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  26 

Abstract  27 

 28 

Recombination suppression can evolve in sex or mating-type chromosomes, or in autosomal 29 

supergenes, with different haplotypes being maintained by balancing selection. In the invasive 30 

chestnut blight fungus Cryphonectria parasitica, a genomic region was suggested to lack 31 

recombination and to be partially linked to the mating-type (MAT) locus based on segregation 32 

analyses. Using hundreds of available C. parasitica genomes and generating new high-quality 33 

genome assemblies, we show that a ca. 1.2 Mb genomic region proximal to the mating-type 34 

locus lacks recombination, with the segregation of two highly differentiated haplotypes in 35 

balanced proportions in invasive populations. High-quality genome assemblies further 36 

revealed an inversion in one of the haplotypes in the invaded range. The two haplotypes were 37 

estimated to have diverged 1.5 million years ago, and each harboured specific genes, some of 38 

which likely belonging to Starship elements, that are large mobile elements, mobilized by 39 

tyrosine recombinases, able to move accessory genes, and involved in adaptation in multiple 40 

fungi. The MAT-proximal region carried genes upregulated under virus infection or 41 

vegetative incompatibility reaction. In the native range, the MAT-proximal region also 42 

appeared to have a different evolutionary history than the rest of the genome. In all continents, 43 

the MAT-Proximal region was enriched in non-synonymous substitutions, in gene 44 

presence/absence polymorphism, in tyrosine recombinases and in transposable elements. This 45 

study thus sheds light on a case of a large non-recombining region partially linked to a mating 46 

compatibility locus, with likely balancing selection maintaining differentiated haplotypes, 47 

possibly involved in adaptation in a devastating tree pathogen.   48 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.03.29.587348doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.29.587348
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 3 

 49 

Introduction  50 

 51 

Recombination increases the efficiency of selection, the purging of deleterious alleles and the 52 

generation of potentially beneficial allelic combinations (Otto and Lenormand 2002). 53 

However, recombination can also break up beneficial allelic combinations and, therefore, can 54 

be selected against, generating supergenes, i.e., large regions without recombination 55 

encompassing multiple genes (Schwander et al. 2014). This is often the case in genomic 56 

regions controlling mating compatibility, such as regions determining sex, mating type or 57 

self-incompatibility in plants, animals, fungi, algae and oomycetes (Charlesworth et al. 2005; 58 

Bergero and Charlesworth 2009; Umen 2011; Charlesworth 2016; Dussert et al. 2020; 59 

Hartmann et al. 2021). Such recombination suppression keeps alleles linked across different 60 

genes that prevent self-compatibility or intermediate sexual phenotypes, and can sometimes 61 

extend away from sex-determining genes or mating-type loci (Bergero and Charlesworth 62 

2009; Furman et al. 2020; Hartmann et al. 2021). Even beyond sex and mating-type 63 

chromosomes, there is an increasing number of supergene reports in autosomes (Schwander et 64 

al. 2014) with highly differentiated haplotypes maintained by balancing selection. Striking 65 

examples include supergenes controlling social structure in ants, wing color patterns in 66 

butterflies, reproductive morphs in birds or host-parasite interactions (Küpper et al. 2016; Yan 67 

et al. 2020; Jay et al. 2021; Fredericksen et al. 2023). 68 

 69 

In the long term, however, because of less efficient selection, genomic regions without 70 

recombination show signs of degeneration, such as transposable element accumulation, 71 

rearrangements, non-synonymous substitutions, decreased gene expression, reduced 72 

frequency of optimal codons and gene losses (Bachtrog 2013; Carpentier et al. 2022; 73 

Duhamel et al. 2023). The non-recombining regions can nevertheless be maintained by 74 

balancing selection, with different allelic combinations having contrasting advantages in 75 

different situations or experiencing negative frequency dependent selection (Jay et al. 2021; 76 

Berdan et al. 2022). The evolutionary mechanisms leading to recombination suppression and 77 

allowing their persistence remain however poorly known (Jay, D. Jeffries, Hartmann, et al. 78 

2024). Reporting more diverse constellations of recombination suppression in a variety of 79 

organisms with contrasting life-history traits is important for understanding the general 80 

patterns of recombination suppression, their evolution and maintenance (Ironside 2010; 81 

Charlesworth 2016; Furman et al. 2020; Hartmann et al. 2021). 82 
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 83 

In the invasive chestnut blight fungal pathogen Cryphonectria parasitica, mating 84 

compatibility is determined by a mating-type locus that displays two alleles, called MAT-1 85 

and MAT-2, that are both permanently heterozygous in the diploid and dikaryotic stages 86 

(McGuire et al. 2001). A large region without recombination was suggested to occur near the 87 

mating-type locus, although not completely linked to it (i.e., at 3.9 cM of the mating-type 88 

locus), based on segregation of RAPD and RFLP markers in three crosses involving five 89 

different parents, from the USA, Japan or Italy (Kubisiak and Milgroom 2006a). Recent 90 

genome-wide association studies in a worldwide collection and in local C. parasitica 91 

populations in southern Switzerland found significant association of SNPs with the mating-92 

type locus across a large region (>1 Mb), further suggesting the existence of reduced 93 

recombination in this region (Stauber et al. 2021; Stauber et al. 2022). This genomic region 94 

was enriched in SNPs, transposable elements and copy-number variants, such as deletions, 95 

which are consistent with sequence degeneration and a lack of recombination (Stauber et al. 96 

2021), and which prevented its assembly so far.  97 

 98 

The evolutionary history of the species is well documented as it is an invasive and highly 99 

damaging pathogen, having almost caused the extinction of American chestnut (Castanea 100 

dentata) in North America (Anagnostakis 1987). From its center of origin in Asia and its 101 

original hosts, the Chinese chestnut (Ca. mollissima) and the Japanese chestnut (Ca. crenata), 102 

C. parasitica has first invaded North America, killing millions of American chestnuts (Ca. 103 

dentata). In Europe, at least two distinct introduction events occurred, on the European 104 

chestnut (Ca. sativa): one introduction from North America to Italy, and one directly from 105 

Asia, probably to the Pyrenees Mountains. European strains will be therefore hereafter 106 

referred to as invasive European strains introduced from North America or invasive European 107 

strains introduced directly from Asia. The chestnut blight symptoms have been less severe in 108 

Europe than in North America, due to lower susceptibility of Ca. sativa and a virus infecting 109 

C. parasitica and causing hypovirulence (Dutech et al. 2010; Dutech et al. 2012). The genetic 110 

determinants of the adaptation of the pathogen to its new environments and hosts remain 111 

largely unknown (Lovat and Donnelly 2019). 112 

 113 

Lineages with an apparently clonal structure have been identified in invasive populations 114 

while sexually reproducing populations occur both in the native and invaded ranges (Dutech 115 

et al. 2012; Stauber et al. 2021). The lineages with a predominant clonal structure likely still 116 
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undergo rare sex events, as shown by the presence of the two mating-type alleles in most of 117 

them (Demené et al. 2019). Furthermore, although this ascomycete fungus is mostly found as 118 

haploid mycelia, some isolates have been reported to be heterokaryotic at the mating-type 119 

locus in several invasive European and North American populations, i.e., with cells carrying 120 

different nuclei, of the opposite mating types MAT-1 and MAT-2 (McGuire et al. 2004; 121 

McGuire et al. 2005; Dutech et al. 2010; Stauber et al. 2021; Stauber et al. 2022).   122 

 123 

Here, we therefore studied the occurrence of recombination suppression in the genomic region 124 

proximal to the mating-type locus in C. parasitica, using the previously published genomes 125 

and further generated six new high-quality long-read based genome assemblies of strains from 126 

the native and invaded range of the pathogen. More specifically, we tested whether 127 

recombination was completely suppressed in the genomic region proximal to the mating-type 128 

locus in C. parasitica. We first analyze sexually reproducing invasive European populations, 129 

for which extensive genomic datasets are available in local populations. We assessed, in these 130 

populations, the level of differentiation between haplotypes, as well as the frequency of the 131 

two non-recombining haplotypes and their association with mating types. We investigated 132 

whether other regions of the genome showed reduced recombination rates and whether 133 

genomic footprints of degeneration were present in the non-recombining region, such as 134 

genomic rearrangements, non-synonymous substitutions and transposable element 135 

accumulation. We also tested whether this non-recombining region has been gradually 136 

expanding, estimated the age of recombination suppression and investigated whether the 137 

predicted gene functions in the MAT-proximal region could help understanding the 138 

evolutionary cause for recombination suppression, polymorphism maintenance and partial 139 

linkage to the mating-type locus. We looked in particular for Starships, that are giant mobile 140 

elements recently discovered in ascomycete fungi and able to move accessory genes as cargo 141 

within and between genomes (Gluck-Thaler et al. 2022; Urquhart et al. 2024). These cargo 142 

genes can be involved in adaptation (Gluck-Thaler et al. 2022; Urquhart et al. 2024), as 143 

shown in fungal pathogens of coffee (Peck et al. 2023) and of wheat (Bucknell et al. 2024; 144 

Tralamazza et al. 2024), as well as in molds used for making cheeses (Cheeseman et al. 2014; 145 

Ropars et al. 2015) and those maturing dry-cured meat (Lo et al. 2023). Starships are 146 

characterized by their captain, a tyrosine recombinase with a DUF3435 domain, being the first 147 

gene at the 5’ edge of the elements and allowing their excision and insertion. Starships can 148 

contain “cargo” genes, highly variable in nature and number among Starship elements 149 

(Urquhart et al. 2024). Starship diversity is partitioned into 11 major families, targeting 150 
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specific genomic niches for their insertions, e.g., AT-rich regions (Gluck-Thaler et Vogan, 151 

2024). We then extended the analyses to other populations with less extensive genomic 152 

resources, i.e. other invasive populations and native Asian populations, investigating the 153 

presence of recombination suppression footprints and the occurrence of the two differentiated 154 

haplotypes worldwide, the presence of Starships, as well as the possibility of introgression, 155 

using available genomes of closely related species, pathogenic and non-pathogenic (Stauber et 156 

al. 2021). Finally, we used available expression data to investigate whether the MAT-157 

Proximal region carried genes upregulated under infection by the virus responsible for 158 

hypovirulence or during vegetative incompatibility reactions, a phenomenon avoiding hyphal 159 

fusions between individuals, considered to protect against virus transmission. 160 

 161 

Results 162 

Footprints of recombination suppression in a large region (> 1 Mb) proximal to the mating-163 

type locus in sexually reproducing invasive populations 164 

We first performed population genomic analyses on available genome sequences within local 165 

populations sampled in southern Switzerland over two temporal frames (early 1990 and 166 

2019), and within the more broadly geographically distributed CL1 cluster in central and 167 

southeastern Europe, both having a recombining genetic structure and being invasive 168 

European populations introduced from North America (Table S1 (Stauber et al. 2021)). We 169 

studied only monokaryotic strains, i.e. having either MAT-1 or MAT-2 in their genomes, for 170 

phasing haplotypes and performed stringent SNPs filtering by masking repeats on the EP155 171 

reference genome (Crouch et al. 2020) and removing missing data and rare variants to ensure 172 

robustness of our analyses. We identified 8,900 SNPs segregating among 71 strains of the 173 

1990 Swiss population (35 MAT-1; 36 MAT-2; Table S1), 9,646 SNPs segregating among 62 174 

strains of the Swiss 2019 population (20 MAT-1; 42 MAT-2; Table S1) and 15,104 SNPs 175 

segregating among 88 strains of the CL1 cluster (41 MAT-1; 47 MAT-2; Table S1), which 176 

represent an average density of about 20 SNPs/100 kb, in agreement with previous studies in 177 

this invasive fungus (Stauber et al. 2021; Stauber et al. 2022). We investigated the genome-178 

wide linkage disequilibrium (LD) landscape and looked for large blocks (>1 Mb) of high LD 179 

(r2>0.9) among SNPs within contigs, to look for signatures of reduced recombination along 180 

the genome. LD indeed decays by half across a few 100 kb on average in C. parasitica in 181 

recombining regions of the genome (Demené et al. 2019). Therefore, high LD beyond >1 Mb 182 

represents strong evidence of recombination cessation and the SNP density is sufficient to 183 

study such LD variation. 184 
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 185 

We found a large block of high LD on the chromosome called scaffold_2 of the EP155 186 

genome in the three populations, corresponding to the mating-type chromosome (see Fig 1 for 187 

the CL1 population, the pattern in the other populations being similar). The high-LD block 188 

was located near the mating-type locus but did not encompass the mating-type locus itself and 189 

will be called hereafter the “MAT-proximal region”. In the 1990 and 2019 Swiss populations, 190 

SNPs between 0.493 Mb and 1.720 Mb in the mating-type chromosome were all in high LD 191 

(with r2>0.9 between SNPs distant by up to 1 Mb; in this region, mean r2 of all SNP pairs in 192 

the Swiss 1990 population = 0.89; mean r2 of all SNP pairs in the Swiss 2019 population = 193 

0.83; Fig S1). In the CL1 cluster, the large high-LD block was also present, but was split into 194 

two blocks, a large one and a smaller, peripheral one (orange arrows in Fig 1). We indeed 195 

detected values of r2>0.9 between SNPs distant by up to 1 Mb, between 0.532 Mb and 1.535 196 

Mb (mean r2 of all SNP pairs = 0.94). Between 1.535 and 1.717 Mb, SNPs were also in high 197 

LD (mean r2 = 0.84). The LD between the two high-LD blocks was lower (r2= 0.59) than 198 

within blocks but was still higher than elsewhere along the genome (orange rectangle at the 199 

right border of the red triangle; Fig 1). A similar pattern also existed in the Swiss populations 200 

(orange rectangle at the right border of the red triangle; Fig S1), although less marked. This is 201 

likely due to rare recombination events at one specific locus near the edge of the large fully 202 

non-recombining region, lowering the LD level in populations between the two parts of the 203 

otherwise fully non-recombining region. The mating-type locus was located at 1.737 Mb in 204 

the EP155 genome, distant by 17 kb and 20 kb from the LD block in the Swiss populations 205 

and CL1 cluster, respectively. SNP density was on average 48 SNPs/100 kb in the high-LD 206 

block region, i.e. higher than in the rest of the chromosome (Fig S2C). When sampling SNPs 207 

distant of at least 50 kb in this region to have the same SNP density all over the 208 

chromosome, we also detected the high-LD block, which indicates that the SNP density did 209 

not generated biases in the LD pattern (Fig S2D). 210 

 211 

We found no other regions of the genomes with r2>0.9 between SNPs across such a large 212 

genomic distance in any population. On scaffold_6 in the CL1 cluster, two smaller SNP 213 

blocks had a r2>0.9 between each other despite being distant (Fig S2C; between SNPs blocks 214 

at 3-20 kb and 2.151-2.278 kb), which is likely due to the major intra-scaffold translocation 215 

described in this region between the EP155 and ESM15 strains (Demené et al. 2022). The 216 

maximum size of the blocks with r²>0.9 on other scaffolds ranged from 135 to 540 kb in the 217 

CL1 cluster, as previously described (Demené et al. 2019). The average distance between 218 
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SNPs in high LD (r²>0.9) across the genome was higher on the scaffold_2 than on other 219 

scaffolds (in the CL1 cluster, pairwise Wilcoxon test p-value < 2e-16 with Bonferroni 220 

correction). Furthermore, the proportion of SNPs in high LD (r2>0.9) across the genome was 221 

also much higher on the scaffold_2 than on other scaffolds due to the high LD in the MAT-222 

proximal region (Fig S2D, Table S2). Therefore, the large (1Mb) and localized block with 223 

maximal LD values proximal to the mating-type locus both in the Swiss populations and the 224 

CL1 genetic cluster stands out as exceptional in the genome and indicates full recombination 225 

cessation, which supports previous inferences from progeny segregation analyses (Kubisiak 226 

and Milgroom 2006b). Indeed, even low rates of recombination homogenize allelic 227 

frequencies and prevents LD building (Dufresnes et al. 2015). The MAT-proximal non-228 

recombining region was actually larger (1.23 Mb), but with likely rare recombination events 229 

at one precise locus near its edge, lowering LD between its two fully non-recombining parts.  230 

 231 

Consistent with a lack of recombination, the MAT-proximal region formed two genetically 232 

highly differentiated haplotypes in these invasive Swiss and CL1 populations (Fig 2A; Fig S3 233 

A(1)-C(1)), as shown by the two clusters on the principal component analysis (PCA) using 234 

only SNPs located in the MAT-proximal region, while no structure was detected in the rest of 235 

the genome (Fig 2B-C; Fig S3A(2)-C(2)). The neighbor-net networks further supported the 236 

existence of two differentiated haplotypes in the MAT-Proximal region, contrasting with an 237 

otherwise recombining structure genome-wide (Fig 2D-E; Fig S3B-D). In the Swiss 2019 238 

population, a few reticulations between haplotypes were found and three strains (LU3, Nov10, 239 

Nov4) appeared to have an intermediate sequence in the MAT-Proximal region between the 240 

two haplotypes (Fig S3D). This intermediate haplotype was also found in a few other invasive 241 

strains introduced directly from Asia (see below). 242 

  243 
The two genetic clusters in the MAT-proximal region appeared associated with mating types 244 

in the CL1 and Swiss 1990 recombining populations (Figs 2A and D; Fig S3, Table 1). 245 

Indeed, the distribution of mating types between the two PCA clusters strongly deviated from 246 

expectations under random association (Table 1; chi-squared test: χ² = 33.3; p-value = 5.876e-247 

08 in CL1; χ² = 18.76; p-value = 8.441e-05 in Swiss 1990). We thus hereafter call the two 248 

differentiated haplotypes MAT-Prox1 and MAT-Prox2, referring to the mating-type 249 

association. However, the association between mating types and MAT-Proximal haplotypes 250 

was not complete, with for example only 83% of MAT1-1 strains carrying the MAT-Prox1 251 

haplotype in CL1. The two MAT-Proximal haplotypes were not significantly associated with 252 
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mating types in the Swiss 2019 recombining populations (Table 1; chi-squared test: χ² = 253 

3.8427; p-value = 0.1464). The EP155 genome used as reference for SNP calling above 254 

carried the MAT-Prox1 haplotype but the MAT1-2 allele.   255 

 256 

Inversion in the non-recombining MAT-proximal region  257 

To investigate whether rearrangements between haplotypes were present in the MAT-258 

proximal region, we sequenced the genome, using PacBio HiFi, of two strains with alternative 259 

MAT-proximal haplotypes: M1400 (MAT-2; MAT-Prox2) and M6697 (MAT-1; MAT-260 

Prox1), originating from the Swiss population in Gnosca and belonging to the CL1 cluster, i.e. 261 

European invasive populations introduced from North America (Stauber et al. 2021; Stauber 262 

et al. 2022). We built high-quality genome assemblies: statistics of the assemblies were in the 263 

same range as those of the genome assemblies of the ESM15 and EP155 strains previously 264 

sequenced (Table S3; Demené et al 2022; Crouch et al 2020). The mating-type chromosome 265 

could be assembled as a single contig for the first time, in the M1400 genome, likely 266 

corresponding to a full chromosome, and was assembled into two contigs in the M6697 267 

genome. We therefore used the M1400 genome as a reference for subsequent analyses. To 268 

identify the location of the MAT-proximal region in the M1400 genome, we computed LD by 269 

mapping the reads of the 1990 Swiss population to the new M1400 genome. We found the 270 

large block (> 1 Mb) of high LD (r2>0.9) between 7,285,137 and 8,828,934 bp (red arrow; 271 

Fig. S4), showing that calling SNPs on either a MAT-Prox1 or MAT-Prox2 haplotype yielded 272 

similar LD patterns. The MAT-proximal region was also located 20 kb away from the mating-273 

type locus (located at 7.265 Mb) and was 1.540 Mb long using the M1400 genome as 274 

reference. Consistent with the results using the EP155 genome as reference, we found that the 275 

high-LD region was divided into two higher-LD blocks near the edge at 7.392 Mb (orange 276 

arrows in Fig. S4).   277 

 278 

The two new high-quality genome assemblies from the invasive Swiss population (introduced 279 

from North America) revealed an inversion between the two haplotypes in the MAT-proximal 280 

region (Fig 3). The two newly sequenced PacBio genomes were indeed collinear except for 281 

the mating-type chromosome (Fig S5A-B-C), where we found a large region (>1 Mb) that 282 

seem inverted between the M1400 and M6697 genomes (Fig 3; Fig S5A-B-C). Breakpoints of 283 

the inversion were located at ca. 7.455 and 8.563 Mb of the tig00000001 contig in the M1400 284 

genome and at ca. 3.380 and 4.185 Mb of the tig00000060 contig in the M16697 genome. The 285 

region affected by the inversion was ca. 300 kb smaller in the M6697 genome than in the 286 
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M1400 genome, while the whole MAT-proximal region was ca. 100 kb smaller. The split into 287 

the two high-LD blocks in natural populations reported above was outside of the inversion, 288 

i.e. 70 kb from the inversion breakpoint (orange arrows in Fig S4). LD in natural populations 289 

was higher within the inversion (median value of r2 = 1) than in other regions of the MAT-290 

proximal region (median value of r2 = 0.64; Wilcoxon rank sum test with continuity 291 

correction; W = 4.8714e+10; p-value < 2e-16).  292 

 293 

We looked for centromeres, as the non-recombining regions near the mating-type locus in 294 

other ascomycetes, when they occur, either capture the centromere (Menkis et al. 2008; Sun et 295 

al. 2017), or are associated to the occurrence of a single crossing-over between the centromere 296 

and the mating-type locus (Grognet et al. 2014; Hartmann et al. 2021; Vittorelli et al. 2022). 297 

The centromere in C. parasitica may be at 4.380-4.536 Mb on the mating-type chromosome 298 

in the M1400 genome, as we detected here a peak in TE density and a drop in GC content 299 

(Fig 4A-B). A dotplot of repeats in this region also presented a pattern typical of centromeres 300 

(Fig S5D). The MAT-proximal region and the inversion thus did not include the putative 301 

centromere and was instead located about 2.9 Mb away of the putative centromere.  302 

 303 

Higher genetic differentiation and lower genetic diversity within the MAT-proximal region 304 

than in recombining regions 305 

When analyzing polymorphism within the invasive 1990 Swiss population using the M1400 306 

genome as reference, we found much higher genetic differentiation between strains of the two 307 

MAT-proximal haplotypes in this region than elsewhere along the genome (Fig 4C; Fig S6A; 308 

Table S4), as expected for a non-recombining region in LD with the mating-type locus. For 309 

example, the FST values between the two non-recombining haplotypes within the MAT-310 

proximal region in the 1990 Swiss population were nearly maximal (median FST=0.93 per 50 311 

kb window), while they were near zero in the rest of the genome (median FST=0.02; Wilcoxon 312 

test p-value < 2e-16 with Bonferroni correction; Fig 4C; Fig S6A). Such FST values close to 1 313 

indicate a lack of shared polymorphism and therefore support the inference of recombination 314 

suppression in the MAT-proximal region.  315 

 316 

Within each haplotype, the genetic diversity at the MAT-proximal region was lower than in 317 

the rest of the genome (Wilcoxon test p-value < 2e-16 for the MAT-Prox1 haplotype; p-value 318 

= 2.3e-07 for the MAT-Prox2 haplotype; Fig 4E-F; Fig S6C; Table S4), as expected for a 319 

region without recombination associated with the mating-type locus, as its effective 320 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.03.29.587348doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.29.587348
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 11 

population size is half as in recombining regions. The diversity was especially low in the pool 321 

of isolates with the MAT-Prox1 haplotype (see all MAT-Prox1 sequences clustering on a 322 

single point on the PCA in Fig 2A and in the neighbor-net network in Fig 2D, in contrast to 323 

the more scattered MAT-Prox2 sequences). Such a very low diversity may be due to a recent 324 

selective sweep or to particularly strong bottleneck in this haplotype during the invasion. 325 

 326 

We detected signals for long-term balancing selection in the MAT-proximal haplotypes. 327 

Computation of the Tajima’s D statistics within all strains suggested signatures of balancing 328 

selection in the MAT-proximal region as expected in a region without recombination 329 

associated with the mating-type locus maintained at a frequency close to 0.5. Tajima’s D 330 

values in the MAT-proximal region pooling all sequences (median D=3.0 per 50 kb window) 331 

were higher than in the rest of the genome (median D=-0.14; Wilcoxon test p-value < 2e-16 332 

with Bonferroni correction; Fig 4G; Fig S6D). In contrast, Tajima’s D was significantly lower 333 

than the rest of the genome within each pool of haplotype, including in the MAT-Prox2 334 

haplotype, suggestive of positive selection (Wilcoxon test p-value = 0.0037 for the MAT-335 

Prox1 haplotype; p-value = 0.0022 for the MAT-Prox2 haplotype with Bonferroni correction; 336 

Fig 4H-I; Fig S6D; Table S4). We found no difference in population diversity statistics 337 

between the recombining part of the mating-type contig and the other contigs (Table S4A). 338 

 339 

The study of synonymous divergence (dS) between the shared orthologs in the M1400 and 340 

M6697 haplotypes suggests that their differentiation is at least 1.5 million years old and that 341 

there is no pattern of evolutionary strata within the MAT-proximal region, i.e. segments with 342 

different levels of differentiation between haplotypes that would indicate stepwise expansion 343 

of recombination suppression away from the mating-type locus. Per-gene synonymous 344 

divergence (dS) is typically used for detecting gradual expansion of recombination cessation 345 

and for estimating its age, as it is considered a good proxy for the time since recombination 346 

suppression. Indeed, when recombination is suppressed, mutations accumulate independently 347 

in the two non-recombining haplotypes. We plotted the per-gene synonymous divergence (dS) 348 

between M1400 and M6697 along the M1400 genome, as its mating-type contig is likely 349 

being assembled as a full chromosome (Fig S7A&E; Table S4). Consistent with 350 

recombination suppression, we found significantly higher dS values in the MAT-proximal 351 

region (computed for 71 genes) than in the other regions of the mating-type contig (pairwise 352 

Wilcoxon test p-value <2e-16 with Bonferroni correction) and other contigs (pairwise 353 

Wilcoxon test p-value <2e-16 with Bonferroni correction). We found no significant 354 
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differences between the other regions of the mating-type contig and other contigs (pairwise 355 

Wilcoxon test p-value = 0.23 with Bonferroni correction). The dS pattern displayed no 356 

indication of gradual expansion of recombination cessation within the MAT-proximal region, 357 

as there was no stair-like pattern. Using synonymous substitution rate estimates across 358 

multiple ascomycetes (from 0.9 x 10-9 to 16.7 x 10-9 substitutions site per year (Kasuga et al. 359 

2002; Taylor and Berbee 2006) and the mean dS value (0.0495) across the genes shared 360 

between the MAT-proximal haplotypes, we estimated the age of their divergence to be at least 361 

1.5 Million years (Table S4).  362 

 363 

Enrichment in transposable elements in the non-recombining region and inversion 364 

breakpoints 365 

When studying the M1400 and M6697 high-quality assemblies, we detected an enrichment in 366 

transposable elements (TEs) in the MAT-proximal region in the two haplotypes compared to 367 

the rest of the genome (Fig 4B). The percentage of bp occupied by TEs (TE load) was higher 368 

than 50% in the MAT-proximal region, while it was only 9% on average in other regions. TE 369 

load in the MAT proximal region was higher in the M6697 haplotype (76%, MAT-1; MAT-370 

Prox1) than the M1400 haplotype (68% MAT-2; MAT-Prox2). Class I retrotransposons with 371 

Gypsy (LTR-Ty3) and LARD elements were the most abundant TEs in all genomic regions 372 

(autosomes, MAT-Proximal region and the rest of the mating-type contig), representing >70% 373 

of TE annotations (Fig 5A-B), as shown previously (Demené et al. 2022). The TE load 374 

however varied significantly among TE families and genomic regions (ANOVA; Table S5). 375 

In M6697 for example, TIR elements appeared less abundant in the non-recombining than 376 

recombining regions while LTR-Ty3 elements were more frequent in the MAT-proximal 377 

region (Fig 5B). In M1400, LARD elements were more frequent in the MAT-proximal region 378 

than in recombining regions (Fig 5B).  379 

 380 

The presence of transposable elements at the two inversion breakpoints in the two genomes 381 

(Fig 5A) suggests that the inversion may have occurred via non-homologous recombination 382 

mediated by these elements. By dating retrotransposon insertions using between-copy 383 

divergence and within-copy LTR divergence in both M1400 and M6697 genomes (Fig 5C and 384 

D), we found that TEs within the inversion and around the inversion breakpoints were older 385 

than TEs farther from the breakpoints. This is expected in non-recombining regions as 386 

selection is less efficient to purge TE insertions in such regions so that they remain there 387 

longer (Duhamel et al. 2023). The date estimates of LTR element insertions (Fig 5D) further 388 
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indicated that the TE accumulation in the MAT-proximal region was as old as a few million 389 

years, confirming the age estimated based on sequence divergence between MAT-proximal 390 

haplotypes.  391 

 392 

Gene function in the MAT-proximal region and association to known phenotypes 393 

We found no gene function known to be involved in mating or mating compatibility, nor in 394 

pathogenicity, in the MAT-proximal region (Table S7-Table S8). We nevertheless identified 395 

genes potentially coding for proteins with kinase domain or proteins with homeodomains 396 

(Table S6), that are often involved in the regulation of developmental pathways.   397 

By re-analysing data from a previous study in the light the two haplotypes (Stauber et al. 398 

2021; Stauber et al. 2022), we found no association of the MAT-Proximal haplotypes to 399 

previously described vegetative compatibility groups or to the sensitivity to virus infection, 400 

but more specific studies need to be performed to specifically test hypotheses. 401 

 402 

The MAT-proximal region harbours Starship elements 403 

In addition to a high density of transposable elements, gene annotations of the MAT-proximal 404 

region in the M1400 and M6697 genome assemblies revealed multiple genes encoding 405 

tyrosine recombinases (genes with DUF3435 domains, that can be Starship captains) and gene 406 

content variation (Tables S6-S7), suggesting the presence of Starships. By running the Gene 407 

Finder Module of the starfish pipeline designed to identify Starships (Gluck-Thaler and 408 

Vogan 2024), we in fact identified the presence of putative Starship captains in the M1400 409 

haplotype (MAT-Prox2) and three putative Starship captains in the M6697 haplotype (MAT-410 

Prox1). We detected eight and ten other putative Starship captains elsewhere in the M1400 411 

and M6697 genomes, respectively, but the MAT-proximal region appeared enriched in these 412 

elements (Fisher’s exact test p-value =0.0004). A phylogenetic analysis with previously 413 

described Starship captains (Gluck-Thaler and Vogan 2024) suggested that the captains in the 414 

MAT-Proximal region belonged to the Phoenix Starship family, that preferentially target AT-415 

rich sites (Fig S7 ; (Gluck-Thaler and Vogan 2024)). As the Starfish pipeline performs poorly 416 

in TE-rich regions (Gluck-Thaler and Vogan 2024), we investigated manually the delimitation 417 

of putative starships. Three putative captains shared orthology relationships between the two 418 

haplotypes, one being just at the border of the MAT-proximal region near the mating-type 419 

locus (Figure 3). The high similarity between captains shared by the two haplotypes (>90% 420 

identity), their similar positions and reverse strand orientations suggested that these captains 421 

were present before the differentiation between haplotypes and before the inversion (Figure 422 
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5). The genes near these three shared captains are mostly common to the two haplotypes. The 423 

fact that these elements were present in all high-quality assemblies at the same locus 424 

prevented delimiting Starship boundaries and these genes may represent solo Starship 425 

captains or pseudogenes as found in high frequency in Pezizomycotina genomes (Gluck-426 

Thaler and Vogan 2024). The MAT-Prox2 haplotype carried an additional putative captain, 427 

followed by 18 genes lacking in the MAT-Prox1 haplotype (Figure 5A), suggesting the 428 

presence of a Starship element, together with its cargo genes, only in the MAT-Prox2 429 

haplotype. Functional annotation of the putative cargo genes included two genes with 430 

DUF3723 domain and one gene with ferredoxin reductase-type domain, that are often found 431 

in Starships (Table S8 (Gluck-Thaler and Vogan 2024). This putative Starship was about 44 432 

kb in the M1400 strain.   433 

 434 

In addition to the genes only present in the putative Starship specific to the MAT-Prox2 435 

haplotype, the two haplotypes carried additional specific genes, especially the MAT-Prox2 436 

haplotype. Based on automatic gene annotation and reconstruction of orthologous 437 

relationships, we found that, out of 175 groups of single-copy genes in the MAT-proximal 438 

region, 80 (46%) were only present in M1400 (MAT-Prox2) and 24 (14%) were only present 439 

in M6697 (MAT-Prox1). This level or presence/absence gene polymorphism was higher than 440 

in other genomic regions, in which only 3% of genes were only present in one of the two 441 

genomes genome (Fisher’s exact test p-value < 2.2e-16). However, not all genes specific to 442 

one haplotype were located close to a putative captain (Figure 3), so that part of the observed 443 

gene presence/absence polymorphism between the two MAT-Proximal haplotypes may also 444 

be due to gene losses due to degeneration or pseudogenisation after Starship insertions, to 445 

recombination suppression or to gene gains by other means than Starships. 446 

 447 

Among the genes specific to M6697 (MAT-Prox1), we found a gene encoding a protein of the 448 

Sirtuin family (IPR003000). A Sirtuin homolog was found in a Starship associated with local 449 

thermal climate adaptation in the wheat fungal pathogen Zymoseptoria tritici (Tralamazza et 450 

al. 2024).  451 

 452 

Gene expression in the MAT-proximal region 453 

We analysed the expression data available for the EP155 strain (Chun et al. 2020), carrying 454 

the MAT-Prox1 haplotype, to test whether some of the genes in the MAT-Proximal region 455 

were upregulated under certain conditions. Out of 127 genes functionally annotated in the 456 
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MAT-proximal region of the EP155 genome, 50 genes were supported by RNAseq data 457 

acquired in vitro for this strain (Chun et al. 2020), suggesting that the region contains 458 

functionally active genes (Table S6). Among these 50 genes, nine were upregulated during 459 

barrage allorecognition of the EP155 strain with a compatible strain (Belov et al. 2021) and 460 

five were upregulated during infection of the EP155 strain with the hypovirus CHV1 (Chun et 461 

al. 2020) (Table S6), suggesting that the MAT-Proximal region may have a role in fungus-462 

mycovirus interactions and vegetative incompatibility. Unfortunately, no expression data are 463 

available for a strain with the MAT-Prox2 haplotype, that harbours the additional Starship 464 

and the highest number of specific genes and no expression data is available during plant 465 

infection.  466 

 467 

Degeneration in the non-recombining region 468 

The MAT-Proximal region was enriched in TEs and depleted in genes (Fig 4 and Fig 5A), 469 

which supports the inference of an old full recombination suppression. We also found overall 470 

higher non-synonymous substitution rate compared to the baseline substitution rates (dN/dS 471 

values) between the M1400 and M6697 genomes in the MAT-proximal region (median per 472 

gene dN/dS = 0.80) than in other contigs (dN/dS = 0.43; pairwise Wilcoxon test p-value = 1.7e-473 

07 with Bonferroni correction; Fig S8A; Table S4). This is consistent with relaxed purifying 474 

selection due to recombination suppression in the MAT-proximal region. In addition, 13 475 

genes displayed dN/dS > 1 between M1400 and M6697, suggesting that they may evolve under 476 

positive selection (Table S9). 477 

 478 

Recombination suppression and Starships in the MAT-Proximal region in other 479 

populations assessed from high-quality genome assemblies 480 

We analyzed five additional high-quality genome assemblies for strains from the Asian native 481 

range (CL2 and CL4 clusters) and the invasion range (including two North American strains 482 

belonging to the CL1 cluster and one European strain introduced directly from Asia and 483 

belonging to the CL2 cluster), three of which were generated for the present study (Table S3). 484 

Most of the high-quality genomes displayed the same MAT-Proximal chromosomal 485 

arrangement as M1400 (MAT-Prox2, Swiss population and belonging to the CL1 cluster), 486 

suggesting that it is the ancestral state (Fig S9A-D), although the incomplete assemblies may 487 

prevent detecting other rearrangements. The inversion detected in M6697 (MAT-Prox1, Swiss 488 

population and belonging to CL1 cluster) was also present in the EP155 strain (MAT-Prox1, 489 

North America and belonging to CL1 cluster, Crouch et al, 2020; Fig S8D), indicating that 490 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.03.29.587348doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.29.587348
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 16 

this inversion was already segregating in early invasive populations in North America. In 491 

other genomic regions outside of the MAT-Proximal region, all analyzed high-quality 492 

genomes were colinear to the ESM15 reference genome, except the highly rearranged EP155 493 

genome, as previously reported (Demené et al. 2022).  494 

 495 

The MAT-Proximal region in all the high-quality genomes, from Asian native strains and 496 

invasive strains, displayed signs of degeneration, with a high TE load (Fig6; Fig S9), 497 

confirming the ancient age of recombination suppression and its occurrence in the native 498 

range. Study of dS and dN/dS between the MRC10 strain, belonging to the European clonal 499 

lineages of direct Asian origin (CL2 cluster), the M6697, M1400 and the two Asian native 500 

strains further confirmed recombination suppression in the native range and in invasive strains 501 

from different origins (North America or directly from Asia). The dS and dN/dS values were 502 

indeed significantly higher in the MAT-proximal region than other genomic regions (Fig S7 503 

B-E). Mean dS values in the MAT-proximal region were in the same range as dS values 504 

between the M6697 and M1400 genomes, suggesting a similar date of recombination 505 

suppression and, therefore, that recombination suppression was ancestral. The MAT-proximal 506 

region appeared smaller in the two Asian strains XIM9508 and ESM15 (<1 Mb) than in 507 

invasive strains (Table S3), but this may be due to the incomplete genome assemblies, and/or 508 

to additional Starship presence/absence polymorphism.  509 

 510 

We detected the three captains shared between the M6697 and M1400 haplotypes in the 511 

MAT-proximal region of all high-quality genome assemblies, indicating that their insertions 512 

in the MAT-proximal region were old, being already present in the native range. We found 513 

the putative Starship specific to M1400 (MAT-Prox2), i.e., the captain and the 18 cargo 514 

genes, in the MAT-proximal region of DUM-005 (MAT-Prox2) and in the haplotypes of 515 

MRC10 and the Japanese strain ESM15 (both genetically close to MAT-Prox2; Figure 516 

S10D1), while it was absent in the MAT-Proximal region of the EP155 strain (MAT-Prox1). 517 

In the XIM9508 Chinese strain (genetically close to MAT-Prox1; Figure S10D1), the captain 518 

and four genes of the Starship specific to M1400 were absent in the MAT-proximal region. 519 

However, 14 of its putative cargo genes were present and a very similar captain was found 520 

elsewhere in the genome, suggesting that this Starship may have moved away from the MAT-521 

Proximal region after its insertion there. In the seven high-quality assemblies, the putative 522 

Starship presence/absence polymorphism detected between the 1400 and M6697 genomes 523 

thus seem associated to the MAT-Proximal haplotypes in the invaded range and also in the 524 
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native Asian range (Figure S10D), although this would need to be confirmed with additional 525 

high-quality assemblies.  526 

 527 

Presence of the two MAT-Proximal haplotypes in other populations, but less differentiated 528 

in the native range  529 

By analyzing available additional Illumina genomes of invasive strains from the first invasion 530 

wave via North America (strains from the US and European clonal lineages), we recovered 531 

the two MAT-proximal haplotypes in balanced frequencies. We indeed observed high 532 

differentiation between two clusters in the MAT-Proximal region, contrasting with a lack of 533 

genetic subdivision in other genomic regions or a completely different genetic subdivision, 534 

corresponding to previously described population genetic structures (Figs S10A and S10C). 535 

This reinforces the view of balancing selection on the MAT-Proximal haplotypes.  536 

 537 

In the native range, the MAT-Proximal region also seemed to have undergone a very different 538 

evolutionary history than the rest of the genome (Figure 7). In particular, the neighbor-net 539 

network with multiple strains sequenced previously from the CL2 and CL3 clusters (from the 540 

invaded range and the native range, in South Korean and Japan) and from the CL4 cluster 541 

(from the native range, in China) indicated that sequences from these three clusters were 542 

intermingled in the MAT-proximal region (Fig 7A), while the structure in the rest of the 543 

genome instead corresponded to the different population clusters, i.e., CL1, CL2, CL3 and 544 

CL4 (Fig 7B). However, the two haplotypes were much less differentiated in the native range 545 

and in invasive populations originating directly from Asia than in invasive populations from 546 

the first invasion wave via North America. For example, branch lengths on the neighbor-net 547 

indicate a lower differentiation between haplotypes within CL2 (Fig 7A) than within the 548 

European CL1 or Swiss invasive populations (Fig 2D; Fig S3) and some reticulations were 549 

present between MAT-proximal haplotypes.  550 

 551 

We found no association of the MAT-Proximal haplotypes with mating types at the world 552 

scale (Figs 7 and S10). In the S12 European invasive clonal lineage (only MAT-1), we found 553 

a single MAT-Proximal haplotype (MAT-Prox1; Fig S10B), but we detected the two MAT-554 

Proximal haplotypes in all other populations. Even in two invasive European lineages of 555 

American origin with a predominantly clonal structure (re092 and re103), the strains with a 556 

mating type different from their clone-mates, due to localized introgression from other clonal 557 

lineages (Demené et al. 2019), also had their MAT-Proximal region introgressed (Fig S10C); 558 
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this finding reinforces the view of the strong linkage between the mating-type locus and the 559 

MAT-Proximal region, of an advantage of maintaining the two MAT-Proximal haplotypes in 560 

populations, and perhaps of maintaining an association between MAT-proximal haplotypes 561 

and mating types within populations. Three 2019 Swiss strains exhibited a similar 562 

intermediate sequence in the MAT-Proximal region as the other strains from Europe with a 563 

direct Asian origin described above (Fig S10C). This intermediate haplotype thus seemed 564 

associated with the second invasion in Europe, directly from Asia, and carried the same 565 

captains as the MAT-Prox2 haplotype from the M1400 strain. The location as an intermediate 566 

in the neighbor-net network may be due to recombination between the haplotypes, or may just 567 

reflect the fact that the two haplotypes are less differentiated in the native Asian area.  568 

 569 

No evidence of introgression in the MAT-proximal region from closely related 570 

Cryphonectria species  571 

The stronger differentiation in the MAT-Proximal region in the Swiss and CL1 invasive 572 

populations than in other populations could also be due to an introgression event from a 573 

closely related species; however, the small genetic distance and the reticulations observed in 574 

the neighbor-net network between the M6697 Swiss reference genome and the Asian 575 

genomes M8444 and XA19 rather indicate that the MAT-Prox1 haplotype in Switzerland 576 

originated from Asian C. parasitica populations, likely a population different from those at 577 

the origin of the CL2 invasive cluster (Fig 7).  578 

 579 

Gene genealogies also provided no evidence of introgression in the MAT-proximal region 580 

from closely related Cryphonectria species. We performed a gene orthology analysis 581 

including three genomes of the closely related species C. japonica, C. carpinicola, and C. 582 

naterciae that were previously sequenced with short read technologies (Stauber et al. 2020). 583 

We retrieved only nine genes from the MAT proximal region that were shared between the 584 

M6697 and M1400 genomes that had orthologs in one of the related species. This may be due 585 

to low quality assemblies in the outgroups (Stauber et al. 2020) and/or to many gene gains in 586 

this region in C. parasitica because of Starships. We found no gene with a topology 587 

consistent with introgression from another species into the MAT-Proximal region, i.e. with a 588 

MAT-Prox1 or MAT-Prox2 haplotype that would branch with an outgroup allele rather than 589 

with the alternative haplotype of C. parasitica. The high load of TEs and gene disruptions in 590 

the two MAT-Proximal haplotypes does not fit with the introgression hypothesis either, 591 

unless the introgression occurred from a species with recombination suppression in the MAT-592 
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Proximal region. The Starships may have moved from a distant species by horizontal gene 593 

transfer together with their cargo genes, but we found no evidence for this by blasting the 594 

captains and cargo genes in public databases. 595 

 596 

 597 

Discussion  598 

A large non-recombining region near the mating-type locus, with two highly differentiated 599 

haplotypes maintained polymorphic in the native and introduced ranges  600 

We found strong evidence for the complete cessation of recombination in a region of more 601 

than 1 Mb (1.2 Mb to 1.5 Mb depending on the haplotype), proximal to the mating-type locus 602 

in C. parasitica. Indeed, we detected maximal levels of linkage disequilibrium in otherwise 603 

recombining populations and the existence of two differentiated haplotypes, without shared 604 

polymorphism, while even low rates of recombination can homogenize alleles and prevent LD 605 

build-up (Dufresnes et al. 2015). The full cessation of recombination was further supported by 606 

the existence of a previously unknown, large inversion in the center of the non-recombining 607 

region in invasive strains. This is in agreement with previous genetic maps reporting lack of 608 

recombination near the mating-type locus in crosses involving Japanese, North American and 609 

Italian isolates (Kubisiak and Milgroom 2006a). The higher TE load in this region constitutes 610 

additional evidence for full recombination cessation, as the lack of recombination renders 611 

selection against TE accumulation less efficient, in particular due to Muller’s ratchet: two 612 

chromosomes with different TE insertions cannot recombine to produce a chromosome free of 613 

TE insertions. TE takes hundreds of thousands of years to accumulate in non-recombining 614 

regions (Duhamel et al. 2023), so that the high TE load in the MAT-Proximal region in C. 615 

parasitica indicates old recombination cessation. The particularly high frequency of non-616 

synonymous substitutions in the MAT-Proximal region worldwide further indicates 617 

degeneration and ancient recombination suppression. The existence of two differentiated 618 

haplotypes appeared less clear in the native range in Asia and in the second-wave invasive 619 

populations originating directly from Asia than in invasive populations from the first 620 

introduction via North America, but the MAT-Proximal region nevertheless appeared to 621 

display a different evolutionary history than the rest of the genome and a high TE load.  622 

 623 

The estimates for the differentiation between the two MAT-Proximal haplotypes based on 624 

synonymous divergence between shared single-copy orthologs and based on TE insertion 625 

dates were at least 1.5 million years. The suppression of recombination in C. parasitica may 626 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.03.29.587348doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.29.587348
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 20 

be younger than this estimate if one of the two haplotypes was introgressed from a distant 627 

species. The evolution of non-recombining regions by introgression has been reported for 628 

example in ants and butterflies (Jay et al. 2018; Helleu et al. 2022; Stolle et al. 2022). 629 

However, we found little evidence for an introgression: i) the two haplotypes were detected in 630 

native populations and in the CL2 cluster of invasive European populations directly 631 

originating from Asia, even if less differentiated than in the invasive populations from the first 632 

introduction, ii) the MAT-Prox1 haplotype in the CL1 cluster that is the most differentiated 633 

from the MAT-Prox2 haplotype is genetically close to an Asian haplotype, iii) footprints of 634 

recombination suppression are present in the native range in terms of degeneration and 635 

particular genomic structure in the MAT-Proximal region, and iv) we found no signatures of 636 

introgression from closely related species in gene genealogies or by blast in public databases. 637 

In any case, the findings of recombination suppression footprints and of the presence of two 638 

differentiated haplotypes in the two invaded continents, Europe and North America, as well as 639 

in the native range of C. parasitica, with intermingled sequences from different Asian 640 

populations in neighbor-net networks, indicate ancient recombination suppression and long-641 

term polymorphism maintenance in the MAT-Proximal region. These findings point to a 642 

strong balancing selection maintaining two differentiated haplotypes in C. parasitica. 643 

 644 

In contrast to other known non-recombining regions on sex or mating-type chromosomes 645 

(Bergero and Charlesworth 2009; Hartmann et al. 2021), the region without recombination 646 

was not completely linked to the mating-type locus. Indeed, the occurrence of rare 647 

recombination events between the non-recombining MAT-Proximal region and the mating-648 

type locus are supported by previous segregation analyses (Kubisiak and Milgroom 2006b) 649 

and the lack of association found here between the MAT-Proximal haplotypes and the mating 650 

types at the worldwide scale, as well as their incomplete association within populations.   651 

 652 

Proximal cause of recombination suppression 653 

The large inversion in the MAT-Proximal region may contribute to recombination 654 

suppression. There may also be additional nested inversions and/or translocations in the 655 

MAT-Proximal region as there are breaks of synteny between the inverted fragments with 656 

many transposable element insertions. The chromosomal arrangement of the M1400 MAT-657 

Prox2 haplotype is likely the ancestral state as it is the most frequent worldwide, although a 658 

more complete sampling in the native range is required to obtain definitive conclusion. The 659 

non-recombining region was defined based on LD pattern and was larger than the inversion. 660 
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This may indicate that additional proximal mechanisms suppress recombination. The 661 

inversion may even be a consequence rather than a cause of recombination cessation, as 662 

previously found in other fungal mating-type chromosomes (Grognet et al. 2014; Sun et al. 663 

2017; Branco et al. 2018; Vittorelli et al. 2022), especially as the inversion was not detected 664 

so far in the native range despite the presence of footprints of recombination suppression. 665 

Other proximal causes of recombination cessation may for example be genetic recombination 666 

modifiers, epigenetic marks, histone modifications or lack of recruitment of proteins 667 

responsible for double-strand breaks (Maloisel and Rossignol 1998; Boideau et al. 2022; 668 

Legrand et al. 2024). The lack of rearrangements at the edge of the MAT-proximal region 669 

may allow rare recombination or gene conversion events, which may explain the presence of 670 

two distinct LD blocks with lower LD between them and the lower differentiation at the edges 671 

of the MAT-proximal region. Alternatively, the LD around the inversion may be formed by 672 

less frequent recombination as recombination is often modified around inversion breakpoints 673 

(Pegueroles et al. 2010; Stevison et al. 2011) and the actual size of the non-recombining 674 

region may be smaller than suggested from the LD pattern.  675 

 676 

The MAT-proximal haplotypes carry putative Starship elements 677 

We detected signatures of Starship elements in the non-recombining MAT-proximal region, 678 

with likely three “solo” captains shared between the two haplotypes, but also an additional 679 

captain associated to 18 specific genes, strongly suggesting the presence of a cargo-680 

mobilizing Starship, only present in the MAT-Prox2 haplotype. The difference in gene 681 

content between the two MAT-proximal haplotypes thus likely at least partly result from 682 

specific cargo genes inserted with Starships, although there could also be gene losses because 683 

of the less efficient selection due to recombination suppression, and/or additional gene gains. 684 

One of the captains shared between haplotypes was located just nearby the mating-type locus 685 

and at the edge of the MAT-proximal region. This altogether strongly suggest a role of 686 

Starship elements in the formation of the MAT-proximal haplotypes and in their long-term 687 

maintenance, although experiments are required to confirm this hypothesis and elucidate their 688 

role. High-quality assemblies suggested that the presence/absence of the polymorphic 689 

Starship insertion was associated to the MAT-Proximal haplotypes, although this also needs 690 

to be checked in a larger set of strains. The presence of the inversion in the native range also 691 

remains to be investigated. Additional sampling in the native range and high-quality genome 692 

assemblies are required to obtain a more comprehensive view of the history of the MAT-693 

Proximal region and of the putative Starship insertions.  694 
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Starships may have been introgressed from another species, as frequent with these elements 695 

(Ropars et al. 2015; Peck et al. 2023), but searches in databases returned no significant blast 696 

results. Such horizontal gene transfers should not have, however, inflated the date estimates of 697 

divergence of recombination suppression in the MAT-Proximal region, as these were 698 

computed based on shared single-copy orthologs between haplotypes and the shared putative 699 

Starship elements seem to correspond to homologous insertions.   700 

 701 

The selective forces potentially maintaining the two haplotypes in the MAT-proximal 702 

region  703 

Our findings indicate that selection maintains the two haplotypes polymorphic in the MAT-704 

Proximal region. There can be several hypotheses regarding the nature of this balancing 705 

selection. The degeneration of the non-recombining region may help maintaining the two 706 

haplotypes by selection due to the sheltering of combinations of deleterious mutations in 707 

repulsion, i.e. thanks to a heterozygote advantage called pseudo-overdominance (Abu-Awad 708 

and Waller 2023). Such pseudo-overdominance advantage may only be a consequence of 709 

recombination suppression, and contribute to its maintenance, or may even be its initial cause 710 

(Branco et al. 2017; Jay et al. 2021; Charlesworth 2023; Jay, D.L. Jeffries, Hartmann, et al. 711 

2024). These hypotheses require the existence of a substantial diploid or dikaryotic phase for 712 

sheltering recessive deleterious alleles in a heterozygous state. In fact, although C. parasitica 713 

has a predominant haploid phase, strains can be found as dikaryons heterozygous for the 714 

mating-type locus in some natural populations, and not only as monokaryons  (McGuire et al. 715 

2004; McGuire et al. 2005; Stauber et al. 2021; Stauber et al. 2022). The importance and 716 

frequency of heterokaryons in C. parasitica in nature would deserve further investigations. It 717 

may be sufficient if recessive deleterious alleles are sheltered in a substantial percentage of 718 

individuals for selecting recombination suppression, and/or if the genes involved are 719 

preferentially expressed during the diploid or dikaryotic phases. This hypothesis of balancing 720 

selection, and in particular the hypothesis of overdominance (i.e. heterozygote advantage), 721 

does not require the same association between the MAT-Proximal haplotypes and mating 722 

types across all populations worldwide, it is sufficient that the MAT-Proximal haplotypes are 723 

strongly associated to mating types within populations. Further sampling will be required to 724 

test whether the MAT-Proximal haplotypes are associated to mating types within local 725 

populations in the CL3 and CL4 clusters and in the native Asian range. It will also be 726 

interesting in future studies to compare the fitness between strains carrying the two MAT-727 

Proximal haplotypes and dikaryotic strains being homozygous for the MAT-Proximal 728 
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haplotype. Such experiments in Sordariales fungi reported a heterozygote advantage (Guyot et 729 

al. 2024). Results from previous studies suggest that strains carrying either the same or 730 

different MAT-Proximal haplotypes can be crossed in C. parasitica (Stauber et al. 2021).   731 

 732 

It could indeed also be that genes evolve under overdominance in this region for other reasons 733 

than deleterious mutations, so that a partial linkage to a permanently heterozygous locus is 734 

beneficial, perhaps in relationship with the pathogenic lifestyle of the fungus. One could 735 

imagine, for example, that heterozygosity could be advantageous at genes involved in 736 

virulence against the tree host, and especially the novel hosts colonized in invasive ranges, or 737 

in resistance against a parasitic virus known to negatively affect fitness in C. parasitica (Choi 738 

and Nuss 1992; Brusini et al. 2017). As a matter of fact, multiple genes present in the MAT-739 

Proximal region are up-regulated under infection by the hypovirus CHV1 or during the 740 

vegetative incompatibility reaction considered to play a role in the prevention of virus 741 

transmission (Choi et al. 2012; Rigling and Prospero 2018). The specific genes unique to one 742 

or the other MAT-proximal haplotypes, and possibly the cargo genes inserted with the 743 

Starships, may contribute to such a heterozygous advantage.  744 

 745 

As an alternative to a heterozygote advantage, the selection maintaining the recombination 746 

suppression and the two haplotypes in the MAT-proximal region could be some kind of 747 

negative-frequency dependent selection of beneficial allelic combinations, possibly linked to a 748 

trench-warfare-like arms race with the host tree, the virus or the microbial community, or to 749 

self-incompatibility, where partial linkage to the mating-type locus would help maintenance 750 

in balanced proportions and therefore would prevent allele loss (Tellier et al. 2014; Jay, 751 

Aubier, et al. 2024). The MAT-proximal region did not include any of the genes previously 752 

identified as controlling vegetative incompatibility in C. parasitica but not all self-753 

incompatibility genes have been identified yet. The MAT-proximal region actually carried 754 

genes upregulated under virus infection or vegetative incompatibility reaction. Such a role in 755 

host-pathogen interactions or vegetative incompatibility would also be consistent with the 756 

selective sweep footprints detected in the MAT-proximal region in a previous study (Stauber 757 

et al. 2021), if there is recurrent positive selection for improving the efficiency of the 758 

pathogen weapons within each of one of the two MAT-proximal haplotypes or new, rare self-759 

recognition alleles. Such negative-frequency dependent selection, could also explain the 760 

particular population structure in the MAT-proximal region in the native region, with a mix of 761 

sequences from the different genetic clusters, if alleles introgressed between populations are 762 
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favored by a positive selection of rare alleles, or with the long-term maintenance of self-763 

incompatibility alleles, and therefore of ancestral polymorphism. Much higher differentiation 764 

between MAT-Proximal haplotypes in the invasive than the native populations may be due to 765 

a selective sweep of a rare and differentiated MAT-Prox1 allele present in the native range or 766 

having evolved rapidly, by particular demographic effect during the invasion (Moinet et al. 767 

2022), both of which are consistent with the very low genetic diversity in the MAT-Prox1 768 

haplotype in the introduce range. Balancing selection and location adjacent to a non-769 

recombining region has been reported for loci involved in host resistance in the Daphnia–770 

Pasteuria system (Fredericksen et al. 2023). The MAT-Proximal region may in this case even 771 

include genes involved different traits under balancing selection, and would then constitute a 772 

supergene (Schwander et al. 2014). The MAT-Proximal region also contained, only in the 773 

MAT-Prox1 haplotype, a gene of the Sirtuin family, a homolog of which had previously been 774 

found in a Starship associated with local thermal climate adaptation in the wheat fungal 775 

pathogen Zymoseptoria tritici  (Tralamazza et al. 2024). Another hypothesis to explain the 776 

balancing selection in the MAT-Proximal region may thus be a heterogeneous selection, with 777 

different genes in the two haplotypes providing contrasted advantages in different conditions 778 

or different phases of the life cycle. The proximity of the mating-type locus, permanently 779 

heterozygous in dikaryotic and diploid stages, may help maintaining balanced frequencies of 780 

the two MAT-proximal haplotypes. Here too, the genes inserted by the Starships may play a 781 

role in such balancing selection, especially the genes that are present in a single of the two 782 

MAT-Proximal haplotypes. The other transposable elements insertion polymorphism 783 

observed from the high quality assemblies may also be adaptive (Casacuberta and González 784 

2013; Orteu et al. 2024).  785 

 786 

Another hypothesis for explaining such extension of recombination suppression beyond the 787 

mating-type locus is antagonistic selection, i.e. linkage of alleles that would improve fitness 788 

of a MAT-1 gamete while being deleterious in a MAT-2 gamete, or vice-versa. However, full 789 

recombination suppression with the mating-type locus would be expected under such 790 

antagonistic selection, as well as the same association between the MAT-Proximal alleles and 791 

the mating-type in all populations, in contrast to our findings. In addition, we found no 792 

particular predicted function in the MAT-proximal region that could be related to mating 793 

compatibility and there are very little functions, if any, with possible antagonistic functions 794 

between mating types in fungi (Bazzicalupo et al. 2019; Hartmann et al. 2021).  795 

 796 
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Conclusion 797 

In conclusion, we provide strong evidence for the existence of a non-recombining region 798 

partially linked to the mating-type locus in the chestnut blight fungus C. parasitica, with two 799 

highly differentiated haplotypes, each carrying specific genes, maintained polymorphic by 800 

selection. We found footprints of balancing selection in the MAT-proximal region in the first 801 

introduction of the pathogen in Europe from North America and a chromosomal inversion. 802 

The non-recombining region also displayed footprints of particular evolution in Asia and in 803 

the second invasion wave directly from Asia, although the levels of differentiation between 804 

haplotypes was lower than in the populations from the first introduction wave. This non-805 

recombining region may underlie important adaptive traits and thereby provide important 806 

applications for the control of a devastating tree pathogen. This is supported by the finding of 807 

putative Starships elements in the MAT-proximal region, i.e., giant mobile elements recently 808 

discovered in ascomycete fungi, containing multiple cargo genes (Gluck-Thaler et al. 2022; 809 

Urquhart et al. 2024), that can be involved in adaptation. In addition, the high-quality genome 810 

assemblies provided here, from the native and invaded ranges, will more generally be useful 811 

for studies aiming at understanding the evolution of this invasive and damaging pathogen.  812 

 813 

Material and Methods 814 

 815 

Strains and genomic data 816 

For population genomic analyses, we studied a collection of 386 monokaryotic C. parasitica 817 

strains sampled worldwide, from the native and invaded ranges of the pathogen, and 818 

sequenced previously with the short-read Illumina technology (strain information are 819 

presented in Table S1; (Demené et al. 2019; Stauber et al. 2021; Stauber et al. 2022)). Data 820 

were downloaded from NCBI Bioproject numbers PRJNA604575, PRJNA644891 and 821 

PRJNA706885. We focused our analyses first on European invasive strains originating from 822 

North America. We studied 88 strains belonging to the CL1 genetic cluster, in central and 823 

southeastern Europe (Stauber et al. 2021). We excluded the putative clonal genotypes 824 

previously identified (Stauber et al. 2021). We also studied 71 strains sampled in the 1990 and 825 

62 strains sampled in 2019 in southern Switzerland (Stauber et al. 2022). Mating-type ratios 826 

close to ½ and population structure analyses of the CL1 genetic cluster and the Swiss 1990 827 

population suggest frequent recombination in these populations (Stauber et al. 2021; Stauber 828 

et al. 2022). The mating-type ratio was 33% MAT-1 in the 2019 Swiss population and 829 

population structure analyses suggested regular sexual reproduction and recent population 830 
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bottleneck. To study the presence of the two haplotypes in the MAT-proximal region more 831 

broadly, we analyzed monokaryotic strains belonging to the CL2, CL3, CL4 genetic clusters, 832 

as well as the S12 European invasive lineage (Stauber et al. 2021) and additional 833 

monokaryotic strains from the US and Europe (with an Asian or North American origin 834 

(Demené et al. 2019)). We excluded heterokaryotic strains, i.e. strains having both MAT-1 835 

and MAT-2 alleles, as the phase was challenging to infer.  836 

 837 

For mapping and SNP calling, we first used as reference the 43.9 Mb genome sequence 838 

EP155 v2.0 of the strain EP155 (MAT-2, North America, CL1 cluster) available at the Joint 839 

Genome Institute (http://jgi.doe.gov/)(Crouch et al. 2020). For comparative genomics, we 840 

used the published genome of the strain ESM15 (MAT-2, Japan, CL2 cluster; (Demené et al. 841 

2022)) available at DDBJ/ENA/GenBank on the bioproject PRJNA700518 under the 842 

accession JAGDFO000000000. We additionally sequenced de novo, with long-read 843 

technologies, five strains from the native and invaded ranges of the pathogen. We sequenced 844 

with PacBio Hifi the genomes of the strains M1400 (MAT-2) and M6697 (MAT-1) sampled 845 

in Gnosca, southern Switzerland (Stauber et al. 2021). Mycelia were stored as glycerol stocks 846 

at -80 C after strain isolation. To produce mycelium for DNA extraction, isolates were 847 

inoculated onto cellophane-covered potato dextrose agar plates (PDA, 39 g/L; BD Becton, 848 

Dickinson and Company, Franklin Lakes, USA) (Hoegger et al. 2000) and incubated for a 849 

minimum of 1 week at 24°C, at a 14 hr light and 10 hr darkness cycle. Mycelium and spores 850 

were harvested by scratching the mycelial mass off the cellophane, transferring it into 2 mL 851 

tubes and freeze-drying it for 24 hr (Stauber et al. 2021). DNA extraction was performed with 852 

the NucleoBond High Molecular Weight DNA kit from Macherey-Nagel, with the mechanical 853 

disruption of about 30 mg of lyophilized mycelium with two beads of 3 mm for 5 min at 30 854 

Hz. Sequencing was outsourced to Novogene, the Netherlands. We additionally sequenced 855 

with Oxford Nanopore MinION technology the strains XIM9508 (China, CL4 cluster, MAT-856 

1), MRC10 (South Western France introduced directly from Asia, CL2 cluster, MAT-2) and 857 

DUM-005 (USA, CL1 cluster,  MAT-2). These isolates had been collected for previous 858 

studies (Milgroom et al. 1996; Liu et al. 2003; Dutech et al. 2012). The protocols for 859 

mycelium production, DNA extraction and sequencing for these three strains were the same 860 

as in (Demené et al. 2022). 861 

 862 

Short-read data processing and SNP calling 863 
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We used SNP calling datasets of the genomes from monokaryotic strains of the CL1, CL2, 864 

CL3, CL4 genetic clusters, the S12 invasive lineage and the Swiss populations against the 865 

EP155 reference v2.0 genome obtained in (Stauber et al. 2021; Stauber et al. 2022). We 866 

performed mapping and raw SNP calling of short-read data using the M1400 new genome 867 

assembly as a reference as described in (Stauber et al. 2021; Stauber et al. 2022). Briefly, we 868 

trimmed reads with Trimmomatic v0.36 (Bolger et al. 2014) and aligned them with Bowtie 2 869 

v2.3.5.1 (Langmead et al. 2009) and SAMtools v1.9 (Li et al. 2009) to the EP155 v2.0 870 

genome. Raw SNP calling and filtration for quality were conducted with the genome analysis 871 

toolkit GATK v3.8 and v4.0.2.0 (McKenna et al. 2010). We used the filtration parameters 872 

described in (Stauber et al. 2021):  QUAL>=100, MQRankSum (lower) >= -2.0, QD:_20.0, 873 

MQRankSum (upper) <=2.0, MQ:_20.0, BaseQRankSum (lower) >=-2.0, ReadPosRankSum 874 

(lower) >=-2.0, ReadPosRankSum (upper) <=2.0, BaseQRankSum (upper) <=2.0. We further 875 

removed SNPs overlapping with transposable elements predicted de novo in the EP155 v2.0 876 

genome by (Stauber et al. 2021). 877 

 878 

Population genomics analyses  879 

For all population genomics analyses, we excluded SNPs with missing data in more than 10% 880 

of the strains and kept only polymorphic strains with vcftools v0.1.16 (Danecek et al. 2011). 881 

To study linkage disequilibrium, we further excluded rare variants (minor allele frequency 882 

<0.1) with the vcftools (Danecek et al. 2011) option --maf 0.1. We computed LD with the --883 

hap-r2 option of vcftools (Danecek et al. 2011) for each scaffold and each population 884 

separately. We used the --thin 50000 option of vcftools (Danecek et al. 2011) to sample SNPs 885 

distant of at least 50 kb. We used the R package LDheatmap v1.0-6 (Shin et al. 2006) to plot 886 

LD r2 values among SNP pairs. To perform principal component analyses (PCAs), we first 887 

used vcftools (Danecek et al. 2011) to convert VCF format files in Plink format. We then used 888 

the Plink v1.90b5.3 (Purcell et al. 2007) –pca command to run PCA analysis. We used the R 889 

package PopGenome v2.7.5 (Pfeifer et al. 2014) to compute nucleotide diversity, Tajima’s D 890 

values and the FST index in 50 kb window overlapping over 10 kbp. Windows containing 891 

fewer than 5 SNPs were removed from the analysis. We used the R package ggplot2 (2_3.5.0) 892 

to plot results. Pairwise Wilcoxon tests were performed in R with Bonferroni or false 893 

discovery rate correction. 894 

 895 

We built neighbornet networks using SplitsTree4 v 4.19.2 (Huson 1998). VCF file were 896 

converted to nexus format using PGDSpider v1.0 tool (Lischer and Excoffier 2012). For the 897 
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study of other populations, we included only one strain of each haplotype of the invasive 898 

European population but not all CL1 and Swiss strains for network readability; we 899 

nevertheless checked that the results were the same with all CL1 and Swiss strains. 900 

 901 

Long-read based assemblies 902 

PacBio Hifi reads of strains M1400 and M6697 were both assembled using canu v1.8 (Koren 903 

et al. 2017) program with a set genome size of 44 Mb. Multiple assembly pipelines were used 904 

for the other strains. Oxford Nanopore MinION reads and Illumina reads of the genomes of 905 

both XIM9508 and MRC10 strains were assembled using HybridSPAdes (Antipov et al. 906 

2016). Assemblies were manually curated and scaffolds were cut when an evidence of a 907 

chimeric connection was detected (i.e. mis-paired short reads) as previously described 908 

(Demené et al. 2022). For DUM005, the assembly was generated by Ra with basic parameters 909 

that uses Oxford Nanopore MinION reads and corrects the assembly with Illumina reads 910 

(https://github.com/lbcb-sci/ra) as it outperformed the HybridSPAdes assembly. As the 911 

HybridSpades assembly of the MRC10 strain suggested absence of collinearity with the 912 

MAT-proximal region M1400 and M6697, we further checked the assembly of the MAT-913 

proximal region of MRC010 by generating a meta-assembly of this strain. We used the 914 

assembler tool canu v2.2 with an estimated genome size of 42 Mb. We also used Flye v2.9.3-915 

b1797 (Kolmogorov et al. 2019) with an estimated genome size of 42 Mb, --nano-raw for 916 

reads with an error rate below 20 and a coverage for initial disjointig assembly of 50. Then we 917 

used ragtag (Alonge et al. 2019) to patch the canu assembly with the Flye assembly as query 918 

in a first loop. In a second loop, the canu assembly was patched with the first loop ragtag 919 

assembly. Finally, we polished this second output assembly of ragtag with short reads and the 920 

consensus part of medaka v1.11.3 with no change in the parameters 921 

(https://github.com/nanoporetech/medaka). Assemblies statistics were obtained with quast 922 

v5.1 (Gurevich et al. 2013). We assessed the completeness of each assembly using the 923 

Benchmarking of Universal Single-Copy Orthologue (BUSCO) tools with the Sordariomyceta 924 

ortholog set (sordariomycetes_odb10, 2020-08-05, n = 3817 orthologous groups searched) 925 

(Manni et al. 2021). Gene models were predicted with the Helixer v0.3.1 pipeline (Holst et al. 926 

2023). We also run Helixer pipeline for ESM15 and EP155 strains for the gene orthology 927 

analysis. Statistics of the obtained gene annotation was obtained with the Agat v1.0.0 tool 928 

(Dainat et al. 2020). Transposable elements of all genomes were annotated using 929 

Repeatmasker v4-0-7 (Smit et al. 2013) and the customized library built for C. parasitica in 930 

(Demené et al. 2022) contained in the “Curated_TEs_database_ESM015_EP155.fa” file 931 
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(available on the “Portail Data INRAE: Chromosomal rearrangements but no change of genes 932 

and transposable elements repertoires in an invasive forest-pathogenic fungus" at 933 

https://doi.org/10.15454/UTIB8U). The class Gipsy invader was renamed LTR-Ty3. We 934 

filtered out TE copies shorter than 100bp. We used the HybridSPAdes preliminary assembly 935 

of MRC10 for gene model annotations. To study gene functions of the EP155 genome, we 936 

used the gene annotation available at http://jgi.doe.gov/ (Crouch et al. 2020). To study support 937 

from RNAseq data, we used RNAseq data from the EP155 strain cultivated in vitro available 938 

at Genebank under Project ID number PRJNA588887 and accessions numbers SRR10428542, 939 

SRR10428543, SRR10428544 (Chun et al. 2020). Raw reads were mapped using STAR 940 

v2.7.10a (Dobin et al. 2013) with the settings. --alignIntronMax 1000 --limitBAMsortRAM 941 

1629219965--quantMode GeneCounts. We used the program featureCounts (Liao et al. 2013) 942 

v2.0.6 with the options -p  --countReadPairs  -M - -B -O   --largestOverlap. We considered a 943 

gene to be supported for read count >10. To predict gene functions of the protein predicted by 944 

Helixer, we used the funannotate pipeline with default options. To look for Starships, we ran 945 

the Gene Finder Module of Starfish pipeline with default options (Gluck-Thaler and Vogan 946 

2024). To predict gene functions of the protein predicted by Helixer, we used the funannotate 947 

pipeline with default options. To identify putative Starships, we ran the Starfish pipeline with 948 

default options (Gluck-Thaler and Vogan 2024). We studied the phylogenetic relationships of 949 

the putative Starships captains by aligning them to the YRsuperfamRefs.faa from the starfish 950 

database (Gluck-Thaler and Vogan 2024).  Protein sequences were aligned using Clustal 951 

Omega (Sievers and Higgins 2021)version 1.2.4 allowing for five iterations (--iterations 5). 952 

Gaps in the resulting alignment were trimmed using trimAl v1.4.rev15 and the -gappyout 953 

option. The phylogenetic relationship among proteins was inferred from the trimmed 954 

alignment using FastTree (Price et al. 2009) under the Whelan-And-Goldman 2001 model 955 

after 1,000 bootstraps (-boot 1000 and -wag options). Plots were performed in R v 4.1.2 using 956 

ggtree v3.9.1. 957 

  958 

Estimation of retrotranposon insertion time and nucleotide divergence time 959 
 960 
To get an estimation of the insertion date of the transposable elements present in the MAT-961 

proximal non-recombining region, we applied two complementary methods. We first used the 962 

divergence between the LTR sequences in retrotransposons, as these LTR sequences at their 963 

edges are identical at the time of TE insertion and then diverge with time. For this, we used a 964 

de-novo prediction of LTR retrotransposons using LTRharvest GenomeTools 1.6.2 965 
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(Ellinghaus et al. 2008; Gremme et al. 2013) and LTR_Finder v1.07 (Xu and Wang 2007). To 966 

prepare data for LTRharvest, we first created enhanced suffix for the M1400 and M6697 967 

genome assemblies using the GenomeTools Suffixerator (-dna -suf -lcp -bwt -bck -mirrored 968 

parameters). We ran LTRharvest using two pipelines, designed to identify LTR 969 

retrotransposons with a minimum and maximum LTR length of 100 bp and 7000 bp 970 

respectively and at least 85% identity between two LTR regions, with and without canonical 971 

TGCA motifs, respectively:  i) -minlenltr 100 -maxlenltr 7000 -mintsd 4 -maxtsd 6 -similar 85 972 

-vic 10 -seed 20 -motif TGCA -motifmis 1; ii) -minlentltr 100, -maxlenltr 7000, -mintsd 4, -973 

maxtsd 6, -similar 85, -vic 10, -seed 20. Similarly, we ran LTR_Finder on the M1400 and 974 

M6697 genome assemblies to retrotransposons with both TGCA and non-TGCA motifs and a 975 

minimum and maximum LTR length of 100 bp and 7000 bp respectively and at least 85% 976 

identity between two LTR regions (-D 15000, -d 1000, -l 100, -L 7000, -p 20, -C, -M 0.85). 977 

Finally, we used LTR_retriever v2.8.5 (Ou and Jiang 2018) with default parameters to filter 978 

out false positive LTR candidates identified by LTRharvest and LTR_Finder and get an 979 

estimation of each element insertion date. 980 

 981 
As a second method to estimate the insertion date of the transposable elements present in the 982 

MAT-proximal non-recombining region, we used the set of curated consensus sequences from 983 

(Demené et al. 2022) to annotate the inversion sequence or its surroundings. We first used 984 

samtools faidx v1.9 (Li et al. 2009) to extract the sequence corresponding to inversion and 985 

their 50 kb surroundings in M1400 and M6697 genome assemblies. We annotated the 986 

sequences corresponding to the inversions and the concatenated 50 kb surroundings in both 987 

isolates using RepeatMasker version 4.1.5 and rmblast as search engine (v2.10.0) with -no_is 988 

-pa 20 -cutoff 250 -a parameters. Finally, we parsed the RepeatMasker .out file using the 989 

helped script parseRM_merge_interrupted.pl and omitting Simple_repeat and 990 

Low_complexity regions (https://github.com/4ureliek/Parsing-RepeatMasker-Outputs). We 991 

then built a summary of the alignments using the RepeatMasker helper script 992 

buildSummary.pl and calculated sequence divergence using the calcDivergenceFromAlign.pl 993 

script to finally render results with the createRepeatLandscape.pl from the same helper suite. 994 

 995 

 996 

Comparative genomics analyses 997 

Genome synteny between long reads assemblies were studied using the nucmer v3.1 program 998 

(Marçais et al. 2018). Outputs were plotted with the R programs ggplot2 (Wickham 2009), 999 
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genoPlotR (Guy et al. 2010) and RIdeogram (Hao et al. 2020). The dotplot in the putative 1000 

centromere region of the M1400 mating-type contig was performed using the online 1001 

megablast alignment tool available at https://blast.ncbi.nlm.nih.gov/(last accessed 13th May 1002 

2024).  1003 

 1004 
To study gene disruption, synonymous and non-synonymous divergence (dS and dN) and 1005 

testing introgression in the MAT-proximal region, we build orthology relationships for genes 1006 

of the genome assemblies of C. parasitica strains M1400, M6697, XIM9508, MRC10, DUM-1007 

005, ESM15 and EP155 and included three genomes of the closely related species 1008 

Cryphonectria japonica (IF-6), Cryphonectria carpinicola (CS3), and Cryphonectria 1009 

naterciae (M3664). Genome, gene annotation and species tree of these closely related species 1010 

were previously published by (Stauber et al. 2020). Genome data were retrieved from NCBI 1011 

bioproject number PRJNA644891 and accession IDs JACWRX000000000 for IF-6, 1012 

JACWRQ000000000 for CS3 and JACWST000000000 for M3664. We run OrthoFinder 1013 

v2.3.7 (Emms and Kelly 2019) analysis on protein sequences. We used the translatorX v1.1 1014 

program (Abascal et al. 2010) with default parameters that use a codon-based approach to 1015 

align orthologous gene coding sequences. To compute dS and dN vaues of one-to-one 1016 

orthologs between pairs of genome assemblies, we use the yn00 program of PAML (Yang 1017 

2007). Estimation of divergence time between haplotypes was performed using computed 1018 

gene dS values and the formula Tgenerations = dS/2μ. We used previous estimates of 1019 

substitution rates in fungi (Kasuga et al. 2002; Taylor and Berbee 2006) and considered that 1020 

C. parasitica undergoes one generation a year (Guerin et al. 2001). We build gene coding 1021 

sequences trees with the outgroup genomes in the MAT-proximal region using iqtree2 1022 

v2.2.2.6 (Minh et al. 2020) with 1000 bootstraps and used the Newick Utilities 1023 

(https://github.com/tjunier/newick_utils) for displaying phylogenetics tree.  1024 

 1025 
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Table 1: Distribution of mating types (MAT-1 and MAT-2) among non-recombining 1372 

haplotypes of the MAT-proximal region in the European invasive Cryphonectria 1373 

parasitica CL1 genetic cluster and the Swiss populations. MAT-Prox1 and MAT-Prox2 1374 

haplotypes were defined based on the clusters of the principal component analysis.  1375 

 1376 

Figures  1377 

 1378 

Figure 1: Linkage disequilibrium (LD) analysis along the contig carrying the mating-1379 

type locus in a Cryphonectria parasitica European invasive population. LD heatmaps 1380 

using single nucleotide polymorphisms (SNPs; n=3815) located on the contig carrying the 1381 

mating-type locus (scaffold_2 of the EP155 genome) in the CL1 genetic cluster (European 1382 

invasive population introduced from North America); pairs of SNPs with high LD, i.e. r2 1383 

>0.9, correspond to the red triangle. The mating-type locus location is shown with a green 1384 

triangle and the MAT-proximal region lacking recombination is shown with a red arrow. The 1385 

two high-LD blocks within the MAT-proximal region are shown with orange arrows. SNPs at 1386 

the limit of the MAT-proximal region and the two high LD blocks were manually highlighted 1387 

with red dotted lines and an orange line. 1388 

 1389 

Figure 2: Genetic structure using single nucleotide polymorphisms (SNPs) in the MAT-1390 

proximal region lacking recombination and other genomic regions in a Cryphonectria 1391 

parasitica European invasive population. A-C. Principal component analysis (PCA). Two 1392 

principal components are presented. Percentage of variance explained by each PC is indicated 1393 

into brackets. Strains are colored according to their mating type (MAT-1 or MAT-2). D-E. 1394 

Neighbor-net network from a SplitsTree analysis. These analyses were performed in the CL1 1395 

genetic cluster (European invasive populations introduced from North America) based on: A 1396 

and D. SNPs (n=2,220) located within the MAT-proximal region along the contig carrying 1397 

the mating-type locus (scaffold_2 of the EP155 genome).; B. SNPs (n=1,595) located in other 1398 

regions along the contig carrying the mating-type locus; C and E SNPs (n=11,289) located on 1399 

other contigs of the EP155 genome. On panels A and D, the two clusters corresponding to the 1400 

MAT-Prox1 and MAT-Prox2 haplotypes are shown with red circles. The identified haplotype 1401 

of each strain is indicated in Table S1. The number of strains within the MAT-Prox1 1402 

haplotype is indicated on panel A by the letter n. The newly sequenced M1400 and M6697 1403 

strains are highlighted with a black rectangle 1404 

 1405 
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Figure 3:  Synteny and rearrangements between the two newly sequenced genomes of 1406 

European invasive strains introduced from North America (M1400 and M6697) in the 1407 

chromosome carrying the MAT-proximal region lacking recombination in 1408 

Cryphonectria parasitica. Blue links show colinear regions and orange links show inverted 1409 

regions in the MAT-proximal region. Grey links show other regions. The mating-type locus is 1410 

located with a green diamond. The MAT-proximal region defined from LD analyses is 1411 

indicated with red arrows. Gene density tracks is shown with a color gradient (blue with low 1412 

density, orange with high density). 1413 

 1414 

Figure 4: Genetic diversity and divergence between non-recombining haplotypes of the 1415 

MAT-proximal region along the contig carrying the mating-type locus in a 1416 

Cryphonectria parasitica European invasive population. A-B. GC content (A) and 1417 

transposable element densities (B) along the contig carrying the mating-type locus 1418 

(tig_0000001) of the M1400 C. parasitica genome. C. Relative divergence (FST) between 1419 

strains of the MAT-Prox1 and MAT-Prox2 haplotypes: D-E. Nucleotide diversity within 1420 

pools of strains for each MAT-Proximal haplotype; F-G-H Tajima’s D for all strains pooled 1421 

and within pools of strains for each MAT-Proximal haplotype; The MAT-proximal region 1422 

defined from LD analyses and the inversion between M1400 and M6697 genomes are 1423 

indicated with red and blue arrows respectively. The mating-type locus location is shown with 1424 

a green triangle. The location of the putative centromere is indicated by a yellow circle. All 1425 

population statistics were computed for the 1990 Swiss population along the mating-type 1426 

contig (tig_0000001) of the M1400 genome per 50-kb window overlapping over 10 kbp. 1427 

Windows containing fewer than 5 SNPs were removed from the analysis.  1428 

 1429 

Figure 5: Annotation of transposable elements (TEs) and estimates of their insertion 1430 

time in the MAT-proximal region lacking recombination and other genomic regions in 1431 

Cryphonectria parasitica. A. Annotation of transposable elements (TEs) and gene density 1432 

along the MAT-proximal region in M1400 and M6697 genomes. On the left panel (1) the 1433 

figure shows the genomic region from 7 Mb on tig_0000001 of the M1400 genome and from 1434 

2.8 Mb on tig_0000060 of the M6697 genome. The mating-type locus is located with a green 1435 

triangle. The two high-LD blocks within the MAT-proximal region are shown with orange 1436 

arrows. Synteny for 10 kb segments with identity > 90 % is shown in red and inversion in 1437 

blue. Transposons larger than 5 kb are shown in purple for the transposons annotated as LTR-1438 

Ty3 by and in green for other transposons. Orthologous genes shared between genomes are 1439 
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shown in black and unique to each each genome in grey. Genes with DU3435 domains 1440 

(putative starship captains) are shown in red. On the right panel (2) the figure shows a zoom 1441 

on the starship present in M1400 and absent in M6697. Transposons larger than 150 pb are 1442 

shown in orange; orthologous genes shared between genomes are shown in black and unique 1443 

to one genome in grey and genes with DU3435 domains are shown in red. Synteny for 1444 

segments with identity > 90 % is shown in red and inversion in blue. B. Relative percentage 1445 

of each TE annotation (in %) in the non-recombining MAT-proximal region and other 1446 

recombining regions of M6697 and M1400 genomes. C. Pairwise genetic distance between 1447 

TE copies within the inversion and around (50 kb) in both M1400 and M6697 genomes. 1448 

Distribution of the Kimura substitution levels computed using the consensus sequence for the 1449 

TEs. D. Estimates of the age of intact copies of LTR within and around the inversion.  1450 

 1451 

Figure 6: Transposable elements content and Starship content in high quality genome 1452 

assemblies from other Cryphonectria parasitica populations from the native and the 1453 

introduced range. A. TE load (percentage of base pairs occupied by transposable elements) 1454 

in the seven high quality genome assemblies in the MAT proximal region and other 1455 

recombining regions. B. Annotation of transposable elements (TEs) and gene density along 1456 

the MAT-proximal region in M1400 and the two Asian genomes ESM15 and XIM9508. 1457 

Orthologous genes shared between M1400 and M6697 genomes are shown in black and 1458 

unique to M1400 in grey as in Figure 5. Genes of ESM15 and XIM9508 are shown in 1459 

darkblue? Genes with DU3435 domains (putative starship captains) are shown in red. 1460 

Transposons larger than 150 pb are shown in orange. Synteny for segments with identity > 90 1461 

% is shown in red and inversion in blue. 1462 

 1463 

Figure 7: Genetic structure using single nucleotide polymorphisms (SNPs) in the MAT-1464 

proximal region lacking recombination (A) and other genomic regions (B) in other 1465 

resequenced Cryphonectria parasitica populations from the native and the introduced 1466 

range. Neighbor-net network from a SplitsTree analysis based on: A SNPs (n=4,120) located 1467 

within the MAT-proximal region along the contig carrying the mating-type locus (scaffold_2 1468 

of the EP155 genome); B SNPs (n= 103,058) located on other contigs of the EP155 genome. 1469 

Color of empty circles around strain ID indicate the genetic clusters the strains belong to 1470 

(CL1, CL2, CL3, CL4; n= 33 strains). Dotted circles indicate strains of the native range and 1471 

plain circles indicate strains of the introduced range. Red and blue dots near strain ID indicate 1472 

the mating type (MAT-1 or MAT-2, respectively). 1473 
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Population CL1 genetic cluster Swiss 1990 population Swiss 2019 population
Haplotype MAT-Prox1 MAT-Prox2 MAT-Prox1 MAT-Prox2 MAT-Prox1 MAT-Prox2

total 36 52 20 51 8 54
Number of strains 
in each PCA cluster MAT-1 30 11 18 17 5 15

MAT-2 6 41 2 34 3 39
% of strains MAT-1 83 21 90 33 63 28

 in each PCA cluster MAT-2 17 79 10 67 38 72
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