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Abstract

Epigenome profiling techniques such as ChlP-seq and ATAC-seq have
revolutionized our understanding of gene expression regulation in tissue
development and disease progression. However, increasing amount of
ChIP/ATAC-seq data poses challenges in computational resources, and the
absence of systematic tools for epigenomic analysis underscores the necessity

for an efficient analysis platform. To address these issues, we developed the

Epigenomic Analysis Platform (EAP, htips://www.biosino.org/epigenetics), a
scalable cloud-based tool that efficiently analyzes large-scale ChIP/ATAC-seq
data sets. EAP employs advanced computational algorithms to derive
biologically meaningful insights from heterogeneous datasets and automatically
generates publication-ready figures and tabular results, enabling
comprehensive epigenomic analysis and data mining in areas like cancer

subtyping and therapeutic target discovery.
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Introductions

Epigenome profiling plays a crucial role in investigating gene expression
regulation in tissue development and disease progression’?2. Advanced deep
sequencing techniques, including ChlP-seq and ATAC-seq, have enabled us to
dissect the epigenetic heterogeneity of developmental cells and disease
cohorts by identifying epigenomic alterations and the potential associated
transcription factors (TFs)34. These high-throughput techniques provide
valuable insights into the mechanisms that control gene expression and
disease progression®S.

In recent years, large consortium projects such as ENCODE’ and TCGA'
as well as many cancer genomics studies have generated a tremendous
amount of ChIP/ATAC-seq data in various normal and cancer cells/tissues,
providing opportunities for data mining and a broader understanding of
epigenetic regulation of gene expression. However, as the scale of data
generation continues to grow, researchers require more computational
resources to analyze these large datasets. Additionally, there is a lack of
systematic epigenomic analysis tools to explore the huge amount of
ChIP/ATAC-seq data deposited in NCBI GEO®? and CNCB GSA?®. Despite the
availability of a large number of computational tools and methods for
ChIP/ATAC-seq data analysis, it remains challenging for experimental biologist
to deploy and integrate these tools into workable pipeline, particularly in
heterogeneous cohort studies (e.g., those involving patients that may be in
different disease states or subtypes) where conventional analysis tools are
often inadequate.

To address these gaps, we have developed EAP (Epigenomic Analysis

Platform, https://www.biosino.org/epigenetics), a scalable, customizable and

interactive ChlP/ATAC-seq data analysis platform based on cloud technology.
EAP uses state-of-the-art computational and statistical algorithms to transform

ChIP/ATAC-seq data generated from a large panel of samples into biologically
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meaningful and interpretable results'®'2. Currently, EAP provides a series of
data analytical tools with an interactive web interface to facilitate its use by
researchers with limited programming experience, encompassing data
preprocessing, supervised differential analysis, differential TF motifs
enrichment analysis, differential TF activity analysis, unsupervised
hypervariable analysis, clustering analysis, signature genes scoring analysis,
etc. All of these analytical tools are specifically developed for modeling and
understanding the epigenetic variations among a large number of patient
samples or cellular states. The comprehensive epigenomic analysis through
EAP can greatly facilitate data mining in different research areas, such as

cancer subtyping and therapeutic target discovery.

Results
Overview of EAP architecture and the analysis modules

EAP is primarily tailored for cancer patient cohort studies, necessitating a
login for the upload and analysis of sensitive personal information
(Supplementary Figure 1a). In order to utilize EAP, users must register an
account and request storage space by submitting an application form to the
administrator. The input files required for EAP include raw sequencing data in
FASTQ format and a metadata file in CSV format, containing details on study
design and sample phenotypes. Due to the typically large size of these files, we
have developed a dedicated data transfer client tool that supports break-point
resumable transfers (Supplementary Figure 1b). Additionally, a mdSsum
checking procedure has been integrated to ensure the integrity of uploaded files
(Supplementary Figure 1c). Currently, EAP offers two analytical modules to
transform ChIP/ATAC-seq data from heterogeneous samples into biologically
meaningful and interpretable results. EAP leverages private cloud computing
technology'® to establish an analytical framework for processing, interpreting,
and visualizing large datasets, ensuring ample computing power for these tasks.

Additionally, Docker container technology'# is utilized to create automated
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analysis pipelines and tools, ensuring reproducibility of results and streamlining
end-to-end bioinformatics analysis for large epigenomic datasets. The cloud
computing architecture supports two analytical modules for both basic and

advanced epigenomic data analysis in EAP (Figure 1a).

EAP enables efficient and comprehensive large-scale ChIP/ATAC-seq
data analysis

The Basic Analysis module is designed and implemented as an automatic
pipeline tailored for routine data processing demands, which includes quality
control, read alignment, peak calling and read counting. Upon completion of the
pipeline, an analysis report (in PDF format), including quality control plots and
summary statistic values, will be presented for further study (Figure 1b). NGS
data preprocessing is a time-consuming step that demands substantial
computational resources. EAP leverages Cloud computing technology to
handle large ChIP/ATAC-seq datasets, which can comprise tens or even
hundreds of ChIP/ATAC-seq profiles from different samples. Table 1
demonstrates that EAP’s basic analysis module can efficiently process and

analyze large datasets from various studies.

Table 1. The time cost of data preprocessing using EAP’s Basic Analysis module on
public data sets with various sample and file sizes

data set running time sample size total file size source
GBM ATAC-seq 61h45min08s 60 630.6GB Lu et al.’®
LUAD H3K27ac ChiP-seq 17h58min36s 42 790.3GB Yuan et al.'®
PDAC organoid ATAC-seq 29h19min35s 44 722.6GB Shi et al.*”
Thyroid cancer ATAC-seq 120h10min25s 227 3.9TB Sanghi et al.'8

GBM: Glioblastoma; LUAD: lung adenocarcinoma; PDAC: Pancreatic ductal adenocarcinoma.

For the Advanced Analysis Module, it encapsulates a comprehensive
collection of analytical tools meeting needs of customized ChIP/ATAC-seq data
analyses (Figure 1c-d). In practice, users have the flexibility to perform both
routine and customized analyses on their data seamlessly, as the input read

count table for these advanced analyses is derived from the Basic Analysis
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module. Furthermore, EAP offers a user-friendly interface that enables users to
configure parameters for the advanced analyses, including the number of
principal components utilized for sample clustering, the design of the differential
analyses, and the specifications for p-value/FDR cutoffs, among others
(Supplementary Figure 2). Users can choose the specific combination of
analytical tools that best suit their research scenarios. For instance, for
ChIP/ATAC-seq datasets with clearly defined sample labels, differential
analysis can be used to detect the differential signals between samples with
different labels, followed by differential TF motif enrichment analysis or
differential TF activity analysis to further explore the TFs associated with the
differential genome binding or open chromatin sites. This scenario is referred
to as supervised analysis (Figure 1c). In contrast, for datasets with no pre-
defined sample labels (e.g., those generated from patients with the same
disease state/type) or highly sophisticated sample labels (e.g., those covering
tens of different cellular states or disease types), users can apply hypervariable
analysis to identify hypervariable ChIP/ATAC-seq signals across the samples,
which could be then used as features for clustering analysis to dissect the
underlying heterogeneity structure among the samples. Then, samples are
grouped into different clusters, coupled with signature genes scoring analysis
to annotate those clusters based on established gene sets (Figure 1d).
Supervised analysis tools could also be applied to the resulting sample clusters

to detect binding/open chromatin sites specific to each cluster (Figure 1c-d).

EAP provides interactive data set browser

EAP has been successfully applied to analyze ChIP/ATAC-seq data from
many cancer epigenomic studies, including H3K27ac ChlIP-seq on LUAD
cohort’®, ATAC-seq on NSCLC cohort', ATAC-seq on TCGA pan-cancer
cohort!, ATAC-seq on thyroid cancer cohort’® and ATAC-seq on pancreatic
cancer patient derived organoids'’. These processed data sets are available

on the Data Set Browser in EAP, and EAP offers an interactive interface for
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easy visualization of TF activity scores in each data set. This module allows
users to investigate the role of interest of transcriptional regulators in

oncogenesis by choosing an appropriate data set (Figure 1e).

Comparison of comprehensiveness of supported ChIP/ATAC-seq features
across EAP and other existing analysis platforms/tools

While numerous ChIP/ATAC-seq analysis platforms/tools exist, EAP is
designed to provides more flexible and comprehensive down-stream analyses,
enabling users to delve deeper into their data and extract biological meaningful
insights. Additionally, EAP allows for adding new features in future releases
(Table 2). One of the key advantages of EAP is its exceptional ability to handle
large-scale ChIP/ATAC-seq datasets ranging from gigabytes to terabytes in
size. This capability sets EAP apart from other tools, as it enables users to
efficiently analyze and process vast amounts of data.

Table 2. Comparison of comprehensiveness of supported ChIP/ATAC-seq features

from currently available analysis platforms/tools
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Case Study 1: ATAC-seq profiles of different tissue types from thyroid
cancer patients

To demonstrate the power of EAP with labeled datasets, we collected an
ATAC-seq dataset of thyroid cancer'®, comprising 70 primary tumor tissues, 70
patient-match normal tissues and 83 metastatic cancer tissues. We utilized
EAP to preprocess the sequencing data and then conducted pairwise
differential analysis of different tissue types using count table acquired from the
Basic Analysis module. Our analysis revealed that in comparison to the
alterations in chromatin accessibility between primary tumor tissues and
metastatic cancer tissues, a notably higher number of differentially accessible
sites were identified when contrasting primary tumor tissues/metastatic cancer
tissues with normal tissues (Figure 2a). We further performed differential TF
motif enrichment analysis to detect TF motifs that are differentially enriched in
one set of peaks regions relative to another set (e.g., tumor tissue up-regulated
peaks vs normal tissue up-regulated peaks). We found that normal thyroid

development transcription factors FOXE1 and HHEX were significantly


https://doi.org/10.1101/2024.03.31.587470
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.31.587470; this version posted April 1, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

enriched in normal tissue up-regulated sites?*. However, the potential binding
sites for transcription factors of the AP-1 family are more enriched in the up-
regulated sites in primary tumors tissue/metastatic cancer tissue, such as FOS,
JUN, FOSL2, JDP2, and BATF (Figure 2b)?°.

The AP-1 family is the main target proteins of MAPKs?5, and previous
studies have shown that thyroid cancer is driven by MAPK signaling pathway?’.
Therefore, these transcription factors enriched in up-regulated sites in primary
tumors tissue/metastatic cancer tissue may be related to the activation of MAPK
signaling pathway in thyroid cancer. To verify the activity of MAPK signaling
pathway in different tissue types, signature genes activity score analysis tool
implemented in EAP was employed to assign the MAPK signaling pathway
activity estimates to individual samples. Our results indicated that primary tumor
tissues/metastatic cancer tissues have indeed a higher MAPK signaling
pathway activity than normal tissues (Figure 2c). Additionally, we performed
differential TF activity analysis to identify tissue type specific transcriptional
regulators. Consistent with previous findings, TF activity scores of normal
thyroid development related transcription factors are higher in normal tissues,
while TF activity scores of AP-1 family TFs are increasing in primary tumors
tissues/metastatic cancer tissues (Figure 2d-f). It is worth noting that the activity
scores of RUNX2 are progressively increasing from patient-match normal
tissues to primary tumors tissues, and at last metastatic cancer tissues, which
exhibited significantly higher activity (P=1.98E-20) (Figure 2g). Enhanced
regulation activity of RUNX2 have been reported to be functionally linked to
tumor invasion and metastasis in thyroid cancer?®. Overall, using the
combination of EAP differential analysis tools, we found that increasing of AP-
1 family TFs regulation ability, up-regulation of MAPK signaling pathway and
increased activity of RUNX2 are related to the carcinogenesis and progression
of thyroid cancer. These findings demonstrate the functional profiling capacity
of EAP in capturing epigenetic alterations and the associated transcription

factors in labeled data set.
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Case Study 2: ATAC-seq profiles of patient-derived pancreatic cancer
organoids

However, in most cancer studies, due to the heterogeneity among patients and
the complexity or lack of clinical pathological information, it is difficult to use
existing information as sample labels for down-stream analysis. Consequently,
EAP provide an unsupervised analysis strategy for analyzing label-free dataset.
We applied EAP to reanalyze an ATAC-seq dataset containing 44 patient-
derived pancreatic cancer organoids (Figure 3a)'’. Four different pancreatic
ductal adenocarcinoma (PDAC) subgroups were identified based on previously
defined signature gene sets?%3, including classical progenitor like subgroups
(C1), basal-like subgroups (C2), classical immunogenic like subgroups (C3)
and aberrantly differentiated endocrine and exocrine (ADEX) like subgroups
(C4 and C5) (Figure 3b-c). According to basal subtype signature gene scores,
we divided the four subgroups into basal-like and non-basal samples, basal-
like PDAC showed significantly worse prognosis than those in non-basal
patients (P=0.045), which is in line with previous studies (Figure 3d)>3'. To
further elucidate differences in transcriptional regulators between different
subgroups, we identified subgroup-specific transcription factors using the
differential TF activity analysis tool. GATA6, HNF1A, and HNF1B, which are
critical for normal pancreatic development and differentiation, were enriched in
classical progenitor like subgroups3?34. In the classical immunogenic-like
subgroup, HNF4A and HNF4G were identified, and these transcription factors
were reported not only to be associated with the classical pancreatic cancer
subtype, but also to play an important role in the invasion of pancreatic cancer3>.
RUNX1, RUNX2 and RUNX3 were significantly enriched in the basal-like
subgroup, and the high expression of these transcription factors have been
reported to promote pancreatic cancer cell migration, invasion and drug
resistance, which can be used as a potential target for pancreatic cancer

treatment®637. Transcription factors related to pancreatic endocrine or
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neuroendocrine, such as NEUROD2 and ASCL 138, were significantly enriched
in the ADEX like subgroup. In addition, Rbpj1 is critical in the differentiation of
pancreatic acinar cells and it was also enriched in ADEX like subgroup(Figure
3e)%®. These results indicate that both endocrine and exocrine transcription
factors are highly activated in this subgroup, rather than one of the endocrine
or exocrine-related transcription factors, which is common in normal pancreas
development. Overall, these findings exemplified the utility of EAP in revealing
both cancer epigenetic subtypes and subtype specific transcriptional regulators

in a label-free data set.

Discussions

In summary, EAP presents a revolutionary data analysis platform to
support large-size epigenomic dataset analyses based on the cloud combining
technology. We demonstrated the practicability and high-efficiency of EAP in
dissecting cancer epigenetic heterogeneity, which can be used not only for
mining key transcriptional regulators of different cancer pathological subtypes,
but also for cancer epigenetic subtyping, and further revealing subtype
associated transcription factors.

Furthermore, EAP offers interactive data analysis, allowing end users to
iteratively modify analytical parameters to enhance the identification of
biologically significant results. This feature is particularly crucial for cancer
epigenomic data analysis, where a standardized analytical pipeline may not be
suitable or preferred.

EAP has been successfully applied to analyze ChIP/ATAC-seq data from
many cancer epigenomic studies, which comprise tens or even hundreds of
ChIP/ATAC-seq profiles from different individuals. The processed data sets are
available on the Data Set Browser in EAP, and EAP offers an interactive
interface for easy visualization of TF activity scores in each data set. It is worth
noting that as we applied this module on datasets from multiple cancer types,

RUNX family TFs exhibited higher regulation activity in both progressive
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subtypes and metastatic tissues (Figure 3f and Supplementary figure 3), which
indicate RUNX family TFs might as candidate multi-cancer progression related
regulators and may be a potential target for cancer therapy.

We anticipate that EAP can be used for more large-scale cancer
epigenomic data analyses, leading to more interesting and meaningful
biological or clinical discoveries, which broaden our understanding of cancer

carcinogenesis and progression related epigenetic machinery.

Methods
Implementation

The EAP web server runs on a private cloud system equipped with 5,654
GB of memory, 824 CPUs, and 10 TB of storage space. Docker technology was
utilized to create images containing necessary software and packages for
ChIP/ATAC-seq data analysis, such as FastQC (v0.11.9) for read quality control,
Bowtie (v1.2.0) for read alignment, and MACS (v1.4.2) for peak calling. Analysis
workflows, including data preprocessing pipelines and downstream analysis
tools, were defined in YAML files specifying configuration parameters and
commands to be executed. Subsequently, graphical user interfaces (GUIs) for
the data preprocessing pipeline and downstream analysis tools were deployed
on the web server. The user-friendly GUI was designed to allow non-technical
users to customize analysis parameters (e.g., adjusted p-value cutoff, number
of clusters, variables of interest for differential analysis) and conduct various
ChIP/ATAC-seq data analyses.

EAP implements login authentication as a crucial measure for data security
and storage. Users are required to register an account

(https://www.biosino.org/epigenetics/#/user/register) and request storage

space by submitting an application form to the administrator (application form
was available at

https://qgithub.com/haocjiechen94/EAP/blob/main/doc/File 1 Storage space a

pplication _form.xlIsx). Once users have an account and allocated storage space,
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they can upload raw sequencing data to their designated storage area and
utilize the analysis tools integrated within EAP. Instructions and help menus are
readily accessible on the Home page to guide users through the platform (help
manus was also available at

https://github.com/haojiechen94/EAP/blob/main/doc/Help%20document.pdf).

Additionally, we also provide video tutorials that visually demonstrate the
processes and make it easier for users to learn and apply the procedures
effectively (Supplementary movie 1, Supplementary movie 2 and
Supplementary movie 3,

https://github.com/haojiechen94/EAP/tree/main/video tutorials). Given the

typically large size of uploaded files, a data transfer client was developed to
support break-point resumable transfers. Users are advised to utilize this client

for uploading raw sequencing data to their allocated storage space within EAP.

Basic Analysis module: a standardized ChIP/ATAC-seq data
preprocessing pipeline

Input:

The input for the data analysis process includes raw sequencing data in FASTQ
format and metadata containing descriptions of the raw sequencing data and
phenotypic information for each sample. A metadata template can be accessed
on the Home page of the EAP platform (metadata template was also available

at https://github.com/haojiechen94/EAP/blob/main/doc/File 2 metadata.csv).

Data Processing:

Firstly, FastQC (v0.11.9) is utilized for quality control of read bases and Trim-
galore (v0.6.7) is employed for trimming adapters and removing low-quality
bases from reads. ChIP/ATAC-seq reads are aligned to the user-specified
reference genome, which can be downloaded from the UCSC genome browser

(https://hgdownload.soe.ucsc.edu/downloads.html), using Bowtie (v1.2.0).

Then, PCR duplicates are removed based on genomic position and remaining

reads are used for peak calling with MACS (v1.4.2). Finally, a count table is
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generated using MAnorm2-utils (v1.0.0).

Output:

The analysis generates three count tables where genomic regions are
represented in rows and samples in columns.

- One count table (NA_profile_bins.xls) is prepared for differential analysis.

- Two count tables (proximal_peak_regions 2000bp.txt and
distal_peak_regions_2000bp.txt) are prepared for hypervariable analysis.

- Asummary report is produced, encompassing quality control assessments for
bases, reads mapping, and peaks calling, as well as genomic annotations of

peaks and motif enrichment within peaks.

Advanced Analysis module: a comprehensive collection of ChIP/ATAC-
seq data analysis tools

Differential Analysis

Input:

The input for the differential analysis module includes count tables
(NA_profile_bins.xIs) generated from the output of the Data Preprocessing
module and metadata.

Data Processing:

Raw count tables are normalized using MAnorm2 to account for differences in
library size and correct MA trended bias. Then differential analysis is conducted
based on the user-specified variable of interest.

Output:

The output of the analysis includes:

- A table presenting the results of the differential analysis.

- MVC plot illustrating the global mean-variance trend.

- MA plot highlighting significantly differentially enriched or accessible peaks.

Differential TF Motif Enrichment Analysis
Input:


https://doi.org/10.1101/2024.03.31.587470
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.31.587470; this version posted April 1, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

The input for the differential TF motif enrichment analysis module consists of
the result table from the previous step of the differential analysis.

Data Processing:

A user-selected adjusted p-value cutoff is applied to define significantly
differentially enriched or accessible peaks (DEPs or DAPs). Then motifscanR
tool is utilized to scan for transcription factor (TF) motif occurrences in these
DEPs/DAPs. Finally, Fisher’s exact test is employed to determine if a TF motif
is significantly enriched in one set of peak regions relative to another set.
Output:

The output of the analysis includes:

- A table presenting the results of the differential motif enrichment analysis.

- Enriched/depleted p-values indicating the extent to which a TF motif is
over/under-represented in a peak set relative to another peak set.

- A volcano plot highlighting significantly differentially enriched TF motifs.

Hypervariable Analysis

Input:

The input for the hypervariable analysis module includes count tables
(proximal_peak_regions_2000bp.txt and distal_peak_regions_2000bp.txt)
obtained from the output of the Basic Analysis module and metadata.

Data Processing:

MA normalization is performed in pseudo-reference mode. HyperChIP is
applied to evaluate the significance of signal variability. Peak regions with an
adjusted p-value below 0.001 (default) are identified as hypervariable regions.
Then [rincipal component analysis (PCA) is conducted based on signals within
these variable regions and samples are visualized in two-dimensional PCA
space or -SNE space.

Output:

The output of the hypervariable analysis tool includes:

- Hypervariable analysis results exported in both TXT and RData formats.
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- MVC plots illustrating the global mean-variance trend in proximal and distal
regions, with significant hypervariable regions marked in red.
- Scatter plots displaying the PCA results or t-SNE dimension reduction results

based on signals in hypervariable regions.

Clustering Analysis

Input:

The input for the clustering analysis includes hypervariable analysis results in
RData format and metadata.

Data Processing:

Principal component analysis (PCA) is conducted on signals within
hypervariable regions and the top-ranked principal components (PCs) are
utilized to calculate the Euclidean distance between each pair of samples. Then
hierarchical clustering is applied to group samples into clusters based on the
similarity of their signal patterns in hypervariable regions (HVRs).

Output:

The output of the clustering analysis tool includes:

- A new metadata containing the clustering results, which can be utilized for
further analyses.

- A cluster heatmap displaying the hierarchical clustering result, providing a

visual representation of sample similarities and clustering patterns.

Signature genes score analysis

Input:

Hypervariable analysis result of proximal regions in RData format, genes to
proximal regions links and a list of genes of interest in GMT format.

Data processing:

Given a gene set of interest, it is usually more desirable to summarized the
expression level of that gene set using a single integrated score. This tool

standardizes the ChlIP/ATAC-seq signals in the proximal regions within a given
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dataset by z-score transformation. Then summarizes resulting scores of those
proximal regions linked to the genes of interest, minus the mean of z-scores of
all proximal regions as negative control.

Output:

The output of the Signature genes score analysis tool includes:

- A boxplot shows the distribution of signature scores among different clusters.
This analysis provides visualization to improve interpretation of the clustering
results. For example, users can annotate the cluster based on these signature

genes scores.

Differential TF Activity Analysis

Input:

Hypervariable analysis results in RData format and metadata.

Data processing:

Peak regions with adjusted p-value below 0.001 (default) were defined as
hypervariable regions. motifscanR was then utilized to conduct motif scanning
on these genomic regions, aggregating TF motif-associated signals in each
sample to generate a score representing TF regulatory activity. Following this,
a t-test was employed to identify TFs associated with the user-specified variable
of interest.

Output:

The outputs in this analysis including a table of TF activities in each sample, a
table of t-statistic of the association test and plots for dimension reduction

visualization of samples and the activities of user specified TFs.

Evaluation

We showcase application of EAP with two distinct analysis scenarios: (i) In data
set with clearly defined labels. In this analysis scenarios, we reanalyzed an
ATAC-seq data set of thyroid cancer, which included 70 primary tumor tissues,

70 patient-match normal tissues and 83 metastatic cancer tissues. Using EAP,
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we investigated chromatin accessibility alterations during cancer progression
and identified potential associated transcriptional regulators. (ii) In data sets
without pre-defined labels. For this case study, we obtained ATAC-seq data on
44 patient-derived pancreatic cancer organoids. First, we perform sample
clustering based on chromatin accessibility heterogeneity and define subtypes
using established signature gene sets. Subsequently, we identified key

regulators specific to each subtype.

Data availability

This study made use of multiple publicly available datasets. For Case Study 1,
the thyroid cancer ATAC-seq was obtained from GEO, under accession number
GSE162515. For Case Study 2, the PDAC organoid ATAC-seq data was
obtained from GSA, under accession number HRA002013. The LUAD
H3K27ac ChlP-seq data was downloaded from EGA, under accession number
EGAD00001007066. The GBM ATAC-seq data was obtained from GEO, under
accession number GSE163853. The NSCLC ATAC-seq data was obtained from

West China Hospital (https://pms.cd120.com/download.html). The pan-cancer

ATAC-seq data set was obtained from TCGA GDC
(https://gdc.cancer.gov/about-data/publications/ATACseq-AWG).

Code availability
Extensive documentation and a full user manual are available at

https://github.com/haojiechen94/EAP/tree/main/doc. The software is open

source, and all code can be found on GitHub at

https://qgithub.com/haocjiechen94/EAP/tree/main/source codes.
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Figures

Figure 1 Overview of EAP architecture and the various analysis modules
(a) Inputs to EAP include raw sequencing data (in FASTQ format) and metadata
(describes study design and sample phenotypes, in CSV format). EAP consists
of Basic Analysis module and Advanced Analysis module. Basic Analysis
module performs quality control, read mapping, peaks calling, creates a
summary report for filtering poor quality samples and generates analysis-ready
count tables, which are then used as inputs for Advanced Analysis module. A
comprehensive collection of ChIP/ATAC-seq data analysis tools are
encapsulated in the Advanced Analysis module. Each analysis tools will
produce publication-ready results (figures and tables). (b) Workflow of Basic
Analysis module, requires the upload of raw sequencing data and metadata
using the Cloud Gene-Client tool. Upon completion of this analysis, analysis-
ready count tables and a summary quality control report are generated for
downstream analysis. (c-d) Two distinct research scenarios are illustrated: (c)
For labeled data sets, differential analysis can be employed to identify
differential signals among samples with different labels. Subsequently,
differential TF motif enrichment analysis and differential TF activity analysis can
be conducted to investigate the TFs linked to differential binding or open
chromatin sites. (d) In datasets lacking pre-defined sample labels,
hypervariable analysis can be utilized to identify hypervariable ChIP/ATAC-seq
signals across the samples. These signals can then be leveraged for clustering
analysis and cluster samples into distinct groups, and signature genes scoring
analysis is utilized to characterize these clusters based on established gene
sets. Supervised analysis tools can also be utilized to identify binding/open
chromatin sites or transcriptional regulators specific to each cluster. (e) EAP
offers a Data Set Browser that provides an interactive interface for convenient

visualization of TF activity scores in each dataset.

Figure 2 lllustration of application of EAP on labeled data sets
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(a) MA plots highlight the differentially accessible sites when comparing ATAC-
seq profiles across normal tissues, tumor tissues, and metastatic tissues. (b)
Volcano plots show the differential TF motif enrichment analysis results of
differentially accessible sites between normal tissues and tumor/metastatic
tissues. (c¢) Boxplot shows the MAPK pathway activities across different tissue
types. (d) Two dimensional t-SNE visualization of ATAC-seq samples using
hypervariable regions identified by EAP, samples are colored by tissue of origin.
(e-g) Two dimensional t-SNE visualization of different ATAC-seq samples

colored by TF activity scores calculated by EAP.

Figure 3 lllustration of application of EAP on label-free data sets

(a) Heatmap and dendrogram showing clustering of samples with similar
chromatin accessibility profiles and clustering of peak regions with similar
expression patterns. (b-c) Boxplots showing the expression activity of signature
gene sets curated by previous studies. (d) Kaplan-Meier curves displaying
differences in progression-free survival (PFS) between patients whose
organoids defined as Basal-like or Non-basal-like based on ATAC-seq profiles.
TLSs&LAs signatures score. (e) Heatmap of TF activity scores of top-ranked
cluster specific TFs. (f) Boxplots showing the TF activity scores across samples
in two public cancer related data sets, samples are grouped by tissue of origins

(left panel) or subtypes defined EAP (right panel).

Supplementary figures

Supplementary figure 1 The login page and data transfer tools of EAP

(a) The login page of EAP (https://www.biosino.org/epigenetics/#/user/login), a

demonstration account is available by click on "demo" in this page. (b) The data
transfer client for utilization of EAP, which supports break-point resumable
transfers. (¢) A md5sum checking procedure has been integrated to ensure the

integrity of uploaded files


https://www.biosino.org/epigenetics/#/user/login
https://doi.org/10.1101/2024.03.31.587470
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.31.587470; this version posted April 1, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

Supplementary figure 2 Advanced Analysis module in EAP
User can choose the downstream analysis tools implemented in EAP and
customize the configure parameters. The input and output examples

demonstrate the comprehensive visualization and analysis results.

Supplementary figure 3 lllustrating the visualization of the TF activity
scores of RUNX1/2/3 in two case study ATAC-seq data sets using the Data

Set Browser

Supplementary movies
Supplementary_movie_1_Data_transferring_and_integrity_checking.mp
4
Supplementary_movie_2_Basic_Analysis_module_demo_using_paired_
end_ChIP_seq_data.mp4
Supplementary_movie_3_Advanced_Analysis_module_demo_differentia

|_analysis.mp4


https://doi.org/10.1101/2024.03.31.587470
http://creativecommons.org/licenses/by-nc/4.0/

Figure 1

a
Input Computation Layer Output
BioRXIvV-preprint dof ttps-7/7dororg/t0-110172624°03-31-5874 70; this versiom posted Aprit 1, 2024~ T e copynight fofder for this preprint
— {(which was not certified by peer review) is the-autherfunderwhe-has-granted-bieRxiv-a-license-to-display-the-preprintinperpetuity. It is
I’ \ pefde available under aCC-BY-NC 4.0 International license.
FASTQ format! (
| . .
P N : Basic analysis module
|
I ENCODE |! Reads alignment & removing PCR
- ~ : duplicates & peaks calling & generatig
I~ oY count matrix
. J
: TCGA I PN
I g | Advanced analysis module
| ( N
|
|
GEO I Differential analysis
I\ J I R >
1 >
|
1 ) Differential Motif enrichment analysis
I GSA : =
I 7 1 . .
" : DO Hypervariable analysis
( N
|
I User data : Differential TF activity analysis
& v
\\ ______ —
+ Clustering analysis
Signature genes score analysis
\ ~/
(docker images, packges, scripts, reference data, yaml files)
b c Dataset with clearly defined labels (e.g. Tumor vs Normal)
Raw data Metadata Differential analvsis Differential TF motif Differential TF activity
[ Sampie 10 | [ tissue_type [ gencer .| ’ enrichment analysis analysts
iy + I - v mae o - WS I Annotation
...TGAGTCGATGATG... @ 4 |anratstion = Annotation
.GCCGAGTATGATG... — N g™ o - e
..CTCGAATGTGATG... wai. .. I femal 89 H Pe3 TF activity score
normal emale 207 g 50 FOXA‘iO-5 y
N % 2 %&% nocy 0
Data uploading - - g_; 05

Cloud Gene-Client Tool
BB

Data preprocessing

Count table

Cevrom ['sar | ona | sampie read-enc ]| sampietcccupancy | - I3
1

20

2

-+

Quality control statistics

T T

4000
3000
2500

3000
2000
1500
1000

Ratio of reads within peaks 0.80

2000
0.90

0 2 4 6 8 10 12

Avalue

-1 0 1 2
Log,(fold change)

d Dataset without clearly defined labels (e.g. large-scale cancer cohort)

Hypervariable analysis

Clustering analysis

Signature genes score
analysis

Proximal regions

1.0

Logio(observed variance)
-05 00 05

-1.0

© Significant HVRs (n=1063)

0 2 4 8 10 12
Observed mean log,(read count)

.......

b

NPC1

00 02 04 06
\

Signature score

-0.4

cluster

Dataset browser

Public available datasets (e.g. NSCLC ATAC-seq dataset)

Ds00s.
nnnnn
Dso0

oS00z

Transcription Factor Activity



https://doi.org/10.1101/2024.03.31.587470
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.31.587470; this version posted April 1, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

Figure 1 Overview of EAP architecture and the various analysis modules
(a) Inputs to EAP include raw sequencing data (in FASTQ format) and metadata
(describes study design and sample phenotypes, in CSV format). EAP consists
of Basic Analysis module and Advanced Analysis module. Basic Analysis
module performs quality control, read mapping, peaks calling, creates a
summary report for filtering poor quality samples and generates analysis-ready
count tables, which are then used as inputs for Advanced Analysis module. A
comprehensive collection of ChIP/ATAC-seq data analysis tools are
encapsulated in the Advanced Analysis module. Each analysis tools will
produce publication-ready results (figures and tables). (b) Workflow of Basic
Analysis module, requires the upload of raw sequencing data and metadata
using the Cloud Gene-Client tool. Upon completion of this analysis, analysis-
ready count tables and a summary quality control report are generated for
downstream analysis. (c-d) Two distinct research scenarios are illustrated: (c)
For labeled data sets, differential analysis can be employed to identify
differential signals among samples with different labels. Subsequently,
differential TF motif enrichment analysis and differential TF activity analysis can
be conducted to investigate the TFs linked to differential binding or open
chromatin sites. (d) In datasets lacking pre-defined sample labels,
hypervariable analysis can be utilized to identify hypervariable ChIP/ATAC-seq
signals across the samples. These signals can then be leveraged for clustering
analysis and cluster samples into distinct groups, and signature genes scoring
analysis is utilized to characterize these clusters based on established gene
sets. Supervised analysis tools can also be utilized to identify binding/open
chromatin sites or transcriptional regulators specific to each cluster. (e) EAP
offers a Data Set Browser that provides an interactive interface for convenient

visualization of TF activity scores in each dataset.
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Figure 2 lllustration of application of EAP on labeled data sets

(a) MA plots highlight the differentially accessible sites when comparing ATAC-
seq profiles across normal tissues, tumor tissues, and metastatic tissues. (b)
Volcano plots show the differential TF motif enrichment analysis results of
differentially accessible sites between normal tissues and tumor/metastatic
tissues. (c¢) Boxplot shows the MAPK pathway activities across different tissue
types. (d) Two dimensional t-SNE visualization of ATAC-seq samples using
hypervariable regions identified by EAP, samples are colored by tissue of origin.
(e-g) Two dimensional t-SNE visualization of different ATAC-seq samples

colored by TF activity scores calculated by EAP.
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Figure 3 lllustration of application of EAP on label-free data sets

(a) Heatmap and dendrogram showing clustering of samples with similar
chromatin accessibility profiles and clustering of peak regions with similar
expression patterns. (b-c) Boxplots showing the expression activity of signature
gene sets curated by previous studies. (d) Kaplan-Meier curves displaying
differences in progression-free survival (PFS) between patients whose
organoids defined as Basal-like or Non-basal-like based on ATAC-seq profiles.
TLSs&LAs signatures score. (e) Heatmap of TF activity scores of top-ranked
cluster specific TFs. (f) Boxplots showing the TF activity scores across samples
in two public cancer related data sets, samples are grouped by tissue of origins

(left panel) or subtypes defined EAP (right panel).
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