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Abstract 

Loss-of-function ZDHHC9 variants are associated with X-linked intellectual disability (XLID), rolandic 

epilepsy (RE) and developmental language difficulties. This study integrates human 

neurophysiological data with a computational model to identify a potential neural mechanism 

explaining ZDHHC9-associated differences in cortical function and cognition. 

Magnetoencephalography (MEG) data was collected during an auditory roving oddball paradigm 

from eight individuals with a ZDHHC9 loss-of-function variant (ZDHHC9 group) and seven age-

matched individuals without neurological or neurodevelopmental difficulties (control group). Evoked 

responses to auditory stimulation were larger in amplitude and showed a later peak latency in the 

ZDHHC9 group but demonstrated normal stimulus-specific properties. Magnetic mismatch negativity 

(mMMN) amplitude was also increased in the ZDHHC9 group, reflected by stronger neural activation 

during deviant processing relative to the standard. A recurrent neural network (RNN) model was 

trained to mimic recapitulate group-level auditory evoked responses, and subsequently perturbed to 

test the hypothesised impact of ZDHHC9-driven synaptic dysfunction on neural dynamics. Results of 

model perturbations showed that reducing inhibition levels by weakening inhibitory weights 

recapitulates the observed group differences in evoked responses. Stronger reductions in inhibition 

levels resulted in increased peak amplitude and peak latency of RNN prediction relative to the pre-

perturbation predictions. Control experiments in which excitatory connections were strengthened by 

the same levels did not result in consistently stable activity or AEF-like RNN predictions. Together, 

these results suggest that reduced inhibition is a plausible mechanism by which loss of ZDHHC9 

function alters cortical dynamics during sensory processing.  

Keywords – ZDHHC9, intellectual disability, epilepsy, language, MEG, recurrent neural networks 
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Introduction 

Cognition is sculpted during development by a myriad of genetic, cellular and systems-level 

mechanisms. Studying rare single gene disorders related to intellectual disability (ID), in combination 

with neural network models of cognition, could provide insights into specific mechanisms 

contributing to developmental cognitive difficulties. When made computationally tractable, specific 

cellular and systems-level mechanisms associated with genes of interest might offer explanatory 

support for the aetiology of cognitive impairment. Additionally, simplified computational models of 

the brain can be trained to perform tasks and then systematically perturbed to recreate ‘disorder-

like’ model predictions. This framework is in line with the theoretical view that genes, brains, and 

artificial neural networks have similar underlying goals, which are to maximise the probabilities of 

achieving objectives, whether these be protein function, neural systems and cognitive functions, or 

good task performance, respectively (1). However, this approach has not previously been applied to 

rare genetic disorders, owing to the limited data availability across levels for these groups, 

particularly functional neuroimaging at appropriate temporal resolution. In this study, we trial the 

approach by employing a neural network model of auditory processing as a tool for mapping 

genetically-driven alterations to systems-level activity, in a group of individuals with cognitive 

impairment of known genetic origin. 

A relevant gene for studying the emergence of intellectual disabilities is ZDHHC9, which encodes a 

palmitoylation enzyme (ZDHHC9) involved in the post-translational modification and intracellular 

trafficking of specific target substrates (2, 3). Loss of function ZDHHC9 variants have been associated 

with mild to moderate ID (3), oromotor speech difficulties and language impairments (4), often 

coexisting with rolandic seizures (4, 5). Comorbidity between rolandic seizures, speech and language 

difficulties have been commonly observed in non-ZDHHC9 cohorts, but the mechanisms linking these 

symptoms remain elusive (6, 7). Hence, discovery of a rare monogenic cause of these associations 

may highlight specific, symptom-relevant neurobiological processes.  

MRI studies of individuals with ZDHHC9-associated ID identified neuroanatomical differences that 

may increase the risk for epilepsy and cognitive impairments, such as reductions in cortical thickness 

and connectomic deviations (4, 8, 9). Another study of the same participant group employed resting-

state magnetoencephalography (MEG), and revealed differences in state activation duration as well 

as dynamic connectivity across networks, with the extent of case-control differences correlating with 

ZDHHC9 expression levels (10). While the studies outlined above have described the neurological, 

behavioural, neuroanatomical and global MEG characteristics of ZDHHC9-associated XLID, local MEG 

characteristics and causal links remain unexplored.  
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At the molecular and cellular level, experimental studies of ZDHHC9 loss-of-function point toward 

developmental differences in synaptic structure and function. Targets of the ZDHHC9 enzyme include 

the GTPase Ras, which promotes dendrite outgrowth, as well as GTPase TC10, which supports 

inhibitory synapse formation (5). A study of the impact of ZDHHC9 loss-of-function in primary rat 

hippocampal cultures revealed shorter and less complex dendritic arbours and an increase in the 

ratio of excitatory-to-inhibitory (E:I) synapses (5). Moreover, ZDHHC9 knockout mice showed 

spontaneous high-frequency spiking activity potentially reflecting non-convulsive seizures (5). 

Another important target of ZDHHC9 is post-synaptic density protein 95 (PSD-95), a synaptic 

scaffolding protein that plays a key role in bidirectional synaptic plasticity, which is essential for 

learning and memory (11). In summary, there is emerging evidence that ZDHHC9 variants alter 

properties of neuronal development and plasticity important for maintaining synaptic E:I balance 

and, ultimately, optimal neural function.  

The current study aimed to link ZDHHC9-associated ID participants’ neurophysiology to previously 

reported cellular and synaptic differences, within a computational framework. MEG data were 

recorded from participants with ZDHHC9 variants and control participants during a passive roving 

oddball paradigm, to enable assessment of auditory change detection via MEG mismatch negativity 

(mMMN) (12, 13). A roving protocol was designed for the study since this is an efficient method for 

observing mismatch responses and is relatively independent of basic stimulus properties. In addition, 

the roving oddball paradigm has been widely used in MEG studies of clinical groups with cognitive 

impairment (14, 15). Taking inspiration from previous studies integrating neural network modelling 

with electrophysiological data (16, 17), we employed a recurrent neural network to test a causal 

model relating ZDHHC9-related synaptic alterations to observed differences in group-level event-

related fields. 

Materials and Methods 

Participants 

Eight male participants age 9-41 with ZDHHC9-associated X-linked ID were recruited to the study 

(ZDHHC9 group). Mean estimated full scale IQ was 65 (standard deviation 6). Clinical and cognitive 

characteristics of this group have been previously described (4). Seven individually age-matched male 

comparison participants were recruited, free of neurological and psychiatric disorders (control 

group). Informed consent was obtained from each participant or their parent / consultee. Ethical 

approval for the study was granted by the Cambridge Central Research Ethics Committee 

(11/0330/EE). 
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Data acquisition 

All MEG datasets were collected on a 306-channel high-density whole-head VectorView MEG system 

(Elekta Neuromag, Helsinki), consisting of 102 magnetometers and 204 orthogonal planar 

gradiometers, located in a light magnetically shielded room. Data were sampled at 1 kHz and signals 

slower than 0.01 Hz were not recorded. A 3D digitizer (FASTRACK; Polhemus) was used to record the 

positions of five head position indicator (HPI) coils and 50–100 additional points evenly distributed 

over the scalp, all relative to the nasion and left and right preauricular points. An electrode was 

attached to each wrist to measure the pulse and bipolar electrodes to obtain horizontal (HEOGs) and 

vertical (VEOGs) electrooculograms. Head position was monitored throughout the recording using 

the HPI coils. 

Stimuli and design 

The experimental design was based on a roving oddball paradigm described by Cowan et al (12). This 

experimental scheme involved the repeated presentation (3-12 times) of standard stimuli of a 

particular frequency (250Hz, 500Hz, or 1000Hz) followed by a deviant tone of a different frequency 

which, in turn, is repeated and becomes the new standard (Figure 1). Tones were 50ms in duration 

and the inter-tone interval was fixed at 500ms (550ms stimulus onset asynchrony). Participants were 

instructed to watch a silent movie and ignore the tones. 

MEG data pre-processing  

The raw MEG data was pre-processed with the MNE package (version 1.0.3) (18) in Python 3.10. 

External noise was removed using a signal-space separation method and adjustments in head 

position within the recording were compensated for using Maxwell filtering. A sensor-space temporal 

independent components analysis (ICA) was used to automatically remove artefacts arising from 

blinks, saccades and pulse-related cardiac artefacts, and the outputs were manually checked by 

visual inspection. Data were epoched to a time window defined as 400ms pre-stimulus and 550ms 

post-stimulus to ensure all relevant event-related changes were contained 

within the epoch time window, and then down-sampled to 250Hz, baseline corrected and low-pass 

filtered at 30Hz utilising a Butterworth filter. All trials with larger peak-to-peak amplitude than 4e-12 

Tesla (4000 fT) and smaller peak-to-peak amplitude than 1fT at each magnetometer were removed. 

For each participant, data were averaged across all trials to form the time-domain signals. Event-

related field (ERF) analyses were also performed with the MNE package (version 1.0.3) (19). 
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Data analysis  

Auditory evoked fields (AEFs) across all stimuli types were computed for both groups. The grand 

average of all trial types was used to compute AEF time-domain signals. Peak amplitude and peak 

latencies of AEFs were automatically calculated at the magnetometer where the largest amplitude 

signal was detected. The precise latencies of M100 responses are useful indicators of the temporality 

of auditory processing (20). To account for a consistent 50ms delay in the tone stimulus presentation 

relative to the trigger timing in the scanner setup, a peak of activity at approximately 150ms post-

trigger was automatically detected as equivalent to the widely reported M100 response (21). 

Differences in activity elicited by standard and deviant stimuli were analysed for both groups using 

non-parametric cluster-based permutation testing (22), which detects spatial clusters of sensor 

locations for which significant differences between trial types, within a certain time period, are 

found. All deviant responses (D) were compared to responses elicited by their preceding standard 

stimuli (S). A significance threshold of 0.05 (alpha) was used. mMMN was calculated as the mean 

absolute error (MAE) between the standard and deviant-evoked responses at the group level. 

Individual MMNs were calculated at the largest cluster significant at the group level. 

Neural network modelling 

A recurrent neural network (RNN) consisting of an input layer, four hidden layers and an output layer 

was employed as a model of the auditory cortex. RNNs are a class of artificial neural networks where 

the connections between nodes can create a cycle, allowing output from some nodes to be fed as 

input to the same nodes. These recurrent connections allow RNNs to learn from sequences of inputs 

and are loosely analogous to feedback connections in biological neural networks. Each RNN node is 

analogous to a population of neurons, which can emit excitatory or inhibitory connections (weights). 

The model used is a discrete-time RNN, which processed the input at each timestep according to the 

recurrence formula (Equation 1), where the matrix ���  captures the recurrent connections, ���� is 

the previous hidden states vector, ���  is the feedforward weight matrix and the ��  is the input 

vector at timestep t. The RNN output at each timestep is obtained according to Equation 2, where 

��� is the weight matrix between the last hidden layer and the output units and �� is the hidden 

state vector at the current timestep. 

���� � ReLU���� ���� �  ��� ���       (1) 

 

���� �  �����      (2) 
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The RNN was trained in a supervised fashion, and the labels (targets) for the S and D inputs that were 

given to the RNN were obtained by adding Gaussian white noise to the control group post-stimulus S 

and D AEFs, respectively. 1200 targets were obtained for S and D responses, respectively. Before 

feeding the labels into the RNN model, the data was robust-scaled and flipped so that most values 

are above 0. Robust scaling sets the median and interquartile range to 0 and 1, respectively, and 

therefore maintains the directionality of the amplitude difference between S and D trial type AEFs 

(i.e the RNN predictions when D inputs are given have a higher amplitude than the S predictions, as 

observed empirically).  

The RNN inputs were sound waveforms produced with a sampling frequency of 5000Hz. Standard 

inputs consisted of 3 sinewaves of the same frequency and deviant inputs consisted of the first 2 

sinewaves of the same frequency and the third one of a different frequency. The frequencies used 

for the sinewaves were 250Hz, 500Hz and 1000Hz (Figure 1). These were converted into the time-

frequency domain using the short-time Fourier transform (STFT), producing a representation of 

cortical input from the ascending auditory pathway (23). The STFT was performed on Hann-

windowed segments of 125 samples with an overlap of 105 samples. Input features were fed through 

the model and its parameters (weights and biases) were optimised to minimise mean-squared-error 

(MSE) loss between model outputs at the current timestep, ��,  and target evoked responses, or 

observed values at the current timestep, ��  as shown in Equation 3.  

��� �  
�

�
∑ ��� �  ����

�	�       (3) 

Adaptive moment estimation (Adam) optimization was used with a learning rate of .0002 and a 

dropout regularisation of 0.15 was used in the hidden layers. Each hidden layer had a rectified linear 

unit (ReLU) activation, whereas the final layer had a linear activation function. Connection weights 

between layers were initialised from a Glorot uniform distribution and recurrent weights were 

initialised as an orthogonal matrix from a normal distribution (24, 25). 

 A 70%:15%:15% train:validation:test split was used for training, tuning the model parameters 

(validation) and testing the model performance. The stability of RNN predictions in the three 

experiments was validated using principal component analysis (PCA). The units’ activations of the 

fourth hidden layer, represented by a matrix of size (64 [units], 138 [timepoints]), were transformed 

into principal component spaces of size (2 [components], 138 [timepoints]). This transformation 

preserves as much variance as possible from data in the original matrix while compressing them into 

fewer columns. The resulting neural latent space, obtained after PCA, is shown on a cartesian plane 

in Figure S4, which indicates the activity in the last hidden layer over the timecourse of the RNN 

prediction. 
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Results 

Empirical MEG results  

AEFs across all stimuli types were computed for the ZDHHC9 and control groups (Supplementary 

Figure S1). Mean peak activity occurred at 144ms post-stimulus in the control group, reaching a peak 

absolute distribution of 140fT, which corresponded to an expected M100 response. For the ZDHHC9 

group, mean peak activity over this window occurred at 188ms post-trigger, reaching a maximal 

absolute magnetic distribution at 203fT – 44ms later in latency (p-value = 0.08) and 1.13X greater in 

magnitude (p-value = 0.3) than control subjects. The topographical plots computed at the peak 

latency (Supplementary Figure S1, right panel), indicated a clear dipolar pattern in both the left and 

right hemispheres in both groups.  

Trial responses were then separated by frequency into 250Hz, 500Hz and 1000Hz stimulus responses 

for both the control and ZDHHC9 group, to explore whether there was a systematic relationship 

between the frequency of the stimulus and the latency of the AEF. Given the spatial tonotopic 

organisation of the auditory cortex (26), groups of neurons that respond to higher frequency stimuli 

are activated before those that respond to lower frequency stimuli. Thus, it was expected that higher 

frequency stimuli would result in shorter latency responses (26, 27, 28). In control participants, 

250Hz, 500Hz and 1000Hz stimuli evoked an AEF with a peak at 

156ms, 140ms and 132ms – decreasing in latency respectively as expected (Supplementary Figure 

S2). In contrast, the ZDHHC9 group showed delayed peak amplitudes and larger response amplitudes 

for the 500Hz and 1000Hz stimuli. In this group, the frequency-latency dependence was present for 

the 250Hz (latency: 0.192) and 500Hz stimuli (latency: 0.164), but the 1000Hz stimulus resulted in a 

delayed response (0.200ms). The two peaks present for the 1000Hz stimuli were due to wider inter-

subject variability for the ZDHHC9 group. For all frequency stimuli, the responses in this group 

reflected a prolonged activation (Supplementary Figure S2). 

Next, responses to all deviants (D) were computed and compared to their preceding stimulus (S) to 

provide an index of the mMMN response across all standard train lengths, for the control and 

ZDHHC9 groups separately (Figure 2). Non-parametric cluster-based permutation testing revealed 

statistically significant differences between S and D trials (Pcorrected = 0.0008) in the control group at a 

single negative cluster in the right hemisphere, occurring over 12 channels, from 150-180ms after 

stimulus onset (Figure 2a). In the ZDHHC9 group, six significant clusters were identified i.e. mismatch 

responses were topographically more extensive and of higher mean peak amplitude in the case 
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group (Figure 2b). The responses of the two groups could only be directly compared by calculating 

the average evoked responses at the eight sensors where significant S-D contrasts were found in 

both groups (Supplementary Figure 3). All averaged responses were significant within a time-frame 

of an expected mMMN, around 100ms after the end of stimulation (highlighted in yellow). Individual-

level responses were computed for and averaged across these eight channels - differences in peak 

amplitudes between the two groups did not reach statistical significance for the standard-evoked 

responses (p-value = 0.09) or the deviant-evoked responses (p-value= 0.1). 

Recurrent neural network model of neural dynamics in auditory processing 

Figure 3 outlines the modelling workflow. Spectrograms representing standard tones and deviant 

tones were given to the RNN model as inputs and empirically-derived control group-level AEFs, on 

which Gaussian noise were added, served as corresponding labels. During training (10 epochs), MSE 

was minimised between the RNN predictions and the labels. Average model outputs over all 

standard and deviant types, after training, are shown in Figure 3e. 

To understand how the hierarchy of the RNN’s layers corresponded to the types of inputs, we 

computed the RNN hidden layer activations for S and D inputs (Figure 4). This enabled us to 

qualitatively assess whether the network responded differentially based on the input and, if so, 

where in the network this was occurring. We found that network activity became gradually more 

diffuse in time from the first to the fourth hidden layers. In the first hidden layer, activations for the S 

and D inputs were largely similar, whereas in later layers of the hierarchy, the activity elicited by the 

D inputs became larger than that elicited by the S inputs. (Figure 4a, b).  

Reducing inhibition recapitulates auditory dynamics in the ZDHHC9 group 

 To test the impact of alterations mimicking the ZDHHC9 loss-of-function phenotype (i.e. reduced 

inhibition) on the RNN output, we conducted a perturbation experiment by systematically reducing 

inhibition levels after network training and observed the effects on the network’s predictions.  

In experiment 1 (“negative weight perturbation”, Figure 5a), the negative recurrent weights of the 

four hidden layers were reduced, in terms of absolute values,  by eight arbitrary levels that resulted 

in stable changes in RNN output from the baseline: 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%. These 

alterations thus altered the average excitation-inhibition synapse ratio of ~1:1 obtained after 

training. Two additional control experiments were performed, in which the outcomes were assessed 

of increasing excitation or concomitantly increasing excitation and reducing inhibition, for the same 

levels as in the first experiment. In experiment 2 (“positive weight perturbation”, Figure 5b), the 

positive recurrent weights were relatively increased by 0.5-4% (with the same increments as in 
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experiment 1). In experiment 3 (“random weight perturbation”, Figure 5c), a random set of recurrent 

weights, including both positive and negative connections, were altered by the same levels (positive 

weights were increased and the absolute value of negative weights was decreased).  

To quantify how well the model was fitting to the data, we quantified the value of the loss function, 

which usually decreases with improved data fitting (i.e. smaller differences between network 

predictions and labels). The loss values evaluated on the test set, which implied both S and D inputs, 

are shown in Table 1. Reducing inhibition (Experiment 1) resulted in the smallest MSE values up to 

3.5% inhibition reduction, with small MSE increases to the next perturbation level, whereas 

increasing excitation levels led to unstable RNN predictions reflecting runaway excitation (Table 1). 

Experiment 3 resulted in relatively stable MSE values across the perturbation levels (Table 1). These 

results showed that inhibition reduction experiments best fitted the evoked response data, with 

small increases in perturbation strength resulting in small increases in loss values, consistent with our 

predictions.  

We next analysed the model’s qualitative dynamical outputs under perturbation for the three 

experiments. The output unit predictions for S and D inputs were computed in each experiment and 

compared to baseline levels, pre-perturbation (Figure 5). Inhibition reduction (Experiment 1) resulted 

in predicted AEFs with linearly increasing amplitudes (Figure 5, Table 2) relative to the baseline 

levels, which mirrors the trend observed empirically between the control and ZDHHC9 groups (Figure 

2). MMN showed nonlinear increases, especially at the highest perturbation levels. AEF peak 

latencies also increased from baseline, by 4ms, and remained constant across the 0.5-2.5% 

perturbations before a further 4ms increase at the 3-4% perturbations (Table 2). No differences in 

peak latencies were obtained between S trial predictions and D trial predictions (Table 2). Increased 

excitation (Experiment 2) resulted in exponential increases in AEF peak amplitude from the 4th 

perturbation level onwards (Figure 5), accompanied by peak latencies in the latter half of the AEF 

window (Table 2). Perturbing a random set of weights (Experiment 3) resulted in opposite polarity 

AEFs with peak amplitudes and MMN varying minimally across the perturbation levels, and a 

constant peak latency at 300ms (Figure 5, Table 2).  

Validating the effect of decreased inhibition on latent dynamics aligning with the ZDHHC9 

phenotype  

Principal component analysis was performed on the post-perturbation activations of the 4th hidden 

layer after model evaluation on the test set (Figure S4). This provided a visualisation of the internal 

representation of the RNN just before the outputs are read by the output unit and are in line with 

the results in Table 2. Experiment 1 resulted in stable predictions across the perturbation levels, as 
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activation in latent space at the first prediction timepoint was in proximity of activation level at the 

last prediction timepoint, as shown in the latent activity depicted in Figure S4a. The area covered by 

the latent space activity increased with the perturbation levels, reflecting the AEF amplitude 

increases (Figure S4a). The latent activity in Experiment 2, starting from the 5th perturbation level 

(2.5%) onwards resulted in values that maximally differed between the initial and last timepoints, 

highlighting runaway activity (Figure S4b). Experiment 3 resulted in different internal representations 

which remained stable across the perturbations (Figure S4c). 

 

Discussion 

This study tested the hypothesis that empirical neurophysiological differences between a monogenic 

neurodevelopmental disorder group (ZDHHC9-associated ID) and control group are compatible with 

reduced inhibition in a network model of auditory processing. We observed that reduction in 

inhibition levels within an RNN model resulted in increasing peak amplitudes of model outputs, 

which qualitatively matched the case-control results. In contrast, increasing excitation or perturbing 

a random set of connections resulted in a phase shift of the RNN output, inconsistent with 

empirically-derived results.  

Empirical MEG analyses focused on magnetic mismatch negativity to determine whether ZDHHC9 

variants are associated with differences in adaptive auditory processing. mMMN, an auditory evoked 

field reflecting the difference between the brain response to standard and deviant stimuli, captures 

auditory change detection without employing directed attention and can be used to index 

discrimination relevant for language skills (15). In line with the Bayesian Brain Hypothesis (29), MMN 

represents a prediction error signal (30), reflecting a continuous process in which the brain learns 

environmental statistics to detect regularity and change, and generates top-down predictions which 

facilitate stimulus processing (13, 31). The auditory MMN links sensory processing to higher-level 

cognitive functions and represents processing of violations in the sequence of stimuli, which are 

compared to the information encoded in the ultra-short-term (echoic) memory (13). Previous source 

modelling of mMMN has identified bilateral sources of mismatch signal in the superior temporal 

gyrus and inferior frontal gyrus, reflecting a hierarchical network for processing of prediction error 

dependent on bidirectional frontotemporal connectivity (32). In the current experiment, the control 

and ZDHHC9 groups showed deviant-related activity reaching statistical significance in the right 

temporal cluster, with significant deviant-related responses being more extensive and, mostly, of 

larger amplitude in the ZDHHC9 group. However, these observations remain qualitative as direct 

comparison between responses in the two groups was challenging due to limited number of channels 
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for which both groups demonstrated a significant mismatch response. It will be important to 

replicate these results in larger samples of individuals with ZDHHC9 variants, within specific age-

bands, and in comparison to additional groups such as other monogenic causes of ID. 

To explore the network origins of observed between-group differences in MEG signal generation, we 

applied RNN modelling, in which the activity of hidden units resembles that of neural populations 

(16, 17). During model training, the RNN weights representing connections between the model units 

were optimised so that the RNN predictions most closely matched the labels (the grand-average AEF 

waveforms generated by adding noise to the control group AEF). The feedforward and recurrent 

weight matrices obtained after training could be interpreted as analogous to wiring patterns 

supporting neurotypical AEF generation. The RNN model enabled the comparison between its 

predictions and neurophysiological responses given several analogies that could be made between 

the two. For instance, creating an RNN model with multiple hidden layers enabled the signal 

propagation through a hierarchical structure comprising of feedforward and feedback interactions, 

similar to sensory processing. As the information propagated through the layers, the pattern of 

activations became more complex, similar to neural signals traveling from sensory periphery to 

subcortical structures and regions of the sensory cortex. Moreover, the RNN approach facilitated the 

formation of a high-dimensional activation space given the total of 256 hidden units, which 

attempted to mimic signals arising from a large number of underlying neural sources that underlie 

scalp-recorded AEFs.  

The RNN model was used as a platform to test a mechanistic hypothesis underpinning AEF 

generation in the ZDHHC9 group, specifically reduced inhibition arising from ZDHHC9 dysfunction. 

Inhibitory perturbation of the model after training resulted in increased AEF and deviant-related 

responses, in keeping with empirical observations although with some limitations. While the model 

perturbations resulted in an increased synaptic E:I ratio that is smaller than observations in primary 

cultures with ZDHHC9 knockout (5), they were appropriate for the current RNN model which 

captures features of sensory processing, whilst omitting biological details such as separate excitatory 

and inhibitory units and features of connectivity. Another limitation of the model is that it did not 

take into account developmental effects. Genetic effects usually interact with the environment 

continuously, and this interaction shapes sensory processing and behaviours. A future modelling 

approach would take this aspect into account and might include perturbations from the start of 

model training as opposed to post-training, potentially in the form of a regularisation term within the 

loss function equation. 
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The results of the current study go a step further toward understanding the associations between 

ZDHHC9 loss of function, seizure susceptibility and developmental language difficulties. A role for 

hyperexcitability and atypical AEFs in language development has been proposed in the context of 

autism, where M100 latencies are persistently delayed and predict language improvement over time 

(33). M100 latency has been proposed as a marker for capacity to improve cognitive skill, and 

language skill in particular, relating to cortical interneuron development and GABA concentration 

(34). Of note, rare variants in GABA receptor subunits have been associated with risk for rolandic 

epilepsy, potentially bridging seizure risk and cortical inhibition relevant to cognitive development 

(35). However, it is not known whether M100 amplitude, besides latency, reflects properties of the 

auditory cortex involved in language acquisition. This could be explored in future prospective studies 

across monogenic causes of RE, incorporating behavioural measures of speech and auditory 

processing for correlation with MEG (36). The existing literature provides discrepant accounts of how 

MMN is affected in epilepsy patients and those affected by developmental language disorders. Some 

studies revealed links between developmental language disorders and diminished MMN amplitudes, 

which points to a causal relationship between inefficient auditory processing and insensitivity to 

phonetic cues and impaired speech and language skills (37, 38, 39, 40). Furthermore, lower MMN 

amplitude has also been observed in children with rolandic epilepsy, with or without language 

impairments (41, 42, 43). In contrast, several studies have shown larger MMN responses in epileptic 

patients in 

response to pure tones (44, 45, 46). Higher MMN amplitudes in people with epilepsy could indicate 

increased activation of the same neuronal population as in controls or activation of additional 

neuronal resources (47). Similar trends have been observed in children with learning difficulties and 

dyslexia compared to controls (48). These contrasting previous results may reflect small sample sizes 

and reproducibility issues or could reflect real differences in cortical processing contributing to 

language difficulties dependent on aetiology and associated network disturbances, which could be 

explored in future studies. 

Conclusion 

In summary, the current study serves as a proof-of-concept for using neural networks to investigate 

mechanistic origins of developmental cognitive disorders. Future studies will ideally increase the 

complexity of the neural network models that would better mimic sensory processing and apply 

these in larger datasets of individuals with cognitive impairments arising from a range of genetic 

variations. It will also be important to perform studies at more granular scales, for example by 

studying rodent models of these monogenic disorders and obtaining single-neuron recordings that 

would shed light on the neuronal dynamics in these conditions. A wider range of cognitive and 
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memory tasks implemented with rodent models and parallel human studies would also be useful to 

explore effects of single gene variants on learning and memory, together with underlying alterations 

in neuronal activity and connectivity. Collectively, these inter-disciplinary studies will contribute to 

improved multi-level understanding of monogenic conditions impacting on cognition and will 

potentially inform future therapeutic interventions in relevant clinical populations.  
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Table 1: RNN mean squared error (MSE) values during test set evaluation for each experiment, 

across the perturbation levels. 

 

 

 

 

Table 2:  AEF metrics before and after perturbations.  
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Figure legends 

Figure 1: Roving oddball paradigm.  

A standard tone (S) of either 250Hz, 500Hz, or 1000Hz is presented randomly between 3-12 times. 

After this sequence of repetitions, the frequency of the tone changes (deviant tone, D), which then 

becomes the new standard through repetitions. 

Figure 2: Cluster-based permutation testing. 

Permutation-based clusters of significant difference between standard-evoked and deviant-evoked 

AEFs in control and ZDHHC9 groups. 

Figure 3: Overview of modelling workflow.  

a. Spectrograms of an example standard and deviant input used for the RNN. Three frequencies were 

used as in the roving oddball paradigm: 250Hz, 500Hz and 1000Hz. Deviant inputs had the first 2 

tones of the same frequency and the third tone of a different frequency. The train set consisted of 

standard inputs of 250Hz and 500Hz, as well as the following sequences of tones, of which the third 

represented the deviant: 250-250-500 (Hz), 250-250-1000 (Hz), 500-500-1000 (Hz). The test set 

consisted of standard inputs of 1000Hz and tone triads including: 500-500-250 (Hz), 1000-1000-250 

(Hz) and 1000-1000-500 (Hz). b. Simplified diagram of the hierarchical RNN architecture. Input layer 

(green) had 63 recurrent units, each hidden layer (4) had 64 units and the output layer had 1 

recurrent unit. c. Targets were 1200 simulated AEFs obtained by adding Gaussian white noise 

(standard deviation 0.6) to the control group level post-stimulus AEF in response to standard tones. 

The same was done for deviant AEFs, resulting in 1200 simulated deviant AEFs. d. The RNN was 

trained for 10 epochs (i.e. iterations through the entire training dataset). The lower validation loss 

reflects the absence of dropout regularisation during validation, as opposed to training. e. RNN 

predictions to S and D inputs. 

Figure 4: Hidden layer activations and output unit predictions for standard and deviant inputs. 

a. Model predictions and hidden layer activations plotted by layer (rows) and input condition 

(columns). The activations were computed as an average across all S input types and all D input 

types, respectively. The x-axis represents time. Amplitudes of hidden unit activations, shown in the 

four upper rows, increase towards the output. Patterns of hidden unit activations also spread out 

and become more complex with increasing layer depth. Visible differences in hidden unit response 

magnitudes between input conditions were also found. Model outputs and corresponding grand-

average ERFs (with Gaussian white noise; s.d. = 0.6) are plotted in the bottom row. All panels display 
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data from the end of stimulus onset (0ms) to 544ms after stimulus onset. b. Hidden layer (1-4) 

activations over time, averaged across the 64 hidden units. 

Figure 5: RNN predictions before and after each perturbation experiment. 

Predicted AEFs for standard and deviant inputs (left panel) and relative increases from initial RNN 

predictions (pre-perturbation) after each perturbation experiment (right panel). a. Experiment 1 

(negative weight perturbation), b. Experiment 2 (positive weight perturbation) and c. Experiment 3 

(random weight perturbation). 

Graphical Abstract 

 

In the current study, we employed a bottom-up approach to study the impact of synaptic-level 

alterations associated with ZDHHC9 variants on cortical function in healthy and ZDHHC9-deficient 

participants. To achieve this, a recurrent neural network model was developed to recapitulate MEG-

derived auditory evoked responses and subsequently perturbed in order to determine effects on 

resulting dynamics. We show that reduced network inhibition recapitulates empirical observations, 

specifically increased response amplitudes, delayed peak latencies and increased mismatch 

negativity. These results offered a mechanistic account on the impact of ZDHHC9-associated synaptic 

alterations on auditory processing. 
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