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Abstract 

Understanding protein thermostability is essential for various biotechnological and biological 

applications. However, traditional experimental methods for assessing this property are time-

consuming, expensive, and error-prone. Recently, the application of Deep Learning 

techniques from Natural Language Processing (NLP) was extended to the field of biology, with 

an emphasis on protein modeling. From a linguistic perspective, the primary sequence of 

proteins can be viewed as a string of amino acids that follow a physicochemical grammar. 

 

This study explores the potential of Deep Learning models trained on protein sequences to 

predict protein thermostability which provide improvements with respect to current 

approaches. We implemented TemBERTure, a Deep Learning framework to classify the 

thermal class (non-thermophilic or thermophilic) and predict and melting temperature of a 

protein, based on its primary sequence.  Our findings highlight the critical role that data 
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diversity plays on training robust models. Models trained on datasets with a wider range of 

sequences from various organisms exhibited superior performance compared to those with 

limited diversity. This emphasizes the need for a comprehensive data curation strategy that 

ensures a balanced representation of diverse species in the training data, to avoid the risk that 

the model focuses on recognizing the evolutionary lineage of the sequence rather than the 

intrinsic thermostability features. In order to gain more nuanced insights into protein 

thermostability, we propose leveraging attention scores within Deep Learning models to gain 

more nuanced insights into protein thermostability. We show that analyzing these scores 

alongside the 3D protein structure could offer a better understanding of the complex interplay 

between amino acid properties, their positioning, and the surrounding microenvironment, all 

crucial factors influencing protein thermostability. 

 

This work sheds light on the limitations of current protein thermostability prediction methods 

and introduces new avenues for exploration. By emphasizing data diversity and utilizing 

refined attention scores, future research can pave the way for more accurate and informative 

methods for predicting protein thermostability. 
 

Availability and Implementation: TemBERTure model and the data are available at 

https://github.com/ibmm-unibe-ch/TemBERTure 

1. Introduction 

Biocatalysts have become integral to numerous industrial processes, ranging from 

pharmaceutical production to food processing and biofuels production1–3. In these 

applications, protein thermostability plays a crucial role4,5. Proteins that endure high 

temperatures are essential for accelerating and enhancing chemical reactions, leading to 

reduced production costs2. However, exposure to elevated temperatures can cause 

denaturation and loss of biological activity6, underscoring the importance of improving our 

understanding of protein thermostability. 

 

Despite notable progress in experimental techniques for measuring protein thermostability, 

the process remains time-consuming and challenging to scale up, resulting in limited data on 

protein thermostability7. Currently, ProThermDB is the largest dataset of experimental 

thermodynamic data for protein stability8, encompassing a comprehensive collection of 32,000 

proteins, of which 38% are wild-type sequences and 51% single point mutations. In recent 

developments, novel experimental techniques have emerged that allow for the determination 

of the thermal stability of proteins across the entire genome of a cell. These techniques involve 
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the integration of mass spectrometry with limited proteolysis9, or liquid chromatography10. In 

addition to experimental techniques, the growth temperature of organisms is commonly 

employed as a proxy for protein thermostability11–15.  

 

By comparing statistical data from thermophilic and non-thermophilic protein sequences, key 

features associated with thermostability have been identified, including higher proportions of 

hydrophobic and charged residues, and specific dipeptide motifs of thermophilic proteins 13,16–

19. A higher occurrence of hydrogen bonds, salt bridges, disulfide bonds, and hydrophobic 

interactions is also observed in thermophilic proteins20–23. 

 

Extensive research has led to the development of several machine learning models aimed at 

predicting protein thermostability, treating it as a classification task15,24–31.  Early models like 

Thermopred employed a Support Vector Machines (SVM) classifier trained on a dataset of 

793 non-thermophilic and 915 thermophilic protein sequences15, which became a foundation 

for training subsequent models29,30. An expanded version of this dataset, consisting of 1368 

thermophilic and 1443 non-thermophilic proteins, was utilized for training the iThermo model, 

a multi-layer perceptron (MLP)12 and the Sapphire framework, a staking-based ensemble 

model31. Other models have approached the problem as a regression task to directly predict 

the melting temperature32,33. 

 

Transformer-based models such as Bidirectional Encoder Representations from Transformers 

(BERT)34, have improved Natural Language Processing (NLP). By considering proteins as a 

string of amino acids, NLP can be applied to biology and more specifically to protein modeling 

and classification. ProtTrans35, a family of models including protBERT, leverages transformers 

to extract protein characteristics from sequence data. BertThermo36 uses the protBERT 

embeddings with classical machine learning models for thermophilicity classification, whereas 

DeepSTABp incorporates ProtTrans-XL embeddings and growth temperature to predict 

protein melting temperature37. Similarly, TemStaPro38 is an ensemble of models incorporating 

ProtT5-XL35 embeddings to feed-forward densely connected neural network models, and 

ProLaTherm39 integrates the encoder part of a T5-3B 40 model with ProtT5-XL35 as the feature 

extractor.  

 

To overcome the shortcomings of present model approaches, we developed TemBERTure, a 

deep-learning package for protein thermostability prediction. It consists of three components: 

(i) TemBERTureDB, a large curated database of thermophilic and non-thermophilic sequences, 

(ii) TemBERTureCLS, a classifier and (iii) TemBERTureTm, a regression model, which predicts, 
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respectively, the thermal class (non-thermophilic or thermophilic) and melting temperature of 

a protein, based on its primary sequence. Both models are built upon the existing protBERT-

BFD language model35 and fine-tuned through an adapter-based approach41,42. Our findings 

demonstrate the remarkable capability of Deep Learning to differentiate protein classes based 

on their sequences. However, it also highlights the current limitations imposed by the currently 

available data. Despite these limitations, the insights gained from the attention scores within 

these models offer promising clues to unraveling the underlying mechanisms of protein 

thermostability. This has the potential to unlock new avenues for research in biotechnology 

and protein engineering. 

2. Results 

2.1 TemBERTureDB  

To train our Deep Learning models for predicting protein thermostability, we curated 

TemBERTureDB, a comprehensive dataset built upon the Meltome Atlas10 that includes data 

for over 48,000 proteins across 13 different species (Figure 1A). We further enriched it with all 

protein sequences from UniProtKB for each organism43. This initially resulted in a highly 

imbalanced dataset with only 44,000 sequences from thermophilic organisms (growth 

temperature above 60°C) compared to 4.3 million sequences from non-thermophilic 

organisms. To address this imbalance, we incorporated thermophilic proteomes from 

BacDive, adding 0.9 million sequences44. However, the thermophilic dataset remained biased 

towards bacterial and archaeal sequences. Therefore, we included similar bacterial 

sequences (< 30°C growth) with high identity (>80%) to thermophiles. This added valuable 

non-thermophilic examples outside the target class, for a more challenging training set (Table 

S1). 

 

To ensure that both classes contained diverse protein families and folds, we clustered each 

class separately using MMseqs45, resulting in a balanced dataset of 300,000 sequences per 

class. We partitioned it into training, validation, and test sets at an 80:10:10 ratio, ensuring 

that sequences with high similarity remained within the same split, to avoid information 

leakage. To enhance model learning and generalization, pairs of highly similar sequences 

from different classes were exclusively reserved for training, effectively bridging the gap 

between thermophilic and non-thermophilic sequences (Table S2). 
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Figure 1. TemBERTure database creation and model architecture.  (A) TemBERTureDB  creation 

pipeline: Protein sequences from organisms within the Meltome Atlas were retrieved from the UniProt 

database and categorized based on their thermophilicity (red: thermophilic, blue: non-thermophilic).  

Additional sequences were then collected from BacDive and NCBI databases at various temperature 

thresholds to augment the dataset. The final database comprises approximately 0.3 million each for 
thermophilic and non-thermophilic proteins, further divided into training, testing, and validation sets that 

are representative of the temperature distribution. (B) TemBERTureCLS model architecture was based 

on the prot_bert_bfd framework, with lightweight bottleneck adapter layers inserted between each 

transformer layer (shown in gray). The model takes a protein sequence as input and outputs a score 

indicating the classification score of the sequence being thermophilic or non-thermophilic. 

2.2 TemBERTureCLS  

TemBERTureDB served as the training dataset for TemBERTureCLS, a sequence-based 

classifier designed to predict the thermal class of a protein solely from its amino acid sequence 

(Figure 1B). TemBERTureCLS leveraged protBERT-BFD, a pre-trained protein language 

model35, and utilized adapter layers41,42 for efficient task-specific learning. This approach offers 

faster (up to 50%) and more robust training (avoiding catastrophic forgetting) than full fine-

tuning, thus enabling rapid model experimentation and optimization without sacrificing 

performance.  

TemBERTureCLS achieved an overall accuracy of 0.89, a F1-score of 0.9, and a Matthews 

Correlation Coefficient (MCC) of 0.78, with balanced predictive performance across both 

classes (0.88 and 0.90 F1-score for non-thermophilic and thermophilic sequence 
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respectively). Low standard deviation across multiple trained models confirms robust training. 

We therefore chose to retain the initially trained model as the final TemBERTureCLS model. 

When comparing the performance of TemBERTureCLS to state-of-the-art models, we observed 

that many of the latter tend to overpredict the non-thermophilic class (Figure 2). Despite 

achieving a competitive average precision of 0.97 for thermophilic sequences, their recall fell 

below 0.7, resulting in numerous misclassifications of non-thermophilic proteins. This 

highlights the limitations in the generalizability of current methods (Table S3). 

 

Figure 2. Comparison of TemBERTureCLS  with state-of-the art models on the TemBERTureDB test 
set. Recall and Precision are shown separately for thermophilic (red) and non-thermophilic (blue) 

thermal categories. 

 

To assess the generalization of TemBERTureCLS, we tested it on the widely used iThermo 

dataset12 and the TemStaPro test set38. After removing similar sequences (over 50% identity), 

the final test sets contained 65 and 1495 thermophilic sequences and 505 and 10849 non-

thermophilic sequences for iThermo and TemStaPro, respectively. TemBERTureCLS 

maintained high accuracy, achieving 86% on iThermo and 83% on TemStaPro (Table S4). To 

explore TemBERTureCLS ability to perform on sequences from novel organisms, we created a 

new test set with sequences from organisms in the BacDive database44. Although non-

thermophilic sequence precision remained high (0.81), precision for thermophilic sequences 

dropped (0.74), suggesting limitations in generalizing to completely new organisms.  
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To further investigate this observation, we trained separate models, with the same architecture 

as TemBERTureCLS, with two distinct datasets: one derived from BacDive44, focusing solely 

on bacterial and archaeal organisms, and another one from the Meltome Atlas10, augmented 

solely with thermophilic sequences (Tables S5 and S6). Each model performed well on the 

dataset derived from the same source as its training data. However, performances dropped 

significantly when tested on the other datasets (Figure 3).  These variations were less 

pronounced for the thermophilic class, most likely because all datasets used BacDive for 

selecting thermophilic organisms. In contrast, the non-thermophilic class exhibited greater 

performance variations. The BacDrive-trained model's performance dropped significantly, 

when tested on the TemBERTureDB or MeltomeDB data (almost random classifications), 

whereas TemBERTureCLS and the Meltome-trained model maintained comparable 

performance across all datasets, indicating the necessity of using diverse training datasets to 

improve generalizability. 

 

 
Figure 3. Impact of dataset curation on model performance. Confusion matrix comparing the 

performance of the TemBERTureCLS  model with models trained on data derived from only BacDive and 

Meltome. The evaluation is performed on three separate test sets: TemBERTureDB, BacDiveDB and 

MeltomeDB test sets. Each cell in the matrix represents the proportion of predictions made by a specific 

model on a specific test set. Shades of blue indicates correct predictions for the non-thermophilic 

category, while shades of red represents the performance for thermophilic sequences. Off-diagonal 

entries indicate instances of misclassification. 
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2.3 TemBERTureTm  

Building on these promising TemBERTureCLS results, we developed TemBERTureTm, to 

predict  protein melting temperature (Tm) from its primary sequence. Extracting the readily 

available protein melting temperature data from the Meltome Atlas, we again leveraged 

protBERT-BFD and adapter layers for training TemBERTureTm. Even though the model 

achieved a seemingly high Pearson correlation of 0.78, a more detailed analysis revealed a 

clear limitation (Figure 4A). The predicted temperatures displayed a surprising bimodal 

distribution, concentrated around non-thermophilic (below 60°C) and thermophilic (above 

80°C) ranges. This suggests a bias towards classifying temperatures into these broad 

categories rather than accurately predicting the melting points. This bias agrees with the weak 

correlation within each class (0.41 for non-thermophilic, -0.33 for thermophilic) and high 

accuracy (82%) of TemBERTureTm as a classifier using a 70°C threshold. Moreover, 

TemBERTureTm displayed significant variability among replicates trained with different random 

seeds, suggesting instability and limitations within the training process. 

 

 
Figure 4. Predicted melting temperatures. A) Scatter plot comparing the measured melting 
temperatures to predicted melting temperature. Each point is colored base on the thermal category 

(blue: non-thermophilic and red: thermophilic). The dashed gray line represents a perfect prediction. 

Standard deviations are calculated from the predictions of three replicates. B) Distributions of melting 

temperature for various organisms, represented by a colored gradient ranging from red (high growth 

temperature) to blue (low growth temperature). The measured melting temperature distributions are 

shown in gray, while the predicted distributions using TemBERTureTM are shown in color. Gray circles 

mark the growth temperatures of each organisms and the temperatures noted in parentheses indicating 

the average melting temperatures of the organism’s proteome. 
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Given the limited size (around 30,000 sequences) of the Metabolome Atlas dataset, we 

explored transfer learning. We hypothesized that pre-trained adapter weights from 

TemBERTureCLS, which captured thermal class features, could improve TemBERTureTm 

regression performance. Our approach involved replacing the random initialization of the 

adapter layers with weights from various stages of the classification training process. Since 

TemBERTureTm prediction followed a bimodal distribution, we chose different training stages 

for the adapter weights, aiming to balance leveraging learned thermal features and enabling 

the regression to move beyond this bias. However, this approach did not yield any significant 

improvements in performance. 
 

In order to improve the performance, we explored diverse ensembling strategies (see 

Extended methods in Supplementary material). First, we established an upper bound on 

achievable performance using an oracle approach. From all TemBERTureTm variations, the 

oracle selected the prediction from all TemBERTureTm variations that was closest to the 

experimentally measured melting temperature. This yielded a best-case scenario with a MAE 

of 2.64°C and an R² of 0.94 on the test set, highlighting the potential of the underlying 

approach. However, the ensemble techniques only led to marginal changes in performances 

(Table S7).  A more promising approach involved leveraging thermal class information. We 

first predicted a protein's class (non-thermophilic or thermophilic) using TemBERTureCLS to 

predict the thermal class (non-thermophilic or thermophilic) of the protein sequence. Then, we 

selected a subset of best performing TemBERTureTm models for each class. This resulted in 

a combination of 5 models for non-thermophilic predictions (all transfer learning) and 2 models 

for thermophilic predictions (Table S7), i.e., one with random weights and one with partial first-

epoch weights. This highlights the importance of incorporating class information, achieving a 

decrease in MAE (6.31°C) and an increase in R² (0.78) on the test set compared to other 

ensembling techniques. 

 

Despite limitations in predicting individual melting point prediction, TemBERTureTm showed 

promise in capturing broader thermal properties. We used the model to predict melting 

temperatures for unmeasured proteins from organisms within the Metabolome Atlas. 

Interestingly, the predicted distribution mirrored the known distribution of measured melting 

temperatures across diverse organisms (Figure 4B). This suggests that, although 

TemBERTureTm has some difficulties in predicting individual values, it still might capture  

underlying patterns related to protein thermostability across species. 
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2.4 Interpretability 

To explore the intricate relationships between amino acid properties and thermostability, we 

conducted an analysis of the attention mechanisms in the TemBERTureCLS model. Attention 

mechanisms offer an interpretable scoring function, highlighting segments of the input 

sequence that are most important for a particular prediction by assigning them higher scores. 

In the context of TemBERTureCLS, this would allow for a comprehensive identification of crucial 

amino acids and regions within a sequence that may influence the thermostability prediction. 

We defined High-Attention Score (HAS) regions as exceeding the interquartile range (IQR) of 

attention values across the entire sequence. All analyses were performed using the first replica 

of TemBERTureCLS. 

Effect of fine-tuning 

To investigate the impact of fine-tuning on the model's attention patterns, we compared the 

frequencies of HAS amino acids between the pre-trained protBERT-BFD model and 

TemBERTureCLS. We hypothesized that changes in HAS frequencies might correlate with 

features linked to thermostability. Although the overall attention scores remained remarkably 

similar between the two models, we observed a shift in the frequency of HAS for specific amino 

acids (Figure 5A). For thermophilic proteins, leucine, arginine, and alanine appeared more 

frequently as HAS, whereas the frequency only increased for leucine in non-thermophilic 

sequences (Figure S1). 

 

 
Figure 5. Frequency of high attention score (HAS) by amino acid. A) Scatter plot comparing the 

frequency of HAS amino acids of the pre-trained ProtBERT-BFD model to TemBERTureCLS. Each point 

represents an amino acid and is colored in gray if the frequency of HAS increased in TemBERTure CLS. 
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B) Bubble plot comparing the frequency of each amino acid in the test set to its HAS frequency. Red 

bubble indicate that the frequency of HAS is higher for thermophilic and blue bubbles for non-
thermophilic. Each bubble is scaled to the difference in frequency between both classes. 

 

Amino acids enrichment  

We conducted a more in-depth analysis by comparing the enrichment levels of each amino 

acid within the protein sequences with their natural occurrence frequencies. We calculated the 

background frequency of each amino acid in the TemBERTureDB test set and compared it to 

the frequency at which they appeared as HAS (Figures 5B and S2). This analysis revealed 

distinct patterns between thermophilic and non-thermophilic proteins. For example, we 

observed an increase in HAS frequency for several hydrophobic residues, such as alanine, 

phenylalanine and leucine, which potentially reflect their role in stabilizing the protein core 

through tight packing. Interestingly, cysteine, which is known for forming stabilizing disulfide 

bridges and coordinating metals46, received higher attention in non-thermophiles. Glutamine 

and Asparagine, susceptible to deamidation at high temperatures47–49, showed decreased 

HAS, in agreement with their expected scarcity in these organisms. TemBERTureCLS also 

showed a clear preference for different charged amino acids, with an increase in HAS for 

arginine and a decrease in HAS for lysine. However, it is crucial to underscore the potential 

complexity in interpreting HAS scores. An increase in high-attention scores (HAS) might 

suggest functional importance; however, their interpretation requires caution due to 

dependence on the local amino acid environment. Conversely, decreased HAS for specific 

amino acids might not indicate a negative impact, but rather reflect the model's focus on their 

specific critical interactions within the protein structure. 

Structural analysis 

In order to gain some structural insights from the attention scores, we analyzed 17 pairs of 

homologous thermophilic and non-thermophilic proteins correctly classified by 

TemBERTureCLS. These pairs shared moderate sequence similarity (identity score: 0.28 - 

0.54). Although the overall attention patterns between homologous proteins showed some 

correlation, the HAS amino acids exhibited more variability. Between homologous proteins, 

the model assigned a similar number of HAS to both conserved and non-conserved amino 

acids (Figures 6A and S3). Interestingly, the specific amino acids receiving HAS often differed 

between homologs, even in conserved regions. This is further supported by the presence of 
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many HAS within insertion regions, highlighting the model's ability to focus on regions beyond 

the conserved core for thermostability prediction.  

 

 

Figure 6. Representative structural analysis of attention scores. (A) Scatter plot comparing the 

attention scores assigned by the TemBERTureCLS model to individual amino acids in two homologous 

protein structures (PDB ID: 1LDN [thermophilic] and 1LDG [non-thermophilic]) with 46% sequence 

identity. . Each marker represents an amino acid, categorized by its conservation level: circles for non-

conserved, diamonds for conserved, and triangles for insertions. HAS amino acids in the thermophilic 

structure are highlighted in red, while those in the non-thermophilic counterpart are highlighted in blue. 
(B) and (C) Cartoon representation of both protein structures. The width and color indicate the attention 

score values, with regions with higher attention scores appearing thicker and redder. D Cartoon 

representation of 1LDN colored based on the entropy at each amino acid position position. Higher 

entropy (green, thicker regions) indicates greater sequence variability. 

 

To understand how TemBERTureCLS leverages structural information beyond sequence 

similarity, we mapped the attention scores directly onto protein structures (Figure 6B, C, and 

S4). Higher attention scores localized similarly across homologs, regardless of sequence 

entropy (Figure 6D). Notably, higher attention scores often resided in helical regions and the 

protein core, potentially revealing the prioritization of structurally important elements for 

predicting thermostability.  

3. Discussion 

Protein thermostability is crucial for various applications in biotechnology and biology. 

Traditional experimental methods for assessing it are laborious, expensive, and prone to 
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errors. Here, we developed a new set of tools which allowed us to explore the potential of 

Deep Learning models to predict protein thermostability. Our study highlights the critical role 

of data diversity in training robust models. We observed significant performance improvement 

with datasets encompassing a wider range of sequences from various organisms. Conversely, 

insufficient diversity, as seen in the BacDive derived dataset, led to models that struggled with 

challenging test sets. This emphasizes the need for a holistic approach to data curation, in 

order to ensure balanced representation of diverse species in the training data. 

Although the Meltome Atlas presents an impressive number of melting temperatures, it suffers 

from certain biases, in particular, the data primarily represents non-thermophilic organisms 

with a temperature gap between 60 – 70°C. Interestingly, TemBERTureTM's predictions, while 

not accurate for absolute melting temperatures, captured the overall distribution of melting 

temperatures observed across different species in the dataset. This suggests the model might 

have prioritized recognizing the species origin of the sequence rather than intrinsic 

thermostability features. This agrees with previous findings showing that sequence 

embeddings from language models can already capture these broad differences between 

thermophilic and non-thermophilic organisms38. Additionally, the presence of thermostable 

proteins within non-thermophilic proteomes further underscores the limitations of using growth 

temperature alone as a thermostability proxy. 

Various statistical approaches have attempted to identify important changes in amino acid 

composition linked to thermostability13,22,50–54. However, such analyses heavily depend on 

dataset curation, leading to contradictory results. Furthermore, while certain biophysical 

properties of residues may elucidate their prevalence in thermostable proteins, thermophilicity 

is a multifaceted attribute influenced by the positioning and microenvironment of amino acids 

within the protein. This study presents the concept of leveraging attention scores to gain more 

nuanced insights into protein thermostability. Even though we observed some global trends 

consistent with previous analyses (e.g., enrichment of specific amino acids), TemBERTureCLS 

also highlighted the value of analyzing these interactions within the context of the 3D protein 

structure. However, our findings suggest that the present attention scores still need to be 

refined, since they capture both thermostability-related features and organism-specific 

characteristics. Further research is needed to refine them for a more precise understanding of 

protein thermostability. 

In conclusion, this work sheds light on the limitations of current approaches for predicting 

protein thermostability. It introduced new avenues for exploration. which highlighted the 

importance of using diverse training data, extending the analysis beyond single-species, and 

exploiting important features of the models, such as attention scores. Based on our results,  
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future research can develop even more robust and informative methods for predicting protein 

thermostability. 

4. Materials and Methods 

 

This section is composed of four main parts. Part 1 outlines the workflow for establishing 

comprehensive curated databases of thermophilic and non-thermophilic protein sequences 

sourced from various experiments and data collection, with TemBERTureDB as the primary 

training resource and two additional databases used for bias and generalization assessment. 

The second and third subsection describes the architecture and training of TemBERTureCLS 

and TembertureTm. The last subsection provides the technical details used for the analyses. 

4.1 Database creation 

a. TemBERTureDB 

TemBERTureDB leveraged data from the Meltome Atlas experiment10. We obtained pre-

processed protein sequences from the ProtStab2 dataset33. These sequences were 

supplemented by retrieving all sequences from UniProtKB43 corresponding to the same 

thirteen organisms as in the Meltome Altas. To address the class imbalance between 

thermophilic and non-thermophilic sequences, we enriched the thermophilic dataset by 

sourcing additional data from the BacDive database44. Here, we classified sequences based 

on the growth temperature of their respective organisms: thermophilic (>60°C) and non-

thermophilic (<30°C). Protein sequences were retrieved for each organism from the NCBI 

database55. Ambiguous and short (< 30 amino acids) sequences were excluded. MMseqs was 

then employed to cluster the sequences within each dataset, using a threshold of 50% for 

thermophilic and 80% for non-thermophilic. To further address the class imbalance, we 

augmented the non-thermophilic dataset with challenging examples. These examples were 

retrieved from non-thermophilic organisms (BacDive) and exhibited high sequence similarity 

(80% < identity < 95%) to the thermophilic sequences. The final TemBERTureDB was stored 

as an SQL database facilitating efficient data retrieval for downstream analyses (Table S1). 

b. BacDive 

Within the BacDive database, organisms were classified based on growth temperature: 

thermophilic (>60°C) and non-thermophilic (<30°C). Protein sequences were then retrieved 

for each organism from the NCBI database, and ambiguous or short sequences (<30 amino 

acids) were excluded. Given the substantial disparity between the number of non-thermophilic 
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and thermophilic sequences, we used MMseqs in cascading mode to cluster the non-

thermophilic sequences. We then undersampled the centroids (representatives of each 

cluster) to align with the number of thermophilic centroids identified using MMseqs with a 50% 

identity threshold (Table S5). 

c. Meltome 

We leveraged data curated within TemBERTureDB and excluded the non-thermophilic 

counterparts of the high-similarity sequence pairs retrieved from the BacDive database (Table 

S6). 

 

 

Splitting 
For model training, we partitioned the datasets into an 80:10:10 ratio for the training, validation, 

and test sets, respectively. To mitigate any potential information leakage between sets, all 

sequences were clustered with MMseqs at a 50% identity threshold. Centroids and their 

corresponding clusters were then assigned to the same split. 

For the regression task, we exclusively used the initial Meltome dataset. Melting temperatures 

were categorized into temperature bins of 10°C, and 10 data points from each temperature 

bin were randomly selected for both the test and validation sets. To address the imbalance in 

the distribution of melting temperatures within the training set, we implemented a combination 

of undersampling and oversampling techniques. Temperature bins with an abundance of data 

points (40 – 55 °C) were undersampled, whereas bins with a scarcity of data points (20 – 40°C 

and 60 – 90°C) were oversampled. This approach ensured a balanced number of data points 

across all temperature bins. 

4.2 TemBERTureCLS 

TemBERTureCLS (Figure 1B) is a sequence-based classifier that takes the amino acid 

sequence as input and outputs the corresponding thermal class of the protein along with its 

associated score. It was built on top of the pre-trained protBERT-BFD model35, a BERT model 

composed of 30 layers, 16 heads, and 1024 hidden layers and trained on over 2 billion protein 

sequences from the BFD10056,57 dataset. In order to reduce the number of trainable 

parameters and enhance the efficiency of the training process, we opted for an adapter-based 

fine tuning technique41,42, where light weight bottleneck layers are inserted between each 

transformer layer.  
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TemBERTureCLS was thus implemented as a BertAdapterModel with Pfeiffer adapters58  

configuration using the PyTorch framework via adapters42 library. It was initiated with the 

proBERT-BFD35 weights through the HuggingFace API59 and the Pfeiffer adapter architecture 

layers were added after the feed-forward block of each Transformer layer60 61. In this way we 

reduced the number of trainable parameters from 420 million to 5 million.  

Training 

Protein sequences were tokenized at the amino acid level utilizing the protBERT-BFD35 

tokenizer, with all sequences truncated to a maximum length of 512. For each dataset, a 

separate hyperparameter search was carried out to optimize the training and architecture of 

the model (Table S8). This hyperparameter search was performed through the use of W&B 

Sweeps62 grid hyperparameter search. The adapter training was carried out for a maximum of 

20 epochs for each dataset with a batch size of 16, using AdamW optimizer63 with default 

Hugging Face59 configuration. The model that achieved the lowest validation loss was then 

saved for evaluation. To ensure model robustness, the final configuration of each model was 

trained three times under identical conditions, varying only the random seed. This approach 

allowed us to assess the model's independence from specific random seeds and to confirm 

its reliability across different runs. All models were trained on a single NVIDIA A100 80G GPU. 

4.3 TemBERTureTm 

TemBERTureTm is a sequence-based regression model designed to predict the protein melting 

temperature (Tm) directly from its amino acid sequence.  This model has the same underlying 

architecture configuration and tokenization as TemBERTureCLS, with a regression head. 

Leveraging the pre-trained protBERT-BFD model, we adopted again an adapter-based fine-

tuning technique to reduce trainable parameters.  

Training 

The model was trained on a curated dataset created specifically for predicting protein melting 

temperatures, based on TemBERTureDB. All sequences are truncated to a maximum length 

of 512. The training was carried out for a maximum of 200 epochs for each run with a batch 

size of 16 and using AdamW optimizer 63 with default Hugging Face 59 values.  We conducted, 

with W&B Sweeps 62, an extensive search to identify the optimal configuration of the 

regression head  (Table S9). We then explored various weight initialization approaches for the 

model. In addition to random initialization, we investigated transfer learning from 

TemBERTureCLS at different training stages. This involved introducing classifier weights at 

25%, 50%, 75%, and 100% of the first epoch, along with weights from the fully trained 
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classifier. To assess model stability and consistency across random initializations, all models 

were trained three times with different random seeds. For each configuration, the model 

achieving the lowest validation loss was saved for further evaluation. All training runs utilized 

a single NVIDIA A100 80G GPU.  

4.4 Analyses 

Ensemble Evaluation for Melting Temperature Prediction 

To improve prediction accuracy, we evaluated different ensembles of models on the validation 

set. We built these ensembles by selecting  subsets of the initial 18 models. These 18 models 

encompassed all distinct initialization methods (random and transfer learning with 

TemBERTureCLS weights) and their replicates. We investigated three ensemble approaches: 

greedy algorithm, weighted ensemble, and a method leveraging TemBERTureCLS. 

Additionally, we experimented with various averaging techniques (standard deviation and 

interquartile range) to combine predictions and identify the optimal value for each data point. 

Overall, these ensemble strategies aimed to harness the strengths of multiple models and 

achieve a configuration effective across a broad temperature range. Detailed descriptions are 

provided in the Extended Methods in the supporting information. 

High attention score 

The interquartile range (IQR) method was used to identify amino acids within a protein 

sequence with a high attention score (HAS). We calculated a threshold by adding 1.5 times 

the IQR to the third quartile (Q3) of the attention scores. Attention scores exceeding this 

threshold are flagged as outliers, indicating a noticeably high attention score (HAS) and 

potentially significant influence on the model's decisions. 
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