

1 **Exhaustion profile on classical monocytes after LPS stimulation in**
2 **patients with Crohn's disease.**

3 Lucas Pires Garcia Oliveira¹, Rafaela Gomes Xavier¹, Claudia Concer Viero Nora¹,
4 Cristóvão Luis Pitangueira Mangueira², Eliane Aparecida Rosseto², Thiago Aloia¹, Jaime
5 Zaladek Gil³, Arceu Scanavini Neto³, Filipa Blasco Tavares Pereira Lopes⁴, Karina Inacio
6 Carvalho^{1,5#*}.

7 ¹ Instituto de Ensino e Pesquisa, Hospital Israelita Albert Einstein, São Paulo, Brazil.

8 ² Laboratório Clínico, Hospital Israelita Albert Einstein, São Paulo, Brazil.

9 ³ Corpo Clínico, Hospital Israelita Albert Einstein, São Paulo, Brazil.

10 ⁴ Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, USA.

11 ⁵ Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland,
12 Ohio, USA.

13 #Current Address: Case Comprehensive Cancer Center, Case Western Reserve
14 University, Cleveland, Ohio, USA.

15 *Corresponding Author

16 E-mail: kxi68@case.edu

17 **Abstract**

18 Crohn's disease is an inflammatory bowel disease that induces diarrhea, abdominal pain,
19 weight loss, and even susceptibility to developing tumors. The immune system is pivotal
20 in the gastrointestinal tract, promoting tolerance against commensal antigens and food.
21 However, Crohn's disease manifests by a breakdown in the mechanism of immune
22 tolerance and the consequent development of exacerbated chronic inflammatory
23 responses. The involvement of the immune system is pivotal in Crohn's disease, with a
24 wide range of immune cells being altered, which may include monocytes. Taking the lack
25 of knowledge regarding monocytes in Crohn's disease, we ought to elucidate the cytokine
26 production and activation profile of monocyte subsets in the pathophysiology. We used
27 multiparametric flow cytometry, quantified gene expression using qPCR, and made a
28 correlation matrix regarding flow cytometry data and qPCR using a bioinformatic

29 approach to examine monocyte status. The Corhn's patients show a decrease in all subsets
30 of monocytes.

31 In contrast, classical monocytes show an exhaustion profile with increased expression of
32 CD38 and decreased production of IL-1 β after LPS stimulation in the patients' group.
33 These results indicate that monocyte subsets are differentially involved in the
34 pathophysiology. These findings may suggest that monocytes favor disease chronicity
35 and lack immune response resolution.

36 **Introduction**

37 Inflammatory bowel diseases (IBDs) encompass a group of chronic
38 inflammatory conditions that affect the gastrointestinal (GI) system [1,2]. Among these
39 conditions, Crohn's disease (CD) stands out as an important pathology that affects any
40 part of the GI. CD is characterized by an immune response imbalance triggered by a
41 combination of environmental, genetic, and microbiome factors. This leads to a range of
42 symptoms in patients, including weight loss, fatigue, diarrhea, abdominal pain, and
43 intense gut inflammation [3,4]. The gut inflammation observed is mainly due to the
44 breakdown in the immune tolerance mechanism and consequent development of
45 inflammatory responses [5–8].

46 Monocytes play a vital role in the innate immune system and CD. The monocytes
47 can be further classified into three subsets based on the expression of CD14 and CD16:
48 classical monocytes (CD14 $^+$ CD16 $^-$) with phagocytic activity and involved in innate
49 immune response, intermediate monocytes (CD14 $^+$ CD16 $^+$) responsible for cytokine
50 secretion and antigen presentation, and non-classical monocytes (CD14 $^-$ CD16 $^+$) which is
51 associated with Fc γ -mediated phagocytosis [9–11]. Classical CD14 monocytes were
52 reported to decrease in circulating blood, suggesting their recruitment to GI-inflamed
53 tissue [12,13]. The expression of chemoreceptors CCR2 and CX3CR1 plays a crucial role
54 in the immune response, leading to the mobilization of cells to inflamed sites and tissue
55 homing [14–18]. Once activated and recruited to the inflammation site, monocytes can
56 release cytokines such as TNF- α and IL-1 β [19]. Notably, IL-1 β and TNF can act as an
57 inflammatory signal inducing lymphocyte polarization [20,21] and play an essential role in
58 intestinal physiology [22]. The other expression protein involved in anti-inflammatory
59 signaling is CD163 [23]. While CD163 is associated with tissue homeostasis and anti-

60 inflammatory signaling, other surface markers, like CD38, correlate with cell exhaustion
61 [²⁴]. The cellular exhaustion profile can be induced by high loads or prolonged exposure
62 to antigens under inflammatory conditions, often observed in chronic virus infection or
63 cancer. Cellular exhaustion eventually leads to partial or complete loss of the ability to
64 secrete cytokines, chemokines, or degranulate. In contrast, the later exhaustion stage can
65 induce cell death and prolong the pathology [^{25,26}].

66 The study aimed to find the profile of monocytes in CD pathogenesis. Our results
67 show a decrease of classical monocytes expressing anti-inflammatory signaling, with an
68 increase in exhaustion profile. Future studies need to be performed to identify the
69 functionality of the inflamed tissue.

70 **Material and Methods**

71 **Cohort characterization**

72 The Ethics Committee of the Hospital Israelita Albert Einstein approved this study
73 (CAAE 38707914.0.0000.0071). Written informed consent was obtained from all
74 volunteers, according to the Brazilian Ministry of Health Guidelines and Declaration of
75 Helsinki. All samples and data were processed and stored until analysis at the Research
76 Center of Hospital Israelita Albert Einstein.

77 Our cohort is composed of 210 individuals, 96 with Crohn's patients and 114
78 healthy subjects. From this cohort, all 210 individuals had their buffy coat used for gene
79 expression, using the qPCR method as subsequently described. In comparison, 67
80 individuals had their peripheral blood mononuclear cells (PBMC) utilized for flow
81 cytometry assays.

82 **Flow cytometry**

83 PBMCs from 26 Crohn's patients and 41 healthy subjects were thawed and washed
84 in FACS buffer (PBS 1x, FBS 1%); viability was assessed using a Countess automated
85 cell counter (ThermoFisher Scientific, USA). Staining was performed for 30 min at room
86 temperature in 96-well V bottom plates (Thermo-Fisher Scientific, USA) with the
87 following antibodies against CD3 (clone: SK7), CD11b (clone: ICR44), CD14 (clone:
88 M5E2), CD15 (clone: W6D3), CD16 (clone: 3G8), CD33 (clone: P67.6), CD38 (clone:

89 HB-7), CD163 (clone: GHI/61), CCR2 (clone: K036C2), CX3CR1 (clone: 2A9-1) from
90 BioLegend. Amine Aqua dye (ThermoFisher Scientific, USA) was used to exclude dead
91 cells. To measure the best cytokine production, we performed kinetics to detect IL-1 β and
92 TNF- α in frozen PBMCs. PBMCs were thawed in the presence of 100 ng/ml LPS (Sigma-
93 Aldrich, USA) and incubated at 37°C and 5% CO₂ for 1, 2, 4, 6, and 8 hours. In 30 minutes
94 of incubation, monensin (5 mg/ml; Golgi Stop, BD Biosciences, USA) and Brefeldin A
95 (5 mg/ml; Golgi Plug, BD Biosciences, USA) were added to the medium for the 1-hour
96 point. After 2, 4, 6, and 8 hours of incubation, monensin and Brefeldin A were added after
97 1 hour of incubation. After incubation for 2 h, cells were washed, and surface staining
98 was performed at room temperature for 15 min. Cells were fixed/permeabilized using the
99 Fix & Perm Cell Permeabilization kit from Life Technologies. Cells were incubated with
100 antibodies against TNF- α (clone: Mab11) and IL-1 β (clone: CRM56) from Biolegend for
101 60 minutes. Samples were washed and fixed with formaldehyde before flow cytometry
102 data acquisition.

103 The best secretion point of both cytokines was at 2 hours incubation (S1 Fig), and
104 all samples were performed at this time point. One pitfall of such a technique for
105 monocytes is the expression of CD16; the monocytes lose their surface expression after
106 2 h of incubation with LPS, as already demonstrated [27]; thus, we were not able to assess
107 the cytokine production by the intermediate and non-classical monocyte subsets.

108 The Fluorescence minus one (FMO) [28] was used as a gating strategy for surface
109 panels, and unstimulated cells were used for intracellular analysis. All samples were
110 acquired using an LSR Fortessa flow cytometer (BD Biosciences, USA) and FACSDiva
111 software (BD Biosciences, USA). Gate analysis was performed using the FlowJo
112 software version 10.9 (BD Biosciences, USA).

113 **RNA extraction**

114 RNA was extracted from 96 Crohn's patients and 114 healthy buffy coat samples
115 using the Purelink RNA Minikit, described by the manufacturer (Life Sciences, USA).
116 After digestion, residual DNA was removed using DNase A. RNA was eluted from the
117 column using a low-salt solution buffer. NanoDropC (Invitrogen, USA) measured the
118 concentration and RNA integrity.

119 Real-time quantitative PCR (RT-qPCR)

120 Quantitative polymerase chain reaction (qPCR) was performed using a
121 QuantStudio® 6 real-time PCR system to assess changes in mRNA expression in the
122 genes (S1 Table). Total RNA was extracted from cells using a PureLink RNA mini kit
123 (Life Sciences, USA). cDNA synthesis was performed with a High-Capacity cDNA
124 Reverse Transcription Kit (Life Sciences, USA) according to the manufacturer's
125 instructions. qPCR was performed on a total of 20 µl containing Quantinova SYBR™
126 Green PCR kit (Qiagen, DE) according to manufacturer instructions. The relative
127 expressions were analyzed by the comparative CT method ($\Delta\Delta Ct$), normalized by the
128 expression of β -actin and GAPDH, comparing the static conditions as a reference.

129

130 **Supplementary Table 1.** Primer sequence and PCR conditions.

Gene (ID)	Primer	5'- 3' Sequence	PCR condition
TNF-α (7124)	Forward	GAAGTTTCCGCTGGTTGAATGAT	95°C - 5s; 60°C - 10s; 72°C
	Reverse	ATTTCCCCTGGGTGGGAGAGT	- 60s;
IL-1β (3553)	Forward	AGGGAAGCGGTTGCTCATCA	95°C - 5s; 60°C - 10s; 72°C
	Reverse	TCTTCTTCTCTTCGCTGCAGAGTG	- 60s
Actin (60)	Forward	AGCCTCGCCTTGCCGA	95°C - 5s; 60°C - 10s; 72°C
	Reverse	CTGGTGCCTGCCTGGGGCG	- 60s
IL-10 (3586)	Forward	GACACCAGAACATGATGTGAATAAGA	95°C - 5s; 60°C - 10s; 72°C
	Reverse	GGGATTCCCCTAACCTCATTCC	- 60s
NLRP3 (114548)	Forward	TTTTCTTCTGTTGCTGAGTTTG	95°C - 5s; 60°C - 10s; 72°C
	Reverse	TTTAAAAGTCTCCTCCACTCACC	- 60s
GAPDH (2597)	Forward	ATTGCCCTCAACGACCACTT	95°C - 5s; 60°C - 10s; 72°C
	Reverse	TGCTGTAGCAAATTGTTGTC	- 60s

131

132 Immunofluorescent Staining

133
134 Colon sections were cut 5mM, after heat-induced epitope retrieval, cells were
135 incubated overnight at 4°C with rat anti-human HLA-DR (clone: YD1/63.4) monoclonal
136 antibody (Thermo-Fisher Scientific, USA), rabbit anti-human CD16 (clone: JE49-79)
137 polyclonal antibody (Invitrogen, USA) and mouse anti-human CD64 (clone: OTI3D3)

138 monoclonal antibody (Abcam, UK). After washing, sections were stained with a
139 secondary antibody anti-rat Alexa 647 (Thermo-Fisher Scientific, USA), anti-rabbit
140 Alexa 568 (Thermo-Fisher Scientific, USA), and anti-mouse Alexa 488 (Thermo-Fisher
141 Scientific, USA) for two hours at room temperature. The sections were washed and
142 incubated for two hours with anti-human mouse CD14 Texas Red (clone: RMO52)
143 (Beckman Coulter, USA). Afterward, the sections were incubated with DAPI and
144 mounted on slides using Prolong Gold antifade reagent (Thermo-Fisher Scientific, USA).
145 Images were acquired on an LSM 710 confocal microscope (Carl Zeiss, DE) with a 20X
146 objective. The colocalization was assessed by using Zen 2012 SP2. The expression of
147 HLA-DR⁺CD64⁺ cells defined the monocyte-like cells compartment. Ten different fields
148 were counted for the 5 lesion and 6 margin sites.

149 **Statistical analysis**

150 Statistical analysis was performed using Prism8 (GraphPad Software, USA),
151 considering a significance level of 5% ($p \leq 0.05$), and represented in the figures are the
152 median, 1st, and 3rd interquartile values (M: Q1-Q3). Mann-Whitney was used to compare
153 the cohort characteristics between the groups, and the Given Proportions test was used to
154 assess the differences in women's and men's proportions (Table 1). For the correlation
155 matrix, were used the R package Corrplot (v. 0.92), and Pearson's correlation was used to
156 access each possible correlation between flow cytometry and qPCR data, considering a
157 significance level of 5% ($p \leq 0.05$); other arguments were left default.

158 **Results**

159 **Study volunteers**

160 The cohort is primarily women, with no differences in ratios ($p > 0.05$), with a mean age
161 of 33 years for the healthy group and 36 years for the Crohn's group. It is noteworthy that
162 the serological markers commonly used for CD, calprotectin, ASCA IgG, and ASCA IgA
163 were significantly increased ($p < 0.0001$) in the Crohn's group when compared to healthy
164 individuals (Tab 1). Furthermore, the total count of cells did not show significant
165 differences in total leukocytes and monocyte numbers. The mean age of patients in the
166 present study reflects a relatively young population affected by CD, as global data show
167 that the most affected age group is above 50 [29]. The average age of patients observed in

168 Brazil may be related to the Brazilian age profile, which is mainly composed of people
169 under 34 years old [30].

170 **Table 1:** Cohort characterization.

Sex	Healthy group 82 women 32 men	Crohn group 60 women 36 men
Mean age (years)	33	36
CDAI		168
Total leukocytes ($\times 10^3/\mu\text{L}$)	6,6	6,9
Total monocytes (%)	7	7,3
ASCA IgG (U/mL)	5,1	11,9****
ASCA IgA (U/mL)	2,2	3,7****
Calprotectin (vg/g)	55,8	446,7****

171 Mann-Whitney test. ****p<0,0001

172 **Classical Monocytes are decreased in Crohn's patients.**

173 After the cohort was characterized, we performed the multiparametric flow
174 cytometry assay of samples from patients (n = 26) and healthy subjects (n = 41) to
175 measure the percentage of each monocyte subset. A representative gate strategy is
176 represented in Fig 1A, and gate strategy of monocyte subsets on S2 Fig.

177 Cluster assignments show clearly that the healthy subjects show more expression
178 of the subset markers on classical monocytes when compared with Crohn's patients,
179 showing in the graphics for the classical monocytes (CD14 $^+$ CD16 $^-$) (p<0.05), classical
180 monocytes expressing CD163 (CD14 $^+$ CD16 $^-$ CD163 $^+$) (p≤0.001), and classical
181 monocytes expressing CCR2 (CD14 $^+$ CD16 $^-$ CCR2 $^+$) (p≤0.05). Our results demonstrate a
182 decrease in monocytes in the blood, which shows a chronic inflammatory profile and a
183 homing of these cells for the tissue lesions represented by CCR2 (Fig 1B).

184 **Decreased anti-inflammatory receptor on intermediate 185 monocytes in Crohn's patients**

186 CD163 protein is a surface receptor with anti-inflammatory action, essential for
187 intestinal homeostasis. We observed diverse expressions on cluster assignments between
188 healthy controls and Crohn's patients. However, the statistical significance was detected
189 in an increased percentage of intermediated monocytes (CD14 $^+$ CD16 $^+$) (p≤0.01) and
190 intermediated monocytes expressing CD163 (CD14 $^+$ CD16 $^+$ CD163 $^+$) (p≤0.01) on healthy

191 subjects when compared with Crohn's patients (Fig 1C). This decrease in the expression
192 of intermediate monocytes suggests an imbalance in the activation and proliferation of T
193 cells since this subset of monocytes is one of the immune cells responsible for this
194 function [31].

195 **Chemokine receptor expression increased in non-
196 classical monocytes.**

197 Non-classical monocytes (CD14-CD16⁺) and these cells expressing CD163
198 (CD14-CD16⁺CD163⁺) show a decrease in Crohn's patients when compared with healthy
199 subjects ($p \leq 0.01$). Then, we evaluated the expressions of CCR2 and CX3CR1 on these
200 cells. The cluster assignments show that Crohn's patients have CCR2 with more intensity
201 on the cluster. The non-classical monocytes show an increase of CCR2 (CD14-
202 CD16⁺CCR2⁺) ($p \leq 0.01$) and the double expression of CCR2 CX3CR1 (CD14-
203 CD16⁺CCR2⁺CX3CR1⁺) ($p \leq 0.001$) in Crohn's patients when compared with healthy
204 subjects. These results show these cells' capacity to transmigrate to injured tissue [32] (Fig
205 1D).

206 **No monocyte migration to the tissue of Crohn's patients.**

207 Since we observed an increase in chemokine receptors, we decided to investigate
208 the possibility of infiltration of monocytes in the injured tissue. Our imaging analysis
209 showed no difference in the presence of cells expressing HLA-DR⁺CD64⁺ when
210 comparing lesion tissue and disease-free margins. Unfortunately, we had only six samples
211 of patients, and this could impact the results. Another fact could be that other types of
212 leucocytes, such as neutrophils, accumulate in the acute lesions (Fig 1E) [33]. However,
213 active human colon IBD was associated with mRNA expression of HLA-DR and CD14
214 [34].

215 **Patients with Crohn's disease show higher numbers of
216 immature myeloid cells.**

217 In addition to monocytes, Myeloid-Derived Suppressor Cells (MDSC) may play
218 a role in the pathogenesis of CD. To better describe these cells, we use the following
219 makers (CD14-CD33⁺CD15⁺CD11b⁺) to define MDSC, as demonstrated by the gating
220 strategy in Fig 2A. Our results showed no significant difference ($p > 0.05$) between the

221 health and patient groups despite MDSCs having an important role in chronic
222 inflammatory pathologies and not seeming to take part in our cohort of CD in this work.

223 However, we observed an increase in CD14⁻ and CD14⁻CD33⁺ in Crohn's patients
224 when compared with health subjects ($p \leq 0.01$) (Fig 2B). The difference in CD33⁺ cells
225 may indicate an increase in immature cells in the peripheral blood of Crohn's patients,
226 which may play an important role in the disease resolution not being able to build a proper
227 immune response [35,36].

228 **LPS stimulus decreases chemokine receptor expression 229 while increasing CD38 expression in classical monocytes**

230 After incubating the PBMC of CD patients and health subjects for 2 h with LPS,
231 as described in the methods section, we observed differences in the cytokine production
232 and expression of surface molecules.

233 The percentage of CD14⁺CCR2⁺ in Crohn's patients was decreased ($p < 0.05$)
234 compared to the healthy subjects. On the other hand, CD14⁺CCR2⁺CD163⁺,
235 CD14⁺CX3CR1⁺ CD38⁺, and CD14⁺CX3CR1⁺CCR2⁺ were increased ($p < 0.05$) in CD
236 patients in comparison to healthy subjects (Fig 3A). These results show a profile of
237 exhaustion and the inflammatory process of classical monocytes.

238 **After LPS stimulus, CD patients downregulated a 239 secretion of IL-1 β**

240 Monocytes are known to be a primary source of IL-1 β , even following a single
241 stimulus of TLR2-4 [37,38]. Using LPS stimulus, we observed decreased IL-1 β production
242 in classical monocytes expressing CCR2 and CX3CR1 (Fig 3B). These results
243 demonstrate that Crohn's patients have a decline in crucial proinflammatory cytokine,
244 which could be impaired in a disease relapse.

245 **Positive correlation on gene expression of TNF- α and 246 NLRP3**

247 We performed a qPCR in total PBMC to verify the gene expression of TNF- α , IL-
248 1 β , IL-10, and NLRP3 in both groups. This cytokine and NLRP3 have a role in IBD. The

249 increase of NLPR3, for example, increases the expression of several effectors
250 downstream of this sensor. There were no significant statistical results between healthy
251 subjects and Crohn's patients. However, we identified a positive correlation between the
252 gene expression of NLPR3 and TNF and IL-10 in healthy subjects (Fig 4A). The exact
253 correlation was observed on Crohn's patients but just with TNF (Fig 4B). Since the qPCR
254 was done in PBMC, we cannot correlate the above expression with specific myeloid cells
255 such as monocytes. Specifics of all correlations between qPCR and classical monocytes
256 can be found in the supplementary Figure 3A and B.

257 **Crohn's patients show exhaustion homing profile**

258 Classical monocytes expressing CX3CR1 are responsible for migration. Our
259 results show a negative correlation between classical monocytes expressing CX3CR1
260 secreting IL-1 β and the subsets CX3CR1 and CD38 in Crohn's patients (Fig 4B). That
261 shows the inflammatory state decreases the secretion of IL-1 β and promotes classical
262 monocytes to express that a higher concentration of CD38 could promote an exhaustion
263 state.

264 **Discussion**

265 The incidence of Crohn's disease is increasing annually. The treatments available
266 around the world provide an improvement in remission and sometimes a disease clearance
267 for many years [39]. Therefore, understanding the innate immune response could give
268 some clues to improve treatments for patients who relapse after discontinuing biologics
269 or do not respond well to the available treatment.

270 Our results show a decrease in all subsets of monocytes in Crohn's patients,
271 including an expression of CD163 and CCR2. An overview of a cohort of IBD patients
272 over 19 years shows they were able to demonstrate high monocyte counts, which shows
273 these patients may be more likely to experience relapses [40]. The non-classical monocytes,
274 on the other hand, show an increase in chemokine receptors in Crohn's patients. Cells that
275 express one or both CCR2 and CX3CR1 are found in inflamed gut tissue of patients with
276 inflammatory bowel disease (IBD), specifically CD^[5], thus highlighting chemoreceptors'
277 importance for inflammatory responses.

278 The decrease of classical monocytes can stimulate the bone marrow to produce
279 more myeloid cells to compensate for the loss of these cells. Our results show an increase
280 of CD33⁺CD14⁻, showing a possible compensation for the immature cells in the periphery.

281 The primary sources of IL-1 β are monocytes and macrophages following a
282 single stimulus of TLR-2 or TLR-4 [41,42]. To demonstrate the capacity of monocytes
283 function, we stimulated PBMC with LPS. Our cohort of Crohn's patients shows a decrease
284 in classical monocytes expressing CCR2, CCR2⁺IL-1 β ⁺, and CX3CR1⁺IL-1 β ⁺. Chapuy
285 shows the major contributor of IL-1 β secretion was CD163 subsets of macrophages in
286 inflamed mucosa of CD [20]. Gareth-Rhys et al. show intestinal myeloid cells in colitis
287 have monocytes, the principal cells of the IL-1-producing population [34]. Even though
288 the results are the opposite of ours, they look at another tissue in other subsets. However,
289 the study from Mitsialis shows an increase of monocytes secreting IL-1 β but was in CD
290 active when compared with non-IBD; however, there was no significant difference in CD
291 inactive [43].

292 We demonstrated that monocytes are decreased in the circulating blood of
293 Crohn's patients. After the LPS stimulus, increased CD38 expression and reduced
294 cytokine production were observed compared to healthy individuals, suggesting that CD
295 monocytes display characteristics of exhaustion in such disease.

296 Cell exhaustion is also reported on monocytes but to a lesser extent. Pradhan,
297 finding repetitive challenger of high dose LPS in murine monocytes derived from bone
298 marrow for 5 days exhibited a pathogenic inflammation of septic monocytes. They
299 identified CD38 as a novel marker for exhausted monocytes [24]. One year later, Naler did
300 a persistent low-dose LPS challenge that led murine monocytes derived from bone
301 marrow to exhaustion, resembling cells observed in septic patients [44]. CD38 expression
302 seems important for cell exhaustion.

303 Nevertheless, limited data has been published regarding the exhaustion of
304 mononuclear cells in chronic diseases, especially CD. Our results show a characteristic
305 of exhausted monocytes in CD patients; this finding may help us understand the
306 monocyte's role in CD pathogenesis. We demonstrated that CD14⁺CCR2⁺CX3CR1⁺ and
307 CD14⁺CCR2⁺CD163⁺ cells were increased in the CD patients; this may reflect a skewed
308 profile towards the intestinal tissue in an LPS-induced manner. Along with the presence
309 of CD163, the expression of CCR2 suggests the mobilization of these cells to the intestine

310 [15–17]. Furthermore, the expression of CX3CR1 and CCR2 is associated with gut immune
311 cells. Bernardo and colleagues demonstrated an increase in intestinal macrophages
312 expressing CX3CR1⁺CCR2⁺ in patients with IBD compared to healthy individuals. In
313 addition, those macrophages were arising from infiltrating proinflammatory CCR2⁺
314 monocytes [5]. These findings highlight the presence and importance of CCR2⁺CX3CR1⁺
315 cells in driving intestinal inflammation and suggest the observed CX3CR1⁺CCR2⁺ and
316 CCR2⁺ populations as being recruited to the inflammation site and associated with
317 antigens in the tissue [45], thus further contributing to the inflammatory profile.

318 Although we did not observe differences in gene expression comparison
319 between patients and healthy individuals, the correlation analysis demonstrated in
320 patients a positive correlation between NLRP3 and TNF- α , suggesting an association
321 between inflammatory and inflammasome signaling. The inflammasome pathway has
322 already been correlated with CD. A mutation in the CARD8 gene impedes its
323 downregulation of NLRP3, thus favoring the inflammasome activation, and may also take
324 part as a treatment resistance inducer in patients undergoing monoclonal antibody therapy
325 [46]. Furthermore, Gettler and colleagues performed a genomic analysis demonstrating
326 CD-related gene overexpression in leukocytes. Those genes were predominantly
327 overexpressed in monocytes, thus associating such cell populations with the pathogenesis
328 of this disease [47], demonstrating that healthy individuals have some differences
329 regarding cytokine gene expression compared to CD patients. The negative correlation
330 between exhausted monocytes and classical monocytes secreting IL-1 β sustained the
331 pathogenic inflammation present in CD patients.

332 A drug that can maintain the monocytes with functional capacity in the
333 bloodstream of Crohn's patients can improve the lifetime of the patients and diminish
334 their relapsing. It is crucial to note that future studies are required to understand better the
335 source of NAD⁺ and mitochondria function in IBD patients.

336 Conclusion

337 Despite Crohn's disease being described almost a century ago, it still has some
338 mechanisms and etiology gaps. Our results demonstrated that monocytes subsets may be
339 differentially involved in the pathophysiology. LPS-stimulated PBMC of Crohn's patients
340 is susceptible to increased cellular exhaustion marker expression and decreased cytokine

341 production, favoring a chronic profile with no disease resolution. Future functional and
342 mechanistic studies in CD are needed to fully elucidate how monocytes correlate with the
343 intestinal tissue and the microbiota.

344 **Acknowledgments**

345 We thank clinical laboratory staff from Hospital Israelita Albert Einstein for the
346 continuous laboratory support. We warmly thank the volunteers, patients, and their
347 families who contributed to this work.

348

349 **References**

- 350 1. Cho JH. The genetics and immunopathogenesis of inflammatory bowel disease. *Nat Rev Immunol* 2008;8(6):458–66.
- 352 2. Strober W, Fuss I, Mannon P. The fundamental basis of inflammatory bowel disease. *Journal of Clinical Investigation* 2007;117(3):514–21.
- 354 3. Cosnes J, Gower-Rousseau C, Seksik P, Cortot A. Epidemiology and natural history of
355 inflammatory bowel diseases. *Gastroenterology [Internet]* 2011;140(6):1785–94.
356 Available from: <http://www.ncbi.nlm.nih.gov/pubmed/21530745>
- 357 4. Kaplan GG, Windsor JW. The four epidemiological stages in the global evolution of
358 inflammatory bowel disease. *Nat Rev Gastroenterol Hepatol* 2021;18(1):56–66.
- 359 5. Bernardo D, Chaparro M, Gisbert JP. Human Intestinal Dendritic Cells in Inflammatory
360 Bowel Diseases. *Mol Nutr Food Res* 2018;62(7):1700931.
- 361 6. MacDonald TT, Monteleone I, Fantini MC, Monteleone G. Regulation of Homeostasis
362 and Inflammation in the Intestine. *Gastroenterology* 2011;140(6):1768–75.
- 363 7. MacDonald TT, Monteleone G. Immunity, Inflammation, and Allergy in the Gut. *Science*
364 (1979) 2005;307(5717):1920–5.
- 365 8. Mowat AM. Anatomical basis of tolerance and immunity to intestinal antigens. *Nat Rev Immunol* 2003;3(4):331–41.
- 367 9. Geissmann F, Jung S, Littman DR. Blood Monocytes Consist of Two Principal Subsets
368 with Distinct Migratory Properties. *Immunity* 2003;19(1):71–82.
- 369 10. Li Yim AYF, Duijvis NW, Ghiboub M, Sharp C, Ferrero E, Mannens MMAM, et al. Whole-
370 Genome DNA Methylation Profiling of CD14+ Monocytes Reveals Disease Status and
371 Activity Differences in Crohn's Disease Patients. *J Clin Med* 2020;9(4):1055.

372 11. Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, et al. Nomenclature
373 of monocytes and dendritic cells in blood. *Blood* 2010;116(16):e74–80.

374 12. Schwarzmaier D, Foell D, Weinhage T, Varga G, Däbritz J. Peripheral Monocyte
375 Functions and Activation in Patients with Quiescent Crohn's Disease. *PLoS One*
376 [Internet] 2013 [cited 2023 Apr 25];8(4):e62761. Available from:
377 <https://dx.plos.org/10.1371/journal.pone.0062761>

378 13. Thiesen S, Janciauskiene S, Uronen-Hansson H, Agace W, Högerkorp CM, Spee P, et al.
379 CD14^{hi} HLA-DR^{dim} macrophages, with a resemblance to classical blood monocytes,
380 dominate inflamed mucosa in Crohn's disease. *J Leukoc Biol* [Internet] 2014;95(3):531–
381 41. Available from: <http://doi.wiley.com/10.1189/jlb.0113021>

382 14. Yoshie O, Imai T, Nomiyama H. Chemokines in Immunity. 2001. page 57–110.

383 15. Dal-Secco D, Wang J, Zeng Z, Kolaczkowska E, Wong CHY, Petri B, et al. A dynamic
384 spectrum of monocytes arising from the *in situ* reprogramming of CCR2+ monocytes at
385 a site of sterile injury. *Journal of Experimental Medicine* 2015;212(4):447–56.

386 16. Kuroda N, Masuya M, Tawara I, Tsuboi J, Yoneda M, Nishikawa K, et al. Infiltrating
387 CCR2+ monocytes and their progenies, fibrocytes, contribute to colon fibrosis by
388 inhibiting collagen degradation through the production of TIMP-1. *Sci Rep*
389 2019;9(1):8568.

390 17. Serbina N V, Pamer EG. Monocyte emigration from bone marrow during bacterial
391 infection requires signals mediated by chemokine receptor CCR2. *Nat Immunol*
392 2006;7(3):311–7.

393 18. Koscsó B, Kurapati S, Rodrigues RR, Nedjic J, Gowda K, Shin C, et al. Gut-resident
394 CX3CR1^{hi} macrophages induce tertiary lymphoid structures and IgA response *in situ*. *Sci*
395 *Immunol* 2020;5(46).

396 19. Skrzeczyńska-Moncznik J, Bzowska M, Lo"seke S, Grage-Griebenow E, Zembala M,
397 Pryjma J. Peripheral Blood CD14^{high} CD16⁺ Monocytes are Main Producers of IL-10.
398 *Scand J Immunol* 2008;67(2):152–9.

399 20. Chapuy L, Bsat M, Sarkizova S, Rubio M, Therrien A, Wassef E, et al. Two distinct colonic
400 CD14+ subsets characterized by single-cell RNA profiling in Crohn's disease. *Mucosal*
401 *Immunol* 2019;12(3):703–19.

402 21. Ogino T, Nishimura J, Barman S, Kayama H, Uematsu S, Okuzaki D, et al. Increased
403 Th17-Inducing Activity of CD14+ CD163low Myeloid Cells in Intestinal Lamina Propria of
404 Patients With Crohn's Disease. *Gastroenterology* 2013;145(6):1380-1391.e1.

405 22. Lopetuso LR, Chowdhry S, Pizarro TT. Opposing Functions of Classic and Novel IL-1
406 Family Members in Gut Health and Disease. *Front Immunol* 2013;4.

407 23. Etzerodt A, Moestrup SK. CD163 and Inflammation: Biological, Diagnostic, and
408 Therapeutic Aspects. *Antioxid Redox Signal* 2013;18(17):2352–63.

409 24. Pradhan K, Yi Z, Geng S, Li L. Development of Exhausted Memory Monocytes and
410 Underlying Mechanisms. *Front Immunol* 2021;12.

411 25. Wherry EJ. T cell exhaustion. *Nat Immunol* 2011;12(6):492–9.

412 26. Blank CU, Haining WN, Held W, Hogan PG, Kallies A, Lugli E, et al. Defining 'T cell
413 exhaustion.' *Nat Rev Immunol* 2019;19(11):665–74.

414 27. Ong SM, Teng K, Newell E, Chen H, Chen J, Loy T, et al. A Novel, Five-Marker Alternative
415 to CD16–CD14 Gating to Identify the Three Human Monocyte Subsets. *Front Immunol*
416 2019;10.

417 28. Roederer M. Spectral compensation for flow cytometry: Visualization artifacts,
418 limitations, and caveats. *Cytometry [Internet]* 2001 [cited 2021 Mar 25];45(3):194–205.
419 Available from: [https://onlinelibrary.wiley.com/doi/10.1002/1097-0320\(20011101\)45:3<194::AID-CYTO1163>3.0.CO;2-C](https://onlinelibrary.wiley.com/doi/10.1002/1097-0320(20011101)45:3<194::AID-CYTO1163>3.0.CO;2-C)

421 29. Alatab S, Sepanlou SG, Ikuta K, Vahedi H, Bisignano C, Safiri S, et al. The global, regional,
422 and national burden of inflammatory bowel disease in 195 countries and territories,
423 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. *Lancet
424 Gastroenterol Hepatol* 2020;5(1):17–30.

425 30. IBGE. Estatísticas de gênero : uma análise dos resultados do censo demográfico 2010.
426 Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística; 2014.

427 31. Ożańska A, Szymczak D, Rybka J. Pattern of human monocyte subpopulations in health
428 and disease. *Scand J Immunol* 2020;92(1).

429 32. Zawada AM, Rogacev KS, Rotter B, Winter P, Marell RR, Fliser D, et al. SuperSAGE
430 evidence for CD14++CD16+ monocytes as a third monocyte subset. *Blood*
431 2011;118(12):e50–61.

432 33. HARBORD MWN, MARKS DJB, FORBES A, BLOOM SL, DAY RM, SEGAL AW. Impaired
433 neutrophil chemotaxis in Crohn's disease relates to reduced production of chemokines
434 and can be augmented by granulocyte-colony stimulating factor. *Aliment Pharmacol
435 Ther* 2006;24(4):651–60.

436 34. Jones GR, Bain CC, Fenton TM, Kelly A, Brown SL, Ivens AC, et al. Dynamics of Colon
437 Monocyte and Macrophage Activation During Colitis. *Front Immunol* 2018;9.

438 35. Soeno T, Katoh H, Ishii S, Ushiku H, Hosoda K, Hiki N, et al. CD33+ Immature Myeloid
439 Cells Critically Predict Recurrence in Advanced Gastric Cancer. *Journal of Surgical
440 Research* 2020;245:552–63.

441 36. Toor SM, Taha RZ, Sasidharan Nair V, Saleh R, Murshed K, Abu Nada M, et al.
442 Differential gene expression of tumor-infiltrating CD33+ myeloid cells in advanced-
443 versus early-stage colorectal cancer. *Cancer Immunology, Immunotherapy*
444 2021;70(3):803–15.

445 37. Netea MG, Nold-Petry CA, Nold MF, Joosten LAB, Opitz B, van der Meer JHM, et al.
446 Differential requirement for the activation of the inflammasome for processing and
447 release of IL-1 β in monocytes and macrophages. *Blood* 2009;113(10):2324–35.

448 38. Gaidt MM, Ebert TS, Chauhan D, Schmidt T, Schmid-Burgk JL, Rapino F, et al. Human
449 Monocytes Engage an Alternative Inflammasome Pathway. *Immunity* 2016;44(4):833–
450 46.

451 39. Wang R, Li Z, Liu S, Zhang D. Global, regional and national burden of inflammatory
452 bowel disease in 204 countries and territories from 1990 to 2019: a systematic analysis
453 based on the Global Burden of Disease Study 2019. *BMJ Open* 2023;13(3):e065186.

454 40. Kwon Y, Kim YZ, Choe YH, Kim MJ. Increased monocyte abundance as a marker for
455 relapse after discontinuation of biologics in inflammatory bowel disease with deep
456 remission. *Front Immunol* 2022;13.

457 41. Kayagaki N, Warming S, Lamkanfi M, Walle L Vande, Louie S, Dong J, et al. Non-
458 canonical inflammasome activation targets caspase-11. *Nature* 2011;479(7371):117–21.

459 42. Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, et al. Inflammatory caspases are innate
460 immune receptors for intracellular LPS. *Nature* 2014;514(7521):187–92.

461 43. Mitsialis V, Wall S, Liu P, Ordovas-Montanes J, Parmet T, Vukovic M, et al. Single-Cell
462 Analyses of Colon and Blood Reveal Distinct Immune Cell Signatures of Ulcerative Colitis
463 and Crohn's Disease. *Gastroenterology* 2020;

464 44. Naler LB, Hsieh YP, Geng S, Zhou Z, Li L, Lu C. Epigenomic and transcriptomic analyses
465 reveal differences between low-grade inflammation and severe exhaustion in LPS-
466 challenged murine monocytes. *Commun Biol* 2022;5(1):102.

467 45. Mann ER, Landy JD, Bernardo D, Peake STC, Hart AL, Al-Hassi HO, et al. Intestinal
468 dendritic cells: Their role in intestinal inflammation, manipulation by the gut microbiota
469 and differences between mice and men. *Immunol Lett* 2013;150(1–2):30–40.

470 46. Mao L, Kitani A, Strober W, Fuss IJ. The Role of NLRP3 and IL-1 β in the Pathogenesis of
471 Inflammatory Bowel Disease. *Front Immunol* 2018;9.

472 47. Gettler K, Giri M, Kenigsberg E, Martin J, Chuang LS, Hsu NY, et al. Prioritizing Crohn's
473 disease genes by integrating association signals with gene expression implicates
474 monocyte subsets. *Genes Immun* 2019;20(7):577–88.

475

476 **Legend**

477 **Figure 1. Surface markers profiles of monocytes in Crohn's patients and healthy**
478 **subjects. (A)** Flow Cytometry gating strategy to identify the monocyte subsets. **(B)**
479 Phenograph-based visualization on the tSNE plot of (from left to right) classical
480 monocytes and expression of CD163 and CCR2. **(C)** tSNE plot of (from left to right)
481 intermediary monocytes and expression of CD163. **(D)** tSNE plot of (from left to right)
482 non-classical monocytes and CD163, CCR2, and CCR2/CX3CR1 expression. Annotation
483 of each subcluster on merged tSNE CX3CR1 are green, CD163 blue, and CCR2 red plots,
484 respectively. **(E)** Confocal microscopy shows a lesion and a healthy margin.

485 **Figure 2. Myeloid-Derived Suppressor Cells and Myeloid immature cells in Crohn's**
486 **disease. (A)** Representative gating strategy to identify the myeloid-derived suppressor

487 cells and myeloid immature cells. **(B)** From left to right, the percentage of MDSC cells
488 showed no significance, with CD14 negative cells and immature myeloid cells showing
489 an increase in Crohn's.

490 **Figure 3. PBMC stimulated with LPS gating on classical monocytes.** **(A)** From upper
491 left shows a decrease of CCR2 in Crohn's patients, an increase in expression of
492 CCR2⁺CD163⁺, CX3CR1⁺CD38⁺ (exhaustion), and CCR2⁺CX3CR1⁺. **(B)** After LPS
493 stimulus, classical monocytes downregulated a secretion of IL-1 β and CCR2⁺CX3CR1⁺
494 in Crohn's patients.

495 **Figure 4. Gene expression correlated to monocytes subsets.** **(A and B)** Gene
496 expression correlated to monocyte subsets using Pearson correlation (adjusted p-value
497 ≤ 0.05). Positive correlation is shown as a red circle, and negative correlation is shown as
498 a blue circle.

499

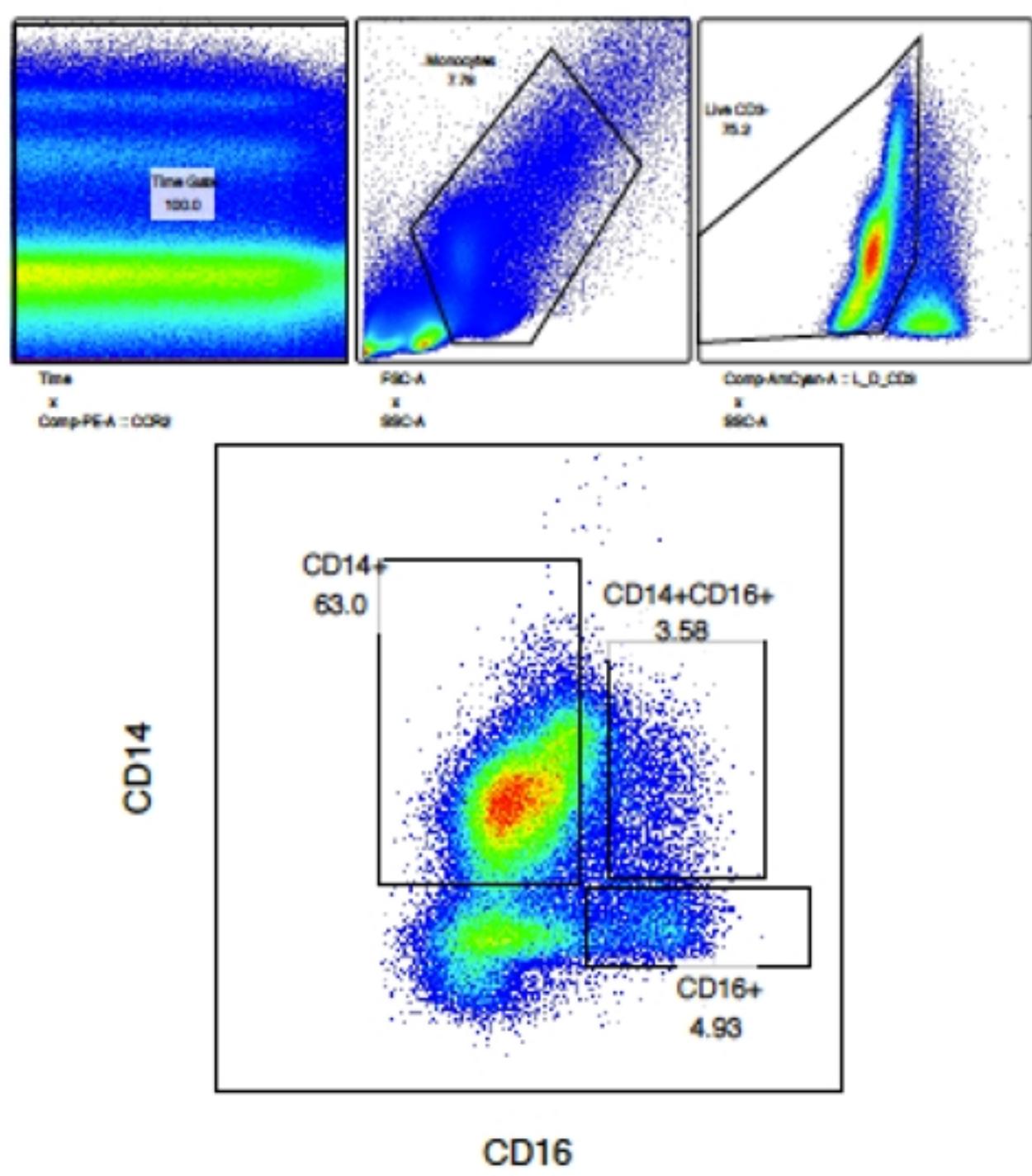
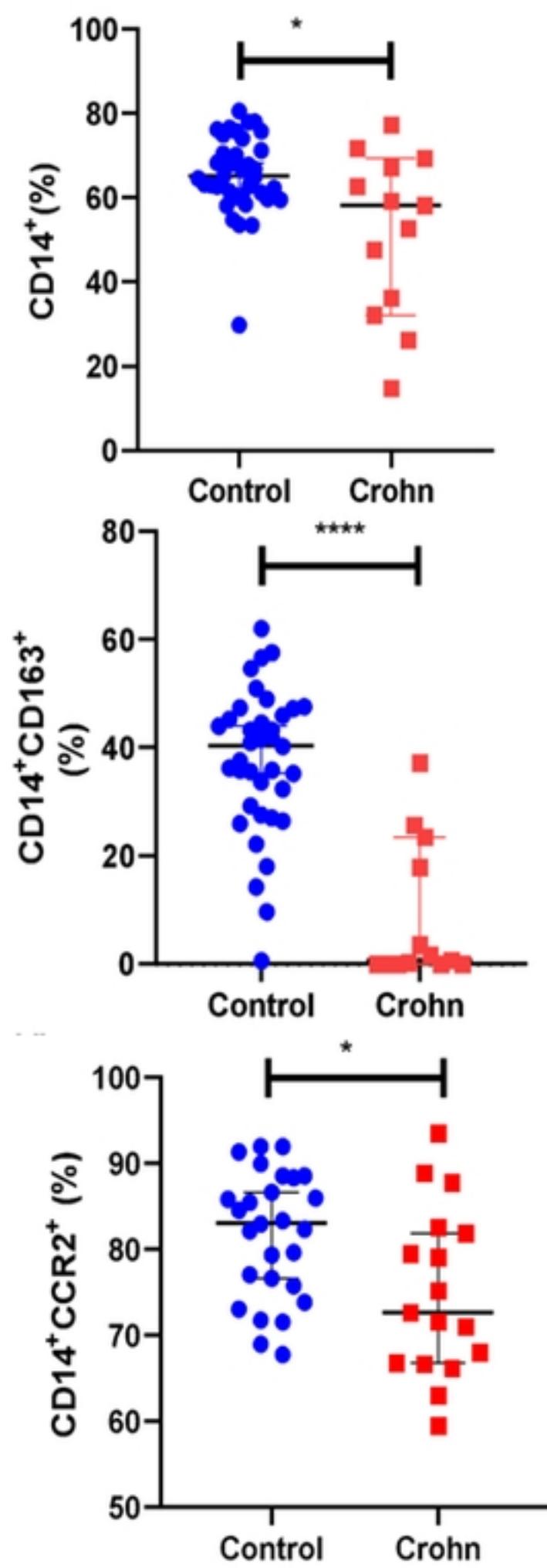
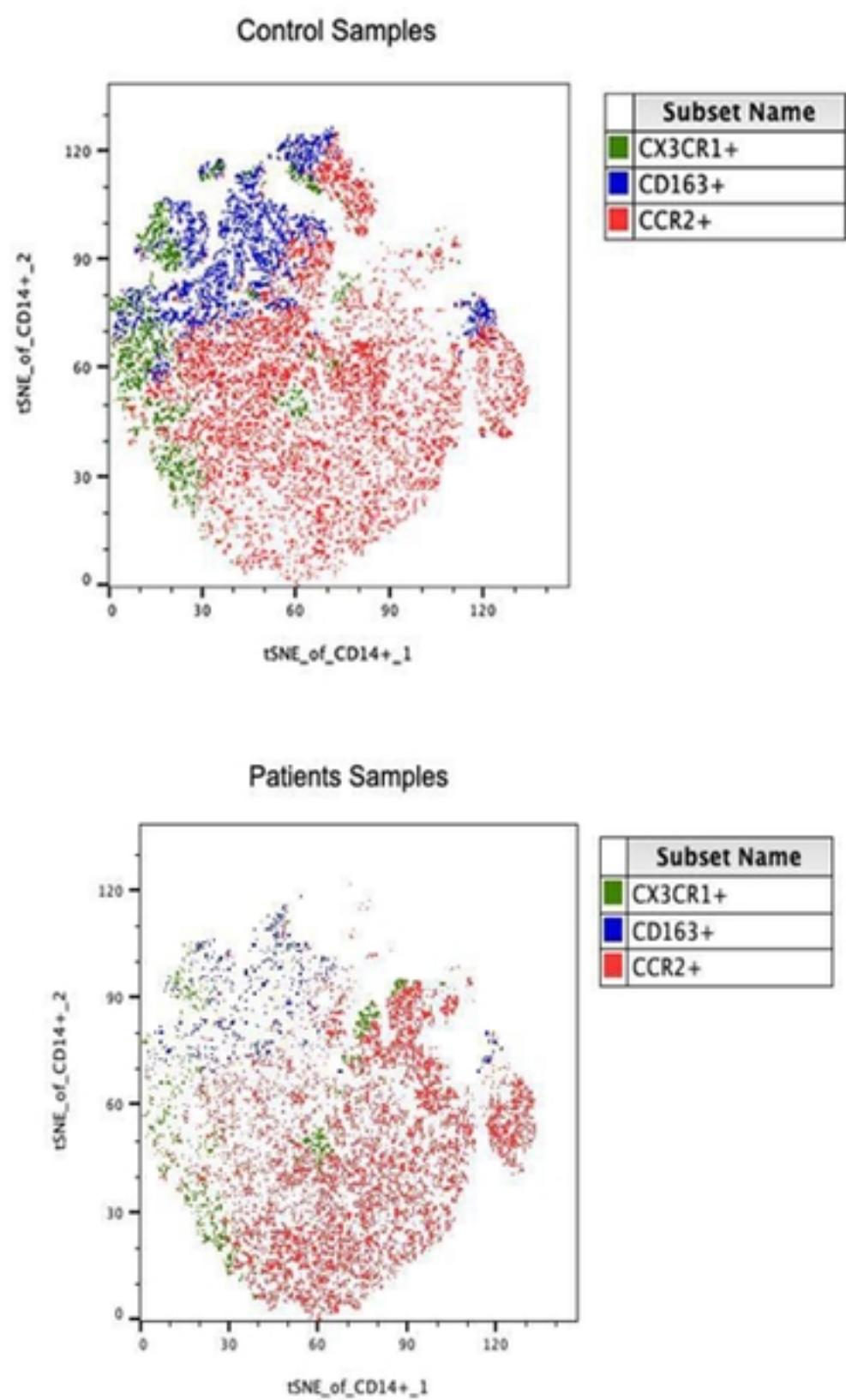



A

Figure 1A

B**Figure 1B**

C

Control Samples

Patients Samples

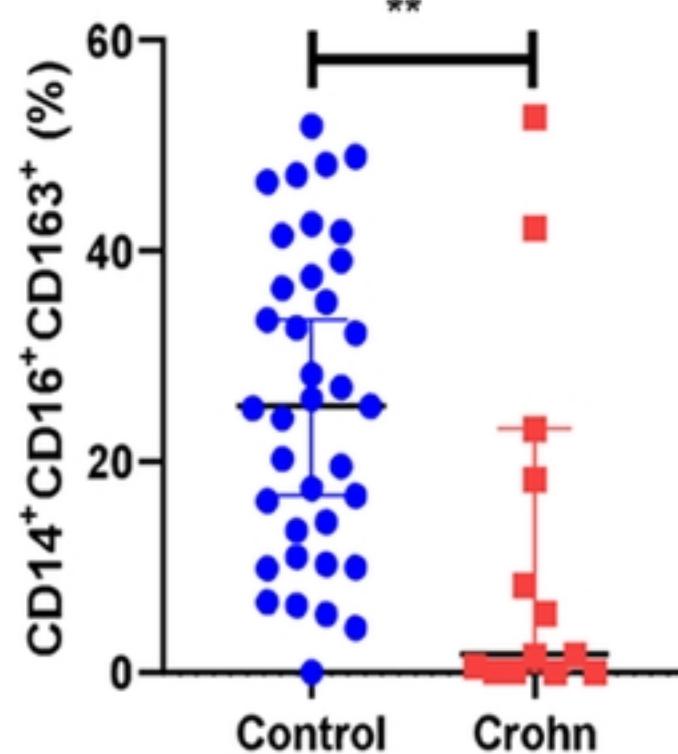
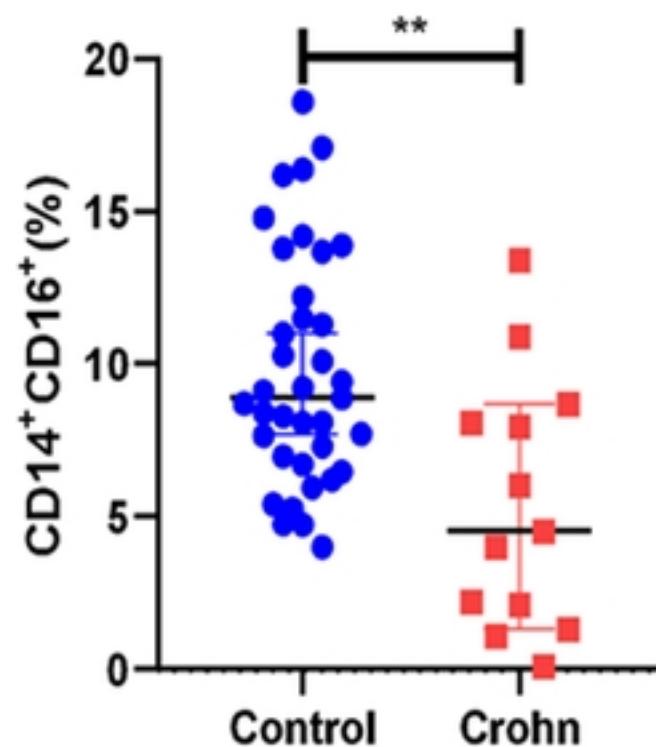
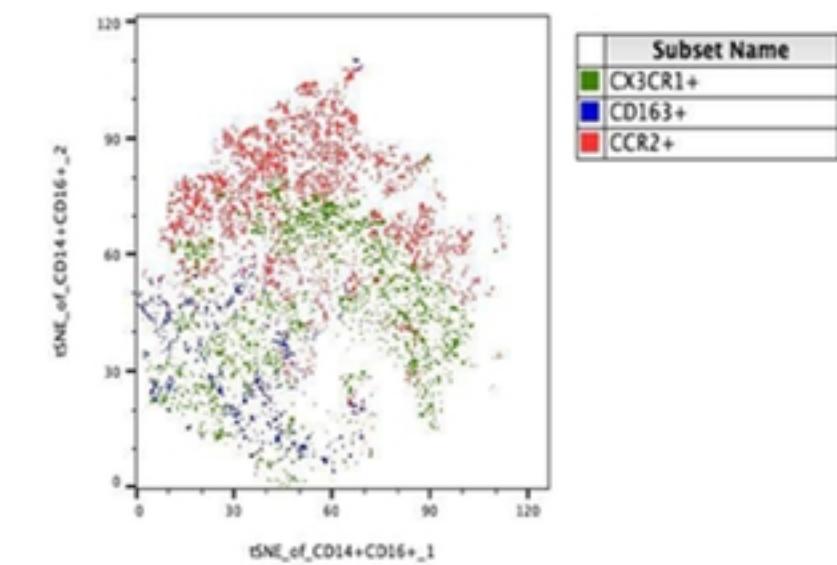




Figure 1C

D

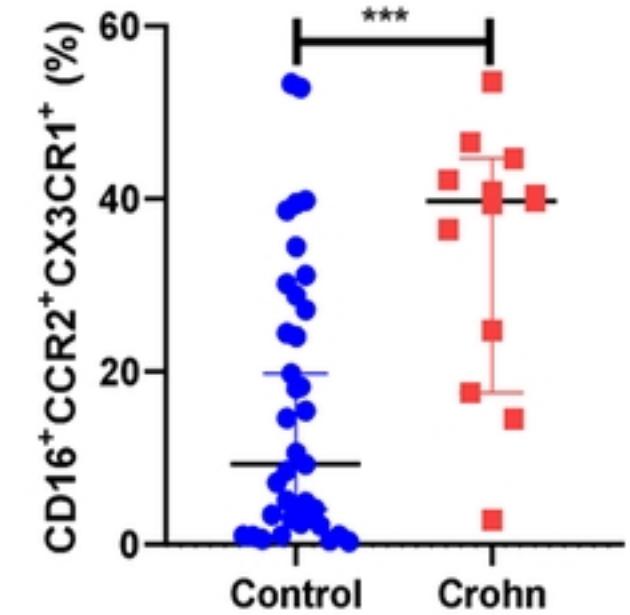
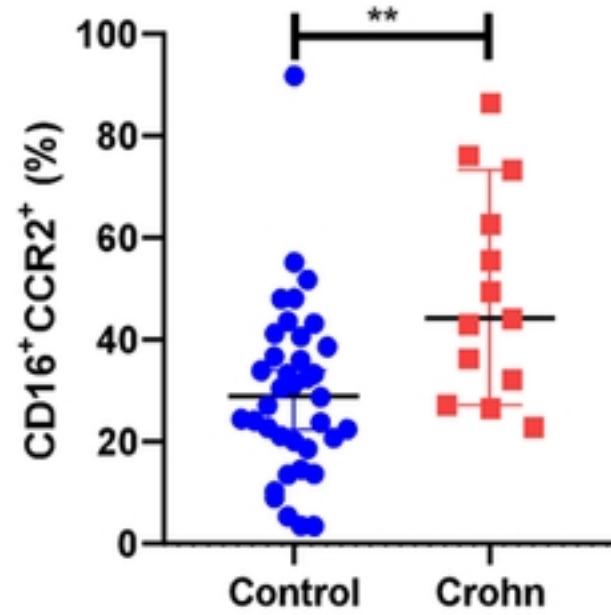
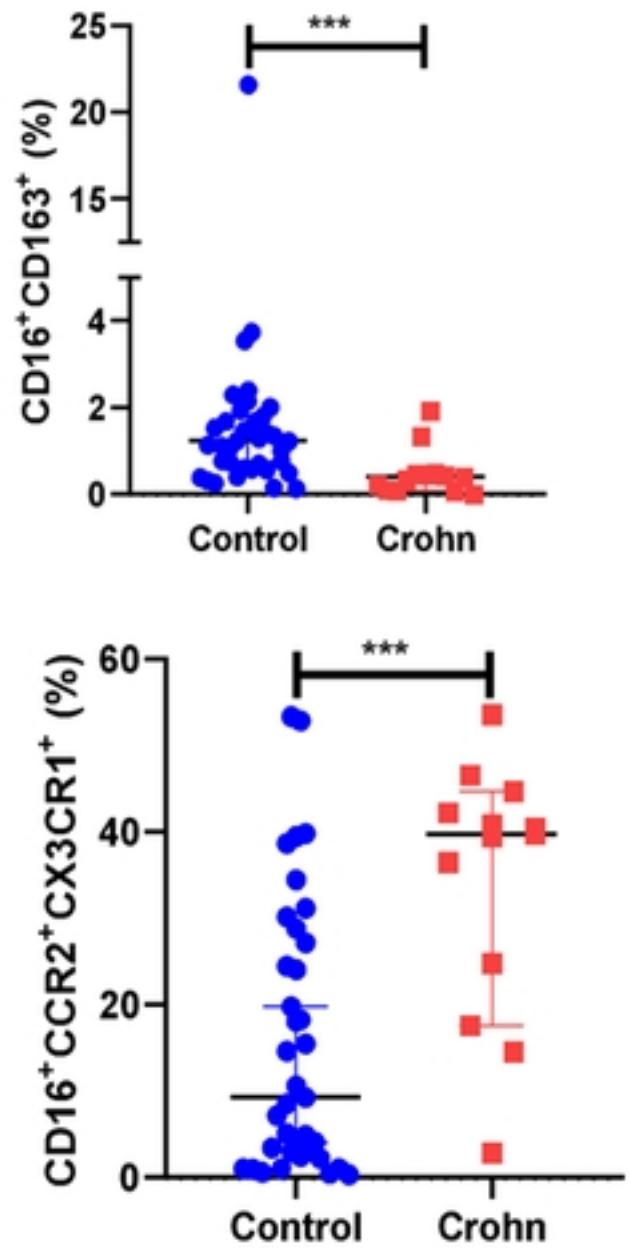
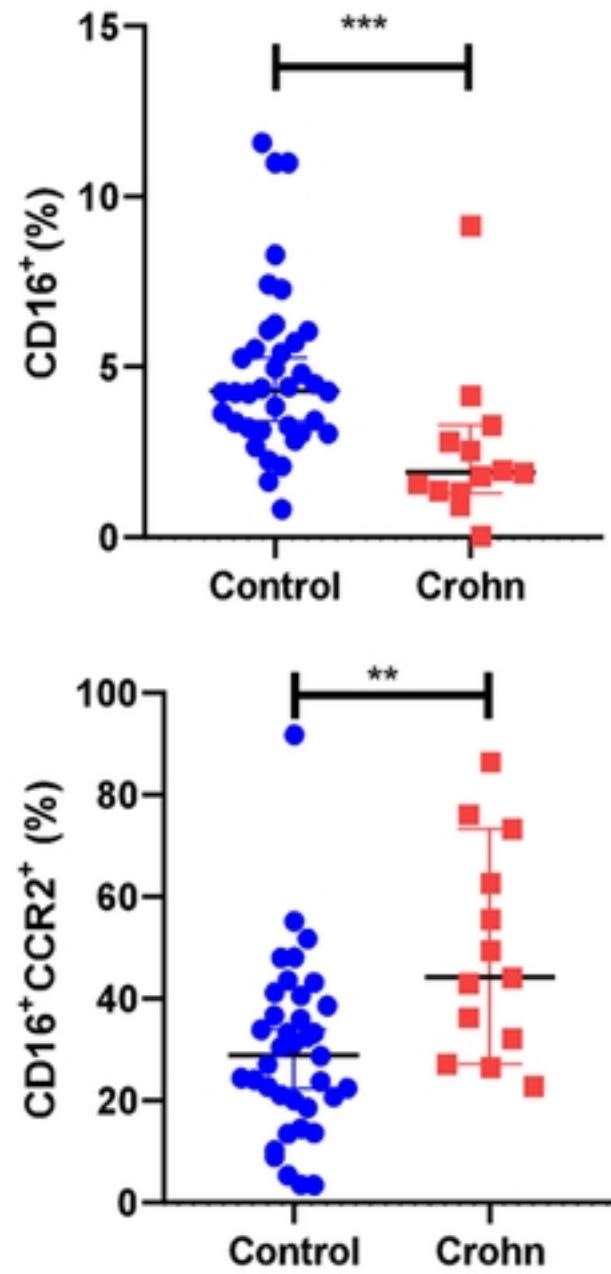
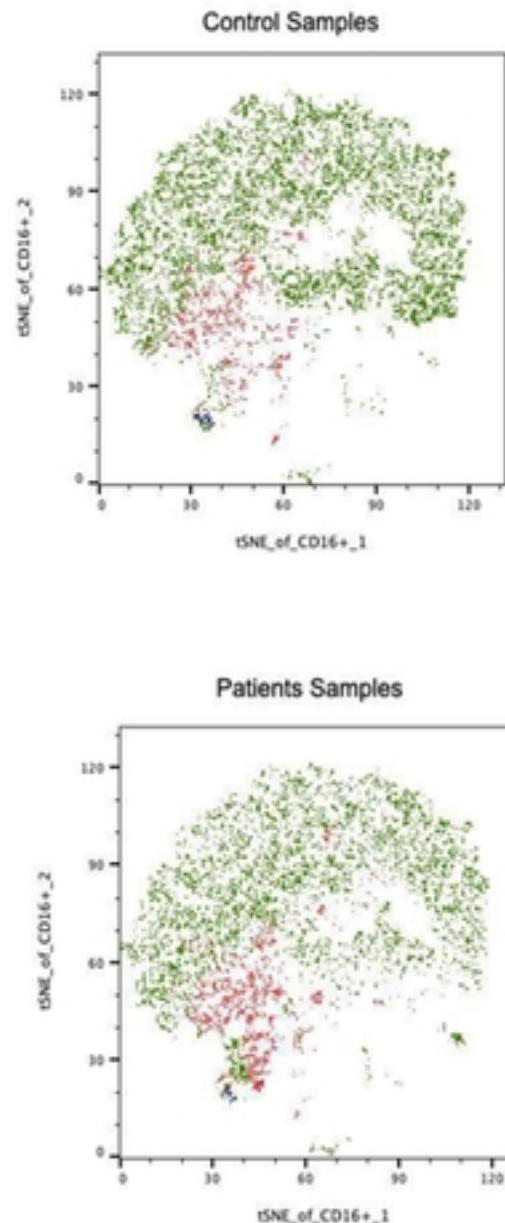






Figure 1D

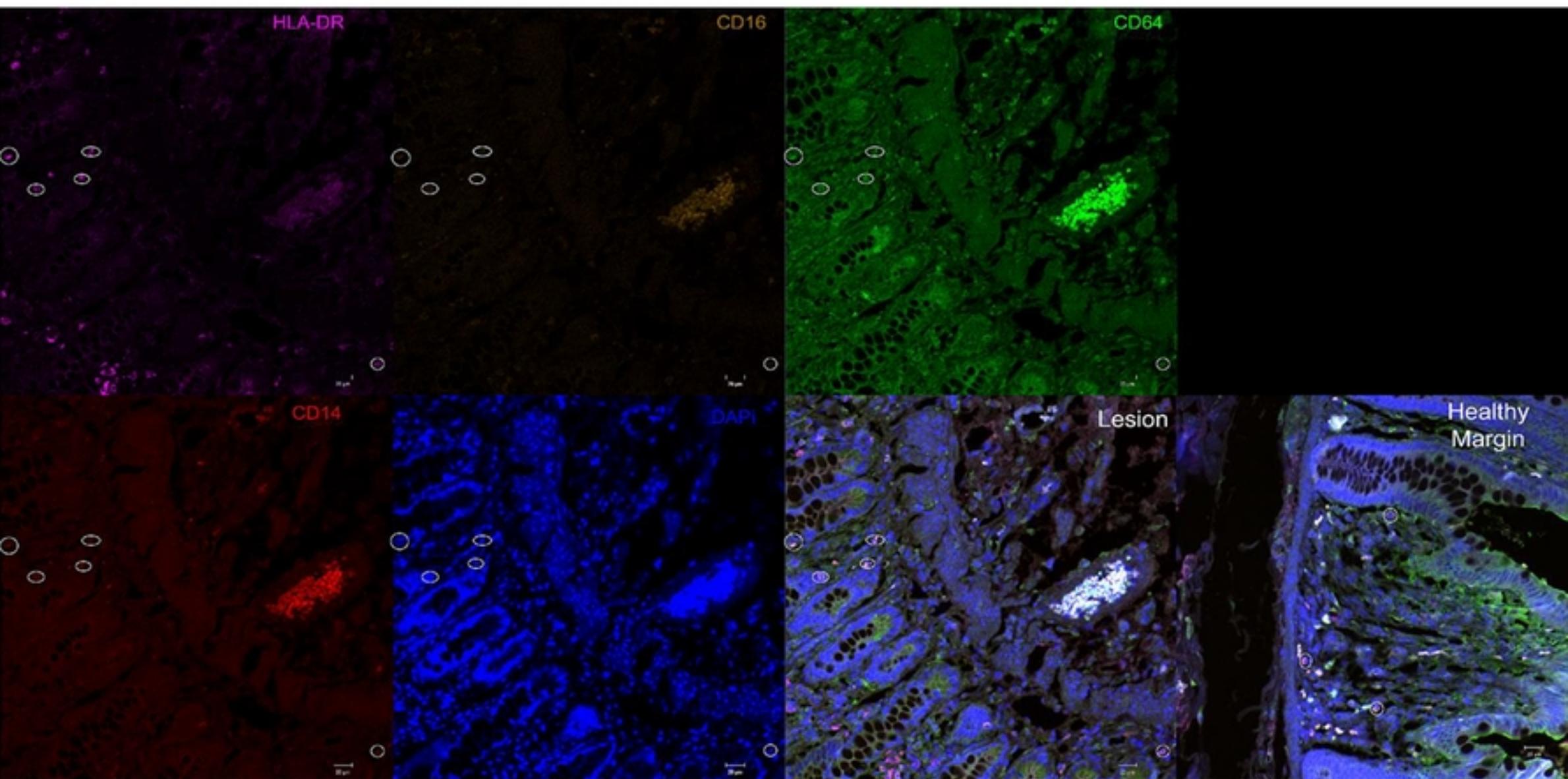
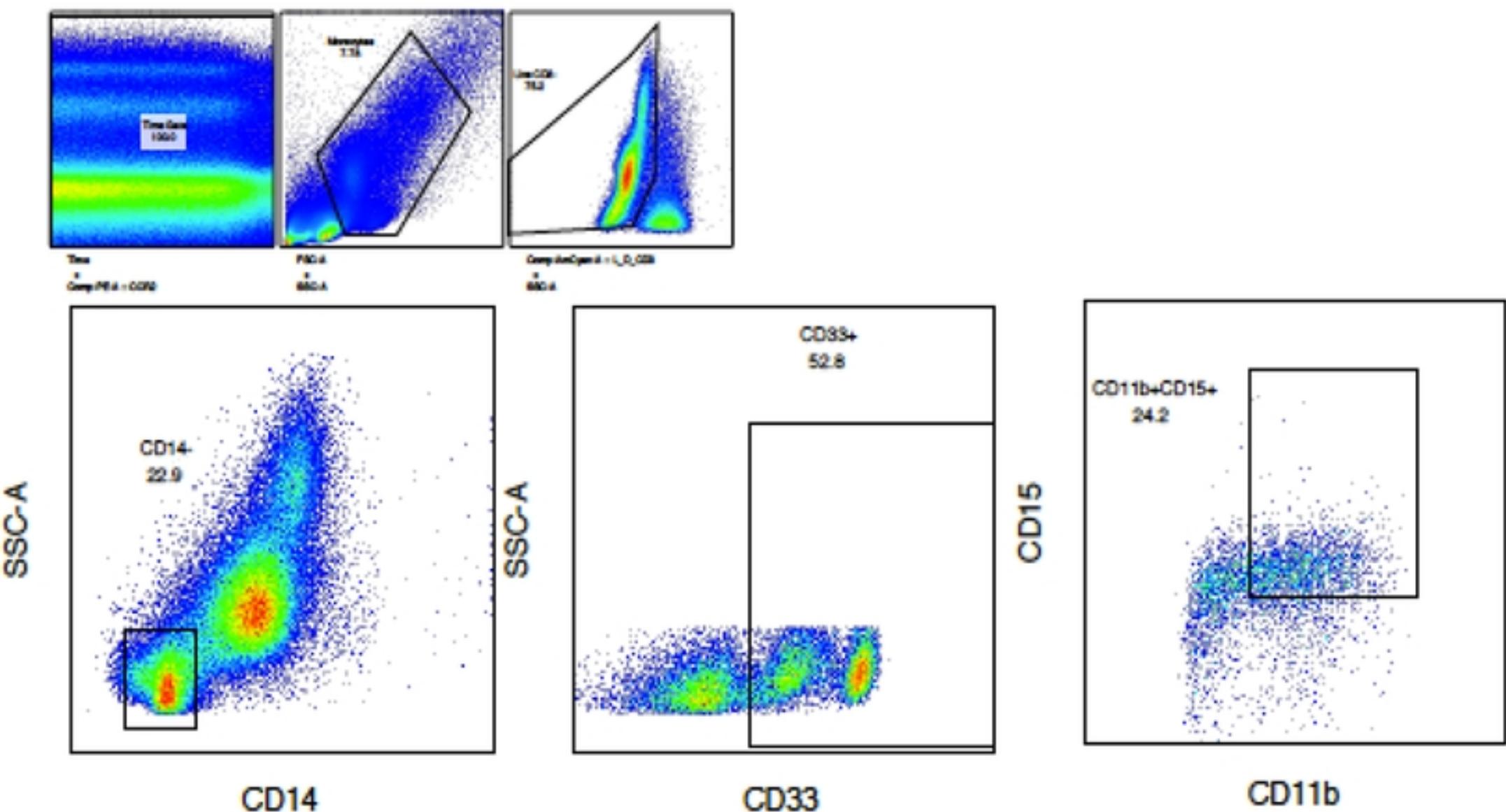


E

Figure 1E

A**Figure 2A**

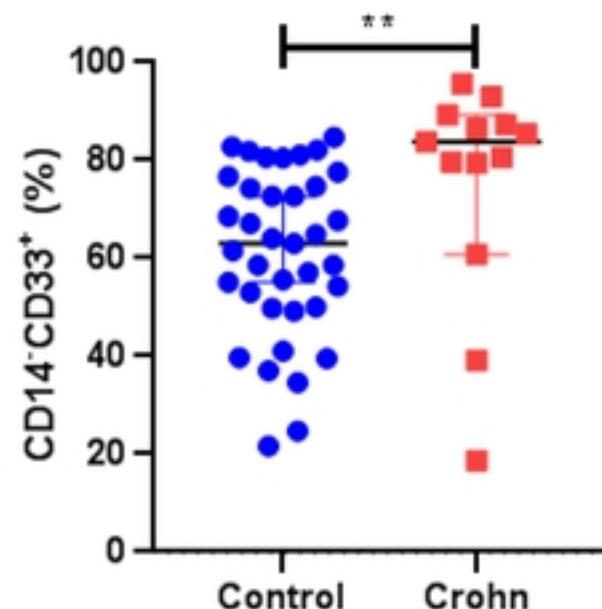
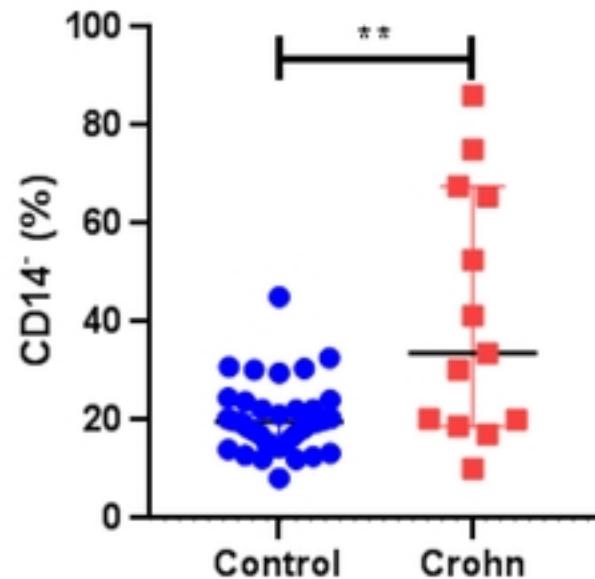
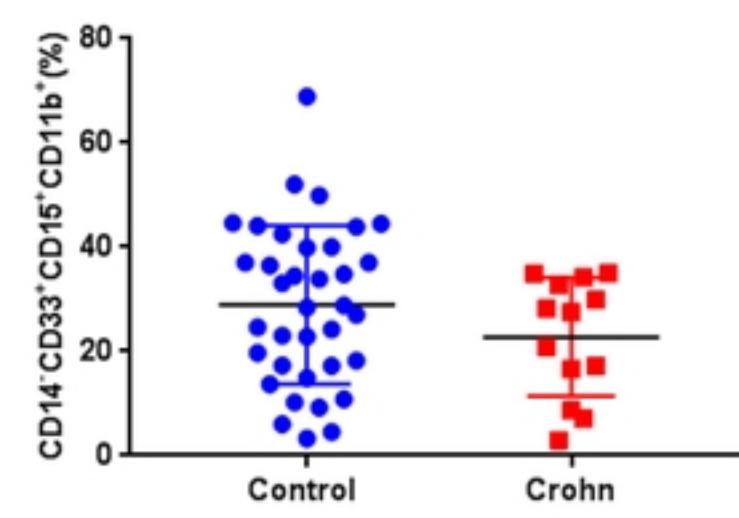



B

Figure 2B

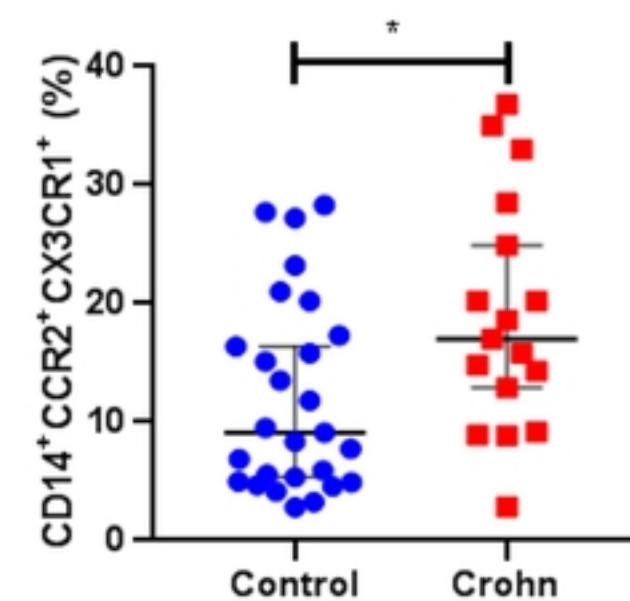
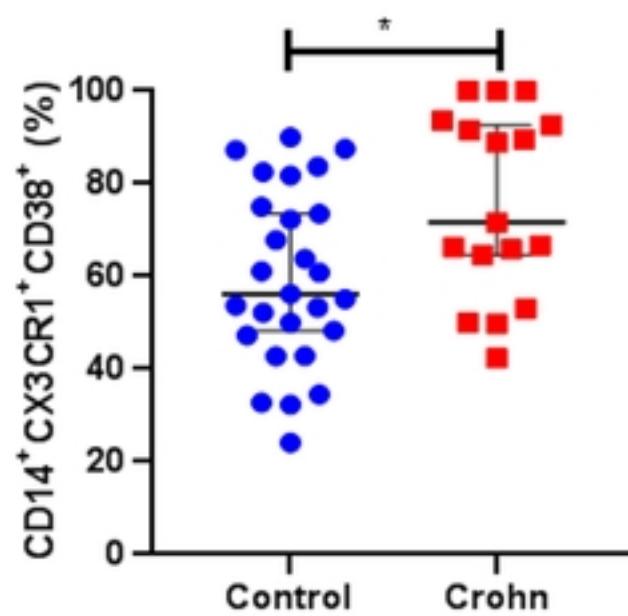
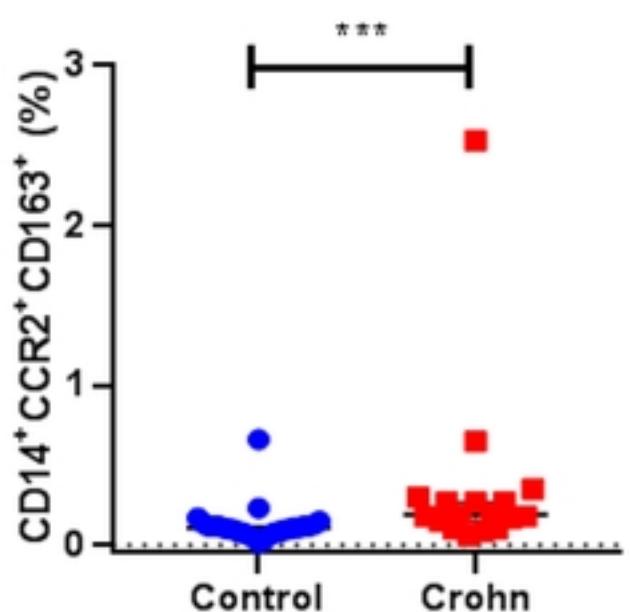
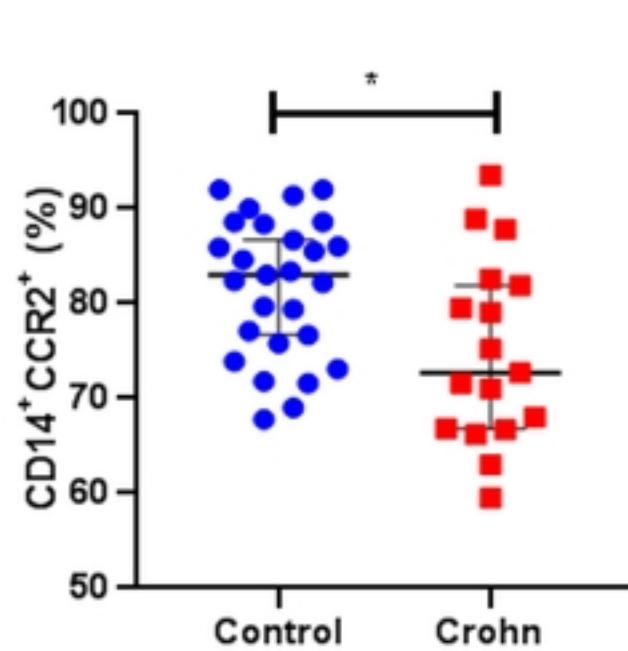




A

Figure 3A

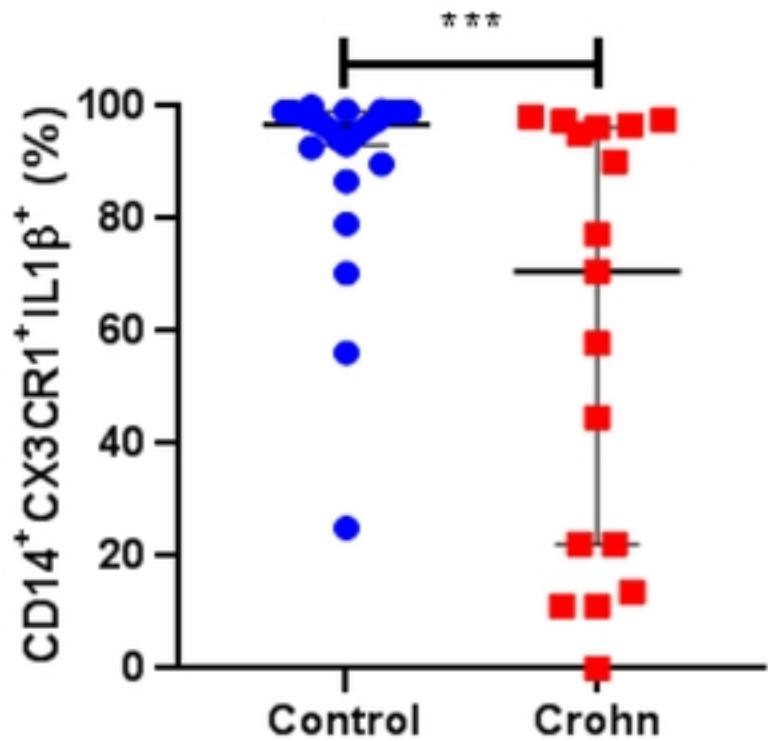
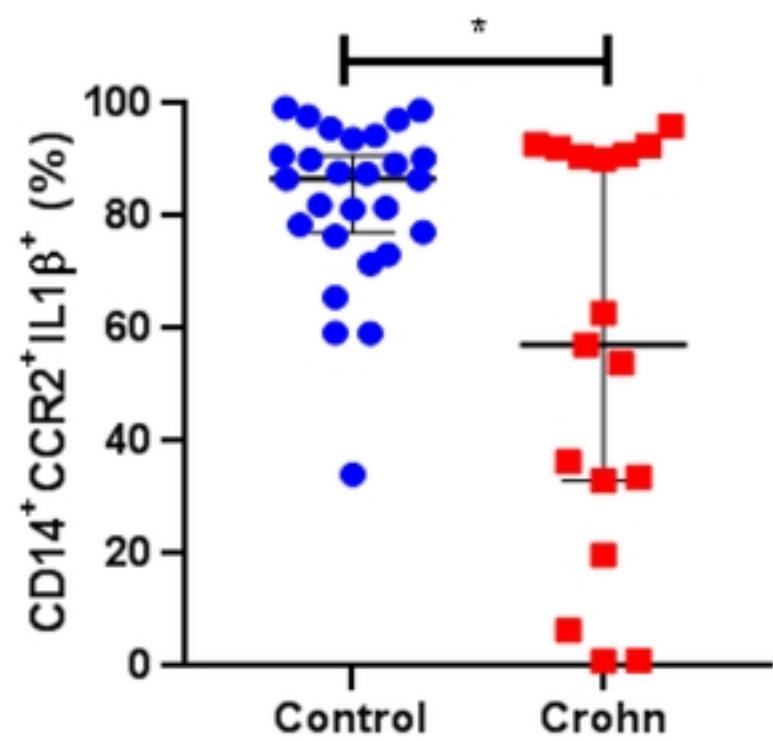
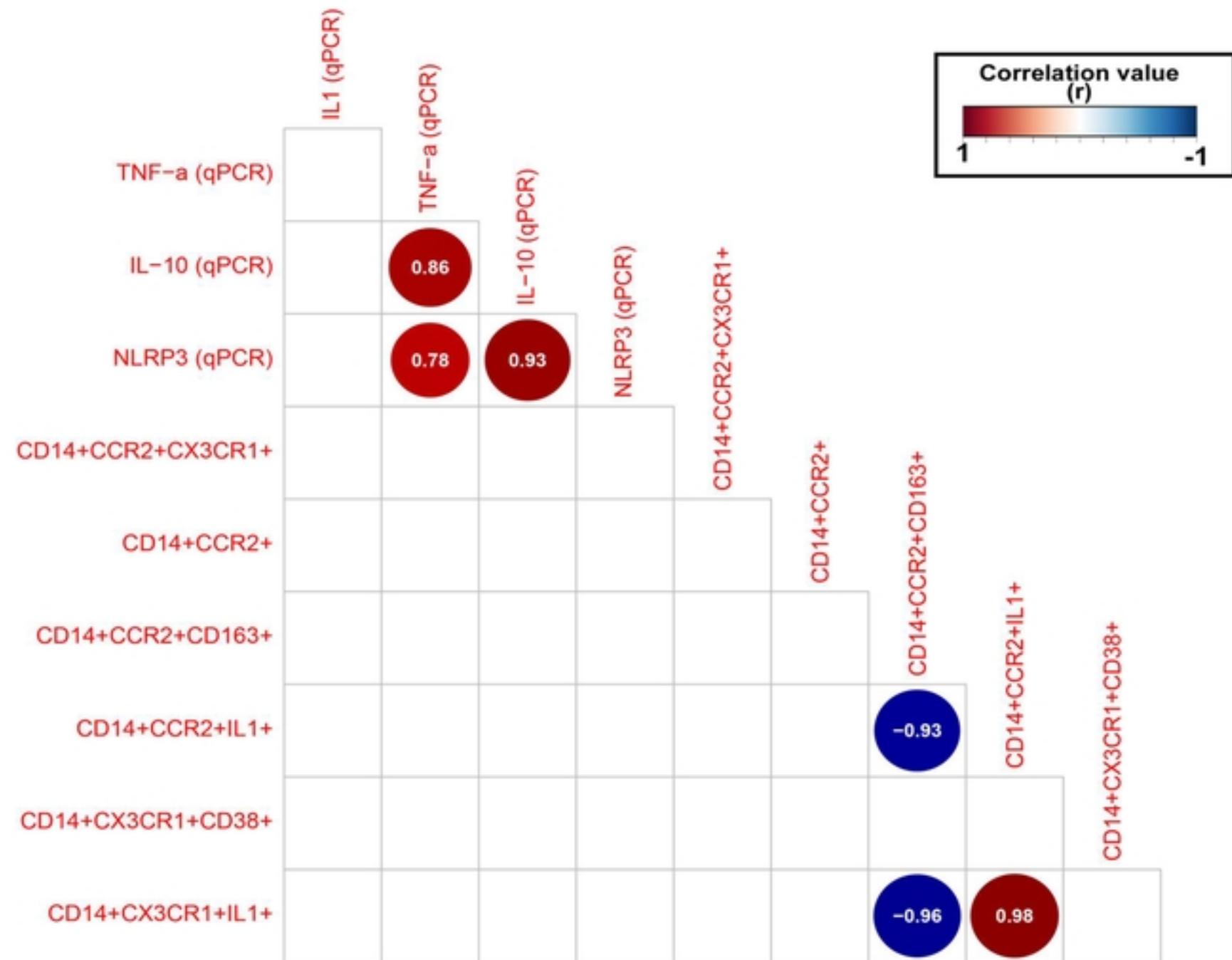
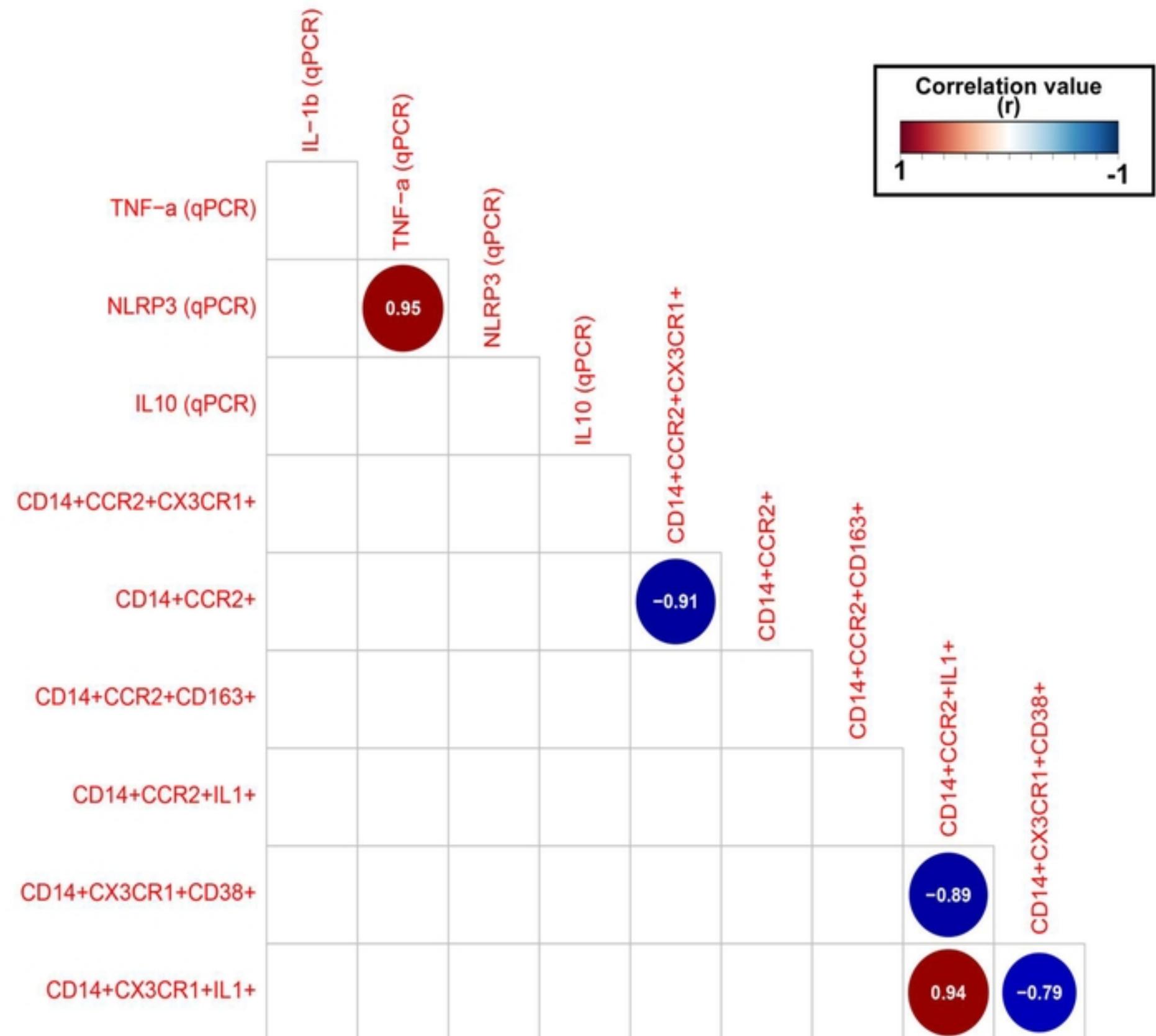




B

Figure 3B

A**Figure 4A**

B**Figure 4B**