

1 **Title: TET2 regulates early and late transitions in exhausted CD8⁺ T-cell**
2 **differentiation and limits CAR T-cell function**

3 **Authors:** Alexander J. Dimitri^{1,2,3,4†}, Amy E. Baxter^{5,6†}, Gregory M. Chen^{1,2,3,4†}, Caitlin R.
4 Hopkins^{1,2,3,4}, Geoffrey T. Rouin^{2,7}, Hua Huang^{5,6}, Weimin Kong^{1,2,3,4}, Christopher H. Holliday⁵,
5 Volker Wiebking⁸, Robert Bartoszek^{1,2,3,4}, Sydney Drury^{4,5}, Katherine Dalton^{4,5}, Owen M.
6 Koucky^{1,2,3,4}, Zeyu Chen^{5,6}, Josephine R. Giles^{5,6,9}, In-Young Jung^{1,2,3,4}, Roddy O'Connor^{2,3,4,9},
7 Sierra Collins^{9,10,11}, John K. Everett¹, Kevin Amses¹, Scott Sherrill-Mix¹, Aditi Chandra^{5,11,12},
8 Naomi Goldman^{5,11,12}, Golnaz Vahedi^{5,11,12}, Julie K. Jadlowsky², Regina M. Young^{2,4}, Jan Joseph
9 Melenhorst^{1,2,3,4}, Shannon L. Maude^{2,7}, Bruce L. Levine^{2,3,4}, Noelle V. Frey^{3,13}, Shelley L.
10 Berger^{9,10,11}, Stephan A. Grupp⁷, David L. Porter^{3,13}, Friederike Herbst^{2,4}, Matthew H. Porteus⁸,
11 Frederic D. Bushman¹, Evan W. Weber^{2,3,5,7,9}, E. John Wherry^{5,6,9}, Martha S. Jordan^{4,5,9†*} and
12 Joseph A. Fraietta^{1,2,3,4†*}

13 **Affiliations:**

14 ¹Department of Microbiology, Perelman School of Medicine, University of Pennsylvania,
15 Philadelphia, PA 19104, USA

16 ²Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania,
17 Philadelphia, PA 19104, USA

18 ³Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia,
19 PA 19104, USA

20 ⁴Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of
21 Pennsylvania, Philadelphia, PA 19104, USA

22 ⁵Institute for Immunology and Immune Health, Perelman School of Medicine, University of
23 Pennsylvania, Philadelphia PA 19104, USA

24 ⁶Department for Systems Pharmacology and Translational Therapeutics, Perelman School of
25 Medicine, University of Pennsylvania, Philadelphia PA 19104, USA

26 ⁷Department of Pediatrics, Division of Oncology, Children's Hospital of Philadelphia, Philadelphia,
27 19104, USA

28 ⁸Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford
29 University, Palo Alto, CA 94304, USA

30 ⁹Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104,
31 USA

32 ¹⁰Department of Cell and Developmental Biology, Perelman School of Medicine, University of
33 Pennsylvania, Philadelphia, PA 19104, USA

34 ¹¹Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, University of
35 Pennsylvania, Philadelphia, PA 19104, USA

36 ¹²Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia,
37 PA 19104, USA

38 ¹³Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine,
39 University of Pennsylvania, Philadelphia, PA 19104, USA

40 [†]Authors contributed equally to this work; ^{*}Co-corresponding authors

41

42 **Abstract:**

43 CD8⁺ T-cell exhaustion hampers disease control in cancer and chronic infections and limits
44 efficacy of T-cell-based therapies, such as CAR T-cells. Epigenetic reprogramming of CAR T-
45 cells by targeting TET2, a methylcytosine dioxygenase that mediates active DNA demethylation,
46 has shown therapeutic potential; however, the role of TET2 in exhausted T-cell (T_{EX}) development
47 is unclear. In CAR T-cell exhaustion models and chronic LCMV infection, TET2 drove the
48 conversion from stem cell-like, self-renewing T_{EX} progenitors towards terminally differentiated
49 and effector (T_{EFF})-like T_{EX}. In mouse T-cells, *TET2*-deficient terminally differentiated T_{EX}
50 retained aspects of T_{EX} progenitor biology, alongside decreased expression of the transcription
51 factor TOX, suggesting that TET2 potentiates terminal exhaustion. TET2 also enforced a T_{EFF}-like
52 terminally differentiated CD8⁺ T-cell state in the early bifurcation between T_{EFF} and T_{EX},
53 indicating a broad role for TET2 in mediating the acquisition of an effector biology program that
54 could be exploited therapeutically. Finally, we developed a clinically actionable strategy for *TET2*-
55 targeted CAR T-cells, using CRISPR/Cas9 editing and site-specific adeno-associated virus
56 transduction to simultaneously knock-in a CAR at the *TRAC* locus and a functional safety switch
57 within *TET2*. Disruption of *TET2* with this safety switch in CAR T-cells restrained terminal T_{EX}
58 differentiation *in vitro* and enhanced anti-tumor responses *in vivo*. Thus, TET2 regulates pivotal
59 fate transitions in T_{EX} differentiation and can be targeted with a safety mechanism in CAR T-cells
60 for improved tumor control and risk mitigation.

61 **One Sentence Summary:**

62 Modulation of exhausted CD8⁺ T-cell differentiation by targeting TET2 improves therapeutic potential
63 of CAR T-cells in cancer.

64 INTRODUCTION

65 T-cell exhaustion limits disease control in cancer and chronic viral infections. In the
66 context of persistent antigen exposure, exhausted CD8⁺ T-cells (T_{EX}) co-express multiple
67 inhibitory receptors (IRs) and exhibit altered cytokine secretion, impaired proliferation and
68 metabolic deficiencies compared to memory (T_{MEM}) and effector (T_{EFF}) T-cells (1). While T_{EX}
69 cells hold significant clinical relevance, our understanding of T_{EX} development and the
70 fundamental cellular and molecular mechanisms governing T_{EX} formation, maintenance, and
71 activity, particularly in the setting of immunotherapies, is incomplete. Addressing these knowledge
72 gaps could offer new strategies for enhancing patient outcomes.

73 Cellular immunotherapies such as chimeric antigen receptor (CAR) T-cells have
74 transformed the treatment of cancer. However, T-cell exhaustion compromises the persistence and
75 anti-tumor effector function of CAR T-cells *in vivo*, resulting in relapses in hematological
76 malignancies and limited efficacy against solid tumors (2). Strategies including genetic
77 modification of CAR T-cells to avert exhaustion (3-6) or use of immunotherapies such as PD1
78 blockade to reinvigorate T_{EX} cells have been proposed to enhance treatment efficacy (7). However,
79 current reinvigoration strategies are insufficient to permanently reverse exhaustion (8), limiting
80 therapeutic potential.

81 T_{EX} are a distinct epigenetic lineage and the discovery of regulators that govern the
82 epigenetic remodeling events underpinning T_{EX} development holds promise for improving cell-
83 based immunotherapies (9, 10). We previously reported massive clonal expansion of a single CAR
84 T-cell in a patient undergoing therapy for chronic lymphocytic leukemia (CLL) that resulted in
85 enhanced anti-tumor activity and subsequent complete and sustained disease remission (10). This
86 unique clone had the CAR transgene integrated into *TET2*, accompanied by a pre-existing

87 hypomorphic mutation in the patient's second *TET2* allele. As a methylcytosine dioxygenase,
88 *TET2* plays a pivotal role in active DNA demethylation by initiating the conversion of 5-
89 methylcytosine (5-mC) into 5-hydroxymethylcytosine (5-hmC), a first step in removal of the
90 methyl group (11, 12). This finding suggested that modulation of *TET2* could be used to alter the
91 epigenetic landscape of T_{EX} and CAR T-cells for therapeutic benefit. Accordingly, biallelic
92 disruption of *TET2*, with concomitantly sustained expression of the AP-1 factor BATF3, resulted
93 in clonal proliferation of CAR T-cells with altered effector function (13). These data are consistent
94 with skewed T_{MEM} versus T_{EFF} differentiation of *TET2*-deficient T-cells observed following acute
95 viral infection (14). However, the role of *TET2* in the precise T-cell fate transitions that govern
96 T_{EX} cell differentiation remain unknown. Given that *TET2* loss augments CAR T-cell efficacy (10,
97 13), unravelling the diverse roles of *TET2* in the differentiation of CD8⁺ T-cells, particularly the
98 epigenetic programming of T_{EX} cells across key developmental checkpoints, is critical for
99 deciphering the underlying mechanisms of T-cell exhaustion and further enhancing the
100 effectiveness of immunotherapies.

101 **RESULTS**

102 ***TET2* is a frequent locus of transgene integration in CAR T-cell treated patients.**

103 Our previous report on *TET2*-disruption driving enhanced proliferation and sustained
104 tumor clearance mediated by a single CAR T-cell in one patient (10) led us to investigate other
105 potential occurrences of lentiviral integration into *TET2* in additional patients who underwent CAR
106 T-cell therapy for CLL and acute lymphocytic leukemia (ALL) (3) (**tables S1 and S2**). Within
107 these cohorts, 36% of CLL patients and 51% of ALL patients had at least one instance of lentiviral
108 integration into *TET2* (**fig. S1A**). In total, 33 and 75 unique sites of integration were identified
109 within CLL and ALL cohorts, respectively (**fig. S1B**). Most of these integration sites were of low
110 abundance (**fig. S1C**) and occurred only once (**tables S1 and S2**); however, one CLL patient
111 (p04409-09) exhibited a CAR transgene insertion at chr4+105190185 which was observed at
112 multiple time points, at two weeks following adoptive transfer in purified CAR T-cells and at one
113 month in whole blood (**table S1**). Lentiviruses favor integration into actively transcribed sites (15),
114 and tend to integrate within the gene body rather than near promoters, suggesting low risk for
115 oncogenic transformation (16). Indeed, of the integration events we identified within 50kB of
116 *TET2*, ~94% of CLL sites and ~93% of ALL sites occurred within the transcriptional boundary of
117 the *TET2* transcriptional unit (**fig. S1D**). The repeated lentiviral integration of a CAR transgene
118 into *TET2* motivates deeper analysis of the role of *TET2* in T-cell biology and especially in CAR
119 T-cell differentiation.

120 ***TET2*-deleted CAR T-cells adopt a central memory-like state post manufacturing.**

121 *TET2* loss correlates with clinical response to CAR T-cell therapy (10) and its deletion
122 promotes acquisition of a memory CD8⁺ T-cell fate in the setting of acute infection (14). To
123 investigate the impact of *TET2* loss in human CAR T-cell differentiation, we generated *TET2*-

124 deficient CAR T-cells (*TET2*_{KO}) through CRISPR/Cas9 gene-editing (**Fig. 1A and fig. S2, A-C**).
125 Following lentiviral CAR transduction and primary expansion, we observed a slightly elevated
126 proportion of central memory CAR T-cells in the *TET2*-deficient condition (**Fig. 1B**).
127 Mitochondrial respiration profiling indicated that, post-production, *TET2*_{KO} CAR T-cells were
128 programmed for enhanced oxidative phosphorylation (**Fig. 1C**), with increased basal respiration,
129 maximal respiration, and spare respiratory capacity (SRC) (**Fig. 1D**). *TET2*_{KO} CAR T-cells also
130 had increased aerobic glycolysis (**Fig. 1E**). Thus, *TET2* deficiency augments cellular metabolism,
131 potentially providing a greater ATP reserve during heightened cellular activity or metabolic stress,
132 aligning with the bioenergetic advantage and rapid recall capability of memory CD8⁺ T-cells (17).

133 **TET2 loss increases expansion and reduces IR expression after chronic stimulation for**
134 **multiple CAR constructs.**

135 CD8⁺ T-cell exhaustion is characterized by bioenergetic insufficiencies and altered
136 glycolysis (18, 19). The metabolic profile of *TET2*_{KO} CAR T-cells suggested that targeting *TET2*
137 might improve CD8⁺ T cell survival and function in the setting of chronic antigen stimulation. To
138 examine the role of *TET2* in the long-term persistence of CAR T-cells and to investigate the role
139 of specific co-stimulatory domains (**Fig. 1F**), we used an *in vitro* “stress test” incorporating chronic
140 antigen stimulation that recapitulates several features of progressive T-cell exhaustion (**Fig. 1G**).
141 Both *TET2*_{KO} 41BB-costimulated CAR T-cells (CD19.BB ζ) and *TET2*_{KO} CD28-costimulated CAR
142 T-cells (CD19.28 ζ) demonstrated greater proliferative capacity following repeated antigen
143 stimulation when compared to *AAVS1*_{KO} control CAR T-cells and CAR T-cells lacking a
144 costimulatory domain (CD19. ζ) (**Fig. 1H and I**). Given this increased proliferative capacity, we
145 next investigated the differentiation and phenotype of chronically stimulated *TET2*_{KO} CAR T-cells.
146 After chronic stimulation, CD8⁺ *TET2*_{KO} CAR T-cells skewed towards a CCR7⁺ CD45RO⁺ central

147 memory-like population (**Fig. 1J, fig. S2D**). High IR expression and decreased expression of the
148 transcription factor (TF) TCF1 is associated with terminal differentiation of CD8⁺ T-cells (20).
149 However, CD8⁺ *TET2*_{KO} CAR T-cells had decreased co-expression of IRs including PD1 and
150 TIM3 (**Fig. 1K**) and increased expression of TCF1 (**Fig. 1L**) compared to *AAVS1*_{KO} control CAR
151 T-cells, suggesting that, in the absence of TET2, CAR T-cells were less terminally differentiated.
152 Moreover, TET2 loss resulted in increased IL-2 and TNF production from the total CAR T-cell
153 product following overnight re-stimulation with tumor cells after chronic antigen stimulation (**Fig.**
154 **1M**). Finally, TET2 knockout similarly impacted the phenotype of both 41BB- and CD28-
155 costimulated CAR T-cells, suggesting that the role of TET2 is independent of the co-stimulatory
156 domain used. Together, these data implied that loss of TET2 restrained CAR T-cell terminal
157 differentiation during chronic antigen stimulation.

158 **TET2 loss enhances CAR T-cell efficacy in a tonic CAR signaling model.**

159 To further investigate the potential role of TET2 in CAR T-cell terminal differentiation,
160 we next knocked out *TET2* in HA.28 ζ -CAR T-cells (**fig. S2E**), which exhibit robust tonic signaling
161 and attain functional, transcriptomic and epigenetic features of exhaustion by day 11 of culture
162 (3). Expression of progenitor/stem cell-associated markers CCR7 (**fig. S2F**), CD27 and CD62L
163 (**fig. S2G**) were increased on *TET2*_{KO} compared to *AAVS1*_{KO} HA.28 ζ -CAR T-cells, supporting the
164 idea that *TET2*_{KO} CD8⁺ T-cells are less terminally differentiated. Next, we tested whether the
165 phenotypic reprogramming of exhausted CAR T-cells induced by TET2 loss would confer
166 enhanced efficacy. *TET2*_{KO} HA.28 ζ -CAR T-cells exhibited superior expansion (**fig. S2H**),
167 increased cytotoxicity by the bulk CAR T-cell product (**fig. S2I-J**), and enhanced cytokine
168 secretion (**fig. S2K**) compared to *AAVS1*_{KO} HA.28 ζ -CAR T-cells when co-cultured with 143B-GL
169 osteosarcoma or with NALM-6-GD2 leukemia (**fig. S2, L-M**) cells. Together, these data indicate

170 that *TET2* deletion may improve CAR T-cell efficacy in the setting of chronic antigen exposure
171 and tonic CAR signaling, potentially by limiting terminal differentiation and increasing expression
172 of proteins involved in T-cell survival/persistence.

173 **TET2 mediates the transition out of the T_{EX} progenitor pool and towards terminal**
174 **exhaustion in chronic viral infection.**

175 In CAR T-cell exhaustion models using chronic antigen stimulation or tonic antigen
176 receptor signaling, *TET2* disruption limited acquisition of some features of exhaustion, such as IR
177 expression, and enriched for expression of proteins associated with cell renewal, including TCF1.
178 Despite the utility of CAR T-cell exhaustion models, the distinct and complex developmental
179 trajectory of CD8⁺ T-cell exhaustion is likely incompletely recapitulated in reductionist *in vitro*
180 systems (21). Furthermore, CAR T-cell systems require T-cell activation for CRISPR-Cas9-
181 mediated *TET2*_{KO} and CAR transduction, preventing the study of *TET2*-deficient T_{EX} generated
182 from naïve T-cells. To further investigate the role of *TET2* in the developmental trajectory of T_{EX},
183 we used the well characterized LCMV clone 13 chronic infection model (22-25). TET2^{fl/fl} CD4^{Cre+}
184 mice were crossed with T-cell receptor (TCR) transgenic P14 mice that express a TCR specific for
185 LCMV D^bGP³³⁻⁴¹ to generate *TET2*_{KO} P14 mice (TET2^{fl/fl} CD4^{Cre+} P14). *TET2*_{KO} P14 cells were
186 adoptively co-transferred with WT P14 cells at a 1:1 ratio into recipient mice. Recipient mice were
187 then infected with LCMV clone 13 and co-transferred P14 cells were analyzed throughout chronic
188 infection (**Fig. 2A and fig. S3A**).

189 The impact of *TET2* loss on frequencies of antigen specific CD8⁺ T-cells over the course
190 of chronic infection was variable and influenced by factors in the LCMV model. For example,
191 when recipient wild-type CD4⁺ T-cells were present (i.e., no CD4⁺ T-cell depletion prior to
192 infection), WT P14 outnumbered *TET2*_{KO} P14 cells by ~7:1 in blood during the early stage of

193 chronic infection (~day 8 post-infection, p.i., **fig. S3B**), despite initial transfer at a 1:1 ratio.
194 However, once exhaustion was established (26) *TET2*^{KO} P14 cells expanded, outcompeting WT
195 P14 cells by ~1.8:1 at ~day 60 pi (**fig. S3B**) and reflecting the expansion seen in human CAR T-
196 cell models. In contrast, when CD4⁺ T-cells were depleted by *in vivo* administration of anti-CD4
197 antibody GK1.5, *TET2*^{KO} P14 cells often did not rebound and remained underrepresented
198 compared to WT P14 cells in blood throughout infection (**fig. S3C**). Furthermore, despite
199 underrepresentation in blood, the frequency of *TET2*^{KO} P14 cells in spleen was often more
200 comparable to that of WT P14 cells (**fig. S3D**). Together, these data suggest that the role of TET2
201 in T_{EX} proliferation/survival may be impacted by CD8⁺ T-cell extrinsic pressures that regulate
202 exhaustion, such as chronic antigen burden/vial load and CD4⁺ T-cell help.

203 CD8⁺ T-cell exhaustion is characterized by high IR expression and decreased production
204 of effector cytokines (reviewed in (1)). We first asked whether *TET2*^{KO} P14 cells retained core
205 features of exhaustion in the LCMV chronic infection model. Expression of some IRs such as PD1
206 (**Fig. 2B**) and LAG3 (**fig. S3E**) remained high on *TET2*^{KO} P14 cells and was comparable to co-
207 transferred WT P14 cells. However, TET2 loss strongly decreased expression of other IRs
208 including CD39 and 2B4 (**Fig. 2B**). For example, at day 30 p.i. in spleen, only ~20% of *TET2*^{KO}
209 P14 cells expressed 2B4 compared to ~63% of WT P14 (**Fig. 2B**). However, *TET2*^{KO} P14 cells did
210 not acquire surface characteristics of classical T_{EFF} and T_{MEM} that arise during acute resolving
211 infections (27, 28). Rather, *TET2*^{KO} KLRG1⁺ T_{EFF}-like P14 cells were effectively absent from the
212 spleen at day 30 p.i., whereas WT KLRG1⁺ P14 cells were detectable at low frequencies as
213 expected (**fig. S3F-G**). Although *TET2*^{KO} P14 cells had moderately increased expression of the IL-
214 7 receptor CD127, which is associated with memory-like differentiation, protein levels remained
215 low and consistent with expression in chronic rather than acute infection (**fig. S3F-G**).

216 Furthermore, despite decreased expression of some key IRs, *TET2*^{KO} P14 cells remained
217 functionally exhausted, as a similar frequency of *TET2*^{KO} P14 cells produced IFN γ or co-produced
218 IFN γ and TNF following *in vitro* restimulation with LCMV peptide as WT P14 cells (**Fig. 2, C**
219 **and D**).

220 To investigate transcriptional changes associated with loss of TET2 during chronic
221 infection, we next performed bulk RNA-sequencing on WT and *TET2*^{KO} P14 cells at day 15 p.i.
222 with LCMV clone 13. *TET2*^{KO} P14 cells had a distinct transcriptional profile, with ~1750 genes
223 differentially expressed between WT and *TET2*^{KO} P14 cells (FDR<0.05, **fig. S3H, table S3**),
224 including decreased expression of the IRs *Entpd1* (CD39) and *Cd244* (2B4), supporting protein
225 expression data. The T_{EX} lineage is functionally diverse. T_{EX} progenitor cells retain proliferative
226 potential, express TCF1, and have decreased expression of specific IRs such as CD39 and TIM3
227 (29-35) despite high expression of the exhaustion-associated TF TOX (36-41). T_{EX} progenitors
228 differentiate into a terminal T_{EFF}-like subset that have reacquired some effector functions and
229 contribute to viral control (35, 42-46) or into terminally exhausted T_{EX} cells with increased IR
230 expression and decreased proliferative capacity (43). Loss of TET2 decreased expression of genes
231 associated with terminal differentiation and effector biology, including *Zeb2* (47, 48), *Id2* (49),
232 *Klrg1* (50, 51), *Nkg7* (52, 53), *Gzma* and *Gzmk* (54) (**fig. S3H**). The loss of effector TFs and
233 molecules, along with decreased expression of certain IRs, as well as our initial CART-cell data,
234 provoked the hypothesis that TET2 may have a role in terminal T_{EX} differentiation. Gene Set
235 Enrichment Analysis (GSEA) revealed depletion of a terminally differentiated T_{EX} gene set in
236 *TET2*^{KO} P14 cells (**Fig. 2E**), suggesting a decrease in terminal exhaustion compared to WT
237 controls. Conversely, a T_{EX} progenitor gene set was enriched in *TET2*^{KO} P14 cells (**Fig. 2F**);
238 indeed, genes associated with T_{EX} progenitor biology including *Slamf6* (LY108) and *Tnfsf4*

239 (OX40L) were upregulated when *TET2* was knocked out (**fig. S3H**). These gene expression
240 differences were associated with robust changes in T_{EX} subset distribution. $TET2^{KO}$ P14 cells had
241 a relative increase in the proportion of T_{EX} progenitor cells ($TCF1^+ GZMB^-$) with a marked
242 reduction in terminally differentiated T_{EX} ($TCF1^- GZMB^+$) (**Fig. 2G**). These observations suggest
243 that *TET2* regulates differentiation into terminally differentiated T_{EX} subsets, including effector-
244 like T_{EX} cells, during chronic infection.

245 **Loss of *TET2* limits terminal differentiation of exhausted $CD8^+$ T-cells.**

246 Bulk RNA-seq comparing WT and $TET2^{KO}$ P14 cells suggested that *TET2* acts at a
247 checkpoint in the epigenetic transition between T_{EX} progenitor and terminally differentiated T_{EX}
248 cell fates, driving terminal exhaustion at the expense of a stem cell-like state. To determine if *TET2*
249 functions at the transition between T_{EX} subsets, or regulates T_{EX} differentiation within these
250 subsets, we isolated $LY108^+$ T_{EX} progenitor and $LY108^{neg}$ terminally differentiated T_{EX} from WT
251 and $TET2^{KO}$ P14 cells at day 15 p.i. with LCMV clone 13 and performed RNA-seq and Assay for
252 Transposase Accessible Chromatin Sequencing (ATAC-seq) on the isolated subsets (**Fig. 3, A and**
253 **B**). T_{EX} progenitor and terminally differentiated T_{EX} cells are transcriptionally and epigenetically
254 distinct (34). Principal component analysis (PCA) revealed that cell subset ($LY108^+$ versus
255 $LY108^{neg}$ T_{EX}) was the major contributor to sample-to-sample variation and separated samples
256 along PC1 regardless of genotype (**Fig. 3, C and D**). In contrast, PC2 was driven by genotype,
257 with all isolated $TET2^{KO}$ P14 populations localized in distinct regions compared to WT P14 subsets
258 (**Fig. 3, C and D**). Therefore, although $TET2^{KO}$ T_{EX} cells retain key features of WT T_{EX} (**Fig 2. B-**
259 **D, fig. S3H**), loss of *TET2* may impact differentiation within T_{EX} subsets.

260 To examine the potential role of *TET2* within T_{EX} subsets, we directly compared WT and
261 $TET2^{KO}$ T_{EX} within isolated T_{EX} subsets and identified differentially expressed genes (DEG) and

262 differentially accessible chromatin regions (DACR). These analyses revealed two major features
263 of TET2 function in T_{EX} differentiation. First, 1855 DACR and 2744 DEG distinguished WT from
264 *TET2*^{KO} LY108^{neg} terminally differentiated T_{EX} compared to only 255 DACR and 1018 DEG
265 between WT and *TET2*^{KO} LY108⁺ T_{EX} progenitors (**Fig. 3, E and F; fig. S4, A and B, table S3**
266 **and S4**). Reflecting these relative differences, WT and *TET2*^{KO} LY108⁺ T_{EX} progenitors were
267 closer to each other in PCA space than WT and *TET2*^{KO} terminally differentiated T_{EX} (**fig. S4, C**
268 **and D**), indicating that terminally differentiated T_{EX} cells are more transcriptionally and
269 epigenetically distinct following loss of TET2 than the T_{EX} progenitor subset. Second, within the
270 terminally differentiated T_{EX} subset, the majority of DACR (82.7%; FDR<0.05, log2 fc > 0.5)
271 were less accessible following TET2 knockout. Together, these data suggest that TET2 is required
272 to sustain and/or increase chromatin accessibility at, and expression of, genes associated with
273 terminal T_{EX} differentiation.

274 We next asked which genes were unable to be upregulated in LY108^{neg} terminally
275 differentiated T_{EX} in the absence of TET2. Multiple genes associated with effector functions,
276 including KLR family members (*Klrg1*, *Klrb1b*, *Klrb1c* and *Klre1*), cytotoxic markers *Gzma* and
277 *Gzmk* and the TF-encoding genes *Zeb2*, *Btg1* and *Rora* were decreased in expression in *TET2*^{KO}
278 compared to WT terminally differentiated T_{EX} (**Fig. 3G**). Furthermore, TF motif analysis revealed
279 that binding sites for T_{EFF}-associated TFs including RUNX and TBET were less accessible in
280 terminally differentiated T_{EX} following removal of TET2 (**fig. S4E**). Thus, in terminally
281 differentiated T_{EX} cells lacking TET2, binding sites for key effector-driving TFs are less accessible
282 and expression of effector genes is diminished. These data support the notion that TET2 promotes
283 the reacquisition of effector-associated genes in the terminally differentiated T_{EX} subset.

284 RNA and protein expression of key IRs including CD39 (*Entpd1*) was lower on total
285 *TET2*_{KO} P14 cells than WT P14 cells (**Fig. 2B, S3H**). To determine if this change in IR expression
286 reflected the population shift towards T_{EX} populations with decreased IR expression (T_{EX}
287 progenitor cells) or differential regulation of IRs within terminally differentiated subsets, we next
288 assessed IR expression within isolated T_{EX} subsets. Inhibitory receptor expression, including
289 *Cd200r1* (CD200R), *Entpd1* (CD39), *Cd274* (PDL1) and *Cd244* (2B4), was decreased in *TET2*_{KO}
290 terminally differentiated T_{EX} (**Fig. 3G and H**), whereas levels of these IRs were low and more
291 comparable to WT controls for *TET2*_{KO} T_{EX} progenitors (**fig. S4F and G**). LY108 (*Slamf6*)
292 decreases in expression as T_{EX} terminally differentiate (34); however, LY108 expression remained
293 high in *TET2*_{KO} terminally exhausted T_{EX} cells (**fig. S4H**). Together, these data support the
294 hypothesis that TET2 regulates loss of T_{EX} progenitor biology and is required for complete
295 differentiation within the terminally exhausted T_{EX} population.

296 The transcription factor TOX has been proposed to regulate terminal exhaustion (34).
297 Therefore, we interrogated if the decreased differentiation with the terminal T_{EX} subset following
298 *TET2*_{KO} was associated with changes in TOX. Indeed, *Tox* expression was decreased within
299 *TET2*_{KO} LY108^{neg} terminal T_{EX} and this decreased expression was associated with reduced
300 chromatin accessibility at the *Tox* locus (**Fig. 3, I and J**). These changes in RNA expression and
301 chromatin accessibility translated to markedly reduced TOX protein expression in *TET2*_{KO}
302 terminal T_{EX} compared to WT terminal T_{EX} (**Fig. 3, K and L**). Therefore, TET2 may coordinate
303 with TOX to regulate the terminal differentiation of T_{EX}.

304 **TET2 regulates early bifurcation of T_{EX} from T_{EFF}-like cells.**

305 At least three major epigenetic remodeling events underpin the developmental trajectory
306 of T_{EX} cells. The first occurs immediately following naïve CD8⁺ T-cell activation. The second
307 occurs early, within days of initial activation, when terminally differentiated T_{EFF}-like cells
308 bifurcate from TCF1⁺ T_{EX} precursors. Analysis of *TET2*^{KO} P14 cells late in chronic infection
309 suggested that TET2 regulates the third major rewiring event occurring in established T_{EX}, when
310 T_{EX} progenitors transition into effector-like and terminally exhausted T_{EX} subsets (34). RNA-seq
311 and ATAC-seq analysis of terminally differentiated T_{EX} cells suggested a role in coordinating the
312 re-acquisition of effector-like biology. To interrogate the role of TET2 in the second bifurcation
313 event prior to fate-commitment to exhaustion, we set up an adoptive co-transfer of WT and *TET2*^{KO}
314 P14 cells as described above, then analyzed CD8⁺ T-cell responses to chronic LCMV infection at
315 early timepoints (**Fig. 4A**). At day 6 and 8 p.i. the proportion and absolute frequency of PD1^{low}
316 KLRG1⁺ T_{EFF} were markedly reduced in the absence of TET2 (**Fig. 4, B and C, fig. S4I**).
317 Furthermore, *TET2*^{KO} P14 cells skewed towards TCF1⁺ T_{EX} precursors at the expense of granzyme
318 B-expressing T_{EFF}-like cells (**Fig. 4D**). Together, these findings imply that TET2 regulates the
319 acquisition of effector-like biology at multiple steps in T_{EX} differentiation, both in the early
320 bifurcation between T_{EX} precursors and T_{EFF} and in established exhaustion.

321 These data suggested that TET2-deficiency limits acquisition of effector T-cell-like
322 biology. To test whether forced TET2 expression rescues the phenotypes observed *TET2*^{KO} P14
323 cells or promotes T-cell effector biology, we overexpressed the TET2 catalytic domain (TET2 CD)
324 in *TET2*^{KO} P14 and compared the impact of TET2 “rescue” to *TET2*^{KO} P14 cells, as well as WT
325 P14 cells transduced with an empty vector (MIGR1) (**Fig. 4E**). As previously observed, T_{EX} subset
326 distribution in *TET2*^{KO} P14 was skewed towards T_{EX} progenitors at the expense of terminal T_{EX}

327 differentiation (**Fig. 4, F and G**). In contrast, expression of the TET2 catalytic domain normalized
328 the proportions of T_{EX} subsets and pushed T_{EX} slightly towards terminal differentiation (**Fig. 4, F**
329 **and G**). Furthermore, whereas KLRG1⁺ *TET2_{KO}* P14 cells were effectively absent, expression of
330 the TET2 catalytic domain increased KLRG1 expression by ~2-fold compared to WT P14 cells
331 and ~11.6-fold compared to *TET2_{KO}* P14 cells (**Fig. 4, H and I**). Therefore, TET2 promotes
332 terminal T_{EX} differentiation and the TET2 catalytic domain is sufficient for this activity.

333 Together, these data imply that TET2 acts a rheostat to regulate terminal differentiation
334 and the acquisition of effector-like biology at multiple checkpoints in CD8⁺ T-cell development
335 (**Fig. 4J**). In acute infection, TET2 modulates the bifurcation between classical short-lived T_{EFF}
336 and memory precursors (14), enforcing terminal differentiation and the acquisition of effector
337 functions. TET2 plays parallel roles in chronic infection. In the initial stages of chronic infection,
338 TET2 drives CD8⁺ T-cells towards T_{EFF}-like cells and away from the formation of the T_{EX}
339 precursor pool (55). Once exhaustion is established, TET2 pushes T_{EX} progenitors towards a
340 terminally differentiated and T_{EFF}-like T_{EX} state, again mirroring the role of TET2 as an enforcer
341 of differentiation. These data further provoke the hypothesis that similar epigenetic programs are
342 used and reused throughout CD8⁺ T-cell differentiation to regulate function in distinct contexts
343 (56).

344 ***TET2-edited dual knock-in allogeneic CAR T-cells resist terminal T_{EX} differentiation,***
345 ***allowing enhanced tumor control.***

346 Data from the chronic infection model suggested that TET2 regulates CD8⁺ T-cell
347 differentiation, and that loss of TET2 limits terminal exhaustion. Our initial *TET2_{KO}* CAR T-cell
348 data implied that targeting TET2 to restrain terminal differentiation could improve CAR T-cell
349 expansion and efficacy. However, bi-allelic loss of *TET2* with BATF3 expression led to clonal

350 proliferation of CAR T-cells (13) and highlighted the additional considerations required to safely
351 manipulate epigenetic regulators in the clinic. Therefore, we next applied synthetic biology
352 principles to design a clinically actionable CAR T-cell with disrupted TET2 for improved efficacy.
353 A key element of our strategy involved a dual knock-in (KI), simultaneously editing the *TRAC* and
354 *TET2* loci using CRISPR/Cas9 and introducing new genetic templates at these sites. First, we
355 designed a single-guide (sg) RNA to target the 5' end of the first exon of *TRAC*. This enabled
356 integration of an anti-CD19 CAR from an adeno-associated virus (AAV) donor DNA cassette into
357 the *TRAC* locus and simultaneously resulted in TCR knock-out (**Fig. 5A**). The KI construct
358 (TRAC-CAR19) featured a 41BB co-stimulatory endodomain and co-expressed a truncated nerve
359 growth factor receptor (tNGFR) for selection (**Fig. 5B**). This approach was designed to delay
360 effector T-cell differentiation and exhaustion through CAR insertion at the *TRAC* locus as
361 previously described (57), while leveraging the potential benefits of 41BB co-stimulation (4).
362 Furthermore, this TCR knockout strategy could enhance therapeutic safety by reducing risks of
363 TCR-induced autoimmunity and alloreactivity. In addition, expression of the TRAC-CAR19
364 construct is controlled by the endogenous *TRAC* promoter, thus driving physiological CAR
365 expression on the cell surface. The TRAC-CAR19 KI efficiency was proportional to the AAV
366 dosage, achieving over 70% efficiency at a multiplicity of infection (MOI) of 50,000 (**Fig. 5B and**
367 **fig. S5A**) and between 72-98% of CAR⁺ T-cells were CD3-negative (**Fig. 5C and fig. S5A**),
368 validating this dual knock-out and knock-in strategy.

369 In parallel with targeted modifications at the *TRAC* locus, we used CRISPR/Cas9 and a
370 second AAV vector repair matrix to both disrupt *TET2* (TET2-TRAC-CAR19) and integrate a
371 truncated human epidermal growth factor receptor (tEGFR) cDNA at the *TET2* locus (**Fig. 5A and**
372 **fig. S5A**), under the regulation of an exogenous human EF1 α promoter. The successful

373 incorporation and functionality of the tEGFR enabled *in vitro* selection of *TET2*-edited cells (**fig.**
374 **S5B**). We next tested if tEGFR expression could function as a ‘safety switch’ and allow targeted
375 elimination of *TET2*-disrupted CAR T-cells. *TET2*-TRAC-CAR19 T-cells were cultured *in vitro*
376 with natural killer (NK) cells and the FDA-approved antibody Cetuximab. Cetuximab targets
377 EGFR and induces antibody-dependent cellular cytotoxicity (ADCC) (**Fig. 5D**). Following co-
378 culture, EGFR-expressing CAR T-cells were selectively depleted (**Fig. 5E**). Thus, tEGFR provides
379 a critical safety switch that allows for controlled depletion of CRISPR-edited cells.

380 We next confirmed that our dual CRISPR-editing and AAV knock-in CAR T-cell
381 engineering approach did not negatively impact manufacturing. Indeed, TRAC-CAR19 T-cells
382 expanded as expected (**fig. S5C**) and *TET2*-TRAC-CAR19 T-cells exhibited similar metabolic
383 potency enhancements as *TET2^{KO}* CAR T-cells (**fig. S5D**) during manufacturing.

384 To test if targeting *TET2* in TRAC-CAR19 T-cells could provide an advantage in settings
385 of chronic antigen, we isolated edited (tEGFR⁺ and tNGFR⁺; (**fig. S5B**)) TRAC-CAR19 and
386 *TET2*-TRAC-CAR19 T-cells and subjected them to the *in vitro* restimulation assay described
387 above to recapitulate features of progressive T-cell exhaustion (**Fig. 1G**). During restimulation,
388 *TET2*-TRAC-CAR19 T-cells demonstrated significant proliferative potential, with a sixfold
389 increase in cumulative expansion by day 25 compared to TRAC-CAR19 T-cells (**Fig. 5F**) that was
390 antigen dependent (**fig. S5E**). This increased expansion only became apparent by the fourth round
391 of stimulation (day 20), suggesting that this proliferative advantage was associated with chronic
392 antigen exposure. The proliferative advantage of *TET2* disruption was most apparent for CD8⁺ T-
393 cells, as CD8⁺ *TET2*-TRAC-CAR19 T-cells expanded more than the CD4⁺ T-cell equivalent (**Fig.**
394 **5G**). Concurrently, *TET2*-TRAC-CAR19 CD8⁺ T-cells maintained a higher expression of the
395 progenitor-associated receptor CCR7 (**Fig. 5H**) and exhibited lower frequencies of IR co-

396 expression (PD1, LAG3, TIM3) (**Fig. 5I**) than control TRAC-CAR19 CD8⁺ T-cells following
397 chronic antigen stimulation. Together, these data demonstrate that TET2-deficiency improves
398 maintenance of a less terminally differentiated TRAC-CAR19 CD8⁺ T-cell pool under conditions
399 of chronic antigen stimulation, supporting our findings with *TET2*_{KO} CAR T-cells and *TET2*_{KO} in
400 chronic infection.

401 To gain a more detailed understanding of the impact of TET2 loss on CAR T-cell responses
402 to chronic antigen stimulation we performed bulk RNA-sequencing on isolated TET2-TRAC-
403 CAR19 CD8⁺ T-cells following four rounds of *in vitro* restimulation. TET2-TRAC-CAR19 cells
404 upregulated progenitor and memory-associated genes typically lowly expressed in terminally
405 exhausted CD8⁺ T-cells including *TCF7*, *CCR7*, *SELL*, and *TOX2* (58) (**Fig. 6, A and B, table S5**)
406 compared to control TRAC-CAR19 cells. This increase in expression of progenitor-associated
407 genes was accompanied by a downregulation of genes related to calcium signaling and TF activity
408 including *BRS3*, *GJA1*, *CAP2*, *NANOGNB* and *GBX1* (**Fig. 6A**). GSEA further supported the
409 notion that TET2-TRAC-CAR19 cells retained features of more stem-like cells, with an
410 enrichment for both a T_{EX} progenitor signature and a stem cell/central memory CD8⁺ T cell
411 signature (T_{SCM}/T_{CM}) (**Fig. 6C**). In contrast, a terminally exhausted tumor-infiltrating lymphocyte
412 signature (59) was negatively enriched in TET2-TRAC-CAR19 (**Fig. 6D**). In line with GSEA
413 results, chronic stimulation led to an increase in the proportion of CD8⁺ TET2-TRAC-CAR19 cells
414 expressing the progenitor-associated TF TCF1 (60) and a decrease in the proportion of cells
415 expressing the terminal differentiation-associated effector molecule granzyme B (61) compared to
416 TRAC-CAR19 control cells (**Fig. 6E, fig. S5F**). Furthermore, TET2-TRAC-CAR19 cells retained
417 the CD8⁺ TCF1⁺ CD62L⁺ population suggested to be essential for T_{EX} progenitor proliferative
418 responses (62) (**Fig. 6F, fig. S5G**). Together, these data further suggest that the role of TET2 in

419 chronically stimulated TRAC-CAR19 CD8⁺ T-cells mirrors that identified in chronic LCMV
420 infection, whereby TET2 drives terminal differentiation, and loss of TET2 supports maintenance
421 of a progenitor-like phenotype.

422 **Dual knock-in CAR T-cells display enhanced tumor control in aggressive B-ALL.**

423 Finally, we tested the *in vivo* anti-tumor function of CAR T-cells lacking TET2 in an NSG
424 xenograft mouse model for aggressive B-cell ALL (NALM-6) (**Fig. 7A**). NALM-6 cells
425 expressing CD19 and Click Beetle Green luciferase were engrafted into recipient mice and tumor
426 growth was tracked through luminescent imaging. First, we found that *TET2*_{KO} CAR T-cells (**fig.**
427 **S6A**) mediated superior anti-tumor control (**fig. S6B**) and increased survival compared to
428 *AAVS1*_{KO} CAR T-cells (**fig S6C**). We next evaluated if TET2-TRAC-CAR knock-in also provided
429 improved tumor control. TRAC-CAR19 T-cells or TET2-TRAC-CAR19 T-cells were
430 administered seven days post-tumor injection. PBS only (i.e., no cells), unedited T-cells (without
431 CRISPR editing or CAR transduction) and TET2-KI only T-cells (without CAR) were
432 administered as controls. All control groups had rapid disease progression and succumbed to ALL
433 by day 31 (**Fig. 7, B-E**), whereas both CAR T-cell experimental groups demonstrated considerable
434 tumor control (**Fig. 7, B, F-G**). TET2-TRAC-CAR19 T-cells showed enhanced efficacy compared
435 to TRAC-CAR19 T-cells (**Fig. 7H**) that was reflected in a substantial reduction in tumor burden
436 by day 32 post-tumor injection (**Fig. 7I**). Sustained tumor control following TET2-TRAC-CAR19
437 T-cell administration translated into improved survival of mice compared to both the control and
438 TRAC-CAR19 T-cell groups (**Fig. 7J**). Thus, precise *TET2* disruption under the control of a safety
439 switch in allogenic CAR T-cells enhances tumor control and animal survival.

440

441 **DISCUSSION**

442 We previously reported a case of CAR transgene integration at the *TET2* locus, which
443 shifted T-cell differentiation towards a central memory-like phenotype (10). Here, we identified
444 similar insertions among multiple leukemia patients receiving CAR T-cell therapy. The prevalence
445 of these integrations and disruption of *TET2* prompted further investigation into the role of *TET2*
446 in regulating T-cell fate and suggested a mechanism through which *TET2* could be manipulated
447 to improve CAR T-cell efficacy. Using both *in vitro* and *in vivo* approaches, we identified a role
448 for *TET2*, a key enzyme in active DNA demethylation, in driving the epigenetic transitions of
449 $CD8^+$ T-cells towards terminal differentiation, at the expense of retaining the stem cell-like
450 characteristics of progenitor cells. We took advantage of this function to engineer *TET2*-disrupted
451 *CD19* CAR T-cells with improved tumor control. Crucially, the addition of a functional safety
452 switch into this CAR T-cell design provides a therapeutically viable approach to alter T-cell fate
453 for potential patient benefit.

454 *TET2* deletion restrained terminal differentiation in both chronic LCMV infection *in vivo*
455 and in two *in vitro* CAR T-cell models of exhaustion. In CAR T-cell exhaustion models, this
456 decrease in terminal differentiation resulted in improved proliferative capacity and cytokine
457 production and decreased expression of IRs. A previous study showed that disruption of *TET2*
458 enhanced the *in vivo* expansion of 41BB-costimulated but not CD28-costimulated CAR T-cells
459 (13). However, here, loss of *TET2* impacted CAR-T cell phenotype comparably for both 41BB ζ -
460 and CD28 ζ - *CD19* CAR T-cell constructs *in vitro*. The difference in these findings likely reflects
461 differences in the timing of the measured responses and/or context of antigen stimulation. Thus,
462 the role of co-stimulatory domains in *TET2*-deficient CAR T-cells warrants further investigation,

463 as our data suggest that modulation of TET2 could be used to improve expansion for CAR T-cell
464 products that typically have shorter persistence (63).

465 The decreased terminal differentiation observed in chronically stimulated TET2-deficient
466 CAR T-cells was accompanied by elevated expression of several stem cell and memory-associated
467 genes, including TCF1. Expression of stem cell-like features is a hallmark of the T_{EX} progenitor
468 cells that sustain exhausted CD8⁺ T cell responses during cancer and chronic viral infection (29-
469 35). To investigate where TET2 might function in the developmental trajectory of CD8⁺ T cell
470 exhaustion, we turned to the well-characterized LCMV chronic infection model. Indeed, *TET2*
471 deficiency in this setting also protected the T_{EX} progenitor population and restrained development
472 of terminally exhausted T_{EX} cells. Thus, disruption of TET2 enabled maintenance of a progenitor-
473 like population in CAR T-cells and CD8⁺ T cells exposed to chronic viral infection. Furthermore,
474 in chronic viral infection, the terminally exhausted T_{EX} cells that escaped this differentiation block
475 retained key features of T_{EX} progenitors, including decreased expression of several IRs and
476 effector-associated genes. Indeed, *TET2* ablation limited chromatin accessibility for T_{EFF}-
477 associated TFs in terminally differentiated T_{EX} cells and reduced expression of TOX. TOX has
478 been proposed to regulate terminal exhaustion (34); thus, together these data suggest that TET2
479 may coordinate with TOX and T_{EFF}-associated TFs to initiate and/or maintain the terminal
480 differentiation of T_{EX}.

481 In transitioning to a progenitor-like memory state and away from terminal differentiation,
482 T-cells undergo metabolic reprogramming, including a shift to oxidative metabolism (64), that
483 augments proliferation and function. Accordingly, T_{CM} and T_{SCM} cells demonstrate superior anti-
484 tumor potency compared to effector-like cells in CAR T-cell therapies (10, 65-67). Metabolic
485 programming also shifts during CD8⁺ T-cell exhaustion. Metabolic fitness, including glucose

486 uptake capacity, may decrease as TEX progenitors increase PD1 expression and terminally
487 differentiate (18, 68). Together, these findings highlight commonalities in how metabolic
488 programing is associated with both progenitor-associated biology and terminal differentiation
489 across multiple contexts. *TET2*^{KO} CAR T-cells displayed enhanced metabolic fitness post-
490 manufacturing, potentially providing a growth and/or survival advantage. As these metabolic
491 changes were accompanied by an increase in frequency of central memory T-cells, it will be
492 important to disentangle how TET2 may regulate metabolism independently of memory
493 differentiation. However, these data imply first that TET2 could play a critical role in regulating
494 metabolic reprogramming during early T-cell differentiation, and second, that loss of TET2
495 promotes more progenitor-like metabolism. Therefore, TET2 loss may limit terminal exhaustion,
496 at least in part, through regulation of metabolic function either early in CD8⁺ T-cell differentiation
497 before establishment of exhaustion or as exhaustion progresses.

498 In settings of both acute and chronic antigen exposure *in vitro* and *in vivo*, TET2 regulated
499 the acquisition (or re-acquisition) of effector-like biology and drove terminal differentiation. These
500 findings suggested that TET2 orchestrates the development of a core effector and terminal
501 differentiation program that coordinates with context dependent TFs and the epigenetic landscape
502 to result in distinct CD8⁺ T-cell fates. Supporting this hypothesis, we also identified a role for
503 TET2 in promoting effector biology and TEFF differentiation before fate-commitment to
504 exhaustion, driving development of short-lived TEFF-like cells and away from the formation of the
505 TEX precursor pool (55). Thus, TET2 regulates terminal differentiation and the acquisition of
506 effector-like biology at multiple checkpoints in CD8⁺ T-cell differentiation, implying that
507 analogous epigenetic programs are reused throughout CD8⁺ T-cell differentiation. Furthermore,
508 TET2 has been reported to regulate self-renewal and terminal differentiation of additional cell

509 types, including hematopoietic stem cells (69). This implies that TET2 may have a broad, cell
510 lineage-independent role in orchestrating terminal differentiation. Further work is needed to
511 understand how TET2 and DNA methylation coordinates these epigenetic transitions and functions
512 with other epigenetic regulators and TFs to regulate cell differentiation in distinct contexts.

513 TET2 disruption decreased expression of effector-associated molecules, including
514 granzymes, in both chronic stimulation CAR-T cell models and in chronic infection. However,
515 loss of TET2 did not negatively impact CD8⁺ T-cell anti-tumor efficacy. Indeed, TET2-TRAC-
516 CAR19 T-cells exhibited improved tumor control compared to TRAC-CAR19 T-cells. One
517 possible explanation for our findings is that this increased anti-tumor efficacy results from
518 enhanced CD8⁺ T cell proliferation and/or survival, potentially driven by improved maintenance
519 or expansion of the self-renewing stem cell-like progenitor population. Importantly, T_{EX}
520 progenitors retain the ability to produce cytokines, including IL-2, despite low expression of
521 cytotoxic markers (32). Thus, strategies that increase the maintenance of progenitor populations,
522 in addition to enhancing effector function, may have potential as a means to improve CAR T-cell
523 efficacy.

524 Understanding the epigenetic regulation of T_{EX} cell development holds promise for
525 advancing immunotherapies like CAR T-cells. The hyperproliferative phenotype of *TET2*-
526 deficient CAR T-cells underscores the efficacy of epigenetic reprogramming, yet raises substantial
527 long-term safety concerns (10, 13). Individual mutations implicated in T-cell lymphoma alone
528 typically do not lead to lymphomagenesis directly; instead, they are often detected in aberrant cells
529 contributing to autoinflammatory or autoimmune disorders (70). Additionally, prior studies
530 leveraging gene knockout strategies targeting T-cell lymphoma tumor suppressors have shown no
531 signs of malignant transformation (71). However, deliberate disruption of *TET2* for CAR T-cell

532 therapy warrants caution, especially in elderly patients susceptible to acquiring *DNMT3A*
533 mutations (72), which can cooperate with *TET2* loss, potentially leading to T-cell oncogenesis
534 (73). To address these concerns, we utilized synthetic biology to develop a next-generation cell
535 therapy product. This approach improves the anti-tumor efficacy of CAR T-cells, modulating
536 *TET2* to limit terminal exhaustion, while also reducing the risk of lymphomagenesis,
537 autoimmunity, or graft-versus-host disease. First, disrupting *TRAC* mitigates the risk of
538 pathological signaling from the endogenous TCR. Second, our dual knock-in strategy ensures
539 precise insertion of transgenes at specific loci, averting random genomic integration. Third,
540 incorporating a safety switch allows for depletion of *TET2*-disrupted cells if necessary. Additional
541 mitigation strategies could be applied, such as screening for pre-existing mutations predisposing
542 engineered cell products to hyperproliferation or transformation (74), administering
543 corticosteroids, which *TET2KO* T-cells are highly sensitive to (10, 13), and transient or partial
544 suppression of *TET2* during CAR T-cell production and/or after infusion. Our findings thus
545 underscore the practical significance and feasibility of targeted epigenetic reprogramming to shape
546 CAR T-cell differentiation, highlighting the potential of *TET2* modulation to redirect T_{ex} cell fate.

547 **MATERIALS AND METHODS**

548 **Study design**

549 The study investigated the role of TET2 in regulating exhausted CD8⁺ T-cell differentiation
550 (T_{EX}) in cancer and chronic viral infection, employing human CAR T-cells and a murine
551 lymphocytic choriomeningitis virus (LCMV) model. We evaluated the impact of *TET2* disruption
552 on T_{EX} phenotypes, differentiation fate, and functional outcomes both *in vitro* and *in vivo*. Flow
553 cytometry assessed protein expression related to T-cell exhaustion and memory differentiation,
554 while ATAC-seq explored chromatin accessibility landscapes across T_{EX} subsets. Transcriptomic
555 analysis elucidated underlying pathways and transcriptional regulation by TET2. Additionally, we
556 developed a novel CRISPR/Cas9-based genome editing approach to engineer allogeneic CAR T-
557 cells for enhanced anti-tumor responses through TET2 modulation of T_{EX}. Sample sizes were
558 estimated based on preliminary experiments, with *in vitro* functional assays performed at least
559 three times. Investigators were not blinded during experiments or outcome assessment.

560 **Primary human cells**

561 CAR T-cells and control samples were generated from healthy donor peripheral blood
562 mononuclear cells (PBMCs) through leukapheresis, following University of Pennsylvania
563 Institutional Review Board-approved protocols. Written informed consent was obtained from all
564 participants, consistent with the principles outlined in the Declaration of Helsinki, International
565 Conference on Harmonization Guidelines for Good Clinical Practice, and the U.S. Common Rule.

566 **Cell lines**

567 For viral vector production, HEK 293T cells and GP2-293, a HEK 293-derived retroviral
568 packaging cell line, were cultured in hR10 medium (RPMI 1640 supplemented with 10% heat-
569 inactivated FBS, 2% Hepes buffer, 1% GlutaMAX, and 1% penicillin-streptomycin). SUP-T1

570 were used to determine lentiviral titers. HEK 293T cells were sourced from the American Type
571 Culture Collection (ATCC) and GP2-293 from Takara Bio. NALM-6 cells expressing click beetle
572 green luciferase and green fluorescent protein (CBG-GFP), provided by Marco Ruella at the
573 University of Pennsylvania, were utilized. K562 human leukemia cell lines including a variant
574 expressing the extracellular domain of the CD19 protein were obtained from Carl H. June at the
575 University of Pennsylvania and maintained in hR10 medium. 143B osteosarcoma cells modified
576 to express GFP and firefly luciferase, along with NALM-6 cells engineered for GD2 expression,
577 were also cultured in hR10 medium. Cell line authenticity was confirmed via short-tandem-repeat
578 profiling meeting the International Cell Line Authentication Committee's guidelines with more
579 than 80% match, conducted by the University of Arizona Genetics Core. Regular mycoplasma
580 screenings were performed to ensure cell line health and purity before and after genetic
581 modifications.

582 **Analysis of *TET2* integration sites in CAR T-cell-treated leukemia patients**

583 Genomic DNA from patient cell sources (whole blood, bone marrow, PBMCs, or T-cells;
584 pre- and post-infusion) was isolated for library preparation followed by paired-end Illumina
585 sequencing, as previously described (10, 75). CLL and ALL human integration site data were
586 aligned to the human genome hg38 and analyzed using a previously published integration analysis
587 pipeline (76). Sample timepoints were grouped into four categories (day 0, days 1-15, days 16-31,
588 day 31+). Percent relative abundance represents the estimated proportion of cells with integration
589 in a sample.

590 **Lentiviral packaging**

591 Briefly, HEK 293T cells were transfected with 7 µg of pVSV-G glycoprotein envelope
592 plasmid, 18 µg of pMDLg/p.RRE Gag/Pol plasmid and 18 µg of pRSV.Rev plasmid alongside 15

593 μ g of transfer vector plasmid encoding for CAR of interest using Lipofectamine 2000 (Thermo
594 Fisher Scientific) and Opti-MEM (Gibco). Cell culture supernatant was harvested 24- and 48-hours
595 post-transfection, centrifuged at 900 RCF for 10 minutes at 4°C and filtered through a 0.45 μ M
596 vacuum filter. Following filtration, 24-hour supernatant was concentrated by ultracentrifugation at
597 8877 RCF overnight at 4°C, while 48-hour supernatant was concentrated overtop of the overnight
598 viral pellet at 76,790 RCF for 2 hours at 4°C. Concentrated virus was stored at -80°C.

599 **T-cell culture and lentiviral transduction**

600 T-cells were isolated from healthy donor PBMCs using the Pan T-cell Isolation Kit
601 following manufacturer's instructions (Miltenyi Biotec). Isolated T-cells were activated using anti-
602 CD3/CD28 antibody-coated Dynabeads (Thermo Fisher Scientific) at a 3:1 bead-to-cell ratio in T-
603 cell media consisting of OpTmizer CTS SFM media (Thermo Fisher Scientific) supplemented with
604 5% human AB serum and 100 Units/mL human IL-2 (PeproTech). After a 24-hour incubation,
605 lentivirus containing the appropriate CAR construct was introduced to the culture at a multiplicity
606 of infection (MOI) of 2.5. CAR T-cell expansion proceeded following established protocols (77).

607 **AAV construct design**

608 DNA sequences containing either a truncated EGFR (tEGFR) sequence driven by an EF1 α
609 promoter (for TET2-KI), or a truncated NGFR (tNGFR) sequence, T2A sequence and an anti-
610 CD19 single-chain variable fragment (scFv) fused to 4-1BB and CD3 ζ stimulatory endodomains
611 (for TRAC-CAR19-KI) were subcloned into recombinant AAV6 plasmids (GenScript). DNA
612 sequences were flanked with 400 base-pair homology arms immediately upstream and downstream
613 of the TET2 gRNA or TRAC gRNA cut sites, respectfully. Large-scale packaging of AAV6 virus
614 was done by co-transfection of a packaging cell line with the rAAV6 transgene plasmid of interest,

615 a rep- and cap- encoding plasmid and an adenovirus-derived replication helper plasmid (Charles
616 River).

617 **CRISPR-Cas9–mediated editing and AAV transduction**

618 *TET2* and *TRAC* editing via CRISPR-Cas9 was conducted 72 hours post-T-cell activation.
619 Single guide RNA (sgRNA) reagents from Integrated DNA Technologies targeted the *TET2* and
620 *TRAC* loci. The sgRNA sequences with protospacer-adjacent motif (PAM) sequences are indicated
621 as follows: *TET2* 5'-CGGGGATACCTATAACAGATCCAT-3' and *TRAC* 5'-
622 AGGGAGAATCAAAATCGGTGAAT-3'. The control *AAVS1* targeted sequence is: 5'-
623 CCATCGTAAGCAAACCTTAGAGG-3'.

624 Activated T-cells were de-beaded magnetically, washed with 1X PBS at $300 \times g$ for 5
625 minutes, and resuspended in P3 4D-nucleofection buffer (Lonza). TrueCut Cas9 Protein v2
626 (Thermo Fisher Scientific). sgRNAs targeting *TET2* and/or *TRAC* were individually complexed at
627 6 μ g:3.2 μ g for 10 minutes at room temperature to form ribonucleoprotein (RNP) complexes before
628 nucleofection. Nucleofection into T-cells was performed using a Lonza 4D Nucleofector X Unit
629 with high fidelity program EO-115, followed by a 10-minute resting period. For AAV-mediated
630 knock-in, cells were transduced with AAV viral vectors carrying TRAC-CAR19-tNGFR and/or
631 TET2-tEGFR constructs (Charles River) at an MOI of 50,000.

632 *TET2* knockout efficiency was confirmed by isolating genomic DNA from CAR T-cells at
633 Day 7 using the dNeasy Blood & Tissue Kit (Qiagen). PCR of genomic DNA was performed with
634 *TET2* Forward Primer 5'-TCCCTGAGTCCCAGTCCATC-3' and Reverse Primer 5'-
635 TCAGGAATGGCCAGGTTCTG-3' using MyTaq Red 2X Mix (Meridian Bioscience). Purified
636 control and edited PCR products underwent Sanger sequencing (Azena), and editing efficiency

637 was determined by Tracking of Indels by DEcomposition (TIDE) through comparison of control
638 and edited Sanger sequence electropherogram files.

639 To confirm tEGFR and tNGFR-CAR19 construct knock-ins, genomic DNA was isolated
640 from end-of-expansion transduced CAR T-cells. PCR of genomic DNA was carried out with the
641 following primer sets: *TET2* (unedited) Forward Primer 5'-TCCCTGAGTCCCAGTCCATC-3',
642 *TET2* (unedited) Reverse Primer 5'- TCAGGAATGGCCAGGTTCTG-3', *TET2* (edited) Forward
643 Primer 5'-CATCACGAGCAGCTGGTTTC-3', *TET2* (edited) Reverse Primer 5'-
644 GGCAATTGAACCGGTGCCTA-3', *TRAC* (unedited) Forward Primer 5'-
645 TCCCTGAGTCCCAGTCCATC-3', *TRAC* (unedited) Reverse Primer 5'-
646 CTTCATGCCCTGCATCTCCA-3', *TRAC* (edited) Forward Primer 5'-
647 CATCACGAGCAGCTGGTTTC-3', *TRAC* (edited) Reverse Primer 5'-
648 CATCAGTTGCAGGGCAAGTC-3'. Edited and unedited PCR products underwent purification
649 and Sanger sequencing.

650 **Western blot analysis of *TET2* knockout**

651 CAR T-cells were lysed in 1X lysis buffer (Cell Signaling Technology) and supernatants
652 were collected after centrifugation. Cell lysate samples (30 μ g) were separated on a NuPAGE 4-
653 12% Bis-Tris gel (Invitrogen) and transferred onto a membrane using the iBlot 2 Dry Blotting
654 System (Invitrogen). The membrane was blocked with 5% skim milk and probed with primary
655 antibodies overnight at 4°C: either rabbit monoclonal anti-TET2 (Cell Signaling Technology) or
656 monoclonal mouse anti-GAPDH (Thermo Fisher). Primary antibodies were diluted in 1X PBS
657 with 0.2% Tween and 5% BSA. After washing, the membrane was incubated with goat anti-mouse
658 or anti-rabbit HRP-linked secondary antibody (Thermo Fisher) for 1 hour at room temperature.

659 Finally, the membrane was treated with equal parts of Pierce ECL Western blotting substrate
660 (Thermo Fisher Scientific) and visualized.

661 **Flow cytometry of human immune cells**

662 Cells were collected and stained with LIVE/DEAD Fixable Aqua Dead Cell Stain Kit
663 (Invitrogen) for 20 minutes at room temperature. After washing with hFACS buffer (PBS + 2%
664 FBS + 0.05% Sodium Azide), surface antibodies were incubated with cells for 30 minutes at 4°C
665 in hFACS buffer and Brilliant Stain Buffer (BD Biosciences). For intracellular staining, samples
666 were fixed and permeabilized using the FoxP3 Transcription Factor Staining Buffer Kit (Thermo
667 Fisher Scientific) for 30 minutes, followed by staining with intracellular antibodies for an
668 additional 30 minutes. Data acquisition was performed using a BD LSRII and analyzed with
669 FlowJo™ software (BD Life Sciences). Compensation setup utilized Anti-Mouse Ig, κ and Anti-
670 Rat/Hamster Ig, κ CompBeads (BD Biosciences) along with Fluorescence Minus One (FMO)
671 controls to establish gating boundaries. SPICE plots were generated from single gated inhibitory
672 receptors, grouped using Boolean ‘AND’ gates, and plotted using SPICE 6.1 software
673 (<https://niaid.github.io/spice/>). Refer to **table S6** for antibody details.

674 **Seahorse metabolic flux assay**

675 Using a Seahorse xFe96 Analyzer (Agilent), we conducted the Seahorse Mitochondrial
676 Stress Test. The xFe96 Pro sensor cartridge (Agilent) was hydrated overnight with sterile water at
677 37°C in a non-CO₂ incubator, followed by XF Calibrant (Agilent) hydration. Thawed T-cells were
678 rested overnight, washed with 1X PBS, and treated with Seahorse Assay Media. Cells (1-2 × 10⁵)
679 were plated in Poly-D-Lysine coated 96-well microplates (Agilent) with 4-5 technical replicates.
680 The microplate was centrifuged and incubated to facilitate cell attachment. Drug solutions
681 (oligomycin, FCCP, Rotenone/Antimycin A) were prepared in the sensor cartridge. The assay

682 measured basal OCR and ECAR triplicate at baseline and after each drug addition using WAVE
683 software (Agilent).

684 **CAR T-cell serial restimulation assay**

685 CAR⁺ T-cells were purified using a biotin-conjugated AffiniPure Goat Anti-Mouse IgG
686 F(ab')₂ fragment specific antibody and anti-biotin microbeads (Miltenyi Biotec). In the case of
687 dual knock-in TET2-TRAC CAR T-cells, EGFR⁺, NGFR⁺, and EGFR/NGFR-dual positive cells
688 were purified using PE and APC-conjugated antibodies alongside anti-PE, anti-APC, or anti-PE
689 MultiSort microbeads as per the manufacturer's instructions (Miltenyi Biotec). Purity was assessed
690 by flow staining against knock-in markers tEGFR and tNGFR. K562-CD19⁺ cells were exposed
691 to 100 Gy ionizing radiation using the xRad320 (Precision X-Ray). CAR T-cells were co-cultured
692 with irradiated K562-CD19⁺ cells at a 1:1 ratio with 1 million CAR T-cells per 1 million K562
693 cells in hR10. Co-culture supernatants were harvested 24 hours after each stimulation and frozen
694 at -20°C. At 5 days post-stimulation (defined as acute stimulation), absolute CAR T-cell counts
695 were assessed with a LUNA-FL Dual Fluorescence Cell Counter (Logos Biosystems) and re-
696 cultured at a 1:1 ratio with fresh hR10 media and newly irradiated K562 cells for 4-5 additional
697 stimulations (defined as chronic stimulation). CAR T-cells were then cryopreserved for
698 phenotyping and transcriptomic profiling.

699 **Cytokine analysis**

700 Supernatant cytokines were quantified flow cytometrically using the LEGENDplex™
701 Human CD8/NK Panel as per the manufacturer's instructions (BioLegend). Data was acquired on
702 LSRFortessa and data analysis was performed with BioLegend LEGENDplex™ Data Analysis
703 Software Suites (BioLegend Qognit Cloud Platform).

704 **Assay for exhaustion in CAR T-cells with high tonic signaling**

705 CAR T-cells were transduced with retrovirus on days 2 and 3 post-activation. Briefly, 12-
706 or 24-well plates, non-tissue-culture-treated, were coated with 1 mL or 500 μ L, respectively, of 25
707 μ g/mL Retronectin (Takara) in PBS and incubated at 4°C overnight. The following day, plates
708 were washed with PBS and then blocked with 2% BSA in PBS for 10 minutes. Retroviral
709 supernatants were added, and plates were centrifuged at 32°C for 2 hours at 2500 RCF. After
710 centrifugation, viral supernatants were removed, and T-cells were seeded into each virus-coated
711 well at a density of 1×10^6 T-cells/well for 12-well plates and 0.5×10^6 T-cells/well for 24-well
712 plates. CRISPR knockout of *TET2* (or *AAVSI* as a control) was performed 2-4 days post T-cell
713 activation to achieve maximal editing efficiency, using the EH115 program on a Lonza 4D
714 Nucleofector. Cells were immediately recovered in 260 μ L of warm complete AIM-V media
715 supplemented with 500 U/mL IL-2 in round-bottom 96-well plates and expanded into 1 mL fresh
716 medium after 24 hours. Cells were maintained at densities of $0.5-2 \times 10^6$ cells per mL in well plates
717 until day 14-16 for functional and phenotypic characterization. Editing efficiency was assessed
718 using TIDE as described previously. Immunophenotyping of CAR T-cells via flow cytometry was
719 performed on days 11 and 15 of expansion. Cytotoxicity of HA.28 ζ CAR T-cells was evaluated
720 using an Incucyte[®] Live-Cell Analysis System at day 15 at the end of expansion. In brief, 25×10^5
721 GFP⁺ 143b-GL osteosarcoma tumor cells were seeded in triplicate in 96-well plates and co-
722 cultured with T-cells at effector:target ratios of 1:1, 1:2, 1:4, 1:8, and/or 1:16 in 300 μ L of T-cell
723 medium without IL-2 in 96-well flat-bottom plates. Plates were imaged at 10X zoom with 4-9
724 images per well every 2-4 hours for 96 hours using the IncuCyte ZOOM Live-Cell analysis system.
725 Total integrated GFP intensity per well or total GFP area (μ m²/well) were used to analyze
726 expansion or contraction of 143B cells, with four images captured per well at each time point.

727 Total tumor GFP fluorescence (normalized to the initial $t = 0$ timepoint) was recorded, and the
728 normalized tumor GFP signal was used as the cytolysis threshold.

729 Cell culture supernatants from 1:1 E:T co-cultures were utilized to determine IL-2 and IFN-
730 γ concentrations via ELISA. Specifically, 5×10^4 CAR T-cells were co-cultured with 5×10^4 tumor
731 cells in 200 μ L of complete T-cell medium (AIM-V or RPMI) without IL-2 in a 96-well plate, all
732 in triplicate. After 24 hours of coculture, culture supernatants were collected, diluted 20 to 100-
733 fold, and analyzed for IL-2 and IFN- γ using ELISA MAX kits and Nunc Maxisorp 96-well ELISA
734 plates. Absorbance readings were obtained using a Spark plate reader (Tecan Life Sciences).

735 **LCMV mouse studies**

736 Mice were maintained in a specific-pathogen-free facility at the University of
737 Pennsylvania, in accordance with the Institutional Animal Care and Use Committee. B6;129S-
738 *Tet2^{tm1.1aai}/J* (TET2^{fl/fl}) mice and CD4^{Cre+} mice were obtained from the Jackson Laboratory (JAX).
739 TCR transgenic P14 C57BL/6 mice expressing a TCR specific for LCMV peptide D^bGP³³⁻⁴¹ (78,
740 79) were bred in house. All mice were backcrossed to and maintained on a C57BL/6J background.
741 P14 mice were bred to TET2^{+/+} CD4^{Cre+} or TET2^{fl/fl} CD4^{Cre+} mice to generate WT (TET2^{+/+}
742 CD4^{Cre+} P14⁺) and *TET2*_{KO} (TET2^{fl/fl} CD4^{Cre+} P14⁺) P14 donor mice. For all experiments, WT and
743 *TET2*_{KO} donor mice were age and sex matched. For P14 co-transfer experiments, sex-matched
744 recipient C57BL/6 mice were purchased from JAX at 5-8 weeks of age.

745 **Chronic LCMV infection**

746 Recipient mice were infected intravenously (i.v.) with 4×10^6 PFU of LCMV clone 13.
747 LCMV titers were determined via plaque assay as described (80).

748 **Naïve P14 cell co-transfer**

749 Adoptive transfer of P14 cells was performed as described (8). P14 cells were isolated from
750 the peripheral blood of naïve congenically distinct WT and *TET2*_{KO} donor mice using a histopaque
751 1083 gradient (Sigma-Aldrich). WT and *TET2*_{KO} P14 cells were mixed at a 1:1 ratio and a total of
752 500 P14 cells (250 WT and 250 *TET2*_{KO}) were adoptively transferred intravenously into recipient
753 mice of a third congenic background. The 1:1 ratio was confirmed by flow cytometry (BD LSRII).
754 One day post-adoptive transfer, recipient mice were infected with LCMV clone 13 (day 0). Unless
755 otherwise indicated, recipient mice were treated with CD4-depleting antibody (GK1.5, 200
756 mg/injection) on day -1 and day +1 relative to infection with LCMV clone 13.

757 **Retroviral transduction of the TET2 catalytic domain**

758 The FLAG-tagged murine TET2 catalytic domain in pMXs was provided by R. Kohli
759 (University of Pennsylvania) and subsequently inserted into MIGR1 courtesy of Warren Pear
760 (University of Pennsylvania), with an expanded multiple cloning site introduced. Empty MIGR
761 plasmid was used as a control. Retroviruses (RV) were generated in HEK 293T cells. P14 cells
762 from either WT or *TET2*_{KO} donor mice were activated, and retroviral transduction performed as
763 previously described (81, 82). CD8⁺ T-cells were isolated from spleens of P14 donor mice by
764 negative selection using the EasySepTM Mouse CD8⁺ T-cell isolation kit (STEMCELL
765 Technologies). P14 cells were activated *in vitro* for 24-28 hours with 100U/mL recombinant IL-2,
766 1 mg/mL LEAF anti-mouse CD3e and 0.5 mg/mL LEAF anti-mouse CD28 in mouse R10 media
767 (mR10: RPMI-1640 supplemented with 10% FCS, 50U/mL penicillin and streptomycin, 1-
768 glutamine, 20mM HEPES, non-essential amino acids (1:100), 1mM sodium pyruvate, and 50mM
769 b-mercaptoethanol). Activated P14 cells were transduced by spinfection at 2,000 x g for 90 min at
770 32°C in mR10 + 100U/mL IL-2 and 0.5 mg/mL polybrene. WT P14 cells were transduced with

771 MIGR1, while *TET2*^{KO} P14 cells from donor mice of a distinct congenic were transduced with
772 either MIGR1 or TET2 CD. After 24 hours rest, P14 cells expressing the retroviral reporter GFP
773 were sorted (BD FACS Aria, 37°C) and WT and *TET2*^{KO} P14 cells mixed in a 1:1 ratio before
774 adoptive transfer i.v. into recipient mice of a third congenic background. The 1:1 ratio was
775 confirmed by flow cytometry (BD LSRII). 4-5 x 10⁴ total P14 cells were transferred per LCMV
776 clone 13-infected recipient mouse. Recipient mice were infected with LCMV clone 13 on the same
777 day as P14 cell activation.

778 **Peptide Stimulation, flow cytometry, and sorting of murine immune cells**

779 PBMC were isolated from peripheral blood by repeated lysis with Ammonium-Chloride-
780 Potassium (ACK) lysis buffer and immediately stained in mouse FACS Buffer (mFACS Buffer;
781 PBS + 3% FCS + 2mM EDTA). Splenocytes were processed to a single cell suspension by
782 mechanical disruption over a 70 µm filter, followed by ACK lysis and then counted.

783 Splenocyte samples were either aliquoted in mFACS Buffer for staining or resuspended
784 in mR10 and stimulated *ex vivo* with LCMV peptide D^bGP³³ (0.2 µg/mL) in the presence of Golgi
785 Plug and Golgi Stop (BD Bioscience) for 5 hours at 37°C. Following stimulation, samples were
786 washed in PBS, incubated with a viability dye (15 minutes at RT), and stained with an antibody
787 cocktail targeting surface markers in mFACS Buffer + Brilliant Stain buffer for 30 min at 4°C or
788 1 hour at RT. In some panels, samples were stained with gp33 tetramer for 1 hour at 37°C in mR10
789 prior to surface staining. Biotinylated primary antibodies were detected with streptavidin-
790 conjugated secondary antibody for 30 minutes at 4°C. For intracellular staining, samples were
791 permeabilized using the eBioscience™ FoxP3 Transcription Factor Staining Buffer Kit or BD
792 Cytofix/Cytoperm™ Fixation/Permeabilization kit and incubated with intracellular antibodies for
793 30 minutes at 4°C or 1 hour at RT then washed and stored in BD Stabilizing Fixative until

794 acquisition. Samples were acquired on a BD LSRII or a BD FACSsymphony A5 and analyzed in
795 FlowJoTM v10.8 software. Voltages on flow cytometry machines were standardized using
796 fluorescent targets and Spherotech rainbow beads.

797 For cell sorting for sequencing, splenocytes were stained with a surface antibody cocktail
798 in mR10 + Brilliant Stain Buffer for 30 minutes at 4°C. Samples were sorted on a BD FACSaria
799 at 4°C into mR10 media with 50% FCS. Sorting accuracy was confirmed through post-sort purity
800 checks. See **table S7** for antibody information.

801 **Bulk RNA-sequencing**

802 For *in vivo* LCMV sample preparation, WT and *TET2^{KO}* P14 cells were co-transferred into
803 recipient mice as described in “**Naïve P14 cell co-transfer**”. Total WT and *TET2^{KO}* P14 cells and
804 TEX subsets were isolated at day 15 p.i. with LCMV clone 13 with >95% purity, as detailed above.
805 2 × 10⁴ cells were sorted in triplicate per sample and stored at -80°C in RLT buffer (Qiagen). RNA
806 was isolated using the Qiagen RNeasy Micro Kit, and cDNA libraries were generated following
807 the manufacturer’s instructions with the SMART-Seq v4 Ultra Low Input RNA Kit and Nextera
808 XT DNA library kit. After quantification with the KAPA Library Quant Kit, cDNA libraries were
809 pooled and diluted to 1.8 pg/mL and paired-end sequencing was conducted on a NextSeq 550
810 (Illumina) using a NextSeq 500/550 Mid Output Kit v2.5 (150 cycles).

811 For *in vitro* CAR T-cell sample preparation, CD8⁺ T-cells were enriched via positive
812 selection (Miltenyi Biotec), resuspended in TRIzolTM (Thermo Fisher Scientific), and stored at -
813 80°C. Upon thawing, total RNA was extracted, treated with Dnase, and further processed using an
814 RNA Clean and Concentrator Kit (Zymo Research). Bulk RNA sequencing was performed by
815 Novogene using the NovaSeq6000 system with a paired-end 150bp approach, generating 6 GB of
816 sequencing read data per sample.

817 Mouse reads were aligned to transcriptome mm39 using STAR with quantification via
818 cufflinks, while human reads were pseudoaligned to the human transcriptome GRCh38 using
819 kallisto. Data was imported into R, transformed into log2 counts per million, and normalized using
820 Trimmed Mean of M-values (TMM) with EdgeR. Differential Gene Expression was determined
821 with linear modeling and adjusted p-values using the Benjamini-Hochberg correction method with
822 limma and EdgeR.

823 Gene Set Enrichment Analysis (GSEA) was conducted using GSEA software from UC San
824 Diego and Broad Institute developers. Filtered, normalized expression data was utilized as input,
825 with parameters including a weighted enrichment statistic and Signal2Noise metric for gene
826 rankings.

827 **ATAC-sequencing**

828 For each LCMV T_{EX} sample, 1-2 × 10⁴ P14 cells were sorted in duplicate or triplicate and
829 processed as previously described (83) with minor modifications (82). Briefly, P14 cells were
830 washed with cold PBS, resuspended in 50 µL of cold lysis buffer (10 mM Tris-HCl, pH 7.4, 10
831 mM NaCl, 3 mM MgCl₂, 0.1% IGEPAL CA-630), and centrifuged (750 x g, 10 minutes, 4°C) to
832 remove lysates. Nuclei were immediately resuspended in 25 µL of the transposition reaction mix
833 (12.5µL 2x TD Buffer (Illumina), 1.25µL Tn5 Transposases, 11.25µL nuclease-free H₂O) and
834 incubated at 37°C for 45 minutes. Transposed DNA fragments were purified using the QIAGEN
835 Reaction MiniElute Kit, barcoded with NEXTERA dual indexes (Illumina), and PCR amplified
836 with NEBNext High Fidelity 2x PCR Master Mix (New England Biolabs). Following purification
837 with the PCR Purification Kit (QIAGEN), fragment sizes were confirmed using the 2200
838 TapeStation and High Sensitivity D1000 ScreenTapes (Agilent). ATAC-sequencing libraries were
839 quantified, pooled, and sequenced as described above for RNA sequencing. Alignment to the

840 mm39 genome was performed using bwa-mem, and peak calling was performed using MACS2.
841 Differential peak analysis was performed using limma-voom, and motif enrichment was performed
842 using HOMER.

843 **Antibody-dependent cellular cytotoxicity (ADCC) co-culture**

844 *TET2*-KI T-cells were rested overnight in hR10 media, while donor-matched natural killer
845 (NK) cells were isolated using an NK cell isolation kit (Miltenyi Biotec) and cultured overnight in
846 hR10 supplemented with IL-15 at 10 ng/mL (PeproTech). The following day, *TET2* knock-in T-
847 cells were incubated with a Cetuximab biosimilar (R&D Systems, #MAB9577) at a concentration
848 of 2000 ng/mL for 20 minutes. T-cells were then co-cultured at a 1:10 ratio with NK cells, with T-
849 cell numbers normalized to EGFR⁺ expression. After 16 hours, co-cultures were harvested and
850 stained with LIVE-DEAD Aqua, CD3, CD56, and a human IgG PE-conjugated secondary
851 antibody. EGFR expression on *TET2*-KI T-cells alone compared to NK co-culture with or without
852 Cetuximab (gated on live, CD56⁻ CD3⁺ EGFR⁺) was used to calculate percent EGFR decrease as
853 a readout for ADCC.

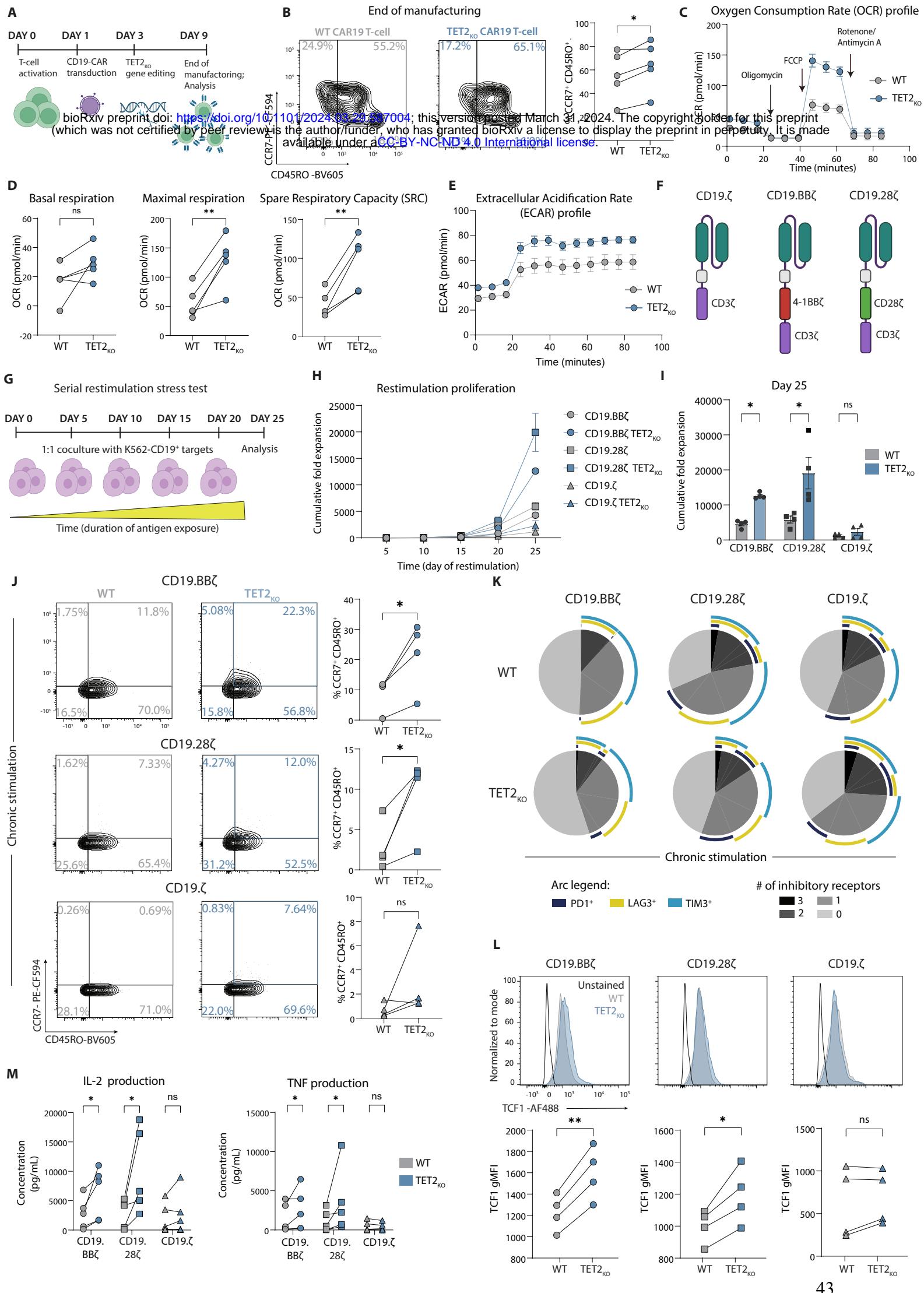
854 **Mouse xenograft studies**

855 Male NOD/SCID/IL-2R γ -null (NSG) mice, aged 7 weeks, were utilized for xenograft
856 studies. Mice received an intravenous injection of 3×10^5 NALM-6 tumor cells expressing a CBG
857 luciferase reporter suspended in 200 μ l of PBS. Tumor engraftment was confirmed on day 6 via
858 intraperitoneal injection of IVISbrite D-Luciferin Potassium Salt Bioluminescent Substrate
859 (XenoLight, PerkinElmer), followed by bioluminescent imaging (BLI) using the IVIS[®] Lumina
860 III In Vivo Imaging System (PerkinElmer). On day 7, mice were administered with 5×10^5 control
861 T-cells, experimental CAR T-cells, or PBS alone. Biweekly tumor imaging was conducted using
862 the IVIS Lumina system after IP luciferin injection to monitor tumor growth or reduction. Regions

863 of interest (ROIs) were delineated around mice for the calculation of bioluminescent tumor burden.
864 Peripheral blood samples were collected via cheek bleeding at the peak of CAR T-cell expansion
865 and lysed with ACK Lysing Buffer (Gibco) to obtain T-cells for immunophenotyping via flow
866 cytometry. Absolute cell counts were determined using 123count eBeadsTM Counting Beads
867 (Invitrogen). Kaplan-Meier survival curves were generated based on endpoint survival data.

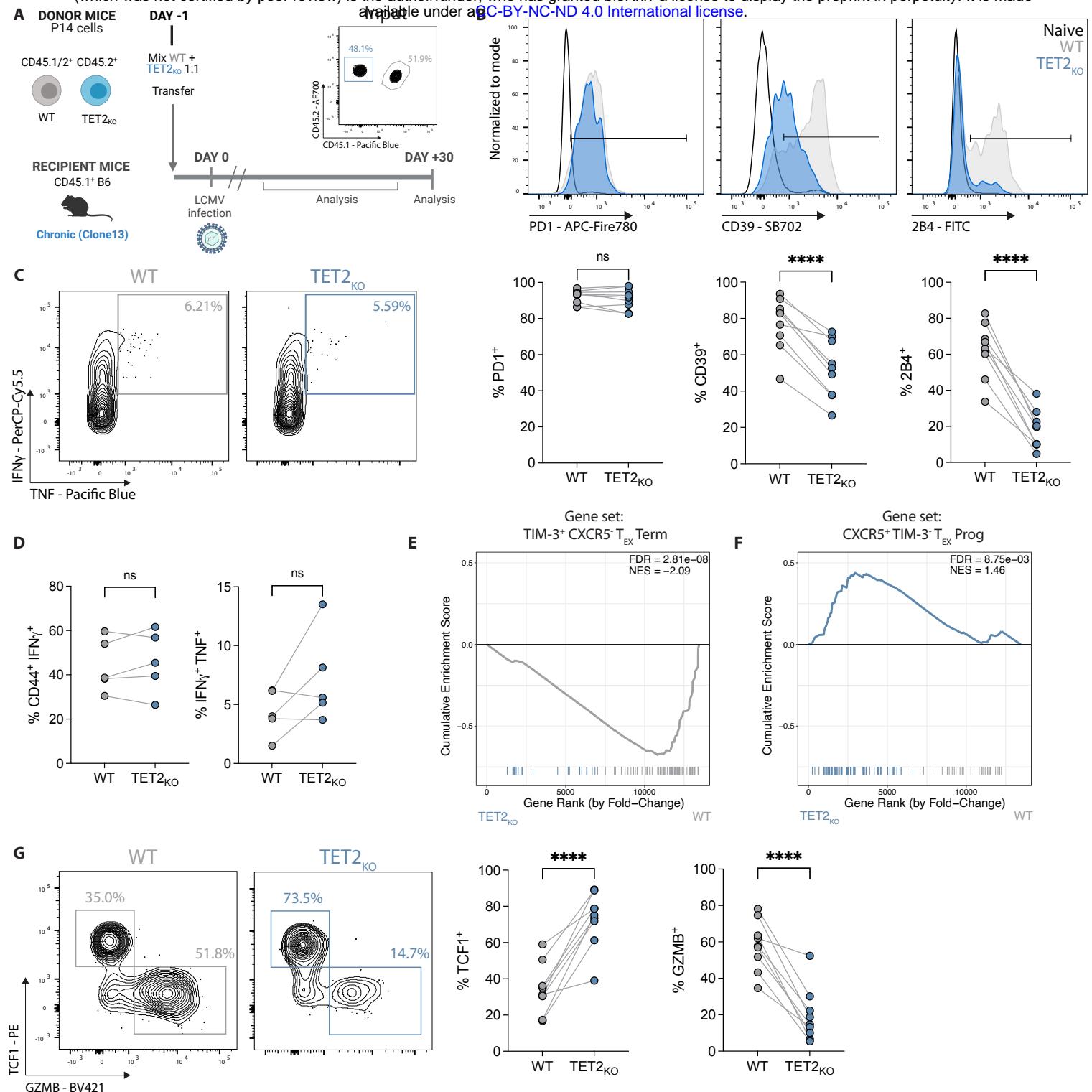
868 **Statistical analyses**

869 Summary data are presented as mean \pm SEM, as indicated in the figure legends, alongside
870 corresponding p-values. Pairwise sample comparisons were evaluated using a paired *t*-test. For
871 multiple pairwise comparisons, multiple paired *t*-tests with Holm-Šídák correction were used.
872 One-way ANOVA analysis was used for comparisons involving multiple groups, initially
873 assessing differences in mean values with a global omnibus F-test, followed by post-hoc analysis
874 for multiple comparisons if the initial test yielded significance ($p < 0.05$). Mouse survival was
875 analyzed using the Mantel-Cox log-rank test. Number of donors, animals and experiments are
876 indicated in the figure legends. All statistical analyses were conducted using Prism 9 or 10
877 (GraphPad Software), and significance was defined as $p < 0.05$.

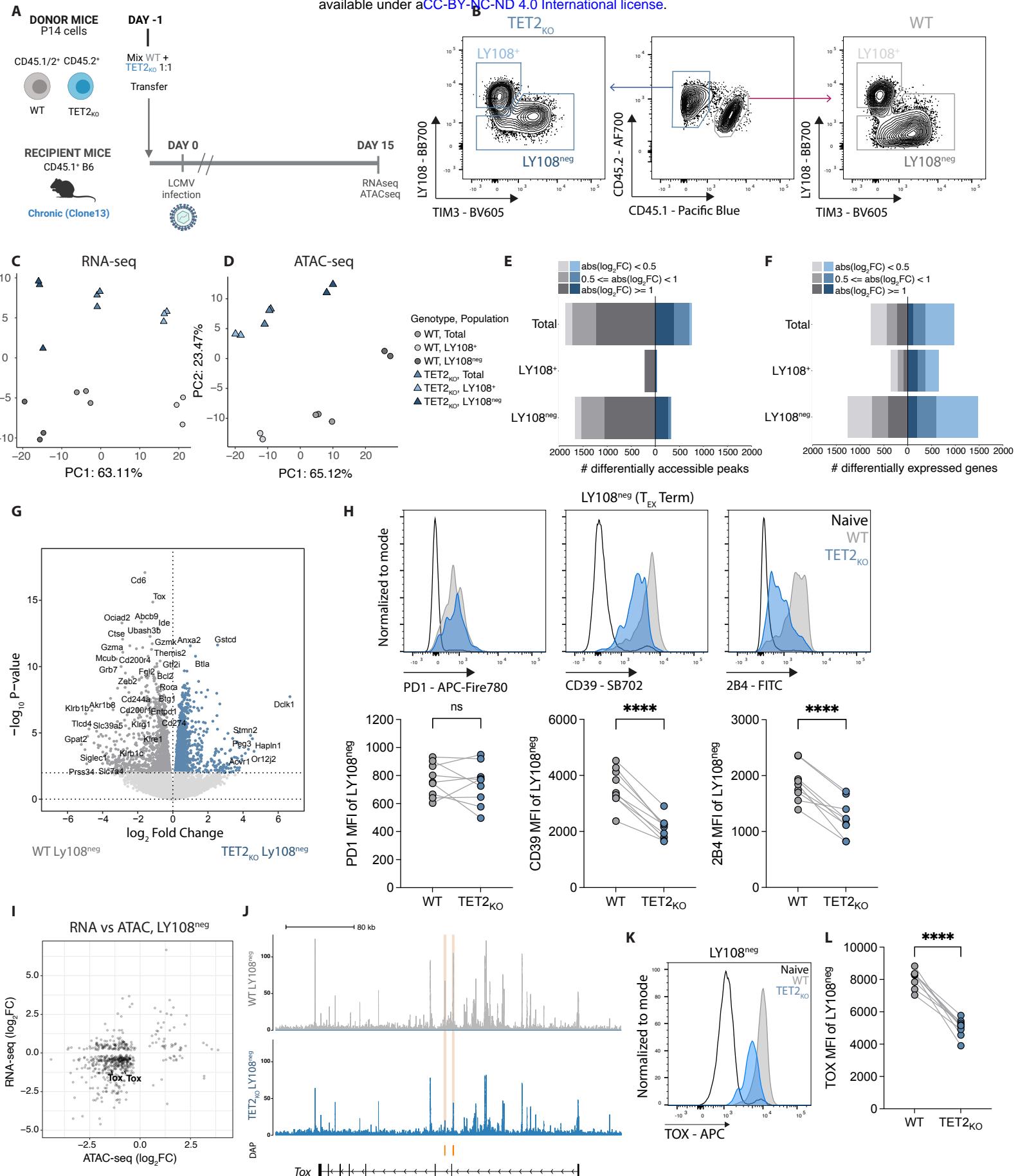

878 **Acknowledgements**

879 The authors are grateful to the Human Immunology Core at the University of Pennsylvania (RRID
880 SCR_022380) and the Hospital of the University of Pennsylvania Apheresis Unit for their
881 provision of peripheral blood mononuclear cells. We acknowledge the Stem Cell and Xenograft
882 Core at the University of Pennsylvania (RRID SCR_010035) for their husbandry services and
883 support with *in vivo* mouse studies, the Cell and Animal Radiation Core at the University of
884 Pennsylvania (RRID SCR_022377) for access to the xRad irradiator, and the Penn Cytomics and
885 Cell Sorting Resource Laboratory (RRID SCR_022376). We thank Dr. Fengjuan Zhang from the

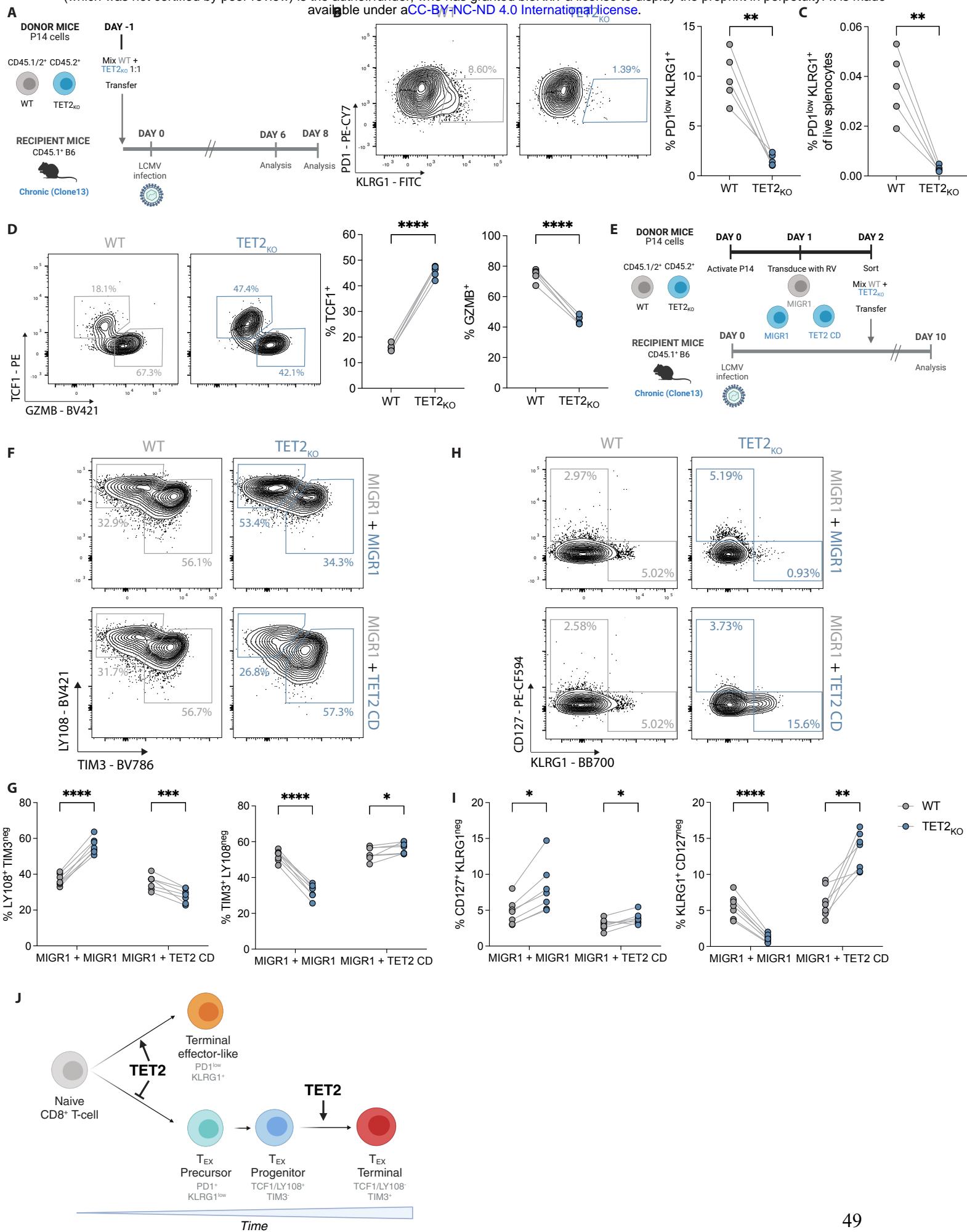
886 Translational and Correlative Sciences Laboratory (TCSL) for helpful advice regarding gene set
887 enrichment analysis and acknowledge the contributions of the TCSL and the Product Development
888 Laboratory (PDL) from the University of Pennsylvania Center for Cellular Immunotherapies.
889 Special thanks to Dr. Megan Davis (Director of PDL) and Dr. Kathrine Alexander from the
890 University of Pennsylvania Epigenetics Institute for their invaluable discussions. We also extend
891 our gratitude to Dr. Carl June (University of Pennsylvania) for his insightful advice and input on
892 translational aspects of TET2 modulation in T-cell therapy. Schematic illustrations were created
893 with BioRender. **Funding:** This study was supported by grants T32 AI007632 (awarded to A.J.D.),
894 F31 CA274961 (to C.R.H.), and EEC1648035 from the National Science Foundation Engineering
895 Research Center for Cell Manufacturing Technologies (to B.L.L. and J.A.F.). Additional support
896 came from the Bob Levis Funding Group (to B.L.L. and J.A.F.), R21 AI144732 (to M.S.J.), an
897 Alliance for Cancer Gene Therapy Investigator Award in Cell and Gene Therapy for Cancer (to
898 J.A.F.), and NIH grants U54 CA244711 (with a bench-to-bedside supplement) and P01 CA214278
899 (to J.A.F.). E.J.W. is supported by NIH grants AI155577, AI115712, AI117950, AI108545,
900 AI082630, and CA210944. Work in the Wherry lab is supported by the Parker Institute for Cancer
901 Immunotherapy. The study also received funding from U01 AG066100 via the Samuel Waxman
902 Cancer Research Foundation (to J.A.F.), along with support from an ACC P30 Core Grant P30
903 CA016520 (to J.A.F.). **Author contributions:** A.J.D., A.E.B., M.S.J., and J.A.F. designed the
904 study. A.J.D., A.E.B., J.R.G., I-Y.J., R.O., G.V., J.K.J., R.M.Y., J.J.M., S.L.M, B.L.L., N.V.F.,
905 S.L.B., S.A.G., D.L.P., F.H., M.H.P., F.D.B., E.W.W., E.J.W., M.S.J., and J.A.F. developed
906 methodologies and provided resources, technical feedback as well as intellectual input. A.J.D.,
907 A.E.B., C.R.H., C.H.H., G.T.R., W.K., V.W., R.B., S.D., K.D., C.R.H., O.M.K., Z.C., A.C. and
908 N.G. performed experiments. G.M.C., H.H., and S.C. performed RNA- and ATAC-sequencing


909 data analysis. J.K.E., K.A. and S. S-M. performed integration site analyses. The paper was written
910 by A.J.D., A.E.B., M.S.J., and J.A.F., with all authors contributing to writing and providing
911 feedback. **Competing interests:** R.O. has contributed to patents licensed to Novartis in
912 Biomedical Research and possesses equity interests in Nucleus Biologics and Stoic Bio,
913 additionally serving as a scientific advisor to Nucleus Biologics. J.J.M. discloses receiving fees
914 from IASO Biotherapeutics and Poseida Therapeutics, as well as Kite Pharma, unrelated to this
915 work. He holds patents related to enhancing immune cell efficacy and predicting chimeric antigen
916 responsiveness, issued to Novartis. S.L.M. has obtained clinical trial support and advisory roles
917 with Novartis and Wugen and holds a Novartis-pending patent. S.R.R. and D.L.P. have disclosed
918 involvement with various pharmaceutical companies and hold positions that include receiving
919 research funding, holding equity, and serving in advisory capacities. D.L.P. also benefits from
920 patents and royalties with Tmunity and Wiley and Sons Publishing. B.L.L. maintains consultancy
921 and advisory positions with several biotech companies, including Terumo and GSK, and has equity
922 in Tmunity Therapeutics and Capstan Therapeutics. S.S-M. and N.V.F. are engaged with Sana
923 Biotechnology. N.V.F. has consultancy roles with Novartis and Syndax Pharmaceuticals, besides
924 obtaining funding from Kite Pharma. S.G. has disclosed receiving support and serving in advisory
925 capacities for multiple entities within the pharmaceutical sector, including Novartis and Servier.
926 M.H.P. is involved with Graphite Bio and Allogene on their Board of Directors and Scientific
927 Advisory Board, respectively, and is an advisor to Versant Ventures, holding equity in CRISPR
928 Tx and Kamau Therapeutics. E.W.W. is a consultant to and holds equity in Lyell Immunopharma
929 and consults for Umoja Immunopharma. E.J.W. is an advisor for Arsenal Biosciences, Coherus,
930 Danger Bio, IpiNovyx, New Limit, Marengo, Pluto Immunotherapeutics, Prox Bio, Related
931 Sciences, Santa Ana Bio, and Synthekine. E.J.W. is a founder of and/or holds stock in Coherus,

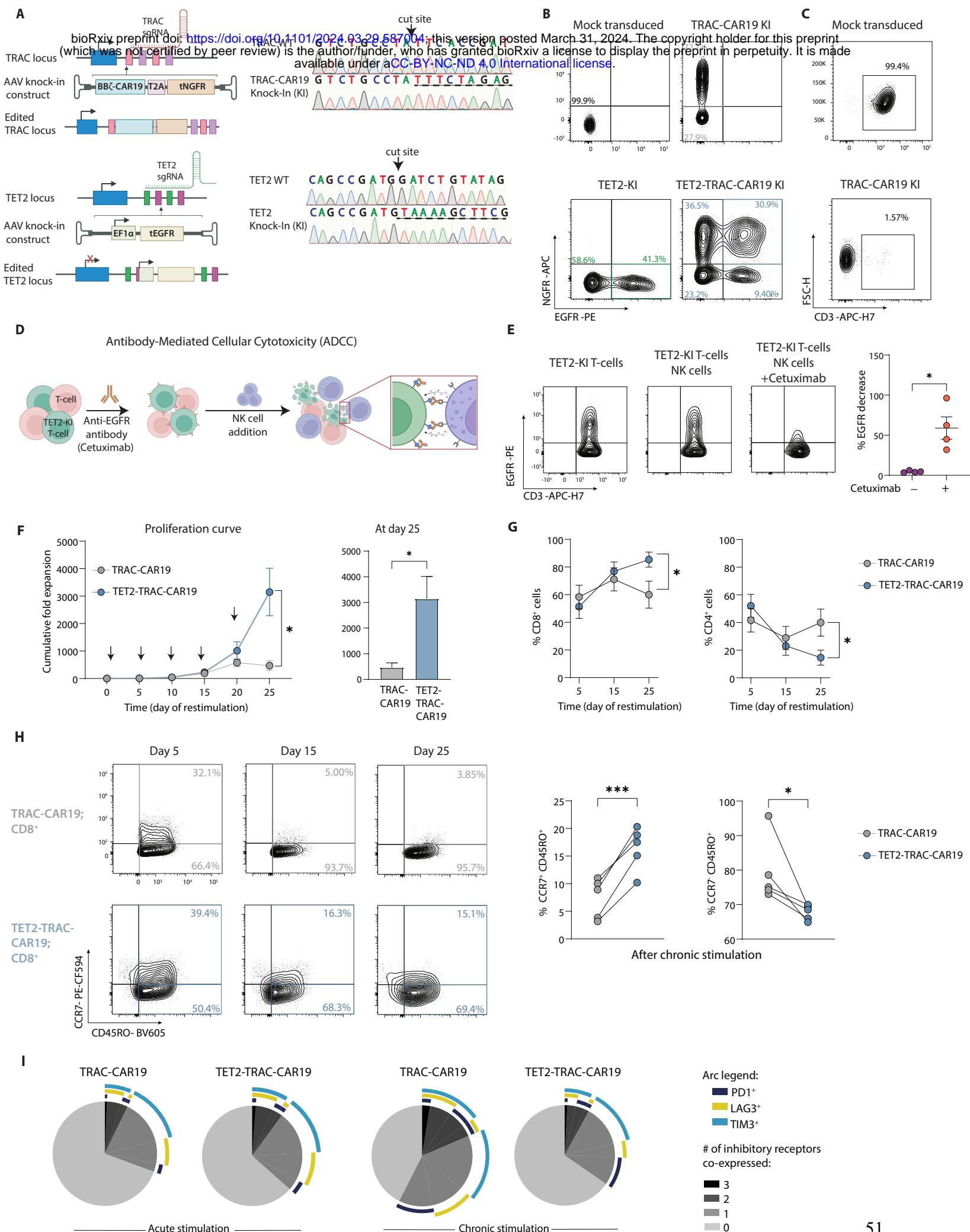
932 Danger Bio, Prox Bio and Arsenal Bioscience. J.A.F. has patents and holds intellectual property
933 in T-cell–based cancer immunotherapy, from which he has received royalties. He also receives
934 funding from Tmunity Therapeutics and Danaher Corporation, consults for Retro Biosciences, and
935 is a member of the Scientific Advisory Boards for Cartography Bio, Shennon Biotechnologies
936 Inc., CellFe Biotech, OverT Bio, Inc., and Tceleron Therapeutics, Inc. The remaining authors
937 declare no competing interests. **Data and materials availability:** All study data are available
938 within the paper and its supplementary materials. Sequencing data are deposited in Gene
939 Expression Omnibus (GEO) under accession number GSE261093 and integration site sequencing
940 data in the Sequence Read Archive (SRA BioProject PRJNA1093497), both hosted by the National
941 Center for Biotechnology Information (NCBI). Visualization code for TET2 patient integration
942 site data analysis is available at https://github.com/helixscript/TET2_ALL CLL. For additional
943 data or material inquiries, contact the Penn Center for Innovation at pciinfo@pci.upenn.edu.
944 Requests will be promptly reviewed for any intellectual property or confidentiality issues, and
945 eligible data and materials will be shared following a material transfer agreement. For further
946 assistance, contact the corresponding authors.


947 **Figure 1. TET2-deleted CAR T-cells adopt a central memory-like state following**
948 **manufacturing and exhibit increased expansion and reduced IR expression under chronic**
949 **stimulation across multiple CAR constructs.**

950
951 (A) Schematic of CD19 CAR T-cell manufacturing and *TET2* gene editing. (B) Example plots and
952 data after CAR T-cell expansion (day 9), highlighting CCR7⁺CD45RO⁺ central memory subset, n
953 = 5. (C-E) Oxygen Consumption Rate (OCR) (C), Basal respiration, maximal respiration, Spare
954 Respiratory Capacity (SRC) (D) and Extracellular Acidification Rate (ECAR) (E) of *TET2*-
955 disrupted cells at end of expansion (day 9) after administration of oligomycin, FCCP and antimycin
956 A/rotenone as indicated by arrows in (C), n = 5, run in triplicate. (F-G) Schematic of CD19.CD3 ζ ,
957 CD19.BB ζ , and CD19.CD28 ζ CAR constructs \pm *TET2*_{KO} (F) placed in a serial restimulation stress
958 test (G). (H-I) Cumulative fold expansion of serially restimulated CAR T-cells \pm *TET2*_{KO}
959 throughout restimulation (H) and at day 25 (I), n = 4. (J) Example plots and data of serially
960 restimulated CAR T-cells \pm *TET2*_{KO} showing distribution of CCR7⁺CD45RO⁺ central memory-
961 associated markers in CD8⁺ CAR T-cell populations after 5 stimulations, n = 4. (K) SPICE plots
962 showing distribution of inhibitory receptor co-expression in serially restimulated CD8⁺ CAR T-
963 cells \pm *TET2*_{KO} after 5 stimulations, n = 4. (L) Example histograms (top) and data (bottom) of
964 TCF1 gMFI in serially restimulated CD8⁺ CAR T-cells \pm *TET2*_{KO} after 5 stimulations, n = 4. (M)
965 IL-2 and TNF production from supernatant collected 24 hours after 5th stimulation, n = 5. Data
966 shown as mean \pm SEM (C, E, H) or individual values (B, D, I, J, L, M) from independent donors.
967 ns p > 0.05; * p < 0.05; ** p < 0.01 by paired t-test.


968 **Figure 2. TET2 mediates the transition out of the progenitor T_{EX} subset towards terminal**
969 **exhaustion.**

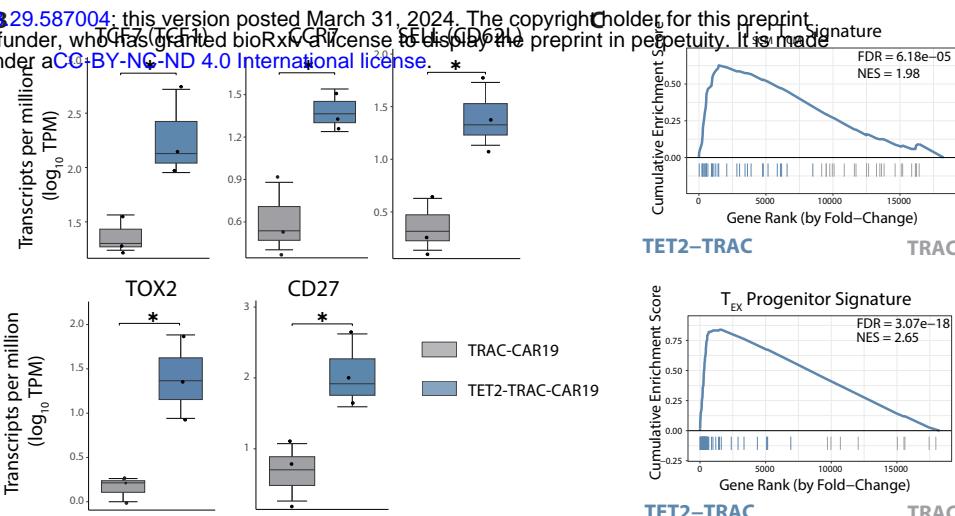
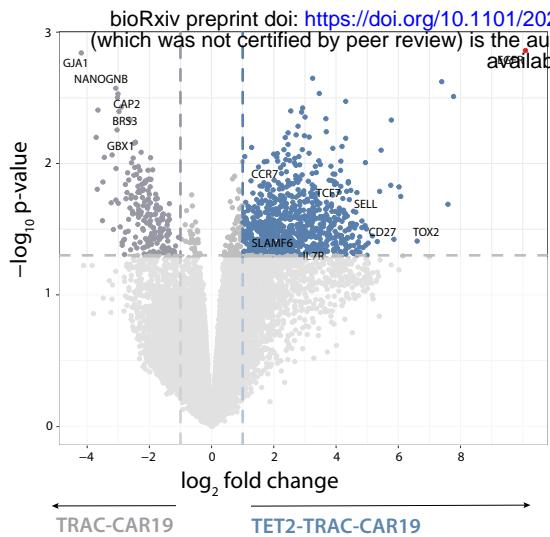
970 (A) Co-transfer experimental schematic. Inset plot shows initial P14 co-transfer. (B) Example plots
971 and data for inhibitory receptor expression on *TET2*_{KO} P14 cells compared to WT P14 cells. (C-
972 D) Example plots (C) and data (D) comparing IFN γ and TNF expression following peptide
973 restimulation for WT and *TET2*_{KO} P14 cells. (E-F) GSEA of terminal T_{EX} (E) and T_{EX} progenitor
974 (F) signatures between WT and *TET2*_{KO} P14 cells at day 15 p.i. with LCMV clone 13 (Gene sets
975 from GSE84105). (G) Example plots and data comparing TCF1 $^+$ T_{EX} progenitor and GZMB $^+$
976 terminally differentiated T_{EX} frequencies within WT and *TET2*_{KO} P14 cells. (B, G) n = 9, spleen
977 at day 30 p.i. with LCMV clone 13. Data for individual mice shown; representative of >4
978 independent experiments. (D) n = 5, spleen at day 37 p.i. with LCMV clone 13. Data for individual
979 mice shown; representative of 3 independent experiments. (B, D, G) ns p > 0.05; * p < 0.05; ** p
980 < 0.01; *** p < 0.001; **** p < 0.0001 by paired t-test.


981 **Figure 3. Loss of TET2 limits terminal differentiation of exhausted CD8 T-cells.**

982 (A) Experiment schematic for RNA and ATAC sequencing. WT and *TET2*^{KO} P14 cells were
983 analyzed at day 15 p.i. with LCMV clone 13. (B) Sorting strategy for Tex subsets for RNA and
984 ATAC sequencing. (C-D) PCA of RNA sequencing (C) and ATAC sequencing (D) data for WT
985 and *TET2*^{KO} Tex subsets. (E-F) Number of DACRs (E) or DEGs (F) for each pairwise comparison
986 between WT and *TET2*^{KO} Tex subsets (FDR < 0.05, with variable absolute log₂ fold changes
987 (abs(log₂FC)) indicated). (G) Volcano plot highlighting DEG in WT compared to *TET2*^{KO}
988 LY108^{neg} Tex cells. (H) Example plots and data comparing expression of PD1, CD39 and 2B4 on
989 *TET2*^{KO} LY108^{neg} Tex to WT LY108^{neg} Tex. (I) Correlation plot of differential gene expression
990 and peak accessibility in *TET2*^{KO} LY108^{neg} Tex compared to WT LY108^{neg} Tex with TOX labelled.
991 (J) Example tracks showing accessibility at the *Tox* locus in LY108^{neg} Tex. Differentially
992 Accessible Peaks (DAPs) are indicated in orange. (K-L) Example plots (K) and data (L)
993 comparing TOX expression in *TET2*^{KO} LY108^{neg} Tex to WT LY108^{neg} Tex. (H, L) n = 9, spleen
994 at day 30 p.i. with LCMV clone 13. Data for individual mice shown; representative of 3
995 independent experiments. ns p > 0.05; *** p < 0.0001 by paired t-test.

996 **Figure 4. TET2 regulates early bifurcation of T_{EX} from T_{EFF}-like cells.**

997 (A) Experiment schematic for analysis of *TET2*^{KO} P14 cells early (day 6-8) of LCMV clone 13
998 infection. (B) Example plots and data comparing frequency of early T_{EFF}-like cells (KLRG1⁺
999 PD1^{low}) within WT and *TET2*^{KO} P14 cells at day 8 p.i. (C) Frequencies of WT and *TET2*^{KO}
1000 KLRG1⁺ PD1^{low} T_{EFF}-like cells from total live splenocytes at day 8 p.i. (D) Example plots and data
1001 comparing expression of TCF1 and GZMB for WT and *TET2*^{KO} P14 cells. (E) Experiment
1002 schematic for rescue of TET2 function in *TET2*^{KO} P14 cells. (F-G) Example plots (F) and data (G)
1003 comparing frequencies of LY108⁺ T_{EX} and TIM3⁺ T_{EX} for WT and *TET2*^{KO} P14 cells with or
1004 without overexpression of the TET2 catalytic domain (TET2 CD versus MIGR1). (H-I) Example
1005 plots (H) and data (I) comparing frequencies of CD127⁺ TMEM-like and KLRG1⁺ T_{EFF}-like cells
1006 for WT and *TET2*^{KO} P14 cells with or without overexpression of the TET2 catalytic domain (TET2
1007 CD). (J) Model for TET2 role at major bifurcation events in chronic infection. (B, C, D) n = 5,
1008 spleen at day 8 p.i. with LCMV clone 13. Data for individual mice shown, representative of 2
1009 independent experiments. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001 by paired t-test.
1010 (G, I) n = 7, spleen at day 10 p.i. with LCMV clone 13. Data for individual mice shown,
1011 representative of 2 independent experiments. ns p > 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001;
1012 **** p < 0.0001 by multiple paired t-test with Holm-Šídák post-test correction.

1013 **Figure 5. Dual knock-in TET2-TRAC-CAR19 T-cells have enhanced proliferation and**
1014 **maintain memory-associated marker expression.**

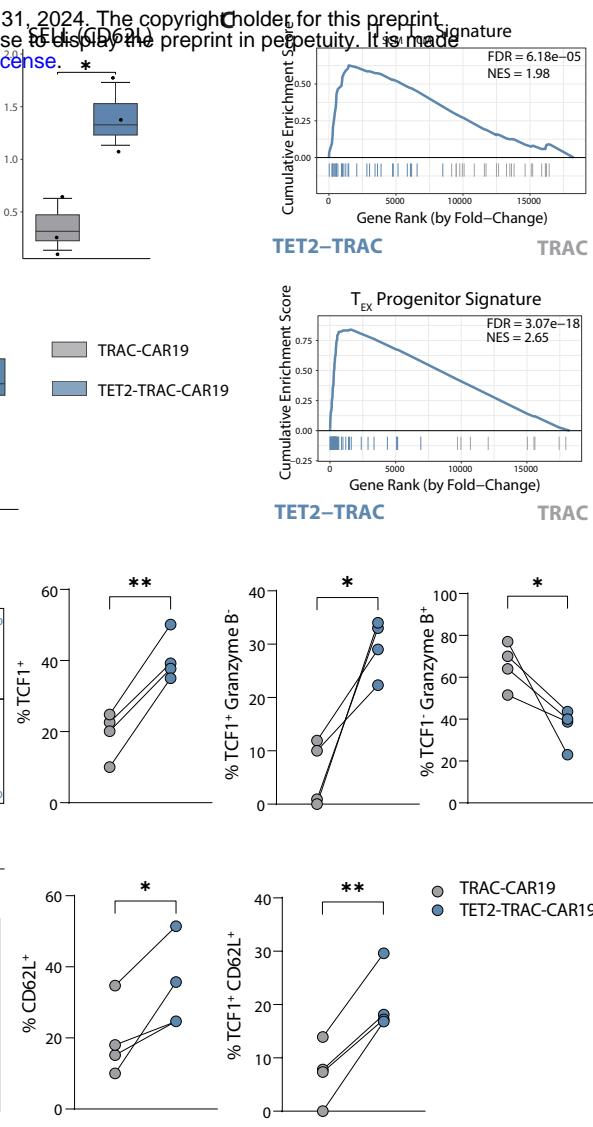
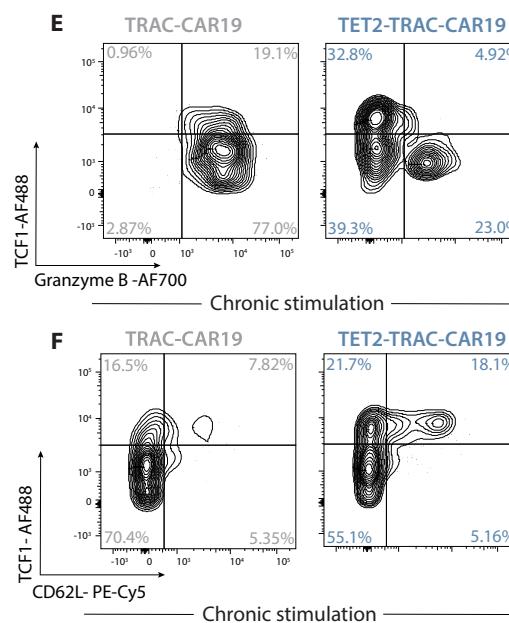
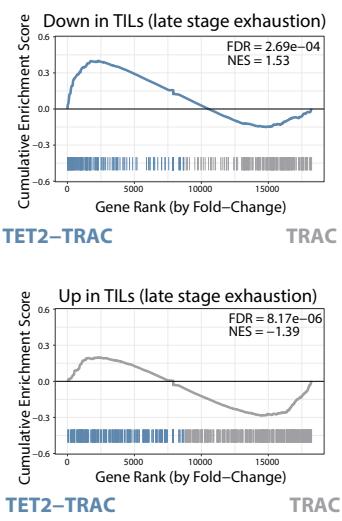
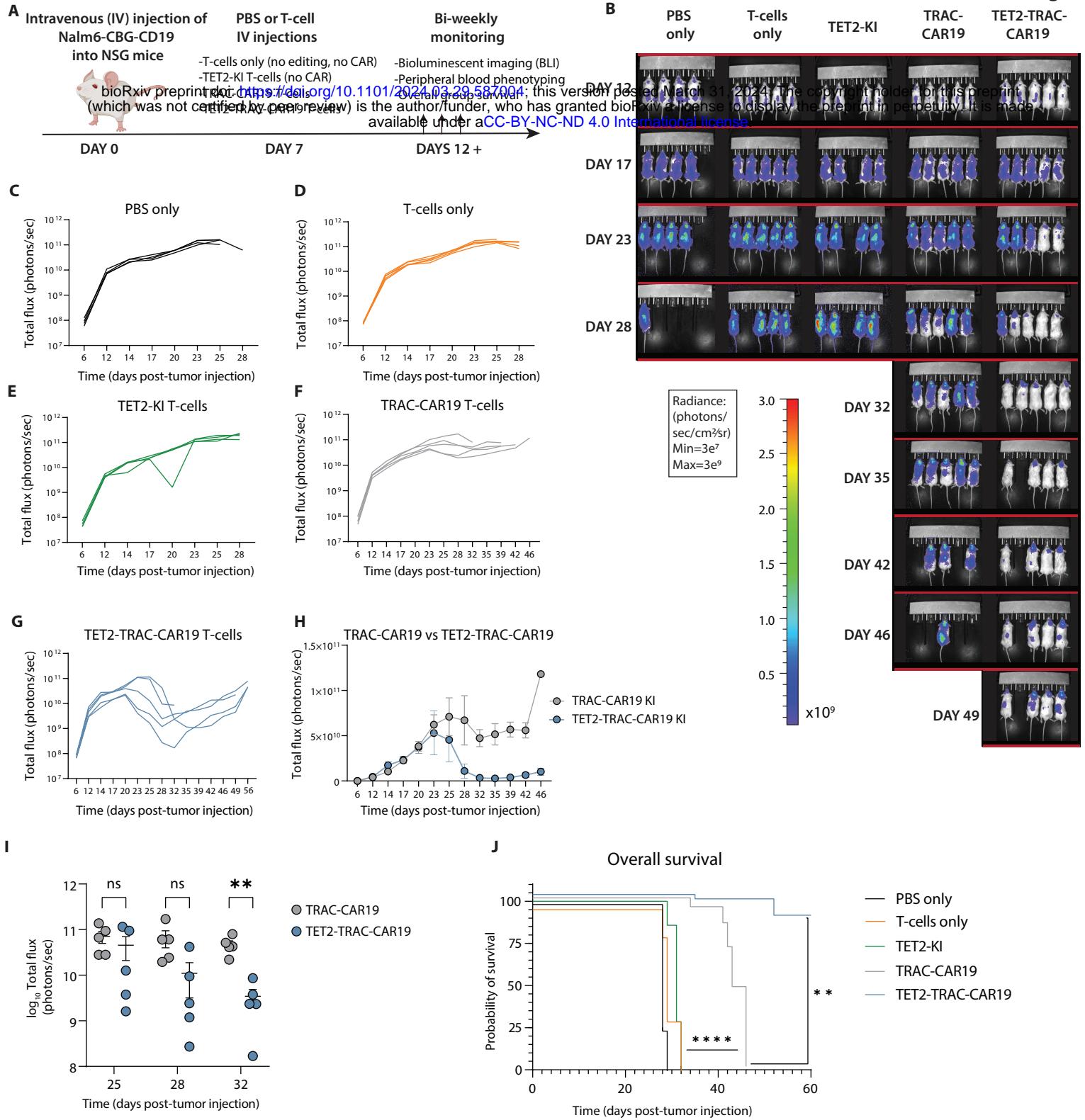



1015 (A) Left; Schematic of *TRAC* (**top**) and *TET2* (**bottom**) loci alongside rAAV6 knock-in (KI)
1016 vectors. Right; Sanger sequencing electropherogram confirming integration of TRAC and TET2
1017 KI constructs, underlined with dashed line. (B) Example plots of TET2 and TRAC-CAR19 single
1018 KI or dual TET2-TRAC-CAR19 KI T-cells. (C) Example plots of CD3 loss detected by flow in
1019 TRAC-CAR19-KI T-cells. (D-E) Schematic of *in vitro* ADCC assay (D) to deplete CRISPR-edited
1020 TET2-KI T-cells. Example plots and data (E) of EGFR expression on TET2-KI T-cells alone or
1021 in an NK cell co-culture \pm Cetuximab incubation, gated on CD56 $^-$ populations, n = 4. (F)
1022 Cumulative fold expansion of TRAC-CAR19 and TET2-TRAC-CAR19 T-cells during
1023 restimulation and at day 25, arrows represent addition of irradiated K562-CD19 $^+$ target cells, n =
1024 5. (G) Proportions of CD4 $^+$ versus CD8 $^+$ T-cells in TRAC-CAR19 and TET2-TRAC-CAR19 T-
1025 cells after stimulation, n = 7. (H) Example plots showing distribution of central (CCR7 $^+$ CD45RO $^+$)
1026 and effector (CCR7 $^-$ CD45RO $^+$) memory-associated markers in CD8 $^+$ CAR T-cell populations
1027 after restimulation, with summary after 5 stimulations, n = 5. (I) SPICE plot showing distribution
1028 of inhibitory receptor co-expression in CD8 $^+$ TRAC-CAR19 and TET2-TRAC-CAR19 T-cells
1029 after 1 (acute) and 5 (chronic) stimulations, n = 6. (J) Data shown as mean \pm SEM (F, G) or
1030 individual values (E, H) from independent donors. ns p > 0.05; * p < 0.05; ** p < 0.01; *** p <
1031 0.001 by paired t-test.

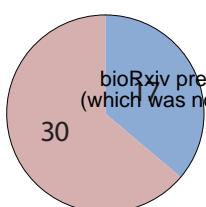
Figure 6

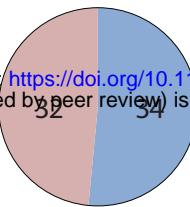
A



D

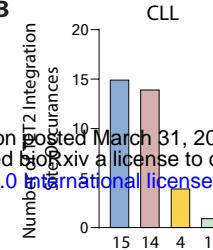
1032 **Figure 6. TET2 disruption limits terminal differentiation of TRAC-CAR19 T-cells.**


1033 (A) Volcano plot showing differentially regulated genes in CD8⁺ TET2-TRAC-CAR19 and
1034 TRAC-CAR19 T-cells after 4 stimulations; select markers highlighted. EGFR highlighted in red
1035 as TET2-KI construct positive control. Graph axes represent log₂ fold change and -log₁₀ p-value,
1036 n = 3. (B) Box plots of individual gene log₁₀ Transcripts per Million (TPM) for TET2-TRAC-
1037 CAR19 and TRAC-CAR19 T-cells from (A), n = 3. (C-D) GSEA for signatures of stem-cell
1038 central memory and central memory T-cells (TSCM, TCM) and TEX progenitors (gene sets from
1039 GSE147398) (C) and from human tumor infiltrating lymphocytes (TILs) (from *Saleh et al.*) (D)
1040 Normalized enrichment score (NES) and FDR indicated in panel. (E) Example plots and data of
1041 CD8⁺ CAR T-cell TCF1/granzyme B subpopulations after 4 stimulations, n = 4. (F) Example plots
1042 and data of CD8⁺ CAR T-cell TCF1/CD62L subpopulations after 4 stimulations, n = 4. Data shown
1043 as mean \pm SEM (B) or individual values (E, F) from independent donors. ns p > 0.05; * p < 0.05;
1044 ** p < 0.01; *** p < 0.001 by paired t-test.


1045 **Figure 7. TET2 knock-in enhances the anti-tumor activity of TRAC-CAR19 T-cells *in vivo*.**

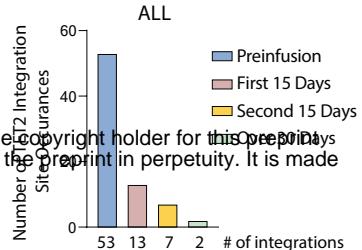
1046 (A) Overview of *in vivo* experimental design, n = 4-5 mice per experimental group; one
1047 experiment. (B) Longitudinal tumor burden of all experimental groups by bioluminescent imaging
1048 (BLI). (C-G) Tumor outgrowth for PBS only (C), T-cell (D), TET2-KI T-cell (E), TRAC-CAR19
1049 T-cell (F) and TET2-TRAC-CAR19 T-cell (G) groups, with individual mice shown. (H)
1050 Longitudinal comparison of TRAC-CAR19 and TET2-TRAC-CAR19 T-cell group tumor burden.
1051 (I) BLI comparison at days during and immediately after peak CAR T-cell response in TRAC-
1052 CAR19 and TET2-TRAC-CAR19 groups, line at mean with SEM; ns p > 0.05; * p < 0.05; ** p <
1053 0.01 by multiple paired t-tests with Holm-Šídák correction. (J) Overall group survival, ** p < 0.01;
1054 *** p < 0.0001 by Mantel-Cox log-rank test. Data shown as mean \pm SEM (H) or individual values
1055 (C-G, I) from each mouse.

A


Patients with \geq one TET2 integration site

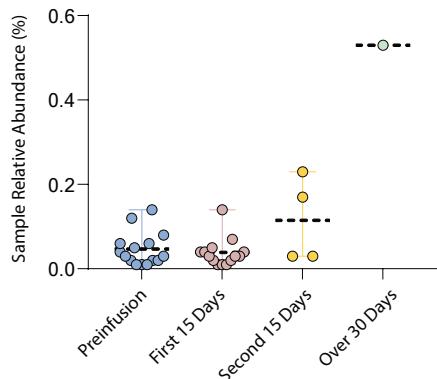
Total = 47 CLL Patients

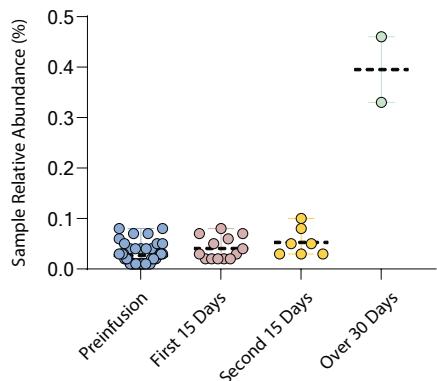
Patients with \geq one TET2 integration site


Total = 66 ALL Patients

B

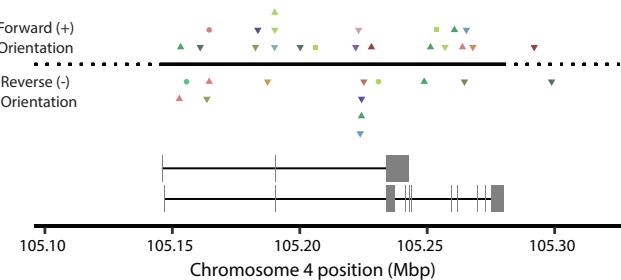
Total=33 unique (out of 34) integration sites from 17 patients


ALL


Total= 75 unique (out of 75) integration sites in 34 patients

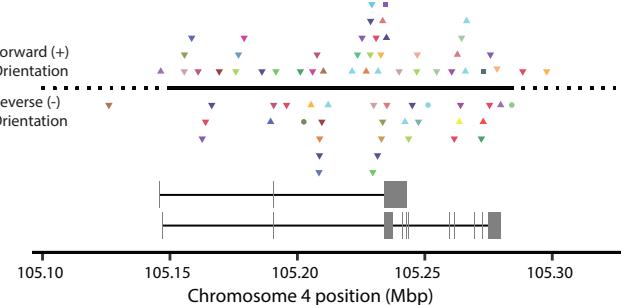
C

TET2 integrations in CLL



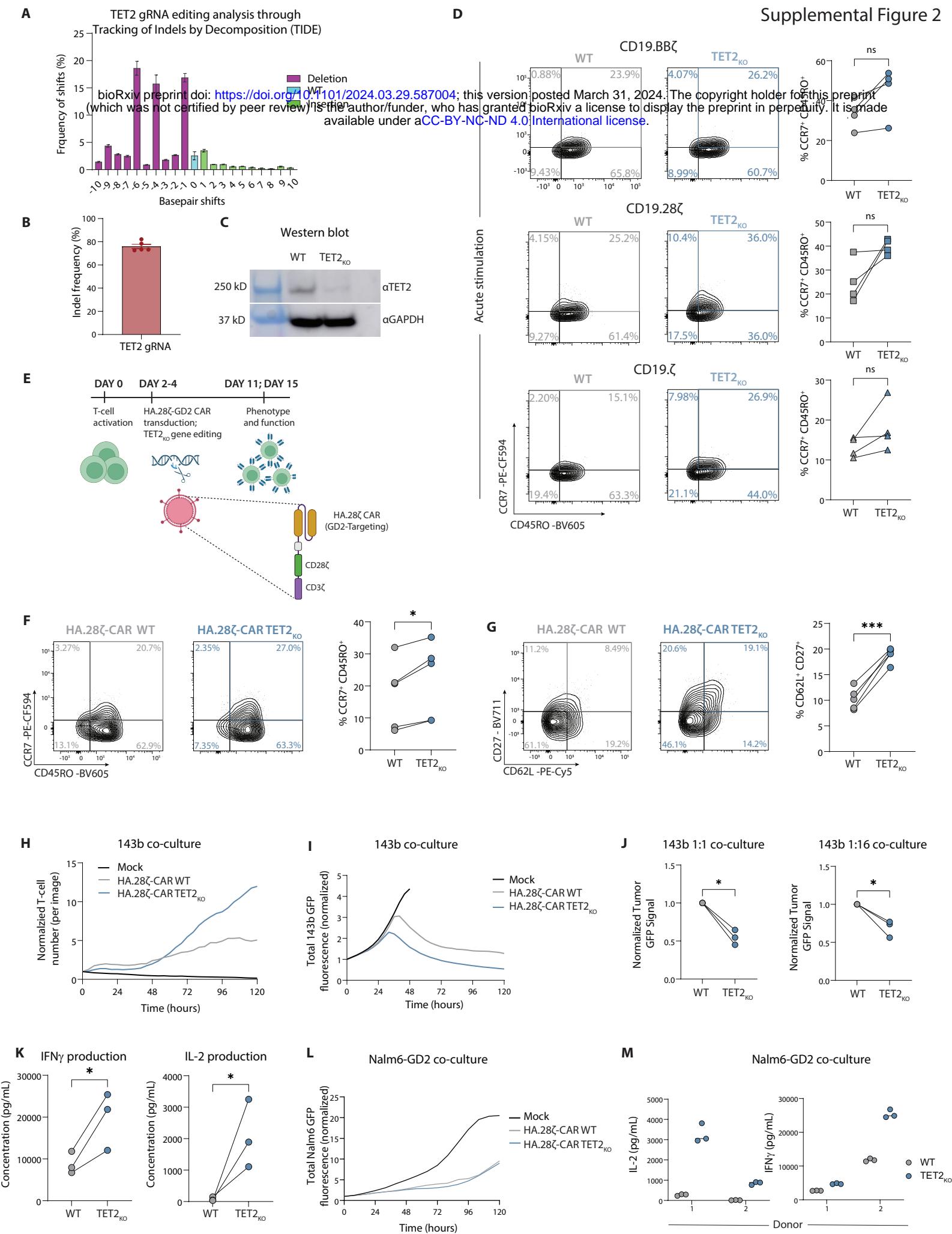
TET2 integrations in ALL

D

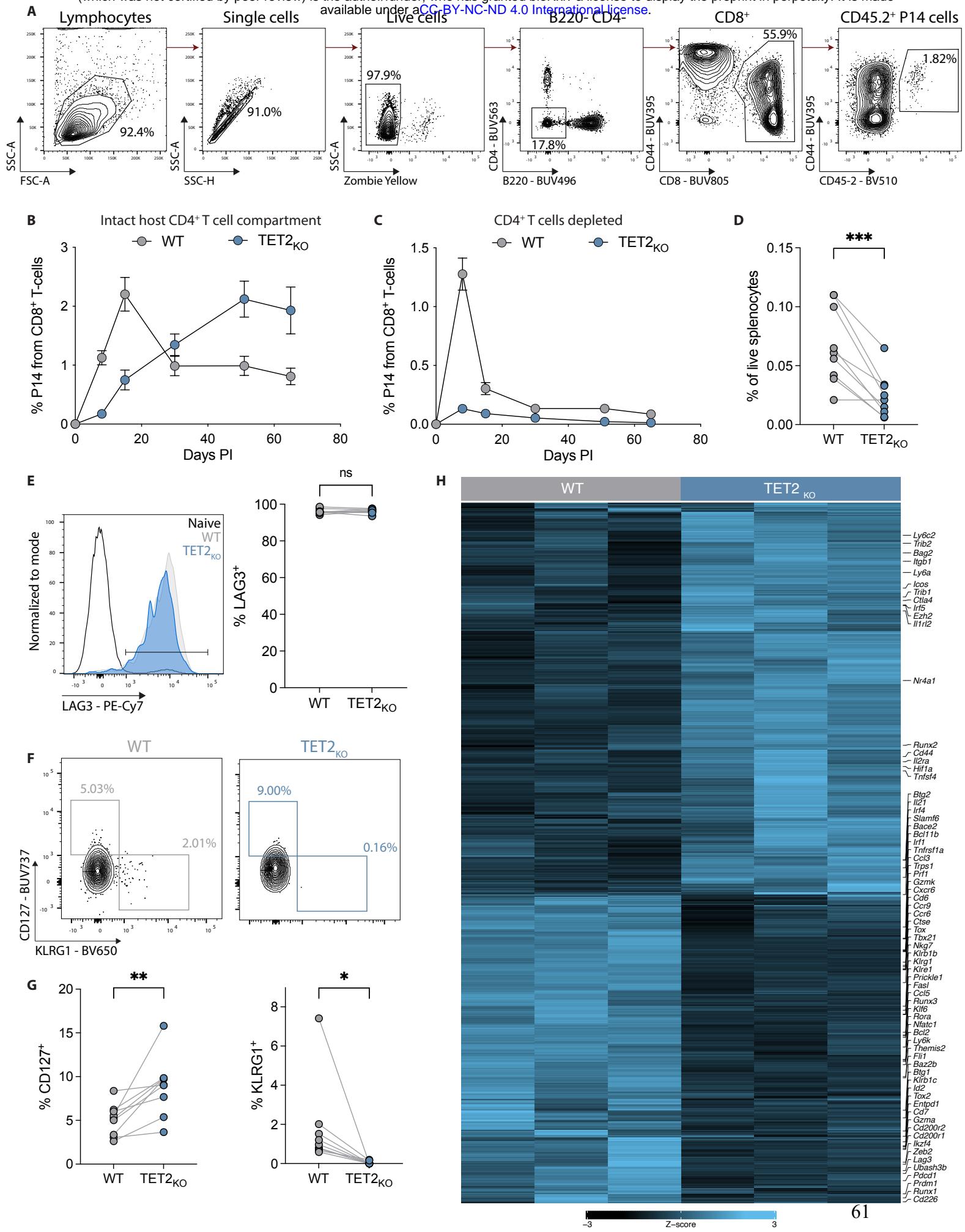

Integration positions recovered near TET2 in CLL

Cell Type:
○ Bone Marrow
□ PBMCs
▽ T-Cells
△ Whole Blood

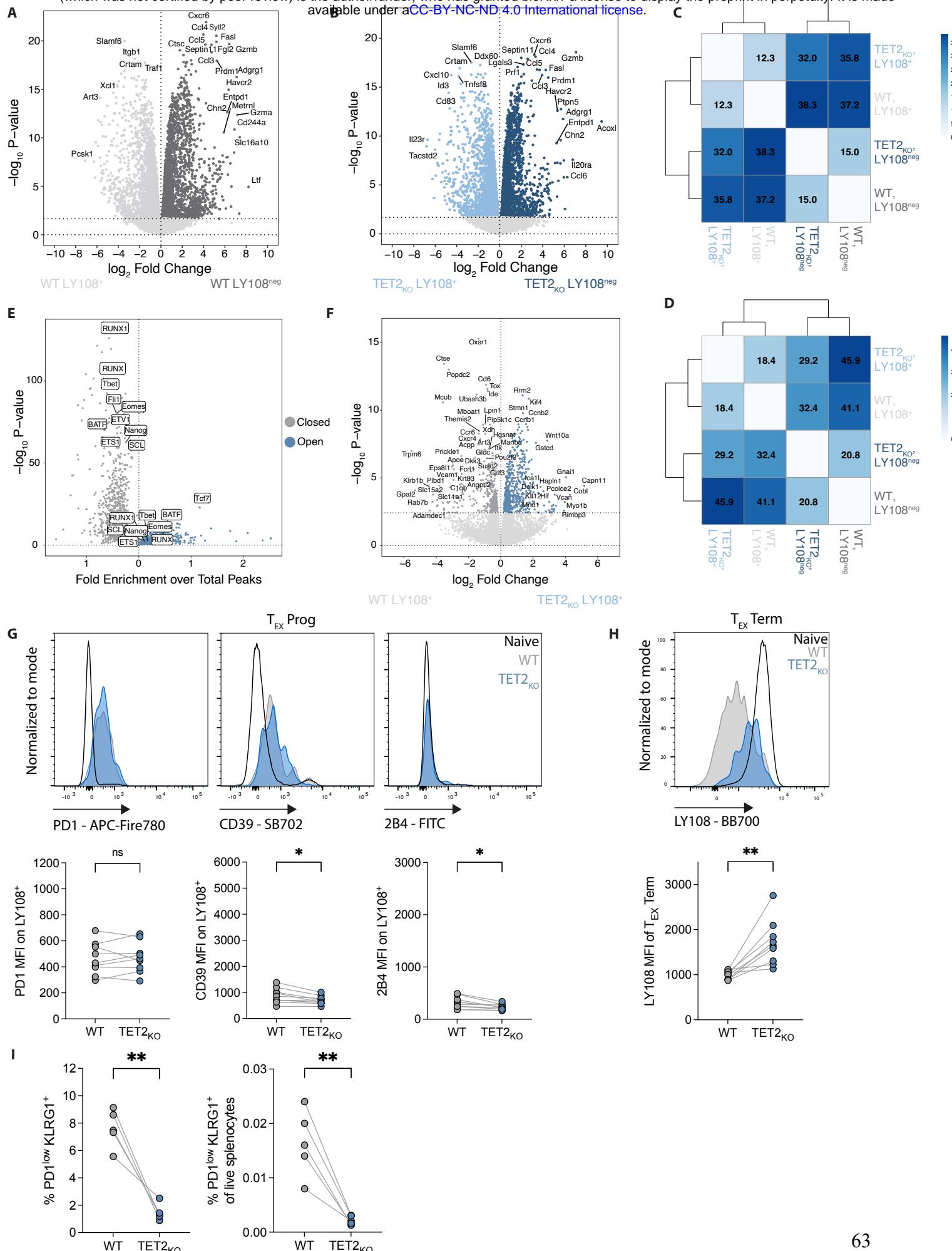
Within transcriptional boundary
 Outside of transcriptional boundary


Integration positions recovered near TET2 in ALL

Within transcriptional boundary
 Outside of transcriptional boundary

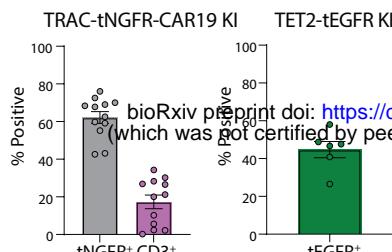

1056 **Supplemental Figure 1. The TET2 locus is a frequent site of lentivirus integration in CAR T-**
1057 **cell treated patients.**

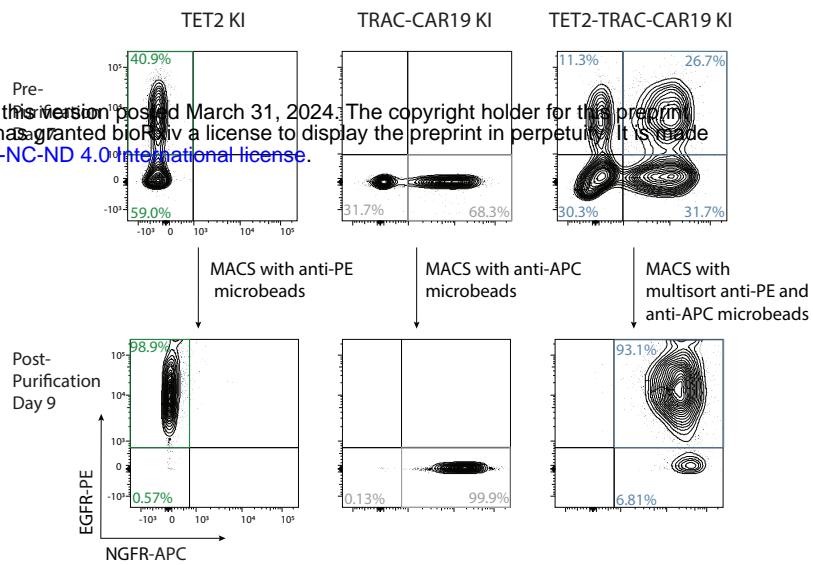
1058 (A) Number of chronic lymphocytic leukemia (CLL) and acute lymphocytic leukemia (ALL)
1059 patients with or without \geq one observed CAR lentiviral integration into *TET2*. (B) Distribution of
1060 the number of *TET2* integration sites at specified binned timepoints. For CLL patient p04409-09,
1061 the same integration was detected within the first 15 days and again in the second 15 days. (C)
1062 Scatter plots showing the relative abundance of each *TET2* patient integration at specified
1063 timepoints for CLL (**top**) and ALL (**bottom**) patient cohorts. Each dot represents one integration
1064 site. Dotted line represents mean, error bars represent SEM. (D) Location of each integration clone
1065 within the *TET2* transcriptional boundary for CLL (**top**) and ALL (**bottom**) patient cohorts. Color
1066 coded for patient; symbol shape represents cell type profiled.


1068 **Supplemental Figure 2: Validation of *TET2*_{KO} and function of *TET2*-disrupted CAR T-cell**
1069 **during acute stimulation and in a tonic CAR signaling model.**

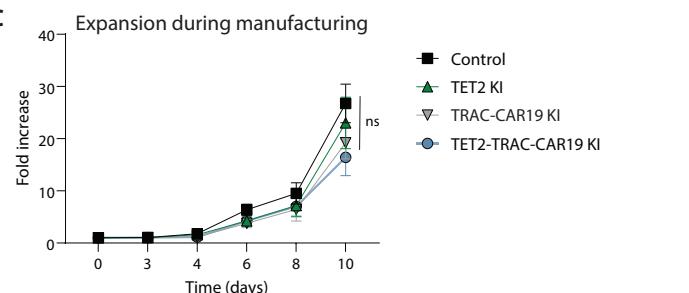
1070 **(A-B)** Percent of sequences with indicated number of base pair shifts after CRISPR knockout by
1071 Tracking of Indels by Decomposition (TIDE) analysis **(A)**. Average indel frequency in bulk
1072 CRISPR-edited populations via TIDE **(B)**, n = 5. **(C)** Western blot showing loss of TET2 protein
1073 in *TET2*_{KO} CAR T-cells. **(D)** Example plots and data of CD19.CD3 ζ , CD19.BB ζ , and CD19.CD28 ζ
1074 CAR T-cells \pm *TET2*_{KO} showing distribution of CCR7 $^+$ CD45RO $^+$ central memory-associated
1075 markers in CD8 $^+$ populations after 1 stimulation (acute stimulation), n = 4. **(E)** Schematic of GD2-
1076 targeting HA.28 ζ CAR T-cell manufacturing and *TET2* gene editing. **(F-G)** Example plots and
1077 data of CD8 $^+$ CCR7 $^+$ CD45RO $^+$ **(F)** and CD27 $^+$ CD62L $^+$ **(G)** HA.28 ζ CAR T-cell subsets \pm *TET2*_{KO}
1078 at day 11, n = 5. **(H)** HA.28 ζ CAR T-cell \pm *TET2*_{KO} growth in co-culture with 143b-GL
1079 osteosarcoma tumor cells. **(I)** Tumor GFP fluorescence intensity after HA.28 ζ CAR T-cell \pm
1080 *TET2*_{KO} co-culture with 143b-GL osteosarcoma tumor cells, run in triplicate. **(J)** Normalized tumor
1081 GFP signal from 1:1 and 1:16 E:T co-culture with 143b-GL tumor cells, n = 3. **(K)** IFN γ and IL-2
1082 production after HA.28 ζ CAR T-cell \pm *TET2*_{KO} co-culture with 143b-GL tumor cells, n = 3. **(L)**
1083 Tumor GFP fluorescence intensity after HA.28 ζ CAR T-cell \pm *TET2*_{KO} co-culture against Nalm6-
1084 GD2 $^+$ tumor cells, run in triplicate. **(M)** Cytokine production from HA.28 ζ CAR T \pm *TET2*_{KO}
1085 against Nalm6-GD2 $^+$ tumor cells, n = 2, run in triplicate. Data shown as mean \pm SEM **(A-B)** or
1086 individual values **(D, F, G, J, K)** from independent donors or as mean of technical replicates **(H,**
1087 **I, L)**. ns p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001 by paired t-test.

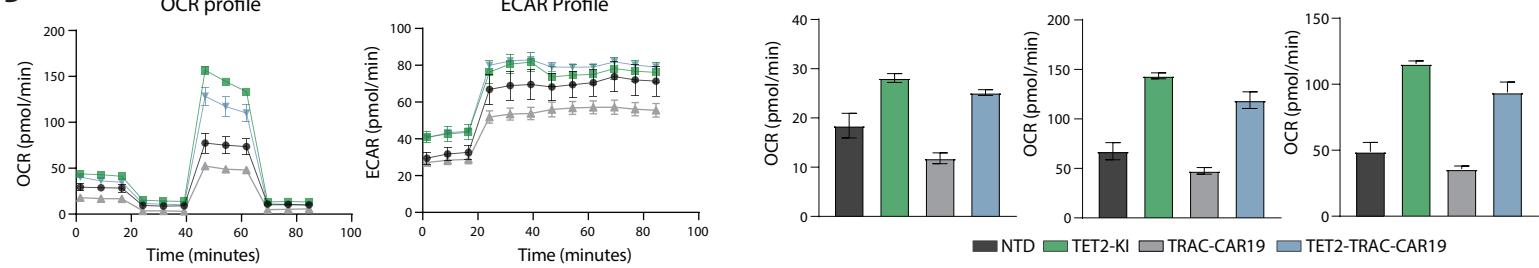
1088 **Supplemental Figure 3. TET2 regulates differentiation of exhausted CD8⁺ T-cells.**

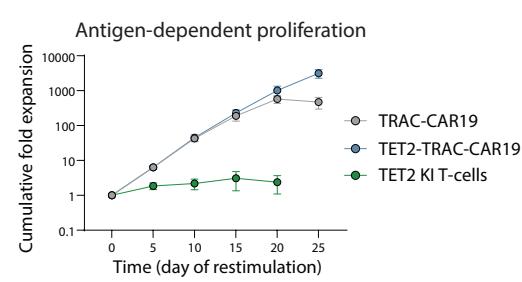

1089 (A) Gating strategy for identification of co-transferred WT and *TET2*^{KO} P14 cells. (B) Frequency
1090 of WT and *TET2*^{KO} P14 cells in blood during chronic LCMV infection without CD4⁺ T-cell
1091 depletion. n = 15, mean ± SEM shown. Representative of 2 experiments. (C) Frequency of WT
1092 and *TET2*^{KO} P14 cells in blood during chronic LCMV infection. Mice were treated at day -1 and
1093 day +1 with CD4-depleting antibody GK1.5, n = 8-10, mean ± SEM shown. Representative of at
1094 least 4 experiments. (D) Frequency of WT and *TET2*^{KO} P14 cells in spleen. (E) Example plot and
1095 data showing LAG3 expression on WT compared to *TET2*^{KO} P14 cells. (F-G) Example plots (F)
1096 and data (G) comparing KLRG1⁺ T_{EFF} and CD127⁺ T_{MEM} frequencies within WT and *TET2*^{KO} P14
1097 cells. (H) Heatmap comparing genes differentially expressed between WT and *TET2*^{KO} P14 cells
1098 at day 15 p.i. with LCMV clone 13. (D, E, F) n = 9, spleen at day 30 p.i. with LCMV clone 13.
1099 Data for individual mice shown; representative of at least 4 experiments. ns p > 0.05; * p < 0.05;
1100 ** p < 0.01; *** p < 0.001; **** p < 0.0001 by paired t-test.

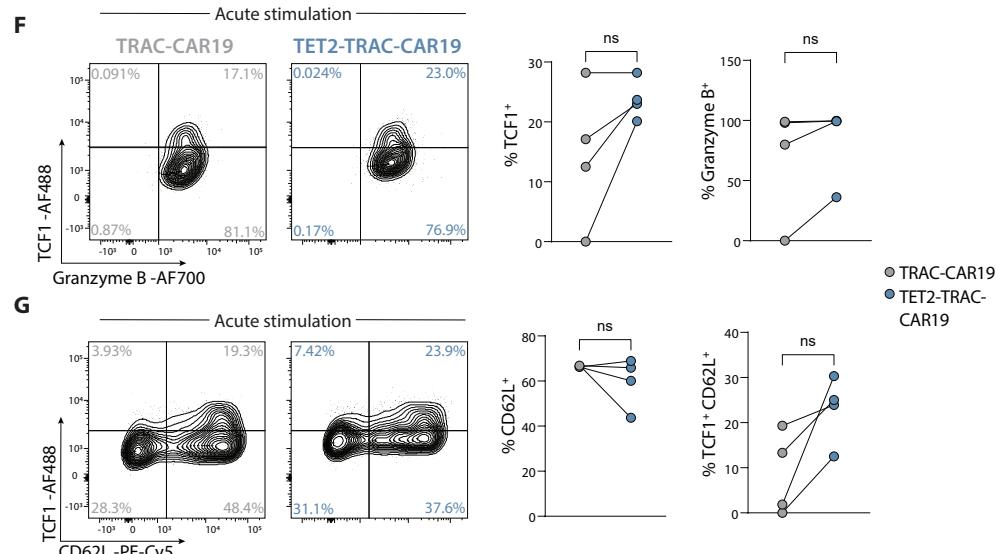

1101 **Supplemental Figure 4. TET2 loss alters terminal T_{EX} differentiation.**

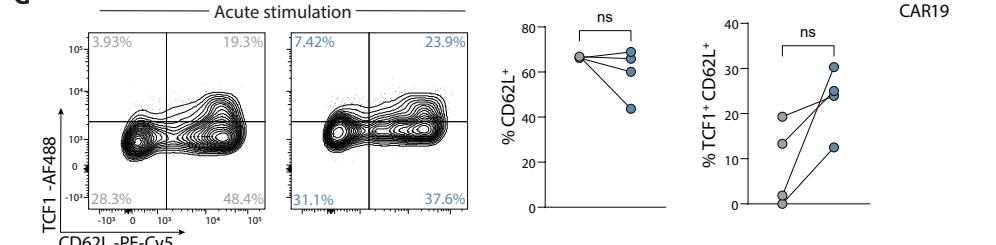
1102 **(A-B)** Volcano plot highlighting DEGs between LY108⁺ and LY108^{neg} WT P14 cells **(A)** or
1103 LY108⁺ and LY108^{neg} *TET2KO* P14 cells **(B)**. Dotted line at \log_{10} P-value 0.05. **(C-D)** Distance
1104 analysis for RNA-seq **(C)** and ATAC-seq **(D)** data comparing T_{EX} subsets between WT and
1105 *TET2KO* P14 cells. **(E)** Volcano plot showing changes in transcription factor accessibility in WT
1106 LY108^{neg} cells versus *TET2KO* LY108^{neg} cells. x-axis represents fold enrichment over total peaks;
1107 y-axis represents $-\log_{10}$ P-value. **(F)** Volcano plot highlighting DEG in WT compared to *TET2KO*
1108 LY108⁺ T_{EX} cells. **(G)** Example plots and data comparing expression of PD1, CD39 and 2B4 on
1109 *TET2KO* LY108⁺ T_{EX} cells to WT LY108⁺ T_{EX} cells. **(H)** Example plots and data comparing
1110 expression of LY108 on *TET2KO* to WT terminally exhausted T_{EX}. **(I)** Proportion and absolute
1111 frequency of PD1^{low} KLRG1⁺ TEFF-like WT and *TET2KO* P14 cells in spleen at day 6 p.i. with
1112 LCMV clone 13, n = 5. **(G-H)** n = 9, spleen at day 30 p.i. with LCMV clone 13. **(G, H, I)** Data
1113 for individual mice shown; representative of 2-3 independent experiments. * p < 0.05; ** p < 0.01
1114 by paired t-test.


A

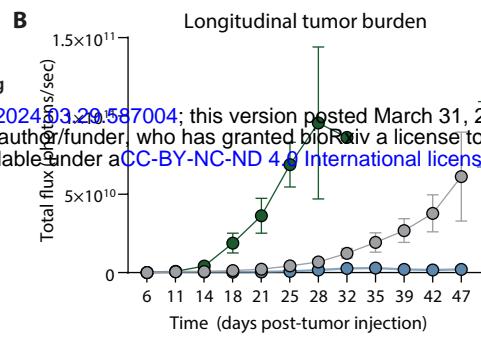
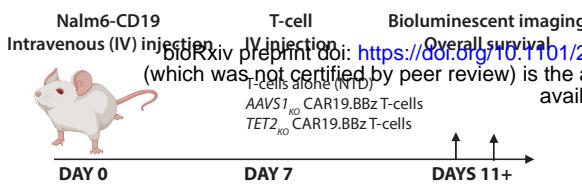

B

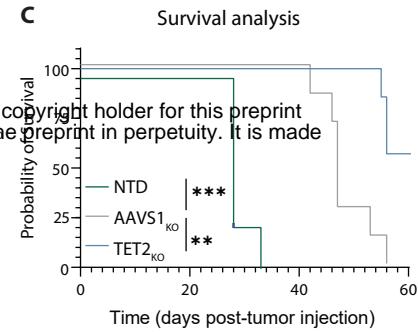

C


D


E

F



G


1115 **Supplemental Figure 5. Engineering of TET2-TRAC-CAR19 dual knock-in T-cells.**

1116 (A) Summary of TRAC-tNGFR knock-in (KI), CD3 knock-out (KO), TET2-tEGFR KI and TET2-
1117 TRAC-CAR19 KI editing efficiencies at day 7 during expansion, n = 6 – 12. (B) Example plots
1118 showing TET2-KI, TRAC-CAR19-KI and TET2-TRAC-CAR19 KI cells pre- (day 7) and post-
1119 purification (day 9). (C) T-cell expansion during manufacturing and CRISPR-AAV editing; mean
1120 \pm SEM shown, n = 4, ns p > 0.05 by one-way ANOVA test with a post hoc Tukey's multiple
1121 comparison test. (D) OCR and ECAR, basal respiration, maximal respiration and SRC profiles of
1122 NTD, TET2-KI, TRAC-CAR19 and TET2-TRAC-CAR19 T-cells at the end of manufacturing, n
1123 = 1, run in triplicate. (E) Antigen-dependent proliferation of TET2-TRAC-CAR T-cells compared
1124 to TET2-KI T-cells, n = 5. (F) Example plots and data of TCF1 and granzyme B expression on
1125 CD8⁺ CAR T-cells after 1 stimulation (acute stimulation), n = 4. (G) Example plots and data of
1126 CD8⁺ TCF1 and CD62L expression on CD8⁺ CAR T-cells after 1 stimulation (acute stimulation),
1127 n = 4. Data shown as mean \pm SEM (C, E) or individual values (A, F, G) from independent donors
1128 or as mean \pm SEM of technical replicates (D). (F, G) ns p > 0.05 by paired t-test.

A

C

1129 **Supplemental Figure 6. *In Vivo* tumor response of *TET2*_{KO} CAR T-cells.**

1130 (A) Overview of *in vivo* experimental design, n = 4-7 mice per experimental group; data
1131 representative of one experiment. (B) Longitudinal analysis of *AAVS1*_{KO} and *TET2*_{KO} CAR T-cell
1132 group tumor burden compared to mice receiving non-transduced (NTD) T-cells. Data shown as
1133 mean ± SEM. (C) Overall group survival, ** p < 0.01; *** p < 0.001 by Mantel-Cox log-rank test
1134 for survival analysis.

1135 **Table S1.** Recovered Integrations within 50KB of the *TET2* locus in CLL patient cohort.

Patient	Cell Type	Time Point	Genomic Position	Relative Abundance
p03712-12	T-cells	Preinfusion	chr4-105264619	0.05
p03712-16	T-cells	Preinfusion	chr4-105225145	0.12
p03712-29	T-cells	Preinfusion	chr4+105291992	0.03
p03712-31	T-cells	Preinfusion	chr4+105183562	0.01
p03712-40	T-cells	Preinfusion	chr4-105163547	0.01
p03712-40	T-cells	Preinfusion	chr4+105182603	0.01
p03712-43	T-cells	Preinfusion	chr4+105190119	0.02
p03712-48	T-cells	Preinfusion	chr4+105223086	0.02
p03712-55	T-cells	Preinfusion	chr4+105221969	0.04
p03712-57	T-cells	Preinfusion	chr4-105187373	0.06
p03712-60	T-cells	Preinfusion	chr4-105223721	0.06
p03712-60	T-cells	Preinfusion	chr4+105265365	0.03
p04409-06	T-cells	Preinfusion	chr4-105224248	0.02
p04409-07	T-cells	Preinfusion	chr4+105267927	0.08
p04409-09	PBMC	Preinfusion	chr4+105253503	0.14
p03712-03	T-cells	First 15 Days	chr4+105160930	0.01
p03712-03	T-cells	First 15 Days	chr4+105200164	0.01
p03712-03	T-cells	First 15 Days	chr4-105298816	0.01
p03712-18	Whole Blood	First 15 Days	chr4-105248829	0.04
p03712-18	Whole Blood	First 15 Days	chr4+105153241	0.07
p03712-18	Whole Blood	First 15 Days	chr4+105251281	0.04
p03712-18	Whole Blood	First 15 Days	chr4+105260695	0.04
p03712-18	Whole Blood	First 15 Days	chr4-105224201	0.03
p03712-29	Whole Blood	First 15 Days	chr4+105228115	0.14
p04409-09*	T-cells	First 15 Days	chr4+105190185	0.02
p04409-09	T-cells	First 15 Days	chr4+105257004	0.02
p04409-22	Whole Blood	First 15 Days	chr4-105152755	0.03
p04409-22	Whole Blood	First 15 Days	chr4-105164454	0.03
p04409-22	Whole Blood	First 15 Days	chr4+105263836	0.05
p04409-09	PBMC	Second 15 Days	chr4+105206047	0.23
p04409-09*	Whole Blood	Second 15 Days	chr4+105190185	0.03
p04409-09	Bone Marrow	Second 15 Days	chr4-105230899	0.03
p04409-22	Bone Marrow	Second 15 Days	chr4+105164450	0.17
p03712-47	Bone Marrow	>30 Days	chr4-105155581	0.53

1136 **Table S2.** Recovered Integrations within 50KB of the *TET2* locus in ALL patient cohort.

Patient	Cell Type	Time Point	Genomic Position	Relative Abundance
p959-101	T-cells	Preinfusion	chr4-105122207	0.02
p959-103	T-cells	Preinfusion	chr4-105268362	0.04
p959-103	T-cells	Preinfusion	chr4+105197328	0.08
p959-104	T-cells	Preinfusion	chr4-105205781	0.05
p959-104	T-cells	Preinfusion	chr4+105165499	0.05
p959-107	T-cells	Preinfusion	chr4-105229630	0.01
p959-107	T-cells	Preinfusion	chr4+105151872	0.01
p959-108	T-cells	Preinfusion	chr4-105243661	0.06
p959-111	T-cells	Preinfusion	chr4+105219760	0.02
p959-112	T-cells	Preinfusion	chr4-105226123	0.02
p959-112	T-cells	Preinfusion	chr4+105151786	0.02
p959-112	T-cells	Preinfusion	chr4+105236100	0.04
p959-113	T-cells	Preinfusion	chr4-105158827	0.01
p959-113	T-cells	Preinfusion	chr4+105221551	0.01
p959-113	T-cells	Preinfusion	chr4+105271906	0.01
p959-115	T-cells	Preinfusion	chr4-105229150	0.02
p959-117	T-cells	Preinfusion	chr4+105173039	0.03
p959-118	T-cells	Preinfusion	chr4-105162564	0.01
p959-118	T-cells	Preinfusion	chr4-105204835	0.01
p959-118	T-cells	Preinfusion	chr4-105227631	0.01
p959-118	T-cells	Preinfusion	chr4-105241238	0.01
p959-118	T-cells	Preinfusion	chr4+105182278	0.01
p959-118	T-cells	Preinfusion	chr4+105224901	0.01
p959-121	T-cells	Preinfusion	chr4-105204911	0.04
p959-123	T-cells	Preinfusion	chr4-105239813	0.01
p959-123	T-cells	Preinfusion	chr4+105171995	0.04
p959-123	T-cells	Preinfusion	chr4+105224760	0.03
p959-123	T-cells	Preinfusion	chr4+105243003	0.01
p959-125	T-cells	Preinfusion	chr4-105231290	0.02
p959-131	T-cells	Preinfusion	chr4-105225782	0.03
p959-131	T-cells	Preinfusion	chr4+105187755	0.03
p959-132	T-cells	Preinfusion	chr4+105250821	0.07
p959-132	T-cells	Preinfusion	chr4+105260601	0.07
p959-133	T-cells	Preinfusion	chr4+105256735	0.02
p959-133	T-cells	Preinfusion	chr4-105260182	0.02
p959-136	T-cells	Preinfusion	chr4-105186871	0.03
p959-136	T-cells	Preinfusion	chr4+105157216	0.03
p959-136	T-cells	Preinfusion	chr4+105203882	0.03
p959-141	T-cells	Preinfusion	chr4+105228898	0.03
p959-141	T-cells	Preinfusion	chr4+105294015	0.03
p959-144	T-cells	Preinfusion	chr4+105175287	0.02
p959-144	T-cells	Preinfusion	chr4+105202132	0.02
p959-146	T-cells	Preinfusion	chr4+105154691	0.02
p959-157	T-cells	Preinfusion	chr4+105243230	0.03
p959-158	T-cells	Preinfusion	chr4-105160134	0.01
p959-158	T-cells	Preinfusion	chr4+105227059	0.01
p959-169	T-cells	Preinfusion	chr4+105225389	0.04
p959-172	T-cells	Preinfusion	chr4+105273807	0.05
p959-174	T-cells	Preinfusion	chr4-105204656	0.08
p959-158	T-cells	Preinfusion	chr4-105191937	0.01
p959-158	T-cells	Preinfusion	chr4-105257743	0.01
p959-158	T-cells	Preinfusion	chr4-105271578	0.01
p959-158	T-cells	Preinfusion	chr4+105284604	0.01
p959-101	Whole Blood	First 15 Days	chr4+105206388	0.05
p959-105	Whole Blood	First 15 Days	chr4+105231121	0.06
p959-113	PBMC	First 15 Days	chr4+105230717	0.02

p959-121	Whole Blood	First 15 Days	chr4+105223180	0.08
p959-125	Whole Blood	First 15 Days	chr4+105229646	0.02
p959-125	Whole Blood	First 15 Days	chr4+105258957	0.02
p959-139	Whole Blood	First 15 Days	chr4-105275946	0.07
p959-139	Whole Blood	First 15 Days	chr4+105142570	0.03
p959-140	Whole Blood	First 15 Days	chr4-105269087	0.03
p959-141	Whole Blood	First 15 Days	chr4-105201535	0.07
p959-146	Whole Blood	First 15 Days	chr4-105185661	0.04
p959-160	Whole Blood	First 15 Days	chr4+105217644	0.02
p959-160	Whole Blood	First 15 Days	chr4+105262568	0.02
p04409-29	PBMC	Second 15 Days	chr4+105269578	0.08
p959-143	Whole Blood	Second 15 Days	chr4-105259704	0.05
p959-153	Bone Marrow	Second 15 Days	chr4-105280290	0.10
p959-160	Whole Blood	Second 15 Days	chr4-105208249	0.03
p959-160	Whole Blood	Second 15 Days	chr4+105227846	0.03
p959-160	Whole Blood	Second 15 Days	chr4+105262098	0.03
p959-160	Bone Marrow	Second 15 Days	chr4-105247460	0.05
p959-100	Bone Marrow	>30 Days	chr4-105198703	0.33
p959-160	Whole Blood	>30 Days	chr4-105238384	0.46

1137 **Table S6.** Antibodies for CAR T-cell studies.

Target	Clone	Fluorochrome	Source	Cat #	RRID
LIVE-DEAD Aqua	NA	NA	Invitrogen	L34957	NA
EGFR	AY13	PE	BioLegend	352904	AB_10896794
CD271 (NGFR)	ME20.4	APC	BioLegend	345108	AB_10645515
CD3	SK7	APC-H7	BD Biosciences	560176	AB_1645475
CD4	OKT4	BV785	BioLegend	317442	AB_2563242
CD8	RPA-T8	BV650	BD Biosciences	563822	AB_2744462
CCR7	150503	PE-CF594	BD Biosciences	562381	AB_11153301
CD45RO	UCHL1	BV605	BD Biosciences	562791	AB_2744411
CD62L	DREG-56	PE-Cy5	BioLegend	304808	AB_314468
CD27	L128	BV711	BD Biosciences	563167	AB_2738042
PD1	EH12.2H7	BV421	BioLegend	329920	AB_10960742
LAG3	7H2C65	PE-Cy7	BioLegend	369208	AB_2629835
TIM3	7D3	PE	BD Biosciences	565570	AB_2716866
KLRG1	SA231A2	APC-Fire750	BioLegend	367718	AB_2687392
CD56	NCAM16.2	BV711	BD Biosciences	563169	AB_2738043
TCF1 (intracellular)	C63D9	Alexa Fluor 488	Cell Signaling Technology	6444S	AB_2797627
Granzyme B (intracellular)	GB11	Alexa Fluor 700	BD Biosciences	560213	AB_1645453
F(ab') ₂ fragment specific	NA	Biotin-SP	Jackson ImmunoResearch	115-065-072	AB_2338565
Biotin	NA	Streptavidin-PE	BioLegend	405203	NA
Human IgG	1268C	PE	R&D Systems	F0157	NA

1138 **Table S7.** Antibodies for LCMV studies.

Target	Clone	Fluorochrome	Source	Cat #	RRID
LiveDead	NA	AquaVivid	ThermoFisher	L34957	NA
LiveDead	NA	Zombie Yellow	BioLegend	423104	NA
LiveDead	NA	Zombie NIR	BioLegend	423106	NA
B220	RA3-6B2	APC-eF780	ThermoFisher	47-0452-82	AB_1518810
B220	RA3-6B2	BUV496	BD Biosciences	612950	AB_2870227
CD4	RM4-5	APC-eF780	ThermoFisher	47-0042-82	AB_1272183
CD4	GK1.5	BUV563	BD Biosciences	612923	AB_2870208
CD8a	53-6.7	BUV805	BD Biosciences	612898	AB_2870186
CD8a	53-6.7	BV650	BD Biosciences	563234	AB_2738084
CD8a	53-6.7	APC	Invitrogen	17-0081-83	AB_469336
CD39	24DMS1	SB702	Invitrogen	67-0391-82	AB_2717143
CD44	IM7	BUV396	BD Biosciences	740215	AB_2739963
CD44	IM7	BV711	Biolegend	103057	AB_2564214
CD44	IM7	BV785	BioLegend	103059	AB_2571953
CD44	IM7	APC	BD Biosciences	559250	AB_398661
CD45.1	A20	Pacific Blue	BioLegend	110722	AB_492866
CD45.1	A20	PE-Cy5	ThermoFisher	15-0453-81	AB_468758
CD45.1	A20	AF700	BioLegend	110724	AB_493733
CD45.2	104	BV570	BioLegend	109833	AB_10900987
CD45.2	104	BV785	BioLegend	109839	AB_2562604
CD45.2	104	AF700	BioLegend	109822	AB_493731
CD62L	MEL-14	BV605	BD Biosciences	563252	AB_2738098
CD62L	MEL-14	PE-CF594	BD Biosciences	562404	AB_11154046
CD69	H1.2F3	BV480	BD Biosciences	746813	AB_2744067
CD127	SB/199	BUV737	BD Biosciences	612841	AB_2870163
CD127	SB/199	PE-CF594	BD Biosciences	562419	AB_11153131
CD244 (2B4)	eBio244F4	FITC	eBioscience	11-2441-85	AB_657877
CD244 (2B4)	2B4	FITC	BD Biosciences	553305	AB_394769
CX3CR1	SA011F11	BV605	BioLegend	149027	AB_2565937
CX3CR1	SA011F11	BV650	BioLegend	149033	AB_2565999
CXCR3	CXCR3-173	Biotin	BioLegend	126503	AB_1027658
GFP	Polyclonal	AF488	ThermoFisher	A-21311	AB_221477
gp33	NA	PE	In house	NA	NA
Granzyme B	GB11	BV421	BD Biosciences	563389	AB_2738175
IFN γ	XMG1.2	PerCP-Cy5.5	BioLegend	505822	AB_961361
KI67	B56	A700	BD Biosciences	561277	AB_10611571
KLRG1	2F1	FITC	eBioscience	11-5893-80	AB_1311268
KLRG1	2F1	PerCP-eF710	Invitrogen	46-5893-82	AB_10670282
KLRG1	2F1	BV650	BD Biosciences	740553	AB_2740254
LAG3	C9B7W	PE-Cy7	BioLegend	125226	AB_2715764
LAG3	C9B7W	AF647	BioRad	MCA2386A647T	AB_2133342
LY108	13G3	BV421	BD Biosciences	740090	AB_2739850
LY108	13G3	BB700	BD Biosciences	742272	AB_2871448
PD-1	RMPI-30	PE-Cy7	BioLegend	109110	AB_572017
PD-1	29F.1A12	APC-Fire780	BioLegend	135239	AB_2629767
TCF-1	S33-966	PE	BD Biosciences	564217	AB_2687845
TIGIT	1G9	BV421	BD Biosciences	565270	AB_2688007
TIGIT	1G9	PE-Dazzle594	BioLegend	142110	AB_2566573
TIM3	RMT3-23	BV605	BioLegend	119721	AB_2616907
TIM3	RMT3-23	BV785	BioLegend	119725	AB_2716066
TNF-alpha	MP6-XT22	Pacific Blue	BioLegend	506318	AB_893639
TOX	REA473	APC	Miltenyi	130-118-335	AB_2751485

1139 **REFERENCES AND NOTES**

- 1140 1. C. U. Blank, W. N. Haining, W. Held, P. G. Hogan, A. Kallies, E. Lugli, R. C. Lynn, M. Philip, A. Rao, N. P. Restifo, A. Schietinger, T. N. Schumacher, P. L. Schwartzberg, A. H. Sharpe, D. E. Speiser, E. J. Wherry, B. A. Youngblood, D. Zehn, Defining 'T cell exhaustion'. *Nat Rev Immunol* **19**, 665-674 (2019).
- 1141 2. S. M. Albelda, CAR T cell therapy for patients with solid tumours: key lessons to learn and unlearn. *Nat Rev Clin Oncol* **21**, 47-66 (2024).
- 1142 3. R. C. Lynn, E. W. Weber, E. Sotillo, D. Gennert, P. Xu, Z. Good, H. Anbunathan, J. Lattin, R. Jones, V. Tieu, S. Nagaraja, J. Granja, C. F. A. de Bourcy, R. Majzner, A. T. Satpathy, S. R. Quake, M. Monje, H. Y. Chang, C. L. Mackall, c-Jun overexpression in CAR T cells induces exhaustion resistance. *Nature* **576**, 293-300 (2019).
- 1143 4. A. H. Long, W. M. Haso, J. F. Shern, K. M. Wanhainen, M. Murgai, M. Ingaramo, J. P. Smith, A. J. Walker, M. E. Kohler, V. R. Venkateshwara, R. N. Kaplan, G. H. Patterson, T. J. Fry, R. J. Orentas, C. L. Mackall, 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. *Nat Med* **21**, 581-590 (2015).
- 1144 5. J. Chen, I. F. Lopez-Moyado, H. Seo, C. J. Lio, L. J. Happleman, T. Sekiya, A. Yoshimura, J. P. Scott-Browne, A. Rao, NR4A transcription factors limit CAR T cell function in solid tumours. *Nature* **567**, 530-534 (2019).
- 1145 6. I. Y. Jung, V. Narayan, S. McDonald, A. J. Rech, R. Bartoszek, G. Hong, M. M. Davis, J. Xu, A. C. Boesteanu, J. S. Barber-Rotenberg, G. Plesa, S. F. Lacey, J. K. Jadlowsky, D. L. Siegel, D. M. Hammill, P. F. Cho-Park, S. L. Berger, N. B. Haas, J. A. Fraietta, BLIMP1 and NR4A3 transcription factors reciprocally regulate antitumor CAR T cell stemness and exhaustion. *Sci Transl Med* **14**, eabn7336 (2022).
- 1146 7. P. S. Adusumilli, M. G. Zauderer, I. Riviere, S. B. Solomon, V. W. Rusch, R. E. O'Cearbhaill, A. Zhu, W. Cheema, N. K. Chintala, E. Halton, J. Pineda, R. Perez-Johnston, K. S. Tan, B. Daly, J. A. Araujo Filho, D. Ngai, E. McGee, A. Vincent, C. Diamonte, J. L. Sauter, S. Modi, D. Sikder, B. Senechal, X. Wang, W. D. Travis, M. Gonen, C. M. Rudin, R. J. Brentjens, D. R. Jones, M. Sadelain, A Phase I Trial of Regional Mesothelin-Targeted CAR T-cell Therapy in Patients with Malignant Pleural Disease, in Combination with the Anti-PD-1 Agent Pembrolizumab. *Cancer Discov* **11**, 2748-2763 (2021).
- 1147 8. K. E. Pauken, M. A. Sammons, P. M. Odorizzi, S. Manne, J. Godec, O. Khan, A. M. Drake, Z. Chen, D. R. Sen, M. Kurachi, R. A. Barnitz, C. Bartman, B. Bengsch, A. C. Huang, J. M. Schenkel, G. Vahedi, W. N. Haining, S. L. Berger, E. J. Wherry, Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. *Science* **354**, 1160-1165 (2016).
- 1148 9. B. Prinzing, C. C. Zebley, C. T. Petersen, Y. Fan, A. A. Anido, Z. Yi, P. Nguyen, H. Houke, M. Bell, D. Haydar, C. Brown, S. K. Boi, S. Alli, J. C. Crawford, J. M. Riberdy, J. J. Park, S. Zhou, M. P. Velasquez, C. DeRenzo, C. R. Lazzarotto, S. Q. Tsai, P. Vogel, S. M. Pruett-Miller, D. M. Langfitt, S. Gottschalk, B. Youngblood, G. Krenciute, Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor activity. *Sci Transl Med* **13**, eabh0272 (2021).
- 1149 10. J. A. Fraietta, C. L. Nobles, M. A. Sammons, S. Lundh, S. A. Carty, T. J. Reich, A. P. Cogdill, J. J. D. Morrisette, J. E. Denizio, S. Reddy, Y. Hwang, M. Gohil, I. Kulikovskaya, F. Nazimuddin, M. Gupta, F. Chen, J. K. Everett, K. A. Alexander, E. Lin-Shiao, ..., J. J. Melenhorst, Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. *Nature* **558**, 307-312 (2018).
- 1150 11. K. D. Rasmussen, K. Helin, Role of TET enzymes in DNA methylation, development, and cancer. *Genes & Development* **30**, 733-750 (2016).

1185 12. L. Tan, Y. G. Shi, Tet family proteins and 5-hydroxymethylcytosine in development and
1186 disease. *Development* **139**, 1895-1902 (2012).

1187 13. N. Jain, Z. Zhao, J. Feucht, R. Koche, A. Iyer, A. Dobrin, J. Mansilla-Soto, J. Yang, Y.
1188 Zhan, M. Lopez, G. Gunset, M. Sadelain, TET2 guards against unchecked BATF3-induced CAR
1189 T cell expansion. *Nature* **615**, 315-322 (2023).

1190 14. S. A. Carty, M. Gohil, L. B. Banks, R. M. Cotton, M. E. Johnson, E. Stelekati, A. D. Wells,
1191 E. J. Wherry, G. A. Koretzky, M. S. Jordan, The Loss of TET2 Promotes CD8(+) T Cell Memory
1192 Differentiation. *J Immunol* **200**, 82-91 (2018).

1193 15. M. Irving, E. Lanitis, D. Migliorini, Z. Ivics, S. Guedan, Choosing the Right Tool for
1194 Genetic Engineering: Clinical Lessons from Chimeric Antigen Receptor-T Cells. *Human Gene
1195 Therapy* **32**, 1044-1058 (2021).

1196 16. T. K. MacLachlan, in *Nonclinical Development of Novel Biologics, Biosimilars, Vaccines
1197 and Specialty Biologics*, L. M. Plitnick, D. J. Herzyk, Eds. (Academic Press, San Diego, 2013),
1198 pp. 259-285.

1199 17. G. J. van der Windt, D. O'Sullivan, B. Everts, S. C. Huang, M. D. Buck, J. D. Curtis, C. H.
1200 Chang, A. M. Smith, T. Ai, B. Faubert, R. G. Jones, E. J. Pearce, E. L. Pearce, CD8 memory T
1201 cells have a bioenergetic advantage that underlies their rapid recall ability. *Proc Natl Acad Sci U
1202 S A* **110**, 14336-14341 (2013).

1203 18. B. Bengsch, A. L. Johnson, M. Kurachi, P. M. Odorizzi, K. E. Pauken, J. Attanasio, E.
1204 Stelekati, L. M. McLane, M. A. Paley, G. M. Delgoffe, E. J. Wherry, Bioenergetic Insufficiencies
1205 Due to Metabolic Alterations Regulated by the Inhibitory Receptor PD-1 Are an Early Driver of
1206 CD8(+) T Cell Exhaustion. *Immunity* **45**, 358-373 (2016).

1207 19. W. Kong, A. Dimitri, W. Wang, I. Y. Jung, C. J. Ott, M. Fasolino, Y. Wang, I.
1208 Kulikovskaya, M. Gupta, T. Yoder, J. E. DeNizio, J. K. Everett, E. F. Williams, J. Xu, J. Scholler,
1209 T. J. Reich, V. G. Bhoj, K. M. Haines, M. V. Maus, J. J. Melenhorst, R. M. Young, J. K. Jadlowsky,
1210 K. T. Marcucci, J. E. Bradner, B. L. Levine, D. L. Porter, F. D. Bushman, R. M. Kohli, C. H. June,
1211 M. M. Davis, S. F. Lacey, G. Vahedi, J. A. Fraietta, BET bromodomain protein inhibition reverses
1212 chimeric antigen receptor extinction and reinvigorates exhausted T cells in chronic lymphocytic
1213 leukemia. *J Clin Invest* **131**, (2021).

1214 20. G. Escobar, D. Mangani, A. C. Anderson, T cell factor 1: A master regulator of the T cell
1215 response in disease. *Sci Immunol* **5**, (2020).

1216 21. J. E. Wu, S. Manne, S. F. Ngiow, A. E. Baxter, H. Huang, E. Freilich, M. L. Clark, J. H.
1217 Lee, Z. Chen, O. Khan, R. P. Staupe, Y. J. Huang, J. Shi, J. R. Giles, E. J. Wherry, In vitro modeling
1218 of CD8(+) T cell exhaustion enables CRISPR screening to reveal a role for BHLHE40. *Sci
1219 Immunol* **8**, eade3369 (2023).

1220 22. E. J. Wherry, R. Ahmed, Memory CD8 T-cell differentiation during viral infection. *J Virol*
1221 **78**, 5535-5545 (2004).

1222 23. A. Gallimore, A. Glithero, A. Godkin, A. C. Tissot, A. Pluckthun, T. Elliott, H. Hengartner,
1223 R. Zinkernagel, Induction and exhaustion of lymphocytic choriomeningitis virus-specific
1224 cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex
1225 class I-peptide complexes. *J Exp Med* **187**, 1383-1393 (1998).

1226 24. A. J. Zajac, J. N. Blattman, K. Murali-Krishna, D. J. Sourdive, M. Suresh, J. D. Altman,
1227 R. Ahmed, Viral immune evasion due to persistence of activated T cells without effector function.
1228 *J Exp Med* **188**, 2205-2213 (1998).

1229 25. D. Moskophidis, F. Lechner, H. Pircher, R. M. Zinkernagel, Virus persistence in acutely
1230 infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. *Nature* **362**,
1231 758-761 (1993).

1232 26. J. M. Angelosanto, S. D. Blackburn, A. Crawford, E. J. Wherry, Progressive loss of
1233 memory T cell potential and commitment to exhaustion during chronic viral infection. *J Virol* **86**,
1234 8161-8170 (2012).

1235 27. E. J. Wherry, V. Teichgraber, T. C. Becker, D. Masopust, S. M. Kaech, R. Antia, U. H.
1236 von Andrian, R. Ahmed, Lineage relationship and protective immunity of memory CD8 T cell
1237 subsets. *Nat Immunol* **4**, 225-234 (2003).

1238 28. S. M. Kaech, J. T. Tan, E. J. Wherry, B. T. Konieczny, C. D. Surh, R. Ahmed, Selective
1239 expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived
1240 memory cells. *Nat Immunol* **4**, 1191-1198 (2003).

1241 29. S. D. Blackburn, H. Shin, G. J. Freeman, E. J. Wherry, Selective expansion of a subset of
1242 exhausted CD8 T cells by alphaPD-L1 blockade. *Proc Natl Acad Sci U S A* **105**, 15016-15021
1243 (2008).

1244 30. B. C. Miller, D. R. Sen, R. Al Abosy, K. Bi, Y. V. Virkud, M. W. LaFleur, K. B. Yates, A.
1245 Lako, K. Felt, G. S. Naik, M. Manos, E. Gjini, J. R. Kuchroo, J. J. Ishizuka, J. L. Collier, G. K.
1246 Griffin, S. Maleri, D. E. Comstock, S. A. Weiss, F. D. Brown, A. Panda, M. D. Zimmer, R. T.
1247 Manguso, F. S. Hodi, S. J. Rodig, A. H. Sharpe, W. N. Haining, Subsets of exhausted CD8(+) T
1248 cells differentially mediate tumor control and respond to checkpoint blockade. *Nat Immunol* **20**,
1249 326-336 (2019).

1250 31. M. A. Paley, D. C. Kroy, P. M. Odorizzi, J. B. Johnnidis, D. V. Dolfi, B. E. Barnett, E. K.
1251 Bikoff, E. J. Robertson, G. M. Lauer, S. L. Reiner, E. J. Wherry, Progenitor and terminal subsets
1252 of CD8+ T cells cooperate to contain chronic viral infection. *Science* **338**, 1220-1225 (2012).

1253 32. S. J. Im, M. Hashimoto, M. Y. Gerner, J. Lee, H. T. Kissick, M. C. Burger, Q. Shan, J. S.
1254 Hale, J. Lee, T. H. Nasti, A. H. Sharpe, G. J. Freeman, R. N. Germain, H. I. Nakaya, H. H. Xue,
1255 R. Ahmed, Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. *Nature*
1256 **537**, 417-421 (2016).

1257 33. D. T. Utzschneider, M. Charmoy, V. Chennupati, L. Pousse, D. P. Ferreira, S. Calderon-
1258 Copete, M. Danilo, F. Alfei, M. Hofmann, D. Wieland, S. Pradervand, R. Thimme, D. Zehn, W.
1259 Held, T Cell Factor 1-Expressing Memory-like CD8(+) T Cells Sustain the Immune Response to
1260 Chronic Viral Infections. *Immunity* **45**, 415-427 (2016).

1261 34. J. C. Beltra, S. Manne, M. S. Abdel-Hakeem, M. Kurachi, J. R. Giles, Z. Chen, V. Casella,
1262 S. F. Ngiow, O. Khan, Y. J. Huang, P. Yan, K. Nzingha, W. Xu, R. K. Amaravadi, X. Xu, G. C.
1263 Karakousis, T. C. Mitchell, L. M. Schuchter, A. C. Huang, E. J. Wherry, Developmental
1264 Relationships of Four Exhausted CD8(+) T Cell Subsets Reveals Underlying Transcriptional and
1265 Epigenetic Landscape Control Mechanisms. *Immunity* **52**, 825-841 e828 (2020).

1266 35. I. Siddiqui, K. Schaeuble, V. Chennupati, S. A. Fuertes Marraco, S. Calderon-Copete, D.
1267 Pais Ferreira, S. J. Carmona, L. Scarpellino, D. Gfeller, S. Pradervand, S. A. Luther, D. E. Speiser,
1268 W. Held, Intratumoral Tcf1(+)PD-1(+)CD8(+) T Cells with Stem-like Properties Promote Tumor
1269 Control in Response to Vaccination and Checkpoint Blockade Immunotherapy. *Immunity* **50**, 195-
1270 211 e110 (2019).

1271 36. O. Khan, J. R. Giles, S. McDonald, S. Manne, S. F. Ngiow, K. P. Patel, M. T. Werner, A.
1272 C. Huang, K. A. Alexander, J. E. Wu, J. Attanasio, P. Yan, S. M. George, B. Bengsch, R. P. Staupe,
1273 G. Donahue, W. Xu, R. K. Amaravadi, X. Xu, G. C. Karakousis, T. C. Mitchell, L. M. Schuchter,

1274 J. Kaye, S. L. Berger, E. J. Wherry, TOX transcriptionally and epigenetically programs CD8(+) T
1275 cell exhaustion. *Nature* **571**, 211-218 (2019).

1276 37. H. Seo, J. Chen, E. Gonzalez-Avalos, D. Samaniego-Castruita, A. Das, Y. H. Wang, I. F.
1277 Lopez-Moyado, R. O. Georges, W. Zhang, A. Onodera, C. J. Wu, L. F. Lu, P. G. Hogan, A.
1278 Bhandoola, A. Rao, TOX and TOX2 transcription factors cooperate with NR4A transcription
1279 factors to impose CD8(+) T cell exhaustion. *Proc Natl Acad Sci U S A* **116**, 12410-12415 (2019).

1280 38. F. Alfei, K. Kanev, M. Hofmann, M. Wu, H. E. Ghoneim, P. Roelli, D. T. Utzschneider,
1281 M. von Hoesslin, J. G. Cullen, Y. Fan, V. Eisenberg, D. Wohlleber, K. Steiger, D. Merkler, M.
1282 Delorenzi, P. A. Knolle, C. J. Cohen, R. Thimme, B. Youngblood, D. Zehn, TOX reinforces the
1283 phenotype and longevity of exhausted T cells in chronic viral infection. *Nature* **571**, 265-269
1284 (2019).

1285 39. A. C. Scott, F. Dundar, P. Zumbo, S. S. Chandran, C. A. Klebanoff, M. Shakiba, P. Trivedi,
1286 L. Menocal, H. Appleby, S. Camara, D. Zamarin, T. Walther, A. Snyder, M. R. Femia, E. A.
1287 Comen, H. Y. Wen, M. D. Hellmann, N. Anandasabapathy, Y. Liu, N. K. Altorki, P. Lauer, O.
1288 Levy, M. S. Glickman, J. Kaye, D. Betel, M. Philip, A. Schieterer, TOX is a critical regulator of
1289 tumour-specific T cell differentiation. *Nature* **571**, 270-274 (2019).

1290 40. C. Yao, H. W. Sun, N. E. Lacey, Y. Ji, E. A. Moseman, H. Y. Shih, E. F. Heuston, M.
1291 Kirby, S. Anderson, J. Cheng, O. Khan, R. Handon, J. Reilley, J. Fioravanti, J. Hu, S. Gossa, E. J.
1292 Wherry, L. Gattinoni, D. B. McGavern, J. J. O'Shea, P. L. Schwartzberg, T. Wu, Single-cell RNA-
1293 seq reveals TOX as a key regulator of CD8(+) T cell persistence in chronic infection. *Nat Immunol*
1294 **20**, 890-901 (2019).

1295 41. X. Wang, Q. He, H. Shen, A. Xia, W. Tian, W. Yu, B. Sun, TOX promotes the exhaustion
1296 of antitumor CD8(+) T cells by preventing PD1 degradation in hepatocellular carcinoma. *J
1297 Hepatol* **71**, 731-741 (2019).

1298 42. W. H. Hudson, J. Gensheimer, M. Hashimoto, A. Wieland, R. M. Valanparambil, P. Li, J.
1299 X. Lin, B. T. Konieczny, S. J. Im, G. J. Freeman, W. J. Leonard, H. T. Kissick, R. Ahmed,
1300 Proliferating Transitory T Cells with an Effector-like Transcriptional Signature Emerge from PD-
1(+) Stem-like CD8(+) T Cells during Chronic Infection. *Immunity* **51**, 1043-1058 e1044 (2019).

1301 43. R. Zander, D. Schauder, G. Xin, C. Nguyen, X. Wu, A. Zajac, W. Cui, CD4(+) T Cell Help
1302 Is Required for the Formation of a Cytolytic CD8(+) T Cell Subset that Protects against Chronic
1303 Infection and Cancer. *Immunity* **51**, 1028-1042 e1024 (2019).

1304 44. Y. Chen, R. A. Zander, X. Wu, D. M. Schauder, M. Y. Kasmani, J. Shen, S. Zheng, R.
1305 Burns, E. J. Taparowsky, W. Cui, BATF regulates progenitor to cytolytic effector CD8(+) T cell
1306 transition during chronic viral infection. *Nat Immunol* **22**, 996-1007 (2021).

1307 45. K. S. Rome, S. J. Stein, M. Kurachi, J. Petrovic, G. W. Schwartz, E. A. Mack, S. Uljon,
1308 W. W. Wu, A. G. DeHart, S. E. McClory, L. Xu, P. A. Gimotty, S. C. Blacklow, R. B. Faryabi, E.
1309 J. Wherry, M. S. Jordan, W. S. Pear, Trib1 regulates T cell differentiation during chronic infection
1310 by restraining the effector program. *J Exp Med* **217**, (2020).

1311 46. S. E. McClory, O. Bardhan, K. S. Rome, J. R. Giles, A. E. Baxter, L. Xu, P. A. Gimotty,
1312 R. B. Faryabi, E. J. Wherry, W. S. Pear, M. S. Jordan, The pseudokinase Trib1 regulates the
1313 transition of exhausted T cells to a KLR(+) CD8(+) effector state, and its deletion improves
1314 checkpoint blockade. *Cell Rep* **42**, 112905 (2023).

1315 47. C. X. Dominguez, R. A. Amezquita, T. Guan, H. D. Marshall, N. S. Joshi, S. H. Kleinsteiner,
1316 S. M. Kaech, The transcription factors ZEB2 and T-bet cooperate to program cytotoxic T cell
1317 terminal differentiation in response to LCMV viral infection. *J Exp Med* **212**, 2041-2056 (2015).

1319 48. T. Guan, C. X. Dominguez, R. A. Amezquita, B. J. Laidlaw, J. Cheng, J. Henao-Mejia, A.
1320 Williams, R. A. Flavell, J. Lu, S. M. Kaech, ZEB1, ZEB2, and the miR-200 family form a
1321 counterregulatory network to regulate CD8(+) T cell fates. *J Exp Med* **215**, 1153-1168 (2018).

1322 49. C. Y. Yang, J. A. Best, J. Knell, E. Yang, A. D. Sheridan, A. K. Jesionek, H. S. Li, R. R.
1323 Rivera, K. C. Lind, L. M. D'Cruz, S. S. Watowich, C. Murre, A. W. Goldrath, The transcriptional
1324 regulators Id2 and Id3 control the formation of distinct memory CD8+ T cell subsets. *Nat Immunol*
1325 **12**, 1221-1229 (2011).

1326 50. D. Herndler-Brandstetter, H. Ishigame, R. Shinnakasu, V. Plajer, C. Stecher, J. Zhao, M.
1327 Lietzenmayer, L. Kroehling, A. Takumi, K. Kometani, T. Inoue, Y. Kluger, S. M. Kaech, T.
1328 Kurosaki, T. Okada, R. A. Flavell, KLRG1(+) Effector CD8(+) T Cells Lose KLRG1,
1329 Differentiate into All Memory T Cell Lineages, and Convey Enhanced Protective Immunity.
1330 *Immunity* **48**, 716-729 e718 (2018).

1331 51. K. R. Renkema, M. A. Huggins, H. Borges da Silva, T. P. Knutson, C. M. Henzler, S. E.
1332 Hamilton, KLRG1(+) Memory CD8 T Cells Combine Properties of Short-Lived Effectors and
1333 Long-Lived Memory. *J Immunol* **205**, 1059-1069 (2020).

1334 52. M. A. Turman, T. Yabe, C. McSherry, F. H. Bach, J. P. Houchins, Characterization of a
1335 novel gene (NKG7) on human chromosome 19 that is expressed in natural killer cells and T cells.
1336 *Hum Immunol* **36**, 34-40 (1993).

1337 53. X. Y. Li, D. Corvino, B. Nowlan, A. R. Aguilera, S. S. Ng, M. Braun, A. R. Cillo, T. Bald,
1338 M. J. Smyth, C. R. Engwerda, NKG7 Is Required for Optimal Antitumor T-cell Immunity. *Cancer*
1339 *Immunol Res* **10**, 154-161 (2022).

1340 54. S. Sarkar, V. Kalia, W. N. Haining, B. T. Konieczny, S. Subramaniam, R. Ahmed,
1341 Functional and genomic profiling of effector CD8 T cell subsets with distinct memory fates. *J Exp*
1342 *Med* **205**, 625-640 (2008).

1343 55. Z. Chen, Z. Ji, S. F. Ngiow, S. Manne, Z. Cai, A. C. Huang, J. Johnson, R. P. Staupe, B.
1344 Bengsch, C. Xu, S. Yu, M. Kurachi, R. S. Herati, L. A. Vella, A. E. Baxter, J. E. Wu, O. Khan, J.
1345 C. Beltra, J. R. Giles, E. Stelekat, L. M. McLane, C. W. Lau, X. Yang, S. L. Berger, G. Vahedi,
1346 H. Ji, E. J. Wherry, TCF-1-Centered Transcriptional Network Drives an Effector versus Exhausted
1347 CD8 T Cell-Fate Decision. *Immunity* **51**, 840-855 e845 (2019).

1348 56. J. R. Giles, S. Manne, E. Freilich, D. A. Oldridge, A. E. Baxter, S. George, Z. Chen, H.
1349 Huang, L. Chilukuri, M. Carberry, L. Giles, N. P. Weng, R. M. Young, C. H. June, L. M.
1350 Schuchter, R. K. Amaravadi, X. Xu, G. C. Karakousis, T. C. Mitchell, A. C. Huang, J. Shi, E. J.
1351 Wherry, Human epigenetic and transcriptional T cell differentiation atlas for identifying functional
1352 T cell-specific enhancers. *Immunity* **55**, 557-574 e557 (2022).

1353 57. J. Eyquem, J. Mansilla-Soto, T. Giavridis, S. J. van der Stegen, M. Hamieh, K. M.
1354 Cunanan, A. Odak, M. Gonen, M. Sadelain, Targeting a CAR to the TRAC locus with
1355 CRISPR/Cas9 enhances tumour rejection. *Nature* **543**, 113-117 (2017).

1356 58. S. M. Collins, K. A. Alexander, S. Lundh, A. J. Dimitri, Z. Zhang, C. R. Good, J. A.
1357 Fraietta, S. L. Berger, TOX2 coordinates with TET2 to positively regulate central memory
1358 differentiation in human CAR T cells. *Sci Adv* **9**, eadh2605 (2023).

1359 59. R. Saleh, V. Sasidharan Nair, S. M. Toor, R. Z. Taha, K. Murshed, M. Al-Dhaheri, M.
1360 Khawar, M. A. Petkar, M. Abu Nada, F. Al-Ejeh, E. Elkord, Differential gene expression of tumor-
1361 infiltrating CD8(+) T cells in advanced versus early-stage colorectal cancer and identification of a
1362 gene signature of poor prognosis. *J Immunother Cancer* **8**, (2020).

1363 60. W. Zheng, J. Wei, C. C. Zebley, L. L. Jones, Y. Dhungana, Y. D. Wang, J. Mavuluri, L.
1364 Long, Y. Fan, B. Youngblood, H. Chi, T. L. Geiger, Regnase-1 suppresses TCF-1+ precursor

1365 exhausted T-cell formation to limit CAR-T-cell responses against ALL. *Blood* **138**, 122-135
1366 (2021).

1367 61. B. Zangari, T. Tsuji, J. Matsuzaki, H. Mohammadpour, C. Eppolito, S. Battaglia, F. Ito, T.
1368 Chodon, R. Koya, A. J. Robert McGraw, K. Odunsi, Tcf-1 protects anti-tumor TCR-engineered
1369 CD8(+) T-cells from GzmB mediated self-destruction. *Cancer Immunol Immunother* **71**, 2881-
1370 2898 (2022).

1371 62. C. Tsui, L. Kretschmer, S. Rapelius, S. S. Gabriel, D. Chisanga, K. Knopper, D. T.
1372 Utzschneider, S. Nussing, Y. Liao, T. Mason, S. V. Torres, S. A. Wilcox, K. Kanev, S. Jarosch, J.
1373 Leube, S. L. Nutt, D. Zehn, I. A. Parish, W. Kastenmuller, W. Shi, V. R. Buchholz, A. Kallies,
1374 MYB orchestrates T cell exhaustion and response to checkpoint inhibition. *Nature* **609**, 354-360
1375 (2022).

1376 63. G. Lopez-Cantillo, C. Uruena, B. A. Camacho, C. Ramirez-Segura, CAR-T Cell
1377 Performance: How to Improve Their Persistence? *Front Immunol* **13**, 878209 (2022).

1378 64. M. D. Buck, D. O'Sullivan, R. I. Klein Geltink, J. D. Curtis, C. H. Chang, D. E. Sanin, J.
1379 Qiu, O. Kretz, D. Braas, G. J. van der Windt, Q. Chen, S. C. Huang, C. M. O'Neill, B. T. Edelson,
1380 E. J. Pearce, H. Sesaki, T. B. Huber, A. S. Rambold, E. L. Pearce, Mitochondrial Dynamics
1381 Controls T Cell Fate through Metabolic Programming. *Cell* **166**, 63-76 (2016).

1382 65. L. Gattinoni, E. Lugli, Y. Ji, Z. Pos, C. M. Paulos, M. F. Quigley, J. R. Almeida, E. Gostick,
1383 Z. Yu, C. Carpenito, E. Wang, D. C. Douek, D. A. Price, C. H. June, F. M. Marincola, M. Roederer,
1384 N. P. Restifo, A human memory T cell subset with stem cell-like properties. *Nat Med* **17**, 1290-
1385 1297 (2011).

1386 66. X. Wang, L. L. Popplewell, J. R. Wagner, A. Naranjo, M. S. Blanchard, M. R. Mott, A. P.
1387 Norris, C. W. Wong, R. Z. Urak, W. C. Chang, S. K. Khaled, T. Siddiqi, L. E. Budde, J. Xu, B.
1388 Chang, N. Gidwaney, S. H. Thomas, L. J. Cooper, S. R. Riddell, ..., S. J. Forman, Phase 1 studies
1389 of central memory-derived CD19 CAR T-cell therapy following autologous HSCT in patients with
1390 B-cell NHL. *Blood* **127**, 2980-2990 (2016).

1391 67. L. Biasco, N. Izotova, C. Rivat, S. Ghorashian, R. Richardson, A. Guvenel, R. Hough, R.
1392 Wynn, B. Popova, A. Lopes, M. Pule, A. J. Thrasher, P. J. Amrolia, Clonal expansion of T memory
1393 stem cells determines early anti-leukemic responses and long-term CAR T cell persistence in
1394 patients. *Nat Cancer* **2**, 629-642 (2021).

1395 68. N. E. Scharping, A. V. Menk, R. S. Moreci, R. D. Whetstone, R. E. Dadey, S. C. Watkins,
1396 R. L. Ferris, G. M. Delgoffe, The Tumor Microenvironment Represses T Cell Mitochondrial
1397 Biogenesis to Drive Intratumoral T Cell Metabolic Insufficiency and Dysfunction. *Immunity* **45**,
1398 374-388 (2016).

1399 69. H. Kunitomo, H. Nakajima, TET2: A cornerstone in normal and malignant hematopoiesis.
1400 *Cancer Sci* **112**, 31-40 (2021).

1401 70. S. Mustjoki, N. S. Young, Somatic Mutations in "Benign" Disease. *N Engl J Med* **384**,
1402 2039-2052 (2021).

1403 71. E. A. Stadtmauer, J. A. Fraietta, M. M. Davis, A. D. Cohen, K. L. Weber, E. Lancaster, P.
1404 A. Mangan, I. Kulikovskaya, M. Gupta, F. Chen, L. Tian, V. E. Gonzalez, J. Xu, I. Y. Jung, J. J.
1405 Melenhorst, G. Plesa, J. Shea, T. Matlowski, A. Cervini, A. L. Gaymon, S. Desjardins, A.
1406 Lamontagne, J. Salas-McKee, A. Fesnak, D. L. Siegel, B. L. Levine, J. K. Jadlowsky, R. M. Young,
1407 A. Chew, W. T. Hwang, E. O. Hexner, B. M. Carreno, C. L. Nobles, F. D. Bushman, K. R. Parker,
1408 Y. Qi, A. T. Satpathy, H. Y. Chang, Y. Zhao, S. F. Lacey, C. H. June, CRISPR-engineered T cells
1409 in patients with refractory cancer. *Science* **367**, (2020).

1410 72. L. Couronne, C. Bastard, O. A. Bernard, TET2 and DNMT3A mutations in human T-cell
1411 lymphoma. *N Engl J Med* **366**, 95-96 (2012).

1412 73. X. Zhang, J. Su, M. Jeong, M. Ko, Y. Huang, H. J. Park, A. Guzman, Y. Lei, Y. H. Huang,
1413 A. Rao, W. Li, M. A. Goodell, DNMT3A and TET2 compete and cooperate to repress lineage-
1414 specific transcription factors in hematopoietic stem cells. *Nat Genet* **48**, 1014-1023 (2016).

1415 74. J. Garcia, J. Daniels, Y. Lee, I. Zhu, K. Cheng, Q. Liu, D. Goodman, C. Burnett, C. Law,
1416 C. Thienpont, J. Alavi, C. Azimi, G. Montgomery, K. T. Roybal, J. Choi, Naturally occurring T
1417 cell mutations enhance engineered T cell therapies. *Nature*, (2024).

1418 75. C. L. Nobles, S. Sherrill-Mix, J. K. Everett, S. Reddy, J. A. Fraietta, D. L. Porter, N. Frey,
1419 S. I. Gill, S. A. Grupp, S. L. Maude, D. L. Siegel, B. L. Levine, C. H. June, S. F. Lacey, J. J.
1420 Melenhorst, F. D. Bushman, CD19-targeting CAR T cell immunotherapy outcomes correlate with
1421 genomic modification by vector integration. *J Clin Invest* **130**, 673-685 (2020).

1422 76. E. Sherman, C. Nobles, C. C. Berry, E. Six, Y. Wu, A. Dryga, N. Malani, F. Male, S.
1423 Reddy, A. Bailey, K. Bittinger, J. K. Everett, L. Caccavelli, M. J. Drake, P. Bates, S. Hacein-Bey-
1424 Abina, M. Cavazzana, F. D. Bushman, INSPIRED: A Pipeline for Quantitative Analysis of Sites
1425 of New DNA Integration in Cellular Genomes. *Molecular Therapy - Methods & Clinical
1426 Development* **4**, 39-49 (2017).

1427 77. W. Kong, A. Dimitri, W. Wang, I. Y. Jung, C. J. Ott, M. Fasolino, Y. Wang, I.
1428 Kulikovskaya, M. Gupta, T. Yoder, J. E. DeNizio, J. K. Everett, E. F. Williams, J. Xu, J. Scholler,
1429 T. J. Reich, V. G. Bhoj, K. M. Haines, M. V. Maus, ..., J. A. Fraietta, BET bromodomain protein
1430 inhibition reverses chimeric antigen receptor extinction and reinvigorates exhausted T cells in
1431 chronic lymphocytic leukemia. *J Clin Invest* **131**, (2021).

1432 78. H. Pircher, J. Baenziger, M. Schilham, T. Sado, H. Kamisaku, H. Hengartner, R. M.
1433 Zinkernagel, Characterization of virus-specific cytotoxic T cell clones from allogeneic bone
1434 marrow chimeras. *Eur J Immunol* **17**, 159-166 (1987).

1435 79. H. Pircher, E. E. Michalopoulos, A. Iwamoto, P. S. Ohashi, J. Baenziger, H. Hengartner,
1436 R. M. Zinkernagel, T. W. Mak, Molecular analysis of the antigen receptor of virus-specific
1437 cytotoxic T cells and identification of a new V alpha family. *Eur J Immunol* **17**, 1843-1846 (1987).

1438 80. P. M. Odorizzi, K. E. Pauken, M. A. Paley, A. Sharpe, E. J. Wherry, Genetic absence of
1439 PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells. *J Exp Med* **212**,
1440 1125-1137 (2015).

1441 81. M. Kurachi, J. Kurachi, Z. Chen, J. Johnson, O. Khan, B. Bengsch, E. Stelekati, J.
1442 Attanasio, L. M. McLane, M. Tomura, S. Ueha, E. J. Wherry, Optimized retroviral transduction
1443 of mouse T cells for in vivo assessment of gene function. *Nat Protoc* **12**, 1980-1998 (2017).

1444 82. A. E. Baxter, H. Huang, J. R. Giles, Z. Chen, J. E. Wu, S. Drury, K. Dalton, S. L. Park, L.
1445 Torres, B. W. Simone, M. Klapholz, S. F. Ngiow, E. Freilich, S. Manne, V. Alcalde, V. Ekshyyan,
1446 S. L. Berger, J. Shi, M. S. Jordan, E. J. Wherry, The SWI/SNF chromatin remodeling complexes
1447 BAF and PBAF differentially regulate epigenetic transitions in exhausted CD8(+) T cells.
1448 *Immunity* **56**, 1320-1340 e1310 (2023).

1449 83. J. D. Buenrostro, P. G. Giresi, L. C. Zaba, H. Y. Chang, W. J. Greenleaf, Transposition of
1450 native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding
1451 proteins and nucleosome position. *Nat Methods* **10**, 1213-1218 (2013).