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Abstract 26 

Head and neck squamous cell carcinoma (HNSCC) arises from the mucosal epithelium of the 27 

oral cavity, pharynx, or larynx and is linked to exposure to classical carcinogens and human 28 

papillomavirus (HPV) infection. Due to molecular, immunological, and clinical disparities 29 

between HPV+ and HPV- HNSCC, they are recognized as distinct cancer types. While immune 30 

checkpoint inhibition (ICI) has demonstrated efficacy in recurrent/metastatic HNSCC, response 31 

variability persists irrespective of HPV status. To gain insights into the CD8+ T-cell landscape of 32 

HPV- HNSCC, we performed multimodal sequencing (RNA and TCR) of CD8+ tumor-33 

infiltrating lymphocytes (TILs) from treatment-naïve HPV- HNSCC patients. Additionally, we 34 

subjected cells to ex vivo TCR-stimulation, facilitating the tracing of clonal transcriptomic 35 

responses. Our analysis revealed a subset of CD8+ TILs highly enriched for interferon-36 

stimulated genes (ISG), which were found to be clonally related to a subset of granzyme K 37 

(GZMK)-expressing cells. Trajectory inference suggests ISG transition via GZMK cells towards 38 

terminal effector states. However, unlike GZMK cells, which rapidly an effector-like phenotype 39 

in response to TCR stimulation, ISG cells remain transcriptionally inert. Consequently, ISG cells 40 

may impede effective T-cell differentiation within the TME. Although, the functional 41 

consequences of ISG cells are poorly understood, we revealed that they possess receptors and 42 

ligands enabling cell-cell communication networks with key TME immunomodulators such as 43 

dendritic cells. Additionally, ISG cells were found to be a core feature across various tumor 44 

entities and were specifically enriched within tumor tissue. Thus, our findings illuminate the 45 

complexity of T-cell heterogeneity in HPV- HNSCC and reveal an overlooked population of 46 

IFN-stimulated CD8+ TILs. Further exploration of their functional significance may offer 47 

insights into therapeutic strategies for HPV- HNSCC and other cancer types. 48 

  49 
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Background 50 

Head and neck squamous cell carcinoma (HNSCC) encompass cancers originating from the 51 

mucosal epithelium of the oral cavity, pharynx, or larynx. HNSCC is closely associated with 52 

myriad environmental and lifestyle factors such as air pollutants, tobacco, and alcohol 53 

consumption (Johnson et al. 2020). In addition, viral co-infection with human papillomavirus 54 

(HPV) is observed in a subset of HNSCC (~32%) patients (Ndiaye et al. 2014). Interestingly, 55 

HPV+ HNSCC is associated with more favourable prognosis especially in early stage disease 56 

(Fung et al. 2017; Lassen et al. 2009; Ang et al. 2010). The clinical benefit of HPV status is 57 

thought to derive from HPV-specific immune responses and the intrinsic immunogenicity of 58 

HPV (Nelson et al. 2017; Andersen et al. 2014).  59 

 Standard-of-care treatment options for HNSCC include surgical resection, radiotherapy, 60 

and chemotherapy (Johnson et al. 2020). However, immunotherapy-based treatment approaches 61 

such as immune checkpoint inhibition (ICI), have shown significant clinical benefit in the 62 

recurrent/metastatic setting (Vos et al. 2021). In fact, immune checkpoint inhibition has been 63 

approved for first-line treatment of patients with recurrent/metastatic (R/M) HNSCC (Burtness et 64 

al. 2019). Unfortunately, response to immunotherapy varies significantly. Variable responses 65 

may, in part, be attributed to the immunosuppressive tumor-microenvironment (TME) commonly 66 

observed in HNSCC (Johnson et al. 2020). While it is generally accepted that HPV+ HNSCC 67 

shows more robust anti-tumor immune responses compared to HPV− HNSCC, recent 68 

immunotherapy trials did not find an association between HPV status and response (Sacco et al. 69 

2021; Ferris et al. 2016). Given, that CD8+ T-cells are recognized as key drivers of anti-tumoral 70 

responses, a better understanding of the CD8+ tumor-infiltrating lymphocyte (TIL) heterogeneity 71 

in HPV- patients is needed to improve the treatment for this subgroup of HNSCC.  72 

Interferons (IFNs) are pleiotropic cytokines primarily produced by immune and stromal 73 

cells in response to pathogens or malignant transformation. Three types of IFNs have been 74 

described, which differ by the distinct receptors they bind and the subsequent signaling cascades 75 

induced. Type I IFNs (IFN-I) have well described roles in both anti-viral and anti-tumor 76 

responses. In particular, IFN-I can directly inhibit tumor growth by inhibiting proliferation and 77 

inducing apoptosis. In addition, IFN-I can act indirectly to induce anti-tumor immune responses, 78 
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for example via the activation of dendritic cells, natural killer cells or neutrophils (Bald et al. 79 

2014). Simultaneously, IFN-I can reduce the pro-tumorigenic functions of regulatory T-cells and 80 

myeloid-derived suppressor cells (Yu, Zhu, and Chen 2022). In fact, IFN-I signaling is 81 

considered as a “third signal” of activation and important for naïve T-cell priming, activation, 82 

proliferation, and memory differentiation (Curtsinger and Mescher 2010). Thus, IFN-I is 83 

regarded as a crucial cytokine in facilitating cancer immunosurveillance and boosting the 84 

efficacy of cancer immunotherapies (Yu, Zhu, and Chen 2022; Fuertes et al. 2011; Diamond et 85 

al. 2011; Ruotsalainen et al. 2021). However, we have previously shown via genetic ablation, 86 

that IFN-I signaling is dispensable for the expansion and function of adoptively transferred 87 

tumor-specific CD8+ T-cells (Ruotsalainen et al. 2021). In addition, several studies also provide 88 

evidence that IFN-I signaling, at least in the later stages of anti-tumor immune responses, can 89 

promote pro-tumor changes and ultimately immune escape (Zhou et al. 2020). For example, IFN-90 

I signaling is linked to expression of immune checkpoints, IL-10, Nos2 and the development of a 91 

T-cell exhaustion phenotype (Ruotsalainen et al. 2021; Chen et al. 2022; Sumida et al. 2022). 92 

Therefore, the effect of IFN-I signaling in the functional outcomes of tumor-infiltrating T-cells is 93 

multifaceted and requires further investigation.  94 

Single-cell RNA sequencing (scRNA-seq) of immune cell subsets in cancer patients has 95 

enabled the high-resolution mapping of cellular heterogeneity. This methodology has been 96 

applied to the analysis of human T-cells in response to cancer immunotherapies (Sade-Feldman 97 

et al. 2018). However, traditionally this approach only focuses on assessing the transcriptional 98 

state of ex vivo isolated cells. Thus, capturing a snapshot of cellular transcriptomic landscape 99 

within the TME. Therefore, we leveraged an ex vivo perturbation via a short-term T-cell receptor 100 

(TCR) stimulation. Coupled with scRNAseq and single-cell TCR sequencing, we were able to 101 

study the clonal dynamics and evaluate the responsive potential of CD8+ tumor-infiltrating 102 

lymphocyte (TIL) subsets.  103 

Herein, we sequenced over 11,000 resting and stimulated CD8+ TILs isolated from 104 

treatment-naïve HPV- HNSCC patients. As such, we were able to define ex vivo cellular states 105 

and their stimulation outcomes. Importantly, we identified a population of T-cells rich in IFN-106 

stimulated genes (ISG). These ISG cells were found to be associated with an IFN-I signature and 107 

were specifically enriched within the tumor tissue of various tumor entities. Furthermore, these 108 
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cells were found to be clonally related to a population of cells highly expressing granzyme K 109 

(GzmK). However, unlike the GzmK subset, ISG-cells were transcriptionally inert to stimulation 110 

and thus possibly possess a unique role within the TME. This study sheds light on the existence 111 

of this overlooked population and begins to investigate their functionality.  112 

Results 113 

Single-cell RNA sequencing of CD8+ TILs from treatment-naive HNSCC patients identifies 114 

exhausted and effector populations 115 

CD8+ T-cells are key drivers of anti-tumor responses. However, there is substantial 116 

heterogeneity in CD8+ T-cell phenotypes within TIL populations. As such, we sought to explore 117 

the diversity of CD8+ TILs in HPV- treatment-naïve non-R/M HNSCC patients. We isolated live 118 

CD45+CD3+CD4-CD8+ from 8 patients using flow cytometry-based cell sorting and subjected 119 

half of those cells to ex vivo CD3/28 TCR stimulation. After 5 hours of stimulation, we 120 

performed single-cell RNA and TCR sequencing to simultaneously identify CD8+ TIL 121 

phenotypes and clonotypes. We thereby were able to profile transcriptional changes in response 122 

to TCR-based stimulation (Figure 1A).  123 

Sequencing data from both unstimulated and TCR-stimulated samples were integrated 124 

and projected onto a unified UMAP space (Figure 1B). This resulted in 14 distinct clusters of 125 

CD8+ TILs with the majority of identified clusters evenly distributed across both unstimulated 126 

and stimulated conditions (Supplementary Figure 1A). Importantly, two new clusters emerged 127 

specifically post-TCR-stimulation (clusters Stimulated-1; Stim-1 and Stimulated-Exhausted; 128 

StimEX). Three naïve/memory cell clusters were identified and annotated based on their 129 

expression of markers such as IL7R, CCR7, and SELL (Figure 1C). A cluster of cells expressing 130 

GZMK as well as EOMES, NKG7, TNFRSF18 (encodes for GITR), and CD69 was also 131 

identified (Figure 1D and data not shown). Additionally, a cluster of cells expressing high levels 132 

of various interferon-stimulated genes, including ISG15, IFI6, IFIT3, MX1, ISG20, IFITM1, 133 

IFIT1, MX2, and OAS3 (Supplementary Figure 1B and data not shown) was recognized and 134 

annotated as the interferon-gene stimulated (ISG) cluster of cells (Figure 1D). The stimulated-1 135 

(Stim-1) cluster from TCR-stimulated cells was enriched for the expression of immune effector 136 

molecules such as IFNG, XCL1, XCL2, CRTAM, TNF, TNFSF14 (encodes for LIGHT) and 137 
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TNFRSF9 (encodes for 4-1BB) (Figure 1D and Supplementary figure 1B). Three exhausted cell 138 

clusters were also identified, all expressing high levels of canonical exhaustion markers such as, 139 

TOX, HAVCR2, PDCD1 (encodes for Tim-3 and PD-1, respectively), CTLA4, ENTPD1 (encodes 140 

CD39), and TIGIT (Figure 1E and Supplementary Figure 1B). One of these exhausted clusters 141 

was exclusively found post-TCR-stimulation and as such was designated as the Stimulated-142 

Exhausted (StimEX) cluster. A small cluster of tissue-resident memory (TRM) cells was 143 

identified based on the expression of canonical TRM markers such as ZNF683 (encodes for 144 

HOBIT), PRDM1 (encodes for BLIMP1), ITGA1 (encodes for CD49A), ITGAE (encodes for 145 

CD103), and CXCR6 (Figure 1F and supplementary figure 1B). A small population of 146 

proliferating cells was also identified by their enrichment for proliferation and cell cycle genes, 147 

notably MKI67 (encodes for Ki-67) (Figure 1F).  148 

HNSCC TME is populated with unconventional CD8+ T-cells 149 

We also identified three clusters of unconventional T-cells (Figure 1G and Supplementary Figure 150 

1C). Two of these had gene expression patterns indicative of gamma delta (�δ) T-cell subsets. 151 

The third cluster expressed markers corresponding with a mucosal-associated invariant T 152 

(MAIT) cell population. �δ T-cell clusters could be differentiated based on the expression of 153 

TCR genes (Supplementary Figure 1D), marking the two clusters as the V�9Vδ2 T-cells 154 

(G9D2) and non-G9D2 populations. All unconventional T-cell populations expressed high levels 155 

of CD3 and CD8 as previously described (Kalyan and Kabelitz 2013; Gherardin et al. 2018) 156 

(Supplementary Figure 1E). Differential gene expression revealed that the G9D2 population 157 

expressed cytotoxicity markers such as GZMA, GZMB, GZMH, GNLY, PRF1, and NKG7 158 

(Supplementary Figure 1B and 1F). Non-G9D2 γδ T-cells expressed markers such as TCF7, 159 

CD27, KLRD1, and SELL. Analysis of differentially expressed transcription factors revealed that 160 

these three cell clusters had distinct and unique transcriptional regulatory programs 161 

(Supplementary Figure 1G). For example, G9D2 cells revealed specific enrichment for 162 

transcription factors EOMES, ZEB2, and ZNF683 (encodes for HOBIT), while non-G9D2 cells 163 

were enriched for ID3, IKZF2, TCF7, and BACH2. Meanwhile, MAIT-cells demonstrated a 164 

distinct pattern of enrichment for transcription factors associated with the MAIT lineage, such as 165 

RORA, and ZBTB16 (encodes for PLZF). Altogether, the unconventional T-cells, TRMs, and 166 

proliferative cells, cumulatively represented about ~10% of TILs within the dataset (Figure 1H). 167 
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Ex vivo TCR stimulation leads to the emergence of two transcriptionally distinct T-cell 168 

clusters 169 

For further analysis, we removed the three unconventional T-cell clusters from the dataset and 170 

recalculated the UMAP coordinates (Figure 2A). We next sought to investigate the two cell 171 

clusters which predominantly arose from TCR-based stimulation. Importantly, both stimulation-172 

induced clusters shared expression of a number of genes expected following TCR activation, 173 

including critical effector molecules such as IFNG, GZMB or FASLG, as well as activation 174 

markers as ICOS and TNFRSF9 (encodes for 4-1BB) (Figure 2B). However, despite an overlap 175 

of activation-induced transcription, both stimulation-induced clusters showed distinct patterns of 176 

gene expression reminiscent of their origin (Figure 2C). For example, the Stim-1 cluster was 177 

enriched for genes such as IL7R, XCL1, CD69, TNFSF14 (encodes for LIGHT), CD28, and LTB, 178 

whereas the StimEX cluster expressed high levels of exhaustion markers such as TOX, LAG3, 179 

HAVCR2 (encodes for TIM-3) and CD96. These basal gene expression profiles seem to overlap 180 

with gene expression of other clusters of the dataset. For example, genes enriched in Stim-1 181 

cluster were also highly abundant in Naïve/memory, GZMK, and ISG clusters, while genes 182 

expressed within the StimEX cluster were found enriched within the remaining two TEX clusters 183 

and to a lesser extend within the TRM and proliferating cell clusters. This overlap suggested the 184 

two stimulation-induced clusters may have arisen from different transcriptional states. To test 185 

this hypothesis, we used the single-cell TCR sequencing data to trace clonal populations between 186 

unstimulated and stimulated datasets.  187 

 An evaluation of the top 50 clonotypes observed in the dataset revealed an overlap 188 

between the Stim-1 and the ISG and GZMK clusters (Figure 2D). In contrast, the StimEX cluster 189 

shared many highly abundant clones with the TEX-1 cluster, indicating clonal overlap between 190 

these populations. To explore this further, we next traced clones pre- or post-stimulation to 191 

investigate the clonal overlap with respect to stimulation and cluster identity. However, this 192 

analysis relied on the assumption that clones were sufficiently represented in both pre- and post-193 

stimulation datasets. Indeed, it was observed that when clones are represented in 2 or more T-194 

cells (clone size small), >60% of clones are captured within the stimulated dataset (i.e shared) 195 

(Figure 2E). Therefore, we proceeded with tracing the transcriptional responses of shared T-cell 196 

clones by linking their cluster identity pre- and post-stimulation. We observed that cells from the 197 
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Stim-1 cluster largely overlapped with unstimulated ISG and GZMK clusters (Figure 2F). 198 

Tracing unstimulated ISG clones, we observed clonal overlap that suggested stimulated ISG 199 

cells, either maintain their identity or adopt a GZMK or Stim-1 transcriptional phenotype. 200 

Similarly, unstimulated GZMK cells either retained GZMK identity or adopted ISG or Stim-1 201 

transcriptional profiles post-stimulation. In contrast, clones from the StimEX cluster were 202 

predominantly found to overlap with unstimulated TEX-1 cluster with a minimal contribution 203 

from other unstimulated clusters (Figure 2G). As predicted, unstimulated TEX-1 cluster clones 204 

overlapped with stimulated StimEX or TEX-1 clusters. Interestingly, this analysis also revealed 205 

that TCR-stimulation was capable of inducing a gene signature associated with T-cell activation 206 

in a subset of transcriptionally terminally exhausted T-cells (TCF7-TOX+PD1+) (Figure 1E & 207 

Figure 2B, C) 208 

ISG cells largely retain their transcriptional identity upon TCR stimulation 209 

To further understand the responsiveness to TCR stimulation across the dominant effector-like 210 

clusters, we isolated and projected them onto their own UMAP coordinates (Figure 3A). 211 

Subsequently, clones shared across pre- and post-stimulation datasets but whose cells were 212 

entirely contained within the ISG or GZMK clusters within the unstimulated dataset were 213 

identified (Figure 3B). This resulted in 26 and 53 unique clonotypes within unstimulated ISG or 214 

unstimulated GZMK clusters, respectively. Following TCR-stimulation, the majority of ISG T-215 

cells retained their transcriptional identity (Figure 3C). In contrast, over 50% of unstimulated 216 

GZMK T-cells adopted a Stim-1 transcriptional identity following stimulation (Figure 3D), while 217 

the remaining proportion retained their GZMK identity. Interestingly, there was minimal 218 

adoption of an ISG signature following stimulation of GZMK clones. These data were further 219 

supported by pseudotime trajectory inference analysis, which revealed a trajectory of 220 

differentiation originating within the ISG cluster and transiting via GZMK population through to 221 

the Stim-1 cluster (Figure 3E). This trajectory was revealed using both a tree-based method 222 

(Slingshot) and a linear inference method (SCORPIUS; data not shown). Taken together, this 223 

data suggests a trajectory of ISG > GZMK > Stim-1, however, the transition from ISG > GZMK 224 

appears limiting as ISG cells were poorly responsive to TCR stimulation.  225 
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A type I interferon signature is associated with reduced transcriptional activity in ISG 226 

TILs 227 

Given the diverse role of interferon signaling for the function of tumor-infiltrating T-cells, the 228 

relevance of ISG cells during tumor progression and immunotherapy remains elusive. We 229 

performed differential gene expression analysis and revealed a dominant signature enriched 230 

within the ISG population (Figure 4A). The top 10 differentially expressed genes identified 231 

within the ISG cluster were almost all found downstream of interferon signalling (Figure 4B). To 232 

understand the type of interferon signalling responsible, clusters were scored for genes 233 

contributing to a type I or type II interferon response (Figure 4C). Results showed the ISG 234 

cluster had enrichment for a type I, but not a type II interferon gene signature. Gene Ontology 235 

(GO) analysis was performed on the differentially up- or down-regulated genes within the ISG 236 

cluster relative to other clusters to unravel dominant biological processes associated with ISG 237 

cells. This analysis revealed a broad increase in translation related terms and type I IFN 238 

signalling responses (Figure 4D). Interestingly, down-regulated genes were enriched for GO 239 

terms associated with transcriptional regulation. This finding could explain our previous 240 

observation, that ISG cells poorly adopt new transcriptional states following TCR stimulation.  241 

ISG cells are enriched in CD8+ TILs across various tumor types 242 

To establish whether ISG cells could be identified in other microenvironments, we generated a 243 

specific gene signature using the top 10 differentially expressed genes from ISG cells within our 244 

data set (Figure 4B). We next examined if this signature could identify ISG cells in a publicly 245 

available HNSCC dataset in which an ISG cluster had previously been reported (Cillo et al. 246 

2020). Indeed, using our curated ISG-signature, we were able to correctly identify a cluster of 247 

cells enriched for type I interferon genes (Supplementary Figure 2A). 248 

 To better understand the abundance of ISG cells within CD8+ T-cells in healthy and 249 

malignant tissues, we scored cells from a pan-cancer dataset for our ISG signature (Nicholas 250 

Borcherding 2022). Indeed, we could identify a fraction of T-cells highly enriched for our ISG-251 

signature (Figure 5A). Next, we assessed the frequencies of ISG cells across normal and tumor 252 

tissues. Here, we found ISG cells to be significantly increased in tumor tissues, relative to normal 253 

tissue (Figure 5B). ISG cells were most frequent in Ovarian and Esophageal tumor types but also 254 
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detected to various degrees among all other tumor types assessed (Figure 5C). As expected ISG 255 

cells were solely enriched for type I but not type II IFN genes (Supplementary Figure 2B). We 256 

also assessed a COVID-19 dataset including some Influenza samples to determine if ISG cells 257 

are also enriched in the blood of virally infected patients (D. Wang et al. 2022). Indeed, in both 258 

conditions we observed a population of CD8+ T-cells enriched for our ISG signature 259 

(Supplementary Figure 2C) with a higher frequency in disease compared to healthy control 260 

samples (Supplementary Figure 2D), suggesting that the ISG cluster phenotype is not restricted 261 

to tumor immunity.  262 

 Finally, to better understand the functional role of ISG cells within the TME, we 263 

employed cell-cell communication analysis. Utilising a published HNSCC dataset containing an 264 

array of immune cell subsets (Cillo et al. 2020), we revealed that ISG cells served as the source 265 

for interactions with CD16 positive cells, as well as with NK cells and plasmacytoid dendritic 266 

cells (PDCs) (Figure 5D). ISG cells were also found to be a target for DC, B cell, and CD14 cell 267 

interactions. Hence, this data suggests ISG cells interact with key innate immune cell subsets 268 

within the TME and thus potentially are important orchestrator of anti-tumor immunity. 269 

 270 

Discussion 271 

HNSCC is a prevalent and complex disease with numerous etiological influences. For example, 272 

viral co-infection with HPV in Oropharyngeal HNSCC is associated with a better prognosis 273 

especially in early stage disease. As such, HPV- HNSCC presents as a more therapeutically 274 

challenging entity. Therefore, we sought to expand the knowledge base of CD8+ TIL landscape, 275 

specifically in treatment-naïve HPV- HNSCC patients. We employed a multimodal sequencing 276 

approach, together with an ex vivo TCR-stimulation, to facilitate tracing of transcriptional 277 

profiles and response capacity in CD8+ T-cell subsets.  278 

Single-cell RNAseq of immune cell subsets has enabled in-depth mapping of the cellular 279 

heterogeneity of various disease conditions. However, traditionally this methodology only 280 

assesses the transcriptional state of cells ex vivo. Thus, capturing a snapshot of cellular 281 

transcriptomic landscape. Although, by leveraging an ex vivo perturbation coupled to sequencing 282 
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approaches, others have ascertained both ex vivo profiles and their subsequent activation 283 

potentials. For example, a study by Szabo et al., 2019 performed ex vivo TCR-stimulation on T-284 

cells isolated from several healthy donor tissues. The authors were able to define both conserved 285 

tissue signatures as well as the activation states of T-cells (Szabo et al. 2019). Using a similar 286 

approach, we included TCR sequencing to facilitate tracing of transcriptional responses within 287 

clonal populations of tumor-infiltrating T-cells. Notably, we observed two unique T-cell clusters 288 

specifically induced by TCR-stimulation. Transcriptional signatures and clonal overlap suggest 289 

these populations arose via stimulation of distinct ex vivo subsets. Importantly, we observed cells 290 

that displayed a transcriptional program of terminal exhaustion (TCF7-TOX+PDCD1+TIM3+), 291 

which retained substantial capacity to respond to TCR stimulation (Blank et al. 2019). These data 292 

posit transcriptionally exhausted cells may retain substantive capacity to respond to stimulation. 293 

Indeed, numerous scRNAseq studies have identified clusters of exhausted cells that 294 

simultaneously express high levels of effector molecules (Andreatta et al. 2021; Quah et al. 295 

2023). These observations highlight the need for multimodal data approaches to identify 296 

prototypic exhausted T-cells while urging caution against defining exhaustion solely based on 297 

transcriptional profiles.  298 

IFN-I signaling in CD8+ T-cells is associated with both anti- and pro-tumoral function 299 

(Zhou et al. 2020). Therefore, the clinical implications of an ISG-rich population is poorly 300 

understood. Substantial challenges impede the experimental investigation of these cells and as 301 

such our multi-modal sequencing approach has provided a comprehensive investigation of this 302 

population. Our analysis has revealed that CD8+ ISG cells are a common feature of solid 303 

malignancies and are specifically enriched within tumor tissue. Furthermore, we have found that 304 

ISG cells are clonally related to GZMK-expressing CD8+ TILs. Pseudotime trajectory inference 305 

suggested a differentiation pathway of ISG > GZMK > Stim-1 cells. However, experimental 306 

perturbation revealed that ISG cells are transcriptionally stable and inert to TCR-stimulation. As 307 

such, ISG cells may represent a barrier to the differentiation of GZMK cells and subsequent 308 

terminally differentiated subsets. Although, numerous unknowns remain and ultimately further 309 

experimentation is required to understand the functional implications of this differentiation 310 

pathway and these cellular states.  311 
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This is not the first report to describe a population of cells enriched with interferon-312 

stimulated genes. Indeed, numerous others have observed similar populations amongst 313 

malignant, infectious, and healthy tissues (X. Wang et al. 2022; Quah et al. 2023; Gideon et al. 314 

2022; Cillo et al. 2020). However, the absence of specific cell-surface markers has hindered 315 

investigation efforts. Thus far, reports of this population have been limited to mere observation 316 

of their appearance. Illustrative of this, Wang and colleagues identified a subset of ISG cells 317 

within sequencing data of healthy PBMCs. Despite their efforts, the authors were unable to 318 

experimentally isolate this population and thus were limited in the functional analysis that could 319 

be performed (X. Wang et al. 2022). Therefore, alternative markers and/or strategies to identify 320 

and isolate cells with this cellular state are required. In absence of this, our multimodal 321 

sequencing and experimental perturbation approach has provided novel insights into ISG CD8+ 322 

TILs. 323 

 Ex vivo stimulation additionally revealed a cluster of cells that predominantly arose from 324 

ISG and GZMK clusters. These clusters had substantial clonal overlap and trajectory inference 325 

suggested ISG cells transition through a GZMK phenotype towards the fully activated T-cell 326 

state. However, further interrogation of the clonal response to stimulation revealed that ISG cells 327 

are transcriptionally inert to TCR-stimulation. The relationship between GZMK and ISG cells is 328 

notable as others have demonstrated GZMK expression within solid tumors is associated with 329 

improved patient outcomes (Rooney et al. 2015; C. Zheng et al. 2017). Although, the nature of 330 

this association is unclear, as GZMK is usually correlated with innate cells and naïve 331 

phenotypes. For example, GZMK is more dominantly expressed within immature NK cells. 332 

However, GZMK expression within CD8+ T-cells is predominantly observed within central 333 

memory and effector memory subsets (Duquette et al. 2023). Thus, supporting the notion that 334 

GZMK expression within CD8+ T-cells may correlate with favourable prognosis. Although, it 335 

has been observed that GZMK+ CD8+ T-cells are poorly cytotoxic and instead produce IFNγ 336 

(Harari et al. 2009; Duquette et al. 2023). Interestingly, others have differential effects of TCR or 337 

cytokine stimulation on GZMK expression. Namely, that TCR-stimulation induces the release of 338 

GZMK and increase in GZMB expression. Conversely, cytokine-based stimulation drives 339 

accumulation of GZMK (Duquette et al. 2023). These findings are consistent with our results 340 

which demonstrated TCR-based stimulation drives GZMK cells to down-regulate GZMK and 341 

up-regulate GZMB as they differentiate towards a more terminal effector phenotype. Therefore, 342 
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these data suggest GZMK positivity marks CD8+ T-cells which are not yet terminally 343 

differentiated and instead possess a more memory-like phenotype. Additionally, our data 344 

suggests ISG cells differentiate into GZMK cells however, they possess relative transcriptional 345 

stability. As such, TCR-stimulation is insufficient to drive ISG cells to adopt a GZMK 346 

transcriptional phenotype. Thus, ISG cells could function as a barrier within this differentiation 347 

trajectory. The functional consequences of this are unknown. Given the above model, 348 

accumulation of ISG cells could prevent the development of more terminally differentiated anti-349 

tumoral responses via GZMK intermediaries. However, GZMK+ CD8+ T-cells have been 350 

observed within tumor stroma and have been implicated in poor prognosis (Tiberti et al. 2022). 351 

Additionally, GZMK CD8+ TILs have been described as a transition state on the trajectory 352 

towards exhaustion (C. Zheng et al. 2017; Sun et al. 2022). This is consistent with reports 353 

showing IFN-I signalling as a driver of T-cell exhaustion (Chen et al. 2022; Sumida et al. 2022). 354 

Therefore, the functional consequences of ISG and GZMK TILs is poorly defined. Further 355 

studies are required to better understand the dynamics and function of T cell clusters infiltrating 356 

tumor tissues.  357 

   358 

Methods 359 

Patient Samples 360 

A total of eight patients who had provided informed consent, were included in this study. 361 

Samples were obtained from surgical resections of primary HNSCC tumors. All patients 362 

presented with oral cavity squamous cell carcinoma and were confirmed to be human 363 

papillomavirus (HPV) negative. Fresh HNSCC tumors were collected at the time of resection of 364 

the primary tumor and sampled by a pathologist prior to fixation. Fresh tissue was processed to 365 

isolate tumor cells and immune cells prior to preservation and storage in liquid nitrogen. The 366 

patients enrolled in this study were treatment naïve and characteristics can be found in Figure 367 

1A. Ethical approval for this study was obtained from the Royal Brisbane and Women’s Hospital 368 

Human Research Ethics Committee and the QIMR Berghofer Human Research Ethics 369 

Committee, HREC/18/QRBW/245.  370 
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Single-cell RNA sequencing 371 

Cells from each patient were cultured as single-cell suspensions and were either stimulated using 372 

CD3/CD28 beads or left unstimulated for a duration of 5 hours. Following culture, the cells were 373 

sorted using fluorescence-activated cell sorting to isolate live CD45+CD3+CD4-CD8+ cells. 374 

Patient samples were sequenced as two unstimulated and two stimulated samples where each 375 

sequencing sample represented a pool of 4 patients. As such, approximately 10,000 cells per 376 

sample pool were carried forward into the 10x Genomics Single-cell 5’ library pipeline. The 377 

libraries were sequenced using a NextSeq 550 (Illumina). The sequencing was performed at 378 

QIMR Berghofer Medical Institute.  379 

scRNAseq pre-processing 380 

Sequencing reads were processed using cellranger (version 3.1.0) and reads were aligned to 381 

human reference genome GRCH38-3.0.0. Output from cellranger was processed using Seurat 382 

(version 4.3.0). Each sequencing sample was filtered to keep only cells that had a minimum of 383 

200 features and keep features that were detected in a minimum of 3 cells. Subsequently, the two 384 

unstimulated samples were merged and the two stimulated samples were merged to give two 385 

Seurat objects. These Seurat objects were further filtered to remove cells with greater than 2,500 386 

features or greater than 10% mitochondrial content. Filtering resulted in 5,785 cells with 15,429 387 

features in the unstimulated dataset and 6,042 cells with 15,618 features in the stimulated 388 

dataset. Datasets were normalised using LogNormalisation with a scale factor of 10,000. 389 

Subsequently, mitochondrial percentage and nCount variables were regressed out using a linear 390 

model. Unstimulated and Stimulated datasets were integrated using the Seurat integration 391 

pipeline. Unless otherwise stated integration functions/pipeline was executed using default 392 

function variables. Integration anchors were calculated using “cca” reduction, “LogNormalize” 393 

as a normalization method, and “rann” as the Nearest Neighbour method. Integration resulted in 394 

a dataset of 18,295 features across 11,827 cells. 395 

scRNAseq analysis 396 

Dimension reduction and cluster identification: The top 30 PCAs were calculated on the 397 

integrated dataset and Nearest-neighbors computed using the top 20 dimensions. Clusters were 398 

determined using a cluster resolution of “0.4”. UMAP in figure 1 was generated using top 20 399 
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PCA dimensions, the “uwot” algorithm, n.neighbors = 30, and min.dist = 0.3. Following UMAP 400 

dimension reduction calculation, clusters were investigated both with manually curated gene 401 

signatures and with the use of SingleR (version 2.0.0) to classify cells using data from celldex 402 

(version 1.8.0). Two low abundance clusters were removed that were identified as either having 403 

high mitochondrial content or a myeloid signature. UMAP projection was recalculated following 404 

the removal of these clusters, using the same parameters as previously stated. Therefore, after 405 

cluster identification the dataset contained 20,295 features across 11,658 cells with 5,724 cells 406 

from the unstimulated treatment condition and 5,934 cells from the stimulated treatment 407 

condition. Subsequently, unconventional T-cell clusters were subsetted from the dataset resulting 408 

in unconventional T-cell-only and CD8-only datasets. UMAP projections were recalculated for 409 

these datasets using the top 20 PCA dimensions, n.neighbors = 50, and a min.dist of 0.1 for 410 

CD8-only dataset or 0.5 for the unconventional T-cell-only dataset. The unconventional T-cell-411 

only dataset consisted of 20,295 features across 970 cells. The CD8-only dataset consisted of 412 

20,295 features across 10,688 cells, 5,165 of which originated from the unstimulated treatment 413 

condition and 5,523 from the stimulated treatment condition. 414 

Differential gene expression: Calculations to determine differentially expressed genes between 415 

clusters or conditions was performed using wilcox test implemented via the standard Seurat 416 

analysis pipeline. Analysis was performed using the RNA data slot of the Seurat object. 417 

Differentially expressed transcription factors: To determine the differential expression of 418 

transcription factors, the list of differentially expressed genes was cross-referenced with a 419 

curated database of RNA polymerase II regulated transcription factors (TFcheckpoint; 420 

http://www.tfcheckpoint.org). 421 

Gene ontology analysis: Briefly, differentially expressed genes for the ISG cluster were 422 

identified using Seurat’s FindMarkers() function. Genes identified as significantly (adjusted 423 

p.value < 0.5) up- or down-regulated were then passed to the enrichR package (version 3.1) to 424 

identify enriched terms using the GO_Biological_Process_2021 database. The top 10 enriched 425 

terms were then visualised using SCpubr (version 1.1.1).  426 

Signature scoring: Signature score calculated using UCell (version 2.2.0) with signatures for 427 

type I and II IFN obtained from (Azizi et al. 2018). 428 
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Cell-cell communication analysis: Cell-cell communication was performed using the R 429 

package “liana” (version 0.1.12). In brief, cell-cell communication networks were calculated 430 

using the following methods “natmi”, “connectome”, “logfc”, “sca”, and “cellphonedb”. The 431 

scores from these methods were subsequently aggregated and only interactions concordant 432 

between methods were kept. This analysis followed the recommended analytical pipeline for the 433 

“liana” package.  434 

Trajectory Inference: Trajectory inference was performed using the dynverse (Cannoodt and 435 

Saelens 2023) collection of packages. Analysis was performed using standard pipeline with 436 

default parameters and without supplying any priors for both slingshot and Scorpius trajectory 437 

inference algorithms.  438 

scRNAseq visualisation 439 

Imputation: Imputation of gene expression was performed and used in certain visualisations 440 

where indicated. Imputed values were not used for any downstream analysis and were 441 

exclusively used in indicated visualisations. Imputation was performed using the “RunALRA” 442 

function in Seurat and increased the percentage of non-zero values in the dataset from 29.63% to 443 

38.95%. 444 

Density based UMAP visualisation: The Nebulosa package (version 1.8.0) together with 445 

scCustomize package (version 1.1.1) were used to visualise gene expression on UMAP 446 

projections and expression density.  447 

Color scheme: Where possible the uniform, colorblind-friendly batlow (Crameri, Shephard, and 448 

Heron 2020) color pallet was used for data visualisation. The color palette was accessed using 449 

the scico package (version 1.3.1). 450 

Single-cell TCR sequencing analysis 451 

Pre-processing: Single-cell TCR sequencing data were aligned using cellranger pipeline 452 

(version 3.1.0) to the human VDJ reference (vdj_GRCh38_alts_ensembl-3.1.0-3.1.0). TCR data 453 

was subsequently processed using scRepertoire (version 1.8.0). TCR data was filtered such that 454 

if cells had multiple alpha or beta chains identified, only the top expressing chain was retained. 455 
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Additionally, unless otherwise stated, clone identity was defined by the CDR3 amino acid 456 

sequence.  457 

Clone size definitions: Abundance of clones was calculated per stimulation condition and 458 

binned according to the following definitions. Single (x = 1), small (1 < x < =5), medium (5 < x 459 

<=10), large (10 < x <=20) and hyperexpanded (20 < x <= 150). Where x = number of cells with 460 

exact CDR3 amino acid sequence. Size cut-offs were determined empirically using summary 461 

statistics of clone abundances across the dataset.  462 

External datasets 463 

uTILity: The pan-cancer “uTILity” dataset was acquired from (Nicholas Borcherding 2022) 464 

circa 13.10.2022. The dataset was filtered to retain only cells identified as CD8 T-cells and only 465 

Tumor and Normal tissue types were retained. Subsetted dataset was normalized and reintegrated 466 

using the harmony package (version 0.1.1) to remove “Cohort” effect. UMAP coordinates and 467 

clusters were recalculated following harmonization, using the standard Seurat analysis pipeline. 468 

HNSCC: For validation of ISG gene signature and cell-cell communication analysis, the 469 

HNSCC TILs dataset published in (Cillo et al. 2020) was used. Processed data was downloaded 470 

from (GSE139324)[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE139324]. 471 

Metadata for this dataset was obtained through contact with the lead author/s.  472 

COMBAT dataset: The Covid-19 and Infleunza scRNAseq dataset was downloaded from 473 

https://zenodo.org/records/6120249 (COvid-19 Multi-omics Blood ATlas (COMBAT) 474 

Consortium 2022) 475 

Figure preparation 476 

Figures were arranged and formatted using Adobe Illustrator (version 27.5) and/or GraphPad 477 

Prism (version 9). 478 

 479 

Table 1: Analysis packages used 480 
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Package/environment Version Reference 

celldex 1.8.0 (Aran et al. 2019) 

cellranger 3.1.0 (G. X. Y. Zheng et al. 2017) 

Dynverse 0.1.2 (Cannoodt and Saelens 2023) 

enrichR 3.1 (Jawaid 2023) 

harmony 0.1.1 (Korsunsky et al. 2023) 

liana 0.1.12 (Dimitrov et al. 2022) 

Nebulosa 1.8.0 (Alquicira-Hernandez and 

Powell 2021) 

R 4.1.1 (R Core Team 2023) 

RStudio 2023.03.0

+386 

(RStudio Team 2020) 

scCustomize 1.1.1 (Marsh 2023) 

scico 1.3.1 (Pedersen and Crameri 2023) 
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SCpubr 1.1.1 (Blanco-Carmona 2022) 

scRepertoire 1.8.0 (Nick Borcherding 2022) 

Seurat 4.3.0 (Hao et al. 2021) 

SeuratDisk 0.0.0.9020 (Hoffman, Paul 2023) 

SeuratObject 4.1.3 (Satija, Hoffman, et al. 2023) 

SeuratWrappers 0.3.1 (Satija, Butler, et al. 2023) 

SingleR 2.0.0 (Aran et al. 2019) 

System x86_64, 

darwin17.

0 

 

UCell 2.2.0 (Andreatta and Carmona 

2021) 

Table depicting the analysis packages and the software environments used within this manuscript 481 

Availability of data and materials 482 

The single-cell RNA/TCR sequencing dataset generated will be made available upon reasonable 483 

request and approval of HREC. All code used to generate figures can be found under the relevant 484 

repository at https://github.com/BaldLab. All other data generated are available upon request.  485 
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Figure Legends 730 

Figure 1: The transcriptional landscape of tumor-infiltrating CD8+ TILs in treatment-731 

naive in head and neck squamous cell carcinoma (HNSCC) patients 732 

(A) schematic detailing experimental setup used to generate the dataset. In brief, the tumors from 733 

eight head and neck squamous cell carcinoma (HNSCC) patients were digested and processed 734 

into a single-cell suspension. The cell suspension was cultured for 5 hours with or without 735 

CD3/CD28 T-cell stimulation. Subsequently, the cells were sorted for CD3+CD4-CD8+ T-cells 736 

and subjected to 10X single-cell sequencing. Key patient characteristics are listed in the table 737 

below the schematic. All patients were HPV negative, treatment naïve, and samples were from 738 

primary tumors. Schematic created with BioRender.com (B) UMAP projection of all cells that 739 

passed QC inclusion criteria. (C–G) UMAP projections highlighting (first column) clusters 740 

identified and subsequently the expression density of key genes used in their identification. (G) 741 

MAIT-cell identity is highlighted using the joint density expression of TRAV1-2 and KLRB1 742 

(H) Barplot showing the frequency of each cluster identified as a proportion of the entire dataset. 743 

  744 

Supplementary Figure 1: Transcriptional profile of CD8+ T-cell and unconventional T-cell 745 

subsets in head and neck squamous cell carcinoma 746 

(A) Stacked barplot showing the relative proportion of each cluster by stimulation status. (B) 747 

Stacked violin plots of key genes across identified clusters. (C) UMAP projection of 748 

unconventional T-cells identified within sequencing dataset. (D) Heatmap of unconventional T-749 

cell clusters showing gamma-delta TCR genes detected and key markers of MAIT-cells. (E) 750 

Stacked violin plots of key T-cell receptor genes. (F) Heatmap of top differentially expressed 751 

genes (log2FC > 1) with selected genes annotated. (G) Heatmap of the average expression of 752 

differentially expressed transcription factors. 753 

 754 

 755 
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Figure 2: Ex vivo TCR stimulation induced transcriptional states develop from distinct 756 

unstimulated origins 757 

(A) UMAP projection of CD8+ TILs identified in HNSCC patients after removal of 758 

unconventional T-cell subsets. (B) Heatmap of DEGs found to be upregulated (> 0.5 log2FC) in 759 

both stimulated-1 and stim-exhausted clusters, selected genes are annotated. (C) Heatmap of 760 

genes found to be significantly differentially expressed (>0.5 log2FC) between stim-1 and stim-761 

exhausted clusters, selected genes are annotated. (D) Heatmap of the top 50 most abundant 762 

clonotypes found in CD8+ HNSCC TILs (ward.D2 clustering and binary distance function). (E) 763 

Stacked barplot showing the frequency of each clone size definition that is only found in the 764 

unstimulated sample (Unique to Unstimulated) or was also recovered post-stimulation (shared). 765 

Single (x = 1), small (1 < x < =5), medium (5 < x <=10), large (10 < x <=20) and hyperexpanded 766 

(20 < x <= 150). Where x = number of cells with exact CDR3 amino acid sequence. (F) Circos 767 

plots depicting the clonal overlap between clusters pre- (unstimulated; top arc) and post-768 

stimulation (stimulated; bottom arc). Ribbons are coloured based on their unstimulated origin. 769 

Left column shows ribbons which connect to Stim-1 cluster whereas right column highlight 770 

ribbons that originate from ISG (top) or GZMK (bottom) clusters. (G) Same as (F) with left plot 771 

highlighted to show ribbons connecting with Stim-exhausted (StimEx) and ribbons in right plot 772 

highlighting those that originate from unstimulated TEx-1 cluster.  773 

Figure 3: ISG cells are poorly transcriptionally responsive to TCR stimulation  774 

(A) UMAP projection of Stimulated-1, ISG, and GZMK clusters both from unstimulated and 775 

stimulated datasets. (B) UMAP projection highlighting TCR clones uniquely found within 776 

unstimulated ISG cluster (green) or unstimulated GZMK cluster (black). (C) UMAP projection 777 

and quantification highlighting the distribution of unique US-ISG clones post-stimulation. 778 

Barplots quantify the frequency of cells post-stimulation. (D) same as (C) but for US-GZMK 779 

clones post-stimulation. (E) Pseudotime trajectory inference calculated using Slingshot, 780 

demonstrating potential progression of cells from an ISG state via GZMK through to Stim-1 781 

phenotype.  782 

 783 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2024. ; https://doi.org/10.1101/2024.03.28.587179doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.28.587179
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4: ISG cells are enriched for a type I interferon signature and are associated with 784 

reduced transcriptional  785 

(A) Heatmap showing the Top up-regulated DEGs (> 0.25 Log2FC) identified in ISG cluster. 786 

(B) Heatmap showing top 10 DEGs identified in ISG cluster. (C) Violin plots of UCell scores for 787 

a type I interferon (top) or a type II interferon (bottom) gene signatures. (D) Gene ontology 788 

analysis for the top Up-regulated (left) and down-regulated (right) biological processes identified 789 

in the ISG cluster.  790 

 791 

Figure 5: Cells with a type I interferon signature can be found across various tumor 792 

entities and are enriched within tumor tissue 793 

(A) UMAP coordinates of CD8+ T-cells in a pan-cancer dataset overlaid with UCell score for 794 

ISG signature. (B) Boxplot showing ISG cluster frequency per donor across normal and tumor 795 

tissue samples. (C) Boxplot showing ISG cluster frequency within tumor samples per donor 796 

across tumor types within dataset. (D) Circos plots generated using the top 20 interactions for 797 

each source (left) or target (right) with ribbons highlighting interactions originating from ISG 798 

cluster (left) or terminating in ISG cluster (right), ribbons coloured by source. p value calculated 799 

using a two-tailed t-test. (n) value indicates the number of unique donors. ns = p > 0.05, * = p < 800 

0.05, ** = p < 0.01, *** = p < 0.001, **** p < 0.0001. 801 

 802 

Supplementary Figure 2: Type I interferon stimulated cells are present in patients with 803 

viral infection  804 

(A) Violin plot of UCell score for ISG signature across the CD8+ T-cell clusters within Cillo et 805 

al., 2020 dataset. (B) Violin plots of UCell score for type I interferon (left) or type II interferon 806 

(right) gene signatures across indicated entities grouped by cells from identified ISG cluster or 807 

all remaining cell clusters. (C) UMAP projection of CD8+ T-cells from the COVID-19 Multi-808 

omics Blood Atlas Consortium showing the density of UCell score for ISG signature. (D) 809 

Boxplot showing frequency of ISG cluster by disease type per donor. (n) value indicates the 810 
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number of unique donors. p value calculated using a two-tailed t-test. ns = p > 0.05, * = p < 0.05, 811 

** = p < 0.01, *** = p < 0.001, **** p < 0.0001. 812 
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