
EAP: a versatile cloud-based platform for comprehensive and interactive 

analysis of large-scale ChIP/ATAC-seq data sets 

Haojie Chen1,4,#, Tao Huang1#, Zhijie Guo1,4,#, Anqin Zheng1,4,#, Weiran Chen1, 

Liangxiao Ma1, Shiqi Tu1*, Guangyong Zheng1,2,*, Yixue Li1,3,*, Zhen Shao1,* 

 

1 Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 

Shanghai, China 

2 Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, 

Institute of Interdisciplinary Integrative Medicine Research, Shanghai University 

of Traditional Chinese Medicine, Shanghai, China 

3 Guangzhou Laboratory, Guangzhou, China 

4 University of Chinese Academy of Sciences, Beijing 100049, China. 

* Corresponding authors, Shiqi Tu: tushiqi@picb.ac.cn; Guangyong Zheng: 

gyzheng@shutcm.edu.cn; Yixue Li: yxli@sibs.ac.cn; Zhen Shao: 

shaozhen@sinh.ac.cn 

# These authors contributed equally to this work 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 1, 2024. ; https://doi.org/10.1101/2024.03.31.587470doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.31.587470
http://creativecommons.org/licenses/by-nc/4.0/


Abstract 

Epigenome profiling techniques such as ChIP-seq and ATAC-seq have 

revolutionized our understanding of gene expression regulation in tissue 

development and disease progression. However, increasing amount of 

ChIP/ATAC-seq data poses challenges in computational resources, and the 

absence of systematic tools for epigenomic analysis underscores the necessity 

for an efficient analysis platform. To address these issues, we developed the 

Epigenomic Analysis Platform (EAP, https://www.biosino.org/epigenetics), a 

scalable cloud-based tool that efficiently analyzes large-scale ChIP/ATAC-seq 

data sets. EAP employs advanced computational algorithms to derive 

biologically meaningful insights from heterogeneous datasets and automatically 

generates publication-ready figures and tabular results, enabling 

comprehensive epigenomic analysis and data mining in areas like cancer 

subtyping and therapeutic target discovery.
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Introductions 

Epigenome profiling plays a crucial role in investigating gene expression 

regulation in tissue development and disease progression1,2. Advanced deep 

sequencing techniques, including ChIP-seq and ATAC-seq, have enabled us to 

dissect the epigenetic heterogeneity of developmental cells and disease 

cohorts by identifying epigenomic alterations and the potential associated 

transcription factors (TFs)3,4. These high-throughput techniques provide 

valuable insights into the mechanisms that control gene expression and 

disease progression5,6. 

In recent years, large consortium projects such as ENCODE7 and TCGA1 

as well as many cancer genomics studies have generated a tremendous 

amount of ChIP/ATAC-seq data in various normal and cancer cells/tissues, 

providing opportunities for data mining and a broader understanding of 

epigenetic regulation of gene expression. However, as the scale of data 

generation continues to grow, researchers require more computational 

resources to analyze these large datasets. Additionally, there is a lack of 

systematic epigenomic analysis tools to explore the huge amount of 

ChIP/ATAC-seq data deposited in NCBI GEO8 and CNCB GSA9. Despite the 

availability of a large number of computational tools and methods for 

ChIP/ATAC-seq data analysis, it remains challenging for experimental biologist 

to deploy and integrate these tools into workable pipeline, particularly in 

heterogeneous cohort studies (e.g., those involving patients that may be in 

different disease states or subtypes) where conventional analysis tools are 

often inadequate. 

To address these gaps, we have developed EAP (Epigenomic Analysis 

Platform, https://www.biosino.org/epigenetics), a scalable, customizable and 

interactive ChIP/ATAC-seq data analysis platform based on cloud technology. 

EAP uses state-of-the-art computational and statistical algorithms to transform 

ChIP/ATAC-seq data generated from a large panel of samples into biologically 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 1, 2024. ; https://doi.org/10.1101/2024.03.31.587470doi: bioRxiv preprint 

https://www.biosino.org/epigenetics
https://doi.org/10.1101/2024.03.31.587470
http://creativecommons.org/licenses/by-nc/4.0/


meaningful and interpretable results10-12. Currently, EAP provides a series of 

data analytical tools with an interactive web interface to facilitate its use by 

researchers with limited programming experience, encompassing data 

preprocessing, supervised differential analysis, differential TF motifs 

enrichment analysis, differential TF activity analysis, unsupervised 

hypervariable analysis, clustering analysis, signature genes scoring analysis, 

etc. All of these analytical tools are specifically developed for modeling and 

understanding the epigenetic variations among a large number of patient 

samples or cellular states. The comprehensive epigenomic analysis through 

EAP can greatly facilitate data mining in different research areas, such as 

cancer subtyping and therapeutic target discovery. 

 

Results 

Overview of EAP architecture and the analysis modules 

EAP is primarily tailored for cancer patient cohort studies, necessitating a 

login for the upload and analysis of sensitive personal information 

(Supplementary Figure 1a). In order to utilize EAP, users must register an 

account and request storage space by submitting an application form to the 

administrator. The input files required for EAP include raw sequencing data in 

FASTQ format and a metadata file in CSV format, containing details on study 

design and sample phenotypes. Due to the typically large size of these files, we 

have developed a dedicated data transfer client tool that supports break-point 

resumable transfers (Supplementary Figure 1b). Additionally, a md5sum 

checking procedure has been integrated to ensure the integrity of uploaded files 

(Supplementary Figure 1c). Currently, EAP offers two analytical modules to 

transform ChIP/ATAC-seq data from heterogeneous samples into biologically 

meaningful and interpretable results. EAP leverages private cloud computing 

technology13 to establish an analytical framework for processing, interpreting, 

and visualizing large datasets, ensuring ample computing power for these tasks. 

Additionally, Docker container technology14 is utilized to create automated 
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analysis pipelines and tools, ensuring reproducibility of results and streamlining 

end-to-end bioinformatics analysis for large epigenomic datasets. The cloud 

computing architecture supports two analytical modules for both basic and 

advanced epigenomic data analysis in EAP (Figure 1a).  

 

EAP enables efficient and comprehensive large-scale ChIP/ATAC-seq 

data analysis 

The Basic Analysis module is designed and implemented as an automatic 

pipeline tailored for routine data processing demands, which includes quality 

control, read alignment, peak calling and read counting. Upon completion of the 

pipeline, an analysis report (in PDF format), including quality control plots and 

summary statistic values, will be presented for further study (Figure 1b). NGS 

data preprocessing is a time-consuming step that demands substantial 

computational resources. EAP leverages Cloud computing technology to 

handle large ChIP/ATAC-seq datasets, which can comprise tens or even 

hundreds of ChIP/ATAC-seq profiles from different samples. Table 1 

demonstrates that EAP’s basic analysis module can efficiently process and 

analyze large datasets from various studies. 

Table 1. The time cost of data preprocessing using EAP’s Basic Analysis module on 

public data sets with various sample and file sizes 

data set running time sample size total file size source 

GBM ATAC-seq 61h45min08s 60 630.6GB Lu et al.15 

LUAD H3K27ac ChIP-seq 17h58min36s 42 790.3GB Yuan et al.16 

PDAC organoid ATAC-seq 29h19min35s 44 722.6GB Shi et al.17 

Thyroid cancer ATAC-seq 120h10min25s 227 3.9TB Sanghi et al.18 

GBM: Glioblastoma; LUAD: lung adenocarcinoma; PDAC: Pancreatic ductal adenocarcinoma. 

 

 For the Advanced Analysis Module, it encapsulates a comprehensive 

collection of analytical tools meeting needs of customized ChIP/ATAC-seq data 

analyses (Figure 1c-d). In practice, users have the flexibility to perform both 

routine and customized analyses on their data seamlessly, as the input read 

count table for these advanced analyses is derived from the Basic Analysis 
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module. Furthermore, EAP offers a user-friendly interface that enables users to 

configure parameters for the advanced analyses, including the number of 

principal components utilized for sample clustering, the design of the differential 

analyses, and the specifications for p-value/FDR cutoffs, among others 

(Supplementary Figure 2). Users can choose the specific combination of 

analytical tools that best suit their research scenarios. For instance, for 

ChIP/ATAC-seq datasets with clearly defined sample labels, differential 

analysis can be used to detect the differential signals between samples with 

different labels, followed by differential TF motif enrichment analysis or 

differential TF activity analysis to further explore the TFs associated with the 

differential genome binding or open chromatin sites. This scenario is referred 

to as supervised analysis (Figure 1c). In contrast, for datasets with no pre-

defined sample labels (e.g., those generated from patients with the same 

disease state/type) or highly sophisticated sample labels (e.g., those covering 

tens of different cellular states or disease types), users can apply hypervariable 

analysis to identify hypervariable ChIP/ATAC-seq signals across the samples, 

which could be then used as features for clustering analysis to dissect the 

underlying heterogeneity structure among the samples. Then, samples are 

grouped into different clusters, coupled with signature genes scoring analysis 

to annotate those clusters based on established gene sets (Figure 1d). 

Supervised analysis tools could also be applied to the resulting sample clusters 

to detect binding/open chromatin sites specific to each cluster (Figure 1c-d).  

 

EAP provides interactive data set browser 

EAP has been successfully applied to analyze ChIP/ATAC-seq data from 

many cancer epigenomic studies, including H3K27ac ChIP-seq on LUAD 

cohort16, ATAC-seq on NSCLC cohort19, ATAC-seq on TCGA pan-cancer 

cohort1, ATAC-seq on thyroid cancer cohort18 and ATAC-seq on pancreatic 

cancer patient derived organoids17. These processed data sets are available 

on the Data Set Browser in EAP, and EAP offers an interactive interface for 
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easy visualization of TF activity scores in each data set. This module allows 

users to investigate the role of interest of transcriptional regulators in 

oncogenesis by choosing an appropriate data set (Figure 1e). 

 

Comparison of comprehensiveness of supported ChIP/ATAC-seq features 

across EAP and other existing analysis platforms/tools 

While numerous ChIP/ATAC-seq analysis platforms/tools exist, EAP is 

designed to provides more flexible and comprehensive down-stream analyses, 

enabling users to delve deeper into their data and extract biological meaningful 

insights. Additionally, EAP allows for adding new features in future releases 

(Table 2). One of the key advantages of EAP is its exceptional ability to handle 

large-scale ChIP/ATAC-seq datasets ranging from gigabytes to terabytes in 

size. This capability sets EAP apart from other tools, as it enables users to 

efficiently analyze and process vast amounts of data.  

Table 2. Comparison of comprehensiveness of supported ChIP/ATAC-seq features 

from currently available analysis platforms/tools 

  ChIPseek20 PEPATAC21 Cistrome22 CisGenome23 EAP 

D
a

ta
 p

re
p

ro
c
e

s
s

in
g

 

trimming 

adapter 

× √ √ √ √ 

read 

alignment 

× √ √ √ √ 

peaks calling × √ √ √ √ 

peaks 

annotation 

√ √ × √ √ 

read 

distribution 

× √ √ √ √ 

read counting × × √ × √ 

D
o

w
n

s
tr

e
a

m
 a

n
a

ly
s

is
 motif 

enrichment 

analysis 

√ √ √ × √ 

differential 

analysis 

× × √ × √ 

differential TF 

motif 

enrichment 

× × × × √ 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 1, 2024. ; https://doi.org/10.1101/2024.03.31.587470doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.31.587470
http://creativecommons.org/licenses/by-nc/4.0/


analysis 

hypervariable 

analysis 

× × × × √ 

differential TF 

activity 

analysis 

× × × × √ 

clustering 

analysis 

× × √ × √ 

signature 

genes score 

analysis 

× × × × √ 

allow for 

adding new 

features 

× × √ × √ 

O
th

e
r 

web based 

analysis tools 

√ × √ × √ 

genome 

browser 

visualization 

√ √ √ √ × 

 

Case Study 1: ATAC-seq profiles of different tissue types from thyroid 

cancer patients 

To demonstrate the power of EAP with labeled datasets, we collected an 

ATAC-seq dataset of thyroid cancer18, comprising 70 primary tumor tissues, 70 

patient-match normal tissues and 83 metastatic cancer tissues. We utilized 

EAP to preprocess the sequencing data and then conducted pairwise 

differential analysis of different tissue types using count table acquired from the 

Basic Analysis module. Our analysis revealed that in comparison to the 

alterations in chromatin accessibility between primary tumor tissues and 

metastatic cancer tissues, a notably higher number of differentially accessible 

sites were identified when contrasting primary tumor tissues/metastatic cancer 

tissues with normal tissues (Figure 2a). We further performed differential TF 

motif enrichment analysis to detect TF motifs that are differentially enriched in 

one set of peaks regions relative to another set (e.g., tumor tissue up-regulated 

peaks vs normal tissue up-regulated peaks). We found that normal thyroid 

development transcription factors FOXE1 and HHEX were significantly 
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enriched in normal tissue up-regulated sites24. However, the potential binding 

sites for transcription factors of the AP-1 family are more enriched in the up-

regulated sites in primary tumors tissue/metastatic cancer tissue, such as FOS, 

JUN, FOSL2, JDP2, and BATF (Figure 2b)25.  

The AP-1 family is the main target proteins of MAPKs26, and previous 

studies have shown that thyroid cancer is driven by MAPK signaling pathway27. 

Therefore, these transcription factors enriched in up-regulated sites in primary 

tumors tissue/metastatic cancer tissue may be related to the activation of MAPK 

signaling pathway in thyroid cancer. To verify the activity of MAPK signaling 

pathway in different tissue types, signature genes activity score analysis tool 

implemented in EAP was employed to assign the MAPK signaling pathway 

activity estimates to individual samples. Our results indicated that primary tumor 

tissues/metastatic cancer tissues have indeed a higher MAPK signaling 

pathway activity than normal tissues (Figure 2c). Additionally, we performed 

differential TF activity analysis to identify tissue type specific transcriptional 

regulators. Consistent with previous findings, TF activity scores of normal 

thyroid development related transcription factors are higher in normal tissues, 

while TF activity scores of AP-1 family TFs are increasing in primary tumors 

tissues/metastatic cancer tissues (Figure 2d-f). It is worth noting that the activity 

scores of RUNX2 are progressively increasing from patient-match normal 

tissues to primary tumors tissues, and at last metastatic cancer tissues, which 

exhibited significantly higher activity (P=1.98E-20) (Figure 2g). Enhanced 

regulation activity of RUNX2 have been reported to be functionally linked to 

tumor invasion and metastasis in thyroid cancer28. Overall, using the 

combination of EAP differential analysis tools, we found that increasing of AP-

1 family TFs regulation ability, up-regulation of MAPK signaling pathway and 

increased activity of RUNX2 are related to the carcinogenesis and progression 

of thyroid cancer. These findings demonstrate the functional profiling capacity 

of EAP in capturing epigenetic alterations and the associated transcription 

factors in labeled data set. 
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Case Study 2: ATAC-seq profiles of patient-derived pancreatic cancer 

organoids 

However, in most cancer studies, due to the heterogeneity among patients and 

the complexity or lack of clinical pathological information, it is difficult to use 

existing information as sample labels for down-stream analysis. Consequently, 

EAP provide an unsupervised analysis strategy for analyzing label-free dataset. 

We applied EAP to reanalyze an ATAC-seq dataset containing 44 patient-

derived pancreatic cancer organoids (Figure 3a)17. Four different pancreatic 

ductal adenocarcinoma (PDAC) subgroups were identified based on previously 

defined signature gene sets29,30, including classical progenitor like subgroups 

(C1), basal-like subgroups (C2), classical immunogenic like subgroups (C3) 

and aberrantly differentiated endocrine and exocrine (ADEX) like subgroups 

(C4 and C5) (Figure 3b-c). According to basal subtype signature gene scores, 

we divided the four subgroups into basal-like and non-basal samples, basal-

like PDAC showed significantly worse prognosis than those in non-basal 

patients (P=0.045), which is in line with previous studies (Figure 3d)5,31. To 

further elucidate differences in transcriptional regulators between different 

subgroups, we identified subgroup-specific transcription factors using the 

differential TF activity analysis tool. GATA6, HNF1A, and HNF1B, which are 

critical for normal pancreatic development and differentiation, were enriched in 

classical progenitor like subgroups32-34. In the classical immunogenic-like 

subgroup, HNF4A and HNF4G were identified, and these transcription factors 

were reported not only to be associated with the classical pancreatic cancer 

subtype, but also to play an important role in the invasion of pancreatic cancer35. 

RUNX1, RUNX2 and RUNX3 were significantly enriched in the basal-like 

subgroup, and the high expression of these transcription factors have been 

reported to promote pancreatic cancer cell migration, invasion and drug 

resistance, which can be used as a potential target for pancreatic cancer 

treatment36,37. Transcription factors related to pancreatic endocrine or 
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neuroendocrine, such as NEUROD2 and ASCL138, were significantly enriched 

in the ADEX like subgroup. In addition, Rbpj1 is critical in the differentiation of 

pancreatic acinar cells and it was also enriched in ADEX like subgroup(Figure 

3e)39. These results indicate that both endocrine and exocrine transcription 

factors are highly activated in this subgroup, rather than one of the endocrine 

or exocrine-related transcription factors, which is common in normal pancreas 

development. Overall, these findings exemplified the utility of EAP in revealing 

both cancer epigenetic subtypes and subtype specific transcriptional regulators 

in a label-free data set. 

 

Discussions 

In summary, EAP presents a revolutionary data analysis platform to 

support large-size epigenomic dataset analyses based on the cloud combining 

technology. We demonstrated the practicability and high-efficiency of EAP in 

dissecting cancer epigenetic heterogeneity, which can be used not only for 

mining key transcriptional regulators of different cancer pathological subtypes, 

but also for cancer epigenetic subtyping, and further revealing subtype 

associated transcription factors.  

Furthermore, EAP offers interactive data analysis, allowing end users to 

iteratively modify analytical parameters to enhance the identification of 

biologically significant results. This feature is particularly crucial for cancer 

epigenomic data analysis, where a standardized analytical pipeline may not be 

suitable or preferred. 

EAP has been successfully applied to analyze ChIP/ATAC-seq data from 

many cancer epigenomic studies, which comprise tens or even hundreds of 

ChIP/ATAC-seq profiles from different individuals. The processed data sets are 

available on the Data Set Browser in EAP, and EAP offers an interactive 

interface for easy visualization of TF activity scores in each data set. It is worth 

noting that as we applied this module on datasets from multiple cancer types, 

RUNX family TFs exhibited higher regulation activity in both progressive 
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subtypes and metastatic tissues (Figure 3f and Supplementary figure 3), which 

indicate RUNX family TFs might as candidate multi-cancer progression related 

regulators and may be a potential target for cancer therapy.  

We anticipate that EAP can be used for more large-scale cancer 

epigenomic data analyses, leading to more interesting and meaningful 

biological or clinical discoveries, which broaden our understanding of cancer 

carcinogenesis and progression related epigenetic machinery. 

 

Methods 

Implementation 

The EAP web server runs on a private cloud system equipped with 5,654 

GB of memory, 824 CPUs, and 10 TB of storage space. Docker technology was 

utilized to create images containing necessary software and packages for 

ChIP/ATAC-seq data analysis, such as FastQC (v0.11.9) for read quality control, 

Bowtie (v1.2.0) for read alignment, and MACS (v1.4.2) for peak calling. Analysis 

workflows, including data preprocessing pipelines and downstream analysis 

tools, were defined in YAML files specifying configuration parameters and 

commands to be executed. Subsequently, graphical user interfaces (GUIs) for 

the data preprocessing pipeline and downstream analysis tools were deployed 

on the web server. The user-friendly GUI was designed to allow non-technical 

users to customize analysis parameters (e.g., adjusted p-value cutoff, number 

of clusters, variables of interest for differential analysis) and conduct various 

ChIP/ATAC-seq data analyses. 

EAP implements login authentication as a crucial measure for data security 

and storage. Users are required to register an account 

(https://www.biosino.org/epigenetics/#/user/register) and request storage 

space by submitting an application form to the administrator (application form 

was available at 

https://github.com/haojiechen94/EAP/blob/main/doc/File_1_Storage_space_a

pplication_form.xlsx). Once users have an account and allocated storage space, 
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they can upload raw sequencing data to their designated storage area and 

utilize the analysis tools integrated within EAP. Instructions and help menus are 

readily accessible on the Home page to guide users through the platform (help 

manus was also available at 

https://github.com/haojiechen94/EAP/blob/main/doc/Help%20document.pdf). 

Additionally, we also provide video tutorials that visually demonstrate the 

processes and make it easier for users to learn and apply the procedures 

effectively (Supplementary movie 1, Supplementary movie 2 and 

Supplementary movie 3, 

https://github.com/haojiechen94/EAP/tree/main/video_tutorials). Given the 

typically large size of uploaded files, a data transfer client was developed to 

support break-point resumable transfers. Users are advised to utilize this client 

for uploading raw sequencing data to their allocated storage space within EAP. 

 

Basic Analysis module: a standardized ChIP/ATAC-seq data 

preprocessing pipeline 

Input: 

The input for the data analysis process includes raw sequencing data in FASTQ 

format and metadata containing descriptions of the raw sequencing data and 

phenotypic information for each sample. A metadata template can be accessed 

on the Home page of the EAP platform (metadata template was also available 

at https://github.com/haojiechen94/EAP/blob/main/doc/File_2_metadata.csv). 

Data Processing: 

Firstly, FastQC (v0.11.9) is utilized for quality control of read bases and Trim-

galore (v0.6.7) is employed for trimming adapters and removing low-quality 

bases from reads. ChIP/ATAC-seq reads are aligned to the user-specified 

reference genome, which can be downloaded from the UCSC genome browser 

(https://hgdownload.soe.ucsc.edu/downloads.html), using Bowtie (v1.2.0). 

Then, PCR duplicates are removed based on genomic position and remaining 

reads are used for peak calling with MACS (v1.4.2). Finally, a count table is 
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generated using MAnorm2-utils (v1.0.0). 

Output: 

The analysis generates three count tables where genomic regions are 

represented in rows and samples in columns.  

- One count table (NA_profile_bins.xls) is prepared for differential analysis. 

- Two count tables (proximal_peak_regions_2000bp.txt and 

distal_peak_regions_2000bp.txt) are prepared for hypervariable analysis. 

- A summary report is produced, encompassing quality control assessments for 

bases, reads mapping, and peaks calling, as well as genomic annotations of 

peaks and motif enrichment within peaks. 

 

Advanced Analysis module: a comprehensive collection of ChIP/ATAC-

seq data analysis tools  

Differential Analysis 

Input: 

The input for the differential analysis module includes count tables 

(NA_profile_bins.xls) generated from the output of the Data Preprocessing 

module and metadata. 

Data Processing: 

Raw count tables are normalized using MAnorm2 to account for differences in 

library size and correct MA trended bias. Then differential analysis is conducted 

based on the user-specified variable of interest. 

Output: 

The output of the analysis includes: 

- A table presenting the results of the differential analysis. 

- MVC plot illustrating the global mean-variance trend. 

- MA plot highlighting significantly differentially enriched or accessible peaks. 

 

Differential TF Motif Enrichment Analysis 

Input: 
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The input for the differential TF motif enrichment analysis module consists of 

the result table from the previous step of the differential analysis. 

Data Processing: 

A user-selected adjusted p-value cutoff is applied to define significantly 

differentially enriched or accessible peaks (DEPs or DAPs). Then motifscanR 

tool is utilized to scan for transcription factor (TF) motif occurrences in these 

DEPs/DAPs. Finally, Fisher’s exact test is employed to determine if a TF motif 

is significantly enriched in one set of peak regions relative to another set. 

Output: 

The output of the analysis includes: 

- A table presenting the results of the differential motif enrichment analysis. 

- Enriched/depleted p-values indicating the extent to which a TF motif is 

over/under-represented in a peak set relative to another peak set. 

- A volcano plot highlighting significantly differentially enriched TF motifs. 

 

Hypervariable Analysis 

Input: 

The input for the hypervariable analysis module includes count tables 

(proximal_peak_regions_2000bp.txt and distal_peak_regions_2000bp.txt) 

obtained from the output of the Basic Analysis module and metadata. 

Data Processing: 

MA normalization is performed in pseudo-reference mode. HyperChIP is 

applied to evaluate the significance of signal variability. Peak regions with an 

adjusted p-value below 0.001 (default) are identified as hypervariable regions. 

Then [rincipal component analysis (PCA) is conducted based on signals within 

these variable regions and samples are visualized in two-dimensional PCA 

space or t-SNE space. 

Output: 

The output of the hypervariable analysis tool includes: 

- Hypervariable analysis results exported in both TXT and RData formats. 
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- MVC plots illustrating the global mean-variance trend in proximal and distal 

regions, with significant hypervariable regions marked in red. 

- Scatter plots displaying the PCA results or t-SNE dimension reduction results 

based on signals in hypervariable regions. 

 

Clustering Analysis 

Input: 

The input for the clustering analysis includes hypervariable analysis results in 

RData format and metadata. 

Data Processing: 

Principal component analysis (PCA) is conducted on signals within 

hypervariable regions and the top-ranked principal components (PCs) are 

utilized to calculate the Euclidean distance between each pair of samples. Then 

hierarchical clustering is applied to group samples into clusters based on the 

similarity of their signal patterns in hypervariable regions (HVRs). 

Output: 

The output of the clustering analysis tool includes: 

- A new metadata containing the clustering results, which can be utilized for 

further analyses. 

- A cluster heatmap displaying the hierarchical clustering result, providing a 

visual representation of sample similarities and clustering patterns. 

 

Signature genes score analysis 

Input:  

Hypervariable analysis result of proximal regions in RData format, genes to 

proximal regions links and a list of genes of interest in GMT format. 

Data processing:  

Given a gene set of interest, it is usually more desirable to summarized the 

expression level of that gene set using a single integrated score. This tool 

standardizes the ChIP/ATAC-seq signals in the proximal regions within a given 
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dataset by z-score transformation. Then summarizes resulting scores of those 

proximal regions linked to the genes of interest, minus the mean of z-scores of 

all proximal regions as negative control. 

Output:  

The output of the Signature genes score analysis tool includes: 

- A boxplot shows the distribution of signature scores among different clusters. 

This analysis provides visualization to improve interpretation of the clustering 

results. For example, users can annotate the cluster based on these signature 

genes scores. 

 

Differential TF Activity Analysis 

Input:  

Hypervariable analysis results in RData format and metadata. 

Data processing:  

Peak regions with adjusted p-value below 0.001 (default) were defined as 

hypervariable regions. motifscanR was then utilized to conduct motif scanning 

on these genomic regions, aggregating TF motif-associated signals in each 

sample to generate a score representing TF regulatory activity.  Following this, 

a t-test was employed to identify TFs associated with the user-specified variable 

of interest. 

Output:  

The outputs in this analysis including a table of TF activities in each sample, a 

table of t-statistic of the association test and plots for dimension reduction 

visualization of samples and the activities of user specified TFs. 

 

Evaluation 

We showcase application of EAP with two distinct analysis scenarios: (i) In data 

set with clearly defined labels. In this analysis scenarios, we reanalyzed an 

ATAC-seq data set of thyroid cancer, which included 70 primary tumor tissues, 

70 patient-match normal tissues and 83 metastatic cancer tissues. Using EAP, 
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we investigated chromatin accessibility alterations during cancer progression 

and identified potential associated transcriptional regulators. (ii) In data sets 

without pre-defined labels. For this case study, we obtained ATAC-seq data on 

44 patient-derived pancreatic cancer organoids. First, we perform sample 

clustering based on chromatin accessibility heterogeneity and define subtypes 

using established signature gene sets. Subsequently, we identified key 

regulators specific to each subtype. 

 

Data availability 

This study made use of multiple publicly available datasets. For Case Study 1,  

the thyroid cancer ATAC-seq was obtained from GEO, under accession number 

GSE162515. For Case Study 2, the PDAC organoid ATAC-seq data was 

obtained from GSA, under accession number HRA002013. The LUAD 

H3K27ac ChIP-seq data was downloaded from EGA, under accession number 

EGAD00001007066. The GBM ATAC-seq data was obtained from GEO, under 

accession number GSE163853. The NSCLC ATAC-seq data was obtained from 

West China Hospital (https://pms.cd120.com/download.html). The pan-cancer 

ATAC-seq data set was obtained from TCGA GDC 

(https://gdc.cancer.gov/about-data/publications/ATACseq-AWG).  

 

Code availability 

Extensive documentation and a full user manual are available at 

https://github.com/haojiechen94/EAP/tree/main/doc. The software is open 

source, and all code can be found on GitHub at 

https://github.com/haojiechen94/EAP/tree/main/source_codes. 
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Figures 

Figure 1 Overview of EAP architecture and the various analysis modules 

(a) Inputs to EAP include raw sequencing data (in FASTQ format) and metadata 

(describes study design and sample phenotypes, in CSV format). EAP consists 

of Basic Analysis module and Advanced Analysis module. Basic Analysis 

module performs quality control, read mapping, peaks calling, creates a 

summary report for filtering poor quality samples and generates analysis-ready 

count tables, which are then used as inputs for Advanced Analysis module. A 

comprehensive collection of ChIP/ATAC-seq data analysis tools are 

encapsulated in the Advanced Analysis module. Each analysis tools will 

produce publication-ready results (figures and tables). (b) Workflow of Basic 

Analysis module, requires the upload of raw sequencing data and metadata 

using the Cloud Gene-Client tool. Upon completion of this analysis, analysis-

ready count tables and a summary quality control report are generated for 

downstream analysis. (c-d) Two distinct research scenarios are illustrated: (c) 

For labeled data sets, differential analysis can be employed to identify 

differential signals among samples with different labels. Subsequently, 

differential TF motif enrichment analysis and differential TF activity analysis can 

be conducted to investigate the TFs linked to differential binding or open 

chromatin sites. (d) In datasets lacking pre-defined sample labels, 

hypervariable analysis can be utilized to identify hypervariable ChIP/ATAC-seq 

signals across the samples. These signals can then be leveraged for clustering 

analysis and cluster samples into distinct groups, and signature genes scoring 

analysis is utilized to characterize these clusters based on established gene 

sets. Supervised analysis tools can also be utilized to identify binding/open 

chromatin sites or transcriptional regulators specific to each cluster. (e) EAP 

offers a Data Set Browser that provides an interactive interface for convenient 

visualization of TF activity scores in each dataset. 

 

Figure 2 Illustration of application of EAP on labeled data sets 
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(a) MA plots highlight the differentially accessible sites when comparing ATAC-

seq profiles across normal tissues, tumor tissues, and metastatic tissues. (b) 

Volcano plots show the differential TF motif enrichment analysis results of 

differentially accessible sites between normal tissues and tumor/metastatic 

tissues. (c) Boxplot shows the MAPK pathway activities across different tissue 

types. (d) Two dimensional t-SNE visualization of ATAC-seq samples using 

hypervariable regions identified by EAP, samples are colored by tissue of origin. 

(e-g) Two dimensional t-SNE visualization of different ATAC-seq samples 

colored by TF activity scores calculated by EAP. 

 

Figure 3 Illustration of application of EAP on label-free data sets 

(a) Heatmap and dendrogram showing clustering of samples with similar 

chromatin accessibility profiles and clustering of peak regions with similar 

expression patterns. (b-c) Boxplots showing the expression activity of signature 

gene sets curated by previous studies. (d) Kaplan-Meier curves displaying 

differences in progression-free survival (PFS) between patients whose 

organoids defined as Basal-like or Non-basal-like based on ATAC-seq profiles. 

TLSs&LAs signatures score. (e) Heatmap of TF activity scores of top-ranked 

cluster specific TFs. (f) Boxplots showing the TF activity scores across samples 

in two public cancer related data sets, samples are grouped by tissue of origins 

(left panel) or subtypes defined EAP (right panel). 

 

Supplementary figures 

Supplementary figure 1 The login page and data transfer tools of EAP 

(a) The login page of EAP (https://www.biosino.org/epigenetics/#/user/login), a 

demonstration account is available by click on "demo" in this page. (b) The data 

transfer client for utilization of EAP, which supports break-point resumable 

transfers. (c) A md5sum checking procedure has been integrated to ensure the 

integrity of uploaded files 
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Supplementary figure 2 Advanced Analysis module in EAP 

User can choose the downstream analysis tools implemented in EAP and 

customize the configure parameters. The input and output examples 

demonstrate the comprehensive visualization and analysis results.  

 

Supplementary figure 3 Illustrating the visualization of the TF activity 

scores of RUNX1/2/3 in two case study ATAC-seq data sets using the Data 

Set Browser 

 

Supplementary movies 

Supplementary_movie_1_Data_transferring_and_integrity_checking.mp

4 

Supplementary_movie_2_Basic_Analysis_module_demo_using_paired_

end_ChIP_seq_data.mp4 

Supplementary_movie_3_Advanced_Analysis_module_demo_differentia

l_analysis.mp4 
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Figure 1 Overview of EAP architecture and the various analysis modules 

(a) Inputs to EAP include raw sequencing data (in FASTQ format) and metadata 

(describes study design and sample phenotypes, in CSV format). EAP consists 

of Basic Analysis module and Advanced Analysis module. Basic Analysis 

module performs quality control, read mapping, peaks calling, creates a 

summary report for filtering poor quality samples and generates analysis-ready 

count tables, which are then used as inputs for Advanced Analysis module. A 

comprehensive collection of ChIP/ATAC-seq data analysis tools are 

encapsulated in the Advanced Analysis module. Each analysis tools will 

produce publication-ready results (figures and tables). (b) Workflow of Basic 

Analysis module, requires the upload of raw sequencing data and metadata 

using the Cloud Gene-Client tool. Upon completion of this analysis, analysis-

ready count tables and a summary quality control report are generated for 

downstream analysis. (c-d) Two distinct research scenarios are illustrated: (c) 

For labeled data sets, differential analysis can be employed to identify 

differential signals among samples with different labels. Subsequently, 

differential TF motif enrichment analysis and differential TF activity analysis can 

be conducted to investigate the TFs linked to differential binding or open 

chromatin sites. (d) In datasets lacking pre-defined sample labels, 

hypervariable analysis can be utilized to identify hypervariable ChIP/ATAC-seq 

signals across the samples. These signals can then be leveraged for clustering 

analysis and cluster samples into distinct groups, and signature genes scoring 

analysis is utilized to characterize these clusters based on established gene 

sets. Supervised analysis tools can also be utilized to identify binding/open 

chromatin sites or transcriptional regulators specific to each cluster. (e) EAP 

offers a Data Set Browser that provides an interactive interface for convenient 

visualization of TF activity scores in each dataset. 

 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 1, 2024. ; https://doi.org/10.1101/2024.03.31.587470doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.31.587470
http://creativecommons.org/licenses/by-nc/4.0/


A
nn

ot
at

io
n

1
−

E
nr

ic
he

d 
in

 T
um

or
 (

n=
64

6)
2
−

E
nr

ic
he

d 
in

 N
or

m
al

 (
n=

17
)

3
−

O
th

er

FOS
FOSL2

JUN(var.2)

JDP2 NFE2

BACH2BACH1

BATF

0

100

200

0 1 2 3
Log2(fold change)

Lo
g

10
(c

or
re

ct
ed

 p
−

va
lu

e)

FOXE1
HHEX A

nn
ot

at
io

n
1−

E
nr

ic
he

d 
in

 M
et

as
ta

tic
 (

n=
63

9)
2−

E
nr

ic
he

d 
in

 N
or

m
al

 (
n=

19
)

3−
O

th
er

FOS

FOSL2

JUN(var.2)
JDP2

EGR2

NFE2

BACH2BACH1

0

100

200

300

0 1 2 3
Log2(fold change)

Lo
g

10
(c

or
re

ct
ed

 p
−

va
lu

e)

FOXE1

HHEX

M
et

as
ta

tic

N
or

m
al

Tu
m

or

−
0.

15
−

0.
05

0.
05

0.
15

G
O

B
P

:p
os

iti
ve

 r
eg

ul
at

io
n 

of
 m

ap
 k

in
as

e 
ac

tiv
ity

disease state

S
ig

na
tu

re
 s

co
re

Tumor vs Normal

Tissue of origin
FOXE1

Normal thyroid development related TFs

TFs of AP-1 family

FOSL2 FOS::JUN RUNX2

HHEX

Figure 2
a

b c

d e

f g

Metastatic vs Normal Metastatic vs Tumor

−4 −2 0 2 4

−4
−2

0
2

4

t−SNE dimension 1

t−
S

N
E

 d
im

en
si

on
 2

Tumor
Normal
Metastatic

High

Medium

Low

−4 −2 0 2 4

−4
−2

0
2

4

t−SNE dimension 1

t−
S

N
E

 d
im

en
si

on
 2

−4 −2 0 2 4

−4
−2

0
2

4

t−SNE dimension 1

t−
S

N
E

 d
im

en
si

on
 2

−4 −2 0 2 4

−4
−2

0
2

4

t−SNE dimension 1

t−
S

N
E

 d
im

en
si

on
 2

−4 −2 0 2 4

−4
−2

0
2

4

t−SNE dimension 1

t−
S

N
E

 d
im

en
si

on
 2

−4 −2 0 2 4

−4
−2

0
2

4

t−SNE dimension 1

t−
S

N
E

 d
im

en
si

on
 2

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 1, 2024. ; https://doi.org/10.1101/2024.03.31.587470doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.31.587470
http://creativecommons.org/licenses/by-nc/4.0/


Figure 2 Illustration of application of EAP on labeled data sets 

(a) MA plots highlight the differentially accessible sites when comparing ATAC-

seq profiles across normal tissues, tumor tissues, and metastatic tissues. (b) 

Volcano plots show the differential TF motif enrichment analysis results of 

differentially accessible sites between normal tissues and tumor/metastatic 

tissues. (c) Boxplot shows the MAPK pathway activities across different tissue 

types. (d) Two dimensional t-SNE visualization of ATAC-seq samples using 

hypervariable regions identified by EAP, samples are colored by tissue of origin. 

(e-g) Two dimensional t-SNE visualization of different ATAC-seq samples 

colored by TF activity scores calculated by EAP. 
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Figure 3 Illustration of application of EAP on label-free data sets 

(a) Heatmap and dendrogram showing clustering of samples with similar 

chromatin accessibility profiles and clustering of peak regions with similar 

expression patterns. (b-c) Boxplots showing the expression activity of signature 

gene sets curated by previous studies. (d) Kaplan-Meier curves displaying 

differences in progression-free survival (PFS) between patients whose 

organoids defined as Basal-like or Non-basal-like based on ATAC-seq profiles. 

TLSs&LAs signatures score. (e) Heatmap of TF activity scores of top-ranked 

cluster specific TFs. (f) Boxplots showing the TF activity scores across samples 

in two public cancer related data sets, samples are grouped by tissue of origins 

(left panel) or subtypes defined EAP (right panel). 
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