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Abstract 

To understand the complex relationship between histone mark activity and gene expression, 

recent advances have used in silico predictions based on large-scale machine learning models. 

However, these approaches have omitted key contributing factors like cell state, histone mark 

function or distal effects, that impact the relationship, limiting their findings. Moreover, 

downstream use of these models for new biological insight is lacking. Here, we present the 

most comprehensive study of this relationship to date - investigating seven histone marks, in 

eleven cell types, across a diverse range of cell states. We used convolutional and attention-

based models to predict transcription from histone mark activity at promoters and distal 

regulatory elements. Our work shows that histone mark function, genomic distance and cellular 

states collectively influence a histone mark’s relationship with transcription. We found that no 

individual histone mark is consistently the strongest predictor of gene expression across all 

genomic and cellular contexts. This highlights the need to consider all three factors when 

determining the effect of histone mark activity on transcriptional state. Furthermore, we 

conducted in silico histone mark perturbation assays, uncovering functional and disease related 

loci and highlighting frameworks for the use of chromatin deep learning models to uncover 

new biological insight. 
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Introduction 

Post-translational modifications on the N-terminal tails of histone proteins, known as histone 

marks, form a key epigenetic mechanism by which eukaryotic cells regulate transcriptional 

activity, via altering chromatin structure and interacting with other transcriptional regulators1,2. 

These epigenetic modifications enable cell plasticity without changes to the underlying DNA 

sequence.  Histone mark dynamics in a given cell are mediated by both internal and 

extracellular queues3,4. Alterations in histone modifications have been found to strongly 

associate with cellular differentiation, cell cycle stages and the development of different 

diseases5–8. For example, as cells mature and differentiate , chromatin accessibility and histone 

acetylation become progressively restricted throughout their lineage9. 

Individual regulatory effects of histone marks on transcription have been widely studied: While 

H3K9ac is associated with active promoter regions10, H3K4me1 is found at  distal enhancers11. 

However, less emphasis has been placed on the extent to which these histone marks directly 

regulate gene expression levels. To investigate if transcriptional levels in different cellular 

contexts can be determined solely from histone modification states, one could correlate levels 

of histone modifications in regulatory elements with mRNA expression individually. However, 

this ignores two additional levels of complexity: Firstly, it is well-known that histone 

modifications interact with other epigenetic factors such as pioneer transcription factors, which 

in turn have been linked to enhancer activation9. Secondly, histone marks themselves act in 

concert and the interaction between different regulatory elements is not necessarily additive. 

To circumvent these challenges it is possible to conduct in silico experiments, predicting 

transcriptional levels from histone mark signals where the observed chromatin state is assumed 

to capture the other contributing epigenetic regulators without directly experimentally 

observing them. 
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This method has been applied in previous work, to investigate which histone mark is most 

predictive of gene expression. For example, addressing this over 20 years ago, Karlić et al.12 

used a linear regression model but only considered histone mark levels at promoter regions, 

and only tested the effect in a single cell type, CD4+ T-cells. González-Ramírez and 

colleagues13 identified predictive histone marks at promoters and other regulatory regions, 

leveraging chromatin interaction data from a Hi-C assay to link enhancers to target genes. 

However, this study also only considered one cell type, mouse embryonic stem cells. Moreover, 

there is some circularity in the selection of training regions based on derived (from their histone 

mark data) promoter and enhancer locations and the model’s input measuring the same histone 

mark levels. Finally, Wang et al.14, investigated the relationship between histone marks and 

transcription but inverted the problem, predicting histone mark levels from transcription. For 

transcription, they used Pro-seq and GRO-seq which labels RNA as it is being transcribed, 

avoiding issues with RNA degradation14,15. The authors used a Support Vector Regression 

model but again only investigated relationships in the K562 cell line.  

Here, we expand on previous research by considering multiple cell types, histone marks and 

regulatory distances. We investigated the effects of seven histone marks on gene expression 

(Table 1) in eleven human cell or tissue types from the Roadmap Epigenomics Consortium16. 

We will refer to these as cell types hereafter, but note that they also contain tissue samples and 

cell lines. We used two neural network architectures to predict gene expression: a simple 

convolutional neural network considering genes promoter regions, and a recently published 

transformer-based, DNA interaction-aware deep learning architecture called Chromoformer17. 

Chromoformer was originally trained to predict expression using seven histone marks. Here 

we adapt and retrain the model to predict based on single histone marks, and pairwise 

combinations of histone marks, to investigate their effect on transcription in isolation. Our work 

highlights how histone mark function, cellular differentiation and genomic distance to 
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regulatory elements all collectively influence the relationship between histone modification 

levels and gene expression. We find that there is no universal histone mark which is 

consistently the most predictive of expression. We recommend that researchers consider all 

three of these influencing factors when determining the effect of histone mark levels on the 

transcriptional state of a cell in their work. 

In the related field of genomic deep learning where models predict expression or epigenetic 

marks from DNA sequence, there has been a shift away from arbitrarily benchmarking 

performance, to prioritising the use of these models to make new biological discoveries18–20. 

This is still lacking for models linking histone mark levels to expression. We aim to address 

this by outlining a framework to use these models to identify the cell type-specific functional 

and disease related genomic loci, leading to new biological insights. 
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Histone 
mark 

Genomic location Transcript-
ional 
relationship 

Proposed function Refere-
nces 

H3K4me1 
 

Activating • Enriched at active and poised 
enhancers.  

• Suggested to fine-tune, rather than 
tightly control, enhancer activity and 
function by recruiting key transcription 
factors. 

11,21  

H3K4me3 
 

Activating • Found at promoter regions 
• Has a direct preferential 

association with the PHD finger of 
nucleosome remodelling factor (NURF) 
complex which remodels chromatin, 
making the DNA accessible for gene 
transcription. 

22,23  

H3K9me3 
 

Repressive • Involved in the formation of 
heterochromatin,  

• Found at transposable elements, 
satellite repeats and genes, where it 
ensures transcriptional silencing.  

• These heterochromatin has also been 
found to relate to cell lineage-
dependent, transcriptional silencing. 

24–26 

H3K27me3 
 

Repressive • Act as silencers in promoters and gene 
bodies that regulate gene expression via 
proximity or looping.  

• Function has been linked to Polycomb 
repressive complexes (PCR1,PCR2) 
which can be recruited and contribute 
to chromatin compaction. 

27–30 

H3K36me3 
 

Repressive • Enriched in gene bodies. 
• A binding partner for histone 

deacetylases (HDACs) which prevent 
run-away RNA polymerase II (Pol II) 
transcription. 

31–33 

H3K27ac 
 

Activating • Enriched at active enhancer and 
promoter regions (differing from 
H3K4me1 which also indicates poised 
enhancers).  

• Recruits transcription factors to 
increase transcription. For example, 
bromodomain-containing protein 4 
(BRD4) which enhances Pol II 
recruitment and increases transcription. 

34,35 

H3K9ac 
 

Activating • Enriched at promoter regions. 
• Mediates super elongation complex 

(SEC) and pol II chromatin occupancy 
on the proximal promoter region thus 
aiding in the switch from transcription 
initiation to elongation. 

10,36 

 
Table. 1 Information on the primary genomic location, transcriptional relationship, and 

proposed function for the seven histone marks used to predict expression. 
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Methods 

Data collection and processing 

The data for our analysis was derived from the Roadmap Epigenomics Consortium16 and 

follows the same preprocessing pipeline used by Chromoformer17. We used a subset of eleven 

cell types from Roadmap, for which gene expression, histone mark, and 3D chromatin 

interactions profiles were available (Supplementary Table 1). Specifically we included data 

from H1 embryonic stem cells (E003), H1 BMP4 derived mesendoderm (E004), H1 BMP4 

derived trophoblast (E005), H1 derived mesenchymal stem cells (E006), H1 derived neuronal 

progenitor cultured cells (E007), HUES64 embryonic stem cells (E016), Liver (E066), 

Pancreatic islets (E087), A549 EtOH 0.02pct lung carcinoma (E114), GM12878 

lymphoblastoid (E116) and HepG2 hepatocellular carcinoma (E118). TagAlign-formatted, 

ChIP-seq read alignments for seven histone marks - H3K4me1, H3K4me3, H3K9me3, 

H3K27me3, H3K36me3, H3K27ac, and H3K9ac were used. For consistency, the data was 

subsampled to 30 million reads and reads themselves were truncated to 36 base-pairs, reducing 

possible read length biases. The alignments were sorted and indexed using Sambamba37 v0.6 

and read depths for each base-pair position were derived along the hg19 reference genome 

using Bedtools38 v2.23. Both the promoter and distal models used the averaged log2-

transformed 100 base-pair binned signal with our distal model also averaging at 500 and 2,000 

base-pairs to also use as model input features. Using three different resolutions of the histone 

mark signal in the distal model is intended to represent prior knowledge that epigenetic 

regulation operates on differing scales and has been shown to improve performance of other 

models39. Promoter-capture Hi-C 3D chromatin interaction data40 was incorporated into the 

distal model and mapped to the Roadmap cell types using the same approach as previously 

described for Chromoformer17. Reads Per Kilobase of transcript, per Million mapped reads 

(RPKM) normalised gene expression levels from protein coding genes were downloaded from 
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Roadmap for the matching cell types. Both the promoter and distal models predict the log2-

transformed RPKM (log2(RPKM+1)) gene expression levels. The TSS was identified using 

RefSeq annotations (release v210)41 for each gene. Our final dataset included a total of 18,955 

genes. 

Promoter model 

Our promoter model is a custom convolutional neural network, similar in architecture to 

DeepChrome42. The model takes in a symmetrical 6,000 base-pair genomic window averaged 

at 100 base-pair bins, centred on the TSS of the gene of interest. The model architecture is 

composed of three standard convolutional blocks. These blocks each consist of a one-

dimensional convolutional layer, batch normalisation, rectified linear unit (ReLU) activation, 

max-pooling and dropout. This was followed by two fully-connected blocks, which have 

dropout (in the first block), a dense layer, ReLU activation and a final output layer with linear 

activation. The convolutional blocks and their sliding window converted the histone mark 

signal into a position-wise representation highlighting genomic loci that correlate with 

expression. The fully connected blocks scaled down the size of the representation, to finally 

produce a single score representing the gene’s RPKM. The size of each layer is provided in our 

github repository (https://github.com/neurogenomics/chromexpress). 

Distal model 

Our distal model architecture was based on the Chromoformer model17. This is an attention-

based model which uses cell type-specific promoter capture Hi-C data to identify interacting 

regions in a 40,000 base-pair genomic window centred on the TSS. This approach captures the 

histone mark signal both at the TSS and at putative cis-regulatory regions. The model has three 

independent modules at different resolutions (100, 500 and 2,000 base-pairs), producing a 

multi-scale representation of the histone mark landscape. Each module goes through a 

transformer block before being combined and passed through a full-connected block with 
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ReLU activation and a final output layer with linear activation. The architecture of the model 

is discussed in more detail in the original publication17. 

Model training 

The same model training approach was used for both the promoter and distal model. Model 

training and evaluation was based on a 4-fold cross-validation regime to give a stronger 

estimate of model performance. The total 18,955 genes were split into four sets, 5045, 4751, 

4605, and 4554 respectively, with genes from the same chromosome in the same split to avoid 

data leakage43. For every fold, one set was used as the blind test set, while the other three sets 

were used for model training and validation. Performance on the test set for each fold was 

measured with Pearson’s correlation coefficient. A separate model was trained for each histone 

mark, cell type and cross-validation fold combination. 

The models were trained using the ADAM44 optimiser with default parameters with a batch 

size of 64 over a maximum of 100 epochs. An early stopping regularisation was implemented 

based on the model’s validation loss with a patience of twelve epochs. The initial learning rate 

was set at 0.001 and decayed by a factor of 0.2 when the loss did not improve after a patience 

of three epochs. Mean squared error (MSE) was used as the loss function.  

Histone mark levels 

Histone mark occupancy was measured separately for our promoter and distal models and for 

each cell type, histone mark and cross-validation fold. It was measured as the average log2-

transformed, 100 base-pair binned read depth of the histone mark signal. For the promoter 

model, this signal was taken from the 6,000 base-pairs around the TSS of each gene and for 

the distal model, from the full 40,000 base-pairs. 

Gene expression state 

Histone mark occupancy was measured for both active and inactive genes. A gene was defined 

as active or inactive based on whether its expression level is above or below the median for 
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that cell type. This approach was first implemented in DeepChrome42 and has been frequently 

used in the literature17. 

Correlation analysis 

We measured agreement in model performance for both our promoter and distal models by 

matching the cross-validation fold and cell type for each model trained on a pair of different 

histone marks. The Pearson correlation coefficient was used to quantify agreement. 

In silico perturbation of histone mark activity levels 

In silico histone mark perturbation was performed on the distal model trained on a single mark. 

Although we have trained Chromoformer with multiple histone marks as input, we chose to 

use it trained on a single mark for the perturbation analysis since perturbing one mark will 

likely affect the histone mark occupancy of other marks in the same region which would not 

be possible to accurately account for in the model.  

We selected one active and one repressive mark which are found at  both promoter and distal 

regulatory elements - H3K27ac and H3K27me3. Perturbation experiments were carried out on 

active genes for the active mark model and inactive genes for the inactive mark model (see 

Methods - Gene expression state), to measure the effect on expression of reducing the levels 

of the histone mark. The predictions from the different k-fold versions of the model were 

averaged, similar to the approach commonly used in sequence to expression models45–48. For 

the promoter histone signal, the full 6,000 base pairs around the TSS were perturbed, whereas 

for the distal histone signal, bins of 2,000 base pairs across the 40,000 base pair receptive field 

were perturbed iteratively (similar to the approach for DNA sequence perturbation used by the 

genomic deep learning model CREME49). The implemented perturbation levels were between 

0 and 1 inclusively in 0.1 steps. The code to perform the in silico histone mark perturbation is 

available on our github repository (https://github.com/neurogenomics/chromexpress). 
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As well as averaging the predictions from the different k-fold versions, we also tested the 

correlation between the different folds to ensure the model is learning consistent regulatory 

code. Moreover, we benchmarked this concordance against Borzoi45, a genomic deep learning 

model with the current largest receptive field of 524,000 base pairs. Here, for a fair comparison, 

we only tested Borzoi’s concordance in the centre 40,000 base-pairs to match Chromoformers 

receptive field, for the RNA predictions in the same cell types as those used in our analysis and 

added up to 500 random genetic variants to the sequences of 1,000 genes to match our 

perturbation test. 

In silico perturbation enrichment in quantitative trait loci studies 

The averaged in silico perturbation experiments on the active (H3K27ac) model for each cell 

type were filtered to those greater than 6,000 base-pairs upstream of the TSS to concentrate on 

distal, cell type-specific regulatory regions as opposed to promoter regions or gene bodies 

(which have a median length of ~25,000 base pairs50, longer than the downstream receptive 

field of the model). These were next sorted based on their predicted change in expression and 

split into deciles. 

The fine-mapped expression quantitative trait loci (eQTL) data based on the UK Biobank 

population was sourced from Wang et al., 202151. Causal SNPs were identified from those in 

linkage disequilibrium (LD) using FINEMAP v1.3.152 and SuSiE v0.8.153. The resulting fine-

mapped SNPs were filtered to those with a SuSiE causal probability (posterior inclusion 

probability (PIP)) > 0.9 in the tissue of interest and with a PIP <0.1 in other tissues to get just 

the high confidence, tissue-specific fine-mapped SNPs. The ROADMAP cell types were 

matched to five of the tissues used in eQTL study where the tissue assayed were identical across 

the two (available on our github repository: https://github.com/neurogenomics/chromexpress). 

To test for enrichment of the fine-mapped, tissue-specific SNPs, a bootstrap sampling 

experiment was implemented where the proportion of SNPs found in each decile were 
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compared against 10,000 randomly sampled regions from all deciles. P-values were derived 

and adjusted using false discovery rate (FDR) correction for multiple testing. Since the distal 

model uses Hi-C chromatin interaction data as input, we also ran this eQTL enrichment test on 

the matched cell type and gene, significant promoter capture Hi-C interactions to compare 

against the model’s enrichment performance. To match the model’s tested regions, the 

chromatin interaction data was filtered to just those upstream of the gene. Scripts detailing the 

approach are available on our github repository 

(https://github.com/neurogenomics/chromexpress). 

In silico perturbation disease enrichment 

To test for disease enrichment, the top decile of the same averaged in silico perturbation 

experiments on the active model, filtered to just those greater than 6,000 base-pairs upstream 

of the TSS, were considered. For this analysis, predictions in the liver and neuronal progenitor 

cells (NPCs) were used due to their potential respective relationships with liver and neuronal 

diseases. A third group of regions comprising the top decile across all cell types was included 

to look for cell type-consistent disease enrichment. 

Summary statistics for genome-wide association studies (GWAS) for liver diseases - non-

alcoholic fatty liver disease (NAFLD)54 and hepatitis55, glial diseases - Parkinson’s56 and 

Alzheimer’s57 and neuronal diseases - amyotrophic lateral sclerosis (ALS)58, schizophrenia59, 

autism spectrum disorder60 and bipolar disorder61 were downloaded from the IEU GWAS 

portal62 and the BioStudies database63 and were uniformly processed with MungeSumstats 

v1.11.364 (default settings, converting build to hg19 where necessary and saving in ‘LDSC’ 

format). 

We applied stratified LD score regression (s-LDSC)65 v1.0.1 (https://github.com/bulik/ldsc) to 

test for disease enrichment. Specifically, annotation files for each of the three groups of 

genomic loci were first created with Phase 3 of the 1000 genomes reference. Followed  by the 
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generation of LD scores with a window size of 1 centiMorgan (cM) i.e. approximately 1 million 

base pairs, filtering to HapMap3 SNPs to match the baseline model. Finally, the enrichment 

analysis was run for the GWAS summary statistics across the three groups as well as those in 

the baseline model whilst excluding the major histocompatibility complex (MHC) (due to the 

known difficulties predicting LD in this region)65. 
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Results 

Active histone marks prove most informative at promoter regions 

We first focused on the performance of histone mark levels from the promoter regions of the 

gene of interest using our promoter model. Overall, we found H3K4me3, a mark located in 

active promoter regions22, to be the best performing (Fig. 1a). Moreover, active promoter 

marks H3K4me3, H3K27ac34 and H3K9ac10 made up the three top performing marks, all with 

a Pearson’s correlation above 0.73. The fourth best performing histone mark, H3K4me1, is 

found at active enhancers11. It likely performed worse than the other active marks due to the 

limited range of the model, which only took into consideration a gene’s promoter region. 

Repressive marks proved less informative with H3K9me324, H3K27me327 and H3K36me366 

making up the three worst performing marks. Importantly, there was high variability in 

performance across the histone marks  with a correlation difference of 0.25 between the best 

active and worst repressive mark (range of Pearson correlation coefficients: 0.52 - 0.76).  
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Fig. 1 The performance of the promoter model shows the best gene expression predictions 

based on active histone marks H3K4me3, H3K27ac and H3K9ac. (a) Model performance 

measured by the Pearson correlation coefficient on the blind test sets across each histone mark. 

The whiskers represent the standard deviation across the different cell types and the 4-fold 

cross-validation. (b) Performance split by different cell types from Roadmap. 
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The predictive performance of active and repressive marks differ based on cell state at 

promoter regions 

Splitting the models’ performance across the different cell types highlighted histone mark 

groups with similar variations in their scores across cell types (Fig. 1b). This is most notable 

for active promoter marks (H3K4me3, H3K9ac and H3K27ac). To formally evaluate this trend, 

we calculated the correlation between the models’ predictions across the different genes, cell 

types, histone marks and cross-validation folds (Fig. 2a). One distinct group of highly 

correlated histone marks were apparent (highlighted in blue in Fig. 2a), corresponding to the 

active histone marks previously observed. Interestingly, H3K9me3 showed the lowest 

correlation with the other histone marks, including with H3K36me3 and H3K27me3, the other 

repressive marks. The samples collected for Roadmap16 can be classified into those taken from 

Embryonic stem cells (ESC), cells differentiated from ESCs, adult bulk tissues and cancer cell 

lines (Supplementary Table 1). Active histone mark activity levels were significantly more 

predictive of expression in ESC than primary tissue whereas the opposite was noted for 

repressive histone mark activity levels which was more predictive in primary tissues than ESC 

(Fig. 2b). The multi-modal performance, visible in Fig. 2b, is the result of a combination of 

the histone mark and cell type being tested (Supplementary Fig. 1). These results indicated 

that the most accurate method by which to predict gene expression from the promoter region 

depends on the extent to which the cell type of interest has differentiated - active marks like 

H3K4me3, H3K9ac and H3K27ac were most predictive for cells at earlier stages of their 

differentiation process whereas repressive marks, like H3K9me3, fared better in fully 

differentiated tissues or cells. 
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Fig. 2 The predictive performance of the promoter model across samples clusters by 

histone mark function. (a) Correlation matrix of the promoter model’s predictions by the 

different histone marks across each gene, cell type and cross-validation fold. H3K4me3, 

H3K9ac and H3K27ac were characterised by high positive pairwise correlations (highlighted 

in blue). Bars along the y-axis show the hierarchical clustering dendrogram. (b) Violin plot of 

the model’s performance on active and repressive histone marks measured by their Pearson 

correlation coefficient on the blind test sets. The cell type performance is grouped by the cell 

state - Embryonic stem cell (ESC), ESC derived cell, adult primary tissue or cancer cell line. 

Significance was based on the Mann-Whitney U-Test with false discovery rate (FDR) 

correction for multiple testing, with p-value indicator: * < 0.05. 
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Higher histone mark levels result in  better predictive performance at promoter regions 

To investigate what was driving the difference in performance for active and repressive histone 

marks in the different cell states, we measured the histone mark levels in the promoter regions 

for highly and lowly expressed genes (Fig. 3, see Methods for details). We observed a strong 

correlation between model performance and histone mark levels for active histone marks in 

highly expressed genes, and conversely, for repressive marks in lowly expressed genes, 

indicating that the model learns the functional significance of the different histone marks (Fig. 

3a). For highly expressed genes (Fig. 3b), repressive marks, H3K9me3, H3K36me3 and 

H3K27me3, had higher histone mark levels in ESCs than primary tissue (although for 

H3K9me3 this was not significant after multiple test correction). Conversely, active marks, 

H3K4me3, H3K9ac and H3K27ac, showed varying activity across primary tissue and ESCs. 

For lowly expressed genes (Fig. 3c), histone mark levels tended to be higher in ESCs than in 

primary tissue across histone marks. Overall, our analysis highlighted that higher histone mark 

levels in a gene where the expression status matched the function of the histone mark (active 

vs repressive), led to better performance of the model. 
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Fig. 3 Higher histone mark levels are associated with better predictive performance. (a) 

Correlation between the histone mark levels and model performance for each cell type, k-fold 

combination. This is split by repressive and active marks, as well as  highly and lowly 

expressed genes. (b) Violin plot of histone mark levels measured by the average log2-

transformed, read depth in the promoter region (6,000 base-pairs around the transcription start 

site) for highly expressed genes. The cell types are grouped by the cell state - Embryonic stem 

cell (ESC), ESC derived cell, adult primary tissue or cancer cell line and averaged at the level 

of cell type and k-fold. (c) Average histone mark levels for lowly expressed genes. Significance 

was based on the false discovery rate (FDR) multiple test correction, with p-value indicators: 

**** < 1e-4, *** < 1e-3, ** < 1e-2, * < 0.05, ns >= 0.05. 
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Active marks are most predictive in the distal model 

To consider histone mark levels outside of the genes’ promoter regions, we next tested a model 

architecture with a much larger receptive field (up to 40,000 base-pairs around the TSS). We 

used Chromoformer17, a transformer-based architecture, which accounts for distal histone mark 

levels, weighting important genomic regions using cell type-specific DNA interaction data. We 

trained this distal model on each single histone mark and benchmarked the performance across 

histone marks, and also against the performance when trained on all seven histone marks 

combined (Fig. 4a). Again, we found H3K4me3, H3K9ac and H3K27ac to be the top three 

performing marks with very little difference in overall performance between them (mean 

Pearson R of 0.762, 0.757 and 0.749 respectively). All three histone modifications are active 

marks while only H3K27ac34 is found at both promoters and distal regulatory regions 

(enhancers).  
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Fig. 4 Active histone modifications performed best at predicting gene expression in the 

distal model. (a) Model performance was measured by the Pearson correlation coefficient on 

the blind test sets for each histone mark. The whiskers represent the standard deviation across 

the different cell types and the 4-fold cross-validation. The red dashed line shows the model’s 

performance when trained on all seven histone marks together. (b) Predictive performance is 

shown split by the different cell types in Roadmap. (c) The improvement in performance for 

each histone mark by expanding the receptive field outside of the promoter region with the 

distal model. The largest increase in performance is observed for H3K36me3. The whiskers 

indicate the standard deviation across cell types and folds. 
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Receptive field expansion and multi-histone mark predictions yield diminishing returns. 

The performance of incorporating distal histone mark levels in a model consistently but 

marginally increased the Pearson correlation coefficients. The range of improvement in 

correlation varied from 0.01 - 0.15, despite the substantial increase in receptive field and model 

architecture complexity (Fig. 4c). Compared to the promoter model, although the same histone 

mark performance ranking was observed, marks which are known to affect genomic locations 

outside of promoter regions showed the highest relative improvement, specifically H3K36me3, 

H3K27me3 and H3K27ac (Fig 4c, Table 1).  

The relationship between histone mark type and cell state found for the promoter model, where 

active histone marks were more predictive in ESC and repressive in primary tissues, was 

similarly observed for the distal model (Fig. 4b, Supplementary Fig. 2a-b). Moreover, we 

investigated the histone mark levels across the full 40,000 base-pair receptive field of the distal 

model and found the same trend as for the promoter model where the model picks up on known 

biology of histone mark prevalence: We observed strong correlations between model 

performance and histone mark levels for active histone marks around highly expressed genes, 

and conversely, for repressive marks around lowly expressed genes (Supplementary Fig. 2c). 

To further interrogate the contributions of histone marks to the prediction of expression in our 

distal model, we benchmarked performance across pairs of histone marks with the top three 

performing marks, H3K4me3, H3K9ac and H3K27ac (Fig. 5a). All combinations with the top 

three histone marks were better performing than any of the top three marks by themselves. 

However, this improvement was relatively small (< 0.04 mean increase in Pearson R for the 

best histone mark combination) and was only significant for a handful of combinations. 

This result highlights that incorporating additional histone marks in the prediction led to a 

consistent, albeit small, boost in performance, regardless of the histone mark type (active or 

repressive). This became most evident when we combined pairs of the top three performing 
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marks: All three are active marks and two are confined to promoter regions, but their 

combination still resulted in improved performance over the individual marks (Fig. 5b). 

Notably though, combinations including H3K27ac, an enhancer mark, showed greater 

improvement over combinations including only promoter marks. Importantly, combining the 

top three marks with another mark showed a mean improvement of 0.043, compared to a mean 

improvement of 0,062 when using all marks (red dashed line in Fig 5a). This means that adding 

an additional five histone marks to the distal model would increase performance (Pearson R) 

by another 0.02, highlighting the diminishing returns of including  additional histone mark 

information.  

Our analysis further highlighted the combinatorial predictive capabilities of H3K36me3 (Fig. 

5a,c). H3K36me3 is a repressive mark67 with strong distal effects on gene expression. This 

mark showed the largest improvement from the promoter to the distal model (Fig. 4c) and when 

combined with the top three scoring histone marks, was its best performing pair, even when 

compared to combinations of the top three performing marks (Fig. 5a) and far improved 

performance compared to the addition of the other marks (Fig. 5c). Conversely, when paired 

with the repressive mark H3K27me3, H3K36me3 did not result in the best performing pair 

(Supplementary Fig. 3) but did still improve performance on the individual mark. This 

highlights the complementary information H3K36me3 provides in addition to the top three 

performing active promoter and enhancer marks. 

We also investigated whether the performance increase for the top three marks when coupled 

with H3K36me3 was driven by bivalent genes. Bivalent genes are characterised by the 

presence of both repressive and active histone mark signals at their promoter and are known to 

silence developmental genes in ESCs while keeping them poised for activation68. However, the 

model performance in bivalent genes for ESCs did not notably improve over non-bivalent 

genes (Supplementary Fig. 4). 
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Fig. 5 Pairwise combinatorial performance of distal model in predicting gene expression 

based on two histone marks. (a) Performance was measured by the Pearson correlation 

coefficient on the blind test sets across combinations of histone marks. The whiskers represent 

the standard deviation across the different cell types and the 4-fold cross-validation. Data is 

averaged at the level of cell type and k-fold. The red dashed line shows the model’s 

performance when trained on all seven histone marks together. Significance based on false 

discovery rate (FDR) multiple test correction, with p-value indicators: ** < 1e-2, * < 0.05, ns 

>= 0.05. (b) Performance improvement for combinations of the top three performing marks 

from the single histone mark distal model. (c) Performance improvement over the single 

histone mark distal model for combinations using H3K36me3 versus the average of the other 

marks. 
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In silico histone mark perturbation prioritises functionally relevant genomic loci and 

disease relevant cell types 

Up to this point, our work has shown the performance of chromatin to expression deep learning 

models and how they encode known biological relationships between histone mark levels and 

expression. However, none of this highlights new information about gene regulation or disease. 

In silico perturbation enables experimentation to investigate the effect on gene expression of 

varying histone mark levels in a cell type and gene-specific manner that would be impractical 

to undertake experimentally in vitro or in vivo. 

We first investigated the effect of in silico perturbation experiments at an aggregate level, 

varying levels of histone mark activity, as well as distances from the TSS using the distal model 

trained on one active (H3K27ac) and one repressive (H3K27me3) mark (Fig. 6). We used 

models trained on single marks to avoid issues where perturbing one type of histone mark will 

affect another mark’s activity in the region. Here, we permuted either the entire TSS or the 

distal regions in 2,000 base pair bins (see Methods -  In silico perturbation of histone mark 

activity levels). Furthermore, we averaged predictions across the four k-fold model versions, a 

standard approach in silico mutagenesis experiments for genomic deep learning models45,46,48. 

This step may not have been required given the notably high correlation between the different 

models’ predictions (Supplementary Fig. 5a), which was on par with, if not slightly better, 

than that of the genomic deep learning model Borzoi45 (Supplementary Fig. 5b). This 

indicates that models trained on histone mark levels show a similar ability to learn consistent 

regulatory code across differing training sets compared to that of their genomic counterparts.  

For the active model, we noted a clear relationship between reducing histone mark levels and 

large predicted decreases in expression at the promoter (Fig. 6a) while we found only minor 

decreases at distal regulatory regions (Fig. 6b). This matches the known functional relationship 

between promoter and enhancer activity with expression and also the in silico perturbations of 
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DNA sequence in genomic deep learning models46. However, reducing repressive histone mark 

levels showed little relationship with increased expression (Fig. 6c-d) which may be due to the 

repressive mark’s relatively worse performance overall (Fig. 4a). The relationship between 

perturbation and distance and their effect on expression is more apparent when we view the 

predicted quantile change in expression by distance from the TSS while removing histone mark 

activity completely (Fig. 6e-f). Here, we saw the highest predicted change near the TSS, 

reducing as distance to the TSS increases for both the active and repressive model. 

Interestingly, this reduction was not symmetrical upstream and downstream of the TSS, with 

downstream loci having a greater effect on expression on average. We believe this was a result 

of the length of the gene body (median length ~25,000 base pairs50), which would incorporate 

the entire downstream receptive field of the model for most genes and thus lend to greater 

importance for RNA-seq predictions rather than assays of transcription initiation like CAGE-

Seq69. Our analysis highlighted that on average, perturbations to histone mark signals in the 

gene body had a greater predicted effect than distal regulatory regions upstream. 
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Fig. 6 Effect of in silico histone mark perturbation on expression. The effect on predicted 

expression (y-axis) of changing the proportional levels of measured histone mark activity (x-

axis) for all cell types and genes, averaged across the four k-fold models. The distal model 

trained on a single histone mark was used to measure the effects of a perturbed active mark - 

H3K27ac (a,b) or a repressive mark - H3K27me3 (c,d) in 2,000 base pair bins for distal or at 

the promoter. (e,f) The effect of distance on expression change is shown when the histone mark 

activity is completely removed at a specific location for the active (e) or repressive (f) mark. 

The distribution of all gene expression changes in all cell types split into 20 quantile bins. 
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We next considered whether these in silico perturbation experiments could be used to gain 

insight into the cell type-specific regulatory function in gene expression and disease, using 

genetic variants to test for functional and disease enrichment (Fig. 7). Given that the active 

model captured known biological relationships in the in silico perturbation, we focused on this 

model’s perturbation experiments. Moreover, we only considered upstream predictions to 

capture distal regulatory regions which vary across cell types as opposed to promoter and gene 

body signals. 

To test the model’s ability to capture functional loci we used a large scale, tissue-specific, fine-

mapped eQTL set based on the UK Biobank population70. First, we split the loci into deciles 

sorted based on the model’s predicted change in expression (decile 10 having the largest 

predicted effect). We implemented a bootstrap sampling test to compare each decile to 

randomly sampled upstream loci for enrichment of the fine-mapped eQTLs (see Methods - In 

silico perturbation enrichment in quantitative trait loci studies). We found significant 

enrichment for the top decile for all cell types tested (Fig. 7a), indicating that the model 

correctly predicted the loci which contributed most to the cell type-specific gene expression. 

Furthermore, we wanted to test how much the distal model improves upon the Hi-C chromatin 

interaction data alone for fine-mapped eQTL enrichment in these same loci, and found an 

improvement in four of the five tissues (Supplementary Fig. 6). 

We next tested whether these loci also harbour known disease related genetic variants. We used 

s-LDSC65 with GWAS for eight different  liver and brain diseases54–61. Test regions were based 

on the top cell type-specific decile with the largest predicted effect for liver and NPCs, as well 

as the averaged top decile across all cell types of upstream loci (Fig. 7b). S-LDSC measures 

enrichment of disease genetic variants accounting for the obscuring nature of LD65. Here, we 

used the neuronal cells and liver tissue for their predicted relationship with brain and liver 

diseases, respectively. We used the top decile for all cell types to look for non-cell type-specific 
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disease enrichment. While none of the expected cell type-specific significant enrichments were 

detected, the neuronal disease GWAS were tending towards significance in neuronal disease 

related GWAS. Moreover, two significant associations (Alzheimer’s disease and bipolar 

disorder) were detected after multiple testing correction for the non-cell type-specific disease 

enrichment, highlighting the functional importance to disease of regions where changes in the 

histone mark activity levels was predicted to have a large effect on expression across cell types. 

  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 29, 2024. ; https://doi.org/10.1101/2024.03.29.587323doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.29.587323
http://creativecommons.org/licenses/by-nc/4.0/


 

Fig. 7 In silico histone mark perturbation experiment highlights functional and disease 

enrichment. (a) Upstream in silico histone mark perturbation experiments from the active 

model were sorted into deciles based on their predicted change in expression (x-axis). Each 

decile was tested for enrichment of fine-mapped eQTL interactions in matched cell types and 

compared against bootstrap sampling random upstream loci 10,000 times to generate p-values 

of enrichment (y-axis). (b) False discovery rate (FDR) P-value enrichment scores for the top 

decile (based on their predicted change in expression) derived from all cell types (non-cell 

type-specific), liver tissue or neuronal progenitor cells (x-axis). Enrichment tests were 

conducted with s-LDSC and genetic variants relating to different diseases (y-axis). FDR 

adjustment was applied for each GWAS included. 
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Discussion 

We present the most comprehensive deep learning study of the relationship between histone 

mark levels and transcription to date. We considered multiple cell types and histone marks at 

differing receptive fields and demonstrated how the prediction of gene expression is dependent 

on three key contributing factors - histone mark function, regulatory distance and cellular 

states.  

For our analysis, we used the Roadmap16 data repository, benefiting from the standardised 

experimental approach. We investigated the genome-wide activity of seven histone marks 

across eleven cell types. For the histone mark ChIP-Seq read alignments, we subsampled to 30 

million reads to enable a fair comparison across marks. While for gene expression, we utilised 

RPKM values which measures the mRNA abundance of transcripts normalised by gene length, 

avoiding any potential within sample bias. Since model predictions were made in the same cell 

type as training, there was no need to standardise gene expression levels across cells71. To 

ensure robust benchmarking results, we repeated training of both our promoter and distal 

models across a 4-fold cross-validation, ensuring the test set genes were grouped by 

chromosomes to avoid any data leakage43 - where data in the training set is related to data in 

the test set, artificially inflating model performance. To run each cell type, histone mark or 

combination of histone marks, for each cross-validation fold using both the promoter and distal 

models, was a computationally intensive task. This resulted in 1,276 training and prediction 

iterations which were all run using an A100 80GB GPU. To avoid overfitting over such a 

substantial number of iterations, we automated hyperparameter tuning for both models using a 

learning rate decay and early stopping regime, holding out an independent validation set of 

genes for monitoring.  

Both our promoter and distal models were developed as quantitative, regression models, 

predicting a gene’s log2 RPKMs, which has been shown to yield better generalisation and 
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interpretability than binary classification models72. For the promoter model, following the same 

approach as past benchmarking work72, we implemented an intentionally simple convolutional 

neural network architecture based a relatively small receptive field around the TSS to compare 

histone mark performance. On the other hand,  our distal model, Chromoformer17, was a 

transformer-based architecture accounting for distal histone mark levels in a weighted manner 

based on DNA interaction data. One limitation is the receptive field of our distal model which 

extends 40,000 base-pairs around the TSS. Although this is a large window and 

computationally intensive to include in such a model, it is a fraction of the known distance at 

which DNA interactions can occur. For example, Hi-C experiments capture cis-interactions up 

to 1 million base-pairs away73. 

The results of our promoter region analysis showed that the active marks H3K4me3 and 

H3K9ac were the most predictive of gene expression (Fig. 1). However, their optimal 

performance was dependent on the cell state, performing better in ESCs whereas repressive 

marks like H3K9me3 performed relatively better in adult primary tissues (Fig. 2b). We 

concluded that the stage of cell differentiation was the driving factor of performance for active 

and repressive marks: Active marks performed better at early stages of lineage commitment 

whereas repressive marks were more predictive in fully differentiated cells. Furthermore, we 

noted that for active genes, the relationship between a histone mark’s levels and performance 

replicated known biology: Observing a strong correlation for active histone marks in highly 

expressed genes, and conversely for repressive marks in lowly expressed genes (Fig. 3a). This 

highlighted that higher histone mark levels were beneficial for the model, leading to greater 

predictive performance in the correct context. In relation to histone mark levels at the TSS, we 

also noted that for inactive genes, histone mark activity is reduced with cell differentiation (Fig. 

3b). The concept that cell lineage commitment leads to globally lower histone mark levels has 

been previously noted74. 
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For our distal model, active marks H3K4me3, H3K9ac and H3K27ac were the best performing 

(Fig. 4a). Interestingly, these three marks, two of which are linked to the TSS of genes they 

regulate, outperformed H3K4me1 which is associated with distal enhancers11. One possible 

explanation for this was investigated in a recent study46 which found that, when predicting 

expression from DNA sequence, a similar attention model prioritised sequences at the promoter 

region over distal regulatory regions. The reason being that given the multiple choice of 

enhancer and other regulatory regions and their relatively small influence on gene expression, 

a model will prioritise the information at the promoter region. We believe the same effect could 

have contributed to our results whereby the active promoter mark information contributed to 

expression to a greater degree than distal regulatory regions. This same relationship was clearly 

notable in our in silico perturbation experiments (Fig. 6e-f). Moreover, given that H3K4me1 

is indicative of poised rather than active enhancers11, it would presumably be less predictive of 

gene activity. 

A key point of our findings is the marginal return in performances by: 1. Extending from an 

intentionally simple local promoter model to an attention based, computationally complex 

model which accounts for distal histone mark levels (Fig 4c), and 2. Increasing the number of 

histone marks included in the model (Fig 5b). We noted that understanding the cell state 

(undifferentiated or fully differentiated) and the gene state (highly or lowly expressed) of 

interest and choosing the most appropriate mark for these had a greater impact on performance 

than the number or receptive field of histone mark levels considered. 

Comparing performance across the promoter and distal models, H3K27ac showed the biggest 

gain of the top three performing marks (Fig 4). This was expected given its relationship with 

active promoters and enhancer regions34. However, its performance based solely in promoter 

regions was still relatively strong, which was reassuring given the mark’s prevalence in 

complex disease research.  
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We also trained our distal model on pairs of histone marks, showing that the added performance 

of incorporating additional histone marks diminishes markedly after this point. This result 

could benefit researchers wishing to capture transcription in a cell type of interest from limited 

histone mark information. The paired analysis also highlighted the strong combinatorial 

performance of H3K36me3. This repressive mark was the best performing choice as a pair with 

any of our three top marks (Fig. 5a) and was the fourth best performing mark of the single 

histone mark analysis (Fig. 4a). H3K36me3 is a canonical mark of transcription, serving as a 

binding partner for histone deacetylases (HDACs) which prevent run-away transcription of 

RNA polymerase II32. H3K36me3 is generally enriched in gene bodies of mRNAs31, outside 

of the TSS, which may explain its relatively poor performance in the promoter model and why 

the improvement with the distal model for this mark was the highest of any mark tested (Fig. 

4c). 

Finally, we performed an array of in silico histone mark level perturbation experiments, 

showing the relationship between distance from the TSS and a regulatory region’s effect on 

gene expression (Fig. 6). Our analysis highlighted the very high correlation for the in silico 

perturbations between the different cross-validation fold models (Supplementary Fig. 5). A 

possible advantage of histone mark deep learning models over genomic deep learning models 

trained on DNA sequence is that they offer an alternative to making single base pair level 

changes such as genetic variants which are notoriously difficult to interpret, particularly as the 

genomic window considered by the model increases45,48,49. By identifying genomic loci of 

interest based on perturbing histone mark levels, our model avoids the majority of these issues. 

Furthermore, using these identified genomic loci, we developed a framework by which such 

models can be applied to test for both functional and disease enrichment in a cell type-specific 

manner (Fig. 7). The results for the disease enrichment did not recapitulate projected 

relationships for the neuronal progenitor cells or liver, which could be a result of the imperfect 
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cell type matching, the limited overlap between the disease related genetic variants and the 

relatively small window of upstream genomic loci considered, or the observed differences in 

the measured genetic effects on gene expression versus complex traits75. This highlights that 

further work on such models is needed, hopefully increasing the receptive field and using 

known affected cell types, to capture an association with complex diseases. Importantly, a 

substantial overlap and large genomic coverage of the loci considered are key 

recommendations for s-LDSC analyses65. This issue when capturing complex phenotypic 

enrichment is not unique to these models and is also a challenge with genomic deep learning 

models as highlighted recently47. Non-cell type specific genomic loci predictive of gene 

expression were enriched for GWAS signal for both Alzheimer’s disease and bipolar disorder, 

indicating the importance of cell type consistent regulatory regions in complex disease. 

Importantly, this analysis highlights the significance of these predicted genomic loci not only 

in functional genomics studies (Fig. 7a) but also in disease (Fig. 7b). Past approaches such as 

ICEBERG, a pipeline that uses CUT&RUN replicates to create a combined profile of binding 

events for H3K4me3, have been previously used to uncover functionally relevant regulatory 

events76. However, our approach shows, for the first time, how chromatin deep learning models 

can be perturbed to uncover genome-wide and cell type-specific functionally and disease 

relevant regulatory regions. 

Overall, our study shows that multiple factors influence the performance of histone marks when 

predicting gene expression, something which had not explicitly been considered by previous 

work12–14. Our findings suggest that if one wishes to investigate the TSS of genes, promoter-

specific active marks H3K4me3 and H3K9ac are the best options. Beyond the promoter region, 

active marks H3K4me3, H3K9ac and H3K27ac are most predictive, especially in combination 

with the transcriptionally-associated mark H3K36me3. However, it is worth considering the 

cell state (differentiated or early stages of lineage commitment) and the state of the genes or 
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interest (highly or lowly expressed) to have a better understanding of the optimally predictive 

histone marks. Importantly, more effort should be placed on using these models to uncover 

new biological insights, particularly for phenotypic and disease-based studies. Similar to 

genomic deep learning models, chromatin deep learning models are capable of capturing 

functionally relevant genomic loci. 
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Data and code availability 

The Histone mark ChIP-seq read alignments, RPKM gene expression profiles were 

downloaded from the Roadmap Epigenomics Web Portal 

(https://egg2.wustl.edu/roadmap/web_portal/index.html). The promoter capture Hi-C 

experiments were obtained from the 3DIV database (available at http://3div.kr/), specifically 

the tissue mnemonics H1, ME, TB, MSC, NPC, LI11, PA, LG, and GM.  The UK Biobank 

fine-mapped eQTL data were downloaded from the supplementary material of  Wang et al.’s 

study51. The summary statistics were downloaded from the IEU GWAS portal62 (IDs:  ieu-b-7, 

ebi-a-GCST90027158, ebi-a-GCST90027158, ebi-a-GCST005647, ebi-a-GCST90091033, 

ebi-a-GCST90091033, ebi-a-GCST90038627, ieu-b-5099, ieu-a-1185, ieu-b-5110) and for 

hepatitis, from the BioStudies database63 (ID: S-BSST407). All reference datasets used to run 

s-LDSC65 were downloaded following the links from the source material: 

https://github.com/bulik/ldsc. The model architectures and all training and analysis scripts, 

along with scripts to download and complete all pre-processing steps on the training data 

(sourced from Roadmap16 and largely replicated from Chromoformer’s scripts17) are available 

at https://github.com/neurogenomics/chromexpress. 
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