

1 Title:

2 **Co-occurrence of Direct and Indirect Extracellular Electron Transfer Mechanisms during**
3 **Electroactive Respiration in a Dissimilatory Sulfate Reducing Bacterium**

4

5 **Authors:** Liyuan Hou^{1,2,3}, Rebecca Cortez⁴, Michael Hagerman⁵⁺, Zhiqiang Hu⁶, Erica L.-W.
6 Majumder^{3*}

7 ¹ Department of Civil and Environmental Engineering, Utah State University, Logan, UT 84322,
8 USA

9 ² Utah Water Research Laboratory, 1600 Canyon Road, Logan, UT 84321, USA

10 ³ Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA

11 ⁴ Department of Mechanical Engineering, Union College, Schenectady, NY 12308, USA

12 ⁵ Department of Chemistry, Union College, Schenectady, NY 12308, USA

13 ⁶ Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO
14 65201, USA

15 + posthumous author

16

17

18 ***Correspondence to:**

19 Dr. Erica Majumder, emajumder@wisc.edu

20 Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA

21 **Abstract**

22 Extracellular electron transfer (EET) propels microbial fuel cell (MFC) technology and
23 contributes to the mobility of redox active minerals and microbial syntrophy in nature. Sulfate-
24 reducing bacteria (SRB), especially the genus *Desulfovibrio* corrode metal electrodes but are of
25 interest for sulfate-containing MFCs providing wastewater treatment. Although extensive studies
26 on SRB-mediated metal electrode corrosion have been done, there remain knowledge gaps on
27 SRB EET to electrodes. We aimed to determine SRB EET mechanisms towards improving SRB
28 performance in MFC wastewater treatment. Our MFCs with *Desulfovibrio vulgaris*
29 Hildenborough (*DvH*), a model SRB, indicated that *DvH* can harvest and send electrons to the
30 carbon cloth electrode. Electricity production with a maximum power density of ~0.074 W/m²
31 was observed when the ratio of lactate (electron and carbon donor) to sulfate (electron acceptor)
32 was 60:20 and 0:10 in the anodic and cathodic chamber, respectively. Patterns in current
33 production compared to variations of electron donor/acceptor ratios in the anode and cathode
34 suggested that attachment of *DvH* to the electrode and biofilm density were critical for effective
35 electricity generation. Analysis of *DvH* biofilms at different conditions (planktonic dissimilatory
36 sulfate reduction respiration vs. electroactive respiration) by electron microscopy indicated *DvH*
37 utilized filaments that resemble nano-pili to attach on electrodes and facilitate EET from cell-to-
38 cell and to the electrode. Proteomics profiling of electroactive respiration proteins indicated *DvH*
39 adapted to electroactive respiration by presenting more pili-, flagellar- related proteins and
40 histidine kinases on electrodes. To investigate the role of pili and biofilm, we grew two *DvH*
41 mutants in MFCs under the same conditions. The mutant with a deletion of the major pilus-
42 producing gene yielded less voltage and far less attachment to the electrode, suggesting the
43 importance of pili in EET. The mutant with a deficiency in biofilm formation, however, did not

44 eliminate current production indicating the existence of indirect EET. Untargeted metabolomics
45 profiling showed flavin-based metabolites, potential electron shuttles, were dysregulated
46 between respiration modes. This work revealed the metabolic flexibility of *DvH* to thrive in less
47 than ideal conditions with solid surfaces as both an electron acceptor (growth on anode) and
48 donor (growth on cathode) by using a combination of direct and indirect EET mechanisms.
49 Understanding *DvH* EET mechanism could enhance the application of *DvH* in MFCs treating
50 wastewater.

51

52 Keywords: Electron transfer mechanisms; *Desulfovibrio vulgaris* Hildenborough; Electrically
53 conductive pili; Electroactive respiration; Microbial fuel cells

54

55 **Importance**

56 We explored the application of *Desulfovibrio vulgaris* Hildenborough in microbial fuel
57 cells (MFC) and investigated its potential extracellular electron transfer (EET) mechanism. We
58 also conducted untargeted proteomics and metabolomics profiling, offering insights into how
59 *DvH* adapts metabolically to different electron donors and acceptors. An understanding of the
60 EET mechanism and metabolic flexibility of *DvH* holds promise for future uses including
61 bioremediation or enhancing efficacy in MFCs for wastewater treatment applications.

62

63 **1. Introduction**

64 Microbial fuel cells (MFC) have been used as a promising technology for electrical
65 energy generation, which uses microbes to transfer the chemical energy of organic compounds
66 into electricity (1). Novel insights have been incorporated in MFCs for energy generation as well
67 as the microbial transformation of wastes. For instance, MFCs have been investigated for
68 conversion of wastewater containing organic compounds and sulfate to electricity using sulfate
69 reducing bacteria (SRB) and sulfide-oxidizing bacteria (2). These sulfate containing wastewaters
70 are produced by many processes including mining, food processing, pulp and paper wastewater,
71 animal husbandry, and more. (3). By culturing SRB in MFCs, previous studies have achieved the
72 removal of sulfate and organic compounds with electricity production (4, 5), ranging from 0.013
73 W/m² to 0.68 W/m² (6-8). The overall electricity generation of an MFC mainly relies on the
74 efficiency of extracellular electron transfer (EET) from electrogenic bacteria to the electrode (9).

75 Electrogenic bacteria could route their electron transport chain to the exterior of the cell
76 through various EET mechanisms (10). Two major EET mechanisms are direct electron transfer
77 (DET) and indirect electron transfer (IET). DET mainly relies on outer surface redox molecules
78 and conductive nanowires. For instance, in many species, such as *Geobacter sulfurreducens*,
79 *Shewanella oneidensis*, and *Acidithiobacillus ferrooxidans*, EET can be mediated by outer
80 membrane c-type cytochromes (e.g., OmcA-MtrCAB protein complexes) (11). *G. sulfurreducens*
81 also exchanges electrons through nanowires, which are pili formed by protein filaments (12). *S.*
82 *oneidensis* MR-1 forms nanowires through extensions of the outer membrane and periplasm that
83 include the multiheme cytochromes which are responsible for EET (13). IET involves transfer of
84 electron through small redox active organic molecules, electron shuttles, excreted by cells or
85 added exogenously. Different species secreted various extracellular electron carriers such as

86 flavins and phenazine derivatives (14). Previous studies demonstrated the coexistence of DET
87 and IET in *S. oneidensis* (15). *S. oneidensis* could simultaneously transfer electron through direct
88 contact with the electron acceptor and also produce flavins during batch growth conditions (15).
89 *Geobacter metallireducens* and *G. sulfurreducens* co-cultures could also secrete free redox-
90 active flavins as the electron shuttles (16), while performing DET through cytochromes. Large
91 numbers of studies have demonstrated that *Geobacter* and *Shewanella* species can power MFCs
92 with high power density (11, 12, 17, 18), under conditions in proportion to their EET
93 mechanism.

94 SRB can utilize organic compounds and gases (e.g., hydrogen) as electron donors (19).
95 Recent studies also found that some SRB can use electrodes as electron donors for energy
96 production (20). Despite this, the mechanism for SRB extracellular electron uptake is not clear
97 due to the difficulty to distinguish the electron uptake reaction (e.g., EET mechanism) and
98 hydrogen evolution on the electrode surface. Knowledge of EET mechanisms has major
99 implications for being able to understand, control or intervene in several environmental problems
100 caused by SRB, such as corrosion of steel, concrete, and electrode (21), souring of oil (22),
101 altering mobility of toxic heavy metals (e.g., Cr and U) (23), and providing for syntrophic
102 growth with other microorganisms (e.g., methanogens) (24). Additionally, understanding the
103 EET mechanisms of SRB helps to improve the application and operation of SRB in MFCs.

104 *Desulfovibrio vulgaris* Hildenborough (*DvH*), a model SRB strain, was reported to cause
105 the corrosion of carbon steels due to their ability to harvest extracellular electrons from elemental
106 iron oxidation (25). The intracellular electron transport of *DvH* from the electron donor (i.e.,
107 lactate) to electron acceptor (i.e., sulfate) were proposed via two ways: a) hydrogen cycling
108 pathway that uses hydrogen as an intermediate electron carrier between the periplasm and the

109 cytoplasm, and b) a pathway that bypasses hydrogen cycling and transfers electrons directly to
110 the membrane-bound menaquinone pool (26). However, there is little in-depth knowledge
111 regarding the EET including DET and IET from *DvH* to electrodes. It was found that *D.*
112 *ferrophilus* IS5 was able to adopt the multi-heme cytochromes containing at least four heme-
113 binding motifs in acquiring energy from solid electron donors (27). Kang et al. found that *D.*
114 *desulfuricans* was able to conduct DET through cytochrome *c* proteins (28). However, so far, no
115 outer membrane *c*-type cytochromes of *DvH* have been identified (29). Deng et al. (2020) found
116 that *DvH* biosynthesized iron sulfide (FeS) nanoparticles on the cell membrane, which could
117 enhance extracellular electron uptake significantly (30). Zhou et al. also demonstrated the
118 accumulation of iron sulfide crystallite on the surface of the cell via obtaining electrons
119 intracellularly (31). Thus, one of the DET of *DvH* could be via iron sulfide nanoparticles.
120 Moreover, *D. desulfuricans* utilized electrically conductive nanoscale filaments to transfer
121 electrons to insoluble electron acceptors (i.e., iron(III) oxide) (32). However, the major
122 characteristics of filaments of *D. desulfuricans* have not been identified. *DvH* could also form a
123 biofilm which is dependent on protein filaments such as flagella and pili (33). However, the role
124 of pili, flagella and relevant biofilm in *DvH* EET has not been investigated. Flavins, such as
125 riboflavin and flavin adenine dinucleotide (FAD), are well-known electron shuttles (34), which
126 carry electrons among multiple redox reactions and play an important role in IET. A recent study
127 found riboflavin and FAD could accelerate the microbiologically influenced corrosion of 304
128 stainless steel by the *DvH* biofilm (35). This indicated the potential of IET in *DvH*. An
129 investigation of the EET mechanism from *DvH* to the electrode will not only fill the knowledge
130 gap but also encourage the extensive utilization of MFCs in the treatment of sulfate containing
131 wastewater by SRBs.

132 In this study, anaerobic MFC systems adopting *DvH* strains growing on both anode and
133 cathode were developed. Firstly, this study aimed to determine the effects of the electron donor
134 (i.e., lactate)/electron acceptor (i.e., sulfate) ratio in the anodic chamber and cathodic chamber,
135 respectively, on the electricity generation. Secondly, the electricity generation of MFCs
136 inoculated with *DvH* JWT700, *DvH* JW3422 (a mutant with a deletion of the gene coding for the
137 pilin protein) and *DvH* JWT716 (a mutant has a deficiency in biofilm formation) (36) were
138 compared separately to unveil the role of pili and biofilm in DET of *DvH*. Subsequently,
139 metabolites of *DvH* JWT700, *DvH* JW3422, and *DvH* JWT716 under electroactive respiration
140 were analyzed to screen potential electron shuttles. At last, the conductivity of the surface
141 structure of *DvH* and their role in electricity generation were evaluated.

142 **2. Materials and methods**

143 **2.1 Bacteria strains and culture cultivation**

144 All *Desulfovibrio vulgaris* Hildenborough strains were isogenic of wild-type strain
145 JWT700. A deletion mutant *DvH* JWT716 was used in this study, which lacks the type 1
146 secretion system's ABC transporter protein resulting in a deficiency in biofilm formation (36).
147 The deletion mutant *DvH* JW3422 strain, which is a deletion of the gene coding for the pilin
148 protein (DVU2116), was constructed using the same marker replacement plasmid and method as
149 strain JW9003 from a previous study (37). The plasmid for deleting DVU2116 and replacing
150 with a kanamycin resistance gene was transformed into *DvH* JWT700 and deletion was
151 confirmed by Southern Blot.

152 *DvH* strains were grown anaerobically in routine for 15 h at 34 °C on lactate (60 mM),
153 sulfate (30 mM), and a nutrient medium, named as MOYLS4 (MgCl₂, 8 mM; NH₄Cl, 20 mM;
154 CaCl₂, 0.6 mM; NaH₂PO₄·H₂O, 2 mM; FeCl₂, 0.06 mM; EDTA, 0.12 mM; Thioglycolate, 1.2

155 mM; 6 ml of trace elements solution per liter; and 1 ml of Thauer's vitamin solution per liter)
156 with the pH adjusted to 7.2. The trace elements solution contained 0.5 g/L MnCl₂, 0.3 g/L CoCl₂,
157 0.2 g/L ZnCl₂, 0.05 g/L Na₂MoO₄, 0.02 g/L H₃BO₃, 0.1 g/L NiSO₄, 0.002 g/L CuCl₂, 0.006 g/L
158 Na₂SeO₃, and 0.008 g/L Na₂WO₄. Thauer's vitamin solution contained 2 mg of biotin, 2 mg of
159 folic acid, 10 mg of pyridoxine HCl, 5 mg of thiamine HCl, 5 mg of riboflavin, 5 mg of nicotinic
160 acid, 5 mg of D calcium pantothenate, 0.1 mg of vitamin B12, 5 mg of *p*-amionobenzoic acid and
161 5 mg of lipoic acid, in 1 L of deionized water (38). These media were flushed with nitrogen gas
162 for 15 min in Balch anaerobic tubes sealed with a butyl rubber stopper before use. In this
163 medium, the metabolism of *DvH* results in the production of H₂S, which reacts with Fe and
164 generates FeS (black color). The anaerobic tubes were inoculated with a log phase culture of
165 *DvH* to an optical density of 0.8 at 600 nm (OD₆₀₀). The bacterial absorbance was measured at
166 600 nm using a spectrophotometer (GENESYS 10S UV-VIS, Thermo Scientific, USA).

167 **2.2 MFC construction and operation**

168 Double-chambered MFC were fabricated with a working volume of approximately 90
169 mL for each compartment and were used throughout the study (Fig. 1). Both anode and cathode
170 were made of carbon cloths (60 wt % Vulcan XC-72 and loaded with Pt 0.5 mg/cm², Fuel Cell
171 Store, USA). Nafion N117 (Fuel Cell Store, USA) was used as a proton exchange membrane
172 (PEM) in the system and pretreated as it was described in the literature (39). The electrodes were
173 connected using platinum wire. The distance between the anode and the cathode was
174 approximately 10 cm. The MFC was operated under a constant external resistance of 1 kΩ using
175 a pure culture of *DvH* cells growing in both the anodic and cathodic chamber. The bottles and
176 accessories were autoclaved or sterilized before they were assembled.

177 The anodic chamber and cathodic chamber of the MFC were inoculated with modified
178 MOYLS4 media that contained different concentrations of lactate and sulfate as was shown in
179 Table 1. The anodic chamber was fed with 60 mM lactate while 0 mM lactate was provided in
180 the cathodic chamber. Both anodic and cathodic chamber was operated an initial pH of 7.2 in all
181 experimental runs. All modified MOYLS4 media for each run were autoclaved at 121 °C for 20
182 min. The anode and cathode were kept anaerobic by sparing filter-sterilized nitrogen gas for 15
183 min at the beginning of each run. In each run, *DvH* seed culture with an optical density (OD₆₀₀)
184 of 0.8 was used to inoculate each anodic and cathodic chamber to achieve an initial cell
185 concentration of approximately 10⁷ cells/mL right after inoculation. Agitation was maintained at
186 50 rpm to minimize mechanical shear forces.

187 Run 1 to run 7 was designed to investigate voltage generation at different sulfate
188 concentrations in the anodic chamber and cathodic chamber, respectively (Table 1). For run 1 to
189 run 7, *DvH* JWT700 was applied, and the electrode size was 2 cm × 2 cm. A control experiment
190 (run 0) with 30 mM Na₂S adding in the anodic chamber to investigate the role of S²⁻ in the
191 electron transfer with *DvH* was conducted. Optimal condition (the lactate and sulfate
192 concentration in each chamber) for potential maximum voltage production based on the results
193 of run 1 to run 7 was proposed, where the ratio of lactate to sulfate is 60:20 in the anodic
194 chamber and 0:30 in the cathodic chamber. Run 8, 9, 10, and 11 were operated under this
195 condition. To investigate the effect of anode size on voltage generation, run 9 adopted a larger
196 anode size (3 cm × 3 cm) compared to run 8 (2 cm × 2 cm). *DvH* JW3422 and JWT716 strain
197 were applied with an anode and cathode size of 2 cm × 2 cm to test the voltage production
198 without pili and biofilms in run 10 and run 11, respectively. All experiment runs were incubated
199 at room temperature (25 ± 1 °C) throughout the operation. Duplicate experiments were

200 conducted for each run. Voltages across the electrodes were measured over time during MFC
201 operation until the voltages decreased to zero. Samples were obtained at the end of each
202 operation to measure pH, acetate, sulfate concentration after filtration (0.22 μ m nylon syringe
203 filter).

204 **2.3 Chemical analyses and electricity generation calculations**

205 Acetate concentrations were quantified by HPLC (Shimadzu LC-20A) equipped with a
206 Supelcogel C610H (30 cm \times 7.8 mm) column (Supelcogel, PA) (40). The mobile phase was 0.1%
207 H_3PO_4 and HPLC samples were measured at a wavelength of 210 nm. Sulfate concentrations
208 were determined spectrophotometrically (41). Voltage was carried out in the open circuit
209 potential time mode using a CHI600 (Austin, TX, USA) electrochemical workstation. The
210 current was calculated using Ohm's law, $I = V/R$, where I = current (mA), V = voltage (mV), R =
211 resistance (Ω). The power density (W/m^2) was normalized by the surface area of the anodic
212 chamber. The coulombic efficiency (C_E) was calculated using the following equation: $C_E =$
213 $C_P/C_T \times 100\%$, where C_P is the harvested coulombs calculated by integrating the current over
214 operation time, and C_T is the theoretical number of coulombs that can be produced from the
215 substrate used. C_T was calculated using the formula: $C_T = FnSv$, where F is Faraday's constant
216 (96,487 C mol⁻¹ electron), n is the mol number of electrons produced per mol of substrate
217 oxidation ($n = 4$), S is the substrate (lactate) concentration (mol), v is the effective volume of the
218 MFC (L). The energy efficiency was calculated as $\eta_E = E_p/E_T \times 100\%$, where E_p is the harvested
219 energy (in joules) calculated by integrating the power ($P = I \times V$) over operational time and E_T is
220 the theoretical value of available energy, obtained from the change in Gibbs free energy, ΔG , of -
221 160.1 kJ mol⁻¹ lactate oxidation with sulfate as the electron acceptor (42).

222 **2.4 Electrochemical analysis**

223 Cyclic voltammetry (CV) was employed to study the electrochemical performance of
224 electrodes and media with various *DvH* mutants. Anodes and cathodes from stable running MFCs
225 (run 8, run 10, and run 11) were thoroughly rinsed with phosphate buffered saline (pH 7.4, 137
226 mM NaCl, 2.7 mM KCl, 8 mM Na₂HPO₄, and 2 mM KH₂PO₄) and assembled as working
227 electrodes in a three-electrode cell with Pt wire as counter electrode, Ag/AgCl (sat. KCl, 222 mV
228 vs. SHE) electrode as the reference electrode, and phosphate buffered saline as supporting
229 electrolyte. The reference electrode was disinfected with 75% ethanol and was then placed in the
230 vicinity of the working electrode surface during CV measurements. The scan rate was 10 mV/s
231 over a range from −0.8 to +0.6 V vs. Ag/AgCl. Electrochemical impedance spectroscopy (EIS)
232 was performed to elucidate the resistance characteristics for various anodes and cathodes with
233 AC signal amplitude of 10 mV. Charge transfer resistances were obtained by external equivalent
234 circuit fitting analysis of the EIS data, using the Randle's circuit. For the culture media in anodic
235 and cathodic chamber, 50 mL suspension from each chamber in run 8, 10, and 11 were collected
236 to be tested by CVs with glassy carbon as the working electrode, Ag/AgCl (sat. KCl, 222 mV vs.
237 SHE) electrode as the reference electrode and Pt wire as the counter electrode. The CV scan rate
238 was 10 mV/s ranging from −0.6 V to +0.7 V vs. Ag/AgCl.

239 **2.5 Scanning electron microscopy (SEM)**

240 The electrodes from both the anodic and cathodic chamber were obtained from run 8, run
241 10, and run 11, respectively. A 5 mm × 5 mm section of carbon cloth was cut off from each
242 electrode for SEM analysis. The fixation procedure was done as described elsewhere (32).
243 Briefly, electrode samples were placed in a fixative that contained 2.5% glutaraldehyde (w/v),
244 2.0% paraformaldehyde (w/v) and 0.05 mM sodium cacodylate buffer (pH 7.0). The biofilms

245 were fixed overnight and were then washed four times with double-distilled water. Electrode
246 samples were dehydrated by incubation in increasing concentrations of ethanol and then dried. A
247 FEI Quanta 600 FEG SEM was used to examine the surfaces of the biofilm formation on the
248 electrode surfaces. Along with the SEM, X-ray energy dispersive spectroscopy (EDS) mapping
249 was employed to detect C, O, N, S, F, and Fe elements on the surface of Pt treated conversion
250 coating.

251 **2.6 Conductivity measurements of the filament**

252 A size of 10 mm × 10 mm carbon cloth obtaining from run 8 was cut off from the anode
253 and cathode, respectively. Electrode samples were pretreated using the same fixation procedure
254 described above. Topography images were measured in ambient conditions using tapping mode
255 atomic force microscopy. The local conductivity was completed using the contact mode of a
256 Veeco Dimension V scanning probe microscope. Morphology characterization was completed in
257 tapping mode using Veeco RTESP or OTESPA probes. For stable current-voltage
258 characterization (CVC) responses, applied voltage bias was 2 V and 4 V, respectively, for each
259 electrode sample. The maximum applied bias of the module was 10 V. The CVC response of the
260 plain carbon cloth was measured as well as the control.

261 **2.7 Protein concentration on electrodes and in suspensions**

262 MFC setups that cultivated with *DvH JWT700*, *DvH JW3422*, and *DvH JWT716* (i.e.,
263 run 8, run 10, and run 11), respectively, were repeated and operated for five days. After five days,
264 10 mL solution samples were obtained from each chamber as the suspension sample for protein
265 concentration measurement and peptide sequence analysis. To measure the total protein
266 concentration on the electrodes, the anode and cathode were immersed in 10 mL lysis buffer,
267 which contains 50 mM Tris-HCl and 200 mM NaCl. Then, all these samples were sonicated on

268 ice for 5 min (with 30-second intervals to prevent overheating between each 1-minute cycle) and
269 centrifuged at 8,000 × g for 20 min to obtain the supernatants, which were used to measure the
270 protein concentrations. A portion of each of the samples from run 8, 10 and 11 was stored in –
271 80°C for peptide sequence analysis later. The total protein concentration was measured using the
272 Bradford protein assay and the absorbance of samples was measured at 595 nm. Bovine serum
273 albumin (BSA) was used as standard and measured in a concentration range of 5~100 µg/mL
274 along with the analysis of each unknown sample.

275 **2.8 Proteomics**

276 ***2.8.1 Enzymatic “In Liquid” Digestion, TMT labelling and high pH separation***

277 *Desulfovibrio vulgaris* Hildenborough cell suspensions (1 mL) were transferred to 2ml
278 microcentrifuge tube, 125 µL of protease inhibitors were added immediately (10x cOmplete
279 Mini from Roche) along with 125ul of 10% SDS. Cell lysis was conducted by probe sonication
280 with 2x20sec intervals at 3W setting with cooling on ice in between. Samples were subsequently
281 spun for 4 minutes at max speed (room temperature) to pellet cellular debris and supernatant
282 (1,250 µL) was transferred to new 2ml tube. Protein precipitation was initiated next by 200 µL
283 addition of 100% trichloroacetic acid and 550ul of cold acetone, samples were incubated on ice
284 for 1 hour the spun for 10 minutes at max speed (room temperature). Generated protein pellets
285 were washed twice with cold acetone, once with cold 80% methanol then finally with 100% cold
286 methanol and air dried. Pellets were solubilized in 8 M Urea in 25 mM NH₄HCO₃ (pH 8.5), 5 µL
287 aliquot was taken for BCA protein measurement and the rest was used for tryptic/LysC digestion
288 where the samples were first reduced with 1mM DTT for 15 minutes at 56°C. After cooling on
289 ice to room temperature 2.6 mM CAA (chloroacetamide) was used for alkylation where samples
290 were incubated in darkness at room temperature for 15 minutes. This reaction was quenched with

291 3.7mM DTT. Subsequently Trypsin/LysC solution [100 ng/µL 1:1 Trypsin (Promega):LysC
292 (FujiFilm) mix in 25mM NH₄HCO₃] was added for ~1:40 enzyme:substrate ratio and 25 mM
293 NH₄HCO₃ (pH 8.5) was added to the samples for a final 100 µL volume. Digests were carried
294 out overnight at 37°C then subsequently terminated by acidification with 2.5% TFA
295 [Trifluoroacetic Acid] to 0.3% final. 10% HFBA [Heptafluorobutyric acid] was added to 0.2%
296 final and each individual sample was cleaned up using 100 µL Bond Elut OMIX C18 pipette tips
297 (Agilent) according to manufacturer protocol. Eluates in 70%:30%:0.1% acetonitrile:water:TFA
298 acid (vol:vol) were dried to completion in the speed-vac and reconstituted in 25 µL (Low-
299 abundance), 50ul (Medium-abundance) or 100 µL (High-abundance) of 100 mM TEAB
300 [Triethylammonium Bicarbonate] for TMTpro labelling with 5 µl for Low-abundance, 10 µL for
301 Medium-abundance and 20 µl for High-abundance of TMTpro reagent [TMTpro 16plex™
302 Labeling Reagent Set Lot#XE350091 at 12.5 µg/µL from Thermo Scientific] done at room
303 temperature for 1 hr with intermittent gentle vortexing. Digested Bovine Serum Albumin internal
304 protein standard was added during labeling to each sample for downstream normalization (2 µg
305 for High, 1 µg for Medium and 500 ng for Low set). Additionally, unused TMT channels per
306 each set were used to label a pooled control sample (even aliquot of each individual sample) to
307 be used as a possible normalization standard between independent sets. The labeling reaction
308 was terminated with addition of 5% hydroxylamine (0.2% final) and 15-minute incubation at
309 room temperature. Master-pool samples were generated by combining all of the individual
310 labeled reactions of each set, freezing at -80°C and drying to completion using speed-vac.
311 Subsequently re-solubilized with 0.3% TFA / 0.2% HFBA and solid-phase extracted with Pierce
312 C18 spin tips (Low-set in 200ul containing ~68 µg total digested protein) or Phenomenex Strata-
313 X 33um polymeric column [10mg/1ml size for Medium-set in 400 µL containing ~380 µg total

314 digested protein or 30 mg/3 mL size for High-set in 800 μ L containing ~860 μ g total digested
315 protein] according to manufacturer protocol. Eluates were dried and finally reconstituted in 0.1%
316 Formic acid / 3% Acetonitrile to 1.4 μ g/ μ L concentration for each set.

317 **2.8.2 NanoLC-MS/MS**

318 Peptides were analyzed by Orbitrap FusionTM LumosTM TribridTM platform, where 2 μ L
319 was injected using Dionex UltiMateTM3000 RSLC nano delivery system (ThermoFisher
320 Scientific) equipped with an EASY-SprayTM electrospray source (held at constant 50°C).
321 Chromatography of peptides prior to mass spectral analysis was accomplished using capillary
322 emitter column (PepMap[®] C18, 2 μ M, 100 \AA , 500 x 0.075mm, Thermo Fisher Scientific).
323 NanoHPLC system delivered solvents A: 0.1% (v/v) formic acid , and B: 80% (v/v) acetonitrile,
324 0.1% (v/v) formic acid at 0.30 μ L/min to load the peptides at 2% (v/v) B, followed by quick 2
325 minute gradient to 5% (v/v) B and gradual analytical gradient from 5% (v/v) B to 62.5% (v/v) B
326 over 203 minutes when it concluded with rapid 10 minute ramp to 95% (v/v) B for a 9 minute
327 flash-out. As peptides eluted from the HPLC-column/electrospray source survey MS scans were
328 acquired in the Orbitrap with a resolution of 60,000 followed by HCD-type MS2 fragmentation
329 into Orbitrap (36% collision energy and 30,000 resolution) with 0.7 m/z isolation window in the
330 quadrupole under ddMSnScan 1 second cycle time mode with peptides detected in the MS1 scan
331 from 400 to 1400 m/z; redundancy was limited by dynamic exclusion and MIPS filter mode ON.

332 **2.8.3 Proteomics Data analysis**

333 Raw data was directly imported into Proteome Discoverer 2.5.0.400 where protein
334 identifications and quantitative reporting was generated. Seaquest HT search engine platform
335 was used to interrogate Uniprot *Desulfovibrio vulgaris* reference proteome database
336 (UP000002194, 09/28/2022 download, 3,519 total entries) along with a cRAP common lab
337 contaminant database (116 total entries). Cysteine carbamidomethylation and TMTpro specific

338 labeling was selected as static modifications whereas methionine oxidation and
339 asparagine/glutamine deamidation were selected as dynamic modifications. Peptide mass
340 tolerances were set at 10ppm for MS1 and 0.02Da for MS2. Peptide and protein identifications
341 were accepted under strict 1% FDR cut offs with high confidence XCorr thresholds of 1.9 for
342 z=2 and 2.3 for z=3. For the total protein quantification processing Reporter Ion Quantifier
343 settings were used on unique and razor peptides, protein grouping was considered for
344 uniqueness. Reporter abundance was based on BSA-normalized peptide amount intensity values,
345 scaled on all average and with co-isolation threshold filter set at ≤ 40 . ANOVA (individual
346 proteins) hypothesis was executed without imputation mode being executed.

347 **2.9 Untargeted metabolomics using high-resolution LC-MS**

348 A total of 20 mL suspension samples in both chambers was obtained separately from run
349 8, run 10, and run 11, respectively. Samples were centrifuged at 4000 rpm for 10 min and the
350 supernatant (~ 15 mL) was transferred to a new tube for metabolites extraction. Metabolites from
351 5 mL samples were extracted by three freeze-thaw cycles with liquid nitrogen following by
352 sonication in the same volume of a 2:2:1 acetonitrile-methanol -water mixture. Samples were
353 then placed in -20°C overnight to allow proteins and cell debris to precipitate. Then, samples
354 were centrifuged for 15 min at 13,000 rpm and 4°C. Supernatants were transferred to high
355 recovery glass vials and dried in the speed vac at 10 °C. Dried metabolite extracts were
356 reconstituted in volumes of acetonitrile: water (1:1, v/v) normalized to protein content in the
357 sample as determined using NanoDrop Protein A280 measurement mode. The resulting
358 metabolite suspension was dried down in a speed-vac overnight. Metabolites were resuspended
359 in 1:1 acetonitrile: water.

360 Mass spectrometry data were acquired by running a Thermo Scientific Q Exactive HF
361 Orbitrap LC-MS/MS system in both positive and negative ion modes. Accucore™ Vanquish™
362 C18 column (2.1 × 100 mm, 1.5 µm, Thermo Scientific) and Accucore™ 150-Amide-HILIC (4.6
363 × 100 mm, 2.6 µm, Thermo Scientific) were used in the separation of metabolites in positive and
364 negative modes, respectively, with a 5 µL injection volume. Full MS-ddMS² detection mode was
365 applied. For LC, the mobile phases comprised water containing 0.1% formic acid (A) and
366 acetonitrile containing 0.1% formic acid (B). For the reverse phase analysis, metabolites were
367 separated by gradient elution at a flow rate of 0.25 mL/min starting at 5% (v/v) B, held for 5 min,
368 increased to 99.5% B within 20 min, and reverted to 5% B at the 30th min, held for 2 min, with a
369 total run time of 32 min. For the HILIC analysis, metabolites were separated by gradient elution
370 at a flow rate of 0.5 mL/min starting at 1% (v/v) A, increased to 35% A within 15 min, then to 60%
371 A at the 18th min, and reverted to 1% A at the 20th min, with a total run time of 20 min.

372 The mass spectrometer was operated as follows: spray voltage 3.5 kV, and capillary
373 temperature 350°C. The flow rates of sheath gas, aux gas and sweep gas were set to 50, 2, and 0,
374 respectively. Full MS resolution was set to 120,000, full MS AGC target was 3×10^{-6} with a
375 maximum IT of 250 ms. The scan range was set to 100~1000 m/z. For MS2 spectra, the AGC
376 target value was set to 2×10^{-5} , isolation width was set to 1 m/z. The resolution was set to 15,000
377 and normalized collisional energy was 40. The dynamic exclusion duration was set to 1.5 s.

378 Raw data files were converted and then processed using XCMS Online (45, 46) as a
379 multigroup job comparing under different electroactive respiration conditions. For each sample,
380 the filtered features data-table was annotated via an accurate mass search against METLIN (47).

381 **2.10 Data Availability Statement**

382 All data are provided within this manuscript. Raw proteomics and metabolomics files as
383 well as strains will be made available upon request.

384 **3 Results**

385 **3.1 Electricity generation in the MFC under different sulfate concentrations**

386 To examine the feasibility and optimal conditions for electricity generation by using *DvH*
387 *JWT700* in the MFC, different sulfate (electron acceptor) concentrations were tested in two
388 chambers, where a fixed concentration of lactate (electron donor; 60 mM) was applied to the
389 anodic chamber while no lactate was provided in the cathodic chamber. The half reaction on the
390 anode is listed as follows: $C_3H_5O_3^- + H_2O \rightarrow C_2H_3O_2^- + 4e^- + 4H^+ + CO_2$. On the cathode, the
391 reduction of sulfate occurs: $SO_4^{2-} + 10H^+ + 8e^- \rightarrow H_2S + 4H_2O$. According to the stoichiometry
392 coefficient, run 1, run 2, run 3, run 4, run 5 and run 6 can theoretically utilize 33.3%, 66.7%,
393 100%, 100%, 33.3%, 100%, and 100% of the lactate. Among different treatments, electricity
394 generations were observed for run 1, run 2 and run 3, where the maximum electricity generation
395 increased with the increase of the sulfate concentration (Fig. 2a). However, as for run 4, no
396 significant electricity generation was observed. Moreover, when the concentration of sulfate in
397 the cathodic chamber increased and the condition in the anodic chamber stayed the same, a
398 higher maximum electricity generation occurred, and the duration of electricity generation
399 extended (Fig. 2b). A longer lag period was observed for the treatments with a higher maximum
400 electricity generation (Fig. 2a and b).

401 Among these treatments, a maximum voltage of 131 mV was achieved in run 3 (Table 2).
402 The coulombic efficiencies ranged from 0.79% to 3.13%. The corresponding energy efficiency
403 varied from 0.01% to 0.69%. A slight increase in pH was observed at the end of each test in the
404 cathodic chamber. Thus, the condition with a sulfate concentration of 20 mM, 30 mM in the

405 anodic and cathodic chamber, respectively, was proposed for a higher electricity generation
406 (Table 1).

407 In the anode chamber, *DvH* JWT700 converted 1 mol of lactate to 1 mol of acetate,
408 producing four electrons. The theoretical electron generation in the anode chamber of run 1,
409 run 2, run 3, and run 4 is 0, 80, 160 and 240 e⁻ eq/L, respectively, according to the initial sulfate
410 concentration in the anodic chamber. However, a higher electron generation was observed for
411 these operations except run 4 based on the acetate production, which are 14.2 ± 2.1, 107.9 ±
412 5.4, 192 ± 6.9, 242 ± 8.8 e⁻ eq/L (Fig. S1a). As the lactate/sulfate ratio increased, additional
413 acetate was produced except the ratio value of 2. In the cathodic chamber, 1 mol of sulfate
414 needs eight electrons to be reduced into sulfide. The electron required in the cathode chamber
415 of run 1, run 2, run 3, and run 4 is 8 ± 1.7, 25.2 ± 4.2, 31.8 ± 5.6 and 1.1 ± 0.7 e⁻ eq/L,
416 respectively, according to the residual sulfate concentration in cathodic chamber (Fig. S1b).
417 This could be due to the electron transfer from anode to cathode.

418 Similarly, the theoretical electron generation in the anode chamber of run 2, run 5, run
419 6, and run 7 is the same, which is 80 e⁻ eq/L based on the initial sulfate concentration in the
420 anodic chamber. However, the actual electron generations were 107.6 ± 6.8, 81.3 ± 2.1, 123.2
421 ± 3.4, 147.6 ± 5.6 e⁻ eq/L for run 2, 5, 6 and 7, respectively (Fig. S1c). As the sulfate ratio
422 increased in the cathodic chamber, more extra acetate was generated. Correspondingly, 25.2 ±
423 3.6, 0.0 ± 0.0, 34.6 ± 2.8 and 66.3 ± 4.3 e⁻ eq/L were required in the cathode chamber for run 2,
424 5, 6 and 7, respectively (Fig. S1d). This indicated that most of the electrons generated from the
425 anode were transferred to the cathode for sulfate reduction. In addition, Run 5, which exhibits
426 no electron transfer, is attributed to the sulfate in the anodic chamber capturing all electrons
427 generated by dissimilatory sulfate reduction in *DvH* with lactate as the electron donor.

428

429 **3.2 Effects of different electrode sizes and *DvH* mutants on electricity generation**

430 Power densities of MFCs using different anode sizes and *DvH* strains in MFCs were
431 shown in Fig. 2c. All three MFC set-ups were run for around 12 days until the electricity
432 generation approached zero. It was observed that after a lag phase of 28 h, the electricity
433 started to be produced and gradually declined after 130 h. Increasing the electrode size,
434 indicating a larger surface area for microbes to transfer electrons, may result in the increase of
435 the electricity generation for MFCs. As expected, the anode with a larger surface area (run 9; 3
436 cm × 3 cm) produced a higher electric potential compared to the anode with a surface area of 2
437 cm × 2 cm (run 8) (Table 3). Run 9 exhibited a maximum power density of ~0.074 W/m²,
438 indicating that the larger electrode size may not only offer more significant surface areas for
439 *DvH* but also enhance its attachment. Run 10 applying the *DvH* JW3422, which could not
440 form pili, had a lower electrical output of ~0.015 W/m² compared to run 8 (~0.040 W/m²)
441 (Fig. 2c). This suggested that the pili formed by *DvH* JWT700 may contribute to electricity
442 generation. In addition, there is no significant electricity generation output for *DvH* JWT716,
443 which has a deficiency in biofilm formation in run 11 (Fig. 2c).

444 According to the initial sulfate concentration in the anodic chamber, the theoretical
445 electron generation in the anode chamber of run 8, 9, 10, and 11 are the same, which is 160 e⁻
446 eq/L. However, run 9 with a larger electrode size had a significantly higher electron
447 generation (238.2 ± 6.3 e⁻ eq/L) than run 8 (224.0 ± 3.1 e⁻ eq/L) (Fig. S2a). As such, more
448 sulfate was reduced in run 9 than that in run 8 in the cathodic chamber (Fig. S2b). Additionally,
449 run 10 with non-pili forming strain *DvH* JW3422 had an electron generation of 189.6 ± 5.4 e⁻
450 eq/L in anode chamber while run 10 with non-biofilm forming strain *DvH* JWT716 produced

451 161.0 ± 2.3 e⁻ eq/L. Correspondingly, 2.83 ± 0.08 mM and 0.24 ± 0.01 mM sulfate were reduced
452 by using 22.7 ± 0.7 and 1.9 ± 0.08 e⁻ eq/L sending from anode to cathode, for run 10 and 11,
453 respectively. Table 3 also showed that pH in the cathodic chambers significantly increased after
454 different treatments ($p < 0.01$). By conducting a control experiment using Na₂S to mimic the S²⁻
455 produced in the anode chamber, no electricity signal was observed. This indicated that S²⁻ was
456 not the main factor for electricity generation.

457 The initial protein concentration after seeding in the solution in both chambers of MFCs
458 was 3.9 ± 2.3 µg/mL. After ~5 days of operation, the protein concentrations in the anodic
459 chamber increased due to the growth of cells. It was observed that MFCs with *DvH* JWT700 and
460 *DvH* JW3422 had higher protein concentrations than the MFC with *DvH* JWT716 in the anodic
461 chamber. Additionally, the protein concentrations in the cathodic chamber for MFCs with *DvH*
462 JWT700 and *DvH* JW3422 increased from 3.9 ± 2.3 µg/mL to 12.7 ± 0.9 µg/mL and 10.7 ± 0.5
463 µg/mL, respectively. The anode with *DvH* JWT700 had the highest amount of the total protein
464 (262.2 ± 6.2 µg), followed by the anode with *DvH* JW3422 (186.3 ± 19.6 µg) and then the anode
465 with *DvH* JWT716 (27.7 ± 3.1 µg). A similar trend was found for the protein amount on the
466 cathodes with various *DvH* strains: *DvH* JWT700 (8.5 ± 3.1 µg) > *DvH* JW3422 (1.1 ± 0.5 µg) >
467 *DvH* JWT716 (0.1 ± 0.0 µg). However, the amounts of protein on the cathode were much lower
468 than the ones on the anode.

469

470 **3.3 Electrochemical analysis of electrodes and electrolytes with different *DvH* mutants**

471 CVs were collected using the anodes and cathodes with biofilms formed by *DvH*
472 JWT700, *DvH* JW3422, and *DvH* JWT716, respectively, as working electrodes to determine the
473 effects of *DvH* mutants on electrodes' performance (Fig. 3). Compared to electrodes with *DvH*

474 mutants, the plain electrode (*i.e.*, carbon cloths) displayed greater current densities and larger CV
475 curve areas without obvious distortions, demonstrating its higher capacitive behaviors.
476 Electrodes with *DvH* mutants presented a well-defined symmetric shape and similar enclosed
477 area, suggesting a comparable electric double layer (EDL) capacitive performance. In particular,
478 anodes with *DvH* JW3422 had a remarkable oxidation peak at about -0.05 V vs. Ag/AgCl, while
479 the redox reactions presented the irreversibility without the presence of mirrored reduction peak.
480 A similar trend was not observed for the cathode with *DvH* JW3422.

481 The Nyquist plots analyzed by the classical equivalent electrical circuit are shown in Fig.
482 3 c and d. The diameter of semicircle represents the charge transfer resistance (R_{ct}). The R_{ct}
483 values of anodes with *DvH* JWT700, *DvH* JW3422, and *DvH* JWT716 were found to be around
484 2.2, 3.7, and 5.7 Ω , respectively. This revealed that the biofilm formed by *DvH* JW3422 was less
485 conductive than the one formed by *DvH* JWT700. Since anodes with *DvH* JWT700 biofilm had
486 lower R_{ct} values than the plain carbon cloths (3.4 Ω), indicating that *DvH* JWT700 formed the
487 effective biofilm on the anode and promoted the electron transfer of electrodes. However, the
488 cathodes with *DvH* JWT700 and *DvH* JW3422 biofilms had similar R_{ct} values with plain carbon
489 cloths.

490 To investigate the components secreted by *DvH* strains, further CV analysis was
491 conducted for the anodic and cathodic suspension solutions. As a result, no redox peaks were
492 found when a MOYLS4 medium without bacteria was used as the anolyte and catholyte (Fig. 3 e
493 and f). Anodic suspensions with *DvH* JWT700 and *DvH* JW3422 in MOYLS4 had an oxidation
494 peak in the forward scan of CVs at 0.45 V vs. Ag/AgCl. During the reverse scan, no reduction
495 peak presents, which suggested oxidation activity because of the important contributions from
496 *DvH* JWT700 and *DvH* JW3422. When the oxidation peaks of anodic suspension with *DvH*

497 JWT700 were much higher than that of *DvH* JW3422, indicating that there were more oxidative
498 components in the anodic suspension secreted by *DvH* JWT700 than *DvH* JW3422. Similarly,
499 weaker peaks exhibited for a cathodic suspension of *DvH* JW3422 and *DvH* JWT716 compared
500 to those of *DvH* JWT700. It indicated that *DvH* JWT700 secreted more oxidative components in
501 the cathodic chamber. The weaker peaks redox by the cathodic suspension of *DvH* JWT716
502 suggested that there might be redox components in the cathodic suspension that were secreted by
503 the *DvH* JWT716.

504 **3.4 SEM and EDS analysis of different *DvH* strains on electrode**

505 Cells are curved rod-shaped (width of ~0.5 μm and length of ~3 μm) (Fig. 4). When
506 growing on a mica sheet, *DvH* primarily relies on its flagella to attach to the mica sheet surface
507 (Fig. 4a and b). SEM images clearly revealed that biofilm formed by *DvH* on the electrode
508 surface, which has been retrieved from MFCs. It is worthy to note that *DvH* biofilm formed on
509 the surface of the anode contained a minimal amount of extracellular polymeric substance (EPS)
510 materials that surrounded the cell (Fig. 4 c and d). In addition, only with filaments, *DvH* also
511 have pili with lengths of around 2 μm firmly attached to the cathode carbon cloth. The
512 attachment was observed at the end of nano-filaments radiating out from a *DvH* cell and
513 sometimes between the attachment locations of adjacent filaments from *DvH* cells. For
514 comparison, *DvH* JW3422 (non-pili forming one) was found containing EPS but without pili
515 forming on the surface of the electrode (Fig. 4 e and f). Most *DvH* JW3422 cells were attached to
516 the surface of the cathode directly or through the EPS networks. As for the MFC cultured with
517 *DvH* JWT716, there were few cells attaching on the cathode (Fig. 4 g and h). EDS elemental
518 spectra indicated enrichment of C, O and S in the deposits for *DvH* JWT700 and *DvH* JW3422
519 (Fig. S4).

520 **3.5 Electrically conductive pili of *DvH***

521 The local structure of electrodes with *DvH* biofilms and electronic properties were
522 investigated through cAFM (Fig. S3). Topographic maps of the electrodes (carbon cloths) with
523 biofilms were conducted by $2 \mu\text{m} \times 2 \mu\text{m}$ to narrow down the location of microbe clusters and
524 pili. The current was detected using a current-to-voltage preamplifier in the center topographic
525 maps. Different voltages (i.e., 0~2 V and 0~4 V, respectively) were applied to plain carbon cloth
526 and the carbon cloth with *DvH* biofilm. The current signal of the carbon cloth with *DvH* biofilm
527 fluctuated greatly compared to the plain carbon cloth which had relatively flat signals (Fig. S3 b,
528 d, f and h). Despite this, the conductivity of *DvH* biofilm or pili cannot be determined since the
529 carbon clothes are highly conductive.

530 **3.6 Proteomics and metabolomics of electroactive respiration in *DvH***

531 A total of 1149, 1400, 1208, and 1375 peptides were identified and found to be shared
532 among different *DvH* strains in four different electroactive respiration modes: on the anode (Fig.
533 5a), in the anodic suspension (Fig. 5b), on the cathode (Fig. 5c), and in the cathodic suspension
534 (Fig. 5d), respectively. Upon comparing these peptides with the ones for biofilm and planktonic
535 cultures of *DvH* JWT700 cultivated without electroactive respiration modes, it becomes evident
536 that there is a higher percentage of unique peptides on the anode (comprising 16.4% of the total
537 peptides found on the anode) and the cathode (accounting for 12.2% of the total peptides found
538 on the cathode) when compared to their respective suspensions (constituting only 0.6% in the
539 anodic suspension and 0.5% in the cathodic suspension). This suggests significant internal re-
540 wiring in *DvH* to adapt to electroactive respiration compared to the dissimilatory sulfate
541 reduction respiration of *DvH*. Moreover, an increased presence of pili-related proteins
542 (DVU2118, DVU1262, and DVU0451) and flagella-related proteins (DVU0513, DVU0311,

543 DVU0514, and DVU0739) was noted for *DvH* JWT700 and *DvH* JW3422 on the anode.
544 Similarly, a substantial presence of pili- (DVU2227, DVU1273, and DVUA0113) and flagella-
545 (DVU0519, DVU0910, DVU3227, and DVU0045) related proteins was observed on the cathode
546 for *DvH* JWT700 and *DvH* JW3422. These proteins including histidine kinase suggest an
547 increased demand for surface attachment or motility. Furthermore, dominant unique peptides in
548 the cathode for *DvH* JWT700 and *DvH* JW3422 include periplasmic [NiFe] hydrogenase
549 (DVU2525) and [Fe] hydrogenase (DVU1771), underscoring their significance in the
550 electroactive respiration process.

551 For metabolites that were observed and validated in both positive and negative modes, we
552 found riboflavin, flavin mononucleotide (FMN), and reduced flavin mononucleotide (FMNH₂)
553 appeared dysregulated between electroactive respiration modes (Table 5). By comparing it to the
554 initial contraception riboflavin (5 ppm) in the media, we noticed that the riboflavin had been
555 utilized with different levels. Riboflavin had been consumed in the anodic chamber culturing
556 *DvH* JW9003. FMN was observed in electroactive respiration modes of *DvH* mutants. However,
557 FMNH₂ was produced by *DvH* JWT700 and *DvH* JW3422 under electroactive respiration, but
558 not in the cathodic chamber culturing *DvH* JWT716.

559

560 **4 Discussion**

561 In this study, we observed that *DvH* can harvest and send electrons to and from the
562 electrode by varying the concentrations of the electron donor/electron acceptor ratio in the
563 anodic chamber and cathodic chamber, respectively. By adopting different *DvH* mutants (i.e.,
564 *DvH* JW3422 and *DvH* JWT716), we were able to determine the role of pili and the biofilm of

565 *DvH*. We also measured the metabolites under electroactive respiration for potential electron
566 shuttles. The potential EET of *DvH* has been proposed accordingly.

567 **4.1 *DvH* can send and receive electrons extracellularly from carbon cloth electrodes**

568 With the supply of lactate in the anodic chamber, we applied the anode surface as the
569 electron donor for the oxidizing reaction of lactate (runs 1- 8). The cathode was employed as the
570 electron donor for the reduction of sulfate. Fig. 2 showed that the variation of sulfate
571 concentrations in the anodic chamber had more effects on the power generation than the
572 variation of sulfate concentrations in the cathodic chamber. It has been reported that the
573 COD/sulfate ratio has an influence on microbial activities in MFCs resulting in different
574 potential outputs (48). Lee et al. found the MFC fed with the only sulfate yielded negligible
575 electricity owing to lacking carbon source in a one-chamber, airbreathing cathode and
576 continuous flow MFC at 22 °C (8). Our study has shown consistent results that when the sulfate
577 concentration in the anodic chamber increased, electricity generation with the same condition in
578 the cathodic chamber increased except for the ratio value equals to 2 (Fig. 2). By keeping the
579 same condition of the anodic chamber, the increase of sulfate concentration in cathodic chamber
580 resulted in an increase in electricity generation (Fig. 2b). One possible reason is that the high
581 lactate/sulfate ratio approaching 2:1, which is the stoichiometric ratio of lactate and sulfate for
582 *DvH* ($2\text{C}_3\text{H}_5\text{O}_3^- + \text{SO}_4^{2-} + 2\text{H}^+ \rightarrow 2\text{C}_2\text{H}_3\text{O}_2^- + \text{H}_2\text{S} + 2\text{H}_2\text{O} + 2\text{CO}_2$), contributed to the optimal
583 growth condition of *DvH* (33) and led to more attachment of *DvH* cells on the electrode.
584 However, if the lactate/sulfate ratio equals two (Run 4), which led to the sulfate in the anodic
585 chamber obtaining all electrons produced by lactate without transferring to the cathodic chamber.
586 SBR that produce high coulombic efficiencies will lead to low biomass yields, as the electrons
587 from the substrate are lost to produce current. In this study, most of the electrons from the lactate

588 in the tests were employed to form biomass since our primary data showed that the increasing
589 sulfate concentrations in the anodic chamber which may result in a higher biomass yield
590 exhibited a higher coulombic efficiency. Additionally, the electricity generation from the MFC
591 cultured *DvH* indicated that *DvH* cells may transfer electrons to the surface of the electrode and
592 accept electrons extracellularly.

593 A higher power density was observed for *DvH* in the MFC systems with a larger
594 electrode size (Fig. 2c). Although *DvH* JW3422 resulted in less power generation due to lack of
595 nano-pili, they can still form the biofilm on the cathode surface (Figs. 2c and 3). It seems that the
596 thin biofilm can also benefit the attachment of *DvH* to the electrode surface and a nano-protein
597 network structure was observed which may also help to transfer electrons from cells to cells and
598 from cells to the electrode. It was previously demonstrated that extracellular polymeric
599 substances include polysaccharides, proteins, glycoproteins, glycolipids, humic substances
600 possess some semiconductive properties (49). According to the genome sequence information of
601 *DvH*, it produces vonWillebrand factor domain proteins, which are large, multimeric
602 glycoproteins (50). These proteins could facilitate cell adhesion, pattern formation, and signal
603 transduction, thus contributing to electron transfer. *DvH* did not produce an extensive
604 exopolysaccharide matrix and its biofilm formation dependent upon protein filaments (33).
605 Different outer membrane *c*-type cytochromes such as MtrC, OmcA, OmcE, and OmcS offer
606 various routes of electron transfer extracellularly for *S. oneidensis* and *G. sulfurreducens* (51,
607 52). Previous studies demonstrated that *DvH* contains several membrane-bound redox complexes
608 such as Qrc complex and Hmc complex that can accept electrons (53, 54). Qrc complex can
609 accept electrons from the low-redox potential hemes of TpIc3 while Hmc transferred the
610 electrons by transporting H⁺ from cytoplasmic lactate oxidation to the periplasmic cytochrome *c*₃

611 network (55). However, none of these proteins were located at the outer membrane. Despite this,
612 some uncharacterized proteins such as DVU1174, DVU0401, DVU1359, DVU0842 and
613 DVU2997 on electrodes should be further investigated to determine their functions in EET of
614 *DvH*.

615 **4.2 *DvH* utilized filaments which facilitated electron transfer from cell-to-cell and to the**
616 **electrode**

617 CVs indicated the larger EDL capacitance of plain carbon cloths than the electrodes with
618 *DvH* biofilms (Fig. 3 a and b), which can be due to hydrogen sulfide produced by *DvH* mutants
619 poisoned the Pt wires on the surface of carbon cloths as shown the schematic in Figure 1 (56).
620 Those poisoning largely reduced the pseudocapacitive contributions from Pt wires. A small
621 redox peak in case of *DvH* JW3422 revealed it might contribute to the oxidation reaction through
622 unknown outer membrane *c*-type cytochromes. Furthermore, the lower R_{ct} of the anode with
623 *DvH* JWT700 demonstrated the formation of more effective biofilm on the anode that enhanced
624 the electron transfer process (Fig. 3 d and c) as reported for *Klebsiella variicola* (57). However,
625 non-pili forming *DvH* JW3422 and non-biofilm forming *DvH* JWT716 did not enhance the
626 electron transfer process of anodes and non-biofilm forming *DvH* JWT716 presented less
627 conductive biofilm which may be due to the semiconductive EPS and the poisoning of Pt wires
628 via hydrogen sulfide (56, 58). Irreversible oxidation processes appear in both the anodic and
629 cathodic suspension of *DvH* JWT700. In both chambers, the suspension of *DvH* JWT700 had a
630 larger oxidation current density than *DvH* JW3422 and *DvH* JWT716, suggesting *DvH* JWT716
631 secreted more stable and oxidative compounds than the other two. These compounds might be
632 quinone initiated or benzene derivatives chemicals or due to the similar CV curves presented in a
633 previous study (59). In *DvH*, flavin adenine dinucleotide (FAD) in quinone form which is the

634 electron shuttle could accept two electrons and two protons to become hydroquinone form
635 (FADH₂) (60).

636 As discussed above, the pili seemed to play an important role in the electron transfer. We
637 also noticed that nano-pili/filaments were effective for the attachment of cells of *DvH* JWT700
638 on the surface electrode or functional as the networks between cells (Fig. 4). However, no such
639 attachment using filaments was observed for *DvH* JW3422. The biofilm formation of *DvH*
640 depends on protein filaments, which may mainly consist of pili and flagella. It was reported that
641 the nano-pili produced by *Geobacter* genera were electrically conductive and they can facilitate
642 electron transfers (52). Pili formed by *DvH* was not fully investigated relating to the conductivity
643 and structure. In this study, MFC cultivating non-pili forming *DvH* JW3422 exhibited a lower
644 power density (Fig. 2). Although the SEM-preparatory dehydration process may collapse or
645 separate outer-membrane materials and break filaments, it was observed that *DvH* exhibited little
646 biofilm formation but produced numerous filaments or nano-pili on the surface of carbon cloths
647 (Fig. 4). Additionally, pili-related proteins (DVU2118, DVU2227, DVU1262) were presented in
648 the anodic chamber but were not found in *DvH* under dissimilatory sulfate reduction respiration
649 (Fig. 5 and Table S1). No definitive answer to the conductivities of *DvH*'s pili can be obtained
650 based on the current findings of cAFM.

651 Type IV pili can be categorized into two subclasses- type IVa pili and type IVb pili based
652 on the sequence and length of the pilin subunit (61). *Geobacter sulfurreducens*, *Geobacter*
653 *bremensis*, *Desulfuromonas thiophila*, and so on that were reported to have conductive pilin (e-
654 pili) have type IVa structure (62). Although Holmes et al. (2016) reported pili in *Desulfovibrio*
655 *vulgaris* were the long type IVa pilin, according to the previous finding of the sequencing
656 alignment and 3D structure (Fig. S5), the *DvH* pilin system is closer to the type IVb system.

657 Until now, the pili structure of DVH is not well studied. Normally, the conductivity is depending
658 on the composition of the amino acid chain of the major pili (63). A high density of aromatic
659 amino acids and a lack of substantial aromatic-free gaps along the length of long pilins may be
660 important to e-pilin (63). Two pilin proteins were found on the genome of *DvH*: one is major
661 pili, which belong to Flp family type IVb pili (DVU2116) (Fig. S6), and the other, prepilin-type
662 N-terminal cleavage/methylation domain-containing protein, which may be the minor pili
663 (putative PilE) of *DvH* (Fig. S7). We further compared the major pilin and minor pili with the e-
664 pili reported previously. No similar trend between sequences of the amino acid chain of major
665 pili and e-pili was found. However, minor pili of *DvH* had a lower E value and higher query
666 cover percentage, indicating the minor pili shared a certain similarity with e-pili (Table S5). E-
667 pili normally has phenylalanine (F), which aromatic amino acid, at the N terminus, and the
668 majority have leader peptides with less than 12 amino acids (63). Instead of phenylalanine, the
669 minor pili have Tyrosine (Y), which is also an aromatic amino acid. Thus, it is possible that the
670 minor pili which are conductive may contribute to EET of *DvH*. Being similar to *DvH*, *D.*
671 *desulfuricans* produces nanoscale filaments (32). These unidentified filaments were confirmed to
672 be electrically conductive for extracellular electron transfer. *D. desulfuricans* also have both Flp
673 family type IVb pilin and prepilin-type N-terminal cleavage/methylation domain-containing
674 protein according to the identical protein group database in NCBI. Through the above analysis,
675 pili of *DvH* did not account for 100% of EET suggesting additional co-occurring direct or
676 indirect mechanisms in this study.

677 Flagella of *DvH* is composed of flagellin protein (i.e., DVU1441, DVU2444, and
678 DVU2082) (64) and these proteins don't have similarity with pilin of *DvH* nor e-pilin. Flagellar
679 and histidine kinase related proteins were dominant unique peptides in the anode and cathode

680 comparing to dissimilatory sulfate reduction respiration (Fig. 5). It was reported that *DvH* forms
681 motility halos on solid media that are mediated by flagella-related mechanisms via the CheA3
682 histidine kinase (37). This indicated that *DvH* had increased motility or surface attachment in the
683 anodic chamber. In addition, previous studies suggested that biosynthesized FeS mediates the
684 electron transport from *DvH* to the electrode surface (31, 65). For instance, Deng et al. (2020)
685 found *DvH* biosynthesized FeS nanoparticles on the cell membrane in the presence of sulfate and
686 iron as an electron conduit enabling *DvH* to utilize solid-state electron donors via direct electron
687 uptake (65). However, no biosynthesized FeS was observed on the surface of the cathode based
688 on the results of EDS elements analysis, but they were observed as precipitates at the bottom of
689 MFCs. The FeS nanocrystallites may be washed off during the fixation preparation process of
690 SEM.

691 **4.3 *DvH* uses electron shuttles for indirect electron transfer**

692 *Shewanella* species was found to secreted flavins (i.e., FMN and riboflavin) as electron
693 shuttles to bind to outer membrane cytochromes mediating EET (66). Although *Geobacter*
694 species have abundant *c*-type cytochromes and are thought to transfer electrons by direct contact,
695 flavin synthesis and excretion genes are widely distributed in *Geobacter* species (67). Studies
696 indicated that *Geobacter sulfurreducens* can uptake self-secreted riboflavin as bound cofactors
697 for EET (68). Since we have provided riboflavin in the media, it is not surprising that we
698 detected the riboflavin through the metabolite analysis (Table 5). However, under electroactive
699 respiration, *DvH* strains have different levels of utilization on riboflavin. Riboflavin is
700 considered the precursor of flavin nucleotides (i.e., FMN and FAD). During the catalytic cycle,
701 FMN cycles between FMN to reduced flavin mononucleotide (FMNH₂) enable the electron
702 transfer via redox reactions. *S. oneidensis* MR-1 can use the interaction of flavin/outer membrane

703 *c*-type cytochrome complexes to regulate the extracellular electron transport (69). Compared to
704 *DvH* under dissimilatory sulfate reduction respiration, more riboflavin synthase (e.g., DVU1199,
705 DVU1200 and DVU1201) have been detected in anodic suspension under electroactive
706 respiration. It was previously found both riboflavin and FAD accelerated pitting corrosion and
707 weight loss on the stainless steel caused by *Desulfovibrio vulgaris* biofilm (67). Thus, FMN and
708 FMNH₂ may act as electron shuttles of *DvH*. However, the cell-surface redox-active proteins
709 need to be investigated to determine the free-flavin-mediated electron-shuttling mechanism of
710 *DvH*.

711 **4.4 DvH can employ a combination of electron transfer mechanisms to use solid surfaces as
712 both an electron acceptor and a donor**

713 The reported coulombic efficiency in the current study is much lower (Tables 2 and 3)
714 than the ones reported in other relevant studies, which varied from 6.7% to 98.9% when different
715 feed compositions and SRB were applied (8, 70, 71). The highest current densities come from
716 mixed cultures that are usually dominated by the genus *Geobacter* (72). The differences in
717 coulombic efficiency were caused by different MFC configurations and SRB species, which
718 have different electron transfer mechanisms or use different electron donors (17). To date, no
719 comprehensive information on the EET mechanism of *DvH* from cells to electrode was
720 exhibited. DET based on FeS clusters, conductive pili/filaments, unknown outer membrane *c*-
721 type cytochromes, and EPS, and IET based on electron shuttles were potential EET for *DvH* but
722 not completely understood (Fig. 6). Besides the DET conducted by FeS nanoparticles (73), our
723 results indicated that direct contact through pili/filaments may be one of the major routes for
724 DET of *DvH*. Pili/ filaments also contribute to the attachment of *DvH* to the surface of
725 electrodes. In a previous study, extracellular enzymes, such as hydrogenase and formate

726 dehydrogenase could mediate a direct electron uptake for *Methnococcus maripaludis* (74).
727 However, *Desulfovibrio* species mainly have cytoplasm-located and periplasmic hydrogenases
728 which contribute to the intracellular EET and hydrogen formation (75, 76). More outer
729 membrane redox complexes are needed to be investigated to reveal the possibility of DET
730 dominated by these proteins. Our results showed that IET mechanisms via electron shuttle small
731 molecules which are flavin-related ones are also happening in *DvH*. This indicates that *DvH* can
732 use a combination of electron transfer mechanisms to survive in less than ideal conditions with
733 solid surfaces as both an electron acceptor and a donor. A previous study reported that the
734 presence of nanowires of *Candidatus Desulfovibrio HotSeep-1* cell depended on substrates-
735 hydrogen, which contribute to the interspecies electron transfer (77). However, whether *DvH* can
736 secrete riboflavin, FMN and FMNH₂, the relevant transporters through the membrane and the
737 contributions in extracellular electron transfer need to be further determined. It has been reported
738 that *Delta-proteobacteria* have unique and unknown metabolisms and *DvH* belongs to this group,
739 indicating *DvH* might also have some metabolic abilities involving dissimilatory sulfate
740 reduction respiration under various conditions. The alignments also showed that bacteria in
741 *Delta-proteobacteria* may have similar functions or ecological roles without having the most
742 similar genomes. This might indicate *DvH* may have similar electron transfer mechanisms with
743 other bacteria in *Delta-proteobacteria*, such as *Geobacter* sp.

744 Previous studies focused mainly on the biocorrosive capacity of *DvH* (35, 78) and
745 overlooked the electricity production capacity of *DvH* through MFC. *DvH* employs a
746 combination of mechanisms, including both direct and indirect contributions, to achieve
747 electroactive respiration. A comprehensive understanding of *DvH*'s electron transfer mechanisms

748 can expand its application beyond MFCs to address sulfate-containing water and wastewater in
749 various contexts and applications.

750 **5 Conclusions**

751 In this study, we found that *DvH* was able to attach onto the electrodes of MFC, resulting
752 in the formation of nano-filaments on the electrode surface and electricity production with a
753 maximum power density of ~0.074 W/m². Varying the sulfate concentration in the anodic
754 chamber appeared to have more effects on electricity generation than that in the cathodic
755 chamber with *DvH* enriched in both chambers. *DvH* was found to utilize nano-filaments/pili to
756 attach the cells on the electrode surface and facilitate electron transfer from cell to cell and to the
757 electrode. In contrast, an MFC inoculated with the *DvH* mutant with a deletion of the major
758 pilus-producing gene was found to generate less voltage and exhibit reduced attachment to the
759 electrode surface forming fewer biofilms. Untargeted metabolomics profiling showed flavin-
760 based metabolites, potential electron shuttles. This indicated that *DvH* has possibly multiple
761 direct electron transfer pathways to grow on solid surfaces as the electron acceptor and donor.
762 Future work is needed to confirm the composition of pili and apply the enhancement of pili in
763 situ to overcome MFC inefficiencies and generate more current.

764 **Acknowledgements**

765 The authors acknowledge funding from the University of Missouri Discovery Challenge Award
766 and the Excellence in Electron Microscopy Award, SUNY Research Foundation, and Wisconsin
767 Alumni Research Foundation. We would especially like to thank Dr. Judy D. Wall for the
768 support, strains and lab space during the initial work on this project. Thanks are given to: Grant
769 Zane and Dr. Kara B De Leon for providing *DvH* mutants; Deanna Grant for SEM sample
770 preparation; Dr. Ebbing de Jong at SUNY Upstate Medical Center for initial global proteomics

771 analysis and Grzegorz 'Greg' Sabat from the Mass Spectrometry Core Facility in the
772 Biotechnology Center at the University of Wisconsin-Madison for performing proteomics; Dr.
773 Qiang Gao for assisting with CV analysis; Dr. Andrew Hryckowian for lending anaerobic
774 chambers and Dr. Alexander B. Artyukhin for LC-MS method set-up.

775

776 **References**

- 777 1. Chaturvedi V, Verma P. 2016. Microbial fuel cell: a green approach for the utilization of
778 waste for the generation of bioelectricity. *Bioresources and Bioprocessing* 3:38.
- 779 2. Lee DJ, Liu X, Weng HL. 2014. Sulfate and organic carbon removal by microbial fuel
780 cell with sulfate-reducing bacteria and sulfide-oxidising bacteria anodic biofilm.
Bioresource Technology 156:14-19.
- 782 3. Lens P, Pol LH. 2020. Environmental Technologies to Treat Sulfur Pollution: Principles
783 and Engineering doi:10.2166/9781789060966. IWA Publishing.
- 784 4. Zhao F, Rahunen N, Varcoe JR, Chandra A, Avignone-Rossa C, Thumser AE, Slade RC.
785 2008. Activated carbon cloth as anode for sulfate removal in a microbial fuel cell.
Environmental Science & Technology 42:4971-4976.
- 787 5. Rabaey K, Van de Sompel K, Maignien L, Boon N, Aelterman P, Clauwaert P, De
788 Schampheire L, Pham HT, Vermeulen J, Verhaege M. 2006. Microbial fuel cells for
789 sulfide removal. *Environmental Science & Technology* 40:5218-5224.
- 790 6. Angelov A, Bratkova S, Loukanov A. 2013. Microbial fuel cell based on electroactive
791 sulfate-reducing biofilm. *Energy Conversion and Management* 67:283-286.
- 792 7. Rabaey K, Verstraete W. 2005. Microbial fuel cells: novel biotechnology for energy
793 generation. *TRENDS in Biotechnology* 23:291-298.
- 794 8. Lee DJ, Lee CY, Chang JS. 2012. Treatment and electricity harvesting from
795 sulfate/sulfide-containing wastewaters using microbial fuel cell with enriched sulfate-
796 reducing mixed culture. *Journal of Hazardous Materials* 243:67-72.
- 797 9. Ucar D, Zhang YF, Angelidaki I. 2017. An overview of electron acceptors in microbial
798 fuel cells. *Frontiers in Microbiology* 8.
- 799 10. Light SH, Méheust R, Ferrell JL, Cho J, Deng D, Agostoni M, Iavarone AT, Banfield JF,
800 D'Orazio SEF, Portnoy DA. 2019. Extracellular electron transfer powers flavinylated
801 extracellular reductases in Gram-positive bacteria. *Proceedings of the National Academy
802 of Sciences of the United States of America* 116:26892-26899.
- 803 11. Yang YG, Xu MY, Guo J, Sun GP. 2012. Bacterial extracellular electron transfer in
804 bioelectrochemical systems. *Process Biochemistry* 47:1707-1714.
- 805 12. Cologgi DL, Lampa-Pastirk S, Speers AM, Kelly SD, Reguera G. 2011. Extracellular
806 reduction of uranium via *Geobacter* conductive pili as a protective cellular mechanism.
Proceedings of the National Academy of Sciences of the United States of America
807 108:15248-15252.
- 809 13. Pirbadian S, Barchinger SE, Leung KM, Byun HS, Jangir Y, Bouhenni RA, Reed SB,
810 Romine MF, Saffarini DA, Shi L, Gorby YA, Golbeck JH, El-Naggar MY. 2014.

811 *Shewanella oneidensis* MR-1 nanowires are outer membrane and periplasmic extensions
812 of the extracellular electron transport components. *Proceedings of the National Academy*
813 of Sciences of the United States of America 111:12883-12888.

814 14. Philips J, Verbeeck K, Rabaey K, Arends JBA. 2016. Electron transfer mechanisms in
815 biofilms, p 67-113. *In* Scott K, Yu EH (ed), *Microbial Electrochemical and Fuel Cells*
816 doi:<https://doi.org/10.1016/B978-1-78242-375-1.00003-4>. Woodhead Publishing, Boston.

817 15. Beblawy S, Bursac T, Paquete C, Louro R, Clarke TA, Gescher J. 2018. Extracellular
818 reduction of solid electron acceptors by *Shewanella oneidensis*. *Molecular Microbiology*
819 109:571-583.

820 16. Huang L, Liu X, Ye Y, Chen M, Zhou S. 2020. Evidence for the coexistence of direct
821 and riboflavin-mediated interspecies electron transfer in *Geobacter* co-culture. *Environ*
822 *Microbiol* 22:243-254.

823 17. Shi L, Dong H, Reguera G, Beyenal H, Lu A, Liu J, Yu H-Q, Fredrickson JK. 2016.
824 Extracellular electron transfer mechanisms between microorganisms and minerals.
825 *Nature Reviews Microbiology* 14:651.

826 18. Ding M, Shiu H-Y, Li S-L, Lee CK, Wang G, Wu H, Weiss NO, Young TD, Weiss PS,
827 Wong GC. 2016. Nanoelectronic investigation reveals the electrochemical basis of
828 electrical conductivity in *shewanella* and *geobacter*. *ACS Nano* 10:9919-9926.

829 19. Deng X, Okamoto A. 2020. Extracellular Electron Uptake Mechanisms in Sulfate-
830 Reducing Bacteria, p 43-59. *In* Ishii M, Wakai S (ed), *Electron-Based Bioscience and*
831 *Biotechnology* doi:https://doi.org/10.1007/978-981-15-4763-8_4. Springer Singapore,
832 Singapore.

833 20. Venzlaff H, Enning D, Srinivasan J, Mayrhofer KJJ, Hassel AW, Widdel F, Stratmann M.
834 2013. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron
835 uptake by sulfate-reducing bacteria. *Corrosion Science* 66:88-96.

836 21. Liduino V, Galvão M, Brasil S, Sérvulo E. 2021. SRB-mediated corrosion of marine
837 submerged AISI 1020 steel under impressed current cathodic protection. *Colloids*
838 *Surfaces B: Biointerfaces* 202:111701.

839 22. Hubert C, Voordouw G. 2007. Oil field souring control by nitrate-reducing
840 *Sulfurospirillum* spp. that outcompete sulfate-reducing bacteria for organic electron
841 donors. *Applied and Environmental Microbiology* 73:2644-2652.

842 23. Franco LC, Steinbeisser S, Zane GM, Wall JD, Fields MW. 2018. Cr(VI) reduction and
843 physiological toxicity are impacted by resource ratio in *Desulfovibrio vulgaris*. *Applied*
844 *Microbiology and Biotechnology* 102:2839-2850.

845 24. Ozuolmez D, Na H, Lever MA, Kjeldsen KU, Jørgensen BB, Plugge CM. 2015.
846 Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or
847 coexistence? *Frontiers in Microbiology* 6:492-492.

848 25. Li HB, Xu DK, Li YC, Feng H, Liu ZY, Li XG, Gu TY, Yang K. 2015. Extracellular
849 electron transfer is a bottleneck in the microbiologically influenced corrosion of C1018
850 carbon steel by the biofilm of sulfate-reducing bacterium *Desulfovibrio vulgaris*. *Plos*
851 *One* 10.

852 26. Sim MS, Wang D, Zane G, Wall J, Bosak T, Ono S. 2013. Fractionation of sulfur
853 isotopes by *Desulfovibrio vulgaris* mutants lacking hydrogenases or type I tetraheme
854 cytochrome c3. *Front Microbiol* 4.

855 27. Deng X, Dohmae N, Nealson KH, Hashimoto K, Okamoto A. 2018. Multi-heme
856 cytochromes provide a pathway for survival in energy-limited environments. *Science*
857 *Advances* 4:eaao5682.

858 28. Kang CS, Eaktasang N, Kwon D-Y, Kim HS. 2014. Enhanced current production by
859 *Desulfovibrio desulfuricans* biofilm in a mediator-less microbial fuel cell. *Bioresource*
860 *Technology* 165:27-30.

861 29. Walian PJ, Allen S, Shatsky M, Zeng L, Szakal ED, Liu H, Hall SC, Fisher SJ, Lam BR,
862 Singer ME, Geller JT, Brenner SE, Chandonia J-M, Hazen TC, Witkowska HE, Biggin
863 MD, Jap BK. 2012. High-throughput isolation and characterization of untagged
864 membrane protein complexes: Outer membrane complexes of *Desulfovibrio vulgaris*.
865 *Journal of Proteome Research* 11:5720-5735.

866 30. Deng X, Dohmae N, Kaksonen AH, Okamoto A. 2020. Biogenic iron sulfide
867 nanoparticles to enable extracellular electron uptake in sulfate-reducing bacteria. *Angew*
868 *Chem Int Ed* 59:5995-5999.

869 31. Zhou C, Zhou Y, Rittmann BE. 2017. Reductive precipitation of sulfate and soluble
870 Fe(III) by *Desulfovibrio vulgaris*: Electron donor regulates intracellular electron flow and
871 nano-FeS crystallization. *Water Research* 119:91-101.

872 32. Eaktasang N, Kang CS, Lim H, Kwean OS, Cho S, Kim Y, Kim HS. 2016. Production of
873 electrically-conductive nanoscale filaments by sulfate-reducing bacteria in the microbial
874 fuel cell. *Bioresource Technology* 210:61-67.

875 33. Clark ME, Edelmann RE, Duley ML, Wall JD, Fields MW. 2007. Biofilm formation in
876 *Desulfovibrio vulgaris* Hildenborough is dependent upon protein filaments.
877 *Environmental Microbiology* 9:2844-2854.

878 34. Krantz GP, Lucas K, Wunderlich EL-, Hoang LT, Avci R, Siuzdak G, Fields MW. 2019.
879 Bulk phase resource ratio alters carbon steel corrosion rates and endogenously produced
880 extracellular electron transfer mediators in a sulfate-reducing biofilm. *Biofouling* 35:669-
881 683.

882 35. Zhang P, Xu D, Li Y, Yang K, Gu T. 2015. Electron mediators accelerate the
883 microbiologically influenced corrosion of 304 stainless steel by the *Desulfovibrio*
884 *vulgaris* biofilm. *Bioelectrochemistry* 101:14-21.

885 36. De León KB, Zane GM, Trotter VV, Krantz GP, Arkin AP, Butland GP, Walian PJ,
886 Fields MW, Wall JD. 2017. Unintended laboratory-driven evolution reveals genetic
887 requirements for biofilm formation by *Desulfovibrio vulgaris* Hildenborough. *MBio*
888 8:e01696-17.

889 37. Ray J, Keller KL, Catena M, Juba TR, Zemla M, Rajeev L, Knierim B, Zane GM,
890 Robertson JJ, Auer M, Wall JD, Mukhopadhyay A. 2014. Exploring the role of CheA3 in
891 *Desulfovibrio vulgaris* Hildenborough motility. *Frontiers in Microbiology* 5.

892 38. Brandis A, Thauer RK. 1981. Growth of *Desulfovibrio* species on hydrogen and sulphate
893 as sole energy source. *Microbiology* 126:249-252.

894 39. Tang XH, Guo K, Li HR, Du ZW, Tian JL. 2011. Electrochemical treatment of graphite
895 to enhance electron transfer from bacteria to electrodes. *Bioresource Technology*
896 102:3558-3560.

897 40. Hou L, Griswold N, Hu Z. 2020. Impact of decreasing hydraulic retention times on the
898 specific affinity of methanogens and their community structures in an anaerobic
899 membrane bioreactor process treating low strength wastewater. *Science of The Total*
900 *Environment* 739:140373.

901 41. Hubert C, Nemati M, Jenneman G, Voordouw G. 2005. Corrosion risk associated with
902 microbial souring control using nitrate or nitrite. *Applied Microbiology and*
903 *Biotechnology* 68:272-282.

904 42. Detmers J, Bruchert V, Habicht KS, Kuever J. 2001. Diversity of sulfur isotope
905 fractionations by sulfate-reducing prokaryotes. *Applied and Environmental Microbiology*
906 67:888-894.

907 43. Rappaport J, Ishihama Y, Mann M. 2003. Stop and go extraction tips for matrix-assisted
908 laser desorption/Ionization, nanoelectrospray, and LC/MS sample pretreatment in
909 proteomics. *Analytical Chemistry* 75:663-670.

910 44. Russo R, Rega C, Caporale A, Tonon G, Scaramuzza S, Selis F, Ruvo M, Chambry A.
911 2017. Ultra-performance liquid chromatography/multiple reaction monitoring mass
912 spectrometry quantification of trastuzumab in human serum by selective monitoring of a
913 specific peptide marker from the antibody complementarity-determining regions. *Rapid*
914 *Commun Mass Spectrom* 31:1184-1192.

915 45. Gowda H, Ivanisevic J, Johnson CH, Kurczy ME, Benton HP, Rinehart D, Nguyen T,
916 Ray J, Kuehl J, Arevalo B, Westenskow PD, Wang J, Arkin AP, Deutschbauer AM, Patti
917 GJ, Siuzdak G. 2014. Interactive XCMS Online: Simplifying Advanced Metabolomic
918 Data Processing and Subsequent Statistical Analyses. *Analytical Chemistry* 86:6931-
919 6939.

920 46. Huan T, Forsberg EM, Rinehart D, Johnson CH, Ivanisevic J, Benton HP, Fang M,
921 Aisporina A, Hilmers B, Poole FL, Thorgersen MP, Adams MWW, Krantz G, Fields MW,
922 Robbins PD, Niedernhofer LJ, Ideker T, Majumder EL, Wall JD, Rattray NJW, Goodacre
923 R, Lairson LL, Siuzdak G. 2017. Systems biology guided by XCMS Online
924 metabolomics. *Nature Methods* 14:461-462.

925 47. Montenegro-Burke JR, Guijas C, Siuzdak GJCM, Metabolomics DAf. 2020. METLIN: a
926 tandem mass spectral library of standards. 149-163.

927 48. Ghangrekar MM, Murthy SSR, Behera M, Duteanu N. 2010. Effect of sulfate
928 concentration in the wastewater on microbial fuel cell performance. *Environmental*
929 *Engineering and Management Journal* 9:1227-1234.

930 49. Xiao Y, Zhao F. 2017. Electrochemical roles of extracellular polymeric substances in
931 biofilms. *Current Opinion in Electrochemistry* 4:206-211.

932 50. Clark ME, He Z, Redding AM, Joachimiak MP, Keasling JD, Zhou JZ, Arkin AP,
933 Mukhopadhyay A, Fields MW. 2012. Transcriptomic and proteomic analyses of
934 *Desulfovibrio vulgaris* biofilms: Carbon and energy flow contribute to the distinct
935 biofilm growth state. *BMC Genomics* 13:138.

936 51. Ueki T, DiDonato LN, Lovley DR. 2017. Toward establishing minimum requirements for
937 extracellular electron transfer in *Geobacter sulfurreducens*. *FEMS Microbiology Letters*
938 364.

939 52. Shi L, Richardson DJ, Wang Z, Kerisit SN, Rosso KM, Zachara JM, Fredrickson JK.
940 2009. The roles of outer membrane cytochromes of *Shewanella* and *Geobacter* in
941 extracellular electron transfer. *Environmental Microbiology Reports* 1:220-227.

942 53. Heidelberg JF, Seshadri R, Haveman SA, Hemme CL, Paulsen IT, Kolonay JF, Eisen JA,
943 Ward N, Methe B, Brinkac LM, Daugherty SC, Deboy RT, Dodson RJ, Durkin AS,
944 Madupu R, Nelson WC, Sullivan SA, Fouts D, Haft DH, Selengut J, Peterson JD,
945 Davidsen TM, Zafar N, Zhou LW, Radune D, Dimitrov G, Hance M, Tran K, Khouri H,
946 Gill J, Utterback TR, Feldblyum TV, Wall JD, Voordouw G, Fraser CM. 2004. The

947 genome sequence of the anaerobic, sulfate-reducing bacterium *Desulfovibrio vulgaris*
948 *Hildenborough*. *Nature Biotechnology* 22:554-559.

949 54. Venceslau SS, Lino RR, Pereira IA. 2010. The Qrc membrane complex, related to the
950 alternative complex III, is a menaquinone reductase involved in sulfate respiration.
951 *Journal of Biological Chemistry* 285:22774-22783.

952 55. Park HS, Lin S, Voordouw G. 2008. Ferric iron reduction by *Desulfovibrio vulgaris*
953 Hildenborough wild type and energy metabolism mutants. *Antonie Van Leeuwenhoek*
954 93:79-85.

955 56. Shi W, Yi B, Hou M, Jing F, Ming P. 2007. Hydrogen sulfide poisoning and recovery of
956 PEMFC Pt-anodes. *Journal of Power Sources* 165:814-818.

957 57. Islam MA, Karim A, Woon CW, Ethiraj B, Cheng CK, Yousuf A, Rahman Khan MM.
958 2017. Augmentation of air cathode microbial fuel cell performance using wild type
959 *Klebsiella variicola*. *RSC Advances* 7:4798-4805.

960 58. Xiao Y, Zhang E, Zhang J, Dai Y, Yang Z, Christensen HEM, Ulstrup J, Zhao F. 2017.
961 Extracellular polymeric substances are transient media for microbial extracellular
962 electron transfer. *Science Advances* 3:e1700623.

963 59. Pelmus M, Ungureanu E-M, Stanescu MD, Tarko L. 2020. Electrochemical and QSPR
964 studies of several hydroxy- and amino-polysubstituted benzenes constituents of useful
965 compounds. *Journal of Applied Electrochemistry* 50:851-862.

966 60. Curley GP, Carr MC, Mayhew SG, Voordouw G. 1991. Redox and flavin-binding
967 properties of recombinant flavodoxin from *Desulfovibrio vulgaris* (Hildenborough).
968 *European Journal of Biochemistry* 202:1091-1100.

969 61. Giltner CL, Nguyen Y, Burrows LL. 2012. Type IV pilin proteins: versatile molecular
970 modules. *Microbiology and molecular biology reviews : MMBR* 76:740-772.

971 62. Holmes DE, Dang Y, Walker DJF, Lovley DR. 2016. The electrically conductive pili of
972 Geobacter species are a recently evolved feature for extracellular electron transfer.
973 *Microbial genomics* 2:e000072-e000072.

974 63. Walker DJF, Adhikari RY, Holmes DE, Ward JE, Woodard TL, Nevin KP, Lovley DR.
975 2018. Electrically conductive pili from pilin genes of phylogenetically diverse
976 microorganisms. *The ISME Journal* 12:48-58.

977 64. Zhou A, Baidoo E, He Z, Mukhopadhyay A, Baumohl JK, Benke P, Joachimiak MP, Xie
978 M, Song R, Arkin AP, Hazen TC, Keasling JD, Wall JD, Stahl DA, Zhou J. 2013.
979 Characterization of NaCl tolerance in *Desulfovibrio vulgaris* Hildenborough through
980 experimental evolution. *The ISME Journal* 7:1790-1802.

981 65. Deng X, Dohmae N, Kaksonen AH, Okamoto A. 2020. Biogenic Iron Sulfide
982 Nanoparticles to Enable Extracellular Electron Uptake in Sulfate-Reducing Bacteria.
983 59:5995-5999.

984 66. von Canstein H, Ogawa J, Shimizu S, Lloyd JR. 2008. Secretion of flavins by *Shewanella*
985 species and their role in extracellular electron transfer. *Applied and Environmental
986 Microbiology* 74:615-623.

987 67. Huang L, Tang J, Chen M, Liu X, Zhou S. 2018. Two modes of riboflavin-mediated
988 extracellular electron transfer in *Geobacter uraniireducens*. 9.

989 68. Okamoto A, Saito K, Inoue K, Nealson KH, Hashimoto K, Nakamura R. 2014. Uptake of
990 self-secreted flavins as bound cofactors for extracellular electron transfer in *Geobacter*
991 species. *Energy & Environmental Science* 7:1357-1361.

992 69. Okamoto A, Hashimoto K, Nealson KH, Nakamura R. 2013. Rate enhancement of
993 bacterial extracellular electron transport involves bound flavin semiquinones.
994 Proceedings of the National Academy of Sciences of the United States of America
995 110:7856-7861.

996 70. Rosenbaum M, Aulenta F, Villano M, Angenent LT. 2011. Cathodes as electron donors
997 for microbial metabolism: Which extracellular electron transfer mechanisms are involved?
998 Bioresource Technology 102:324-333.

999 71. Eaktasang N, Kang CS, Ryu SJ, Suma Y, Kim HS. 2013. Enhanced current production by
1000 electroactive biofilm of sulfate-reducing bacteria in the microbial fuel cell.
1001 Environmental Engineering Research 18:277-281.

1002 72. Logan BE, Rossi R, Ragab Aa, Saikaly PE. 2019. Electroactive microorganisms in
1003 bioelectrochemical systems. Nature Reviews Microbiology 17:307-319.

1004 73. Murugan M, Miran W, Masuda T, Lee DS, Okamoto A. 2018. Biosynthesized iron
1005 sulphide nano clusters enhanced anodic current generation by the sulphate reducing
1006 bacteria. ChemElectroChem doi:<https://doi.org/10.1002/celc.201801086>.

1007 74. Deutzmann JS, Sahin M, Spormann AM. 2015. Extracellular enzymes facilitate electron
1008 uptake in biocorrosion and bioelectrosynthesis. Mbio 6.

1009 75. Niviere V, Hatchikian E, Bianco P, Haladjian J. 1988. Kinetic studies of electron transfer
1010 between hydrogenase and cytochrome c₃ from *Desulfovibrio gigas*. Electrochemical
1011 properties of cytochrome c3. Biochimica et Biophysica Acta (BBA)-Bioenergetics
1012 935:34-40.

1013 76. Mukhopadhyay A, He ZL, Alm EJ, Arkin AP, Baidoo EE, Borglin SC, Chen WQ, Hazen
1014 TC, He Q, Holman HY, Huang K, Huang R, Joyner DC, Katz N, Keller M, Oeller P,
1015 Redding A, Sun J, Wall J, Wei J, Yang ZM, Yen HC, Zhou JZ, Keasling JD. 2006. Salt
1016 stress in *Desulfovibrio vulgaris* Hildenborough: An integrated genomics approach.
1017 Journal of Bacteriology 188:4068-4078.

1018 77. Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, Boetius A. 2015. Intercellular
1019 wiring enables electron transfer between methanotrophic archaea and bacteria. Nature
1020 526:587-590.

1021 78. Chen Y, Tang Q, Senko JM, Cheng G, Newby B-mZ, Castaneda H, Ju L-K. 2015. Long-
1022 term survival of *Desulfovibrio vulgaris* on carbon steel and associated pitting corrosion.
1023 Corrosion Science 90:89-100.

1024

1025

1026 **Table 1.** MFC experimental conditions

Experiment al run	Strain	Size of anode (cm × cm)	Lactate in anode chamber (mM)	Sulfate in anode chamber (mM)	Lactate in cathode chamber (mM)	Sulfate in cathode chamber (mM)
Control	<i>DvH</i> <i>JWT700</i>	2 × 2	0	0	0	30
Run 1		2 × 2		0		10
Run 2		2 × 2		10		10
Run 3		2 × 2		20		10
Run 4		2 × 2		30		10
Run 5		2 × 2		10		0
Run 6		2 × 2	60	10	0	20
Run 7		2 × 2		10		30
Run 8		2 × 2		20		30
Run 9		3 × 3		20		30
Run 10	<i>DvH</i> <i>JW3422</i>	2 × 2		20		30
Run 11	<i>DvH</i> <i>JWT716</i>	2 × 2		20		30

1027

1028

1029 **Table 2** Comparison of electricity generation, coulombic efficiencies, energy efficiency and pH
1030 in MFCs using *DvH JWT700* under different treatments.

Treatment (Concentratio ns of lactate and sulfate in anode and cathode respectively)	Run 1 (60:0; 0:10)	Run 2 (60:10; 0:10)	Run 3 (60:20; 0:10)	Run 4 (60:30; 0:10)	Run 5 (60:10; 0:0)	Run 6 (60:10; 0:20)	Run 7 (60:10; 0:30)
Coulombic efficiency, η_C (%)	0.79±0.0 1	1.33±0.0 3	2.83±0.1 9	0.14±0.0 1	0.00±0.0	1.83±0.03	2.20±0. 03
Energy efficiency, η_E (%)	0.01±0.0	0.10±0.0 2	0.69±0.1 8	0.00±0.0	0.00±0.0	0.31±0.08	0.37±0. 06
Maximum voltage observed (mV)	38±2	88±2	129±1	7±0	3±0	95±4	108±3
pH in Anodic Chamber	7.2±0.2	7.2±0.1	7.2±0.8	8.2±0.3	8.0±0.6	7.20±0.3	7.3±0.5
pH in Cathodic Chamber	7.6±0.2	7.5±0.6	7.6±0.5	8.1±0.5	7.5±0.3	7.8±0.4	7.9±0.2

1031

1032

1033 **Table 3** Comparison of power generation, coulombic efficiencies, and pH in MFCs with
1034 different electrode sizes and different *DvH* stains in anode chamber.

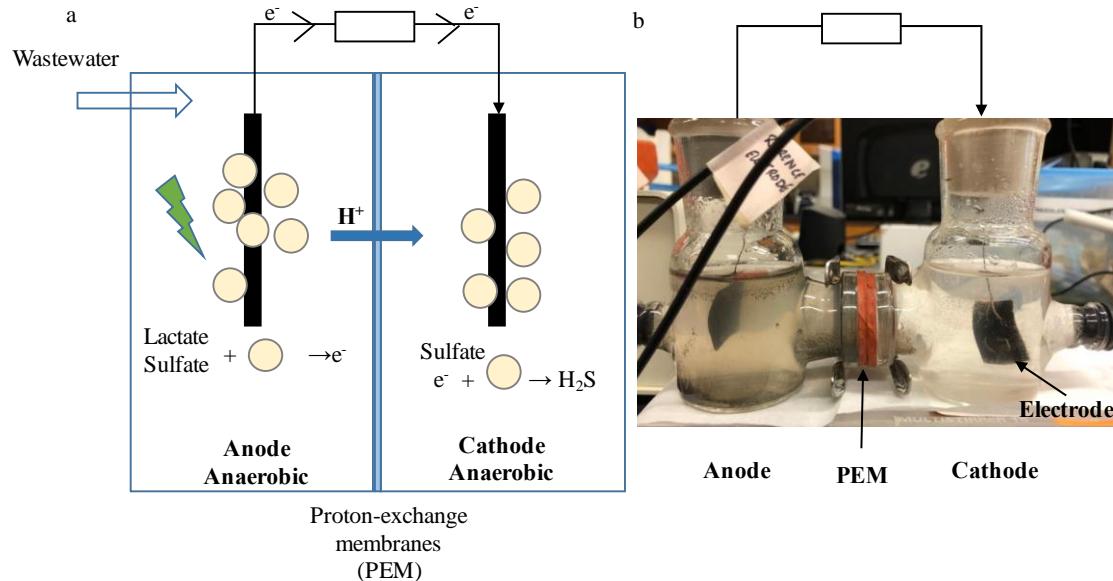
Treatment	Run 8 (<i>DvH</i> JWT700; 2 × 2 cm ²)	Run 9 (<i>DvH</i> JWT700; 3 × 3 cm ²)	Run 10 (<i>DvH</i> JW3422; 2 × 2 cm ²)	Run 11 (<i>DvH</i> JWT716; 2 × 2 cm ²)
Coulombic efficiency, η C (%)	2.65±0.01	5.65±0.05	2.52±0.06	0.36±0.02
Energy efficiency, η E (%)	0.56±0.01	2.12±0.06	0.42±0.02	0.02±0.01
Maximum voltage observed (mV)	125±1	248±2	87±3	42±4
pH in Anode Chamber	7.2±0.2	7.3±0.1	7.5±0.2	7.2±0.2
pH in Cathode Chamber	7.6±0.3	7.7±0.2	7.7±0.3	7.4±0.3

1035
1036
1037
1038

1039 **Table 4.** Protein concentration on electrodes and solutions for MFC cultivating different DvH
1040 strains.

	Anodic chamber		Cathodic chamber	
	Anode	Solution	Cathode	Solution
	Total protein (μ g)	Protein concentration (μ g/ml)	Total protein (μ g)	Protein concentration (μ g/ml)
Initial setup	0	3.9 ± 2.3	0	3.9 ± 2.3
DvH JWT700 (Run 8)	262.2 ± 6.2	54.9 ± 0.7	8.5 ± 3.1	12.7 ± 0.9
DvH JW3422 (Run 10)	186.3 ± 19.6	56.7 ± 1.2	1.1 ± 0.5	10.7 ± 0.5
DvH JWT716 (Run 11)	27.7 ± 3.1	42.0 ± 3.5	0.1 ± 0.0	5.9 ± 0.6

1041

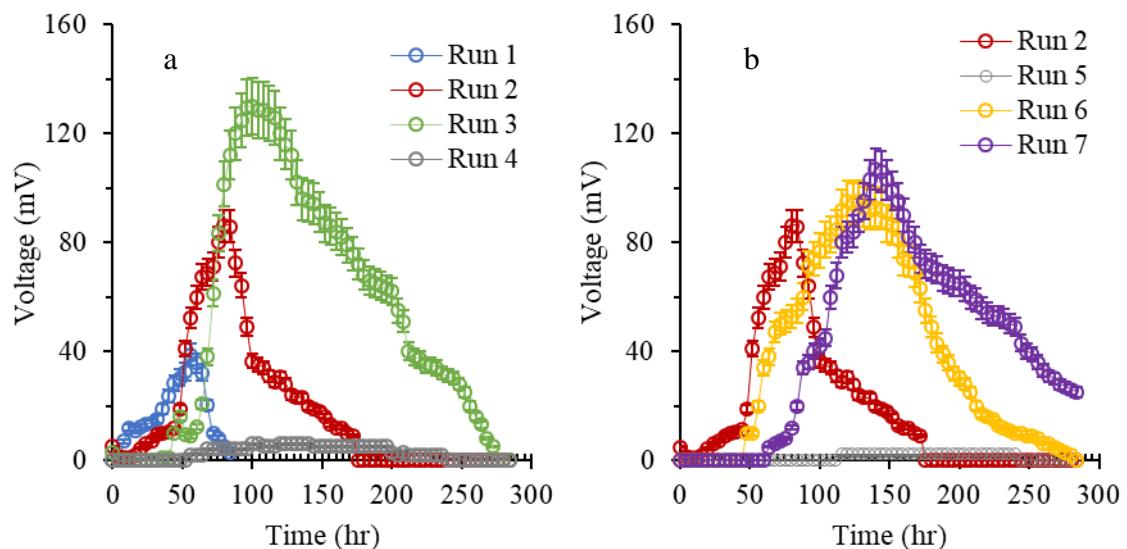

1042

1043 **Table 5.** Flavin related metabolites of *DvH* strains under different electroactive respiration
1044 modes.

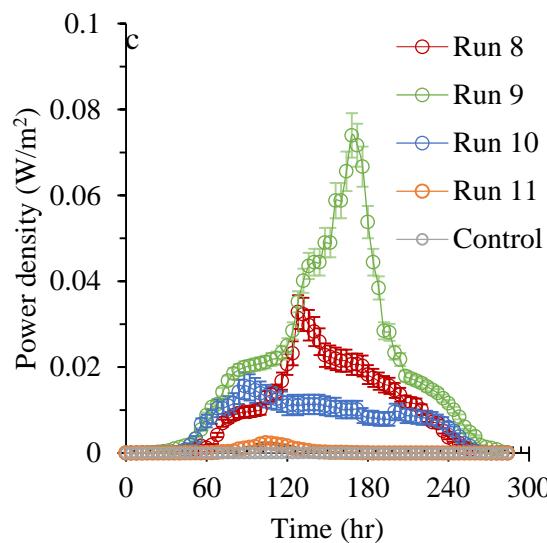
RT _{med} [*]	m/z	Intensity (TIC)					
		DvH JWT700 (Run 8)		DvH JW3422 (Run 10)		DvH JWT716 (Run 11)	
		An_suspen sion	Ca_suspen sion	An_suspen sion	Ca_suspen sion	An_suspen sion	Ca_suspen sion
Ribofla vin	12.95	357.1197	37127	113997	0	90778	106478
FMN	15.16	240.0513	124739	67377	133909	11407	32134
FMNH ₂	9.81	442.102	181281	18850	83510	49590	32948
							0

1045 RT_{med}^{*}: The median retention time of peaks in the group.

1046



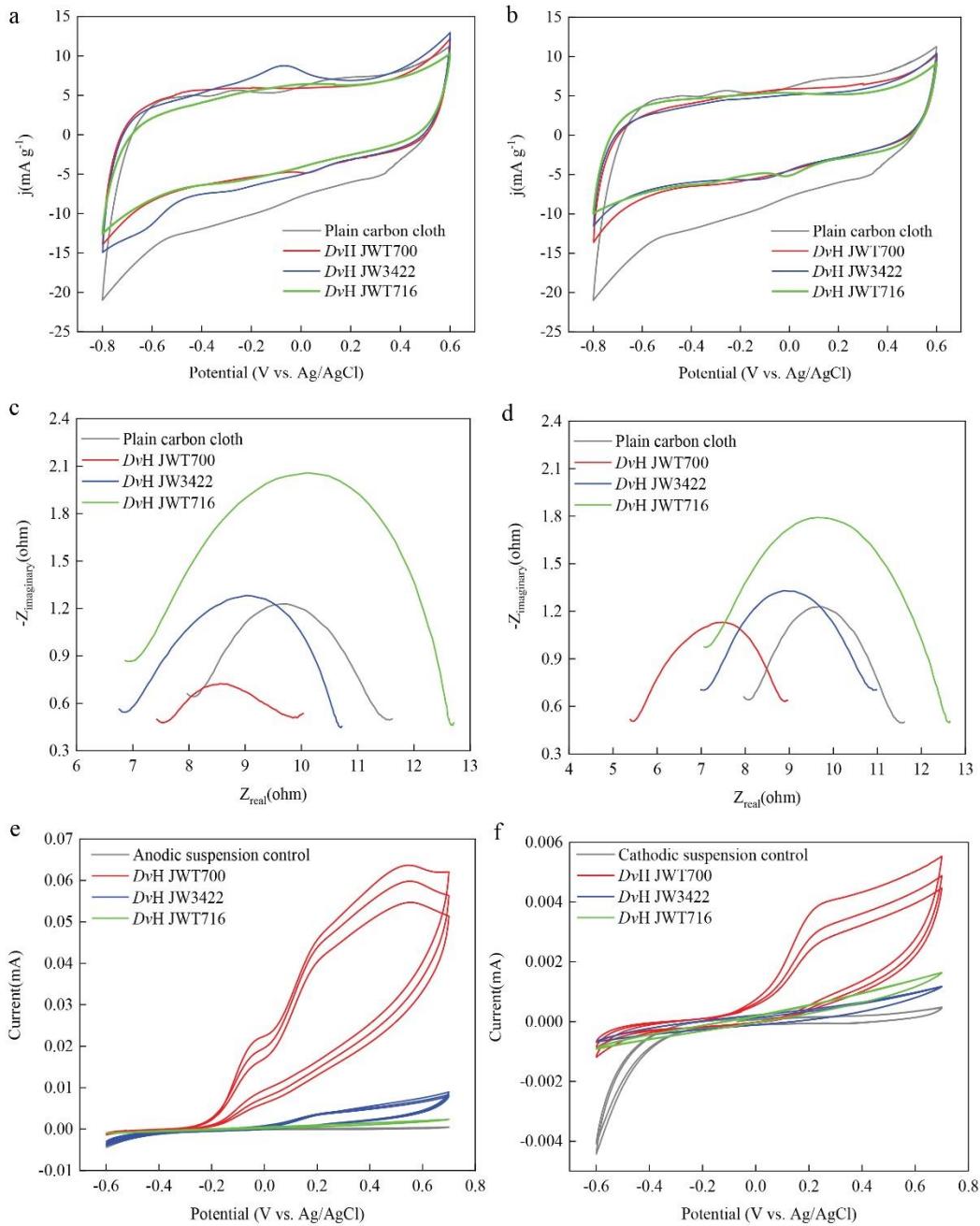
1047
1048


1049 **Figure 1** Schematic (a) and laboratory-scale prototype (b) of the MFC.

1050

1051

1052



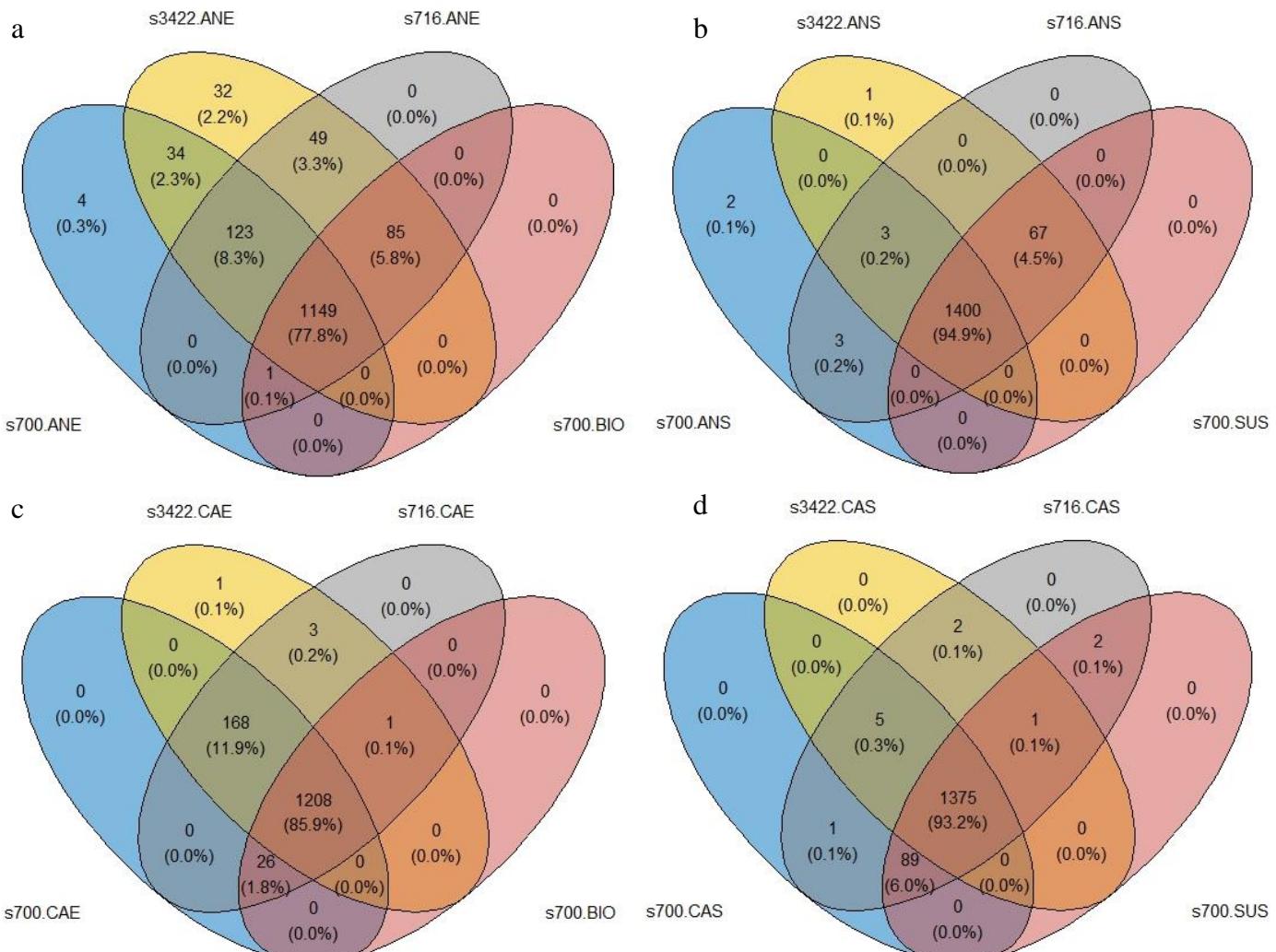
1053

1054

1055 **Figure 2** Effects of lactate/sulfate ratio to the anode chamber (a) and cathode chamber (b) on
1056 electricity generation. (c) Effect of electrode size and different *D. vulgaris* Hildenborough stains
1057 in the anode chamber on powder density.

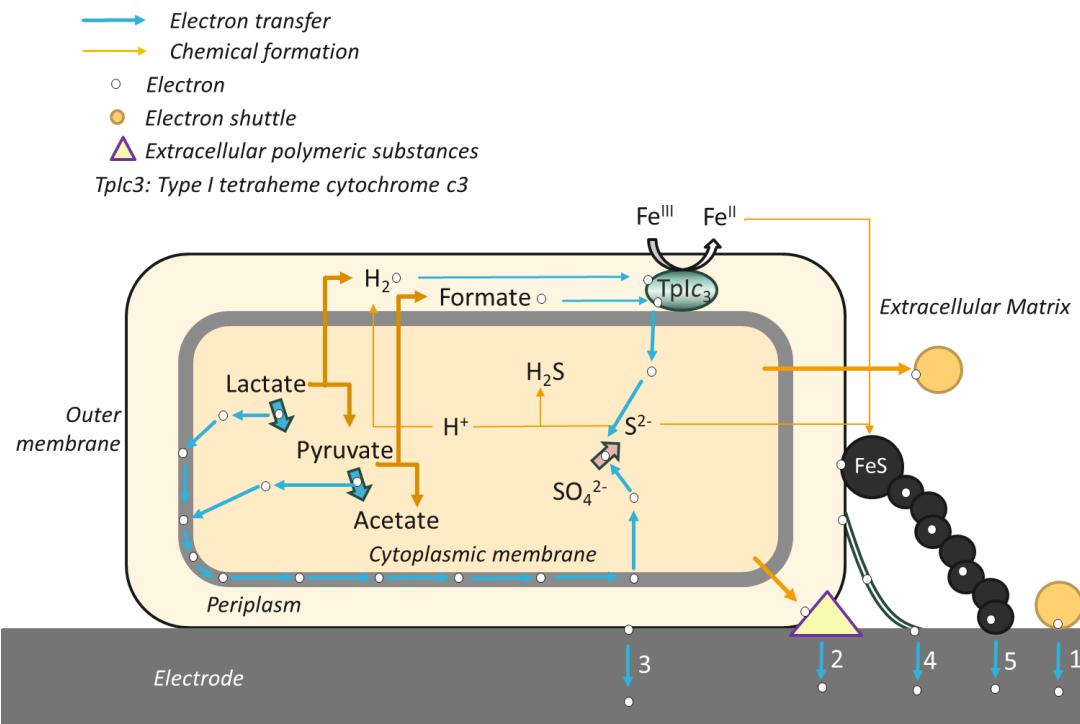
1058

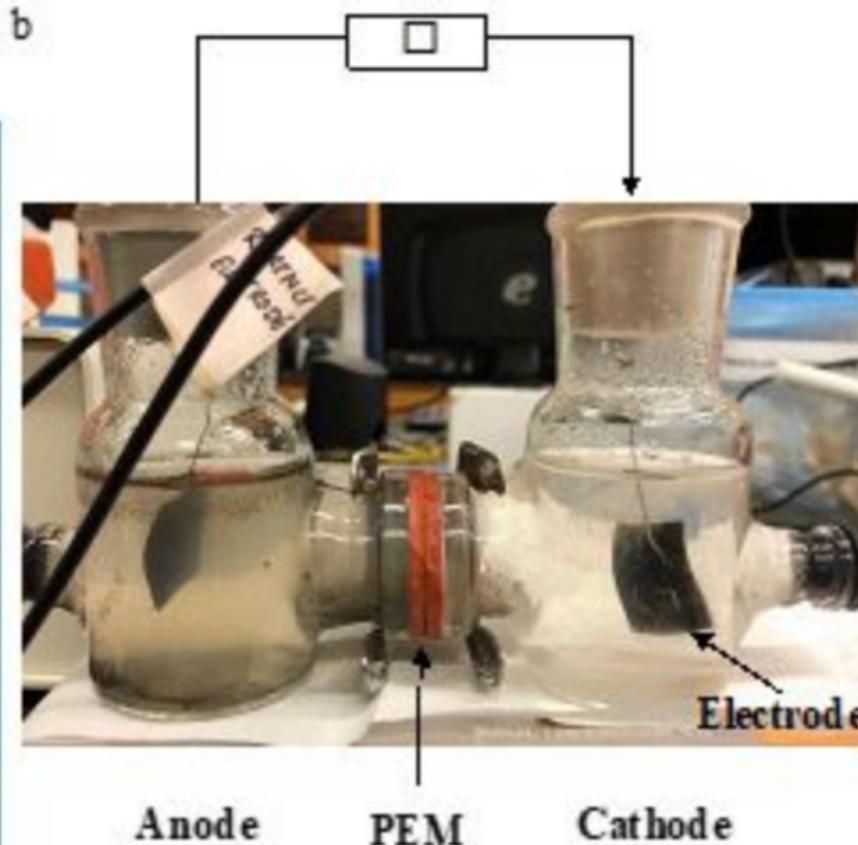
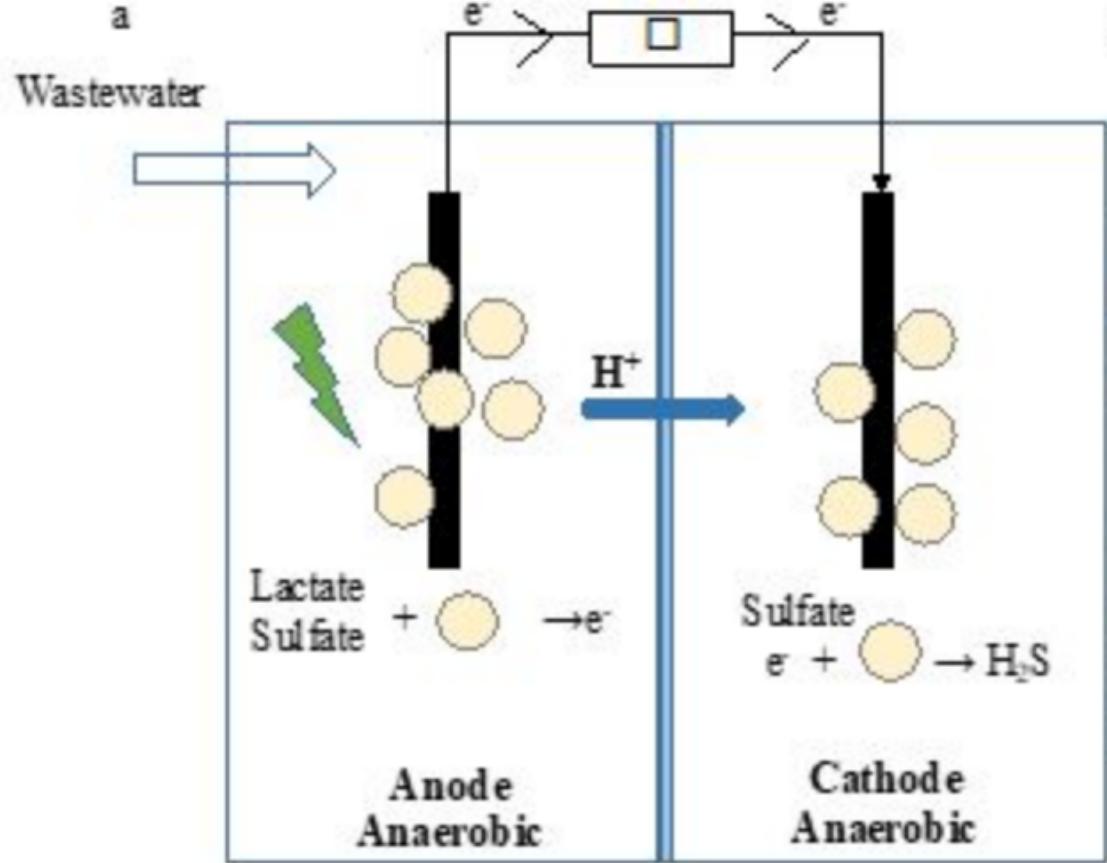
1059
1060 **Figure 3** Electrochemical analysis of carbon cloths with different biofilms formed by various
1061 *DvH* mutants. Cyclic Voltammograms for the anodes (a), cathodes (b), anodic media (e), and
1062 cathodic media (f) with different *DvH* mutants. Nyquist impedance plots of the anodes (c) and
1063 cathodes (d) with different *DvH* mutants' biofilms.


1064

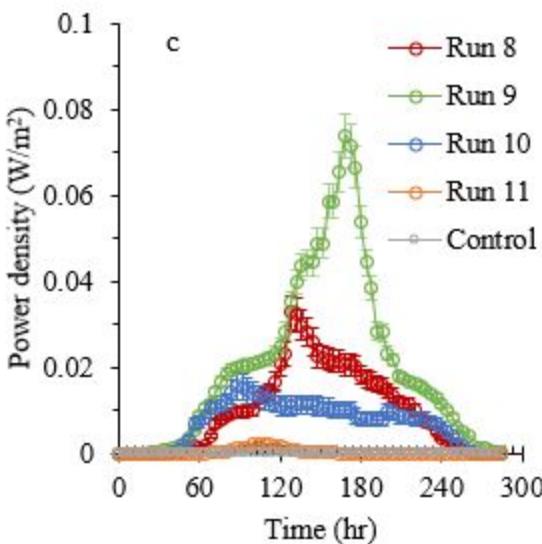
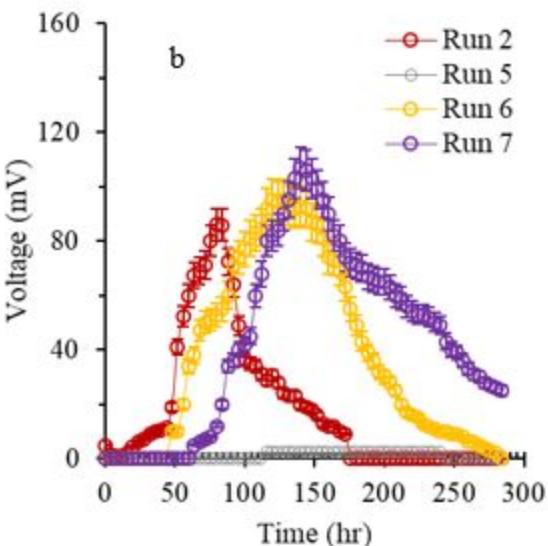
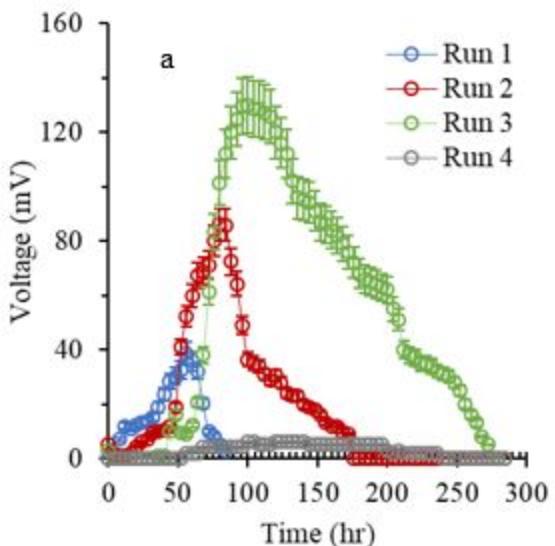
1065

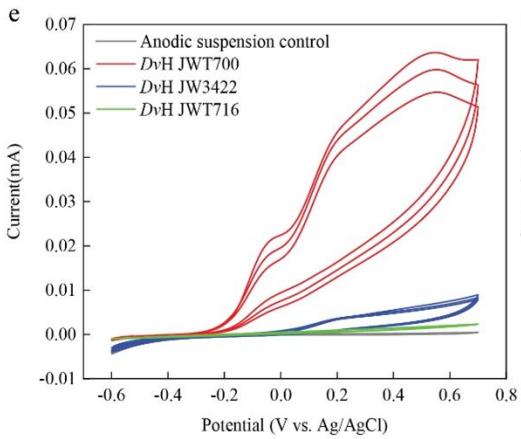
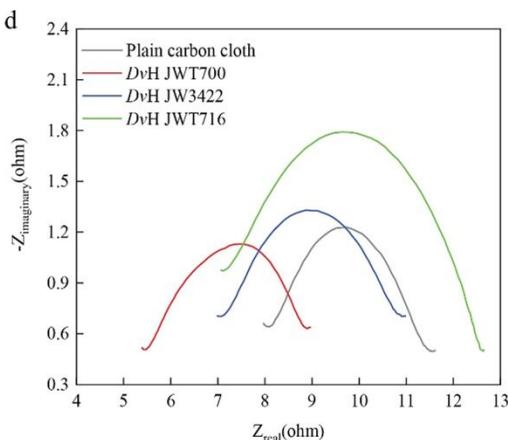
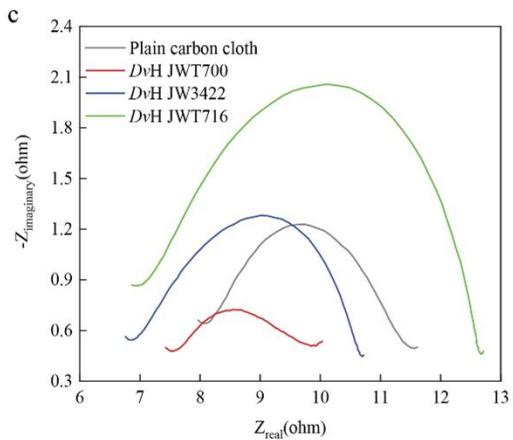
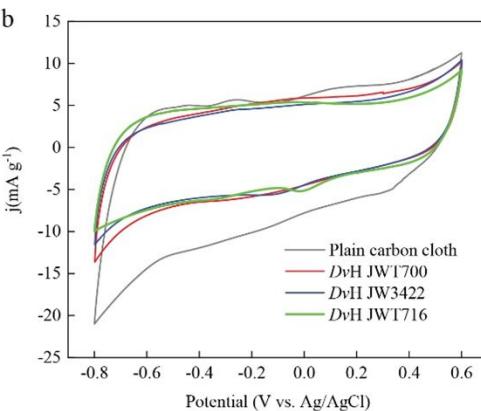
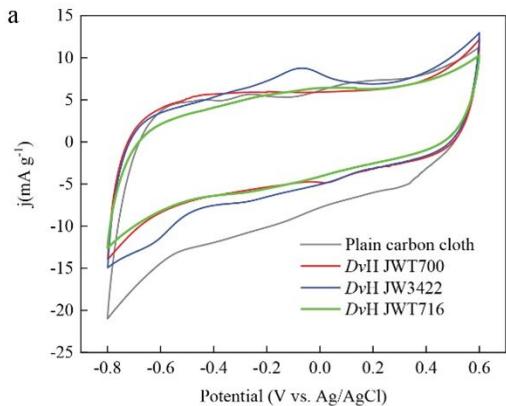
1066 **Figure 4** SEM micrographs of *DvH* JWT700 (a~d) growing on mica sheets, *DvH* JWT700 (c~d),
1067 *DvH* JW3422 (e~f) and *DvH* JWT716 (g~h) growing on carbon cloths. The yellow arrow
1068 represents the filaments formed by wild *DvH*.

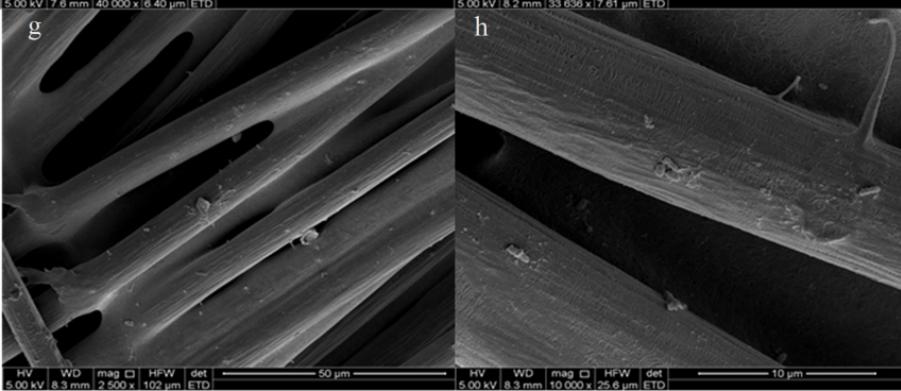
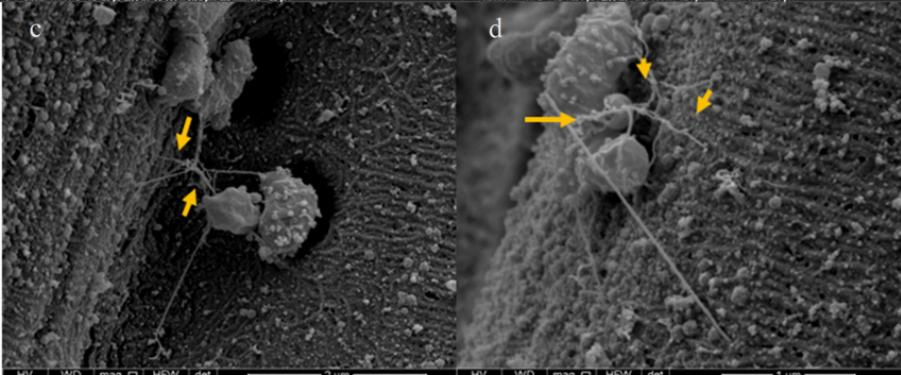
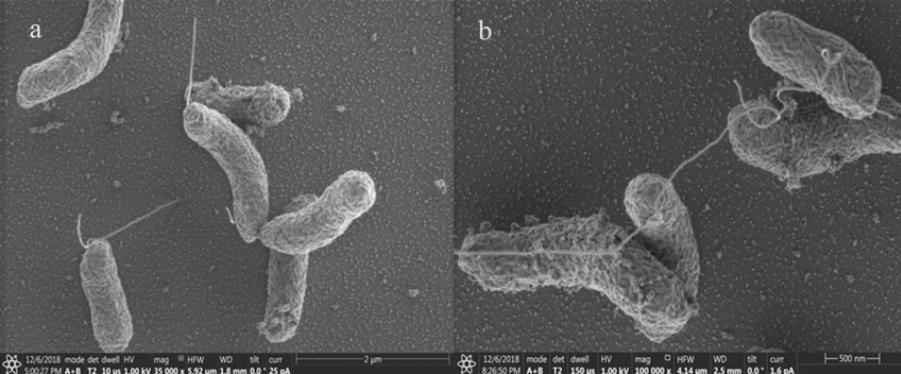

1069

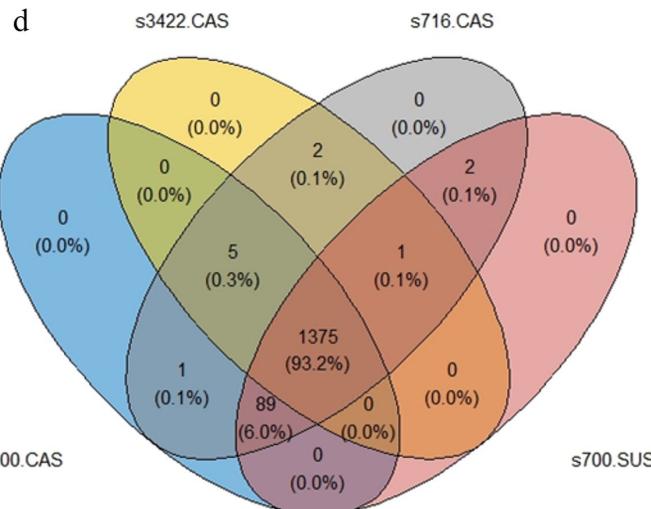
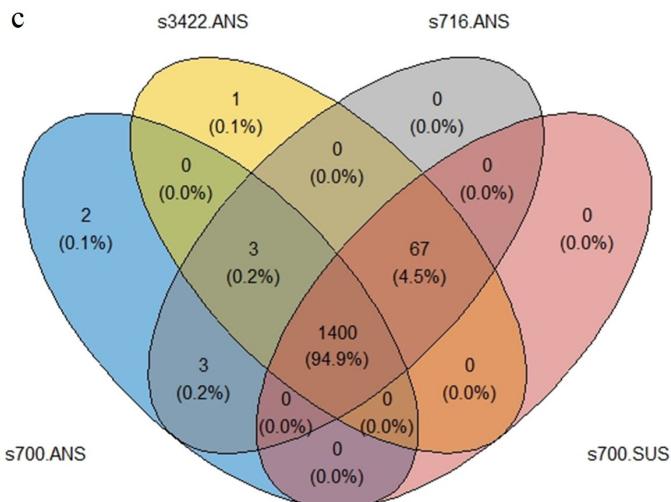
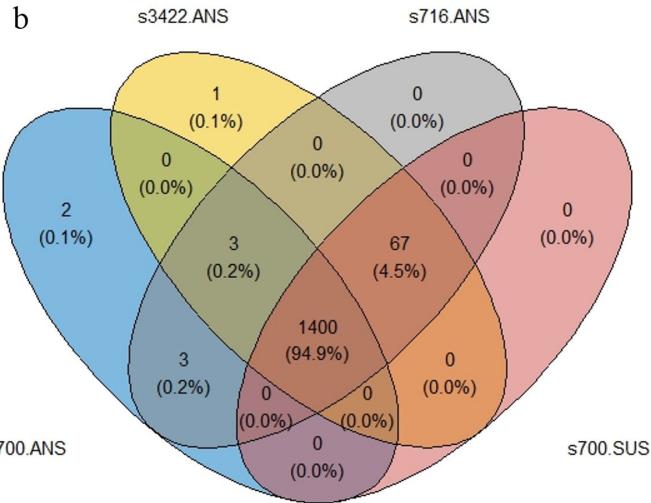
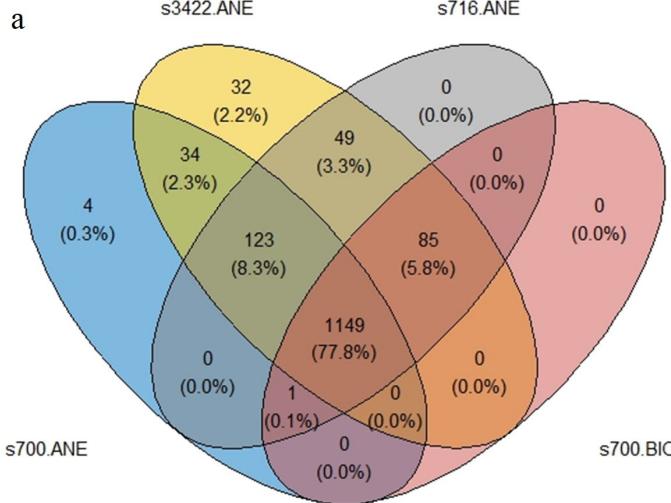



1070

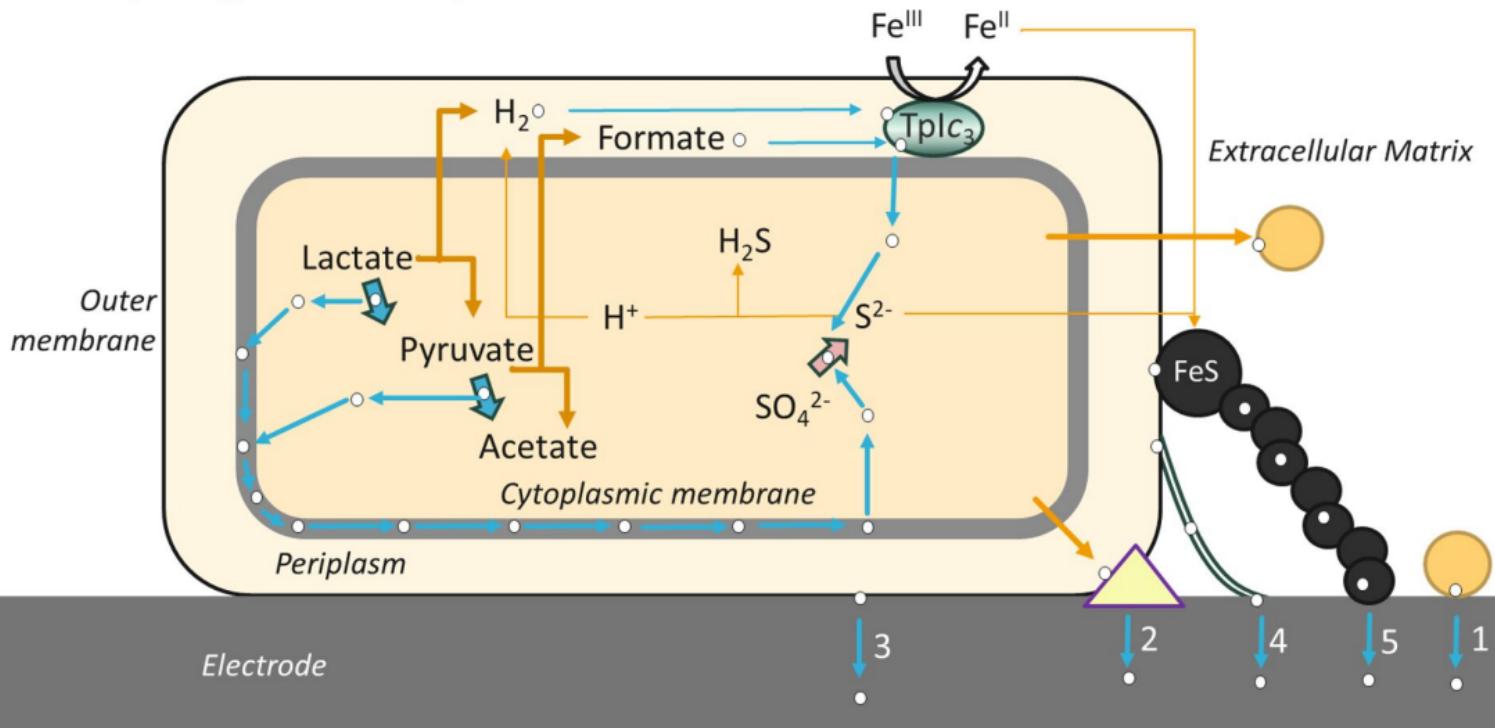



1071 **Figure 5.** Venn diagram showing the number of unique peptides identified from *DvH JWT700* (s700; represented by the blue circle),
1072 *DvH JW3422* (s3422; represented by the yellow circle) and *DvH JWT716* (s716; represented by the grey circle) across various
1073 electroactive respiration modes. The labels ANE and ANS correspond to the anode and the suspension culture in the anodic chamber,
1074 respectively, while CAE and CAS represent the cathode and the suspension culture in the cathodic chamber, respectively. Additionally,
1075 s700.BIO and s700.SUS denote the biofilm and planktonic cultures of *DvH JWT700* cultivated without electroactive repatriation
1076 modes.






1077

Proton-exchange
membranes
(PEM)


→ Electron transfer
→ Chemical formation

○ Electron

● Electron shuttle

△ Extracellular polymeric substances

Tplc3: Type I tetraheme cytochrome *c3*

