

1 **A RALF-Brassinosteroid morpho-signaling circuit regulates *Arabidopsis* hypocotyl cell shape**

4 David Biermann^{1*}, Michelle von Arx^{1,2*}, Kaltra Xhelilaj¹, David Séré³, Martin Stegmann^{3§},
5 Sebastian Wolf¹, Cyril Zipfel^{2,3#} & Julien Gronnier^{1,2#}.

6 1. Center for Plant Molecular Biology (ZMBP), University of Tübingen, Germany.

7 2. Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zürich,
8 Zürich, Switzerland.

9 3. The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.

10 * These authors contributed equally to the work

11 # Correspondence: julien.gronnier@zmbp.uni-tuebingen.de , cyril.zipfel@botinst.uzh.ch

12 § Present address: Phytopathology, School of Life Sciences, Technical University of Munich, Freising,
13 Germany

14 **Abstract**

15 Plant cells survey and modulate their cell wall to control their shape and anisotropic growth.
16 Signaling mediated by the plant steroid hormones brassinosteroids (BR) plays a central role
17 in coordinating cell wall status and cell growth, and alterations in the cell wall – BR feedback
18 loop leads to life-threatening defects in tissue and cellular integrity. How the status of the cell
19 wall is relayed to BR signaling remains largely unclear. Increasing evidence shows that RAPID
20 ALKALANIZATION FACTORs (RALFs), a class of secreted peptides, play structural and signaling
21 roles at the cell surface. Here we show that perception of RALF23 promotes the formation
22 and signaling of the main BR receptor complex formed by BRASSINOSTEROID INSENSITIVE 1
23 (BRI1) and BRI1-BRASSINOSTEROID INSENSITIVE1-BRASSINOSTEROID-ASSOCIATED KINASE 1
24 (BAK1). The loss of the plasma membrane-localized RALF receptor complex FERONIA (FER)-
25 LORELEI LIKE GPI-anchor protein 1 (LLG1) leads to defects in cell expansion and anisotropy, as
26 well as uncontrolled BRI1-BAK1 complex formation and signaling. RALF23 bioactivity relies on
27 pectin status and its perception induces changes in pectin composition and the activity of
28 pectin-modifying enzymes. Our observations suggest a model in which RALF23 functions as a
29 cell wall-informed signaling cue initiating a feedback loop that solicits BR signaling, modifies
30 the cell wall, and coordinates cell morphogenesis.

31 **Highlights**

32 -The RALF receptor complex FER-LLG1 regulates cell anisotropic growth
33 -RALF23 promotes BRI1-BAK1 complex formation and signaling
34 -RALF23 functions as a cell wall-informed and wall-modifying signaling cue

42 Introduction

43 Plant cells are encased by the cell wall, a rigid polysaccharide-rich matrix providing tensile
44 strength and controlling cell shape and integrity (Anderson and Kieber 2020). During
45 development, expanding cells face a life-or-death dilemma: they must precisely control the
46 modifications of the cell wall to allow anisotropic growth while preserving cell wall integrity
47 (Vaahtera et al. 2019). Accumulating evidence indicates that this tight balance is controlled
48 by wall-derived cues that are perceived as informative signals at the cell wall–plasma
49 membrane interface to initiate cell wall signaling (CWS) (Hématy et al. 2007; Mecchia et al.
50 2017; Van der Does et al. 2017; Engelsdorf et al. 2018; Herger et al. 2019; Chaudhary et al.
51 2020; Wolf 2022; Liu et al. 2023). Among the recently identified CWS components, the RAPID
52 ALKALINIZATION FACTOR (RALF) family of secreted peptides and its binding partners play a
53 pivotal role in regulating growth (Srivastava et al. 2009; Gonneau et al. 2018; Dünser et al.
54 2019; Li et al. 2022; Gupta et al. 2024), reproduction (Ge et al. 2017; Mecchia et al. 2017;
55 Zhong et al. 2022; Lan et al. 2023; Zhou et al. 2023), responses to abiotic stresses (Feng et al.
56 2018; Zhao et al. 2018, 2021) and immunity (Guo et al.; Stegmann et al. 2017; Song et al.
57 2021; Gronnier et al. 2022; Tang et al. 2022). Recent studies show that positively charged
58 RALF peptides associate with cell wall carbohydrates in the form of de-esterified pectin
59 (Moussu et al. 2020, 2023; Schoenaers et al. 2023; Liu et al. 2024; Rößling et al. 2024). RALF-
60 pectin mers associate with cell wall-bound LEUCINE-RICH REPEAT EXTENSIN (LRX) proteins
61 (Mecchia et al. 2017; Dünser et al. 2019; Herger et al. 2020; Moussu et al. 2020, 2023) and
62 plasma membrane-localized complexes composed of *Catharanthus roseus* RECEPTOR-LIKE
63 KINASE 1-LIKE (CrRLK1L) and LORELEI-LIKE glycosylphosphatidylinositol-anchored (LLG)
64 proteins (Haruta et al. 2014; Li et al. 2015; Gonneau et al. 2018; Ge et al. 2019; Xiao et al.
65 2019; Liu et al. 2024). In the cell wall of tip-growing cells, RALF-pectin-LRX complexes
66 assemble into a reticulated network providing structural support for cellular expansion
67 (Moussu et al. 2023; Schoenaers et al. 2023). At the cell surface, RALF perception has been
68 linked to the initiation of several signaling events such as changes in apoplastic pH (Pearce et
69 al. 2001; Morato do Canto et al. 2014; Li et al. 2022), the production of reactive oxygen species
70 (Stegmann et al. 2017; Abarca et al. 2021), and an influx of calcium (Haruta et al. 2014;
71 Gjetting et al. 2020; Gao et al. 2023). We previously reported that perception of RALF23 by
72 the plasma membrane-localized receptors LLG1 and the CrRLK1L FERONIA inhibits complex
73 formation of the immune LEUCINE RICH REPEAT (LRR) receptor kinase (RK) FLAGELLIN
74 SENSING 2 (FLS2) and its co-receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1)-ASSOCIATED
75 KINASE 1 (BAK1, also known as SOMATIC EMBRYOGENESIS RECEPTOR KINASE 3, SERK3)
76 (Stegmann et al. 2017; Xiao et al. 2019) and that such inhibitory function is linked to the
77 regulation of FLS2 and BAK1 plasma membrane organization (Gronnier et al. 2022). It has
78 recently been shown that this effect is not limited to FLS2 and BAK1 and that perception of
79 RALF23 induces global changes in membrane organization (Yu et al. 2020; Chen et al. 2023b;
80 Smokvarska et al. 2023; Liu et al. 2024); notably impacting the organization of additional cell
81 surface receptors, such as the LRR-RK BRI1 (Liu et al. 2024). While the effect of RALF
82 perception on immune signaling is well characterized (Stegmann et al. 2017; Song et al. 2018;
83 Gronnier et al. 2022; Tang et al. 2022; Chen et al. 2023a), the functional consequences of RALF
84 perception for other RK signaling pathways and potential link with CWS remain however
85 unexplored. BRI1, the main receptor for the plant steroid hormones brassinosteroids (BR),
86 forms a ligand-induced complex with SERKs such as BAK1/SERK3 (Santiago et al. 2013; Sun et
87 al. 2013; Ma et al. 2016). BRI1-BAK1 complex formation triggers a signaling cascade that
88 involves the de-phosphorylation of the transcription factors of the BRI1 EMS-SUPPRESSOR 1

89 (BES1) and BRASSINAZOLE RESISTANT 1 (BZR1) family (Wang et al. 2002; Yin et al. 2002), and
90 initiates a transcriptional reprogramming regulating growth (Kim and Wang 2010; Belkhadir
91 and Jaillais 2015; Planas-Riverola et al. 2019; Nolan et al. 2022). It is becoming clear that BR
92 signaling functions at the crossroad between CWS and growth (Wolf 2022). Indeed, alteration
93 of pectin methylation status triggers BR signaling (Wolf et al. 2012, 2014), BR signaling
94 modulates the expression of a multitude of cell wall-associated transcripts (Sun et al. 2010;
95 Yu et al. 2011), as well as the activity of wall modifying enzymes (Qu et al. 2011; Xie et al.
96 2011; Sánchez-Rodríguez et al. 2017), and the inhibition of BR signaling in a mutant affecting
97 pectin modification leads to life-threatening defects in tissue and cellular integrity (Kelly-
98 Bellow et al. 2023). Despite the apparent vital importance of the interplay between the cell
99 wall and BR signaling, little is known in regard to the underpinning molecular actors. In recent
100 years, however, several lines of evidence point towards the predominant role of wall
101 monitoring cell-surface receptors in this process. Indeed, the RECEPTOR-LIKE PROTEIN 44
102 (RLP44) and the WALL-ASSOCIATED KINASE (WAK)-like RLP RESISTANCE TO FUSARIUM
103 OXYSPORUM 1 (RFO1)/WAKL22 mediate the activation of BRI1 signaling in response to pectin
104 modification (Wolf et al. 2014; Huerta et al. 2023). In rice (*Oryza sativa*) changes in pectin
105 alleviate the inhibition of OsBRI1 signaling by the WALL-ASSOCIATED KINASE 11 (OsWAK11)
106 (Yue et al. 2022). Here we show that RALF23 promotes BRI1-BAK1 complex formation and
107 signaling. We observed that the loss of *FER* and *LLG1* leads to uncontrolled BRI1-BAK1
108 complex formation and signaling, as well as to defects in cell expansion and anisotropy.
109 RALF23 bioactivity relies on pectin status and its perception induces changes in pectin
110 composition and the activity of pectin-modifying enzymes. Our observations suggest a model
111 in which RALF23 functions as a cell-wall informed signaling cue, initiating a feedback loop that
112 solicits BR signaling, modifies the cell wall, and coordinates cell morphogenesis.

113

114 **Results and discussion**

115 ***FER* inhibits BRI1-BAK1 complex formation and signaling.**

116 The *FER* loss of function mutant *fer-2* was reported to be hypersensitive to exogenous
117 treatment with 24-epi-brassinolide (BL), a potent brassinosteroid (Deslauriers and Larsen
118 2010). To confirm these observations, we used an additional knock-out allele for *FER*, *fer-4*,
119 and a corresponding complementation line expressing *FER*-GFP under the control of its native
120 promotor (Duan et al. 2010). In hypocotyl elongation assays, we observed that *fer-4* is
121 hypersensitive to BL treatment and that expression of *FER*-GFP restored BL responsiveness to
122 wild-type levels (Figure 1A). Since *FER* regulates ligand-induced complex formation between
123 FLS2 and BAK1 (Stegmann et al. 2017), we asked whether the increased BL responsiveness
124 observed in *fer-4* can be explained by changes in BRI1-BAK1 complex formation. In co-
125 immunoprecipitation experiments, we observed a constitutive increase in the association
126 between BRI1-GFP and BAK1 in *fer-4* compared to WT (Figure 1B). To corroborate these
127 observations, we monitored BES1 phosphorylation status and transcript accumulation of two
128 BR-responsive marker genes negatively regulated by BRs, *CPD* and *DWF4* (Albrecht et al.
129 2012a). We observed a constitutive decrease in BES1 phosphorylation as well as a constitutive
130 decrease in the transcript accumulation of *CPD* and *DWF4* in *fer-4*, indicative of an increase in
131 BR signaling (Figure 1C-D). Taken together, these results show that *FER* inhibits BR signaling
132 by regulating BRI1-BAK1 complex formation. Co-immunoprecipitation experiments suggest
133 that *FER* is not in close proximity to BRI1 (Figure S1) implying that regulation of BRI1-BAK1
134 association by *FER* may be indirect.

135

136 **FER regulates hypocotyl cell anisotropic growth and the activity of pectin modifying
137 enzymes**

138 FER was shown to contribute to the mechanical integrity in the *Arabidopsis* root and shoot
139 (Shih et al. 2014; Malivert et al. 2021). We set to investigate the potential effect of loss of *FER*
140 on cell growth and morphology in the hypocotyl of light-grown seedlings. Microscopic
141 observation of *fer-4* revealed defects in cell shape (Figure 2, Figure S2). To gain quantitative
142 information on these morphological defects we performed automated high resolution 3D
143 confocal imaging of optically cleared samples and computed 3D volumes of the hypocotyl
144 epidermis using MorphographX (Barbier de Reuille et al. 2015). Compared to wild-type, *fer-4*
145 showed a pronounced increase in cell volume and a decrease in cell anisotropy (Figure 2 A-
146 C). Moreover, we repeatedly observed cellular outgrowths and loss of cellular integrity in *fer-4*,
147 both in fixed and living samples (Figure S2). We conclude that *FER* is genetically required to
148 control anisotropic growth of hypocotyl epidermal cells. In the cell wall, pectin forms a
149 complex and dynamic meshwork that actively participates in shaping plant cells, although the
150 exact contribution of pectin to morphogenesis remains enigmatic (Bidhendi et al. 2019; Majda
151 et al. 2019; Cosgrove and Anderson 2020; Haas et al. 2020). Changes in pectin esterification
152 degree correlates with wall biophysical properties (Peaucelle et al. 2011, 2015) and the
153 overexpression of pectin modifying enzymes, pectin methyl esterases (PME) or PME inhibitors
154 (PMEI) is sufficient to alter cell morphology (Wolf and Greiner 2012; Daher et al. 2018). Loss
155 of *FER* is associated with a decrease in de-esterified pectin at the filiform apparatus of
156 synergids cells (Duan et al. 2020). We wondered whether defects in cell shape of the
157 hypocotyl epidermis observed in *fer-4* are linked to changes in pectin status in vegetative
158 tissue. We used a dot-blot assay, probing isolated pectin with LM20, JIM5 and LM19
159 antibodies which present distinct affinity towards highly esterified, partially esterified, and
160 mostly de-esterified pectin, respectively (Christiaens et al. 2011). We observed a decrease in
161 signal of all antibodies used to probe *fer-4* cell wall fractions, indicating that loss of *FER* alters
162 pectin methylation status (Figure 2C). To corroborate these observations, we examined the
163 activity of PMEs, the enzymes responsible for pectin de-esterification (Wolf and Greiner
164 2012). We observed an increase in PME activity in *fer-4* proteinaceous cell wall extracts
165 (Figure 2D). Altogether, these observations indicate that *FER* is genetically required to control
166 wall modifications and cell anisotropy. Since BR is a major determinant promoting cell growth
167 and expansion (Wang et al. 2012; Fridman and Savaldi-Goldstein 2013), we asked whether
168 increased BR signaling causes the increase in cell volume and the loss of anisotropy observed
169 in *fer-4*. We crossed *fer-4* with *bak1-4*, a *BAK1* knock-out allele (Chinchilla et al. 2007) and
170 *bri1-301*, an hypomorphic allele of *BRI1* (Xu et al. 2008) (Figure 3A). As expected, *bri1-301* and
171 *bak1-4* were hyporesponsive to BL treatment (Figure 3B). We observed that introducing *bri1-301*
172 or *bak1-4* alleles in *fer-4* alleviates *fer-4* hypersensitivity to exogenous BL treatment
173 (Figure 3B) indicating that they effectively mitigate the increase in BR signaling observed in
174 *fer-4*. However, quantitative analysis of hypocotyl epidermal cell 3D morphology showed that
175 introducing *bak1-4* or *bri1-301* in *fer-4* does not alleviate cell volume and cell shape defects
176 of *fer-4* (Figure 3C-D). In contrast, cell anisotropy appears more severely affected in *fer-4/bak1-4*
177 and *fer-4/bri1-301* than in *fer-4* (Figure 3C-D). These results indicate that increased
178 BR signaling is not causal for the *fer-4* morphological defects. On the contrary, these
179 observations suggest that the increase in BR signaling could rather attenuate the defects
180 caused by the loss of *FER*. Corroborating this hypothesis, we observed that BL treatment
181 alleviated *fer-4* defects in cell anisotropy (Figure S3). Altogether, these observations suggest
182 a tight link between *FER*, cell morphology and BR signaling.

183

184 **RALF perception regulates hypocotyl epidermal cell morphology and BR signaling**

185 We sought to further investigate the molecular basis for FER function in regulating cell
186 anisotropy. FER has been shown to bind to RALF peptides and pectin (Haruta et al. 2014; Feng
187 et al. 2018; Xiao et al. 2019; Lin et al. 2021; Tang et al. 2021). The FER ectodomain contains
188 two malectin-like domains, MalA and MalB (Boisson-Dernier et al. 2011). FER MalA domain
189 was shown to bind pectin *in vitro* (Feng et al. 2018; Lin et al. 2021; Tang et al. 2021), and is
190 required for FER function in regulating pavement cell shape and root hair growth (Gronnier
191 et al. 2022). On the other hand, FER MalB is sufficient for RALF23 responsiveness (Xiao et al.
192 2019; Gronnier et al. 2022). To test whether FER function in regulating cell anisotropy and BR
193 signaling involves pectin sensing and/or RALF perception, we analyzed *fer-4* mutant
194 complemented with a truncated version of FER lacking its MalA domain (FER^{ΔMalA}) (Gronnier
195 et al. 2022). We noticed that FER^{ΔMalA} complements BL hypersensitivity, hypocotyl cell volume
196 and anisotropy defects observed in *fer-4* to a level that is comparable to full length FER
197 complementation line (Figure S4, Figure 1). These observations suggest that FER function in
198 regulating hypocotyl cell morphology and BR signaling is primarily achieved by RALF
199 perception and that MalA-mediated pectin sensing has a minor role in this context. To confirm
200 these observations, we analyzed *llg1-2*, a loss of function mutant of LORELEI-LIKE GPI-
201 ANCHORED 1 (*LLG1*) which encodes for the main RALF co-receptor in vegetative tissues (Li et
202 al. 2015; Xiao et al. 2019; Noble et al. 2022). We observed that loss of *LLG1* leads to defects
203 in hypocotyl epidermal cell morphology that are reminiscent of *fer-4* (Figure S5 A-B). Further,
204 similar to *fer-4* we observed that *llg1-2* is hypersensitive to exogenous BL treatment (Figure
205 S5D) indicating that BR signaling is hyperactive in *llg1-2*. In good agreement, we observed a
206 decrease in *CPD* and *DWF4* transcript levels in *llg1-2* (Figure S5E). Altogether, these
207 observations indicate that hypocotyl epidermal cell morphology and BR signaling are
208 regulated by RALF signaling.

209

210 **RALF23 promotes BRI1-BAK1 complex formation and modulates pectin methylation status**

211 Our observations suggest that the perception of RALF peptide(s) regulates hypocotyl cell
212 morphology and BR signaling. RALF peptides constitute a multigenic family with 37 members
213 in *Arabidopsis* Col-0 (Abarca et al. 2021). Emerging evidence shows that RALFs play structural
214 and signaling roles at the cell surface (Moussu et al. 2023; Schoenaers et al. 2023). Positively
215 charged RALFs associate with de-esterified pectin and mutations in RALF4, RALF22 or RALF1
216 basic residues affects their function (Moussu et al. 2023; Schoenaers et al. 2023; Liu et al.
217 2024; Rößling et al. 2024). In the context of tip-growing cells, RALF4-pectin and RALF22-pectin
218 mers associate with LRx8 and LRx1 proteins, respectively (Moussu et al. 2023). In leaves, the
219 association of RALF1 to pectin has been proposed to form condensates nucleating FER-LLG1
220 complex formation (Liu et al. 2024). RALF23 is a bona fide ligand of the FER-LLG1 complex
221 (Stegmann et al. 2017; Xiao et al. 2019). In addition, RALF23 associates with LRx3, LRx4 and
222 LRx5 *in planta*, and the loss of *LRx3*, *LRx4* and *LRx5* affects RALF23 responsiveness (Zhao et
223 al. 2018; Gronnier et al. 2022) suggesting that RALF23 binds to both LRx in the cell wall and
224 FER-LLG1 at the plasma membrane. In good agreement, AlphaFold-Multimer predicts binding
225 of RALF23 to LRx3, LRx4 and LRx5 (Figure S6A). Analogous to LRx8-bound RALF4, RALF23
226 exposes a polycationic surface compatible with pectin binding in the predicted LRx3-RALF23,
227 LRx4-RALF23, LRx5-RALF23 and FER-LLG1-RALF23 complexes (Figure S6A-B). Mutating
228 surface-exposed positively charged residues of RALF23, and pharmacological inhibition of
229 PME abolished RALF23 bioactivity (Figure S6C-D), suggesting that, as for RALF1 and RALF4
230 (Moussu et al., 2023; Liu et al., 2024; Schoenaers et al., 2023; Rößling et al., 2024), pectin

231 binding is required for RALF23 function. RALF23 perception inhibits ligand-induced complex
232 formation between FLS2 and BAK1 (Stegmann et al. 2017), and modifies the plasma
233 membrane nanoscale organization of FLS2, BAK1 (Gronnier et al. 2022) and BRI1 (Liu et al.
234 2024). We next asked whether RALF23 regulates BR signaling. In co-immunoprecipitation
235 experiments we observed that RALF23 treatment promotes BRI1-BAK1 association (Figure
236 4A). In good agreement, we observed that plants overexpressing RALF23-GFP showed a
237 decrease in *CPD* and *DWF4* transcripts accumulation as well as a decrease in the accumulation
238 of phosphorylated BES1 (Figure 4B-C). Furthermore, the macroscopic analysis of hypocotyl
239 length and microscopy observation of hypocotyl cells showed that overexpression of RALF23-
240 GFP increases BL responsiveness which was suppressed by introducing the *bri1-301* allele
241 (Figure S7). Finally, we observed that the inhibition of PME alleviated the effect of RALF23 on
242 BR signaling (Figure S8). Taken together, these results indicate that RALF23 perception
243 promotes BRI1-BAK1 complex formation and signaling. Since the increase in BR signaling is
244 linked to defects in cell morphology in *fer-4* we asked whether the overexpression of RALF23
245 affects hypocotyl cell shape. The analysis of 3D segmentation of OxRALF23-GFP hypocotyl
246 epidermal cells showed that overexpression of RALF23 does not affect cellular morphology
247 (Figure 5A-B). We thus hypothesized that the promotion of BR signaling by RALF23 is not
248 caused by defects in cell morphology. Conversely, we hypothesized that promotion of BR
249 signaling by RALF23 is linked to its signaling function. We next asked whether RALF23
250 perception leads to modification of the cell wall. In dot-blot assays we observed that RALF23
251 treatment led to a FER-dependent decrease in esterified pectin without measurable
252 modification of PME activity in wild-type plants (Figure 5C-D). Interestingly, we observed that
253 RALF23 promotes the accumulation of pectin with a higher degree of de-esterification, an
254 effect particularly pronounced in *fer-4* (Figure 5C), indicating that RALF23 perception modifies
255 pectin composition in a FER-dependent and FER-independent manner. These modifications
256 of pectin esterification status were associated with a decrease in PME activity (Figure 5D),
257 which we presume to indicate that the increase in LM19 signal is due to recognition of
258 partially esterified pectin by the antibody (Christiaens et al. 2011).
259 Altogether, our observations suggest a model in which RALF23 functions as a cell wall-
260 informed signaling cue, initiating a feedback loop soliciting BR signaling, modifying the cell
261 wall, and coordinating cell morphogenesis (Figure 6). Our data and previous studies
262 (Stegmann et al. 2017; Zhao et al. 2018; Xiao et al. 2019; Gronnier et al. 2022) indicates that
263 RALF23 binds to both cell wall-located LRxS and the plasma membrane localized receptor
264 complex FER-LLG1. As observed with other positively charged RALF peptides, RALF23 activity
265 relies on pectin; presumably through direct binding and the formation of RALF23-pectin mers.
266 Since RALF binding affinity to LRxS is an order of magnitude higher for LRxS than for FER-LLG1
267 (Xiao et al. 2019; Moussu et al. 2020), we hypothesize that the availability of wall-located
268 epitopes defines whether RALF23 is perceived by FER-LLG1. Thereby, RALF23 perception by
269 FER-LLG1 is informative of cell wall status and initiates adaptative responses, which involved
270 the promotion of BRI1-BAK1 complex formation and signaling. It is conceivable that in case of
271 perturbation of the cell wall, such as upon salt or mechanical stress, RALF peptides may be
272 released from LRxS to be perceived by FER-LLG1. We observed that RALF23 perception
273 modulates the activity of pectin-modifying enzymes and pectin chemistry. These
274 modifications may generate new wall-located RALF binding epitopes and, as a consequence,
275 potentially both modulate cell wall properties and attenuate signaling from CrRLK1Ls
276 including FER. In this scenario, RALF23 could thus finely balance its own structural and
277 signaling function acting within a self-regulating signaling pathway. Interestingly, we

278 observed that modulation of pectin methylation status by RALF23 occurred in a FER-
279 dependent and independent manner. In the case of FER-independent changes in pectin,
280 RALF23 effects may be induced locally upon binding to LRXs, or mediated by additional plasma
281 membrane-localized receptors, such as for instance other CrRLKL1s. Our study shows that FER
282 regulates BRI1-BAK1 complex formation and signaling, adding to the growing list of wall
283 monitoring cell surface receptors regulating BR signaling and providing the first example of a
284 peptide ligand-receptor complex module in this context. Whether RALF23 promotion of BRI1-
285 BAK1 association and signaling is a consequence of RALF23-triggered changes in pectin or
286 whether RALF23-triggered changes in pectin are partially mediated by BRI1 signaling remains
287 to be clarified. Interestingly, a recent report showed that BR signaling modulates FER plasma
288 membrane localization (Chaudhary et al. 2023) indicating that RALF and BR signaling regulate
289 each other providing a molecular circuit coordinating morphogenesis. In addition, more
290 research is required to unravel whether RALF signaling also involves the previously identified
291 BR-regulating wall monitoring cell-surface receptors RLP44 (Wolf et al. 2014) and
292 RFO1/WAKL22 (Huerta et al. 2023), or whether they correspond to parallel signaling pathways
293 converging towards BR signaling. It will also be particularly interesting to reveal whether the
294 regulation of BRI1-BAK1 association and cell anisotropy by FER involves antagonist RALF
295 peptides, as proposed in the context of immune signaling (Stegmann et al. 2017) and recently
296 demonstrated in the context of reproduction (Lan et al. 2023). The perception of RALF23
297 modifies the plasma membrane organization of several cell surface receptor such as FLS2,
298 BAK1 and BRI1 (Gronnier et al. 2022; Liu et al. 2024). While these observations are associated
299 with an inhibition of FLS2-BAK1 complex formation, the functional consequences of RALF23
300 for other LRR-RK signaling pathways remained unknown. Here we show that RALF23
301 promotes BRI1-BAK1 association and BR signaling and may function as tipping point in the
302 tradeoff between immunity and growth by rewiring cell-surface signaling. A mechanistic
303 understanding of the molecular links between wall rheology, RALF peptides signaling and the
304 organization of the plasma membrane organization awaits further investigation.
305

306 **Figure legends**

307

308 **Figure 1| FERONIA inhibits BRI1-BAK1 complex formation and signaling.**

309 **A.** Quantification of hypocotyl length of five-day-old *Arabidopsis* seedlings grown on half MS
310 medium containing 200 nM brassinolide (BL) or corresponding mock control solution (EtOH).
311 Scattered data points indicate measurements of individual seedlings. Conditions that do not
312 share a letter are significantly different in Dunn's multiple comparison test ($p<0.0001$).

313 **B.** Immunoprecipitation of BRI1-GFP in *Arabidopsis* seedlings after treatment with 1 μ M BL or
314 corresponding mock control solution (EtOH) for 90 minutes. Membranes were probed with
315 anti-GFP or anti-BAK1 antibodies. Membrane stained with Coomassie brilliant blue (CBB) is
316 presented to show equal loading. Similar observations were made in at least three
317 independent experiments.

318 **C.** BES1 de-phosphorylation 30 min after treatment of twelve-day-old seedlings with 200 nM
319 of BL, as shown by western blot analysis using anti-BES1 antibodies. Membranes were probed
320 with anti-BAK1 antibodies, and subsequently stained with Coomassie brilliant blue (CBB) as
321 loading controls.

322 **D.** Quantitative real-time PCR of *CPD* and *DWF4* transcripts from twelve-day-old seedlings.
323 Scattered data points indicate measurements of individual biological samples, each
324 corresponding to 2-3 seedlings pooled, obtained from three independent experiment. *U-BOX*
325 was used as a house keeping gene and values are expressed relative to Col-0. P-values report
326 Mann-Whitney statistical test.

327

328 **Figure 2| FERONIA regulates cell anisotropic growth and pectin methylation status.**

329 **A.** 3D segmentation of the hypocotyl epidermal cells of fixed five-days-old seedlings stained
330 with SR2200. Cells are colored according to their volume.

331 **B.** Quantification of cell volume and anisotropy in Col-0 and *fer-4*. Graphs are combined violin
332 and box plots, $n= 647 - 760$ cells from 5-6 seedlings. Individual scatter points show outliers.
333 Conditions which do not share a letter are significantly different according to one-way Anova
334 with Tukeys post-hoc HSD test ($p < 0.05$).

335 **C.** Dot-blot showing abundance of esterified (LM20), partially de-esterified (JIM5) and mostly
336 de-esterified (LM19) pectin in Col-0 and *fer-4*; μ g indicates the quantity of total sugars spotted
337 on membrane. 3 independent biological replicates are shown.

338 **D.** Relative PME activity determined by gel diffusion assay. Scatter points show 3 independent
339 biological replicates from 2 experiments, p-value was determined by pairwise Mann-Whitney
340 test.

341

342 **Figure 3| Increase in BR signaling does not underly morphological defects of *fer-4*.**

343 **A.** Rosettes of four-week-old *Arabidopsis* plants grown in a 16-hour light regime.

344 **B.** Quantification of hypocotyl lengths of five-day-old seedlings grown on half MS medium
345 containing 200 nM brassinolide (BL) or corresponding mock control solution (EtOH). Graphs
346 are boxplots, scattered data points show individual measurements pooled from three
347 independent experiments. Conditions that do not share a letter are significantly different in
348 Dunn's multiple comparison test ($p<0.0001$).

349 **C.** 3D segmentation of the hypocotyl epidermal cells of fixed five-day-old seedlings stained
350 with SR2200. Cells are colored according to their volume.

351 **D.** Quantification of cell volume and anisotropy. Graphs are combined boxplots and violin
352 plots, $n= 401-630$ cells from 4-5 seedlings. Individual scatter points show outliers. Conditions

353 not sharing a letter are significantly different according to one-way Anova with Tukeys post-
354 hoc HSD test (p < 0.05).

355

356 **Figure 4| RALF23 promotes BRI1-BAK1 complex formation and signaling.**

357 **A.** Immunoprecipitation of BRI1-GFP in *Arabidopsis* seedlings after treatment with 1 μ M BL,
358 1 μ M RALF23 or corresponding mock control solution (EtOH) for 90 minutes. Membranes were
359 probed with anti-GFP or anti-BAK1 antibodies. Membrane stained with Coomassie brilliant
360 blue (CBB) is presented to show equal loading. Similar observations were made in at least
361 three independent experiments.

362 **B.** Estimation of BES1 de-phosphorylation in twelve-day-old seedlings treated with 200 nM of
363 BL or corresponding control EtOH for 30 min, as observed by western blot analysis using anti-
364 BES1 antibodies. Membranes were probed with anti-BAK1 antibodies to show equal protein
365 loading.

366 **C.** Quantitative real-time PCR of *CPD* and *DWF4* transcripts from twelve-day-old seedlings.
367 Scattered data points indicate measurements of individual biological samples, each
368 corresponding to 2-3 seedlings pooled, obtained from three independent experiment. *U-BOX*
369 was used as a house keeping gene and values are expressed relative to Col-0. Conditions not
370 sharing a letter show significant differences according to Dunn's multiple comparison test.

371

372 **Figure 5| RALF23 modulates pectin methylation and the activity of pectin modifying
373 enzymes.**

374 **A.** 3D segmentation of hypocotyl epidermis cells from fixed five-day old seedlings stained with
375 SR2200. Heat map is colored according to cell volume.

376 **B.** Quantification of cell volume and anisotropy. Graphs are combined box plots and violin
377 plots, n= 377-515 cells from 3-5 seedlings. Individual scatter points show outliers. Conditions
378 not sharing a letter are significantly different according to one-way Anova with Tukeys post-
379 hoc HSD test (p < 0.05).

380 **C.** Dot-Blot assays using LM20 (highly esterified pectin), JIM5 (partially de-esterified pectin)
381 or LM19 (mostly de-esterified pectin) antibodies to probe cell wall extract of twelve-day-old
382 seedlings treated for 90min with 1 μ M of RALF23 or corresponding mock condition, μ g
383 indicates the amount of total sugars spotted on membrane.

384 **D.** Relative PME activity of protein extracts obtained from wild-type of *fer-4* seedlings treated
385 with RALF23 peptide for 90 min or corresponding mock control, as determined by gel diffusion
386 assay. Scattered points show data points from 3 independent biological replicates from 2
387 experiments. Conditions not sharing a letter are significantly different according to Dunn's
388 multiple comparison test (p < 0.05).

389

390 **Figure 6| A proposed working model for a RALF-brassinosteroid morpho-signaling circuit.**

391 RALF23 binds to wall-located LRxS and/or plasma membrane localized receptor complex FER-
392 LLG1. We hypothesize that the availability of wall-located epitopes defines whether RALF23
393 is perceived by FER-LLG1 or LRxS. Thereby, RALF23 perception by FER-LLG1 is informative of
394 cell wall status and initiates adaptative responses, which involve the promotion of BRI1-BAK1
395 complex formation and signaling to regulate morphogenesis. RALF23 modulates pectin
396 composition in a FER-dependent and independent manner. In the case of FER-independent
397 changes in pectin, RALF23 effects may be induced locally upon binding to LRxS or mediated
398 by additional plasma membrane-localized receptors such as for instance other CrRLKL1s. The

399 definition of the exact molecular ramification connecting RALF23 signaling, BR signaling, and
400 the cell wall status awaits further experimental investigation.

401 **Supplementary Figure 1 | FERONIA does not associate with BRI1 receptor complex.**

402 Immunoprecipitation of BRI1-GFP Arabidopsis seedlings after treatment with 1 μ M BL, 1 μ M
403 RALF23 or mock (EtOH) for 90 minutes. Blotting of membranes was performed with anti-GFP,
404 anti-FER, anti-BAK1 or anti-BES1 antibodies. Input shows equal loading of proteins.

405

406 **Supplementary Figure 2 | Analysis of *fer-4* hypocotyl epidermis.**

407 **A.** 3D segmentation of confocal z-stacks of SR2200-stained hypocotyl epidermis cells of fixed
408 five-day-old *fer-4* seedlings; heat map is colored according to cell volume.

409 **B.** Hypocotyl confocal images of five-day-old *fer-4* seedlings, stained with 50 μ g/ml propidium
410 iodide (PI).

411 White arrows show cellular outgrowths and asterisks show intracellular PI signal which is a
412 sign of compromised cellular integrity.

413

414 **Supplementary Figure 3 | Observation of *fer-4* hypocotyl upon exogenous BL treatment.**

415 Z-projection of confocal images of three-day-old Col-0 seedlings stained with 50 μ g/ml
416 propidium iodide. Seedlings were either treated with 200 nM BL or mock control solution
417 (EtOH).

418

419 **Supplementary Figure 4 | FERONIA Malectin A domain is not required to regulate cell
420 anisotropic growth of the hypocotyl epidermal cells.**

421 **A.** Schematic representation showing FERONIA (FER) and LLG1 complex binding RALF
422 peptides. FER^{ΔMaLA} structure is indicated, the absence of MaLA domain does not influence RALF
423 binding capabilities.

424 **B.** Quantification of hypocotyl length of five-day-old seedlings grown on half MS medium
425 containing 200 nM BL or corresponding mock control solution (EtOH). Graphs are boxplots,
426 scattered data points show individual measurements pooled from three independent
427 experiments. Conditions that do not share a letter are significantly different in Dunn's
428 multiple comparison test ($p < 0.0001$).

429 **C.** 3D segmentation of hypocotyl epidermis cells of fixed five-day old seedlings stained with
430 SR2200 and imaged by confocal microscopy. Heat map is colored according to cell volume.

431 **D.** Quantification of cell volume and anisotropy. Graphs are violin plots, $n = 277-617$ cells from
432 4-5 seedlings. Individual scatter points show outliers. Conditions not sharing a letter are
433 significantly different according to one-way Anova with Tukeys post-hoc HSD test ($p < 0.05$).

434

435 **Supplementary Figure 5 | LLG1 regulates cell expansion and BRI1 signaling.**

436 **A.** 3D segmentation of hypocotyl epidermis cells of five-day old seedlings stained with SR2200
437 and imaged by confocal microscopy. Heat map is colored according to cell volume.

438 **B.** Quantification of cell volume and anisotropy. Graphs are violin plots, $n = 510$ cells from 3
439 seedlings for Col-0 and 515 cells from 4 seedlings for *llg1-2*. Individual scatter points show
440 outliers. Conditions not sharing a letter are significantly different according to one-way Anova
441 with Tukeys post-hoc HSD test ($p < 0.05$).

442 **C.** Quantification of hypocotyl length of five-day-old seedlings grown on half MS medium
443 containing 200 nM BL or corresponding mock control solution (EtOH). Graphs are boxplots,
444 scattered data points show individual measurements pooled from three independent

445 experiments. Conditions that do not share a letter are significantly different in Dunn's
446 multiple comparison test (p<0.0001).

447 **D.** RT-qPCR analysis of *CPD* and *DWF4* transcripts accumulation in twelve-day-old seedlings.
448 Scattered data points indicate measurements of individual biological samples, each
449 corresponding to 2-3 seedlings pooled, obtained from three independent experiments. *U-*
450 *BOX* was used as a house keeping gene and values are expressed relative to Col-0. P values
451 report results from Mann-Whitney non-parametric statistical test.

452

453 **Supplementary figure 6 | Pectin methylation status modulates RAFL23 responsiveness.**

454 **A-B.** Analysis of RALF complexes. Analysis of surface exposed residues in LXR8-RALF4 dimer
455 6tme (Moussu et al. 2020), and LXR3-RALF23, LXR4-RALF23 and LXR5-RALF23 (**A**) and RALF23-
456 FER-LLG1 (**B**) predicted by AlphaFold-Multimer. RALF23 amino acids are color coded based on
457 their charge.

458 **C.** Sequence alignment of wild-type RALF1, RALF4, RALF23 and neutralized RALF23 (RALF23n),
459 positively charged amino acids are indicated in blue. RALF23 residues predicted to interact
460 with LXR3, LXR4 and LXR5 are denoted by pink circles.

461 **D.** Relative primary root length of eight-day-old seedlings grown in the absence (mock) or
462 presence of 1 μ M RALF peptides, epigallocatechin-3-gallate (EGCG) or a combination of
463 thereof. Graphs are boxplots, scattered data points show individual measurements pooled
464 from two independent experiments. Conditions that do not share a letter are significantly
465 different in Dunn's multiple comparison test (p<0.001).

466

467 **Supplementary figure 7 | RAFL23-GFP overexpression promotes BL responsiveness.**

468 **A.** Four-week-old *Arabidopsis* rosettes grown in a 16-hour light daily regime.

469 **B.** Hypocotyl length quantification of five-day old seedlings grown on half MS medium
470 containing either 200 nM BL or mock control solution (EtOH). Graphs are presented as
471 boxplots; scattered data points indicate individual measurements pooled from three
472 independent experiments. Conditions not sharing a letter are significantly different in Dunn's
473 multiple comparison test (p<0.0001).

474 **C.** Confocal images of three-day-old *Arabidopsis* hypocotyls stained with 50 μ g/ml propidium
475 iodide. Seedlings were grown on half MS medium supplemented with 200 nM BL or control
476 solution (EtOH).

477

478 **Supplementary figure 8 | EGCG inhibits the effect of RALF23 on BR signaling.**

479 Quantitative real-time PCR of *CPD* (**A**) and *DWF4* (**B**) transcripts from twelve-day-old
480 seedlings. Data show box plot of measurements of individual biological samples obtain from
481 two independent experiments. Conditions which do not share a letter are significantly
482 different in Dunn's multiple comparison test (p<0.05).

483

484 **Acknowledgements**

485 We thank the members of the Zipfel, Grossniklaus, Ringli, Sanchez-Rodriguez, and Keller
486 laboratories for sharing results and comments during our stimulating CCWI meetings. We
487 thank Isabel Monte, Kyle W. Bender and Timo Engelsdorf for discussion and comments on the
488 manuscript. We thank S. Huber for providing materials. This research was funded by the
489 Gatsby Charitable Foundation (CZ), the University of Zürich (CZ), the University of Tübingen
490 (JG), the European Research Council under the Grant Agreements 309858 and 773153 (grants
491 PHOSPHinnATE and IMMUNO-PEPTALK to CZ), the European Molecular Biology Organization

492 2018, to JG) and the Deutsche Forschungsgemeinschaft (DFG) postdoctoral fellowship (STE
493 2448/1, to MS), and DFG grants (A08-SFB1101 and B01-TRR356) to JG.

494

495 **Material and methods.**

496

497 **Plant materials and growth**

498 *Arabidopsis thaliana* ecotype Columbia (Col-0) was used as WT control. The *fer-4*, *fer-4*/FER-
499 GFP (Duan et al. 2010), *fer-4*/FER^{ΔMalA}-YFP (Gronnier et al. 2022), *Irx3/4/5* (Dünser et al. 2019),
500 Col-0/p35S::RALF23-GFP (Stegmann et al. 2017), *llg1-2* (Li et al. 2015) lines were previously
501 reported. *fer-4/bak1-4* and *fer-4/bri1-301* were obtained by crossing *fer-4* (Duan et al. 2010)
502 with *bak1-4* (Chinchilla et al. 2007) and *bri1-301* (Xu et al. 2008) respectively. Col-
503 0/pBRI1::BRI1-GFP (Geldner et al. 2007) was crossed *fer-4* (Duan et al. 2010) to obtained *fer-*
504 4/pBRI1::BRI1-GFP. Seeds were surface sterilized using chlorine gas for 5h or by incubating
505 them in 0.1 % Tween20 in 70 % EtOH for 10 min, following 70 % EtOH for 10 min and 100%
506 EtOH for 1min. Seeds were stratified for 2 days in the dark at 4 °C and grown on half
507 Murashige and Skoog (MS) media supplemented with vitamins, 1 % sucrose and 0.8 % agar at
508 22 °C and a 16-hour light photoperiod.

509

510 **RNA isolation and quantitative RT-PCR**

511 RNA isolation, cDNA synthesis and quantitative real-time PCR (qRT-PCR) was performed as
512 previously described (Albrecht et al. 2012b) with minor modifications. Five-day-old seedlings
513 grown on half MS 1 % sucrose pH 5.8 were transferred to liquid half MS 1 % sucrose pH 5.8
514 and grown for seven days in 24 well plates. Each sample, constituted of three individual
515 seedlings, were blot-dried, transferred to 2-mL tubes containing 2 mm glass beads and flash-
516 frozen in liquid nitrogen. Samples were grinded while frozen for 1.5 min at 1.500rpm using
517 BioRad TissueLyser. RNA was extracted using TRIzol™ Reagent (ThermoFischer scientific).
518 First-strand cDNA synthesis was performed using RevertAid first strand cDNA synthesis kit
519 (ThermoFischer scientific) and oligo(dT)18 according to the manufacturer's instructions.
520 cDNA was amplified in triplicate by quantitative PCR by using PowerUp™ SYBR™ Green Master
521 Mix (ThermoFischer scientific) and a 7500 Fast real-time PCR detection system. The relative
522 transcript accumulation values were determined by using U-box as reference and the
523 comparative Ct method (2-ΔΔCt). The following primers were used for cDNA amplification,
524 *CPD* (AT5G05690): forward: 5'-CCCAAAACCACTTCAAAGATGCT-3' and reverse 5'-
525 GGGCCTGTCGTTACCGAGTT-3', *DWF4* (AT3G50660): forward '5-CATAAAGCTCTTCAGTCACGA-
526 3' and reverse '5-CGTCTGTTCTTGTTCTCAA-3' and *U-BOX* (AT5G15400): forward '5-
527 TCGCCTGCCAGATAATACACTATT-3' and reverse '5-TGCTGCCAACATCAGGTT-3'.

528

529 **Brassinosteroid-sensitivity assay**

530 Seeds were surface-sterilized and individually placed in line on square Petri dishes containing
531 half MS 1% sucrose, 0.8 % phytoagar, supplemented with 200 nM epi-brassinolide or
532 corresponding control solution (EtOH). The plates were placed at 4°C for 2 days and then
533 placed vertically in a growth chamber for 5 days. Pictures of the plates were then taken to
534 measure root hypocotyl length which were measured using Fiji software (Schindelin et al.
535 2012).

536

537 **Mobility shift-based estimation of BES1 phosphorylation status.**

538 Brassinolide-induced BES1 dephosphorylation assays were performed as previously described
539 (Perraki et al. 2018), seedlings were germinated on half MS-agar supplemented with 1 %
540 sucrose for five days before transplanting to 24-well plates (two seedlings per well) containing
541 liquid half MS supplemented with 1 % sucrose. One day before the assays, the medium was
542 replaced with fresh medium. Twelve-day-old seedlings were treated with epi-brassinolide or
543 ethanol (mock) at the indicated concentrations for 30 min. Samples were blot-dried,
544 transferred to 2-mL tubes containing 2 mm glass beads and flash-frozen in liquid nitrogen and
545 store at -80 °C before protein extraction and immunoblotting.

546

547 **Co-immunoprecipitation**

548 Co-immunoprecipitations were performed as previously described (Kadota et al. 2014). 20–
549 30 seedlings per plate were grown in wells of a 6-well plate for 2 weeks, transferred to 2 mM
550 MES-KOH, pH 5.8, and incubated overnight. The next day BL (final concentration 1 µM) and/or
551 RALF23 (final concentration 1 µM) were added and incubated for 90 min. Seedlings were then
552 frozen in liquid nitrogen and subjected to protein extraction. To analyze BRI1-GFP/BAK1
553 association, proteins were isolated in 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 10 % glycerol, 5
554 mM dithiothreitol, 1 % protease inhibitor cocktail (Sigma-Aldrich), 2 mM Na2MoO4, 2.5 mM
555 NaF, 1.5 mM activated Na3VO4, 1 mM phenylmethanesulfonyl fluoride, and 0.5% IGEPAL. For
556 immunoprecipitations, GFP-Trap agarose beads (ChromoTek) were used and incubated with
557 the crude extract for 3–4 hr at 4°C. Subsequently, beads were washed three times with wash
558 buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM phenylmethanesulfonyl fluoride, 0.1 %
559 IGEPAL) before adding Laemmli sample buffer and incubating for 10 min at 95°C. Analysis was
560 carried out by SDS-PAGE and immunoblotting.

561

562 **Immunoblotting**

563 Protein samples were separated in 8-10% bisacrylamide gels at 150 V for approximately 2
564 hours and transferred into activated PVDF membranes at 100 V for 90 min. Immunoblotting
565 was performed with antibodies diluted in blocking solution (5% fat-free milk in TBS with 0.1
566 % [v/v] Tween-20). Antibodies used in this study were α-BAK1 (1:5000; (Roux et al. 2011) or
567 Agrisera AS12 1858), α-BES1 (1:1000, (Perraki et al. 2018), α-GFP-HRP (1:5000, sc-9996-HRP,
568 Santa Cruz), α-GFP (1:5000, sc-9996, Santa Cruz). Blots were developed with Pierce ECL/ECL
569 Femto Western Blotting Substrate (Thermo Scientific). The following secondary antibody was
570 used: anti-rabbit IgG (whole molecule)–HRP (A0545, Sigma, dilution 1:10,000).

571

572 **Structural modelling and analysis.**

573 RALF23- LRXs and RALF23-FER-LLG1 complexes were predicted using AlphaFold Multimer
574 (Jumper et al. 2021; Evans et al. 2022). Predicted complexes were analyzed using ChimeraX
575 (Meng et al. 2023).

576

577 **Confocal laser scanning microscopy of propidium iodide-stained samples**

578 Arabidopsis seedlings were stained with 50 µg/µl propidium iodide (PI) in water for 20 min,
579 then washed with water 3 times to remove unbound PI. Samples were mounted in H₂O on
580 coverslips and z-stacks imaged using a Zeiss LSM880 confocal laser scanning microscope,
581 equipped with a Plan-Apochromat 10x/0.45 M27 objective. PI was excited with a DPS 561 nm
582 diode laser and fluorescence collected between 570-642 nm using 600-800 V gain. Z-
583 projections of the images were created in Fiji (Schindelin et al. 2012).

584

585 **3D Segmentation and analysis of *Arabidopsis* hypocotyl epidermis cells**

586 Prior to analysis, seedlings were fixed, cleared and stained as previously described (Ursache
587 et al. 2018) with minor modifications. Briefly, five-day-old seedlings grown on half MS-agar
588 (0.8 % w/v) supplemented with 1 % sucrose, were fixed using 4 % Paraformaldehyde in PBS
589 pH 6.9 while applying mild vacuum (100 mBar). Fixed samples were washed 3 times with PBS
590 and then incubated in ClearSee solution (25 % Urea (w/v), 15 % Sodium deoxycholate (w/v),
591 10 % Xylitol (w/v)). Clearing was performed for at least 2 weeks while changing ClearSee every
592 second day. Seedlings were stained using 0.1 % (v/v) SR2200 stain in ClearSee for 1 h, then
593 washed with fresh ClearSee for at least 30 minutes. For imaging, samples were mounted in
594 ClearSee and imaged on a Zeiss LSM880 confocal laser scanning microscope, equipped with a
595 C-Apochromate 40x/1.2W Autocorr M27 water objective. SR2200 was excited with a 405 nm
596 diode laser and emission detected between 413 nm-472 nm. Z-stacks acquisition was
597 performed with an interval size of 0.3 μ m to obtain cubic voxels (pixel size 0.3 μ m x 0.3 μ m).
598 To analyze whole hypocotyls, z-stacks from one seedling were combined in Fiji (Schindelin et
599 al. 2012) using the stitching plug-in (Preibisch et al. 2009). 3D segmentation and analysis were
600 carried out in MorphoGraphX (Barbier de Reuille et al. 2015). Hypocotyl stacks were blurred
601 using Gaussian Blur Stack with values between 1 μ m-1.5 μ m. Automated 3D segmentation
602 was carried out using the Watershed Auto Seeded process with a threshold ranging from 800
603 – 1000. Segmentation was manually corrected, and cells not fully represented in the stack
604 deleted. The 3D mesh was created using Marching Cubes 3D process with a cube size of 2 and
605 3 smoothing steps. To achieve optimal cell axis, a Bezier cord was formed according to
606 hypocotyl shape and custom cell axis created with the process Create Bezier Grid Directions.
607 Measurements were exported as CSV files and index of anisotropy calculated as follows: Cell
608 Length/Cell Width = Index anisotropy.

609

610 **Pectin isolation and dot-blot assay**

611 Pectin dot-blot assay was performed as previously described with slight modifications (Gigli-
612 Bisceglia et al. 2022). Five-day-old *Arabidopsis* seedlings were transferred to liquid half MS 1
613 % sucrose pH 5.8 with 2 mM MES-KOH pH 5.8 and grown for six days. three seedlings per
614 biological replicate were harvested by freezing in liquid nitrogen. Samples were incubated
615 with 500 μ l protein extraction buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 10 % glycerol, 5
616 mM dithiothreitol, 1 % protease inhibitor cocktail (Sigma-Aldrich), 2 mM Na₂MoO₄, 2.5 mM
617 NaF, 1.5 mM activated Na₃VO₄, 1 mM phenylmethanesulfonyl fluoride, and 0.5 % IGEPAL) at
618 8 °C for 30 min. Cell wall debris was collected by centrifugation at 16.000 g 4°C for 30min. The
619 supernatant was collected and directly used for subsequent analysis or stored at -80 °C. Cell
620 wall pellet was incubated in 1 ml 70 % pre-warmed (60°C) ethanol for 30 min and recovered
621 by centrifugation at 16.000 g for 15 min. To remove residual proteins and lipids, the pellet
622 was washed twice with 1ml Chlorform:Methanol (1:1) for 30 min. Subsequently, cell wall
623 pellet was washed twice with 80% acetone. After removal of acetone, pellet was dried
624 overnight at room temperature. To extract pectins, the dry pellet was boiled in 200 μ l H₂O
625 for 1 h. The cell debris were collected by centrifugation (13.000 g, 15 min) and the
626 supernatants were either directly used for western blotting or stored at -20°C. For western
627 blotting, total sugar content was quantified using the phenol/H₂SO₄ method (Dubois et al.
628 1956) as described in (Nielsen 2010) with minor changes. 200 μ l of 1:10 diluted pectin
629 solutions were incubated with 200 μ l of 5% phenol solution and 1 ml 95 % sulfuric acid. After
630 1 h incubation, absorbance at 490 nm was measured and total sugar content calculated using
631 galacturonic acid as a standard. Sugar concentration was adjusted to 0.5 μ g/ μ l and 2 μ l with

632 a total of 1 μ g sugars spotted on nitrocellulose membrane. Spots were dried overnight. Then,
633 membranes were blocked with 5 % milk in PBS for 1 h. Membranes were incubated for 1 h
634 with JIM5 (1:250 in 5 % milk in PBS), LM20 (1:250 in 5 % milk in 20 mM Tris-HCL pH 8.2, 0.5
635 mM CaCl₂ and 150 mM NaCl) rat primary antibody or LM19 (1:5000 in 5 % milk in 20 mM Tris-
636 HCL pH 8.2, 0.5 mM CaCl₂ and 150 mM NaCl) rabbit primary antibody. Following washing with
637 PBS + 0.1 % Tween20, membranes were incubated with anti-rat HRP-conjugated secondary
638 antibody (1:6000 in 5 % milk in PBS, for JIM5 and LM20) and anit-rabbit HRP-conjugated
639 secondary antibody (1:10000 in 5 % milk in PBS, for LM19) for 1 h. Once again washing was
640 performed with PBS + 0.1 % Tween20. Blots were revealed with SuperSignal™ West Pico PLUS
641 Chemiluminescent Substrate (Thermo Scientific).

642

643 **Gel diffusion PME activity assay**

644 Estimation of PME activity by gel diffusion assay was adapted from (Bethke et al. 2014)
645 Proteins were extracted as described above and concentration determined using Bio-Rad
646 protein assay kit according to the manufacturer's instructions. Sample protein concentration
647 was equally diluted to 0.33 μ g/ μ l. 20 ml of a gel containing 1.2 % agarose and 0.1 % esterified
648 pectin from apple (Sigma, 93854) and 12.5 mM citric acid, 50 mM Na₂HPO₄ pH 7 was
649 prepared in 120 mm square plates. 3 mm holes were filled with 15 μ l of protein extract. Plates
650 were incubated for 16 h at 37 °C. Afterwards, the plates were briefly washed and stained with
651 0.05% Ruthenium Red (Sigma, R2751) for 30 min. Residual dye was removed by washing.
652 Plates were captured using a Cannon EOS 750D camera. Areas with higher staining intensity
653 corresponding to de-esterified pectin were quantified using Fiji (Schindelin et al. 2012). Active
654 PME units per μ g of protein were calculated by using a standard curve generated with known
655 amounts of commercial PME (Sigma, P5400).

656

657 **Statistical analysis**

658 The number of independent experiments and the number of individual cells analyzed per
659 condition and collected across these experiments are indicated in each figure legends. The
660 statical tests used are reported in the figure legends and have been performed using R or
661 GraphPad Prism.

662

663 Ressources

664

Resource	Name / Sequence	Reference
Plant material	<i>fer-4</i>	Duan et al., 2010
Plant material	<i>fer-4/pFER::FER-GFP</i>	Duan et al., 2010
Plant material	<i>fer-4/p35S::FER^{ΔMalA}-YFP</i>	Gronnier et al., 2022
Plant material	Col-0/p35S::RALF23-GFP	Stegmann et al., 2017
Plant material	<i>llg1-2</i>	Li et al., 2015
Plant material	<i>bak1-4</i>	Chinchilla et al., 2007
Plant material	<i>bri1-301</i>	Xu et al., 2008
Plant material	<i>fer-4/bak1-4</i>	This study
Plant material	<i>fer-4/bri1-301</i>	This study
Plant material	Col-0/pBRI1::BRI1-GFP	Geldner et al., 2007
Plant material	<i>fer-4/pBRI1::BRI1-GFP</i>	This study
Primer CPD (AT5G05690) forward	5'-CCCAAACCACTTCAAAGATGCT-3'	Albrecht et al. 2012.
Primer CPD (AT5G05690) reverse	5'-GGGCCTGTCGTTACCGAGTT-3'	Albrecht et al. 2012.
Primer DWF4 (AT3G50660) forward	'5-CATAAAGCTTTCAGTCACGA-3'	Albrecht et al. 2012.
Primer DWF4 (AT3G50660) reverse	'5-CGTCTGTTCTTGTTCCTAA-3'	Albrecht et al. 2012.
Primer U-BOX	'5-TGCGCTGCCAGATAATACACTATT-3'	Albrecht et al. 2012.

(AT5G15400) forward		
Primer <i>U-BOX</i> (AT5G15400) reverse	'5-TGCTGCCAACATCAGGTT-3'	Albrecht et al. 2012.
Hormone	epi-Brassinolide	Sigma, E1641
Enzyme	Pectin methylesterase from orange peel	Sigma, P5400
Primary- Antibody	LM20	Kerafast, ELD003
Primary- Antibody	JIM5	Kerafast, ELD004
Primary- Antibody	LM19	Absolute Antibody, AB02545-23.0
Secondary- Antibody	anti-Rat-HRP	ThermoFischer Scientific, 31470
Secondary- Antibody	Anti-Rabbit-HRP	Sigma, A0545
Synthetic peptide	RALF23 (ATRRYISY GALRRNTIPCSRRGASYY NCRRGAQANPYSRGCSAITRCRRS)	Synpeptide 95% purity
Synthetic peptide	RALF23n (ATRRYISY GALRRNTIPCSAAGASYY NCAAGAQANPYSAGCSAITACAAS)	Synpeptide 95% purity

665
666
667

668 **References**

669

670 **Abarca A, Franck CM, and Zipfel C.** Family-wide evaluation of RAPID ALKALINIZATION
671 FACTOR peptides. *Plant Physiology*. 2021. <https://doi.org/10.1093/PLPHYS/KIAB308>

672 **Albrecht C, Boutrot F, Segonzac C, Schwessinger B, Gimenez-Ibanez S, Chinchilla D, Rathjen
673 JP, De Vries SC, and Zipfel C.** Brassinosteroids inhibit pathogen-associated molecular
674 pattern-triggered immune signaling independent of the receptor kinase BAK1. *Proc
675 Natl Acad Sci U S A*. 2012a;**109**(1):303–308.
https://doi.org/10.1073/PNAS.1109921108/SUPPL_FILE/PNAS.201109921SI.PDF

676 **Albrecht C, Boutrot F, Segonzac C, Schwessinger B, Gimenez-Ibanez S, Chinchilla D, Rathjen
677 JP, De Vries SC, and Zipfel C.** Brassinosteroids inhibit pathogen-associated molecular
678 pattern-triggered immune signaling independent of the receptor kinase BAK1.
679 Proceedings of the National Academy of Sciences of the United States of America.
680 2012b;**109**(1):303–308.
https://doi.org/10.1073/PNAS.1109921108/SUPPL_FILE/PNAS.201109921SI.PDF

681 **Anderson CT and Kieber JJ.** Dynamic Construction, Perception, and Remodeling of Plant Cell
682 Walls. <https://doi.org/101146/annurev-arplant-081519-035846>. 2020;**71**:39–69.
<https://doi.org/10.1146/ANNUREV-ARPLANT-081519-035846>

683 **Barbier de Reuille P, Routier-Kierzkowska A-L, Kierzkowski D, Bassel GW, Schüpbach T,
684 Tauriello G, Bajpai N, Strauss S, Weber A, Kiss A, et al.** MorphoGraphX: A platform for
685 quantifying morphogenesis in 4D. *eLife*. 2015;**4**:05864.
<https://doi.org/10.7554/eLife.05864>

686 **Belkhadir Y and Jaillais Y.** The molecular circuitry of brassinosteroid signaling. *New
687 Phytologist*. 2015;**206**(2):522–540. <https://doi.org/10.1111/NPH.13269>

688 **Bethke G, Grundman RE, Sreekanta S, Truman W, Katagiri F, and Glazebrook J.** *Arabidopsis
689 PECTIN METHYLESTERASEs Contribute to Immunity against Pseudomonas syringae.*
690 *Plant Physiology*. 2014;**164**(2):1093–1107. <https://doi.org/10.1104/PP.113.227637>

691 **Bidhendi AJ, Altartouri B, Gosselin FP, and Geitmann A.** Mechanical Stress Initiates and
692 Sustains the Morphogenesis of Wavy Leaf Epidermal Cells. *Cell Reports*.
693 2019;**28**(5):1237–1250.e6. <https://doi.org/10.1016/J.CELREP.2019.07.006>

694 **Boisson-Dernier A, Kessler SA, and Grossniklaus U.** The walls have ears: The role of plant
695 CrRLK1Ls in sensing and transducing extracellular signals. *Journal of Experimental
696 Botany*. 2011;**62**(5):1581–1591. <https://doi.org/10.1093/jxb/erq445>

697 **Chaudhary A, Chen X, Gao J, Leśniewska B, Hammerl R, Dawid C, and Schneitz K.** The
698 *Arabidopsis* receptor kinase STRUBBELIG regulates the response to cellulose deficiency.
699 *PLOS Genetics*. 2020;**16**(1):e1008433.
<https://doi.org/10.1371/JOURNAL.PGEN.1008433>

700 **Chaudhary A, Hsiao Y-C, Yeh F-LJ, Wu H-M, Cheung AY, Xu S-L, and Wang Z-Y.**
701 Brassinosteroid recruits FERONIA to safeguard cell expansion in *Arabidopsis*. *bioRxiv*.
702 2023:2023.10.01.560400. <https://doi.org/10.1101/2023.10.01.560400>

703 **Chen J, Qiang X, Liu H, Xu F, Wang L, Jiang L, Li C, Wang B, Luan S, Wu D, et al.** Regulated
704 Cleavage and Relocation of FERONIA Control Immunity in *Arabidopsis* Roots. *bioRxiv*.
705 2023a:2023.10.16.562456. <https://doi.org/10.1101/2023.10.16.562456>

706 **Chen W, Zhou H, Xu F, Yu M, Coego A, Rodriguez L, Lu Y, Xie Q, Fu Q, Chen J, et al.** CAR
707 modulates plasma membrane nano-organization and immune signaling downstream of
708 RALF1-FERONIA signaling pathway. *The New phytologist*. 2023b;**237**(6):2148–2162.
<https://doi.org/10.1111/NPH.18687>

715 **Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nürnberg T, Jones JDG, Felix G, and**
716 **Boller T.** A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant
717 defence. *Nature*. 2007;**448**(7152):497–500. <https://doi.org/10.1038/nature05999>

718 **Christiaens S, Van Buggenhout S, Ngouémazong ED, Vandevenne E, Fraeye I, Duvetter T,**
719 **Van Loey AM, and Hendrickx ME.** Anti-homogalacturonan antibodies: A way to explore
720 the effect of processing on pectin in fruits and vegetables? *Food Research*
721 *International*. 2011;**44**(1):225–234. <https://doi.org/10.1016/J.FOODRES.2010.10.031>

722 **Cosgrove DJ and Anderson CT.** Plant Cell Growth: Do Pectins Drive Lobe Formation
723 in *Arabidopsis* Pavement Cells? *Current Biology*. 2020;**30**(11):R660–R662.
724 <https://doi.org/10.1016/J.CUB.2020.04.007>

725 **Daher FB, Chen Y, Bozorg B, Clough J, Jönsson H, and Braybrook SA.** Anisotropic growth is
726 achieved through the additive mechanical effect of material anisotropy and elastic
727 asymmetry. *eLife*. 2018;**7**. <https://doi.org/10.7554/ELIFE.38161>

728 **Deslauriers SD and Larsen PB.** FERONIA is a key modulator of brassinosteroid and ethylene
729 responsiveness in *arabidopsis* hypocotyls. *Molecular Plant*. 2010;**3**(3):626–640.
730 <https://doi.org/10.1093/mp/ssq015>

731 **Van der Does D, Boutrot F, Engelsdorf T, Rhodes J, McKenna JF, Vernhettes S, Koevoets I,**
732 **Tintor N, Veerabagu M, Miedes E, et al.** The *Arabidopsis* leucine-rich repeat receptor
733 kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to
734 abiotic and biotic stresses. *PLOS Genetics*. 2017;**13**(6):e1006832.
735 <https://doi.org/10.1371/JOURNAL.PGEN.1006832>

736 **Duan Q, Kita D, Li C, Cheung AY, and Wu HM.** FERONIA receptor-like kinase regulates RHO
737 GTPase signaling of root hair development. *Proceedings of the National Academy of*
738 *Sciences of the United States of America*. 2010;**107**(41):17821–17826.
739 <https://doi.org/10.1073/pnas.1005366107>

740 **Duan Q, Liu MCJ, Kita D, Jordan SS, Yeh FLJ, Yvon R, Carpenter H, Federico AN, Garcia-**
741 **Valencia LE, Eyles SJ, et al.** FERONIA controls pectin- and nitric oxide-mediated male–
742 female interaction. *Nature*. 2020;**579**(7800):561–566. <https://doi.org/10.1038/s41586-020-2106-2>

744 **Dubois M, Gilles KA, Hamilton JK, Rebers PA, and Smith F.** Colorimetric Method for
745 Determination of Sugars and Related Substances. *Analytical Chemistry*.
746 1956;**28**(3):350–356.
747 https://doi.org/10.1021/AC60111A017/ASSET/AC60111A017.FP.PNG_V03

748 **Dünser K, Gupta S, Herger A, Feraru MI, Ringli C, and Kleine-Vehn J.** Extracellular matrix
749 sensing by <scp>FERONIA</scp> and Leucine-Rich Repeat Extensins controls vacuolar
750 expansion during cellular elongation in *Arabidopsis thaliana*. *The EMBO Journal*.
751 2019;**38**(7). <https://doi.org/10.15252/embj.2018100353>

752 **Engelsdorf T, Gigli-Bisceglia N, Veerabagu M, McKenna JF, Vaahtera L, Augstein F, Van der**
753 **Does D, Zipfel C, and Hamann T.** The plant cell wall integrity maintenance and immune
754 signaling systems cooperate to control stress responses in *Arabidopsis thaliana*. *Science*
755 *Signaling*. 2018;**11**(536). <https://doi.org/10.1126/scisignal.aa03070>

756 **Evans R, O'Neill M, Pritzel A, Antropova N, Senior A, Green T, Žídek A, Bates R, Blackwell S,**
757 **Yim J, et al.** Protein complex prediction with AlphaFold-Multimer. *bioRxiv*.
758 2022:2021.10.04.463034. <https://doi.org/10.1101/2021.10.04.463034>

759 **Feng W, Kita D, Peaucelle A, Cartwright HN, Doan V, Duan Q, Liu MC, Maman J, Steinhorst**
760 **L, Schmitz-Thom I, et al.** The FERONIA Receptor Kinase Maintains Cell-Wall Integrity

761 during Salt Stress through Ca²⁺ Signaling. *Current Biology*. 2018;**28**(5):666-675.e5.
762 <https://doi.org/10.1016/j.cub.2018.01.023>

763 **Fridman Y and Savaldi-Goldstein S.** Brassinosteroids in growth control: How, when and
764 where. *Plant Science*. 2013;**209**:24–31.
765 <https://doi.org/10.1016/J.PLANTSCI.2013.04.002>

766 **Gao Q, Wang C, Xi Y, Shao Q, Hou C, Li L, and Luan S.** RALF signaling pathway activates MLO
767 calcium channels to maintain pollen tube integrity. *Cell Research* 2023 33:1.
768 2023;**33**(1):71–79. <https://doi.org/10.1038/s41422-022-00754-3>

769 **Ge Z, Bergonci T, Zhao Y, Zou Y, Du S, Liu MC, Luo X, Ruan H, García-Valencia LE, Zhong S, et al.** Arabidopsis pollen tube integrity and sperm release are regulated by RALF-
770 mediated signaling. *Science*. 2017;**358**(6370):1596–1600.
771 <https://doi.org/10.1126/science.aa03642>

772 **Ge Z, Zhao Y, Liu MC, Zhou LZ, Wang L, Zhong S, Hou S, Jiang J, Liu T, Huang Q, et al.** LLG2/3
773 Are Co-receptors in BUPS/ANX-RALF Signaling to Regulate Arabidopsis Pollen Tube
774 Integrity. *Current Biology*. 2019;**29**(19):3256-3265.e5.
775 <https://doi.org/10.1016/j.cub.2019.08.032>

776 **Geldner N, Hyman DL, Wang X, Schumacher K, and Chory J.** Endosomal signaling of plant
777 steroid receptor kinase BRI1. *Genes & Development*. 2007;**21**(13):1598.
778 <https://doi.org/10.1101/GAD.1561307>

779 **Gigli-Bisceglia N, van Zelm E, Huo W, Lamers J, and Testerink C.** Arabidopsis root responses
780 to salinity depend on pectin modification and cell wall sensing. *Development*
781 (Cambridge). 2022;**149**(12).
782 <https://doi.org/10.1242/DEV.200363/275422/AM/ARABIDOPSIS-ROOT-RESPONSES-TO-SALINITY-DEPEND-ON>

783 **Gjetting SK, Mahmood K, Shabala L, Kristensen A, Shabala S, Palmgren M, and Fuglsang
784 AT.** Evidence for multiple receptors mediating RALF-triggered Ca²⁺ signaling and
785 proton pump inhibition. *The Plant Journal*. 2020;**104**(2):433–446.
786 <https://doi.org/10.1111/TPJ.14935>

787 **Gonneau M, Desprez T, Martin M, Doblas VG, Bacete L, Miart F, Sormani R, Hématy K,
788 Renou J, Landrein B, et al.** Receptor Kinase THESEUS1 Is a Rapid Alkalization Factor
789 34 Receptor in Arabidopsis. *Current Biology*. 2018;**28**(15):2452-2458.e4.
790 <https://doi.org/10.1016/j.cub.2018.05.075>

791 **Gronnier J, Franck CM, Stegmann M, Defalco TA, Abarca A, von Arx M, Dünser K, Lin W,
792 Yang Z, Kleine-Vehn J, et al.** Regulation of immune receptor kinase plasma membrane
793 nanoscale organization by a plant peptide hormone and its receptors. *eLife*. 2022;**11**.
794 <https://doi.org/10.7554/eLife.74162>

795 **Guo H, Nolan TM, Song G, Liu S, Xie Z, Chen J, Schnable PS, Walley JW, and Yin Y.** FERONIA
796 Receptor Kinase Contributes to Plant Immunity by Suppressing Jasmonic Acid Signaling
797 in *Arabidopsis thaliana*. *Current Biology*. 0(0).
798 <https://doi.org/10.1016/J.CUB.2018.07.078>

799 **Gupta S, Guérin A, Herger A, Hou X, Schaufelberger M, Roulard R, Diet A, Roffler S,
800 Lefebvre V, Wicker T, et al.** Growth-inhibiting effects of the unconventional plant
801 APYrase 7 of *Arabidopsis thaliana* influences the LRX/RALF/FER growth regulatory
802 module. *PLOS Genetics*. 2024;**20**(1):e1011087.
803 <https://doi.org/10.1371/JOURNAL.PGEN.1011087>

804 <https://doi.org/10.1371/JOURNAL.PGEN.1011087>

805 <https://doi.org/10.1371/JOURNAL.PGEN.1011087>

806 **Haas KT, Wightman R, Meyerowitz EM, and Peaucelle A.** Pectin homogalacturonan
807 nanofilament expansion drives morphogenesis in plant epidermal cells. *Science*.
808 2020;367(6481):1003–1007. <https://doi.org/10.1126/science.aaz5103>

809 **Haruta M, Sabat G, Stecker K, Minkoff BB, and Sussman MR.** A peptide hormone and its
810 receptor protein kinase regulate plant cell expansion. *Science*. 2014;343(6169):408–
811 411. <https://doi.org/10.1126/science.1244454>

812 **Hématy K, Sado PE, Van Tuinen A, Rochange S, Desnos T, Balzergue S, Pelletier S, Renou
813 JP, and Höfte H.** A Receptor-like Kinase Mediates the Response of *Arabidopsis* Cells to
814 the Inhibition of Cellulose Synthesis. *Current Biology*. 2007;17(11):922–931.
815 <https://doi.org/10.1016/j.cub.2007.05.018>

816 **Herger A, Dünser K, Kleine-Vehn J, and Ringli C.** Leucine-Rich Repeat Extensin Proteins and
817 Their Role in Cell Wall Sensing. *Current Biology*. 2019;29(17):R851–R858.
818 <https://doi.org/10.1016/j.cub.2019.07.039>

819 **Herger A, Gupta S, Kadler G, Franck CM, Boisson-Dernier A, and Ringli C.** Overlapping
820 functions and protein-protein interactions of LRR-extensins in *Arabidopsis*. *PLOS
821 Genetics*. 2020;16(6):e1008847. <https://doi.org/10.1371/journal.pgen.1008847>

822 **Huerta AI, Sancho-Andrés G, Montesinos JC, Silva-Navas J, Bassard S, Pau-Roblot C, Kesten
823 C, Schlechter R, Dora S, Ayupov T, et al.** The WAK-like protein RFO1 acts as a sensor of
824 the pectin methylation status in *Arabidopsis* cell walls to modulate root growth and
825 defense. *Molecular plant*. 2023;16(5):865–881.
826 <https://doi.org/10.1016/j.molp.2023.03.015>

827 **Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K,
828 Bates R, Žídek A, Potapenko A, et al.** Highly accurate protein structure prediction with
829 AlphaFold. *Nature* 2021;596:7873. 2021;596(7873):583–589.
830 <https://doi.org/10.1038/s41586-021-03819-2>

831 **Kadota Y, Sklenar J, Derbyshire P, Stransfeld L, Asai S, Ntoukakis V, Jones JD, Shirasu K,
832 Menke F, Jones A, et al.** Direct Regulation of the NADPH Oxidase RBOHD by the PRR-
833 Associated Kinase BIK1 during Plant Immunity. *Molecular Cell*. 2014;54:43–55.
834 <https://doi.org/10.1016/j.molcel.2014.02.021>

835 **Kelly-Bellow R, Lee K, Kennaway R, Barclay JE, Whibley A, Bushell C, Spooner J, Yu M, Brett
836 P, Kular B, et al.** Brassinosteroid coordinates cell layer interactions in plants via cell wall
837 and tissue mechanics. *Science*. 2023;380(6651):1275–1281.
838 [https://doi.org/10.1126/SCIENCE.ADF0752/SUPPL_FILE/SCIENCE.ADF0752_MOVIES_S1
_AND_S2.ZIP](https://doi.org/10.1126/SCIENCE.ADF0752/SUPPL_FILE/SCIENCE.ADF0752_MOVIES_S1
839 _AND_S2.ZIP)

840 **Kim TW and Wang ZY.** Brassinosteroid Signal Transduction from Receptor Kinases to
841 Transcription Factors. <https://doi.org/101146/annurev.applant043008092057>.
842 2010;61:681–704. <https://doi.org/10.1146/ANNUREV.ARPLANT.043008.092057>

843 **Lan Z, Song Z, Wang Z, Li L, Liu Y, Zhi S, Wang R, Wang J, Li Q, Bleckmann A, et al.**
844 Antagonistic RALF peptides control an intergeneric hybridization barrier on
845 Brassicaceae stigmas. *Cell*. 2023;186(22):4773–4787.e12.
846 <https://doi.org/10.1016/j.cell.2023.09.003>

847 **Li C, Yeh FL, Cheung AY, Duan Q, Kita D, Liu MC, Maman J, Luu EJ, Wu BW, Gates L, et al.**
848 Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for
849 FERONIA receptor kinase signaling in *Arabidopsis*. *Elife*. 2015;4(JUNE):1–21.
850 <https://doi.org/10.7554/eLife.06587>

851 **Li L, Chen H, Alotaibi SS, Pencik A, Adamowski M, Novak O, and Friml J.** RALF1 peptide
852 triggers biphasic root growth inhibition upstream of auxin biosynthesis. *Proceedings of*

853 the National Academy of Sciences of the United States of America.
854 2022:119(31):e2121058119.
855 https://doi.org/10.1073/PNAS.2121058119/SUPPL_FILE/PNAS.2121058119.SAPP.PDF

856 **Lin W, Tang W, Pan X, Huang A, Gao X, Anderson CT, and Yang Z.** Arabidopsis pavement
857 cell morphogenesis requires FERONIA binding to pectin for activation of ROP GTPase
858 signaling. *Current biology : CB.* 2021;0(0).
859 <https://doi.org/10.1016/J.CUB.2021.11.030/ATTACHMENT/B61F2ABD-94F9-4E66-80A5-597D1386003B/MMC1.PDF>

860 **Liu C, Yu H, Voegele A, Rao X, and Dixon RA.** FERONIA and wall-associated kinases
861 coordinate defense induced by lignin modification in plant cell walls. *Science Advances.*
862 2023;9(10).
863 https://doi.org/10.1126/SCIAADV.ADF7714/SUPPL_FILE/SCIAADV.ADF7714_DATASET_S1.ZIP

864 **Liu MCJ, Yeh FLJ, Yvon R, Simpson K, Jordan S, Chambers J, Wu HM, and Cheung AY.**
865 Extracellular pectin-RALF phase separation mediates FERONIA global signaling function.
866 *Cell.* 2024;187(2):312-330.e22. <https://doi.org/10.1016/J.CELL.2023.11.038>

867 **Ma X, Xu G, He P, and Shan L.** SERKing Coreceptors for Receptors. *Trends in Plant Science.*
868 2016;21(12):1017–1033. <https://doi.org/10.1016/j.tplants.2016.08.014>

869 **Majda M, Krupinski P, Jönsson H, Hamant O, and Robert S.** Mechanical Asymmetry of the
870 Cell Wall Predicts Changes in Pavement Cell Geometry. *Developmental Cell.*
871 2019;50(1):9–10. <https://doi.org/10.1016/J.DEVCEL.2019.06.002>

872 **Malivert A, Erguvan Ö, Chevallier A, Dehem A, Friaud R, Liu M, Martin M, Peyraud T,**
873 **Hamant O, and Verger S.** FERONIA and microtubules independently contribute to
874 mechanical integrity in the Arabidopsis shoot. *PLOS Biology.* 2021;19(11):e3001454.
875 <https://doi.org/10.1371/JOURNAL.PBIO.3001454>

876 **Mecchia MA, Santos-Fernandez G, Duss NN, Somoza SC, Boisson-Dernier A, Gagliardini V,**
877 **Martínez-Bernardini A, Fabrice TN, Ringli C, Muschietti JP, et al.** RALF4/19 peptides
878 interact with LRX proteins to control pollen tube growth in Arabidopsis. *Science (New*
879 *York, NY).* 2017;358(6370):1600–1603. <https://doi.org/10.1126/science.aoa5467>

880 **Meng EC, Goddard TD, Pettersen EF, Couch GS, Pearson ZJ, Morris JH, and Ferrin TE.** UCSF
881 ChimeraX: Tools for structure building and analysis. *Protein Science.*
882 2023;32(11):e4792. <https://doi.org/10.1002/PRO.4792>

883 **Morato do Canto A, Ceciliato PHO, Ribeiro B, Ortiz Morea FA, Franco Garcia AA, Silva-Filho**
884 **MC, and Moura DS.** Biological activity of nine recombinant AtRALF peptides:
885 Implications for their perception and function in Arabidopsis. *Plant Physiology and*
886 *Biochemistry.* 2014;75:45–54. <https://doi.org/10.1016/J.PLAPHY.2013.12.005>

887 **Moussu S, Broyart C, Santos-Fernandez G, Augustin S, Wehrle S, Grossniklaus U, and**
888 **Santiago J.** Structural basis for recognition of RALF peptides by LRX proteins during
889 pollen tube growth. *Proceedings of the National Academy of Sciences of the United*
890 *States of America.* 2020;117(13):7494–7503.
891 <https://doi.org/10.1073/pnas.2000100117>

892 **Moussu S, Lee HK, Haas KT, Broyart C, Rathgeb U, De Bellis D, Levasseur T, Schoenaers S,**
893 **Fernandez GS, Grossniklaus U, et al.** Plant cell wall patterning and expansion mediated
894 by protein-peptide-polysaccharide interaction. *Science.* 2023;382(6671):719–725.
895 https://doi.org/10.1126/SCIENCE.ADI4720/SUPPL_FILE/SCIENCE.ADI4720_MDAR_REPR_ODUCIBILITY_CHECKLIST.PDF

899 **Nielsen SS.** Phenol-Sulfuric Acid Method for Total Carbohydrates. 2010:47–53.
900 https://doi.org/10.1007/978-1-4419-1463-7_6

901 **Noble JA, Bielski N V, Liu MCJ, DeFalco TA, Stegmann M, Nelson ADL, McNamara K, Sullivan B, Dinh KK, Khuu N, et al.** Evolutionary analysis of the LORELEI gene family in plants reveals regulatory subfunctionalization. *Plant Physiol.* 2022:190(4):2539–2556.
904 <https://doi.org/10.1093/PLPHYS/KIAC444>

905 **Nolan TM, Vukašinović N, Hsu C-W, Zhang J, Vanhoutte I, Shahan R, Taylor IW, Greenstreet L, Heitz M, Wang P, et al.** Brassinosteroid gene regulatory networks at cellular resolution. *bioRxiv*. 2022:2022.09.16.508001.
908 <https://doi.org/10.1101/2022.09.16.508001>

909 **Pearce G, Moura DS, Stratmann J, and Ryan CA.** RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development. *PLANT BIOLOGY*. 2001:98:12843–12847.

911 **Peaucelle A, Braybrook SA, Le Guillou L, Bron E, Kuhlemeier C, and Höfte H.** Pectin-Induced Changes in Cell Wall Mechanics Underlie Organ Initiation in *Arabidopsis*. *Current Biology*. 2011:21(20):1720–1726. <https://doi.org/10.1016/J.CUB.2011.08.057>

914 **Peaucelle A, Wightman R, and Höfte H.** The Control of Growth Symmetry Breaking in the *Arabidopsis* Hypocotyl. *Current biology : CB*. 2015:25(13):1746–1752.
916 <https://doi.org/10.1016/J.CUB.2015.05.022>

917 **Perraki A, DeFalco TA, Derbyshire P, Avila J, Sérè D, Sklenar J, Qi X, Stransfeld L, Schwessinger B, Kadota Y, et al.** Phosphocode-dependent functional dichotomy of a common co-receptor in plant signalling. *Nature*. 2018:561(7722):248–252.
920 <https://doi.org/10.1038/s41586-018-0471-x>

921 **Planas-Riverola A, Gupta A, Betegón-Putze I, Bosch N, Ibanes M, and Cano-Delgado AI.** Brassinosteroid signalling in plant development and adaptation to stress. *Development* (Cambridge). 2019:146(5). <https://doi.org/10.1242/DEV.151894/48995>

924 **Preibisch S, Saalfeld S, and Tomancak P.** Globally optimal stitching of tiled 3D microscopic image acquisitions. *Bioinformatics*. 2009:25(11):1463.
926 <https://doi.org/10.1093/BIOINFORMATICS/BTP184>

927 **Qu T, Liu R, Wang W, An L, Chen T, Liu G, and Zhao Z.** Brassinosteroids regulate pectin methylesterase activity and AtPME41 expression in *Arabidopsis* under chilling stress. *Cryobiology*. 2011:63(2):111–117. <https://doi.org/10.1016/J.CRYOBIOL.2011.07.003>

930 **Rößling A-K, Dünser K, Liu C, Lauw S, Rodriguez-Franco M, Kalmbach L, Barbez E, and Kleine-Vehn J.** Pectin methylesterase activity is required for RALF1 peptide signalling output. *bioRxiv*. 2024:2023.08.18.553913. <https://doi.org/10.1101/2023.08.18.553913>

933 **Roux M, Schwessinger B, Albrecht C, Chinchilla D, Jones A, Holton N, Malinovsky FG, Tör M, de Vries S, and Zipfel C.** The *Arabidopsis* leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens. *Plant Cell*. 2011:23(6):2440–2455.
937 <https://doi.org/10.1105/tpc.111.084301>

938 **Sánchez-Rodríguez C, Ketelaar KD, Schneider R, Villalobos JA, Somerville CR, Persson S, and Wallace IS.** BRASSINOSTEROID INSENSITIVE2 negatively regulates cellulose synthesis in *Arabidopsis* by phosphorylating cellulose synthase 1. *Proceedings of the National Academy of Sciences of the United States of America*. 2017:114(13):3533–3538. https://doi.org/10.1073/PNAS.1615005114/SUPPL_FILE/PNAS.201615005SI.PDF

943 **Santiago J, Henzler C, and Hothorn M.** Molecular mechanism for plant steroid receptor activation by somatic embryogenesis co-receptor kinases. *Science*. 2013:341(6148):889–892. <https://doi.org/10.1126/science.1242468>

946 **Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S,**
947 **Rueden C, Saalfeld S, Schmid B, et al.** Fiji: an open-source platform for biological-image
948 analysis. *Nature Methods* 2012 9:7. 2012;9(7):676–682.
949 <https://doi.org/10.1038/nmeth.2019>

950 **Schoenaers S, Lee HK, Gonneau M, Faucher E, Levasseur T, Akary E, Claeijs N, Moussu S,**
951 **Broyart C, Balcerowicz D, et al.** A pectin-binding peptide with a structural and signaling
952 role in the assembly of the plant cell wall. *bioRxiv*. 2023;2023.08.23.554416.
953 <https://doi.org/10.1101/2023.08.23.554416>

954 **Shih HW, Miller ND, Dai C, Spalding EP, and Monshausen GB.** The receptor-like kinase
955 FERONIA is required for mechanical signal transduction in *Arabidopsis* seedlings.
956 *Current Biology*. 2014;24(16):1887–1892. <https://doi.org/10.1016/j.cub.2014.06.064>

957 **Smokvarska M, Bayle V, Maneta-Peyret L, Fouillen L, Poitout A, Dongois A, Fiche JB,**
958 **Gronnier J, Garcia J, Höfte H, et al.** The receptor kinase FERONIA regulates
959 phosphatidylserine localization at the cell surface to modulate ROP signaling. *Science*
960 *Advances*. 2023;9(14).
961 https://doi.org/10.1126/SCIAADV.ADD4791/SUPPL_FILE/SCIAADV.ADD4791_SM.PDF

962 **Song G, Liu S, Xie Z, Chen J, Schnable P, Walley J, and Yin Y.** FERONIA receptor kinase
963 contributes to plant immunity by suppressing jasmonic acid signaling in *Arabidopsis*
964 *thaliana*. *Current Biology*. 2018;In press:1–9.
965 <https://doi.org/10.1016/j.cub.2018.07.078>

966 **Song Y, Wilson AJ, Zhang XC, Thoms D, Sohrabi R, Song S, Geissmann Q, Liu Y, Walgren L,**
967 **He SY, et al.** FERONIA restricts *Pseudomonas* in the rhizosphere microbiome via
968 regulation of reactive oxygen species. *Nature Plants* 2021 7:5. 2021;7(5):644–654.
969 <https://doi.org/10.1038/s41477-021-00914-0>

970 **Srivastava R, Liu JX, Guo H, Yin Y, and Howell SH.** Regulation and processing of a plant
971 peptide hormone, AtRALF23, in *Arabidopsis*. *The Plant journal : for cell and molecular*
972 *biology*. 2009;59(6):930–939. <https://doi.org/10.1111/j.1365-313X.2009.03926.X>

973 **Stegmann M, Monaghan J, Smakowska-Luzan E, Rovenich H, Lehner A, Holton N, Belkhadir**
974 **Y, and Zipfel C.** The receptor kinase FER is a RALF-regulated scaffold controlling plant
975 immuneTraduire I'll send you everything by tomorrow night that you could send to all
976 authors by the end of this week. 102/5000 Je vous enverrai tout demain soir que vous
977 pourriez envoy. 2017;4(January):287–289. <https://doi.org/10.1126/science.aal2541>

978 **Sun Y, Fan XY, Cao DM, Tang W, He K, Zhu JY, He JX, Bai MY, Zhu S, Oh E, et al.** Integration
979 of Brassinosteroid Signal Transduction with the Transcription Network for Plant Growth
980 Regulation in *Arabidopsis*. *Developmental Cell*. 2010;19(5):765–777.
981 <https://doi.org/10.1016/j.devcel.2010.10.010>

982 **Sun Y, Han Z, Tang J, Hu Z, Chai C, Zhou B, and Chai J.** Structure reveals that BAK1 as a co-
983 receptor recognizes the BRI1-bound brassinolide. *Cell Research* 2013 23:11.
984 2013;23(11):1326–1329. <https://doi.org/10.1038/cr.2013.131>

985 **Tang J, Wu D, Li X, Wang L, Xu L, Zhang Y, Xu F, Liu H, Xie Q, Dai S, et al.** Plant immunity
986 suppression via PHR1-RALF-FERONIA shapes the root microbiome to alleviate
987 phosphate starvation. *The EMBO Journal*. 2022;41(6):e109102.
988 <https://doi.org/10.15252/EMBJ.2021109102>

989 **Tang W, Lin W, Zhou X, Guo J, Dang X, Li B, Lin D, and Yang Z.** Mechano-transduction via
990 the pectin-FERONIA complex activates ROP6 GTPase signaling in *Arabidopsis* pavement
991 cell morphogenesis. *Current Biology*. 2021. <https://doi.org/10.1016/j.cub.2021.11.031>

992 Ursache R, Andersen TG, Marhavý P, and Geldner N. A protocol for combining fluorescent
993 proteins with histological stains for diverse cell wall components. *The Plant journal : for*
994 *cell and molecular biology*. 2018;**93**(2):399–412. <https://doi.org/10.1111/TPJ.13784>

995 Vaahtera L, Schulz J, and Hamann T. Cell wall integrity maintenance during plant
996 development and interaction with the environment. *Nature Plants*. 2019;**5**(9):924–932.
997 <https://doi.org/10.1038/s41477-019-0502-0>

998 Wang Z-Y, Bai M-Y, Oh E, and Zhu J-Y. Brassinosteroid Signaling Network and Regulation of
999 Photomorphogenesis. *Annu Rev Genet*. 2012;**46**:701–24.
1000 <https://doi.org/10.1146/annurev-genet-102209-163450>

1001 Wang ZY, Nakano T, Gendron J, He J, Chen M, Vafeados D, Yang Y, Fujioka S, Yoshida S,
1002 Asami T, et al. Nuclear-Localized BZR1 Mediates Brassinosteroid-Induced Growth and
1003 Feedback Suppression of Brassinosteroid Biosynthesis. *Developmental Cell*.
1004 2002;**2**(4):505–513. [https://doi.org/10.1016/S1534-5807\(02\)00153-3](https://doi.org/10.1016/S1534-5807(02)00153-3)

1005 Wolf S. Cell Wall Signaling in Plant Development and Defense.
1006 <https://doi.org/10.1146/annurev-arplant-102820-095312>. 2022;**73**:323–353.
1007 <https://doi.org/10.1146/ANNUREV-ARPLANT-102820-095312>

1008 Wolf S, Van Der Does D, Ladwig F, Sticht C, Kolbeck A, Schürholz AK, Augustin S, Keinath N,
1009 Rausch T, Greiner S, et al. A receptor-like protein mediates the response to pectin
1010 modification by activating brassinosteroid signaling. *Proceedings of the National*
1011 *Academy of Sciences of the United States of America*. 2014;**111**(42):15261–15266.
1012 https://doi.org/10.1073/PNAS.1322979111/SUPPL_FILE/PNAS.1322979111.SD01.XLSX

1013 Wolf S and Greiner S. Growth control by cell wall pectins. *Protoplasma*.
1014 2012;**249**(SUPPL.2):169–175. <https://doi.org/10.1007/S00709-011-0371-5/FIGURES/3>

1015 Wolf S, Mravec J, Greiner S, Mouille G, and Höfte H. Plant Cell Wall Homeostasis Is
1016 Mediated by Brassinosteroid Feedback Signaling. *Current Biology*. 2012;**22**(18):1732–
1017 1737. <https://doi.org/10.1016/J.CUB.2012.07.036>

1018 Xiao Y, Stegmann M, Han Z, DeFalco TA, Parys K, Xu L, Belkhadir Y, Zipfel C, and Chai J.
1019 Mechanisms of RALF peptide perception by a heterotypic receptor complex. *Nature*.
1020 2019;**572**(7768):270–274. <https://doi.org/10.1038/s41586-019-1409-7>

1021 Xie L, Yang C, and Wang X. Brassinosteroids can regulate cellulose biosynthesis by
1022 controlling the expression of CESA genes in *Arabidopsis*. *Journal of Experimental*
1023 *Botany*. 2011;**62**(13):4495. <https://doi.org/10.1093/JXB/ERR164>

1024 Xu W, Huang J, Li B, Li J, and Wang Y. Is kinase activity essential for biological functions of
1025 BRI1? *Cell Research*. 2008;**18**(4):472–478. <https://doi.org/10.1038/cr.2008.36>

1026 Yin Y, Wang ZY, Mora-Garcia S, Li J, Yoshida S, Asami T, and Chory J. BES1 Accumulates in
1027 the Nucleus in Response to Brassinosteroids to Regulate Gene Expression and Promote
1028 Stem Elongation. *Cell*. 2002;**109**(2):181–191. [https://doi.org/10.1016/S0092-8674\(02\)00721-3](https://doi.org/10.1016/S0092-8674(02)00721-3)

1029

1030 Yu M, Li R, Cui Y, Chen W, Li B, Zhang X, Bu Y, Cao Y, Xing J, Jewaria PK, et al. The RALF1-
1031 FERONIA interaction modulates endocytosis to mediate control of root growth in
1032 *Arabidopsis*. *Development (Cambridge, England)*. 2020;**147**(13).
1033 <https://doi.org/10.1242/DEV.189902>

1034 Yu X, Li L, Zola J, Aluru M, Ye H, Foudree A, Guo H, Anderson S, Aluru S, Liu P, et al. A
1035 brassinosteroid transcriptional network revealed by genome-wide identification of BES1
1036 target genes in *Arabidopsis thaliana*. *The Plant Journal*. 2011;**65**(4):634–646.
1037 <https://doi.org/10.1111/J.1365-313X.2010.04449.X>

1038 **Yue ZL, Liu N, Deng ZP, Zhang Y, Wu ZM, Zhao JL, Sun Y, Wang ZY, and Zhang SW.** The
1039 receptor kinase OsWAK11 monitors cell wall pectin changes to fine-tune
1040 brassinosteroid signaling and regulate cell elongation in rice. *Current Biology*.
1041 2022;32(11):2454-2466.e7. <https://doi.org/10.1016/j.cub.2022.04.028>

1042 **Zhao C, Jiang W, Zayed O, Liu X, Tang K, Nie W, Li Y, Xie S, Li Y, Long T, et al.** The LRxS-
1043 RALFs-FER module controls plant growth and salt stress responses by modulating
1044 multiple plant hormones. *National Science Review*. 2021;8(1):2021.
1045 <https://doi.org/10.1093/nsr/nwaa149>

1046 **Zhao C, Zayed O, Yu Z, Jiang W, Zhu P, Hsu CC, Zhang L, Andy Tao W, Lozano-Durán R, and**
1047 **Zhu JK.** Leucine-rich repeat extensin proteins regulate plant salt tolerance in
1048 *Arabidopsis*. *Proceedings of the National Academy of Sciences of the United States of*
1049 *America*. 2018;115(51):13123–13128. <https://doi.org/10.1073/pnas.1816991115>

1050 **Zhong S, Li L, Wang Z, Ge Z, Li Q, Bleckmann A, Wang J, Song Z, Shi Y, Liu T, et al.** RALF
1051 peptide signaling controls the polytubey block in *Arabidopsis*. *Science*.
1052 2022;375(6578):290–296.
1053 [https://doi.org/10.1126/science.abl4683/suppl_file/science.abl4683_mdar_rep](https://doi.org/10.1126/SCIENCE.ABL4683/SUPPL_FILE/SCIENCE.ABL4683_MDAR REP)
1054 [/RODUCIBILITY_CHECKLIST.PDF](https://doi.org/10.1126/SCIENCE.ABL4683/RODUCIBILITY_CHECKLIST.PDF)

1055 **Zhou L-Z, Wang L, Chen X, Ge Z, Mergner J, Li X, Küster B, Längst G, Qu L-J, and Dresselhaus**
1056 **T.** The RALF signaling pathway regulates cell wall integrity during pollen tube growth in
1057 maize. *The Plant Cell*. 2023. [https://doi.org/10.1093/plcell/koad324](https://doi.org/10.1093/PLCELL/KOAD324)

1058

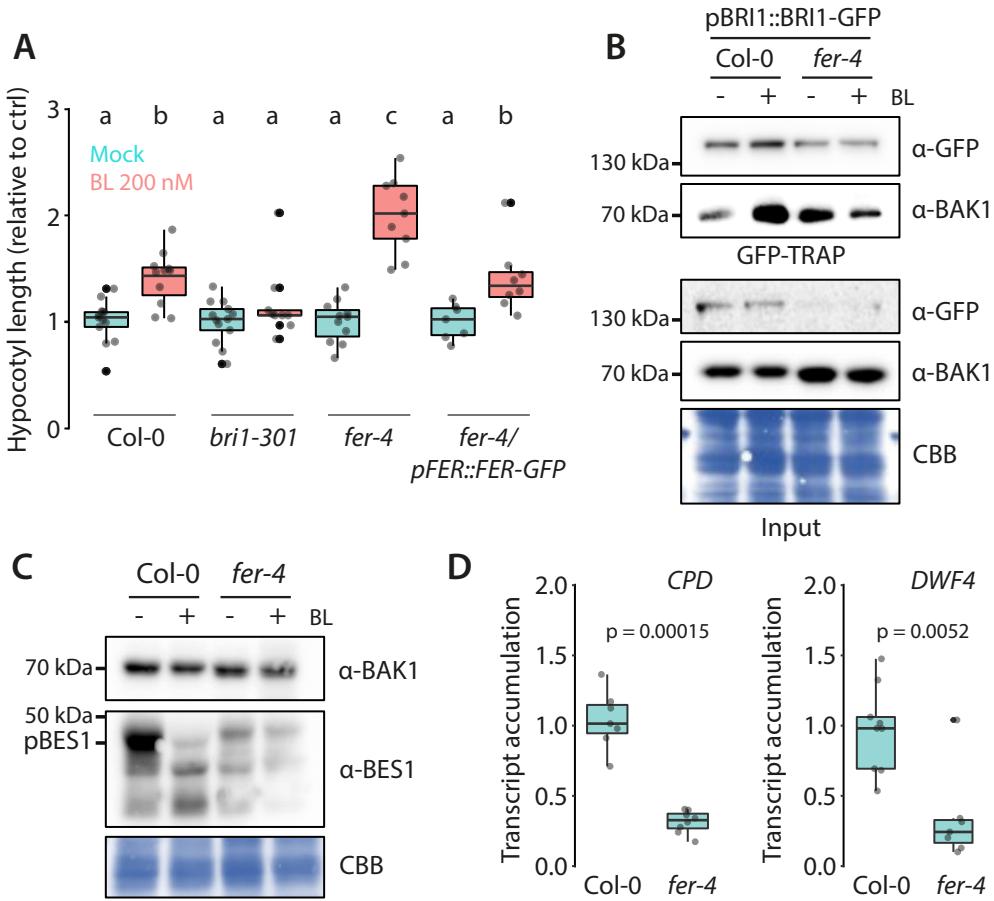


Figure 1| FERONIA inhibits BRI1-BAK1 complex formation and signaling.

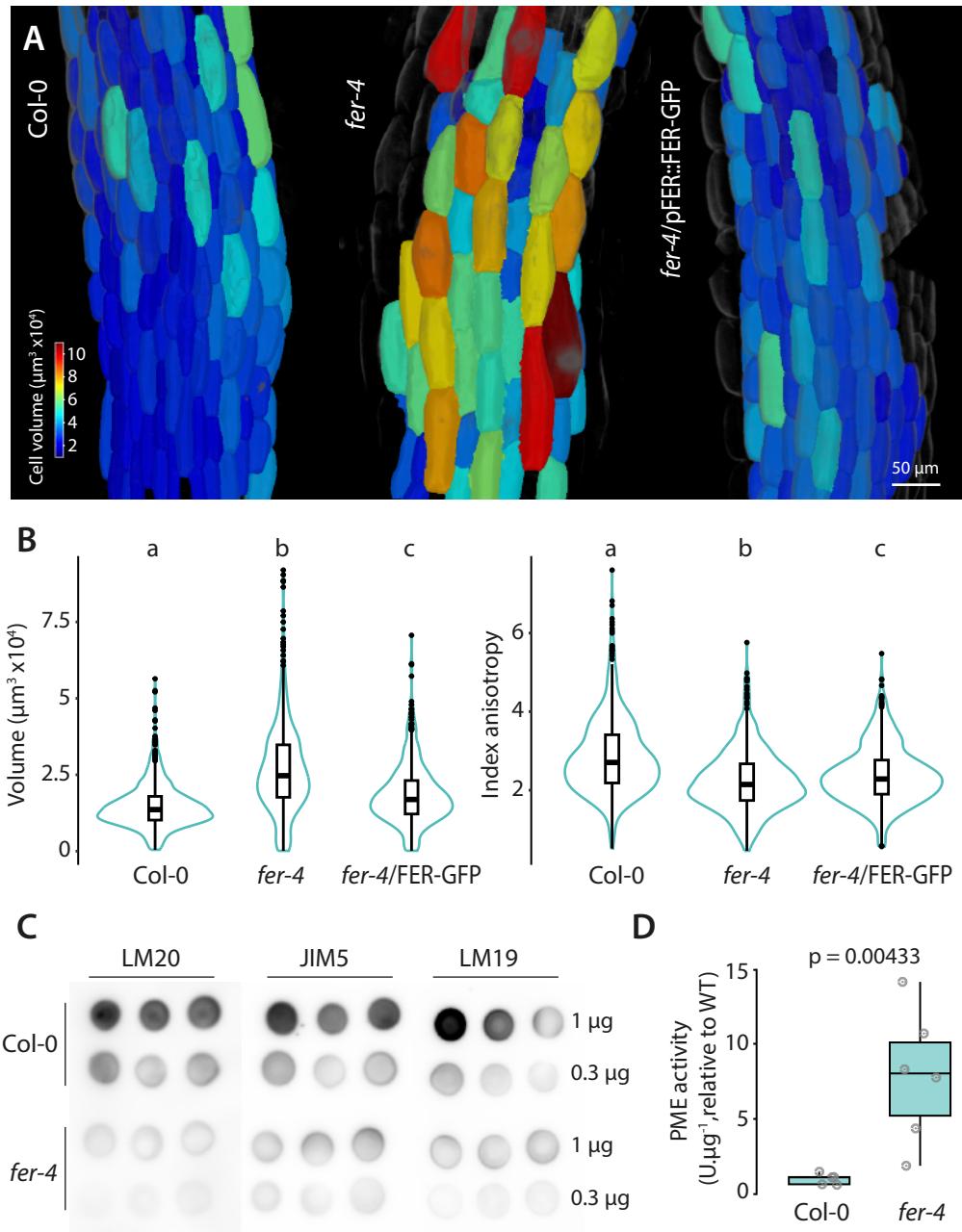


Figure 2| FERONIA regulates cell anisotropic growth and pectin methylation status

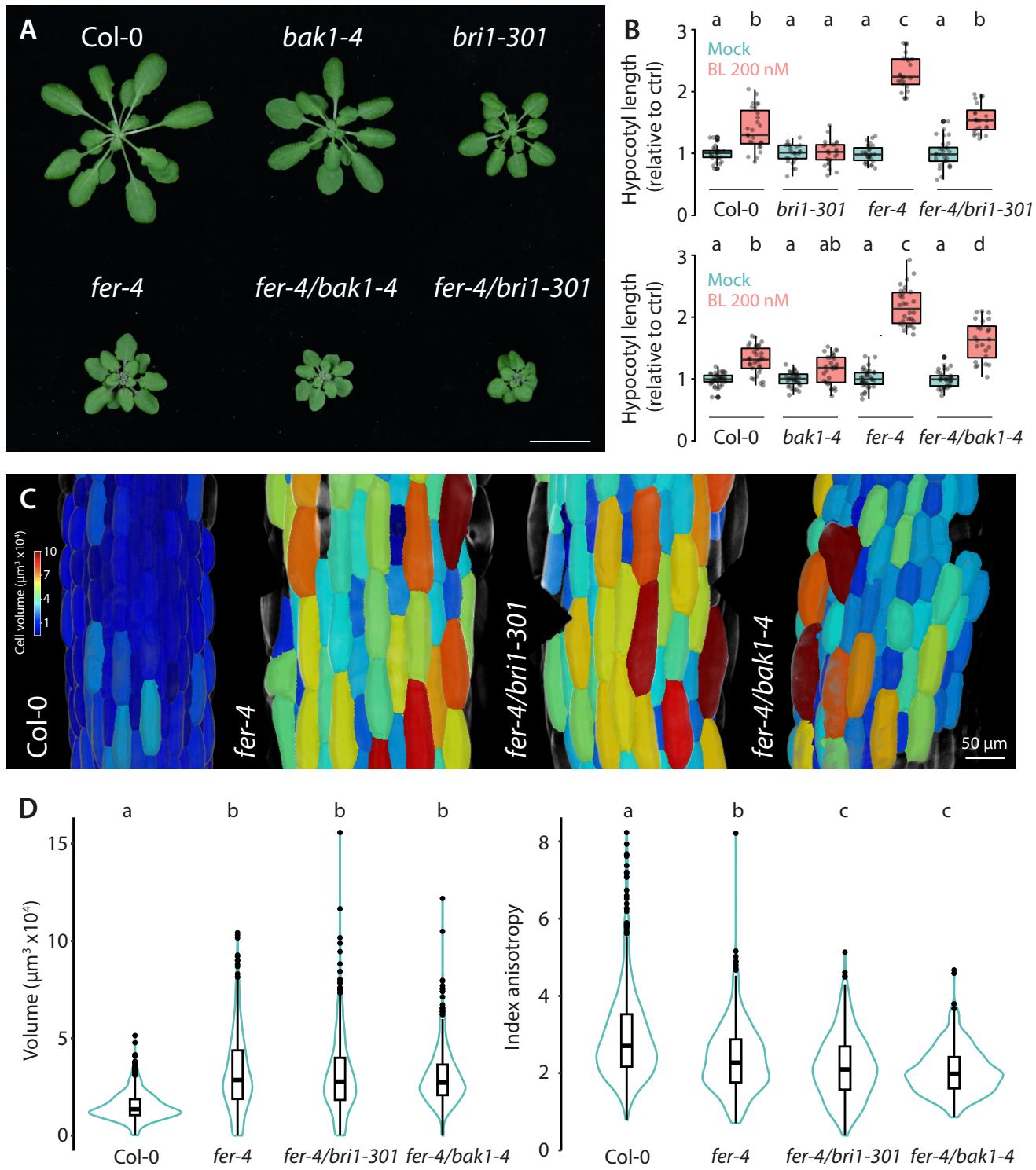


Figure 3 | Increase in BR signaling does not underly morphological defects of *fer-4*.



Figure 4| RALF23 promotes BRI1-BAK1 complex formation and signaling.

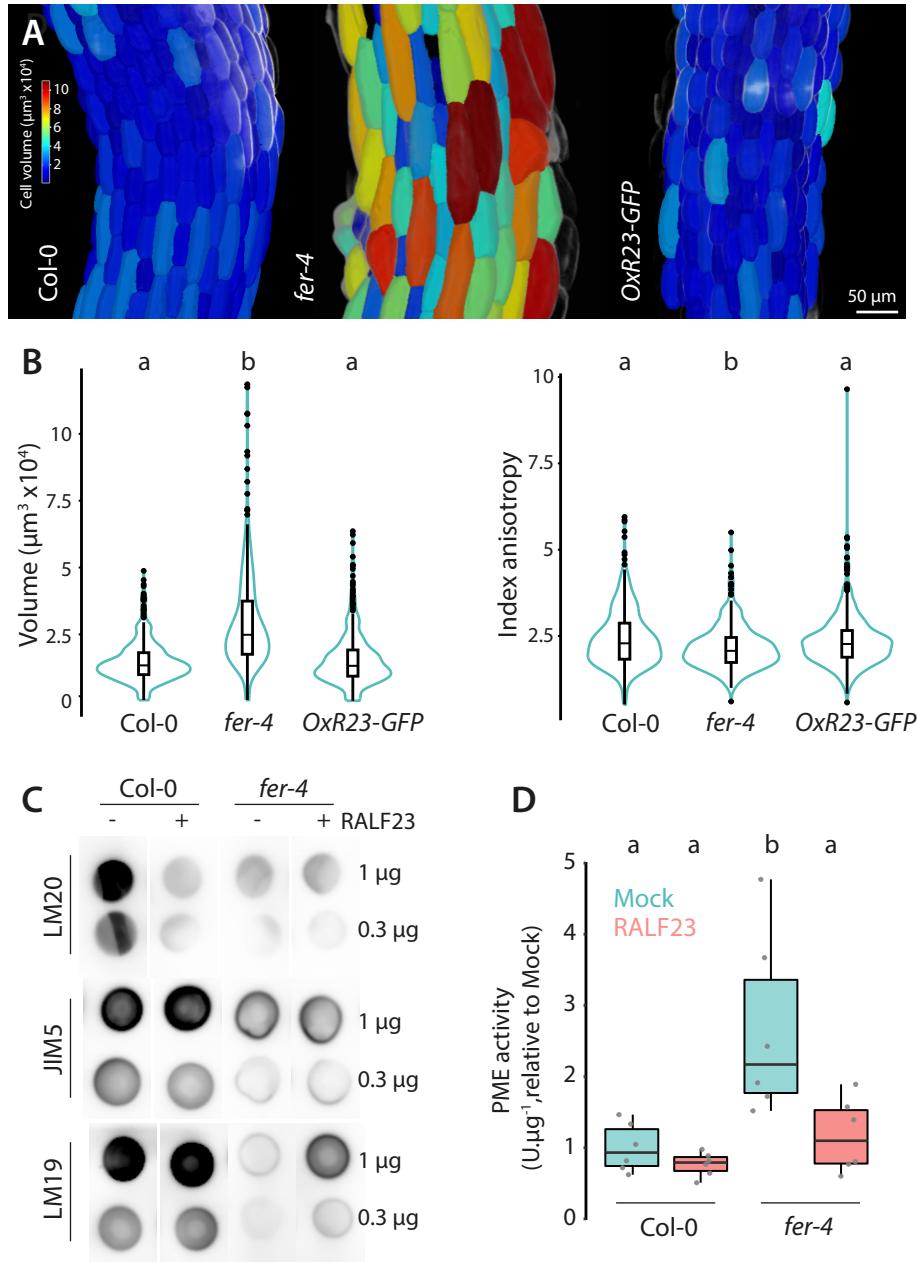
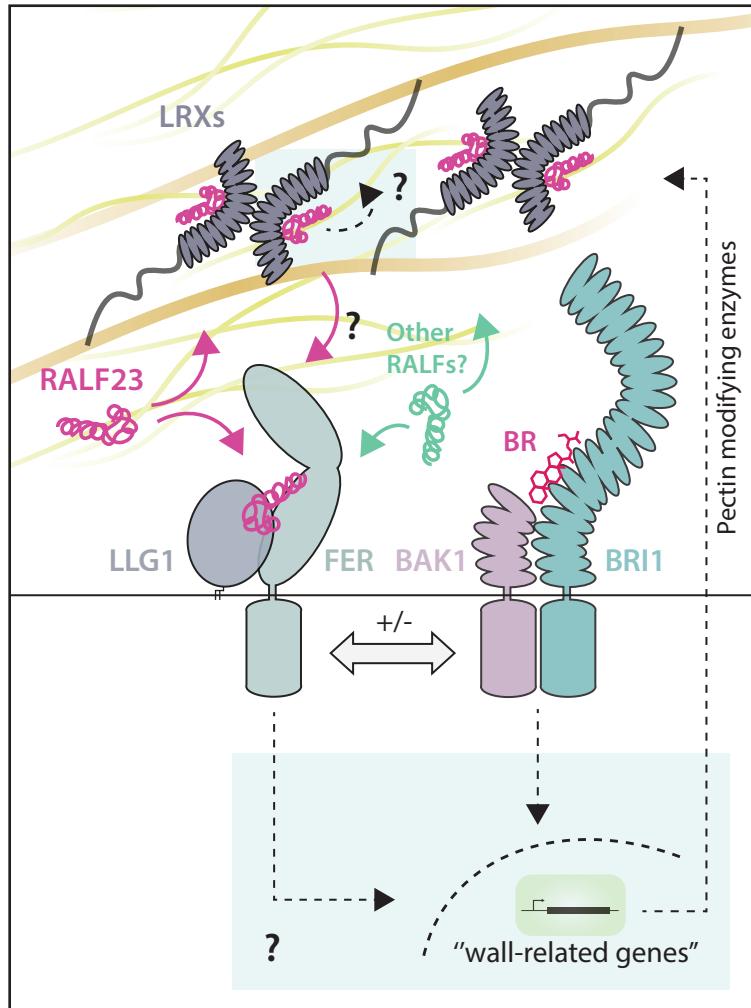
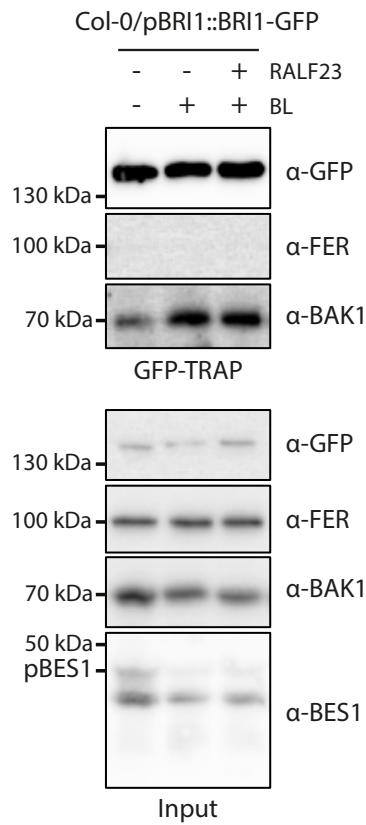
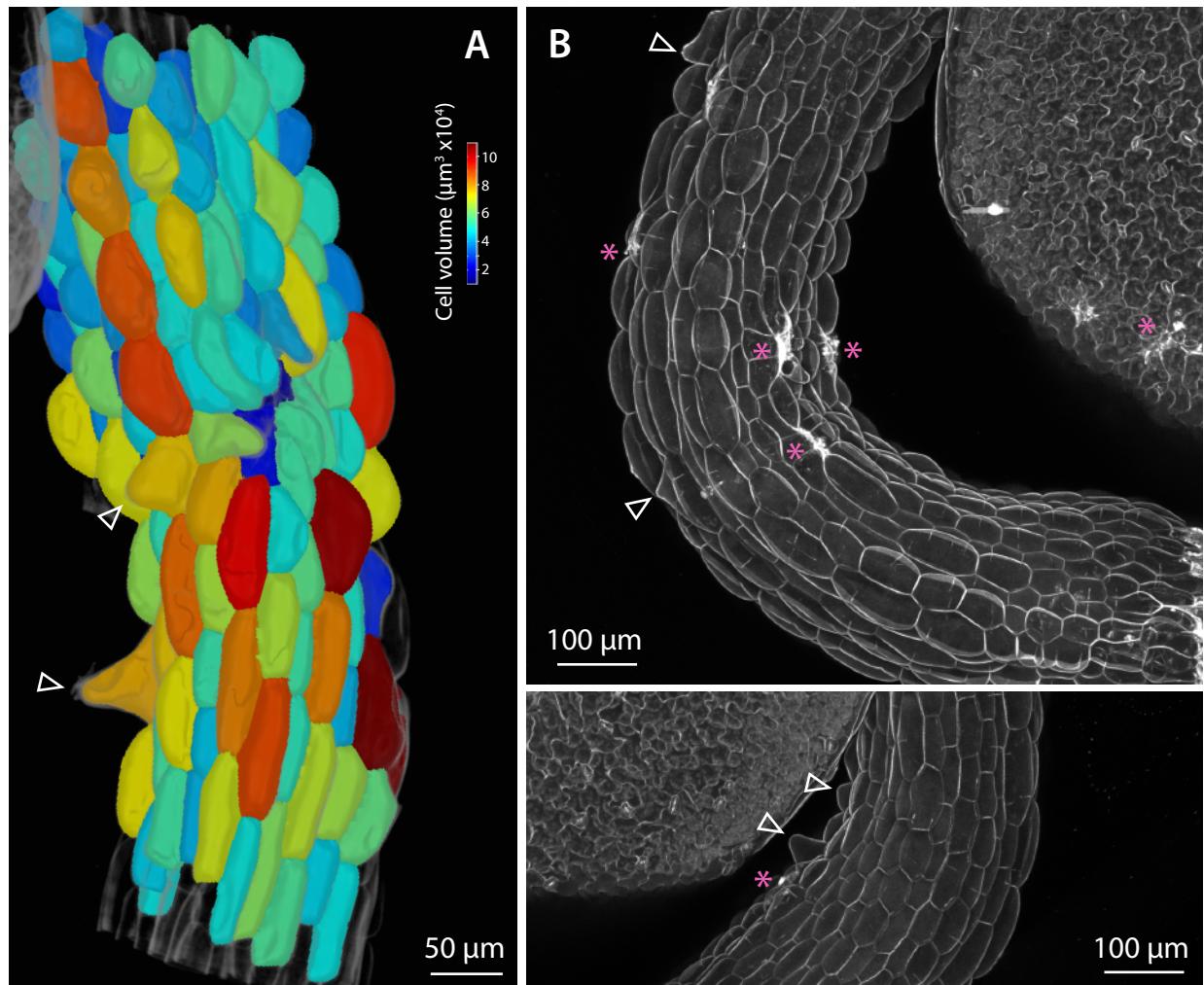
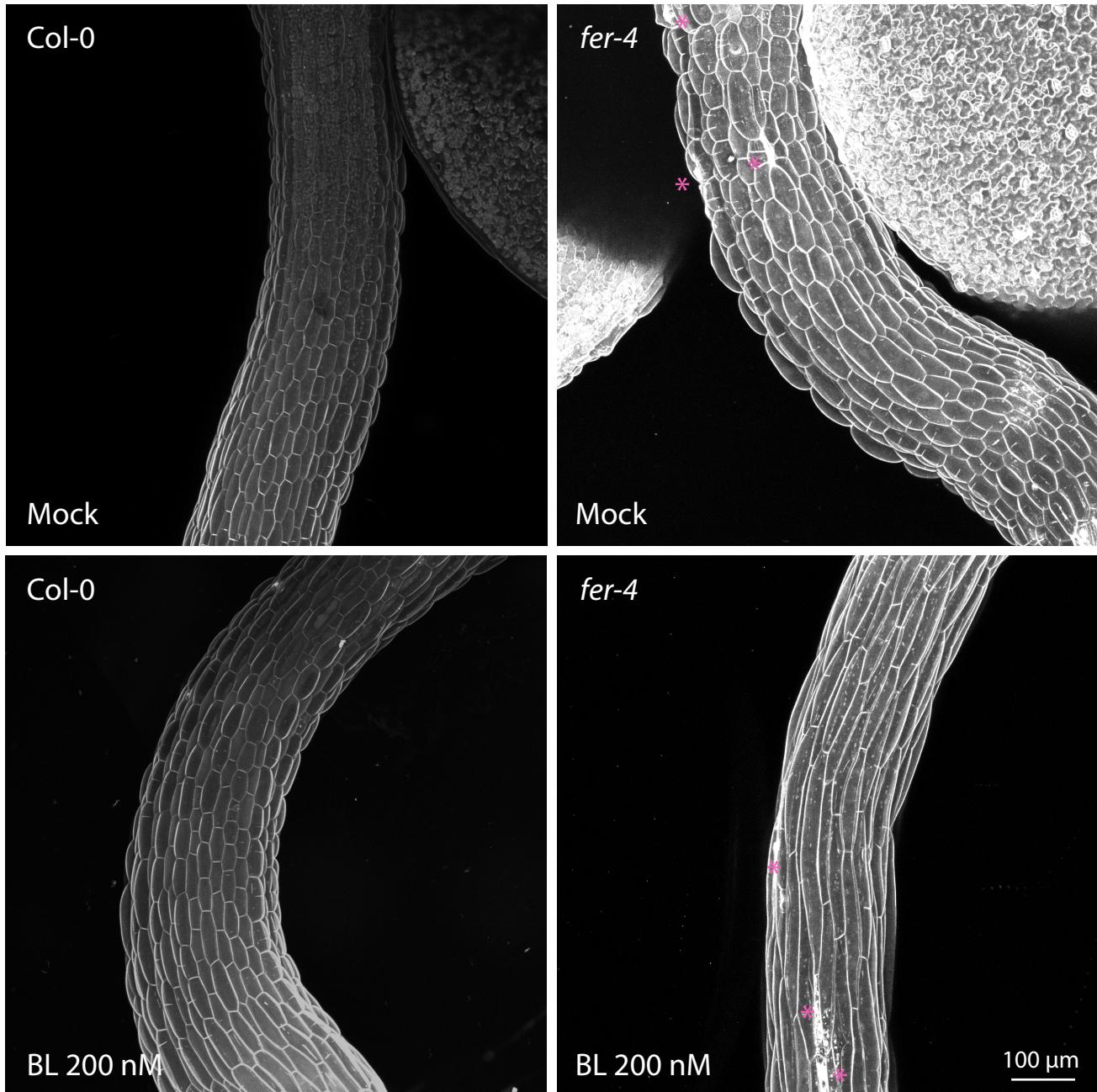
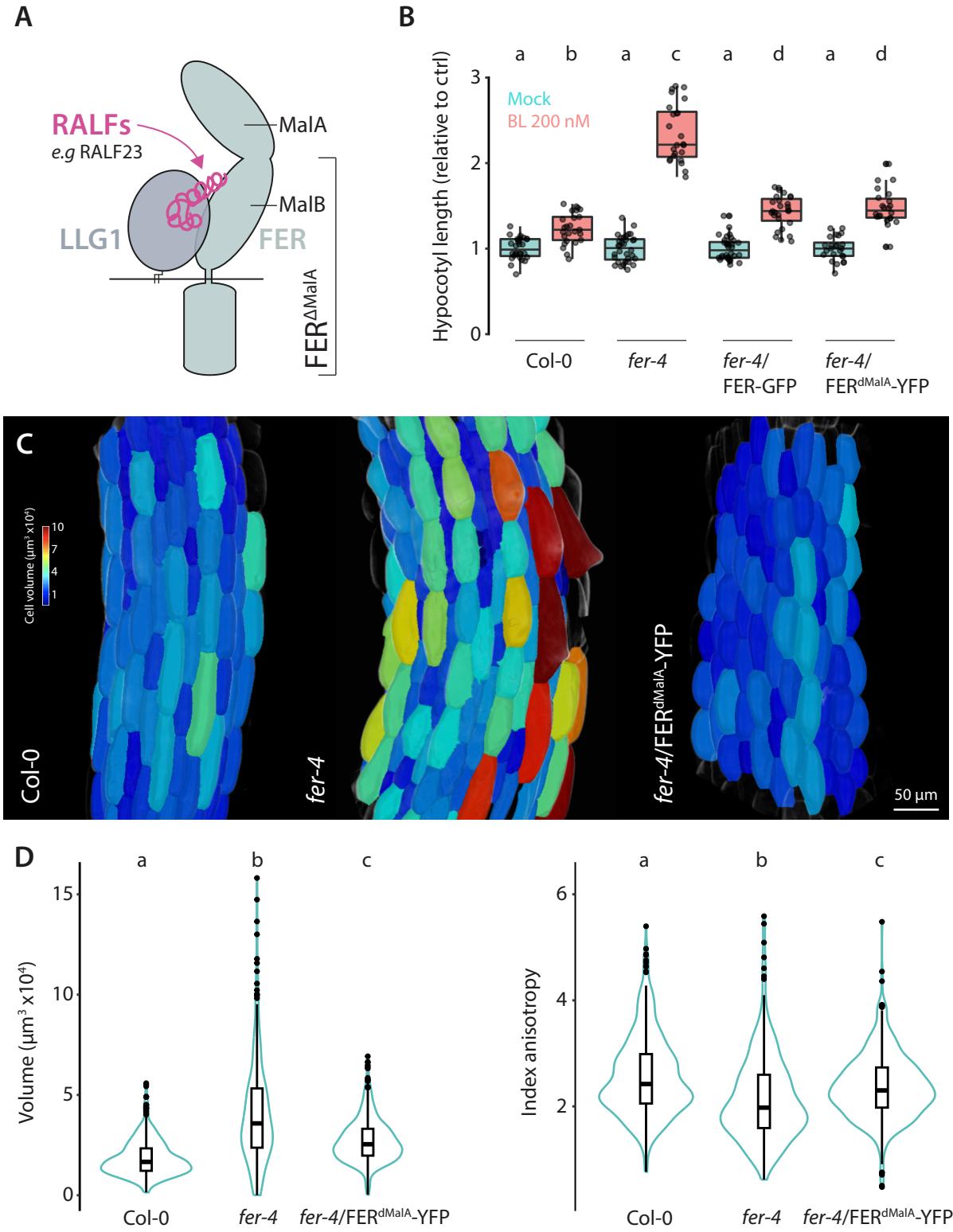
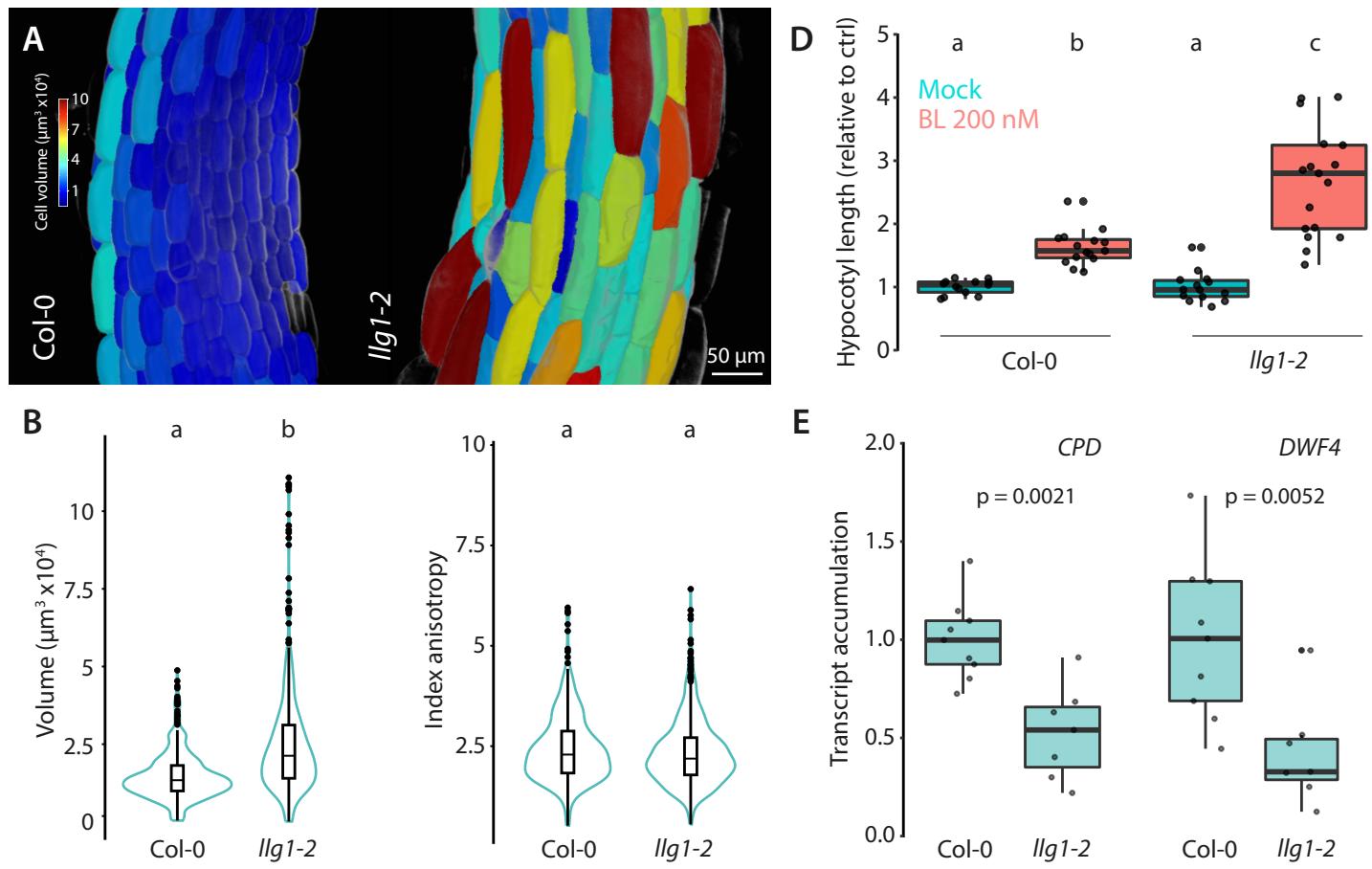


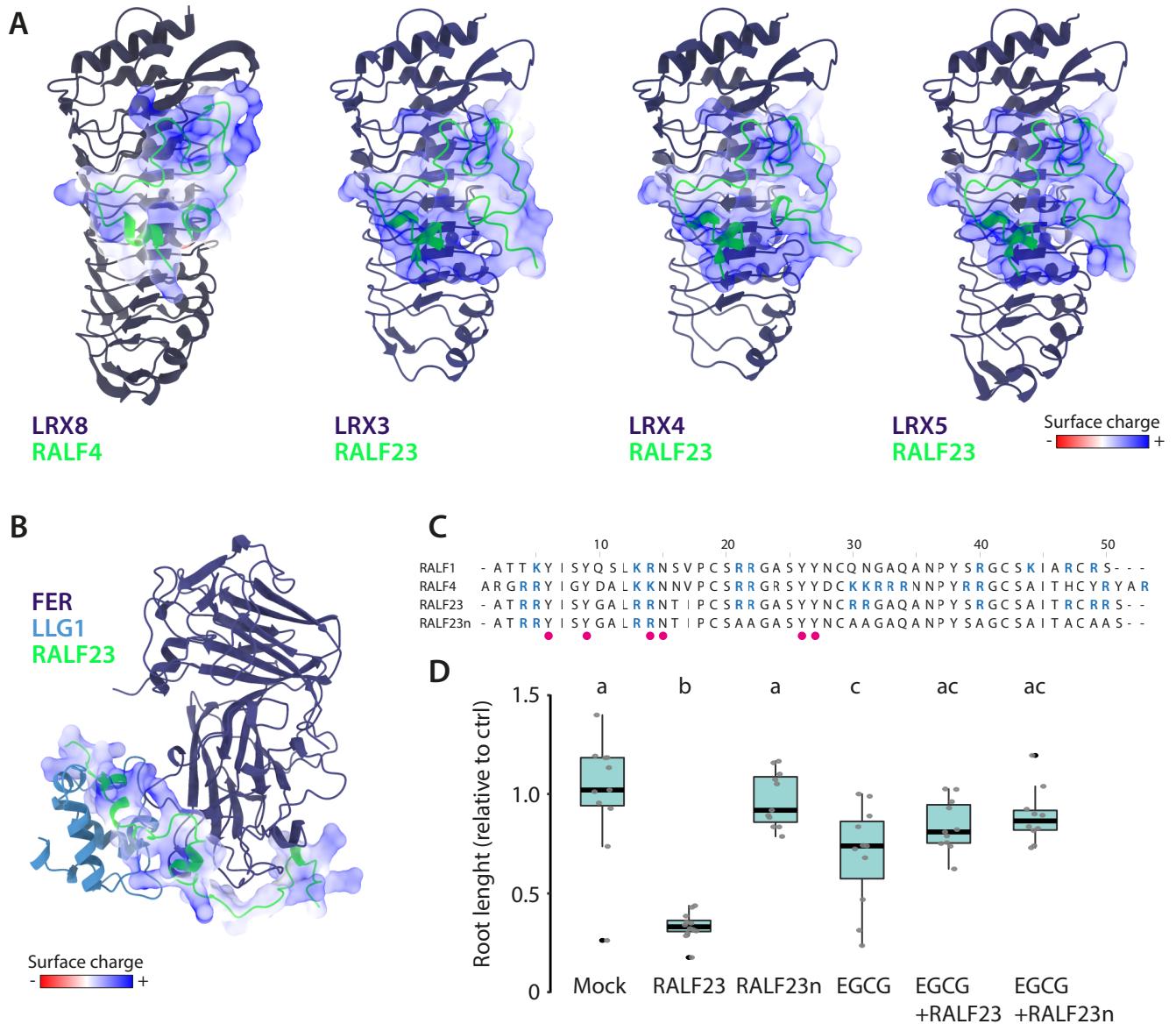
Figure 5| RALF23 modulates pectin methylation and the activity of pectin modifying enzymes.

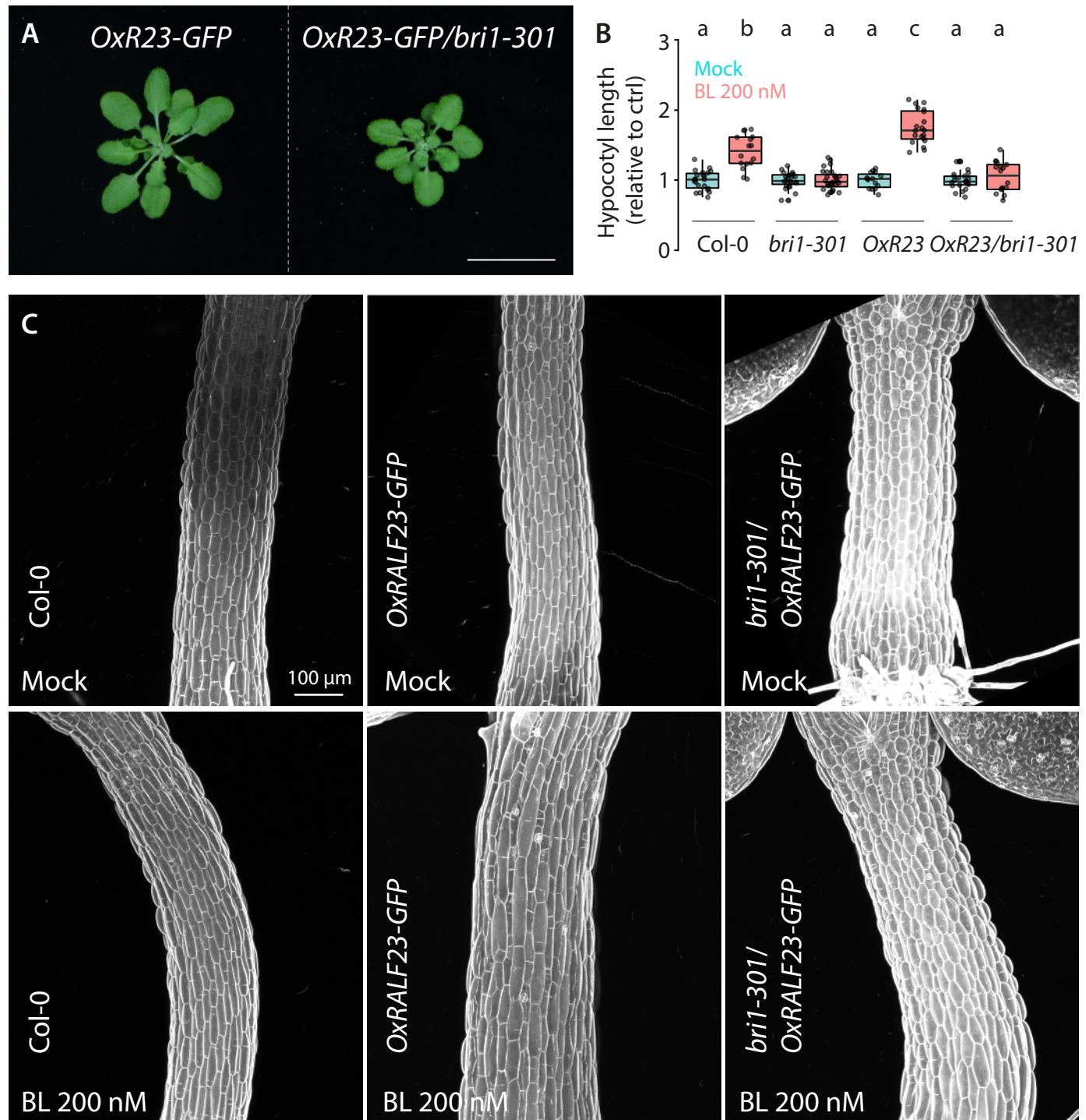




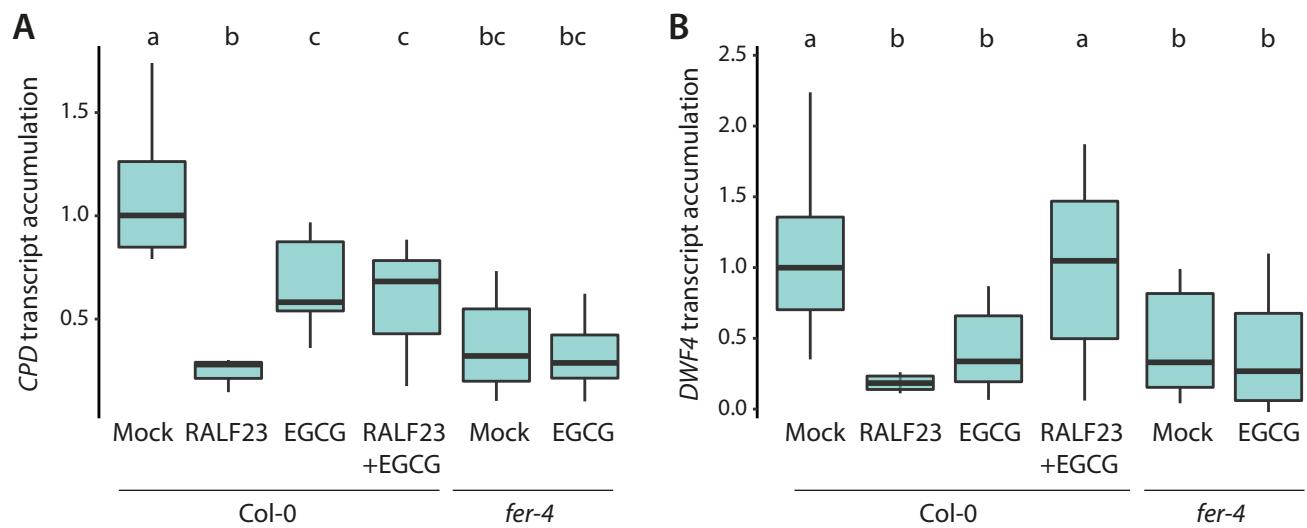

Figure 6 | A proposed working model for a RALF-brassinosteroid morpho-signaling circuit.


Supplementary Figure 1 | FERONIA does not associate with BRI1 receptor complex.


Supplementary figure 2 | Analysis of *fer-4* hypocotyl epidermis.


Supplementary figure 3| Observation of *fer-4* hypocotyl upon exogenous BL treatment.


Supplementary figure 4| FERONIA malectin A domain is not required to regulate cell anisotropic growth of the hypocotyl epidermal cells.


Supplementary figure 5 | LLG1 regulates cell expansion and BRI1 signaling.

Supplementary figure 6| Pectin modulates RAFL23 responsiveness.

Supplementary figure 7| RAFL23-GFP overexpression promotes BL responsiveness.

Supplementary figure 8 | EGCG inhibits the effect of RALF23 on BR signaling.