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Abstract

Understanding protein thermostability is essential for various biotechnological and biological
applications. However, traditional experimental methods for assessing this property are time-
consuming, expensive, and error-prone. Recently, the application of Deep Learning
techniques from Natural Language Processing (NLP) was extended to the field of biology, with
an emphasis on protein modeling. From a linguistic perspective, the primary sequence of

proteins can be viewed as a string of amino acids that follow a physicochemical grammar.

This study explores the potential of Deep Learning models trained on protein sequences to
predict protein thermostability which provide improvements with respect to current
approaches. We implemented TemBERTure, a Deep Learning framework to classify the
thermal class (non-thermophilic or thermophilic) and predict and melting temperature of a

protein, based on its primary sequence. Our findings highlight the critical role that data
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diversity plays on training robust models. Models trained on datasets with a wider range of
sequences from various organisms exhibited superior performance compared to those with
limited diversity. This emphasizes the need for a comprehensive data curation strategy that
ensures a balanced representation of diverse species in the training data, to avoid the risk that
the model focuses on recognizing the evolutionary lineage of the sequence rather than the
intrinsic thermostability features. In order to gain more nuanced insights into protein
thermostability, we propose leveraging attention scores within Deep Learning models to gain
more nuanced insights into protein thermostability. We show that analyzing these scores
alongside the 3D protein structure could offer a better understanding of the complex interplay
between amino acid properties, their positioning, and the surrounding microenvironment, all

crucial factors influencing protein thermostability.

This work sheds light on the limitations of current protein thermostability prediction methods
and introduces new avenues for exploration. By emphasizing data diversity and utilizing
refined attention scores, future research can pave the way for more accurate and informative

methods for predicting protein thermostability.

Availability and Implementation: TemBERTure model and the data are available at
https://github.com/ibmm-unibe-ch/TemBERTure

1. Introduction

Biocatalysts have become integral to numerous industrial processes, ranging from
pharmaceutical production to food processing and biofuels production™. In these
applications, protein thermostability plays a crucial role*°. Proteins that endure high
temperatures are essential for accelerating and enhancing chemical reactions, leading to
reduced production costs?. However, exposure to elevated temperatures can cause
denaturation and loss of biological activity®, underscoring the importance of improving our

understanding of protein thermostability.

Despite notable progress in experimental techniques for measuring protein thermostability,
the process remains time-consuming and challenging to scale up, resulting in limited data on
protein thermostability’. Currently, ProThermDB is the largest dataset of experimental
thermodynamic data for protein stability?, encompassing a comprehensive collection of 32,000
proteins, of which 38% are wild-type sequences and 51% single point mutations. In recent
developments, novel experimental techniques have emerged that allow for the determination

of the thermal stability of proteins across the entire genome of a cell. These techniques involve
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the integration of mass spectrometry with limited proteolysis®, or liquid chromatography®. In
addition to experimental techniques, the growth temperature of organisms is commonly

employed as a proxy for protein thermostability'~"°.

By comparing statistical data from thermophilic and non-thermophilic protein sequences, key
features associated with thermostability have been identified, including higher proportions of
hydrophobic and charged residues, and specific dipeptide motifs of thermophilic proteins 316
. A higher occurrence of hydrogen bonds, salt bridges, disulfide bonds, and hydrophobic

interactions is also observed in thermophilic proteins?®-22,

Extensive research has led to the development of several machine learning models aimed at

predicting protein thermostability, treating it as a classification task'>2+"

. Early models like
Thermopred employed a Support Vector Machines (SVM) classifier trained on a dataset of
793 non-thermophilic and 915 thermophilic protein sequences'®, which became a foundation
for training subsequent models?**°. An expanded version of this dataset, consisting of 1368
thermophilic and 1443 non-thermophilic proteins, was utilized for training the iThermo model,
a multi-layer perceptron (MLP)'? and the Sapphire framework, a staking-based ensemble
model®'. Other models have approached the problem as a regression task to directly predict

the melting temperature®*°,

Transformer-based models such as Bidirectional Encoder Representations from Transformers
(BERT)*, have improved Natural Language Processing (NLP). By considering proteins as a
string of amino acids, NLP can be applied to biology and more specifically to protein modeling
and classification. ProtTrans®, a family of models including protBERT, leverages transformers
to extract protein characteristics from sequence data. BertThermo® uses the protBERT
embeddings with classical machine learning models for thermophilicity classification, whereas
DeepSTABp incorporates ProtTrans-XL embeddings and growth temperature to predict
protein melting temperature®’. Similarly, TemStaPro®® is an ensemble of models incorporating
ProtT5-XL** embeddings to feed-forward densely connected neural network models, and
ProLaTherm® integrates the encoder part of a T5-3B “° model with ProtT5-XL* as the feature

extractor.

To overcome the shortcomings of present model approaches, we developed TemBERTure, a
deep-learning package for protein thermostability prediction. It consists of three components:
(i) TemBERTurepg, a large curated database of thermophilic and non-thermophilic sequences,
(i) TemBERTurecLs, a classifier and (iii) TemBERTurerm, a regression model, which predicts,
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respectively, the thermal class (non-thermophilic or thermophilic) and melting temperature of
a protein, based on its primary sequence. Both models are built upon the existing protBERT-
BFD language model®® and fine-tuned through an adapter-based approach*'*2. Our findings
demonstrate the remarkable capability of Deep Learning to differentiate protein classes based
on their sequences. However, it also highlights the current limitations imposed by the currently
available data. Despite these limitations, the insights gained from the attention scores within
these models offer promising clues to unraveling the underlying mechanisms of protein
thermostability. This has the potential to unlock new avenues for research in biotechnology

and protein engineering.

2. Results

2.1 TemBERTureps

To train our Deep Learning models for predicting protein thermostability, we curated
TemBERTureps, a comprehensive dataset built upon the Meltome Atlas™ that includes data
for over 48,000 proteins across 13 different species (Figure 1A). We further enriched it with all
protein sequences from UniProtKB for each organism*. This initially resulted in a highly
imbalanced dataset with only 44,000 sequences from thermophilic organisms (growth
temperature above 60°C) compared to 4.3 million sequences from non-thermophilic
organisms. To address this imbalance, we incorporated thermophilic proteomes from
BacDive, adding 0.9 million sequences*. However, the thermophilic dataset remained biased
towards bacterial and archaeal sequences. Therefore, we included similar bacterial
sequences (< 30°C growth) with high identity (>80%) to thermophiles. This added valuable
non-thermophilic examples outside the target class, for a more challenging training set (Table
S1).

To ensure that both classes contained diverse protein families and folds, we clustered each
class separately using MMseqgs*, resulting in a balanced dataset of 300,000 sequences per
class. We partitioned it into training, validation, and test sets at an 80:10:10 ratio, ensuring
that sequences with high similarity remained within the same split, to avoid information
leakage. To enhance model learning and generalization, pairs of highly similar sequences
from different classes were exclusively reserved for training, effectively bridging the gap

between thermophilic and non-thermophilic sequences (Table S2).
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Figure 1. TemBERTure database creation and model architecture. (A) TemBERTureDB creation
pipeline: Protein sequences from organisms within the Meltome Atlas were retrieved from the UniProt
database and categorized based on their thermophilicity (red: thermophilic, blue: non-thermophilic).
Additional sequences were then collected from BacDive and NCBI databases at various temperature
thresholds to augment the dataset. The final database comprises approximately 0.3 million each for
thermophilic and non-thermophilic proteins, further divided into training, testing, and validation sets that
are representative of the temperature distribution. (B) TemBERTureCLS model architecture was based
on the prot_bert_bfd framework, with lightweight bottleneck adapter layers inserted between each
transformer layer (shown in gray). The model takes a protein sequence as input and outputs a score

indicating the classification score of the sequence being thermophilic or non-thermophilic.

2.2 TemBERTurects

TemBERTureps served as the training dataset for TemBERTurecis, a sequence-based
classifier designed to predict the thermal class of a protein solely from its amino acid sequence
(Figure 1B). TemBERTurec.s leveraged protBERT-BFD, a pre-trained protein language
model*®, and utilized adapter layers*'*? for efficient task-specific learning. This approach offers
faster (up to 50%) and more robust training (avoiding catastrophic forgetting) than full fine-
tuning, thus enabling rapid model experimentation and optimization without sacrificing

performance.

TemBERTurecs achieved an overall accuracy of 0.89, a F1-score of 0.9, and a Matthews
Correlation Coefficient (MCC) of 0.78, with balanced predictive performance across both

classes (0.88 and 0.90 F1-score for non-thermophilic and thermophilic sequence
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respectively). Low standard deviation across multiple trained models confirms robust training.
We therefore chose to retain the initially trained model as the final TemBERTurec.s model.
When comparing the performance of TemBERTurec.s to state-of-the-art models, we observed
that many of the latter tend to overpredict the non-thermophilic class (Figure 2). Despite
achieving a competitive average precision of 0.97 for thermophilic sequences, their recall fell
below 0.7, resulting in numerous misclassifications of non-thermophilic proteins. This

highlights the limitations in the generalizability of current methods (Table S3).

Accuracy

Recall Recall

Precision Precision

F1
=== TemBERTure TemStaPro
SCMTPP == iThermo BertThermo

Figure 2. Comparison of TemBERTurecLs with state-of-the art models on the TemBERTureps test
set. Recall and Precision are shown separately for thermophilic (red) and non-thermophilic (blue)

thermal categories.

To assess the generalization of TemBERTurec.s, we tested it on the widely used iThermo
dataset'? and the TemStaPro test set®®. After removing similar sequences (over 50% identity),
the final test sets contained 65 and 1495 thermophilic sequences and 505 and 10849 non-
thermophilic sequences for iThermo and TemStaPro, respectively. TemBERTurec.s
maintained high accuracy, achieving 86% on iThermo and 83% on TemStaPro (Table S4). To
explore TemBERTurecs ability to perform on sequences from novel organisms, we created a
new test set with sequences from organisms in the BacDive database**. Although non-
thermophilic sequence precision remained high (0.81), precision for thermophilic sequences

dropped (0.74), suggesting limitations in generalizing to completely new organisms.
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To further investigate this observation, we trained separate models, with the same architecture
as TemBERTurecLs, with two distinct datasets: one derived from BacDive*, focusing solely
on bacterial and archaeal organisms, and another one from the Meltome Atlas'®, augmented
solely with thermophilic sequences (Tables S5 and S6). Each model performed well on the
dataset derived from the same source as its training data. However, performances dropped
significantly when tested on the other datasets (Figure 3). These variations were less
pronounced for the thermophilic class, most likely because all datasets used BacDive for
selecting thermophilic organisms. In contrast, the non-thermophilic class exhibited greater
performance variations. The BacDrive-trained model's performance dropped significantly,
when tested on the TemBERTureps or Meltomeps data (almost random classifications),
whereas TemBERTurecis and the Meltome-trained model maintained comparable
performance across all datasets, indicating the necessity of using diverse training datasets to

improve generalizability.

TemBERTure Meltome BacDive

0.50 0.50

0.10

@@=

TemBERTurepg

@=o

Meltomepg

e e e 82 @=m

True class

BacDivepg
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Figure 3. Impact of dataset curation on model performance. Confusion matrix comparing the

performance of the TemBERTurecLs model with models trained on data derived from only BacDive and
Meltome. The evaluation is performed on three separate test sets: TemBERTureps, BacDiveps and
Meltomeps test sets. Each cell in the matrix represents the proportion of predictions made by a specific
model on a specific test set. Shades of blue indicates correct predictions for the non-thermophilic
category, while shades of red represents the performance for thermophilic sequences. Off-diagonal

entries indicate instances of misclassification.
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2.3 TemBERTurem

Building on these promising TemBERTurecLs results, we developed TemBERTurern, to
predict protein melting temperature (Tm) from its primary sequence. Extracting the readily
available protein melting temperature data from the Meltome Atlas, we again leveraged
protBERT-BFD and adapter layers for training TemBERTurern. Even though the model
achieved a seemingly high Pearson correlation of 0.78, a more detailed analysis revealed a
clear limitation (Figure 4A). The predicted temperatures displayed a surprising bimodal
distribution, concentrated around non-thermophilic (below 60°C) and thermophilic (above
80°C) ranges. This suggests a bias towards classifying temperatures into these broad
categories rather than accurately predicting the melting points. This bias agrees with the weak
correlation within each class (0.41 for non-thermophilic, -0.33 for thermophilic) and high
accuracy (82%) of TemBERTurern as a classifier using a 70°C threshold. Moreover,
TemBERTurem, displayed significant variability among replicates trained with different random

seeds, suggesting instability and limitations within the training process.
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Figure 4. Predicted melting temperatures. A) Scatter plot comparing the measured melting
temperatures to predicted melting temperature. Each point is colored base on the thermal category
(blue: non-thermophilic and red: thermophilic). The dashed gray line represents a perfect prediction.
Standard deviations are calculated from the predictions of three replicates. B) Distributions of melting
temperature for various organisms, represented by a colored gradient ranging from red (high growth
temperature) to blue (low growth temperature). The measured melting temperature distributions are
shown in gray, while the predicted distributions using TemBERTuretm are shown in color. Gray circles
mark the growth temperatures of each organisms and the temperatures noted in parentheses indicating

the average melting temperatures of the organism’s proteome.
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Given the limited size (around 30,000 sequences) of the Metabolome Atlas dataset, we
explored transfer learning. We hypothesized that pre-trained adapter weights from
TemBERTurec.s, which captured thermal class features, could improve TemBERTurern
regression performance. Our approach involved replacing the random initialization of the
adapter layers with weights from various stages of the classification training process. Since
TemBERTurerm prediction followed a bimodal distribution, we chose different training stages
for the adapter weights, aiming to balance leveraging learned thermal features and enabling
the regression to move beyond this bias. However, this approach did not yield any significant

improvements in performance.

In order to improve the performance, we explored diverse ensembling strategies (see
Extended methods in Supplementary material). First, we established an upper bound on
achievable performance using an oracle approach. From all TemBERTurer variations, the
oracle selected the prediction from all TemBERTurern variations that was closest to the
experimentally measured melting temperature. This yielded a best-case scenario with a MAE
of 2.64°C and an R? of 0.94 on the test set, highlighting the potential of the underlying
approach. However, the ensemble techniques only led to marginal changes in performances
(Table S7). A more promising approach involved leveraging thermal class information. We
first predicted a protein's class (non-thermophilic or thermophilic) using TemBERTurec.s to
predict the thermal class (non-thermophilic or thermophilic) of the protein sequence. Then, we
selected a subset of best performing TemBERTurern models for each class. This resulted in
a combination of 5 models for non-thermophilic predictions (all transfer learning) and 2 models
for thermophilic predictions (Table S7), i.e., one with random weights and one with partial first-
epoch weights. This highlights the importance of incorporating class information, achieving a
decrease in MAE (6.31°C) and an increase in R? (0.78) on the test set compared to other

ensembling techniques.

Despite limitations in predicting individual melting point prediction, TemBERTurern showed
promise in capturing broader thermal properties. We used the model to predict melting
temperatures for unmeasured proteins from organisms within the Metabolome Atlas.
Interestingly, the predicted distribution mirrored the known distribution of measured melting
temperatures across diverse organisms (Figure 4B). This suggests that, although
TemBERTurerm has some difficulties in predicting individual values, it still might capture

underlying patterns related to protein thermostability across species.
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2.4 Interpretability

To explore the intricate relationships between amino acid properties and thermostability, we
conducted an analysis of the attention mechanisms in the TemBERTurec.s model. Attention
mechanisms offer an interpretable scoring function, highlighting segments of the input
sequence that are most important for a particular prediction by assigning them higher scores.
In the context of TemBERTurec.s, this would allow for a comprehensive identification of crucial
amino acids and regions within a sequence that may influence the thermostability prediction.
We defined High-Attention Score (HAS) regions as exceeding the interquartile range (IQR) of
attention values across the entire sequence. All analyses were performed using the first replica
of TemBERTurects.

Effect of fine-tuning

To investigate the impact of fine-tuning on the model's attention patterns, we compared the
frequencies of HAS amino acids between the pre-trained protBERT-BFD model and
TemBERTurecs. We hypothesized that changes in HAS frequencies might correlate with
features linked to thermostability. Although the overall attention scores remained remarkably
similar between the two models, we observed a shift in the frequency of HAS for specific amino
acids (Figure 5A). For thermophilic proteins, leucine, arginine, and alanine appeared more
frequently as HAS, whereas the frequency only increased for leucine in non-thermophilic

sequences (Figure S1).
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Figure 5. Frequency of high attention score (HAS) by amino acid. A) Scatter plot comparing the
frequency of HAS amino acids of the pre-trained ProtBERT-BFD model to TemBERTurects. Each point

represents an amino acid and is colored in gray if the frequency of HAS increased in TemBERTure cis.

10/23


https://doi.org/10.1101/2024.03.28.587204
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.28.587204; this version posted March 31, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

B) Bubble plot comparing the frequency of each amino acid in the test set to its HAS frequency. Red
bubble indicate that the frequency of HAS is higher for thermophilic and blue bubbles for non-

thermophilic. Each bubble is scaled to the difference in frequency between both classes.

Amino acids enrichment

We conducted a more in-depth analysis by comparing the enrichment levels of each amino
acid within the protein sequences with their natural occurrence frequencies. We calculated the
background frequency of each amino acid in the TemBERTureps test set and compared it to
the frequency at which they appeared as HAS (Figures 5B and S2). This analysis revealed
distinct patterns between thermophilic and non-thermophilic proteins. For example, we
observed an increase in HAS frequency for several hydrophobic residues, such as alanine,
phenylalanine and leucine, which potentially reflect their role in stabilizing the protein core
through tight packing. Interestingly, cysteine, which is known for forming stabilizing disulfide
bridges and coordinating metals*, received higher attention in non-thermophiles. Glutamine

47-49 " showed decreased

and Asparagine, susceptible to deamidation at high temperatures
HAS, in agreement with their expected scarcity in these organisms. TemBERTurec.s also
showed a clear preference for different charged amino acids, with an increase in HAS for
arginine and a decrease in HAS for lysine. However, it is crucial to underscore the potential
complexity in interpreting HAS scores. An increase in high-attention scores (HAS) might
suggest functional importance; however, their interpretation requires caution due to
dependence on the local amino acid environment. Conversely, decreased HAS for specific
amino acids might not indicate a negative impact, but rather reflect the model's focus on their

specific critical interactions within the protein structure.
Structural analysis

In order to gain some structural insights from the attention scores, we analyzed 17 pairs of
homologous thermophilic and non-thermophilic proteins correctly classified by
TemBERTurecs. These pairs shared moderate sequence similarity (identity score: 0.28 -
0.54). Although the overall attention patterns between homologous proteins showed some
correlation, the HAS amino acids exhibited more variability. Between homologous proteins,
the model assigned a similar number of HAS to both conserved and non-conserved amino
acids (Figures 6A and S3). Interestingly, the specific amino acids receiving HAS often differed

between homologs, even in conserved regions. This is further supported by the presence of
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many HAS within insertion regions, highlighting the model's ability to focus on regions beyond

the conserved core for thermostability prediction.
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Figure 6. Representative structural analysis of attention scores. (A) Scatter plot comparing the
attention scores assigned by the TemBERTurecLs model to individual amino acids in two homologous
protein structures (PDB ID: 1LDN [thermophilic] and 1LDG [non-thermophilic]) with 46% sequence
identity. . Each marker represents an amino acid, categorized by its conservation level: circles for non-
conserved, diamonds for conserved, and triangles for insertions. HAS amino acids in the thermophilic
structure are highlighted in red, while those in the non-thermophilic counterpart are highlighted in blue.
(B) and (C) Cartoon representation of both protein structures. The width and color indicate the attention
score values, with regions with higher attention scores appearing thicker and redder. D Cartoon
representation of 1LDN colored based on the entropy at each amino acid position position. Higher

entropy (green, thicker regions) indicates greater sequence variability.

To understand how TemBERTurecs leverages structural information beyond sequence
similarity, we mapped the attention scores directly onto protein structures (Figure 6B, C, and
S4). Higher attention scores localized similarly across homologs, regardless of sequence
entropy (Figure 6D). Notably, higher attention scores often resided in helical regions and the
protein core, potentially revealing the prioritization of structurally important elements for

predicting thermostability.

3. Discussion

Protein thermostability is crucial for various applications in biotechnology and biology.

Traditional experimental methods for assessing it are laborious, expensive, and prone to
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errors. Here, we developed a new set of tools which allowed us to explore the potential of
Deep Learning models to predict protein thermostability. Our study highlights the critical role
of data diversity in training robust models. We observed significant performance improvement
with datasets encompassing a wider range of sequences from various organisms. Conversely,
insufficient diversity, as seen in the BacDive derived dataset, led to models that struggled with
challenging test sets. This emphasizes the need for a holistic approach to data curation, in
order to ensure balanced representation of diverse species in the training data.

Although the Meltome Atlas presents an impressive number of melting temperatures, it suffers
from certain biases, in particular, the data primarily represents non-thermophilic organisms
with a temperature gap between 60 — 70°C. Interestingly, TemBERTurerv's predictions, while
not accurate for absolute melting temperatures, captured the overall distribution of melting
temperatures observed across different species in the dataset. This suggests the model might
have prioritized recognizing the species origin of the sequence rather than intrinsic
thermostability features. This agrees with previous findings showing that sequence
embeddings from language models can already capture these broad differences between
thermophilic and non-thermophilic organisms®. Additionally, the presence of thermostable
proteins within non-thermophilic proteomes further underscores the limitations of using growth
temperature alone as a thermostability proxy.

Various statistical approaches have attempted to identify important changes in amino acid
composition linked to thermostability'®?2°°->*, However, such analyses heavily depend on
dataset curation, leading to contradictory results. Furthermore, while certain biophysical
properties of residues may elucidate their prevalence in thermostable proteins, thermophilicity
is a multifaceted attribute influenced by the positioning and microenvironment of amino acids
within the protein. This study presents the concept of leveraging attention scores to gain more
nuanced insights into protein thermostability. Even though we observed some global trends
consistent with previous analyses (e.g., enrichment of specific amino acids), TemBERTurec.s
also highlighted the value of analyzing these interactions within the context of the 3D protein
structure. However, our findings suggest that the present attention scores still need to be
refined, since they capture both thermostability-related features and organism-specific
characteristics. Further research is needed to refine them for a more precise understanding of
protein thermostability.

In conclusion, this work sheds light on the limitations of current approaches for predicting
protein thermostability. It introduced new avenues for exploration. which highlighted the
importance of using diverse training data, extending the analysis beyond single-species, and

exploiting important features of the models, such as attention scores. Based on our results,

13/23


https://doi.org/10.1101/2024.03.28.587204
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.28.587204; this version posted March 31, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

future research can develop even more robust and informative methods for predicting protein

thermostability.

4. Materials and Methods

This section is composed of four main parts. Part 1 outlines the workflow for establishing
comprehensive curated databases of thermophilic and non-thermophilic protein sequences
sourced from various experiments and data collection, with TemBERTurepg as the primary
training resource and two additional databases used for bias and generalization assessment.
The second and third subsection describes the architecture and training of TemBERTurecLs

and Temberturern. The last subsection provides the technical details used for the analyses.

4.1 Database creation

a. TemBERTureps

TemBERTureps leveraged data from the Meltome Atlas experiment'®. We obtained pre-
processed protein sequences from the ProtStab2 dataset®®*. These sequences were
supplemented by retrieving all sequences from UniProtKkB*® corresponding to the same
thirteen organisms as in the Meltome Altas. To address the class imbalance between
thermophilic and non-thermophilic sequences, we enriched the thermophilic dataset by
sourcing additional data from the BacDive database*. Here, we classified sequences based
on the growth temperature of their respective organisms: thermophilic (>60°C) and non-
thermophilic (<30°C). Protein sequences were retrieved for each organism from the NCBI
database®. Ambiguous and short (< 30 amino acids) sequences were excluded. MMseqs was
then employed to cluster the sequences within each dataset, using a threshold of 50% for
thermophilic and 80% for non-thermophilic. To further address the class imbalance, we
augmented the non-thermophilic dataset with challenging examples. These examples were
retrieved from non-thermophilic organisms (BacDive) and exhibited high sequence similarity
(80% < identity < 95%) to the thermophilic sequences. The final TemBERTureps was stored

as an SQL database facilitating efficient data retrieval for downstream analyses (Table S1).

b. BacDive

Within the BacDive database, organisms were classified based on growth temperature:
thermophilic (>60°C) and non-thermophilic (<30°C). Protein sequences were then retrieved
for each organism from the NCBI database, and ambiguous or short sequences (<30 amino

acids) were excluded. Given the substantial disparity between the number of non-thermophilic
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and thermophilic sequences, we used MMseqs in cascading mode to cluster the non-
thermophilic sequences. We then undersampled the centroids (representatives of each
cluster) to align with the number of thermophilic centroids identified using MMsegs with a 50%
identity threshold (Table S5).

c. Meltome

We leveraged data curated within TemBERTureps and excluded the non-thermophilic
counterparts of the high-similarity sequence pairs retrieved from the BacDive database (Table
S6).

For model training, we partitioned the datasets into an 80:10:10 ratio for the training, validation,
and test sets, respectively. To mitigate any potential information leakage between sets, all
sequences were clustered with MMseqgs at a 50% identity threshold. Centroids and their
corresponding clusters were then assigned to the same split.

For the regression task, we exclusively used the initial Meltome dataset. Melting temperatures
were categorized into temperature bins of 10°C, and 10 data points from each temperature
bin were randomly selected for both the test and validation sets. To address the imbalance in
the distribution of melting temperatures within the training set, we implemented a combination
of undersampling and oversampling techniques. Temperature bins with an abundance of data
points (40 — 55 °C) were undersampled, whereas bins with a scarcity of data points (20 — 40°C
and 60 — 90°C) were oversampled. This approach ensured a balanced number of data points

across all temperature bins.

4.2 TemBERTurecLs

TemBERTurecis (Figure 1B) is a sequence-based classifier that takes the amino acid
sequence as input and outputs the corresponding thermal class of the protein along with its
associated score. It was built on top of the pre-trained protBERT-BFD model®**, a BERT model
composed of 30 layers, 16 heads, and 1024 hidden layers and trained on over 2 billion protein
sequences from the BFD100%%" dataset. In order to reduce the number of trainable
parameters and enhance the efficiency of the training process, we opted for an adapter-based

41,42

fine tuning technique™*<, where light weight bottleneck layers are inserted between each

transformer layer.
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TemBERTurecis was thus implemented as a BertAdapterModel with Pfeiffer adapters®®
configuration using the PyTorch framework via adapters*? library. It was initiated with the
proBERT-BFD*® weights through the HuggingFace API*® and the Pfeiffer adapter architecture
layers were added after the feed-forward block of each Transformer layer® . In this way we

reduced the number of trainable parameters from 420 million to 5 million.

Training

Protein sequences were tokenized at the amino acid level utilizing the protBERT-BFD**
tokenizer, with all sequences truncated to a maximum length of 512. For each dataset, a
separate hyperparameter search was carried out to optimize the training and architecture of
the model (Table S8). This hyperparameter search was performed through the use of W&B
Sweeps® grid hyperparameter search. The adapter training was carried out for a maximum of
20 epochs for each dataset with a batch size of 16, using AdamW optimizer® with default
Hugging Face® configuration. The model that achieved the lowest validation loss was then
saved for evaluation. To ensure model robustness, the final configuration of each model was
trained three times under identical conditions, varying only the random seed. This approach
allowed us to assess the model's independence from specific random seeds and to confirm

its reliability across different runs. All models were trained on a single NVIDIA A100 80G GPU.

4.3 TemBERTuretm

TemBERTuremnis a sequence-based regression model designed to predict the protein melting
temperature (Tm) directly from its amino acid sequence. This model has the same underlying
architecture configuration and tokenization as TemBERTurecis, with a regression head.
Leveraging the pre-trained protBERT-BFD model, we adopted again an adapter-based fine-

tuning technique to reduce trainable parameters.
Training

The model was trained on a curated dataset created specifically for predicting protein melting
temperatures, based on TemBERTurepgs. All sequences are truncated to a maximum length
of 512. The training was carried out for a maximum of 200 epochs for each run with a batch
size of 16 and using AdamW optimizer & with default Hugging Face > values. We conducted,
with W&B Sweeps ®2, an extensive search to identify the optimal configuration of the
regression head (Table S9). We then explored various weight initialization approaches for the
model. In addition to random initialization, we investigated transfer learning from
TemBERTurec.s at different training stages. This involved introducing classifier weights at

25%, 50%, 75%, and 100% of the first epoch, along with weights from the fully trained
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classifier. To assess model stability and consistency across random initializations, all models
were trained three times with different random seeds. For each configuration, the model
achieving the lowest validation loss was saved for further evaluation. All training runs utilized
a single NVIDIA A100 80G GPU.

4.4 Analyses
Ensemble Evaluation for Melting Temperature Prediction

To improve prediction accuracy, we evaluated different ensembles of models on the validation
set. We built these ensembles by selecting subsets of the initial 18 models. These 18 models
encompassed all distinct initialization methods (random and transfer learning with
TemBERTurecLs weights) and their replicates. We investigated three ensemble approaches:
greedy algorithm, weighted ensemble, and a method leveraging TemBERTurects.
Additionally, we experimented with various averaging techniques (standard deviation and
interquartile range) to combine predictions and identify the optimal value for each data point.
Overall, these ensemble strategies aimed to harness the strengths of multiple models and
achieve a configuration effective across a broad temperature range. Detailed descriptions are

provided in the Extended Methods in the supporting information.

High attention score

The interquartile range (IQR) method was used to identify amino acids within a protein
sequence with a high attention score (HAS). We calculated a threshold by adding 1.5 times
the IQR to the third quartile (Q3) of the attention scores. Attention scores exceeding this
threshold are flagged as outliers, indicating a noticeably high attention score (HAS) and

potentially significant influence on the model's decisions.
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