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Abstract

Head and neck squamous cell carcinoma (HNSCC) arises from the mucosal epithelium of the
oral cavity, pharynx, or larynx and is linked to exposure to classical carcinogens and human
papillomavirus (HPV) infection. Due to molecular, immunological, and clinical disparities
between HPV+ and HPV- HNSCC, they are recognized as distinct cancer types. While immune
checkpoint inhibition (ICI) has demonstrated efficacy in recurrent/metastatic HNSCC, response
variability persists irrespective of HPV status. To gain insights into the CD8+ T-cell landscape of
HPV- HNSCC, we performed multimodal sequencing (RNA and TCR) of CD8+ tumor-
infiltrating lymphocytes (TILs) from treatment-naive HPVV- HNSCC patients. Additionally, we
subjected cells to ex vivo TCR-stimulation, facilitating the tracing of clonal transcriptomic
responses. Our analysis revealed a subset of CD8+ TILs highly enriched for interferon-
stimulated genes (ISG), which were found to be clonally related to a subset of granzyme K
(GZMK)-expressing cells. Trajectory inference suggests ISG transition via GZMK cells towards
terminal effector states. However, unlike GZMK cells, which rapidly an effector-like phenotype
in response to TCR stimulation, ISG cells remain transcriptionally inert. Consequently, ISG cells
may impede effective T-cell differentiation within the TME. Although, the functional
consequences of ISG cells are poorly understood, we revealed that they possess receptors and
ligands enabling cell-cell communication networks with key TME immunomodulators such as
dendritic cells. Additionally, ISG cells were found to be a core feature across various tumor
entities and were specifically enriched within tumor tissue. Thus, our findings illuminate the
complexity of T-cell heterogeneity in HPV- HNSCC and reveal an overlooked population of
IFN-stimulated CD8+ TILs. Further exploration of their functional significance may offer

insights into therapeutic strategies for HPV- HNSCC and other cancer types.
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Background

Head and neck squamous cell carcinoma (HNSCC) encompass cancers originating from the
mucosal epithelium of the oral cavity, pharynx, or larynx. HNSCC is closely associated with
myriad environmental and lifestyle factors such as air pollutants, tobacco, and alcohol
consumption (Johnson et al. 2020). In addition, viral co-infection with human papillomavirus
(HPV) is observed in a subset of HNSCC (~32%) patients (Ndiaye et al. 2014). Interestingly,
HPV+ HNSCC is associated with more favourable prognosis especially in early stage disease
(Fung et al. 2017; Lassen et al. 2009; Ang et al. 2010). The clinical benefit of HPV status is
thought to derive from HPV-specific immune responses and the intrinsic immunogenicity of
HPV (Nelson et al. 2017; Andersen et al. 2014).

Standard-of-care treatment options for HNSCC include surgical resection, radiotherapy,
and chemotherapy (Johnson et al. 2020). However, immunotherapy-based treatment approaches
such as immune checkpoint inhibition (ICI), have shown significant clinical benefit in the
recurrent/metastatic setting (Vos et al. 2021). In fact, immune checkpoint inhibition has been
approved for first-line treatment of patients with recurrent/metastatic (R/M) HNSCC (Burtness et
al. 2019). Unfortunately, response to immunotherapy varies significantly. Variable responses
may, in part, be attributed to the immunosuppressive tumor-microenvironment (TME) commonly
observed in HNSCC (Johnson et al. 2020). While it is generally accepted that HPV+ HNSCC
shows more robust anti-tumor immune responses compared to HPV- HNSCC, recent
immunotherapy trials did not find an association between HPV status and response (Sacco et al.
2021; Ferris et al. 2016). Given, that CD8+ T-cells are recognized as key drivers of anti-tumoral
responses, a better understanding of the CD8+ tumor-infiltrating lymphocyte (TIL) heterogeneity
in HPV- patients is needed to improve the treatment for this subgroup of HNSCC.

Interferons (IFNs) are pleiotropic cytokines primarily produced by immune and stromal
cells in response to pathogens or malignant transformation. Three types of IFNs have been
described, which differ by the distinct receptors they bind and the subsequent signaling cascades
induced. Type | IFNs (IFN-1) have well described roles in both anti-viral and anti-tumor
responses. In particular, IFN-I can directly inhibit tumor growth by inhibiting proliferation and

inducing apoptosis. In addition, IFN-1 can act indirectly to induce anti-tumor immune responses,
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79  for example via the activation of dendritic cells, natural Kkiller cells or neutrophils (Bald et al.
80  2014). Simultaneously, IFN-I can reduce the pro-tumorigenic functions of regulatory T-cells and
81  myeloid-derived suppressor cells (Yu, Zhu, and Chen 2022). In fact, IFN-1 signaling is
82  considered as a “third signal” of activation and important for naive T-cell priming, activation,
83  proliferation, and memory differentiation (Curtsinger and Mescher 2010). Thus, IFN-I is
84 regarded as a crucial cytokine in facilitating cancer immunosurveillance and boosting the
85  efficacy of cancer immunotherapies (Yu, Zhu, and Chen 2022; Fuertes et al. 2011; Diamond et
86 al. 2011; Ruotsalainen et al. 2021). However, we have previously shown via genetic ablation,
87  that IFN-I signaling is dispensable for the expansion and function of adoptively transferred
88  tumor-specific CD8+ T-cells (Ruotsalainen et al. 2021). In addition, several studies also provide
89 evidence that IFN-I signaling, at least in the later stages of anti-tumor immune responses, can
90 promote pro-tumor changes and ultimately immune escape (Zhou et al. 2020). For example, IFN-
91 Isignaling is linked to expression of immune checkpoints, IL-10, Nos2 and the development of a
92  T-cell exhaustion phenotype (Ruotsalainen et al. 2021; Chen et al. 2022; Sumida et al. 2022).
93  Therefore, the effect of IFN-I signaling in the functional outcomes of tumor-infiltrating T-cells is

94  multifaceted and requires further investigation.

95 Single-cell RNA sequencing (sScCRNA-seq) of immune cell subsets in cancer patients has

96 enabled the high-resolution mapping of cellular heterogeneity. This methodology has been

97  applied to the analysis of human T-cells in response to cancer immunotherapies (Sade-Feldman

98 et al. 2018). However, traditionally this approach only focuses on assessing the transcriptional

99 state of ex vivo isolated cells. Thus, capturing a snapshot of cellular transcriptomic landscape
100  within the TME. Therefore, we leveraged an ex vivo perturbation via a short-term T-cell receptor
101 (TCR) stimulation. Coupled with scRNAseq and single-cell TCR sequencing, we were able to
102  study the clonal dynamics and evaluate the responsive potential of CD8+ tumor-infiltrating
103  lymphocyte (TIL) subsets.

104 Herein, we sequenced over 11,000 resting and stimulated CD8+ TILs isolated from
105 treatment-naive HPV- HNSCC patients. As such, we were able to define ex vivo cellular states
106  and their stimulation outcomes. Importantly, we identified a population of T-cells rich in IFN-
107  stimulated genes (ISG). These ISG cells were found to be associated with an IFN-I signature and

108  were specifically enriched within the tumor tissue of various tumor entities. Furthermore, these
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109  cells were found to be clonally related to a population of cells highly expressing granzyme K
110  (GzmK). However, unlike the GzmK subset, ISG-cells were transcriptionally inert to stimulation
111  and thus possibly possess a unique role within the TME. This study sheds light on the existence

112  of this overlooked population and begins to investigate their functionality.
113  Results

114  Single-cell RNA sequencing of CD8+ TILsfrom treatment-naive HNSCC patientsidentifies
115 exhausted and effector populations

116 CD8+ T-cells are key drivers of anti-tumor responses. However, there is substantial
117  heterogeneity in CD8+ T-cell phenotypes within TIL populations. As such, we sought to explore
118  the diversity of CD8+ TILs in HPV- treatment-naive non-R/M HNSCC patients. We isolated live
119 CD45+CD3+CD4-CD8+ from 8 patients using flow cytometry-based cell sorting and subjected
120  half of those cells to ex vivo CD3/28 TCR stimulation. After 5 hours of stimulation, we
121  performed single-cell RNA and TCR sequencing to simultaneously identify CD8+ TIL
122  phenotypes and clonotypes. We thereby were able to profile transcriptional changes in response
123  to TCR-based stimulation (Figure 1A).

124 Sequencing data from both unstimulated and TCR-stimulated samples were integrated
125 and projected onto a unified UMAP space (Figure 1B). This resulted in 14 distinct clusters of
126  CDB8+ TILs with the majority of identified clusters evenly distributed across both unstimulated
127  and stimulated conditions (Supplementary Figure 1A). Importantly, two new clusters emerged
128  specifically post-TCR-stimulation (clusters Stimulated-1; Stim-1 and Stimulated-Exhausted;
129  Stimex). Three naive/memory cell clusters were identified and annotated based on their
130  expression of markers such as IL7R, CCR7, and SELL (Figure 1C). A cluster of cells expressing
131 GZMK as well as EOMES NKG7, TNFRS-18 (encodes for GITR), and CD69 was also
132  identified (Figure 1D and data not shown). Additionally, a cluster of cells expressing high levels
133  of various interferon-stimulated genes, including 1SG15, IFI6, IFIT3, MX1, 1SG20, IFITM1,
134 IFIT1, MX2, and OAS3 (Supplementary Figure 1B and data not shown) was recognized and
135 annotated as the interferon-gene stimulated (ISG) cluster of cells (Figure 1D). The stimulated-1
136  (Stim-1) cluster from TCR-stimulated cells was enriched for the expression of immune effector
137  molecules such as IFNG, XCL1, XCL2, CRTAM, TNF, TNFSF14 (encodes for LIGHT) and
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138  TNFRSF9 (encodes for 4-1BB) (Figure 1D and Supplementary figure 1B). Three exhausted cell
139  clusters were also identified, all expressing high levels of canonical exhaustion markers such as,
140 TOX, HAVCR2, PDCD1 (encodes for Tim-3 and PD-1, respectively), CTLA4, ENTPD1 (encodes
141 CD39), and TIGIT (Figure 1E and Supplementary Figure 1B). One of these exhausted clusters
142 was exclusively found post-TCR-stimulation and as such was designated as the Stimulated-
143  Exhausted (Stimex) cluster. A small cluster of tissue-resident memory (TRM) cells was
144  identified based on the expression of canonical TRM markers such as ZNF683 (encodes for
145 HOBIT), PRDM1 (encodes for BLIMP1), ITGAL (encodes for CD49A), ITGAE (encodes for
146 CD103), and CXCR6 (Figure 1F and supplementary figure 1B). A small population of
147  proliferating cells was also identified by their enrichment for proliferation and cell cycle genes,
148  notably MKI67 (encodes for Ki-67) (Figure 1F).

149 HNSCC TME ispopulated with unconventional CD8+ T-cells

150  We also identified three clusters of unconventional T-cells (Figure 1G and Supplementary Figure
151  1C). Two of these had gene expression patterns indicative of gamma delta ([18) T-cell subsets.
152  The third cluster expressed markers corresponding with a mucosal-associated invariant T
153  (MAIT) cell population. 118 T-cell clusters could be differentiated based on the expression of
154  TCR genes (Supplementary Figure 1D), marking the two clusters as the V 19Vé62 T-cells
155 (G9D2) and non-G9D2 populations. All unconventional T-cell populations expressed high levels
156 of CD3 and CDS8 as previously described (Kalyan and Kabelitz 2013; Gherardin et al. 2018)
157  (Supplementary Figure 1E). Differential gene expression revealed that the G9D2 population
158  expressed cytotoxicity markers such as GZMA, GZMB, GZMH, GNLY, PRF1, and NKG7
159  (Supplementary Figure 1B and 1F). Non-G9D2 vé T-cells expressed markers such as TCF7,
160 CD27, KLRD1, and SELL. Analysis of differentially expressed transcription factors revealed that
161  these three cell clusters had distinct and unique transcriptional regulatory programs
162  (Supplementary Figure 1G). For example, G9D2 cells revealed specific enrichment for
163 transcription factors EOMES ZEB2, and ZNF683 (encodes for HOBIT), while non-G9D2 cells
164  were enriched for ID3, IKZF2, TCF7, and BACH2. Meanwhile, MAIT-cells demonstrated a
165  distinct pattern of enrichment for transcription factors associated with the MAIT lineage, such as
166 RORA, and ZBTB16 (encodes for PLZF). Altogether, the unconventional T-cells, TRMs, and

167  proliferative cells, cumulatively represented about ~10% of TILs within the dataset (Figure 1H).


https://doi.org/10.1101/2024.03.28.587179
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.28.587179; this version posted March 31, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

168 Ex vivo TCR stimulation leads to the emergence of two transcriptionally distinct T-cell
169 clusters

170  For further analysis, we removed the three unconventional T-cell clusters from the dataset and
171  recalculated the UMAP coordinates (Figure 2A). We next sought to investigate the two cell
172  clusters which predominantly arose from TCR-based stimulation. Importantly, both stimulation-
173  induced clusters shared expression of a number of genes expected following TCR activation,
174  including critical effector molecules such as IFNG, GZMB or FASLG, as well as activation
175 markers as ICOS and TNFRSF9 (encodes for 4-1BB) (Figure 2B). However, despite an overlap
176  of activation-induced transcription, both stimulation-induced clusters showed distinct patterns of
177  gene expression reminiscent of their origin (Figure 2C). For example, the Stim-1 cluster was
178  enriched for genes such as IL7R, XCL1, CD69, TNFSF14 (encodes for LIGHT), CD28, and LTB,
179  whereas the Stimex cluster expressed high levels of exhaustion markers such as TOX, LAG3,
180 HAVCR2 (encodes for TIM-3) and CD96. These basal gene expression profiles seem to overlap
181  with gene expression of other clusters of the dataset. For example, genes enriched in Stim-1
182  cluster were also highly abundant in Naive/memory, GZMK, and ISG clusters, while genes
183  expressed within the Stimex cluster were found enriched within the remaining two T, clusters
184  and to a lesser extend within the TRM and proliferating cell clusters. This overlap suggested the
185  two stimulation-induced clusters may have arisen from different transcriptional states. To test
186  this hypothesis, we used the single-cell TCR sequencing data to trace clonal populations between

187  unstimulated and stimulated datasets.

188 An evaluation of the top 50 clonotypes observed in the dataset revealed an overlap
189  between the Stim-1 and the ISG and GZMK clusters (Figure 2D). In contrast, the Stimex cluster
190 shared many highly abundant clones with the Tex-1 cluster, indicating clonal overlap between
191  these populations. To explore this further, we next traced clones pre- or post-stimulation to
192 investigate the clonal overlap with respect to stimulation and cluster identity. However, this
193  analysis relied on the assumption that clones were sufficiently represented in both pre- and post-
194  stimulation datasets. Indeed, it was observed that when clones are represented in 2 or more T-
195  cells (clone size small), >60% of clones are captured within the stimulated dataset (i.e shared)
196  (Figure 2E). Therefore, we proceeded with tracing the transcriptional responses of shared T-cell

197  clones by linking their cluster identity pre- and post-stimulation. We observed that cells from the
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198  Stim-1 cluster largely overlapped with unstimulated ISG and GZMK clusters (Figure 2F).
199  Tracing unstimulated ISG clones, we observed clonal overlap that suggested stimulated 1SG
200  cells, either maintain their identity or adopt a GZMK or Stim-1 transcriptional phenotype.
201  Similarly, unstimulated GZMK cells either retained GZMK identity or adopted ISG or Stim-1
202  transcriptional profiles post-stimulation. In contrast, clones from the Stimgx cluster were
203  predominantly found to overlap with unstimulated Tex-1 cluster with a minimal contribution
204  from other unstimulated clusters (Figure 2G). As predicted, unstimulated Tex-1 cluster clones
205  overlapped with stimulated Stimex or Tex-1 clusters. Interestingly, this analysis also revealed
206  that TCR-stimulation was capable of inducing a gene signature associated with T-cell activation
207  in a subset of transcriptionally terminally exhausted T-cells (TCF7-TOX+PD1+) (Figure 1E &
208  Figure 2B, C)

209 1SG celslargdy retain their transcriptional identity upon TCR stimulation

210  To further understand the responsiveness to TCR stimulation across the dominant effector-like
211  clusters, we isolated and projected them onto their own UMAP coordinates (Figure 3A).
212 Subsequently, clones shared across pre- and post-stimulation datasets but whose cells were
213  entirely contained within the ISG or GZMK clusters within the unstimulated dataset were
214  identified (Figure 3B). This resulted in 26 and 53 unique clonotypes within unstimulated I1SG or
215 unstimulated GZMK clusters, respectively. Following TCR-stimulation, the majority of ISG T-
216  cells retained their transcriptional identity (Figure 3C). In contrast, over 50% of unstimulated
217 GZMK T-cells adopted a Stim-1 transcriptional identity following stimulation (Figure 3D), while
218 the remaining proportion retained their GZMK identity. Interestingly, there was minimal
219  adoption of an ISG signature following stimulation of GZMK clones. These data were further
220 supported by pseudotime trajectory inference analysis, which revealed a trajectory of
221  differentiation originating within the 1SG cluster and transiting via GZMK population through to
222  the Stim-1 cluster (Figure 3E). This trajectory was revealed using both a tree-based method
223  (Slingshot) and a linear inference method (SCORPIUS; data not shown). Taken together, this
224  data suggests a trajectory of ISG > GZMK > Stim-1, however, the transition from ISG > GZMK
225  appears limiting as ISG cells were poorly responsive to TCR stimulation.
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226 A type | interferon signature is associated with reduced transcriptional activity in 1SG
227 TILs

228  Given the diverse role of interferon signaling for the function of tumor-infiltrating T-cells, the
229  relevance of ISG cells during tumor progression and immunotherapy remains elusive. We
230 performed differential gene expression analysis and revealed a dominant signature enriched
231 within the ISG population (Figure 4A). The top 10 differentially expressed genes identified
232  within the ISG cluster were almost all found downstream of interferon signalling (Figure 4B). To
233 understand the type of interferon signalling responsible, clusters were scored for genes
234  contributing to a type | or type Il interferon response (Figure 4C). Results showed the ISG
235  cluster had enrichment for a type I, but not a type Il interferon gene signature. Gene Ontology
236  (GO) analysis was performed on the differentially up- or down-regulated genes within the 1ISG
237  cluster relative to other clusters to unravel dominant biological processes associated with ISG
238  cells. This analysis revealed a broad increase in translation related terms and type | IFN
239  signalling responses (Figure 4D). Interestingly, down-regulated genes were enriched for GO
240 terms associated with transcriptional regulation. This finding could explain our previous

241  observation, that ISG cells poorly adopt new transcriptional states following TCR stimulation.

242 1SG cellsareenriched in CD8+ TILsacross varioustumor types

243  To establish whether ISG cells could be identified in other microenvironments, we generated a
244 specific gene signature using the top 10 differentially expressed genes from ISG cells within our
245  data set (Figure 4B). We next examined if this signature could identify 1SG cells in a publicly
246  available HNSCC dataset in which an ISG cluster had previously been reported (Cillo et al.
247  2020). Indeed, using our curated ISG-signature, we were able to correctly identify a cluster of

248  cells enriched for type I interferon genes (Supplementary Figure 2A).

249 To better understand the abundance of I1SG cells within CD8+ T-cells in healthy and
250 malignant tissues, we scored cells from a pan-cancer dataset for our ISG signature (Nicholas
251  Borcherding 2022). Indeed, we could identify a fraction of T-cells highly enriched for our ISG-
252  signature (Figure 5A). Next, we assessed the frequencies of ISG cells across normal and tumor
253  tissues. Here, we found ISG cells to be significantly increased in tumor tissues, relative to normal

254  tissue (Figure 5B). ISG cells were most frequent in Ovarian and Esophageal tumor types but also
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255  detected to various degrees among all other tumor types assessed (Figure 5C). As expected ISG
256  cells were solely enriched for type | but not type Il IFN genes (Supplementary Figure 2B). We
257  also assessed a COVID-19 dataset including some Influenza samples to determine if ISG cells
258 are also enriched in the blood of virally infected patients (D. Wang et al. 2022). Indeed, in both
259  conditions we observed a population of CD8+ T-cells enriched for our ISG signature
260  (Supplementary Figure 2C) with a higher frequency in disease compared to healthy control
261  samples (Supplementary Figure 2D), suggesting that the ISG cluster phenotype is not restricted

262  to tumor immunity.

263 Finally, to better understand the functional role of ISG cells within the TME, we
264  employed cell-cell communication analysis. Utilising a published HNSCC dataset containing an
265 array of immune cell subsets (Cillo et al. 2020), we revealed that ISG cells served as the source
266  for interactions with CD16 positive cells, as well as with NK cells and plasmacytoid dendritic
267  cells (PDCs) (Figure 5D). ISG cells were also found to be a target for DC, B cell, and CD14 cell
268 interactions. Hence, this data suggests ISG cells interact with key innate immune cell subsets

269  within the TME and thus potentially are important orchestrator of anti-tumor immunity.
270
271  Discussion

272  HNSCC is a prevalent and complex disease with numerous etiological influences. For example,
273  viral co-infection with HPV in Oropharyngeal HNSCC is associated with a better prognosis
274 especially in early stage disease. As such, HPV- HNSCC presents as a more therapeutically
275  challenging entity. Therefore, we sought to expand the knowledge base of CD8+ TIL landscape,
276  specifically in treatment-naive HPV- HNSCC patients. We employed a multimodal sequencing
277  approach, together with an ex vivo TCR-stimulation, to facilitate tracing of transcriptional
278  profiles and response capacity in CD8+ T-cell subsets.

279 Single-cell RNAseq of immune cell subsets has enabled in-depth mapping of the cellular
280  heterogeneity of various disease conditions. However, traditionally this methodology only
281  assesses the transcriptional state of cells ex vivo. Thus, capturing a snapshot of cellular

282  transcriptomic landscape. Although, by leveraging an ex vivo perturbation coupled to sequencing
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283  approaches, others have ascertained both ex vivo profiles and their subsequent activation
284  potentials. For example, a study by Szabo et al., 2019 performed ex vivo TCR-stimulation on T-
285  cells isolated from several healthy donor tissues. The authors were able to define both conserved
286  tissue signatures as well as the activation states of T-cells (Szabo et al. 2019). Using a similar
287  approach, we included TCR sequencing to facilitate tracing of transcriptional responses within
288  clonal populations of tumor-infiltrating T-cells. Notably, we observed two unique T-cell clusters
289  specifically induced by TCR-stimulation. Transcriptional signatures and clonal overlap suggest
290 these populations arose via stimulation of distinct ex vivo subsets. Importantly, we observed cells
291  that displayed a transcriptional program of terminal exhaustion (TCF7-TOX+PDCD1+TIM3+),
292  which retained substantial capacity to respond to TCR stimulation (Blank et al. 2019). These data
293  posit transcriptionally exhausted cells may retain substantive capacity to respond to stimulation.
294  Indeed, numerous SscRNAseq studies have identified clusters of exhausted cells that
295  simultaneously express high levels of effector molecules (Andreatta et al. 2021; Quah et al.
296  2023). These observations highlight the need for multimodal data approaches to identify
297  prototypic exhausted T-cells while urging caution against defining exhaustion solely based on

298 transcriptional profiles.

299 IFN-I signaling in CD8+ T-cells is associated with both anti- and pro-tumoral function
300 (Zhou et al. 2020). Therefore, the clinical implications of an 1SG-rich population is poorly
301  understood. Substantial challenges impede the experimental investigation of these cells and as
302  such our multi-modal sequencing approach has provided a comprehensive investigation of this
303  population. Our analysis has revealed that CD8+ ISG cells are a common feature of solid
304  malignancies and are specifically enriched within tumor tissue. Furthermore, we have found that
305 ISG cells are clonally related to GZMK-expressing CD8+ TILs. Pseudotime trajectory inference
306  suggested a differentiation pathway of ISG > GZMK > Stim-1 cells. However, experimental
307  perturbation revealed that ISG cells are transcriptionally stable and inert to TCR-stimulation. As
308 such, ISG cells may represent a barrier to the differentiation of GZMK cells and subsequent
309 terminally differentiated subsets. Although, numerous unknowns remain and ultimately further
310 experimentation is required to understand the functional implications of this differentiation

311  pathway and these cellular states.
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312 This is not the first report to describe a population of cells enriched with interferon-
313 stimulated genes. Indeed, numerous others have observed similar populations amongst
314  malignant, infectious, and healthy tissues (X. Wang et al. 2022; Quah et al. 2023; Gideon et al.
315 2022; Cillo et al. 2020). However, the absence of specific cell-surface markers has hindered
316 investigation efforts. Thus far, reports of this population have been limited to mere observation
317  of their appearance. lllustrative of this, Wang and colleagues identified a subset of ISG cells
318  within sequencing data of healthy PBMCs. Despite their efforts, the authors were unable to
319  experimentally isolate this population and thus were limited in the functional analysis that could
320  be performed (X. Wang et al. 2022). Therefore, alternative markers and/or strategies to identify
321 and isolate cells with this cellular state are required. In absence of this, our multimodal
322  sequencing and experimental perturbation approach has provided novel insights into ISG CD8+
323 TILs.

324 Ex vivo stimulation additionally revealed a cluster of cells that predominantly arose from
325 ISG and GZMK clusters. These clusters had substantial clonal overlap and trajectory inference
326  suggested ISG cells transition through a GZMK phenotype towards the fully activated T-cell
327  state. However, further interrogation of the clonal response to stimulation revealed that ISG cells
328  are transcriptionally inert to TCR-stimulation. The relationship between GZMK and ISG cells is
329 notable as others have demonstrated GZMK expression within solid tumors is associated with
330 improved patient outcomes (Rooney et al. 2015; C. Zheng et al. 2017). Although, the nature of
331 this association is unclear, as GZMK is usually correlated with innate cells and naive
332  phenotypes. For example, GZMK is more dominantly expressed within immature NK cells.
333  However, GZMK expression within CD8+ T-cells is predominantly observed within central
334  memory and effector memory subsets (Duquette et al. 2023). Thus, supporting the notion that
335 GZMK expression within CD8+ T-cells may correlate with favourable prognosis. Although, it
336  has been observed that GZMK+ CD8+ T-cells are poorly cytotoxic and instead produce IFNy
337  (Harari et al. 2009; Duquette et al. 2023). Interestingly, others have differential effects of TCR or
338  cytokine stimulation on GZMK expression. Namely, that TCR-stimulation induces the release of
339 GZMK and increase in GZMB expression. Conversely, cytokine-based stimulation drives
340  accumulation of GZMK (Dugquette et al. 2023). These findings are consistent with our results
341  which demonstrated TCR-based stimulation drives GZMK cells to down-regulate GZMK and
342  up-regulate GZMB as they differentiate towards a more terminal effector phenotype. Therefore,
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343  these data suggest GZMK positivity marks CD8+ T-cells which are not yet terminally
344  differentiated and instead possess a more memory-like phenotype. Additionally, our data
345  suggests ISG cells differentiate into GZMK cells however, they possess relative transcriptional
346  stability. As such, TCR-stimulation is insufficient to drive ISG cells to adopt a GZMK
347  transcriptional phenotype. Thus, ISG cells could function as a barrier within this differentiation
348  trajectory. The functional consequences of this are unknown. Given the above model,
349  accumulation of ISG cells could prevent the development of more terminally differentiated anti-
350 tumoral responses via GZMK intermediaries. However, GZMK+ CD8+ T-cells have been
351  observed within tumor stroma and have been implicated in poor prognosis (Tiberti et al. 2022).
352  Additionally, GZMK CD8+ TILs have been described as a transition state on the trajectory
353  towards exhaustion (C. Zheng et al. 2017; Sun et al. 2022). This is consistent with reports
354  showing IFN-I signalling as a driver of T-cell exhaustion (Chen et al. 2022; Sumida et al. 2022).
355  Therefore, the functional consequences of ISG and GZMK TILs is poorly defined. Further
356  studies are required to better understand the dynamics and function of T cell clusters infiltrating
357  tumor tissues.

358
359 Methods

360 Patient Samples

361 A total of eight patients who had provided informed consent, were included in this study.
362  Samples were obtained from surgical resections of primary HNSCC tumors. All patients
363  presented with oral cavity squamous cell carcinoma and were confirmed to be human
364  papillomavirus (HPV) negative. Fresh HNSCC tumors were collected at the time of resection of
365  the primary tumor and sampled by a pathologist prior to fixation. Fresh tissue was processed to
366 isolate tumor cells and immune cells prior to preservation and storage in liquid nitrogen. The
367  patients enrolled in this study were treatment naive and characteristics can be found in Figure
368  1A. Ethical approval for this study was obtained from the Royal Brisbane and Women’s Hospital
369 Human Research Ethics Committee and the QIMR Berghofer Human Research Ethics
370  Committee, HREC/18/QRBW)/245.
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371  Single-cell RNA sequencing

372  Cells from each patient were cultured as single-cell suspensions and were either stimulated using
373  CD3/CD28 beads or left unstimulated for a duration of 5 hours. Following culture, the cells were
374  sorted using fluorescence-activated cell sorting to isolate live CD45+CD3+CD4-CD8+ cells.
375  Patient samples were sequenced as two unstimulated and two stimulated samples where each
376  sequencing sample represented a pool of 4 patients. As such, approximately 10,000 cells per
377  sample pool were carried forward into the 10x Genomics Single-cell 5 library pipeline. The
378 libraries were sequenced using a NextSeq 550 (lllumina). The sequencing was performed at
379  QIMR Berghofer Medical Institute.

380 scRNAseq pre-processing

381  Sequencing reads were processed using cellranger (version 3.1.0) and reads were aligned to
382  human reference genome GRCH38-3.0.0. Output from cellranger was processed using Seurat
383  (version 4.3.0). Each sequencing sample was filtered to keep only cells that had a minimum of
384 200 features and keep features that were detected in a minimum of 3 cells. Subsequently, the two
385 unstimulated samples were merged and the two stimulated samples were merged to give two
386  Seurat objects. These Seurat objects were further filtered to remove cells with greater than 2,500
387  features or greater than 10% mitochondrial content. Filtering resulted in 5,785 cells with 15,429
388  features in the unstimulated dataset and 6,042 cells with 15,618 features in the stimulated
389  dataset. Datasets were normalised using LogNormalisation with a scale factor of 10,000.
390  Subsequently, mitochondrial percentage and nCount variables were regressed out using a linear
391 model. Unstimulated and Stimulated datasets were integrated using the Seurat integration
392 pipeline. Unless otherwise stated integration functions/pipeline was executed using default
393  function variables. Integration anchors were calculated using “cca” reduction, “LogNormalize”
394  as a normalization method, and “rann” as the Nearest Neighbour method. Integration resulted in
395  adataset of 18,295 features across 11,827 cells.

396 scRNAseq analyss

397 Dimension reduction and cluster identification: The top 30 PCAs were calculated on the
398 integrated dataset and Nearest-neighbors computed using the top 20 dimensions. Clusters were

399  determined using a cluster resolution of “0.4”. UMAP in figure 1 was generated using top 20
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400 PCA dimensions, the “uwot” algorithm, n.neighbors = 30, and min.dist = 0.3. Following UMAP
401  dimension reduction calculation, clusters were investigated both with manually curated gene
402  signatures and with the use of SingleR (version 2.0.0) to classify cells using data from celldex
403  (version 1.8.0). Two low abundance clusters were removed that were identified as either having
404  high mitochondrial content or a myeloid signature. UMAP projection was recalculated following
405  the removal of these clusters, using the same parameters as previously stated. Therefore, after
406  cluster identification the dataset contained 20,295 features across 11,658 cells with 5,724 cells
407  from the unstimulated treatment condition and 5,934 cells from the stimulated treatment
408  condition. Subsequently, unconventional T-cell clusters were subsetted from the dataset resulting
409 in unconventional T-cell-only and CD8-only datasets. UMAP projections were recalculated for
410 these datasets using the top 20 PCA dimensions, n.neighbors = 50, and a min.dist of 0.1 for
411  CDB8-only dataset or 0.5 for the unconventional T-cell-only dataset. The unconventional T-cell-
412  only dataset consisted of 20,295 features across 970 cells. The CD8-only dataset consisted of
413 20,295 features across 10,688 cells, 5,165 of which originated from the unstimulated treatment
414  condition and 5,523 from the stimulated treatment condition.

415 Differential gene expresson: Calculations to determine differentially expressed genes between
416  clusters or conditions was performed using wilcox test implemented via the standard Seurat

417  analysis pipeline. Analysis was performed using the RNA data slot of the Seurat object.

418 Differentially expressed transcription factors: To determine the differential expression of
419  transcription factors, the list of differentially expressed genes was cross-referenced with a
420 curated database of RNA polymerase Il regulated transcription factors (TFcheckpoint;

421  http://www.tfcheckpoint.org).

422  Gene ontology analysis. Briefly, differentially expressed genes for the ISG cluster were
423  identified using Seurat’s FindMarkers() function. Genes identified as significantly (adjusted
424  p.value < 0.5) up- or down-regulated were then passed to the enrichR package (version 3.1) to
425 identify enriched terms using the GO_Biological_Process 2021 database. The top 10 enriched

426  terms were then visualised using SCpubr (version 1.1.1).

427  Signature scoring: Signature score calculated using UCell (version 2.2.0) with signatures for
428  type l and Il IFN obtained from (Azizi et al. 2018).
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429  Cél-cell communication analysis: Cell-cell communication was performed using the R
430 package “liana” (version 0.1.12). In brief, cell-cell communication networks were calculated
431  using the following methods “natmi”, “connectome”, “logfc”, “sca”, and “cellphonedb”. The
432  scores from these methods were subsequently aggregated and only interactions concordant
433  Dbetween methods were kept. This analysis followed the recommended analytical pipeline for the
434  “liana” package.

435 Trajectory Inference: Trajectory inference was performed using the dynverse (Cannoodt and
436  Saelens 2023) collection of packages. Analysis was performed using standard pipeline with
437  default parameters and without supplying any priors for both slingshot and Scorpius trajectory

438 inference algorithms.

439  scRNAseq visualisation

440 Imputation: Imputation of gene expression was performed and used in certain visualisations
441  where indicated. Imputed values were not used for any downstream analysis and were
442  exclusively used in indicated visualisations. Imputation was performed using the “RunALRA”
443  function in Seurat and increased the percentage of non-zero values in the dataset from 29.63% to
444 38.95%.

445 Density based UMAP visualisation: The Nebulosa package (version 1.8.0) together with
446  scCustomize package (version 1.1.1) were used to visualise gene expression on UMAP

447  projections and expression density.

448  Color scheme: Where possible the uniform, colorblind-friendly batlow (Crameri, Shephard, and
449  Heron 2020) color pallet was used for data visualisation. The color palette was accessed using

450 the scico package (version 1.3.1).

451  Single-cell TCR sequencing analysis

452  Pre-processing: Single-cell TCR sequencing data were aligned using cellranger pipeline
453  (version 3.1.0) to the human VDJ reference (vdj_GRCh38_alts_ensembl-3.1.0-3.1.0). TCR data
454 was subsequently processed using scRepertoire (version 1.8.0). TCR data was filtered such that

455  if cells had multiple alpha or beta chains identified, only the top expressing chain was retained.
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456  Additionally, unless otherwise stated, clone identity was defined by the CDR3 amino acid
457  sequence.

458 Clone size definitions. Abundance of clones was calculated per stimulation condition and
459  Dbinned according to the following definitions. Single (x = 1), small (1 < x < =5), medium (5 < x
460 <=10), large (10 < x <=20) and hyperexpanded (20 < x <= 150). Where x = number of cells with
461 exact CDR3 amino acid sequence. Size cut-offs were determined empirically using summary

462  statistics of clone abundances across the dataset.

463  External datasets

464  uTILity: The pan-cancer “uTILity” dataset was acquired from (Nicholas Borcherding 2022)
465  circa 13.10.2022. The dataset was filtered to retain only cells identified as CD8 T-cells and only
466  Tumor and Normal tissue types were retained. Subsetted dataset was normalized and reintegrated
467  using the harmony package (version 0.1.1) to remove “Cohort” effect. UMAP coordinates and

468  clusters were recalculated following harmonization, using the standard Seurat analysis pipeline.

469 HNSCC: For validation of ISG gene signature and cell-cell communication analysis, the
470  HNSCC TILs dataset published in (Cillo et al. 2020) was used. Processed data was downloaded
471 from (GSE139324)[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE139324].
472  Metadata for this dataset was obtained through contact with the lead author/s.

473 COMBAT dataset: The Covid-19 and Infleunza scRNAseq dataset was downloaded from
474  https://zenodo.org/records/6120249 (COvid-19 Multi-omics Blood ATlas (COMBAT)
475  Consortium 2022)

476  Figurepreparation

477  Figures were arranged and formatted using Adobe Illustrator (version 27.5) and/or GraphPad
478  Prism (version 9).

479
480 Table 1: Analysis packages used
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Package/environment Version Reference
celldex 1.8.0 (Aran et al. 2019)
cellranger 3.1.0 (G. X. Y. Zheng et al. 2017)
Dynverse 0.1.2 (Cannoodt and Saelens 2023)
enrichR 3.1 (Jawaid 2023)
harmony 0.1.1 (Korsunsky et al. 2023)
liana 0.1.12 (Dimitrov et al. 2022)
Nebulosa 1.8.0 (Alquicira-Hernandez and

Powell 2021)
R 4.1.1 (R Core Team 2023)
RStudio 2023.03.0 | (RStudio Team 2020)

+386

scCustomize 1.1.1 (Marsh 2023)
scico 1.3.1 (Pedersen and Crameri 2023)
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SCpubr 1.1.1 (Blanco-Carmona 2022)
scRepertoire 1.8.0 (Nick Borcherding 2022)
Seurat 4.3.0 (Hao et al. 2021)
SeuratDisk 0.0.0.9020 | (Hoffman, Paul 2023)
SeuratObject 4.1.3 (Satija, Hoffman, et al. 2023)
SeuratWrappers 0.3.1 (Satija, Butler, et al. 2023)
SingleR 2.0.0 (Aran et al. 2019)
System x86_64,

darwinl7.

0
UCell 2.2.0 (Andreatta and Carmona

2021)

481  Table depicting the analysis packages and the software environments used within this manuscript

482  Availability of data and materials

483  The single-cell RNA/TCR sequencing dataset generated will be made available upon reasonable
484  request and approval of HREC. All code used to generate figures can be found under the relevant
485  repository at https://github.com/BaldLab. All other data generated are available upon request.
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730  FigurelLegends

731  Figure 1. The transcriptional landscape of tumor-infiltrating CD8+ TILs in treatment-

732  naivein head and neck squamous cell carcinoma (HNSCC) patients

733 (A) schematic detailing experimental setup used to generate the dataset. In brief, the tumors from
734 eight head and neck squamous cell carcinoma (HNSCC) patients were digested and processed
735 into a single-cell suspension. The cell suspension was cultured for 5 hours with or without
736 CD3/CD28 T-cell stimulation. Subsequently, the cells were sorted for CD3+CD4-CD8+ T-cells
737  and subjected to 10X single-cell sequencing. Key patient characteristics are listed in the table
738  below the schematic. All patients were HPV negative, treatment naive, and samples were from
739  primary tumors. Schematic created with BioRender.com (B) UMAP projection of all cells that
740  passed QC inclusion criteria. (C—-G) UMAP projections highlighting (first column) clusters
741 identified and subsequently the expression density of key genes used in their identification. (G)
742  MAIT-cell identity is highlighted using the joint density expression of TRAV1-2 and KLRB1
743  (H) Barplot showing the frequency of each cluster identified as a proportion of the entire dataset.

744

745  Supplementary Figure 1: Transcriptional profile of CD8+ T-cell and unconventional T-cell
746  subsetsin head and neck squamous cell car cinoma

747  (A) Stacked barplot showing the relative proportion of each cluster by stimulation status. (B)
748  Stacked violin plots of key genes across identified clusters. (C) UMAP projection of
749  unconventional T-cells identified within sequencing dataset. (D) Heatmap of unconventional T-
750  cell clusters showing gamma-delta TCR genes detected and key markers of MAIT-cells. (E)
751  Stacked violin plots of key T-cell receptor genes. (F) Heatmap of top differentially expressed
752  genes (log2FC > 1) with selected genes annotated. (G) Heatmap of the average expression of

753  differentially expressed transcription factors.
754

755
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756  Figure 2: Ex vivo TCR stimulation induced transcriptional states develop from distinct
757  unstimulated origins

758 (A) UMAP projection of CD8+ TILs identified in HNSCC patients after removal of
759  unconventional T-cell subsets. (B) Heatmap of DEGs found to be upregulated (> 0.5 log2FC) in
760  both stimulated-1 and stim-exhausted clusters, selected genes are annotated. (C) Heatmap of
761  genes found to be significantly differentially expressed (>0.5 log2FC) between stim-1 and stim-
762  exhausted clusters, selected genes are annotated. (D) Heatmap of the top 50 most abundant
763  clonotypes found in CD8+ HNSCC TILs (ward.D2 clustering and binary distance function). (E)
764  Stacked barplot showing the frequency of each clone size definition that is only found in the
765  unstimulated sample (Unique to Unstimulated) or was also recovered post-stimulation (shared).
766  Single (x = 1), small (1 < x < =5), medium (5 < x <=10), large (10 < x <=20) and hyperexpanded
767 (20 < x <= 150). Where x = number of cells with exact CDR3 amino acid sequence. (F) Circos
768  plots depicting the clonal overlap between clusters pre- (unstimulated; top arc) and post-
769  stimulation (stimulated; bottom arc). Ribbons are coloured based on their unstimulated origin.
770  Left column shows ribbons which connect to Stim-1 cluster whereas right column highlight
771  ribbons that originate from ISG (top) or GZMK (bottom) clusters. (G) Same as (F) with left plot
772  highlighted to show ribbons connecting with Stim-exhausted (Stimgx) and ribbons in right plot
773  highlighting those that originate from unstimulated Tg«-1 cluster.

774  Figure3: ISG cellsare poorly transcriptionally responsive to TCR stimulation

775  (A) UMAP projection of Stimulated-1, ISG, and GZMK clusters both from unstimulated and
776  stimulated datasets. (B) UMAP projection highlighting TCR clones uniquely found within
777  unstimulated ISG cluster (green) or unstimulated GZMK cluster (black). (C) UMAP projection
778 and quantification highlighting the distribution of unique US-ISG clones post-stimulation.
779  Barplots quantify the frequency of cells post-stimulation. (D) same as (C) but for US-GZMK
780 clones post-stimulation. (E) Pseudotime trajectory inference calculated using Slingshot,
781  demonstrating potential progression of cells from an ISG state via GZMK through to Stim-1
782  phenotype.

783
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784  Figure 4. ISG cellsare enriched for atype | interferon signature and are associated with
785  reduced transcriptional

786  (A) Heatmap showing the Top up-regulated DEGs (> 0.25 Log2FC) identified in ISG cluster.
787  (B) Heatmap showing top 10 DEGs identified in ISG cluster. (C) Violin plots of UCell scores for
788 a type | interferon (top) or a type Il interferon (bottom) gene signatures. (D) Gene ontology
789  analysis for the top Up-regulated (left) and down-regulated (right) biological processes identified
790  inthe ISG cluster.

791

792 Figure 5. Cells with a type | interferon signature can be found across various tumor

793 entitiesand areenriched within tumor tissue

794  (A) UMAP coordinates of CD8+ T-cells in a pan-cancer dataset overlaid with UCell score for
795  ISG signature. (B) Boxplot showing ISG cluster frequency per donor across normal and tumor
796  tissue samples. (C) Boxplot showing ISG cluster frequency within tumor samples per donor
797  across tumor types within dataset. (D) Circos plots generated using the top 20 interactions for
798  each source (left) or target (right) with ribbons highlighting interactions originating from ISG
799  cluster (left) or terminating in ISG cluster (right), ribbons coloured by source. p value calculated
800 using a two-tailed t-test. (n) value indicates the number of unique donors. ns =p > 0.05, * =p <
801 0.05,**=p<0.01, ***=p<0.001, **** p < 0.0001.

802

803 Supplementary Figure 2: Type | interferon stimulated cells are present in patients with

804 viral infection

805  (A) Violin plot of UCell score for ISG signature across the CD8+ T-cell clusters within Cillo et
806 al., 2020 dataset. (B) Violin plots of UCell score for type | interferon (left) or type Il interferon
807  (right) gene signatures across indicated entities grouped by cells from identified ISG cluster or
808 all remaining cell clusters. (C) UMAP projection of CD8+ T-cells from the COVID-19 Multi-
809 omics Blood Atlas Consortium showing the density of UCell score for ISG signature. (D)

810 Boxplot showing frequency of ISG cluster by disease type per donor. (n) value indicates the
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811  number of unique donors. p value calculated using a two-tailed t-test. ns = p > 0.05, * = p < 0.05,
812 **=p<0.01, ***=p<0.001, **** p < 0.0001.
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