5.85 5.74 -
GENIE3 - - - - 5.85 - -
GRNBoost2 3.08 3.51 - - - - 0
SCODE 1.38 - - - - - -
ppcor 1.38 1.19 1.25 1.15 1.17 - 1.28
SINCERITIES - - - - - 1.22 2.13

Supplementary Table 14: EPR of Non-specific Chip-seq with top 1000 most
varying genes. Values below the performance of random predictors have been
excluded from the table.

mDC hSEC hHep mHSC-E mHSC-GM mHSC-L. mESC

HyperVAE 2.22 4.8 3.75 8.13 9.4 7.58 3.75
DeepSEM 1.96 4.13 2.92 7.43 9.03 6.98 3.38
PIDC - 3.75 3.51 7.49 - - -
GENIE3 2.03 - - - 8.65 6.83 -
GRNBoost2 - - - - - - 3.35
SCODE - - - - - 1.97 1.54
ppcor - 1.04 1.96 1.58 - -

SINCERITIES 1.03 1.11 - - - - -

Supplementary Table 15: EPR of STRING with top 500 most varying genes.
Values below the performance of random predictors have been excluded from
the table.

E330009J07Rik, Trbcl, Zfp467, Gimap6, Gadd4ba, Igkv2-116, Igkv2-109, Igkv12-46,
Igkv6-32, Dgx1, Nagk, A430078102Rik, Arhgap25, Hlfx, Gm20696, Vgll4, Rasgefla,
Uspl8, Vampl, Bhlhedl, Z{p787, Bbc3, Vasp, Apoe, Dmac2, B3gnt8, Spint2, Klk1,
Atf5, Med25, Rras, Agbll, Semadb, Cibl, Usp35, Trim3, Ampd3, Coq7, RgslO,
Mki67, Ifitm2, Cendl, Tpen2, Akapl2, Gm10827, 4933404K13Rik, Prep, Vsir, Arid5b,
Upbl, Gstt2, Agpat3, Zfr2, Zfp433, Slcd41a2, Ckap4, Igfl, Dgka, Fcer2a, Coprs, Nek3,
Ankrd37, Spcs3, Calr, Slc12a3, Herpudl, Tk2, Nol3, Mapl0, Fhit, Sec24c, Glt8d1,
Mmp14, Rebtbl, Ephx2, Lox12, Fndc3a, Rb1l, Rubcnl, Epstil, Gprl8, Cwf1912, Casp4,
Tirap, Stt3a, Hyoul, Sik3, Rexo2, Pou2afl, 2010007HO6Rik, Stomll, Dennd4a, Usp3,
Ccpgl, Tmem30a, Ctsh, Rasa2, Srprb, Ubabd, Manf, Nradd, Snrk, Slc6a20b, Ccr9, Cer2,
Xbpl, Sertad2, Acyp2, Erlecl, Grap, Aldoc, Ift20, Evi2a, Gm11205, Ccl5, Sle35bl,
Atp6v0al, Kcnh6, Abcab, Kifl19a, Smim5, Trim65, Gaa, Tcrg-C4, Ripor2, Fam8al,
Ctsl, Msh3, Erbin, Gm15326, Fam228b, Rhob, Laptm4a, Nbas, Trib2, Odcl, Grhll,
Gdap10, Klhdcl, Fut8, Tmed10, Samd15, Ighg2c, Ighg2b, Ighv7-3, Ighv1-36, Ighv1-64,
Gmb441, Capsl, Prlr, Gm34590, Them6, Ly6k, Zfp623, Grina, Pla2g6, AL591952.3,
Gm26822, Sdf211, Tmem191c, Gramdlc, Cd200, St3gal6, Speer2, Hspal3, Ifnar2,
Cbrl, Fam120b, Hagh, Gnptg, Z{p563, H2-Ob, Neul, H2-Q6, Atatl, Ppplrl0, H2-T23,
Gabbrl, AY036118, Crisp3, Tspo2, Tgifl, Gm26637, Prkce, Rprdla, Ammecrll,
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mESC mDC mHSC-L mHSC-E mHSC-GM hHep hSEC

HyperVAE 1.63 1.8 3.42 3.24 3.91 1.47 1.27
DeepSEM 1.62 1.8 2.73 3.13 3.38 1.39 1.25
PIDC - 1.65 291 2.65 - - -
GENIE3 1.66 - - - 3.56 - -
GRNBoost2 - - - - - 1.09 1.02
SCODE - - - 1.75 1.14 1.35 -
ppcor - - 1.01 - - - -
SINCERITIES 1.13 1.1 - - - - 1.17

Supplementary Table 16: AUPRC of Non-specific Chip-seq with top 1000 most
varying genes. Values below the performance of random predictors have been
excluded from the table.

Method ‘ hESC mDC hHep mESC LOF/GOF mESC mHSC-GM mHSC-E mHSC-L
HyperVAE 1.37 1.46 1.25 1.05 1.33 1.06 1.06 1.08
DeepSEM 1.13 1.10 1.24 1.05 1.27 1.04 1.02 1.07
PIDC - - 1.05 1.02 1.24 - - -
GENIE3 1.0 1.01 1.10 1.06 - - 1.01 -
GRNBoost2 - 1.01 1.05 - - - - 1.02
SCODE - - - - 1.14 1.01 1.06 -
ppcor 1. - - - - - - -
SINCERITIES - 1.14 - 1.02 - 1.03 - 1.06

Supplementary Table 17: AUPRC of Cell-type-specific Chip-seq with top 500 most varying genes.
Values below the performance of random predictors have been excluded from the table.

Method ‘ hHep mESC hESC mDC mHSC-GM mHSC-E Lof/gof mESC mHSC-L
HyperVAE 1.19 1.08 1.68 1.85 1.09 1.06 1.42 1.13
DeepSEM 1.19 1.04 1.19 1.17 1.12 1.05 1.37 1.06
PIDC 1.03 - - - - - - -
GENIE3 1.12 1.06 - 1.04 1.06 1.03 1.36 -
GRNBoost2 - - - - - 1.03 - 1.07
SCODE - - - - - 1.03 - 1.07
ppcor - 1.01 1.02 - - - - -
SINCERITIES - - - 1.31 1.01 1.02 - -

Supplementary Table 18: EPR, of Cell-type-specific Chip-seq with top 500 most varying genes.
Values below the performance of random predictors have been excluded from the table.

Map3k2, Sill, Ap3sl, Cepl120, Gm26742, Gm4951, Tcf4, Ctsw, Roml, Slc15a3, Fas,
Nikb2, Ccdcl86, Fam45a, Tmlhe, AC125149.3.

In gene cluster 1, the following genes are included: Mcmdc2, Creg2, Cd28,
Ctla4, Sgpp2, Gprd5, Tmem37, C4bp, F730311021Rik, Cacnals, Dnm3, Tbx19, Ferla,
Ifi211, Ifi203, Ifi205, H3f3a, Etl4, Gm13610, Gm35202, Gpr2l, Nr6al, Gm13561,
Hoxd3os1, Prg2, Lrp4, Mdk, Chacl, Cst3, a, 9230111E07Rik, Atp9a, Srms, Fndcll,
Uckllos, Gm10489, Xlr, Slc6a8, Ssr4, Tmsb4x, Serpl, Cdb5l, Rab25, Krtcap2, Gm15417,
Rps27, Gm15265, Fam46¢c, Cd101, Gmb5547, Tifa, Lmo4, Cd72, AI427809, Trim62,
Cdb52, Cnksrl, Extll, Clgb, Camk2nl, Tmem82, Fbxo2, Mornl, AW011738, Gm8879,
Kdr, Cxcll10, Plac8, Cryba4, Tesc, Ccdc92, Cldn4, Hspbl, C130050018Rik, Actb,
Bhlhalb, Ical, Klrg2, Gm32479, Igkv2-137, Igkv9-129, Igkv17-121, Igkv13-84, Igkv4-
59, Igkv4-57, Igkv4-55, Igkvb-43, Igkv5-39, Igkv8-30, Igkv6-29, Igkv6-25, Igkvl-24,
Igkv6-23, Igkv8-21, Igkv6-17, Igkv6-15, Igkv3-12, Igkv3-10, Igkv3-5, Igkv3-1, Igke,
Thnsl2, Tmem150a, Tmsb10, Lrigl, Foxpl, Zfp9, Ninj2, Clec2g, Gm47861, Manscl,
Gm15510, Meis3, A930016022Rik, Gm16174, Cd79a, Pafah1b3, E130208F15Rik,
Upkla, Siglecg, Napsa, Gm45552, Cd37, Ftll, Kctd21, Spcs2, Dnajbl3, Nuprl, Ypel3,
Gm15533, Gm44623, Lspl, Cd24a, Prdml, Tspanl5, Gsttl, Mif, Derl3, Chchdl0,
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Algorithm | LOF/GOF mESC hESC mDC mHSC-L hHep mESC mHSC-E mHSC-GM
HyperVAE 1.44 1.52 1.27 1.16 1.19 1.11 1.09 1.08
DeepSEM 1.42 1.18 1.05 1.12 1.22 1.07 1.06 1.1
PIDC - - - 1.01 1.01 - - -
GENIE3 1.35 - 1.01 - 1.12 1.06 1.01 1.03
GRNBoost2 - - - 1.04 1.01 - - -
SCODE - - - 1.08 1.01 - - -
ppcor 1.03 1.05 - - - - - -
SINCERITIES - 1.65 1.3 - - - - -

Supplementary Table 19: EPR of Cell-type-specific Chip-seq with top 1000 most varying genes.
Values below the performance of random predictors have been excluded from the table.

Algorithm ‘ mHSC-GM mHSC-E  mHSC-L LOF/GOF mESC hHep mDC mESC hESC
HyperVAE 1.01 1.08 1.16 1.34 1.16 1.12 1.09 1.31
DeepSEM 1.01 1.01 1.11 1.33 1.25 1.03 1.09 1.16
PIDC - - - 1.23 1.03 - 1.02 -
GENIE3 - - 1.03 1.23 1.08 1.01 1.06 -
GRNBoost2 - 1. 1.03 - 1.03 1.01 - -
SCODE 1 1. 1.06 1.16 - - - -
ppcor 1 1. - - - - - -
SINCERITIES - - - - - 1.11 1.02 1.6

Supplementary Table 20: AUPRC of Cell-type-specific Chip-seq with top 1000 most varying genes.
Values below the performance of random predictors have been excluded from the table.

Vpreb3, Gm49322, Hsp90b1, Btgl, Kcnmb4os2, Eeflakmt3, 1123a, Hmgb2, Crlfl, Jund,
Klf2, 2210011C24Rik, Mt3, Gm31805, Tsnaxipl, Cyba, Ear2, AC160336.1, Carmil3,
Nugge, Gm29642, Kcnjl, H2afx, Pclaf, Ppib, Filipl, Gm39383, Plsl, Gm19325, Ryk,
Gm47328, P4htm, Tmppe, Eml6, Ebfl, Gm16033, Rasgeflc, Gpx3, Pld2, Wscdl,
Duspl4, Tbx21, Arl5c, Top2a, Cnp, Dnajc7, Ccrl0, Cyb561, Limd2, Gm10840, Cd79b,
Hid1, H3f3b, Gm11754, Metrnl, Hist1h2ae, Gm31834, Wnk2, Gm47918, Gm48899,
Ell2, Mef2c, F2rl1, Marveld2, Gm48684, Ankrd55, Gzma, Gm10734, 5430401HO9Rik,
Gm36756, 1fi2712a, Igha, Adam6b, Ighv2-2, Ighv5-4, Ighv5-6, Ighv2-9-1, Ighv5-17,
Ighv2-9, Ighv11-2, Ighv6-3, Ighv6-6, Ighv10-1, Ighv1-5, Ighv1-12, Ighv1-15, Ighv1-22,
Ighv1-53, Ighv1-55, Ighv8-8, Ighv1-59, Ighv1-63, Ighv1-69, Ighv8-12, Snhgl8, Gm35167,
Tg, Ly6d, Ly6e, Apol9a, Lgalsl, Kdelr3, Mgat3, Adgalt, Abcd2, Fkbpll, Gm21917,
AC191865.2, Tnfrsfl17, Iglll, Vprebl, Iglcl, Iglc3, Iglc2, Iglv3, Iglv2, Ttgb5, Sidtl,
Gcesam, Ripply3, Gm26753, Cacnalh, Tead3, H2-K1, BC051142, H2-D1, Gm42418,
Gm19585, Prr22, Crb3, Xdh, Epcam, Mzbl, Nrg2, Spinkl, Cd74, Secllc, Tubb6,
Gal, Cst6, Malatl, Frmd8os, Syt7, Oosp2, Oospl, Dmrt3, Cpeb3, mt-Col, mt-Atp6,
mt-Co3, mt-Nd4, mt-Cytb, AC168977.1.

In gene cluster 2, the following genes are included: 4732440D04Rik, Neurl3,
TsgalO, Inppl, Raphl, Kanslll, Sp100, Itm2c, Hdlbp, St8sia4, Rgs2, Copl, Resdl,
Gm15853, Pcp4ll, Fcerlg, Psen2, Duspl0O, Kctd3, G0s2, Camklg, Cr2, Dnajcl,
Qrfp, Len2, Gadl, Gprlb5, A330069E16Rik, Lmo2, Cd59a, Nusapl, Gm14005,
2900093K20Rik, Sdc4, Araf, Cfp, Akapl7b, Ogt, Taf9b, Tceall, Tiparp, Ctso, Lmna,
Gm43714, Trim46, Pbxipl, Bankl, Ppp3ca, Gbpb, 2210414B05Rik, Lyn, Bach2,
Erp44, Mknk1, Macfl, Ddost, Prkecz, Kritl, Reln, Insigl, Cpeb2, Bst1l, Hopx, Jchain,
Scarb2, Hsd17b11, Tpst2, Gm42903, Tmem120b, Hiplr, Ncfl, Muc3a, Gpc2, Aloxbap,
D730045B01Rik, Creb3l2, Gm28053, Gimap7, Gimapl, Snca, Igkv15-103, Igkv10-94,
Igkv19-93, Igkv8-28, Gm30211, Eif2ak3, Capg, Aupl, Pcyox1, Rpnl, Mgll, Necapl,
Cd27, Prkeg, Zfp296, Relb, Kenn4, Phldb3, Ceacaml, Tmem91, Blvrb, Zfp59, Tyrobp,
Hest, Nfkbid, Scnlb, Spib, Chd2, AU020206, Pde8a, 1116, Rnf169, Trim5, Trim12c,
Gvinl, Smgl, Tmc7, Gm45184, Cox6a2, Ifitm3, Utrn, 1700027J07Rik, Adamtsl4,
Reep3, Rhobtbl, Ccdc6, Gadd45b, Nfic, Gm17745, Os9, Ddit3, Stat6, Zbtb39, Cnpy2,
Fut10, Mfhasl, 1700029J07Rik, Marchl, Gmip, Bst2, Colgaltl, Cib3, Rrad, Fuk, Gsel,
Gm45890, Cog2, Atxn7, Zswim8, Arhgef3, Txndcl6, Bnip3l, Egr3, Rgcc, Dnajc3,
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Fbx112, Gm47079, Yipf2, Bbs9, Gm26787, Sorll, Gm47232, Jaml, 1700017B05Rik,
Gm26609, 4930429F24Rik, Fam46a, Uba7, Shisab, Camp, Gm9856, Myolg, Bcllla,
Hba-al, Wwcl, Tgtpl, Mgatl, Rapgef6, Pik3r5, Incal, Slfn5, Pgap3, Ccr7, Vatl,
Pecaml, Mifdgd, Olfr1369-psl, Zscan26, Hist1hlc, Gm47730, Tmem170b, Susd3, Syk,
Zfp759, Clptmll, Serinch, Hdac9, Strn3, Zfyve26, Pcnx, Arell, Ift43, Tex22, Ighm,
Ighv14-2, Ighv9-3, Gm30948, Ighv1-82, Baspl, Otulin, Ankrd33b, Ncf4, AL590144.2,
Cyth4, H1f0, Cbx7, Grap2, Sgsm3, Zc3h7b, Bik, Trabd, AC158554.1, Lmbrll, Tubalc,
Prpf40b, Smagp, Ciita, 2510002D24Rik, St6gall, Rubcn, Alcam, Nxpe3, Ermard,
Zfp945, 1ft140, Pim1, Pde9a, Gm19412, H2-DMa, Ltb, Slc25a27, B230354K17Rik,
Tmem63b, Haao, Rhoq, Fbxoll, Ddx3y, Cablesl, Klhl14, Egrl, Pcdhgb4, ligpl,
Gm9949, Setbpl, Ap5bl, Gm14964, Ifit3, Zfyve27, Ablim1l, CAAA01118383.1.

In gene cluster 3, the following genes are included: Gm16152, Gm20342,
Wnt6, Irsl, Mroh2a, Rampl, 5033417F24Rik, Farp2, Lax1, Rgs13, Serpincl, Gm37065,
Ifi214, 1fi213, Phyh, Sfmbt2, Enkur, Lcnd, Prre2b, Tor2a, Hspab, Mettlbos, Pdkl,
Zdhhcb, Ptprj, Pex16, B230118H07Rik, Slc12a6, Cpxm1, Ddrgkl, Slc23a2, Gpcpdl,
Rrbpl, Hck, Mapllc3a, Samhdl, Slpi, Ctsz, Gm14403, Gm14325, Gm14327, Gdil,
Med12, Gla, Satl, 1700125G22Rik, Larplb, Mgst2, Ssr3, I112a, Etv3, Glmp, Ashll,
Hist2h4, Pigk, Tmem245, Gm26566, Lepr, Bend5, Slc5a9, Gm13031, Gm13075,
Galntll, Tmem214, Uvssa, Gm45495, K1f3, Txk, Ppbp, Pf4, Fam109a, Rhof, Rilpll,
Card11, Akrlb10, Gimapb, 5430402013Rik, Snx10, Tacstd2, Igkv14-126-1, Igkv12-
44, Gm45051, Ggcex, Spr, Kbtbd12, Clec4a3, Clecdd, Gprl62, Gm15987, Cd69,
Klrdl, Klra7, Eps8, Mgstl1, Slclab, Arhgefl, Zfp260, Cd22, Cebpg, Gm26526, 114i1,
Fam169b, Isg20, Fchsd2, Olfr655, Sbf2, Gga2, Il4ra, 1121r, Sbkl, Sec23ip, Ntbdcl,
Aifm2, Lss, Itgb2, Zbtb7a, Lyz2, Gm32235, Cpm, Rab5b, A430078G23Rik, Aga,
Fam129c, Tmem38a, ler2, Adcy7, Adgrgl, Tldcl, Dennd6a, Prked, Sh3bp5, Pck2,
Nynrin, Zmymb, Phfllb, Ctsb, Elp3, KIf12, Dock9, Col5a3, Gm47230, Arid3b, Lipc,
4933433G15Rik, Slc17ab, Hyal2, Amigo3, Ngp, Arpp2l, Fbxl2, Zkscan7, Lztfil,
Adam19, Hs3st3bl, Sox15, Clgbp, Uncl19, Heatr6, Fbxo47, Tubg2, Rundcl, Nbrl,
Acbd4, Myl4, Wipil, Tmc6, Rnf213, Pycrl, Gm26601, Histlh4d, Cmah, Pxdcl,
Gm29458, Jarid2, Mylip, Gadd45g, Prr7, Fam193b, Agtpbpl, Gm36445, Mccc2, Cenbl,
Gm21762, Rrm2, Gm9887, Fos, Selll, Foxn3, Serpina3f, Ighv5-16, Ighv3-6, Ighv1-52,
Ighv1-77, Cmbl, Derll, Mtssl, Tnfrsf13c, Prr5, Cerk, Creld2, Amigo2, Pou6fl, Mgrnl,
Vpreb2, AC140186.1, Parpl4, Eaf2, Ccr6, Mapk8ip3, AI413582, Gm15420, Rsphl,
Sikl, H2-DMb2, H2-DMb1, H2-Q7, Rasgrp3, 4833418N02Rik, Stonl, Gm26734,
3110002H16Rik, 4930426D05Rik, Camk2a, Gnal, Stard6, Clcfl, Klc2, Slc3a2, Fads2,
Ms4a6c, Smarca2, 4430402118Rik, Cd274, Sufu, Mirtl, AC149090.1.

In gene cluster 4, the following genes are included: Gm16152, Gm20342,
Wnt6, Irsl, Mroh2a, Rampl, 5033417F24Rik, Farp2, Lax1, Rgs13, Serpincl, Gm37065,
Ifi214, 1fi213, Phyh, Sfmbt2, Enkur, Lcnd, Prre2b, Tor2a, Hspab, Mettlbos, Pdkl,
Zdhhch, Ptprj, Pex16, B230118HO07Rik, Slc12a6, Cpxm1, Ddrgkl, Slc23a2, Gpcpdl,
Rrbpl, Hck, Mapllc3a, Samhdl, Slpi, Ctsz, Gm14403, Gm14325, Gm14327, Gdil,
Med12, Gla, Satl, 1700125G22Rik, Larplb, Mgst2, Ssr3, 1112a, Etv3, Glmp, Ashll,
Hist2h4, Pigk, Tmem245, Gm26566, Lepr, Bend5, Slc5a9, Gm13031, Gm13075,
Galntll, Tmem214, Uvssa, Gm45495, K1f3, Txk, Ppbp, Pf4, Fam109a, Rhof, Rilpll,
Card11, Akrlb10, Gimapb, 5430402013Rik, Snx10, Tacstd2, Igkv14-126-1, Igkv12-
44, Gm45051, Ggcx, Spr, Kbtbd12, Clec4a3, Clecdd, Gprl62, Gm15987, Cd69,
Klrdl, Klra7, Eps8, Mgstl1, Slclab, Arhgefl, Zfp260, Cd22, Cebpg, Gm26526, 114i1,
Fam169b, Isg20, Fchsd2, Olfr655, Sbf2, Gga2, Il4ra, 1121r, Sbkl, Sec23ip, Ntbdcl,
Aifm2, Lss, Itgb2, Zbtb7a, Lyz2, Gm32235, Cpm, Rab5b, A430078G23Rik, Aga,
Fam129c, Tmem38a, ler2, Adcy7, Adgrgl, Tldcl, Dennd6a, Prked, Sh3bp5, Pck2,
Nynrin, Zmymb, Phfllb, Ctsb, Elp3, KIf12, Dock9, Col5a3, Gm47230, Arid3b, Lipc,
4933433G15Rik, Slc17ab, Hyal2, Amigo3, Ngp, Arpp2l, Fbxl2, Zkscan7, Lztfil,
Adam19, Hs3st3bl, Sox15, Clgbp, Uncl19, Heatr6, Fbxo47, Tubg2, Rundcl, Nbrl,
Acbd4, Myl4, Wipil, Tmc6, Rnf213, Pycrl, Gm26601, Histlh4d, Cmah, Pxdcl,
Gm29458, Jarid2, Mylip, Gadd45g, Prr7, Fam193b, Agtpbpl, Gm36445, Mccc2, Cenbl,
Gm?21762, Rrm2, Gm9887, Fos, Selll, Foxn3, Serpina3f, Ighv5-16, Ighv3-6, Ighv1-52,
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Ighv1-77, Cmbl, Derll, Mtssl, Tnfrsfl3c, Prr5, Cerk, Creld2, Amigo2, Pou6fl, Mgrnl,
Vpreb2, AC140186.1, Parpl4, Eaf2, Ccr6, Mapk8ip3, AI413582, Gm15420, Rsphl,
Sikl, H2-DMb2, H2-DMb1l, H2-Q7, Rasgrp3, 4833418N02Rik, Stonl, Gm26734,
3110002H16Rik, 4930426D05Rik, Camk2a, Gnal, Stard6, Clcfl, Klc2, Slc3a2, Fads2,
Ms4a6c, Smarca2, 4430402118Rik, Cd274, Sufu, Mirtl, AC149090.1.

In gene cluster 5, the following genes are included: Gm16152, Gm20342,
Wnt6, Irsl, Mroh2a, Rampl, 5033417F24Rik, Farp2, Lax1, Rgs13, Serpincl, Gm37065,
Ifi214, 1213, Phyh, Sfmbt2, Enkur, Lcn4, Prre2b, Tor2a, Hspab, Mettlbos, Pdkl,
Zdhhc5, Ptprj, Pex16, B230118HO7Rik, Slc12a6, Cpxml, Ddrgkl, Slc23a2, Gpcpdl,
Rrbpl, Hck, Mapllc3a, Samhdl, Slpi, Ctsz, Gm14403, Gm14325, Gm14327, Gdil,
Med12, Gla, Satl, 1700125G22Rik, Larplb, Mgst2, Ssr3, 1112a, Etv3, Glmp, Ashll,
Hist2h4, Pigk, Tmem245, Gm26566, Lepr, Bend5, Slcba9, Gm13031, Gm13075,
Galntll, Tmem214, Uvssa, Gm45495, Kl1f3, Txk, Ppbp, Pf4, Fam109a, Rhof, Rilpl1l,
Card11, Akrlb10, Gimapb, 5430402013Rik, Snx10, Tacstd2, Igkv14-126-1, Igkv12-
44, Gm45051, Ggcx, Spr, Kbtbd12, Clec4a3, Clecdd, Gprl62, Gm15987, Cd69,
Klrdl, Klra7, Eps8, Mgstl, Slclab, Arhgefl, Zfp260, Cd22, Cebpg, Gm26526, 114i1,
Fam169b, Isg20, Fchsd2, Olfr655, Sbf2, Gga2, Il4ra, 1121r, Sbkl, Sec23ip, Ntbdcl,
Aifm?2; Lss, Itgb2, Zbtb7a, Lyz2, Gm32235, Cpm, Rab5b, A430078G23Rik, Aga,
Fam129c, Tmem38a, ler2, Adcy7, Adgrgl, Tldcl, Dennd6a, Prked, Sh3bp5, Pck2,
Nynrin, Zmymb, Phfl1b, Ctsb, Elp3, Klf12, Dock9, Col5a3, Gm47230, Arid3b, Lipc,
4933433G15Rik, Slcl7ab, Hyal2, Amigo3, Ngp, Arpp2l, Fbxl2, Zkscan7, Lztfll,
Adam19, Hs3st3bl, Sox15, Clgbp, Uncl19, Heatr6, Fbxo47, Tubg2, Rundcl, Nbrl,
Acbd4, Myl4, Wipil, Tmc6, Rnf213, Pycrl, Gm26601, Hist1h4d, Cmah, Pxdcl,
Gm29458, Jarid2, Mylip, Gadd45g, Prr7, Fam193b, Agtpbpl, Gm36445, Mccc2, Cenbl,
Gm21762, Rrm2, Gm9887, Fos, Selll, Foxn3, Serpina3f, Ighv5-16, Ighv3-6, Ighv1-52,
Ighv1-77, Cmbl, Derll, Mtssl, Tnfrsfl3c, Prr5, Cerk, Creld2, Amigo2, Pou6fl, Mgrnl,
Vpreb2, AC140186.1, Parpl4, Eaf2, Ccr6, Mapk8ip3, AI413582, Gm15420, Rsphl,
Sikl, H2-DMb2, H2-DMb1l, H2-Q7, Rasgrp3, 4833418N02Rik, Stonl, Gm26734,
3110002H16Rik, 4930426D05Rik, Camk2a, Gnal, Stard6, Clcfl, Klc2, Slc3a2, Fads2,
Ms4a6c, Smarca2, 4430402118Rik, Cd274, Sufu, Mirtl, AC149090.1.

In gene cluster 6, the following genes are included: Clkl, Fam117b, Pikfyve,
Tmem163, Rgll, 4930439D14Rik, Sell, Gm13383, Manlbl, Ak8, Akl, Wipfl, Lpcat4,
Rasgrpl, Gm10762, H2allm, Rhox8, Yipf6, I12rg, Magtl, Tsc22d3, Carl, Rnfl3,
Ferll, 4933434E20Rik, Gm43573, Pax5, Akap2, Tm2d1, Epsl5, Zdhhcl8, Casp9, Per3,
1500002C15Rik, Samd11, Nubl, Mxd4, Grk4, Uchll, Stapl, Gm32051, Oasl2, Hvenl,
Gusb, Samd9l, Betl, Irf5, Igkv1-135, Igkv1-133, C87436, Sec61al, Cecr2, Cd4, Ccnd2,
Klrble, Klrel, Plbdl, Itpr2, Isoc2b, Fosb, Rabacl, Ryrl, Fxyd5, Selenos, Prcl, MyoTa,
Atgl612, Arapl, Hbb-bt, Trim30b, Arhgapl7, Aldoa, Ifitm1l, Pkp3, Tnnt3, Cttn,
Gm26740, Sesnl, Prfl, 4930507D05Rik, Gm867, Zfp280b, Pofut2, Fgd6, Kcnmb4,
Gm16553, Erichl, 5830468F06Rik, Hook3, Vps37a, Inpp4b, Dnase2a, Mt1, Ctrl, Irf8,
Rabda, Ccser2, Gprl37c, Lgals3, Lpar6, Tmem123, Birc2, Birc3, Olfr889, Gm26737,
Hykk, Ccnb2, Bcl2alb, 4930524007Rik, Rbmb, Cdhr4, Gas2ll, Aff4, Igtp, Epn2,
Gas7, Cldn7, Slfn2, Ccl9, Scpepl, Ormdl3, Gh, Ernl, Abca6, Narf, Arid4b, Hist1hlb,
Hist1h2ap, Sox4, Ly86, Txndch, Hivepl, Rgsl4, Txndclb, Zfpd57, Pqlc3, Pdia6,
Tspanl3, Daaml, Dhrs7, Susd6, Lgmn, Ighv1-19, Ighv1-81, Selenop, Myol0, Stk3,
Gm49085, Sla, Lynx1, Clqtnf6, Rpl39l, 3110001122Rik, B3gnt5, Gp5, D930030103Rik,
Arid1lb, Rpl3l, Fam234a, Crebrf, Fgd2, Tapbp, H2-Oa, H2-Abl, H2-Eb2, Nfkbie,
Zfp318, Treml2, Hnrnpll, Pcdhb16, Alpk2, Neatl, Ahnak, AW112010, Msdadc, Mpegl,
Entpdl, 2310034G01Rik, Calhm2.

In gene cluster 7, the following genes are included: Fam135a, Lmbrdl,
4930403P22Rik, Statl, Stk17b, Mogatl, Bcl2, Sle35f5, Cd55, Nek7, Trove2, Gm10138,
Trmt1l, Cregl, Cd84, Opn3, C8g, Cirl, Zfp120, Ninl, Tbc1d20, Duspl5, Pltp, Zmynd8,
3830403N18Rik, Smim10I2a, Rab39b, Anxab, Foxol, Kcnabl, Slc50al, S100a3, Mcll,
Txnip, Cd2, Slprl, Ifi44, Manea, Slc44al, Bspry, Aknaos, MIlt3, Faah, Smap2,
Cdcag, Pinkl, Wfsl, Selll3, Lrrc8d, Golga3, Slcl5a4, Zfpl113, Igkv5-48, Giptl, Etfrfl,
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Gm15873, Z{p329, Pglyrpl, Pou2f2, P1d3, Zfp36, Rasipl, Nav2, Siglech, Ints4, Usp4?7,
Lmntd2, Chst3, Cnn2, Arhgap45, Tcf3, Tle2, Lrpl, Letm2, Plpp5, Micu3, Cope,
1112rb1, Junb, Ccll7, Coq9, Slcl2a4, Terf2ip, Cbfa2t3, Samd8, Gm26772, Ppp3cc,
Mbnl2, Caspl, Srpr, Anxa2, Rnfl11, Adam10, Zbtb38, Pelil, Psme4, Hba-a2, Clint1,
9930111J21Rik2, Hist3h2a, Chrnbl, Wfdc21, Synrg, Msi2, Plekhh3, Lgals8, Serpinbla,
Cks2, 1810034E14Rik, Tmem161b, Gm47551, Map3k1, Slc38a9, Noxredl, Ifi27, Ckb,
Ighv1-26, Dennd3, Ly6a, Xrcc6, Gxyltl, Snn, Txndcll, Dnajbll, Filipll, Ergicl,
H2-Aa, Gm26917, Nrtn, Ankrd12, Dhx57, Arhgef33, Kenk12, Pkd212, Ndfipl, Gramd3,
Siglec15, 1700018L02Rik, Dntt, Scdl.

In gene cluster 8, the following genes are included: A530040E14Rik, Insig2,
Tor3a, Gm26620, Capn2, Mia3, Nebl, Surf4, Tmem87a, Slc28a2, Edem2, Cd40, Zfp973,
Pim2, Cybb, Cysltrl, Skil, Zbtb7b, Ube2jl, Ddx58, Reck, Heyl, Zmym6, Prdm2,
5031425E22Rik, Hpse, Fam69a, Gm14508, Ubc, Asns, Tmem106b, 1110019D14Rik,
Tes, Fam3c, Bpgm, Braf, Igkv14-111, Exoc6b, Cpne9, Rassf4, Dyrk4, Dennd5b, Nerl,
71p865, Zfp324, Plekhfl, Pexl1la, Kctd14, Trim34a, Trim30a, Nucb2, Sec63, Gucdl,
Dusp6, Gliprl, B4galntl, Arhgefl8, Galnt7, Rab3a, B3gnt9, Carmil2, Ctsg, Ptk2b,
Gm4285, Rab3d, Nrgn, I110ra, Zc3h12c, Spg21, Myole, Trim7, Sec24a, Trim11, Xafl,
Mir142hg, 2610035D17Rik, Slc38al10, Myadml2, Nid1, Prss16, C530050E15Rik, Irf4,
Cd83, Kdm1b, Nxnl2, Slc34al, Zfyvel6, Cd180, Dnajb9, Fam177a, Nfkbia, Gm10457,
Gpr65, Ccdc88c, Serpina3g, Adssll, Pld4, Fyb, Arfgap3, Calcocol, 2010309G21Rik,
Olfr166, Klhl24, Hesl, Iqcbl, Nlrc4, Map3k8, Gm17227, Ms4a6b, Fratl, Tcf712, Shtnl.

In gene cluster 9, the following genes are included: Cacnale, Tmem164,
Serpinil, Gba, Gm31243, Pnrcl, B4galtl, Gm12678, Zcchcll, Cited4, Id3, Ddi2, Mib2,
Thcldl, Gbp9, Oasll, Gm43409, Mlxip, Zfp12, Daglb, Igkv9-120, Igsecl, Gprl9, Leng8,
Zfp773, Zfp719, Akapl3, Stard10, Pycard, Tspan32, Manla, Ddx21, Rufy2, Cyp4f18,
Nfix, Icaml, Gm27201, Hyal3, Lars2, Dok3, Gm34215, Ighv5-2, Shisa8, Nr4al, Itgb?7,
Brwdl, Gtpbp2, Tnfsf9, Uty.

J Original results of BEELINE benchmark
comparison

Original performance on GRN inference of HyperG-VAE based on the setting of
BEELINE framework [36] can be found in Supplementary Table 9-20.
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