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Abstract

High pathogenicity avian influenza virus (HPAIV) is a rapidly evolving orthomyxovirus causing
significant economic and environmental harm. Wild birds are a key reservoir of infection and an
important source of viral incursions into poultry populations. However, we lack thorough
understanding of which wild species drive incursions and whether this changes over time. We
explored associations between abundances of 152 avian species and cases of HPAI in poultry
premises across Great Britain between October-2021 and January-2023. Spatial generalised additive
models were used, with species abundance distributions sourced from eBird modelled predictions.
Associations were investigated at the species-specific level and across aggregations of species.
During autumn/winter, associations were generally strongest with waterbirds such as ducks and
geese; however, we also found significant associations in other groups such as non-native
gamebirds, and rapid change in species-specific associations over time. Our results demonstrate the
value of citizen science in rapid exploration of wild reservoirs of infection as facilitators of disease
incursion into domestic hosts, especially in regions where surveillance programmes in wild birds are
absent. This can be a critical step towards improving species-specific biosecurity measures and
targeted surveillance; particularly for HPAIV, which has undergone sudden shifts in host-range and

continues to rapidly evolve.

1. Introduction

The emergence and rapid evolution of transboundary animal pathogens poses significant economic
and zoonotic risks (Clemmons et al 2021). Many transboundary animal diseases are caused by multi-
host pathogens with assemblages of reservoirs of infection and bridging species that may change
over time and/or vary greatly in breadth (Portier et al. 2019). Which host species are most affected
can vary seasonally alongside changes in species ecology or shift rapidly as a result of pathogen
evolution or diffusion into new areas (Bonneaud & Longdon 2020). Therefore, continuous

monitoring of possible reservoirs of infection and bridging species is essential for designing effective
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control measures and developing predictive disease transmission models (Viana et al. 2014).
However, widespread surveillance in wildlife is often too challenging and expensive to implement,

especially for hosts with broad species distributions.

Avian influenza virus (AIV) has among the widest geographic and host range of all transboundary
animal diseases (Lupiana & Reddy 2009). In 2020, the emergence of high pathogenicity AIV (HPAIV)
subtype H5Nx clade 2.3.4.4b led to an epizootic of HPAIV that profoundly impacted both the poultry
industry and wild bird populations, causing significant economic and environmental harm (Lewis et
al. 2021, EFSA et al. 2023A). During annual HPAI epizootics in Great Britain since 2020, farm contact
tracing and genetic analysis of viruses from infected poultry has strongly implicated wild birds as the
likely primary source of repeated independent incursions of HPAIV infection (Byrne et al. 2023), even

if the exact pathway of virus movement from wild birds to poultry cannot be proven.

Our understanding of which wild bird species are responsible for such incursions and whether this
varies between epizootics due to virus evolution and heightened premise biosecurity remains
relatively coarse (Hill et al. 2019, Blagodatski et al. 2021). The main wild host reservoir of infection
for AIV is generally considered to be ducks and other waterfowl (Order Anseriformes, family
Anatidae), with infection in these species resulting in disease outcomes ranging from subclinical to
severe (Keawcharoen et al. 2008). In contrast, HPAIV H5Nx infection of poultry invariably results in
severe disease with high morbidity and mortality rates (Ramey et al. 2022). Interestingly, recent
outbreaks of H5Nx clade 2.3.4.4b have been characterised by high levels of mortality across a
broader range of wild birds, including anatids, than seen previously. Infection has also shifted, likely
through emergence of novel H5N1 genotypes, to cause extensive outbreaks. High susceptibility and
increased virus shedding in a range of wild bird species has increased the levels of infection pressure
through elevated levels of environmental contamination. This in turn has resulted in previously

rarely affected groups of birds such as seabirds becoming exposed and infected (Banyard et al. 2022,
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Falchieri et al. 2022, Pohimann et al. 2023). Although the host range for HPAI H5Nx are known to be
broad based on challenge studies and wild-bird surveillance (Lee et al. 2017, Empress-i 2023),
virulence and transmissibility appear to be highly variable across taxa. Mass mortality events
attributed to H5 clade 2.3.4.4b have been recorded in several groups such as wildfowl, shorebirds,
seabirds, and raptors (Abolnik et al. 2023, Adlhoch & Baldinelli 2023, Lane et al. 2023, Pohlmann et
al. 2023), whereas in other groups, such as passerines, such reports are lacking. However, passerines
have demonstrated moderate to high seroprevalence against older clades of HPAI H5NX, likely
indicative of past infection (Kou et al. 2005, Kaplan & Webby 2013), and detecting increased
mortality in these less conspicuous species is likely to be more difficult. Importantly, commonly
tested species that contribute to the long-distance spread of HPAIV internationally (particularly
wildfowl (Order Anseriformes) and gulls (Family Laridae); Kim et al. 2009, Hill et al. 2022) may not
necessarily be sufficient to explain incursions onto premises. Instead, there may be additional
species acting as local amplifiers of viruses, which could be critical in facilitating viral incursion into

premises.

Understanding species-specific patterns of spillover from wild to domestic birds is difficult due to
obstacles in effective monitoring of HPAIV in potential wild bird hosts, and the changes in species
assemblages and abundance across the annual cycle. Despite significant advances in testing protocols
(James et al. 2022, Slomka et al. 2023), surveillance of HPAI outbreaks in wild birds can be severely
limited by financial constraints, detection and sampling of carcasses, and requirements for high
biosecurity testing facilities (Hill et al. 2018). Testing may therefore be heavily skewed towards species
with overt clinical symptoms or for which carcasses are more easily detectable. For example, while all
suspected kept bird premise cases of HPAI in Great Britain are tested, only a relatively small subset of
reported wild bird carcasses suspected of being HPAI cases can be tested (DEFRA 2023C). Therefore,

methods to refine targeted surveillance of HPAIV are essential to maximise disease control efforts.
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One way to potentially achieve better targeted surveillance is by assessing associations between the
abundance of potential reservoirs of infection or bridging species and confirmed HPAIV infection in
premises housing domestic poultry or other captive birds (henceforth referred to collectively as
“captive avian premises”), on the assumption that there will often be a higher incidence of cases
where one or more reservoirs of infection or bridging species are at higher abundance. While this
approach does not rely upon a priori knowledge of a single host species, as several species can be
assessed concurrently, it does rely on an accurate understanding of spatiotemporal patterns of
possible host species abundance across the region of interest. Modelling spatiotemporal patterns of
wild host abundance at national scales is complex, because it requires a large amount of
observational data and computationally intensive analyses (Fink et al. 2013). However, citizen
science initiatives alongside advances in computational power and novel analytical approaches that
account for biases in semi-structured data collection procedures can enable rapid advances in our
understanding of species abundance and distributions. The citizen science initiative eBird launched
by the Cornell Lab of Ornithology (CLO) and the National Audubon Society in 2002 has amassed over
1 billion bird observations globally and currently produces estimates of the full annual cycle
distributions, abundances, and environmental associations for over 2000 species (Fink et al. 2022).
With these advances, it is now possible to rapidly assess the associations between the spatial

distribution of wild bird populations and HPAI in poultry at larger scales than previously possible.

As many different wild bird species may be involved in HPAIV transmission, with varying levels of
interaction with each other and captive avian premises, assessing species-level drivers of virus
incursions into captive flocks can be challenging. Using eBird-modelled species abundance estimates
that are publicly available for a broad selection of wild avian species, we investigate spatial
associations between species-specific wild-bird abundance and patterns of HPAI cases in captive
avian premises across Great Britain. This will enable us to identify potentially under-prioritised key

species, or species groups, that may be facilitating the incursion of HPAI into captive avian premises.
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The use of citizen science recording schemes such as eBird benefits from being non-reliant on any
field- or laboratory-led surveillance in potential wild viral hosts, and as such can be rapidly deployed
against pathogens with wild reservoirs of infection in areas with limited wild host testing capacity.
Continued monitoring of associations between wild hosts and detected outbreaks in ‘captive avian’
premises could also prove useful as an early-warning sign of a possible virus host range expansion

into a new wild species that is not currently subject to surveillance.

2. Methods

We used publicly available model-predicted relative abundance distributions (RADs) of wild birds to
explore how wild bird abundance is associated with HPAI cases in premises across Great Britain
between 19t October 2021 and 20t January 2023. RADs are built upon data from eBird, a global
community science bird monitoring program administered by The Cornell Lab of Ornithology

(Strimas-Mackey et al. 2022; Fink et al. 2023).

A. Data processing

RADs were retrieved from eBird Status and Trends using R package ebirdst (Strimas-Mackey et al.
2022). These RADs provided estimates for the full annual cycle at weekly intervals, modelled on the
year 2021, across a regular grid which we use at a resolution of 26.7km?2. Predicted RADs are derived
from an ensemble modelling strategy based on the Adaptive Spatio-Temporal Exploratory Model
(AdaSTEM; Fink et al. 2013). For full RAD methodology see Fink et al. (2020). RADs that include Great
Britain are currently available for 256 species, each with seasonal quality ratings assessed between 0
(lowest quality) and 3 (highest quality). We consider only those species with seasonal quality rating
scores of 2 or 3 during the modelled period (to exclude predictions with low confidence), and a sum
of relative weighted abundance scores within the relevant time period of >1 (to exclude uncommon

and rare species). This produced a final pool of 152 species. Seasonal quality rating scores are


https://doi.org/10.1101/2024.03.28.587127
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.28.587127; this version posted March 30, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

149 assigned based upon expert human review, whereby a rating of 0 implies the modelled predictions
150 failed review and ratings of 1-3 correspond to increasing levels of extrapolation and/or omission.
151

152 During our study period, there were 312 HPAI cases across commercial (n = 216), backyard (n = 70),
153 mixed (n = 12), and miscellaneous (e.g., rescue centres, zoos, etc.; n = 14) premises in Great Britain
154  (referred to here collectively as premises; Fig 1). Case data on infected premises housing captive
155  birds was obtained from the Animal and Plant Health Agency (APHA), who lead diagnostic

156  surveillance for AlV in Great Britain (Byrne et al. 2023). Through visual inspection of epidemic curves,
157  cases were split into three distinct EP’s. EP 1 covered 19t October 2021 — 9% February 2022

158  coinciding with a large peak in cases, EP 2 covered 10 February 2022 — 16%" August 2022 during
159  which cases occurred infrequently, and EP 3 covered a large peak in cases between 17t August 2022
160 - 20t January 2023 (Fig 1A).

161
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163  Fig 1. HPAI cases in captive avian premises in Great Britain between 19t October 2021-20" January

164  2023. A) Epidemic curve split into three distinct epidemic periods (EP1 = 19t October 2021 — 9t

165  February 2022; EP2 = 10" February 2022 — 16" August 2022; EP3 = 17" August 2022 — 20" January
166  2023). Number of cases per period were 86, 40, and 186, respectively. B) Map of cases (red points)
167  against a map of premises (black points) as listed in the Great British Poultry Register (jittered here to
168  maintain anonymity).

169

170  To account for changes in each species’ relative abundance and HPAI case intensity across an EP, we
171  weighted the weekly RADs by multiplying each cell value by the proportion of HPAI cases that

172  occurred nationally within that week of the EP. We then sum these weekly weighted values to

173  produce a single weighted relative species abundance for each grid-cell for the relevant period (S1
174  Fig). Weighted RADs therefore represented how the species abundance varied across the UK during

175  the period, with higher weighting given to weeks with more premise cases.

176
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In order to control for greater case likelihood being expected in areas with higher farm and poultry
density, we used information on location and stock numbers of premises obtained from the Great
Britain Poultry Register (GBPR). As reporting to the GBPR is non-compulsory for flocks of fewer than
50 birds, we only used data from those farms with 50 or more birds (19,680 farms). Farm locations
and reported stock counts were rasterised across a regular grid at a resolution of 26.7km? to match

wild bird RAD data, giving a count of farms and sum of stock numbers at the grid-cell level (S1 Fig).

As an alternative to wild bird RAD data, we also explored associations of premise cases with PCR-
confirmed wild bird HPAI cases within each period. Spatial data on individual HPAI cases in wild birds
was sourced from the Empres-i open-access database (Martin et al. 2007). Case locations were
rasterised across a regular grid at a resolution of 26.7km? to match wild bird RAD data to give a

count of cases at the grid-cell level within each period (S2 Fig).

B. Primary data analysis
We fit spatial generalised additive models (GAMs; package mgcv; Wood 2011) with a binomial error
family and a logit link function to test the effect of relative species abundance on premise cases at a
26.7km? grid-cell level. Our dependent variable (proportion of all infected premises over the
epidemic period which were located in each grid cell) was included as a two-column count matrix of
infected premises and uninfected premises in order to perform weighted regression using the total
number of premises within the grid-cell as weights. Explanatory variables of weighted species
abundance and average stock number per premise were included as linear terms, which were scaled
prior to model fitting. To account for spatial autocorrelation between neighbouring grid-cells, we
also include a two-dimensional splined variable of latitude and longitude, fit with an isotropic
smooth on the sphere. The default basis dimension (k) value of -1 was used, and Generalised Cross-
Validation was used to estimate smoothness parameters. A separate model was fit for each species
and epidemic period where sufficient species abundance was present (defined as species with a sum

9
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of weighted relative abundance across all grid cells within that period greater than 1). Models that

did not converge were removed from the model pool.

In addition to this, we also fit models where the count of wild bird HPAI cases at the grid-cell level
was used instead of weighted relative species abundance. This resulted in a total of 389 independent
models. To account for multiple testing, p-values for species-specific models were adjusted using
two methods. We first used the false discovery rate method which accounts for the expected
proportion of false discoveries amongst the rejected hypotheses (Benjamini & Hochberg 1995), and

second the more conservative Holm-Bonferoni method (Holm 1979).

C. Post-hoc analysis
We fit linear models (LMs) in order to assess group-level effects across our species-specific relative
abundance associations. The linear slope coefficient of relative abundance from each of the species-
specific independent models was used as the dependent variable, and the model was weighted by
the reciprocal of the squared standard error of this slope coefficient. Categorical explanatory
variables included the Epidemic Period (1, 2, or 3), species grouping (see below), and the two-way
interaction between these terms. Several models of the same structure were run with varying
coarseness of the species grouping variable. Our coarsest grouping categorised species into three
ecological sets of species — Landbirds, Seabirds, and Waterbirds, following classifications described in
Geen et al. (2019). We then assessed group-level patterns based upon commonly used colloquial
species groups. These groupings were chosen to reflect similarity in species behaviour, habitat-use,
and phylogeny, which may all influence a species likelihood of interacting with premises and being a
HPAIV carrier. Some groupings were however poorly represented as not all species present in Great
Britain are modelled by eBird or because model outputs were poorly supported (i.e., low seasonal
quality rating scores). We measured grouping coverage by comparing against the BOU British list

(excluding vagrants; BOU 2023; S5 Table).

10
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To assess correlation between species-specific slope coefficients for the effect of species abundance
across EP’s, Pearson's product moment correlation was used. We assessed group-level estimates of
change in species-specific slope coefficients for the effect of species abundance between EP’s 1 and
3 using a general linear model, change in slope coefficient from EP1 to EP3 explained by a single
explanatory variable of species grouping. A separate model was run for each level of coarseness in

species groupings.

All statistical analyses were performed with R 4.3.0 (R Core Team 2023).

3. Results

To assess which wild bird species are associated with HPAIV incursions into captive-avian premises,
we modelled spatial associations between the abundance of 152 wild bird species and cases of
HPAIV in premises during three distinct epidemic periods (EP’s) between October 2021 and January
2023 (Fig 1). We use “case” to refer to any captive-avian premise in which 1 or more captive birds
are confirmed to have HPAIV by PCR and/or genetic sequencing; and “premises” to refer collectively
to commercial, backyard, and miscellaneous (e.g., rescue centres, zoos, etc.) premises where captive
birds are kept. Most cases were, however, reported from commercial premises (n = 216, 69.2%). EP’s
1 and 3 (19 October 2021 — 9t February 2022 and 17t August 2022 — 20* January 2023,
respectively) covered large peaks in cases (n = 86 and n = 186, respectively) with a broad spread of
cases throughout much of Great Britain. Conversely, EP 2 (10t February 2022 — 16% August 2022)
had lower case incidence (n = 40) and less ubiquitous spatial occurrence of cases, with regions such
as northern and central-southern England having no cases despite relatively high farm density (Fig

1B, S1 Fig).

We assessed associations aggregated across groups of ecologically and phenotypically similar species
(to minimise type-1 errors; S1 Table), and at the individual species level (for full species-specific

11
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model coefficients see S1 Data). Groupings of different species were chosen to reflect similarity in
species behaviour, habitat-use, and phylogeny which may influence either a species likelihood of
interacting with a premise and/or being a HPAIV reservoir of infection or bridging species. Species-
specific abundance associations with HPAIV cases were obtained from models in which the effects of
total poultry stock within the area were controlled for. Linear slope estimates for the effect of total
poultry stock varied between models but were always positive (average slope estimates (95% Cl):
EP1=15.1(14.6-15.5), EP2 = 23.1 (22.5-23.7), EP3 = 2.9 (2.8-3.1)), indicating areas with higher total

poultry numbers had a greater proportion of infected premises during an epidemic period.

A. Species groupings
Our most coarse grouping considered 3 species groups: landbirds, seabirds, and waterbirds as
described in Geen et al. (2019). Waterbirds showed consistent group-level significant positive
associations with HPAI cases across EPs 1 and 3 (Fig 2; S2 Table). This indicates that areas with high
waterbird abundance were likely to have a higher proportion of premises experiencing HPAI cases
during these epidemic periods than areas with lower abundance for this group. Seabirds, in contrast,
had positive associations in all EPs but only showed a significant positive association within EP 3,
indicating an increased importance for this group during this later period (Fig 2, S2 Table). Landbirds
showed no significant positive association in any EP (Fig 2, S2 Table), and this was driven in part by a
lack of consistency in the direction of associations between species or species groups within this
wider grouping. We subsequently considered subgroups of species within our landbird, seabird, and

waterbird groupings based upon taxonomy.

12
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276

277  Fig 2. Estimated first-order group-level means for linear model coefficients describing effects of

278 weighted relative species abundance on probability of HPAI cases in premises. Estimated means
279  derived from a GLM assessing group effects across epidemic periods (EP1 = 19" October 2021 — 9t
280  February 2022; EP2 = 10" February 2022 — 16" August 2022; EP3 = 17" August 2022 — 20" January
281  2023). Values above points indicate the number of species within each grouping. Error bars indicate
282  the 95% confidence interval.

283

284 B. Landbirds

285 Despite no significant association for landbirds as a wider group in any EP, significant associations
286  were found in some subgroupings (Fig 3, S3 Fig, S3 Table, S4 Table). HPAI cases in premises during EP
287 1 had a significant positive association with birds of prey (families Strigiformes, Accipitridae, and

288  Falconidae), although this was limited to diurnal raptors (families Accipitridae and Falconidae), which
289  also had a significant positive association during EP 3. The subgroup Passerines (order Passeriformes)
290 showed a significant negative association, however there was inconsistency amongst subgroups.
291  Subgroupings such as tits (family Paridae), flycatchers & chats (family Muscicapidae), and thrushes
292  (family Turdidae) showed significant negative associations, whereas sparrows (family Passeridae)
293 had a significant positive association with HPAI cases in premises. This later significant positive

294  association is of note, as some sparrows such as House Sparrow Passer domesticus may be regular

295  visitors to poultry farms (Sanchez-Cano et al. 2024), may nest or roost in eaves of barns and other
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farm buildings, and therefore may have elevated potential to act as direct sources of infection.

Furthermore, this significant positive association with sparrows is also observed during EP3.

During EP3, gamebirds (family Phasianidae) gained a significant positive association with HPAI cases
in premises (Fig 3, S3 Table). This effect was strongest amongst non-native gamebirds, which are
bred and released in large numbers during the late-summer and early-autumn period that is
included within EP 3 (Madden 2021, S3 Fig, S4 Table). In native gamebirds, the significant positive
association was primarily driven by Grey Partridge Perdix perdix, which are also bred and released in
some areas as part of species recovery projects, albeit in far smaller numbers (Ewald et al. 2022; S4
Fig). As was the case in EP 1, passerine subgroupings displayed inconsistency; flycatchers & chats had
a significant negative association with cases, whereas other groups such as buntings (family
Emberizidae) and larks, pipits, & wagtails (families Alaudidae and Motacillidae) had a significant

positive association (S3 Fig, S4 Table).

There was no significant association for near-passerines (families Columbidae, Picidae, Psittaculidae,

and Alcedinidae) during any EP, nor were there any significant associations amongst any of the

landbird subgroupings during EP2 (Fig 3, S3 Fig, S3 Table, S4 Table).
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314  Fig 3. Estimated second-order group-level means for linear model coefficients describing effects of
315 weighted relative species abundance on probability of HPAI cases in premises. Estimated means
316  derived from a GLM assessing group effects across epidemic periods (EP1 = 19" October 2021 — 9t
317  February 2022; EP2 = 10" February 2022 — 16" August 2022; EP3 = 17" August 2022 — 20" January
318  2023).

319

320 C. Waterbirds
321 Wildfowl! (order Anseriformes) showed significant positive associations across EP 1 and EP 3 (Fig 3;

322  S3 Table). All subgroupings had positive associations, although not all are significant (S3 Fig; S4
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Table). Dabbling ducks (subfamily Anatinae) were significant in both periods, whereas diving ducks
(subfamily Aythyinae and tribe Mergini) were only significant in EP 3 (S3 Fig; S4 Table). Other
subgroupings were non-significant; however, there were significant positive species-specific
associations in highly abundant, and therefore potentially important, species such as Greylag Goose
Anser anser and Mute Swan Cygnus olor (S4 Fig). Waders (suborders Charadrii and Scolopaci) also
showed significant positive associations in both EP 1 and 3 (Fig 3; S3 Table), driven by subgroups
plovers and sandpipers (families Charadriidae and Scolopacidae) in both periods (S3 Fig; S4 Table).
Across the other subgroups within waterbirds, namely herons & egrets (family Ardeidae) and rails &
grebes (families Rallidae and Podicipedidae), there were no significant associations during any of the

EPs (Fig 3; S3 Fig).

D. Seabirds
Despite having a positive association across all EPs, seabirds were only found to have a significant
association in EP 3. This broad grouping generally had a poorer species coverage in the available
modelled eBird abundance datasets compared to waterbirds and landbirds (S5 Table). Many of the
more substantial sub-groupings, such as Auks (family Alcidae), could not be assessed. Here, seabirds
are predominantly represented by the gulls & terns (family Laridae) subgrouping, which had a
significant positive association with premise cases in EP 3 (Fig 3; S3 Table). This significant
association also remained when this subgrouping was split into gulls (subfamily Larinae) and terns

(subfamily Sterninae) separately (S3 Fig; S4 Table).

The other seabirds grouping was also significantly positive in EP 3 (Fig 3; S3 Table). This grouping only
represents a limited range of seabird species (mainly divers), and the only significant subgrouping
was divers (family Gaviidae) in EP 3 (S3 Fig; S4 Table). Seabird groups such as Auks and species such

as the Northern Gannet Morus bassanus or Great Skua Stercorarius skua, which have been linked to
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348  mass HPAI outbreaks in wild birds in Great Britain (Banyard et al. 2022, Lane et al. 2023), were not
349  represented in the modelled eBird dataset.

350

351 E. Species-specific associations

352 Generally, for species assessed in multiple EP’s, species-specific associations were poorly correlated
353 between subsequent periods (EP1-EP2: cor = -0.075 (95% Cl: -0.264-0.119), df = 102, p = 0.447;
354  EP2-EP3:cor=0.113 (95% Cl: -0.085—0.303), df = 98, p = 0.263; Fig 4A & B), indicating a potential
355  change in viral dynamics and potential host species during the summer period of low HPAIV

356 incidence compared to the winter periods of high incidence. Conversely, species-specific

357 associations were significantly correlated between EPs 1 and 3, which are both characterised by
358 large epidemic peaks (EP1-EP3: cor = 0.691 (95% Cl: 0.581-0.776), df = 112, p < 0.001; Fig 4C).

359
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361  Fig 4. Change in species-specific slope coefficient for the effect of species abundance on case

362  probability in premises across Great Britain. A) Epidemic period (EP) 2 compared to EP1. B) EP3

363  compared to EP2. C) EP3 compared to EP1. Dashed black line has a slope of 1 and indicates the

364 relationship if there was no change between EPs. Solid black line is the actual line of best fit through
365  points based upon a linear model. Error bars around points indicate standard error.

366
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Despite significant positive correlation between species abundance slope coefficients in EP 1 and 3,

there were also distinct outliers where coefficients shifted between EPs. These outliers are of

potential interest, as they may represent changes in typical viral host range. Both landbirds and

seabirds had significant increases in effect sizes in EP3, as did subgroups gulls & terns and passerines.

All other landbird and seabird subgroupings had non-significant increases. Waterbirds, and its

subgroupings, all showed small non-significant decreases (Fig 5, S6 Table).
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Fig 5. Estimated means for change between epidemic periods in the linear model coefficients

describing effects of weighted relative species abundance on probability of HPAI cases in premises.

Estimated means derived from a GLM assessing group effects (separate model for grouping 1 and

grouping 2). Change is calculated as slope coefficient in epidemic period 3 minus slope coefficient in

epidemic period 1. Bold text and thicker error bars indicate models under the coarsest species

grouping (Grouping 1).
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Due to the potential for type 1 errors (i.e., false positives) with multiple testing across many
independent models, single-species relationships may risk overinterpretation of model results, as
some significant positive spatial associations may arise by chance alone. Without correcting for
multiple testing, significant positive associations were found in 41 (32.3%), 8 (6.2%), and 59 (45.7%)
species across the three EPs, respectively (54 Fig). To account for this, p-values (and therefore
significance) can be adjusted. After applying the false discovery rate method (FDR) to account for the
expected proportion of false discoveries amongst the rejected hypotheses (Benjamini & Hochberg
1995), significant positive associations were found in 37 (29.1%), 1 (0.8%), and 54 (41.9%) species
across the three EPs, respectively (S4 Fig). However, the alternative and more conservative Holm-
Bonferoni (Holm 1979) adjustment method left only 22 (17.3%), 1 (0.8%), and 27 (20.9%) species

significant across the three periods, respectively (54 Fig).

Significant negative associations were also found in 25 (19.7%), 5 (3.9%), and 21 (16.3%) species
across the three EPs, respectively (S5 Fig; FDR: 23 (18.1%), 0 (0%), 20 (15.5%); Holm-Bonferoni: 10
(7.9%), 0 (0%), 16 (12.4%)). Negative associations were, however, generally of lower magnitude and
were also relatively uncommon in EP1 and EP3, where we had greater statistical power due to larger

numbers of HPAI cases.

F. Associations with wild-bird HPAI cases
Our methods do not require data on HPAIV detections in wild birds. To explore whether premise
infections can be predicted by use of wild bird abundance data alone as effectively as or more
effectively as when using data on confirmed cases in wild birds, we tested whether PCR-diagnosed
AlV-positive wild bird cases were associated with infected premises. The number of HPAI confirmed
cases in wild birds fell across the EPs, with 425, 163, and 96 cases reported, respectively (Empres-I
database; S6 Fig); however, this was likely a substantial under-representation of actual wild bird

HPAI-mortality rates across these periods. Wild bird cases were positively associated with infected
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premises across all EPs, but the association was only significant within EPs 1 and 2 (EP 1 (winter
2021/22): Estimate = 0.050 + 0.019SE, p = 0.009; EP 2 (spring/summer 2022): Estimate = 0.641 +

0.112SE, p < 0.001; EP 3 (autumn/winter 2022/23): Estimate = 0.051 + 0.123SE, p = 0.679; S4 Fig).

G. Model performance
The species-specific models fitted to EPs 1 and 3 generally performed better than models fitted to EP
2, with a broadly similar median deviance explained across the species assessed in these periods
(EP1=0.341 £ 0.002SE, n = 127; EP2 = 0.242 + 0.002SE, n = 130; EP3 = 0.373 + 0.002SE, n = 129; S7
Fig). The poorer model performance in EP 2 is likely driven by the comparatively low number of
cases of infected premises (n = 40; S6 Fig), combined with the occurrence of a weaker spatial
clustering of cases. Furthermore, this poor model performance is also likely to be a major
contributing factor to the greater dissimilarity between species-specific associations during EP2

across closely related species.
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4. Discussion

Gaining an understanding of which wild species may be key reservoirs of infection or bridging
species can be extremely challenging, particularly in dynamic, multi-host systems. Our study
demonstrates how publicly available citizen science outputs of wild species abundance can be a
powerful tool for exploring associations between wild host abundance and disease cases in
domesticated species, without relying upon targeted surveillance across potential wild host
populations. Specifically, we assessed which avian abundance distributions from eBird best
explained cases of HPAIl in premises across Great Britain. Across three distinct epidemic periods
between October 2021 and January 2023, 103 species had a significant association in at least one
period, and several groups of ecologically similar species were also found to be significant. There
was broad consistency between epidemic wave periods (EPs 1 and 3), with groups such as wildfow/
having consistent significant group-level positive associations with infected premises, alongside
some inter-epidemic changes at both the group and species-specific level. In contrast, during the
summer period where infected premises were uncommon, our models performed comparatively
poorly, failed to find consistent effects across similar species, and wild bird abundance distributions

had a less clear association with HPAI occurrence in premises.

Significant positive associations were comparatively much more frequent than negative associations,
and consistency between effect sizes of associations across similar species that share morphological
and behavioural traits (i.e., group-level effects explored here) helps support a potential causative
relationship in these cases. Importantly, despite our method not relying on wild bird HPAIV
surveillance or any prior assumptions for susceptibility, many of the associations we have
demonstrated are commensurate with our existing understanding of which avian species play a
greater role in the dissemination of HPAIVs. Although more than 220 wild bird species have tested
positive for HPAIV globally since 2020 (Empres-i, 2023), the primary wild bird species typically
associated with maintenance and spread belong to the orders Anseriformes (i.e., wildfowl — ducks,
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geese, swans) and Charadriiformes (i.e., waders, gulls, terns), with other less commonly implicated
orders usually also associated with aquatic habitats such as Gaviiformes (Divers) and Gruiformes
(i.e., Rails & Grebes) (Poulson and Brown 2020). However, large-scale, systematic studies of HPAIV
are largely lacking in other Orders, despite the limited studies that have been undertaken finding
widespread prevalence (albeit often at low levels) (Wille et al. 2023). In this study, waterbirds were
consistently found as significant predictors in both epidemic waves (EPs 1 and 3) with little change in

effect sizes.

We also found that the group seabirds showed significant increases in effect sizes during EP3. This
matches a widely noted step-change in host-range during the summer of 2022 across Europe, where
major HPAI outbreaks were recorded in many seabird species at a scale previously not seen
(Caliendo 2023, EFSA 2023B, Pearce-Higgins et al. 2023). Our results for seabirds are however largely
driven by gulls & terns that have more extensive terrestrial distributions than many other seabird
species and can often be found terrestrially in the UK year-round. Many other species of seabirds
across the wider group may therefore be unlikely to have such correlation with outbreaks in captive
avian premises. One subgroup we were able to assess and did find significant associations with was
divers, which was unexpected due to their relatively sparse and coastal distribution in much of the
UK and life history that would mean direct contact with captive avian premises being unlikely.
However, divers have been shown to have seroprevalence for AlV in other regions, albeit at low
levels (Ucher-Koch et al. 2019). They may therefore play a small role in some regions across the
coarse spatial scale we assess, with other bridging species driving incursions. Subgroups such as gulls
are likely to interact with other seabirds, such as Northern Gannets or divers, through the breeding
season and may therefore play a key role as a bridge species between HPAI outbreaks in isolated

seabird colonies and terrestrial bird populations.
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Many of the most conspicuous mass-mortality events within seabirds occurred within species that
we could not assess here due to their omission from the eBird modelled species abundance and
distribution dataset. This included species such as Northern Gannet and Great Skua where significant
proportions of breeding populations were lost (Banyard et al. 2022, Lane et al. 2023). However,
these species tend to be present in the UK only in the breeding season and are highly restricted to
small islands and coastal edge when not at sea. They are therefore unlikely to have abundance

distributions that correlate with HPAIV outbreaks in premises.

We also found significant group-level associations of HPAI cases with abundance of some passerine
groupings, such as sparrows during EPs 1 and 3. While there is little existing evidence of passerines
having a major role as a maintenance reservoir host or bridge species for facilitating premise
incursions, this finding may reflect the importance of passerines as an under-studied host species.
Furthermore, while passerines tend to show low test positivity rates for HPAI infection (Wade et al.
2023, EFSA 2022) and may therefore have limited capacity as biological sources of virus (i.e., virus
replicates inside the wild host), they may also play a role as mechanical transporters via fomite (e.g.,
virus carried externally on feet or feathers). External swabbing of small passerines in the United
States during previous outbreaks found no support for mechanical transport potential via fomites
(Houston et al. 2017). However, small sample sizes together with large populations typical of small
passerines lead to low confidence in prevalence. If passerines are acting as sources of transmission
(mechanical or biological), many species are small and can be difficult to exclude from poultry
premises or adjacent habitats via biosecurity measures unless bird exclusion measures are of high
standard and well-maintained, and therefore may pose a significant ongoing risk of incursion.
Traditional surveillance programs may also be likely to miss mechanical transmission of virus in these

species, as testing is often targeted towards detection of active or past infection.
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496 Of particular note was the association of HPAI infected premises with free-living non-native

497  gamebirds during EP 3. Although exact numbers are undefined, tens of millions of non-native

498  gamebirds are reared and released in the United Kingdom each year to bolster feral breeding

499  populations (breeding pop. est. ~4.4 million; Blackburn and Gaston 2018) for the purpose of

500 gamebird shooting (Madden 2021). Both Common Pheasant Phasianus colchicus and Red-legged
501 Partridge Alectoris rufa, the two non-native gamebirds released in highest numbers annually, had
502 species-specific positive associations during EP 3. EBird-modelled population abundances for non-
503 native gamebirds are not a direct measure of gamebird release locations. However, it is expected
504  that there would be a high degree of correlation between the two as released birds typically only
505 disperse a short distance from release sites and have low survival rates following release. For

506 instance, typically 90-95% of released pheasants and partridges remain within ~1 km of release sites
507 and only ~15% of releases survive to the end of the shooting season (Madden et al. 2018). Significant
508 numbers of Mallard Anas platyrhynchos are also released for shooting within this period (estimated
509  ~2.6 million per year compared to ~31.5 and ~9.1 million Common Pheasant and Red-legged

510 Partridge, respectively; Madden 2021). However, while Mallard also had a significant positive

511  association during EP 3, it was not possible to consider truly wild and released birds separately.

512

513  The role of reared and released birds in HPAI is controversial; in 2022 the Royal Society for the

514  Protection of Birds (RSPB) called for a moratorium on gamebird releases as a precautionary measure
515  toreduce the spread of HPAI in wild birds, an approach dismissed by the British Association for

516  Shooting and Conservation (BASC) citing a lack of supporting evidence (Gray and Loeb 2022). Despite
517  cases of HPAI within gamebird hatcheries and rearing premises (Fujiwara et al. 2022; DEFRA 2023A),
518 there remains a lack of conclusive evidence for the role of released gamebirds in the spread of virus
519  to poultry or wild birds. The likelihood of incursions into the gamebird sector was considered low
520 based on egg and chick movements (Fujiwara et al. 2022) but higher during “catching-up” (when

521 surviving released gamebirds may be re-caught after cessation of the shooting period; DEFRA
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2023B). However, the risk of HPAI spread from free-roaming gamebirds to wild birds post-release
was deemed high and has potential to contribute to viral maintenance in other wild bird
populations, ultimately leading to increased infection pressure (DEFRA 2022). Furthermore,
experimental in vivo inoculation with clade 2.3.4.4b H5N6 has shown that Common Pheasant is
capable of both acquiring HPAIV and subsequently transmitting to poultry (Liang et al. 2022). Similar
outcomes were seen following experimental infection of pheasants with clade 2.3.4.4b H5N1 and
H5N8 viruses, with pheasants being more susceptible to infection than red legged partridges
(Seekings et al., 2023). The significant positive associations with non-native gamebirds that we
identify here strongly suggest that increasing surveillance of this group is necessary to more robustly
assess whether non-native gamebirds are a key source of HPAI spillover onto captive avian premises,

particularly following release.

Spatial associations between wild bird abundance and HPAI cases in premises provide tentative
evidence of which species may be driving viral incursions (either directly onto premises or indirectly
by acting as local amplifiers), with a higher species abundance increasing the likelihood of cases in
that area. However, purely associative relationships such as these cannot be used as unequivocal
evidence of causation. Associations may arise from chance alone, or due to co-linear effects rather
than a causal link. Indeed, this is likely to be the driver for the few negative associations found in this
study, as there is no clear causative hypothesis for higher abundance of a wild bird species driving
lower HPAI incidence in premises. It is perhaps more likely for many species with negative
associations that their abundance is either negatively correlated with species that are drivers of HPAI

incursions or they arose by random chance.

Despite these limitations, our approach benefits from the ability for rapid deployment without the
requirement for extensive prior surveillance of disease in all potential host species, which is often

financially and logistically prohibitive. Even in developed countries such as Great Britain, logistical
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constraints such as the reporting, triage, collection, and transport of carcasses, as well as legal
restrictions on sample handling, can limit testing capacity. Notably, we saw a marked decline in
positive HPAI tests in wild birds across our three EPs despite an increase in premise cases (S6 Fig).
Indeed, insufficient positive wild bird cases may be the cause for the lack of predictive power

observed in EP 3, where wild bird HPAI cases did not significantly predict premise cases.

Our research shows that the use of publicly available wild bird abundance and distribution data can
complement surveillance in wild birds to help identify species that should be prioritised for testing in
close to real time. This could help to target limited surveillance resources and to monitor potential
changes in infected wild species even in the absence of high mortality. Rapid deployment may also
aid in risk mitigation for incursions onto premises, by enabling improved biosecurity measures to be
put in place with minimal delay that are better tailored towards higher-risk species. The use of eBird
data is particularly valuable because predictions are made at the global scale, at relatively high
resolution, and are free to access for over 2000 species (Strimas-Mackey et al. 2022). However,
continued efforts may be needed to improve capacity building in regions where the requisite citizen

science data may be lacking, and species abundance distributions cannot be accurately modelled.

Despite our analyses largely relying on publicly available data, we controlled for avian livestock and
farm density using poultry distribution datasets that are not publicly available in Great Britain.
Controlling for avian livestock density may be somewhat achievable globally with The Gridded
Livestock of the World 3 (Gilbert et al. 2018; ~10km? resolution), but farm density data may only be
available for some countries. In our analyses, we used The Great British Poultry Register (GBPR), as it
enabled poultry stock and farm density to be calculated at much finer spatial resolutions, yet it is not
publicly available due to data protection constraints and is only compulsory for sites with >50 birds.
We also lack sufficient data on how biosecurity (in terms of preventing wild bird incursion) may vary

across premises, either by type or size, and whether there are significant spatial patterns in this
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across Great Britain. Improved understanding of these potential biases would enable more accurate

spatial associations between wild bird abundance and HPAI case risk in premises.

5. Conclusions

Publicly available wild bird abundance and distribution predictions developed using citizen science
bird-counting initiatives, such as those offered by eBird, can be a powerful tool in helping to identify
potential drivers of wild-bird mediated HPAIV incursions into premises. Higher abundance in avian
groups such as wildfowl (ducks, geese, etc.) was found to be consistently associated with a higher
incidence of HPAI cases in premises between epidemic waves. Some avian species groups became
more important in the most recent epidemic wave, perhaps linked to a change in viral host range, or
species-specific drivers such as non-native gamebirds only being associated with HPAI in premises
during epidemic waves coinciding with mass-release. These associations may help guide future
targeted mass-surveillance and aid understanding of the changing host-range of HPAIV as it

continues to adapt and spread in wild bird populations.
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Supplementary Material

Utilising citizen science data to rapidly assess potential wild bridging hosts and

reservoirs of infection: avian influenza outbreaks in Great Britain.

S1 Table. Species groupings

Common name Scientific name Grouping 1 Grouping 2 Grouping 3
Barn Owl Tyto alba Landbird Birds of prey Owls

Little Owl Athene noctua Landbird Birds of prey Owls
Long-eared Owl Asio otus Landbird Birds of prey Owls

Tawny Owl Strix aluco Landbird Birds of prey Owls

Common Buzzard Buteo buteo Landbird Birds of prey Diurnal raptors
Eurasian Kestrel Falco tinnunculus Landbird Birds of prey Diurnal raptors
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Eurasian Marsh-Harrier
Eurasian Sparrowhawk
Golden Eagle

Hen Harrier

Merlin

Northern Goshawk
Osprey

Peregrine Falcon

Red Kite

Gray Partridge

Rock Ptarmigan
Red-legged Partridge
Ring-necked/Green Pheasant
Eurasian Green Woodpecker
Great Spotted Woodpecker
Rose-ringed Parakeet
Common Wood-Pigeon
Eurasian Collared-Dove
European Turtle-Dove
Rock Pigeon

Stock Dove

Snow Bunting
Yellowhammer

Carrion Crow

Eurasian Jay

Eurasian Magpie
Hooded Crow
Red-billed Chough
Rook

Common Chaffinch
Common Redpoll
Eurasian Bullfinch
Eurasian Linnet
Eurasian Siskin

European Goldfinch
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Circus aeruginosus
Accipiter nisus
Aquila chrysaetos
Circus cyaneus
Falco columbarius
Accipiter gentilis
Pandion haliaetus
Falco peregrinus
Milvus milvus
Perdix perdix
Lagopus muta
Alectoris rufa
Phasianus colchicus
Picus viridis
Dendrocopos major
Psittacula krameri
Columba palumbus
Streptopelia decaocto
Streptopelia turtur
Columbia livia
Columba oenas
Plectrophenax nivalis
Emberiza citrinella
Corvus corone
Garrulus glandarius
Pica pica

Corvus cornix
Pyrrhocorax pyrrhocorax
Corvus frugilegus
Fringilla coelebs
Acanthis flammea
Pyrrhula pyrrhula
Linaria cannabina
Spinus spinus

Carduelis carduelis
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Diurnal raptors
Diurnal raptors
Diurnal raptors
Diurnal raptors
Diurnal raptors
Diurnal raptors
Diurnal raptors
Diurnal raptors

Native gamebirds
Native gamebirds
Non-native gamebirds
Non-native gamebirds
Other near-passerines
Other near-passerines
Other near-passerines
Pigeons & Doves
Pigeons & Doves
Pigeons & Doves
Pigeons & Doves
Pigeons & Doves
Buntings

Buntings

Corvids

Corvids

Corvids

Corvids

Corvids

Corvids

Finches

Finches

Finches

Finches

Finches

Finches

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.28.587127; this version posted March 30, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

33


https://doi.org/10.1101/2024.03.28.587127
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.28.587127; this version posted March 30, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

European Greenfinch Chloris chloris Landbird Passerines Finches

Hawfinch Coccothraustes coccothraustes Landbird Passerines Finches

Lesser Redpoll Acanthis cabaret Landbird Passerines Finches

Red Crossbill Loxia curvirostra Landbird Passerines Finches

Black Redstart Phoenicurus ochruros Landbird Passerines Flycatchers & Chats
European Robin Erithacus rubecula Landbird Passerines Flycatchers & Chats
European Stonechat Saxicola rubicola Landbird Passerines Flycatchers & Chats
Spotted Flycatcher Muscicapa striata Landbird Passerines Flycatchers & Chats
Bank Swallow Riparia riparia Landbird Passerines Hirundines

Barn Swallow Hirundo rustica Landbird Passerines Hirundines

Common House-Martin Delichon urbicum Landbird Passerines Hirundines

Eurasian Skylark Alauda arvensis Landbird Passerines Larks, Pipits & Wagtails
Gray Wagtail Motacilla cinerea Landbird Passerines Larks, Pipits & Wagtails
Meadow Pipit Anthus pratensis Landbird Passerines Larks, Pipits & Wagtails
Rock Pipit Anthus petrosus Landbird Passerines Larks, Pipits & Wagtails
Western Yellow Wagtail Motacilla flava Landbird Passerines Larks, Pipits & Wagtails
Wood Lark Lullula arborea Landbird Passerines Larks, Pipits & Wagtails
Common Firecrest Regulus ignicapilla Landbird Passerines Other passerines
Dunnock Prunella modularis Landbird Passerines Other passerines
Eurasian Nuthatch Sitta europaea Landbird Passerines Other passerines
Eurasian Wren Troglodytes troglodytes Landbird Passerines Other passerines
European Starling Sturnus vulgaris Landbird Passerines Other passerines
White-throated Dipper Cinclus cinclus Landbird Passerines Other passerines
Eurasian Tree Sparrow Passer montanus Landbird Passerines Sparrows

House Sparrow Passer domesticus Landbird Passerines Sparrows

Eurasian Blackbird Turdus merula Landbird Passerines Thrushes

Fieldfare Turdus pilaris Landbird Passerines Thrushes

Mistle Thrush Turdus viscivorus Landbird Passerines Thrushes

Redwing Turdus iliacus Landbird Passerines Thrushes

Song Thrush Turdus philomelos Landbird Passerines Thrushes

Coal Tit Periparus ater Landbird Passerines Tits

Eurasian Blue Tit Cyanistes caeruleus Landbird Passerines Tits

Great Tit Parus major Landbird Passerines Tits

Marsh Tit Poecile palustris Landbird Passerines Tits

Cetti's Warbler Cettia cetti Landbird Passerines Warblers
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Common Chiffchaff
Common Reed Warbler
Eurasian Blackcap
Greater Whitethroat
Lesser Whitethroat
Willow Warbler
Black-headed Gull
Glaucous Gull

Great Black-backed Gull
Herring Gull

Lesser Black-backed Gull
Little Gull
Mediterranean Gull
Yellow-legged Gull
Common Tern

Little Tern

Sandwich Tern

Arctic Loon

Common Loon
Red-throated Loon
Great Cormorant
Cattle Egret

Eurasian Spoonbill
Gray Heron

Great Egret

Common Kingfisher
Eurasian Coot

Eurasian Moorhen
Great Crested Grebe
Horned Grebe

Water Rail

Eurasian Oystercatcher
Black-bellied Plover
Common Ringed Plover

European Golden-Plover
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Phylloscopus collybita
Acrocephalus scirpaceus
Sylvia atricapilla
Curruca communis
Curruca curruca
Phylloscopus trochilus
Chroicocephalus ridibundus
Larus hyperboreus
Larus marinus

Larus argentatus

Larus fuscus
Hydrocoloeus minutus
Ichthyaetus melanocephalus
Larus michahellis
Sterna hirundo
Sternula albifrons
Thalasseus sandvicensis
Gavia arctica

Gavia immer

Gavia stellata
Phalacrocorax carbo
Bubulcus ibis

Platalea leucorodia
Ardea cinerea

Ardea alba

Alcedo atthis

Fulica atra

Gallinula chloropus
Podiceps cristatus
Podiceps auritus

Rallus aquaticus
Haematopus ostralegus
Pluvialis squatarola
Charadrius hiaticula

Pluvialis apricaria

Landbird

Landbird

Landbird

Landbird

Landbird

Landbird

Seabird

Seabird

Seabird

Seabird

Seabird

Seabird

Seabird

Seabird

Seabird

Seabird
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Waterbird

Waterbird
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Gulls
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Sulids & Cormorants
Herons & Egrets
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Plovers
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Little Ringed Plover Charadrius dubius Waterbird Waders Plovers
Northern Lapwing Vanellus vanellus Waterbird Waders Plovers
Bar-tailed Godwit Limosa lapponica Waterbird Waders Sandpipers
Black-tailed Godwit Limosa limosa Waterbird Waders Sandpipers
Common Greenshank Tringa nebularia Waterbird Waders Sandpipers
Common Redshank Tringa totanus Waterbird Waders Sandpipers
Common Sandpiper Actitis hypoleucos Waterbird Waders Sandpipers
Dunlin Calidris alpina Waterbird Waders Sandpipers
Eurasian Curlew Numenius arquata Waterbird Waders Sandpipers
Eurasian Woodcock Scolopax rusticola Waterbird Waders Sandpipers
Green Sandpiper Tringa ochropus Waterbird Waders Sandpipers
Purple Sandpiper Calidris maritima Waterbird Waders Sandpipers
Red Knot Calidris canutus Waterbird Waders Sandpipers
Ruddy Turnstone Arenaria interpres Waterbird Waders Sandpipers
Ruff Calidris pugnax Waterbird Waders Sandpipers
Sanderling Calidris alba Waterbird Waders Sandpipers
Whimbrel Numenius phaeopus Waterbird Waders Sandpipers
Common Shelduck Tadorna tadorna Waterbird Wildfowl Dabbling duck
Eurasian Wigeon Mareca penelope Waterbird Wildfowl Dabbling duck
Gadwall Mareca strepera Waterbird Wildfowl Dabbling duck
Green-winged Teal Anas crecca Waterbird Wildfowl Dabbling duck
Mallard Anas platyrhynchos Waterbird Wildfowl Dabbling duck
Northern Pintail Anas acuta Waterbird Wildfowl Dabbling duck
Northern Shoveler Spatula clypeata Waterbird Wildfowl Dabbling duck
Common Eider Somateria mollissima Waterbird Wildfowl Diving duck
Common Goldeneye Bucephala clangula Waterbird Wildfowl Diving duck
Greater Scaup Aythya marila Waterbird Wildfowl Diving duck
Long-tailed Duck Clangula hyemalis Waterbird Wildfowl Diving duck
Tufted Duck Aythya fuligula Waterbird Wildfowl Diving duck
Velvet Scoter Melanitta fusca Waterbird Wildfowl Diving duck
Barnacle Goose Branta leucopsis Waterbird Wildfowl Geese

Brant Branta bernicla Waterbird Wildfowl Geese
Canada Goose Branta canadensis Waterbird Wildfowl Geese
Egyptian Goose Alopochen aegyptiaca Waterbird Wildfowl Geese
Graylag Goose Anser anser Waterbird Wildfowl Geese
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Greater White-fronted Goose
Pink-footed Goose

Common Merganser
Red-breasted Merganser
Mute Swan

Tundra Swan
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Anser albifrons

Anser brachyrhynchus
Mergus merganser
Mergus serrator
Cygnus olor

Cygnus columbianus

Waterbird

Waterbird

Waterbird

Waterbird

Waterbird

Waterbird

Wildfowl

Wildfowl

Wildfowl

Wildfowl

Wildfowl

Wildfowl

Geese

Geese

Sawbills

Sawbills

Swans

Swans

S2 Table. Linear model estimated mean slope coefficients across species groupings and epidemic

periods. SE = standard error, df = degrees of freedom.

Epidemic period  Grouping  Estimated mean  SE df tratio  pvalue
Epidemic period 1 Landbird -0.046 0.036 374 -1.286 0.199
Epidemic period 2 Landbird -0.064 0.052 374 -1.235 0.218
Epidemic period 3 Landbird 0.043 0.023 374 1.886 0.060
Epidemic period 1 Seabird 0.166 0.087 374 1.907 0.057
Epidemic period 2 Seabird 0.160 0.122 374 1.307 0.192
Epidemic period 3 Seabird 0.270 0.059 374 4.541 <0.001
Epidemic period 1 Waterbird 0.259 0.029 374 8.833 <0.001
Epidemic period 2 Waterbird -0.070 0.065 374 -1.080 0.281
Epidemic period 3 Waterbird 0.168 0.023 374 7.330 <0.001

S3 Table. Linear model estimated mean slope coefficients across species groupings and epidemic

periods. SE = standard error, df = degrees of freedom.

Epidemic period  Grouping Estimated mean  SE df tratio pvalue
Epidemic period 1 Birds of prey 0.183 0.072 353 2.545 0.011
Epidemic period 2 Birds of prey -0.148 0.13 353 -1.141 0.255
Epidemic period 3 Birds of prey 0.050 0.051 353 0.972 0.332
Epidemic period 1 Gamebirds 0.051 0.123 353 0.417 0.677
Epidemic period 2 Gamebirds -0.151 0.182 353 -0.829 0.408
Epidemic period 3 Gamebirds 0.315 0.084 353 3.772 <0.001
Epidemic period 1 Gulls & Terns 0.117 0.11 353 1.071 0.285
Epidemic period 2 Gulls & Terns 0.116 0.134 353 0.868 0.386
Epidemic period 3 Gulls & Terns 0.239 0.064 353 3.752 <0.001
Epidemic period 1 Herons & Egrets 0.061 0.116 353 0.526 0.599
Epidemic period 2 Herons & Egrets -0.079 0.215 353 -0.369 0.712
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Epidemic period 3 Herons & Egrets 0.090 0.086 353 1.037 0.300
Epidemic period 1 Near-passerines -0.200 0.109 353 -1.84 0.067
Epidemic period 2 Near-passerines 0.043 0.127 353 0.341 0.734
Epidemic period 3 Near-passerines 0.011 0.073 353 0.158 0.875
Epidemic period 1 Other seabirds 0.240 0.135 353 1.773 0.077
Epidemic period 2 Other seabirds 0.342 0.271 353 1.260 0.209
Epidemic period 3 Other seabirds 0.419 0.141 353 2.963 0.003
Epidemic period 1 Passerines -0.124 0.046 353 -2.69 0.007
Epidemic period 2 Passerines -0.061 0.064 353 -0.95 0.343
Epidemic period 3 Passerines 0.020 0.027 353 0.757 0.449
Epidemic period 1 Rails & Grebes 0.203 0.115 353 1.764 0.079
Epidemic period 2 Rails & Grebes -0.073 0.199 353 -0.366 0.714
Epidemic period 3 Rails & Grebes 0.164 0.088 353 1.854 0.065
Epidemic period 1 Waders 0.254 0.045 353 5.654 <0.001
Epidemic period 2 Waders -0.190 0.137 353 -1.390 0.165
Epidemic period 3 Waders 0.166 0.036 353 4.584 <0.001
Epidemic period 1 Wildfowl 0.304 0.043 353 7.144 <0.001
Epidemic period 2 Wildfowl -0.021 0.084 353 -0.254 0.800
Epidemic period 3 Wildfowl 0.181 0.033 353 5.489 <0.001

789

790  S4 Table. Linear model estimated mean slope coefficients across species groupings and epidemic

791  periods. SE = standard error, df = degrees of freedom.

Epidemic period Grouping Estimated mean SE df t ratio p value
Epidemic period 1 Buntings 0.219 0.125 293 1.754 0.080
Epidemic period 2 Buntings -0.088 0.356 293 -0.248 0.804
Epidemic period 3 Buntings 0.329 0.154 293 2.141 0.033
Epidemic period 1 Corvids -0.249 0.143 293 -1.737 0.083
Epidemic period 2 Corvids 0.139 0.158 293 0.877 0.381
Epidemic period 3 Corvids 0.062 0.085 293 0.732 0.465
Epidemic period 1 Dabbling duck 0.360 0.059 293 6.098 <0.001
Epidemic period 2 Dabbling duck -0.268 0.147 293 -1.828 0.069
Epidemic period 3 Dabbling duck 0.216 0.043 293 4.969 <0.001
Epidemic period 1 Divers 0.301 0.187 293 1.608 0.109
Epidemic period 2 Divers 0.342 0.256 293 1.333 0.184
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Divers

Diving duck

Diving duck

Diving duck

Finches

Finches

Finches

Flycatchers & Chats
Flycatchers & Chats
Flycatchers & Chats
Geese

Geese

Geese

Gulls

Gulls

Gulls

Herons & Egrets
Herons & Egrets
Herons & Egrets
Hirundines
Hirundines
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Larks, Pipits, & Wagtails
Larks, Pipits, & Wagtails
Larks, Pipits, & Wagtails
Native gamebirds
Native gamebirds
Native gamebirds
Non-native gamebirds
Non-native gamebirds
Non-native gamebirds
Other near-passerines
Other near-passerines
Other near-passerines

Other passerines
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Epidemic period 1 Terns -0.072 0.290 293 -0.247 0.805
Epidemic period 2 Terns -0.091 0.413 293 -0.220 0.826
Epidemic period 3 Terns 0.285 0.126 293 2.266 0.024
Epidemic period 1 Thrushes -0.414 0.182 293 -2.271 0.024
Epidemic period 2 Thrushes -0.297 0.213 293 -1.392 0.165
Epidemic period 3 Thrushes -0.213 0.192 293 -1.106 0.270
Epidemic period 1 Tits -0.502 0.159 293 -3.160 0.002
Epidemic period 2 Tits -0.071 0.188 293 -0.380 0.705
Epidemic period 3 Tits -0.141 0.081 293 -1.735 0.084
Epidemic period 1 Warblers -0.035 0.188 293 -0.185 0.853
Epidemic period 2 Warblers -0.115 0.202 293 -0.568 0.570
Epidemic period 3 Warblers 0.026 0.074 293 0.344 0.731

792
793 S5 Table. Counts of species within each of our grouping variables and the number of those in which
794  we were able to model associations with HPAI cases in premises. Total counts are based upon the

795 BOU British List excluding vagrants.

Group Total species in Britain Modelled species Proportion Grouping
Accipitriformes 12 8 0.667 Order
Anseriformes 33 24 0.727 Order
Apodiformes 1 0 0 Order
Caprimulgiformes 1 0 0 Order
Charadriiformes 59 32 0.542 Order
Ciconiiformes 1 0 0 Order
Columbiformes 5 5 1 Order
Coraciiformes 1 1 1 Order
Cuculiformes 1 0 0 Order
Falconiformes 4 3 0.750 Order
Galliformes 8 4 0.500 Order
Gaviiformes 3 3 1 Order
Gruiformes 6 3 0.500 Order
Passeriformes 87 55 0.632 Order
Pelecaniformes 6 4 0.667 Order
Piciformes 3 2 0.667 Order
Podicipediformes 5 2 0.400 Order
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Procellariiformes 6 0 0 Order
Psittaciformes 1 1 1 Order
Strigiformes 6 4 0.667 Order
Suliformes 3 1 0.333 Order
Accipitridae 11 7 0.636 Family
Acrocephalidae 2 1 0.500 Family
Aegithalidae 1 0 0 Family
Alaudidae 3 2 0.667 Family
Alcedinidae 1 1 1 Family
Alcidae 5 0 0 Family
Anatidae 33 24 0.727 Family
Apodidae 1 0 0 Family
Ardeidae 5 3 0.600 Family
Bombycillidae 1 0 0 Family
Burhinidae 1 0 0 Family
Calcariidae 2 1 0.500 Family
Caprimulgidae 1 0 0 Family
Certhiidae 1 0 0 Family
Cettiidae 1 1 1 Family
Charadriidae 6 5 0.833 Family
Ciconiidae 1 0 0 Family
Cinclidae 1 1 1 Family
Columbidae 5 5 1 Family
Corvidae 8 6 0.750 Family
Cuculidae 1 0 0 Family
Emberizidae 4 1 0.250 Family
Falconidae 4 3 0.750 Family
Fringillidae 14 10 0.714 Family
Gaviidae 3 3 1 Family
Gruidae 1 0 0 Family
Haematopodidae 1 1 1 Family
Hirundinidae 3 3 1 Family
Hydrobatidae 2 0 0 Family
Laridae 17 11 0.647 Family
Locustellidae 1 0 0 Family
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Motacillidae 7 4 0.571 Family
Muscicapidae 9 4 0.444 Family
Pandionidae 1 1 1 Family
Panuridae 1 0 0 Family
Paridae 6 4 0.667 Family
Passeridae 2 2 1 Family
Phalacrocoracidae 2 1 0.500 Family
Phasianidae 8 4 0.500 Family
Phylloscopus 3 2 0.667 Family
Picidae 3 2 0.667 Family
Podicipedidae 5 2 0.400 Family
Procellariidae 4 0 0 Family
Prunellidae 1 1 1 Family
Psittaculidae 1 1 1 Family
Rallidae 5 3 0.600 Family
Recurvirostridae 1 0 0 Family
Regulidae 2 1 0.500 Family
Scolopacidae 24 15 0.625 Family
Sittidae 1 1 1 Family
Stercorariidae 4 0 0 Family
Strigidae 5 3 0.600 Family
Sturnidae 1 1 1 Family
Sulidae 1 0 0 Family
Sylviidae 5 3 0.600 Family
Threskiornithidae 1 1 1 Family
Troglodytidae 1 1 1 Family
Turdidae 6 5 0.833 Family
Tytonidae 1 1 1 Family
Landbird 129 82 0.636 Grouping 1
Seabird 38 15 0.395 Grouping 1
Waterbird 85 55 0.647 Grouping 1
BOP 22 15 0.682 Grouping 2
Gamebirds 8 4 0.500 Grouping 2
Gulls & Terns 17 11 0.647 Grouping 2
Herons & Egrets 8 4 0.500 Grouping 2
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Near-passerines 13 9 0.692 Grouping 2
Other seabirds 21 4 0.19 Grouping 2
Passerines 87 55 0.632 Grouping 2
Rails & Grebes 10 5 0.500 Grouping 2
Waders 33 21 0.636 Grouping 2
Wildfowl 33 24 0.727 Grouping 2
Auks 5 0 0 Grouping 3
Buntings 6 2 0.333 Grouping 3
Corvids 8 6 0.750 Grouping 3
Dabbling duck 9 7 0.778 Grouping 3
Divers 3 3 1 Grouping 3
Diving duck 9 6 0.667 Grouping 3
Finches 14 10 0.714 Grouping 3
Flycatchers & Chats 9 4 0.444 Grouping 3
Geese 9 7 0.778 Grouping 3
Gulls 11 8 0.727 Grouping 3
Herons & Egrets 8 4 0.500 Grouping 3
Hirundines 3 3 1 Grouping 3
Larks, Pipits, & Wagtails 10 6 0.600 Grouping 3
Native gamebirds 6 2 0.333 Grouping 3
Non-native gamebirds 2 2 1 Grouping 3
Other near-passerines 8 4 0.500 Grouping 3
Other passerines 10 6 0.600 Grouping 3
Other waders 3 1 0.333 Grouping 3
Owls 6 4 0.667 Grouping 3
Pigeons & Doves 5 5 1 Grouping 3
Plovers 6 5 0.833 Grouping 3
Rails & Grebes 10 5 0.500 Grouping 3
Diurnal raptors 16 11 0.688 Grouping 3
Sandpipers 24 15 0.625 Grouping 3
Sawbills 3 2 0.667 Grouping 3
Skuas 4 0 0 Grouping 3
Sparrows 2 2 1 Grouping 3
Sulids & cormorants 3 1 0.333 Grouping 3
Swans 3 2 0.667 Grouping 3
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Terns 6 3 0.500 Grouping 3
Thrushes 6 5 0.833 Grouping 3
Tits 7 4 0.571 Grouping 3
Tubenoses 6 0 0 Grouping 3
Warblers 12 7 0.583 Grouping 3

796

797  S6 Table. Linear model estimated mean change in species abundance slope coefficients between

798 epidemic period 3 and epidemic period 1, across species groupings. SE = standard error, df = degrees

799 of freedom.

Grouping Estimated mean  SE df tratio pvalue Model

Landbird 0.187 0.038 110 4.959 <0.001 Grouping 1
Seabird 0.259 0.093 110 2.788 0.006 Grouping 1
Waterbird -0.052 0.045 110 -1.142 0.256 Grouping 1
BOP 0.039 0.086 103 0.455 0.650 Grouping 2
Gamebirds 0.269 0.172 103 1.566 0.120 Grouping 2
Gulls & Terns 0.242 0.105 103 2.304 0.023 Grouping 2
Herons & Egrets 0.031 0.172 103 0.183 0.855 Grouping 2
Near-passerines 0.225 0.112 103 2.003 0.048 Grouping 2
Other seabirds 0.329 0.210 103 1.565 0.121 Grouping 2
Passerines 0.218 0.047 103 4.631 <0.001 Grouping 2
Rails & Grebes -0.075 0.149 103 -0.503 0.616 Grouping 2
Waders -0.089 0.079 103 -1.121 0.265 Grouping 2
Wildfowl -0.044 0.066 103 -0.665 0.508 Grouping 2

800
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S1 Fig. Example spatial data used within our modelling process. Maps are for Yellowhammer

Emberiza citrinella within epidemic period 3 (17" August 2022 — 20" January 2023). Each spatial unit
is 26.7km?. A) Weighted sum of relative species abundance derived from eBird Status and Trends
species relative abundance modelling weighted by the weekly proportion of HPAI outbreaks in
premises within that period. B) Count of premises with >50 captive birds within each spatial unit as
listed in the Great British Poultry Register. C) Total poultry flock size with each spatial unit as listed in

the Great British Poultry Register. D) Count of HPAI cases in premises within the period.
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810
811  S2Fig. Rasterized counts of positive wild bird HPAI cases from the Empres-i database within the three

812  distinct epidemic periods (EP1 = 19t October 2021 — 9" February 2022; EP2 = 10%" February 2022 —
813  16% August 2022; EP3 = 17" August 2022 — 20™ January 2023).
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815  S3Fig. Estimated third-order group-level means for linear model coefficients describing effects of

816  weighted relative species abundance on probability of HPAI cases in premises. Estimated means
817  derived from a GLM assessing group effects across epidemic periods (EP1 = 19t October 2021 — 9t
818  February 2022; EP2 = 10" February 2022 — 16™ August 2022; EP3 = 17" August 2022 — 20" January
819  2023). ‘H/G’ = Herons & Egrets, ‘R/G’ = Rails & Grebes.

820

48


https://doi.org/10.1101/2024.03.28.587127
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.28.587127; this version posted March 30, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Epidemic period 1 | | Epidemic period 2 | ‘ Epidemic period 3

——

Bam Ow
Common Buzzard
Eurasian Kestrel —_—
——

—_—
h-Harrier

H
Eurasian M. 1
Eurasian Sparrowhawk !

ﬂ

Merlin —_—

Peragrine Falcon
Gray Partridge
Red-lagged Partridge
Ring-necked/Gréen Pheasant
Eurasian Green Woodpecker
Great Spotted Woodpecker
Common Wood-Pigeon
Eurasian Collared-Dove
European Turtle-Dove
Rock Pigeon

I
1
1
T I
I
I
1

Snow Bunting
Yellowham mer
Eurasian Jay

H
Red-billed Chough
Rook

Common Redpo
Eurasian Bullfinch
urasian Linnet
Europea finch
European Green'

Spotted Fly
Bank

Western Yel

an N
Eurasian Tree
European

ou
White-thro:
Eurasia

sas%

Coal Tit
Marsh Tit

Cetti's Warbler
m

Significant
———t With FDR &
— Holm—Bonferroni
—— With FDR only

Only without
adjustment

Non-significant

an Blackcap
Whitethroat
Whitethroat

Little Gu:
Yellow-legged Gu
Common Temn
Sandwich Tern
Arctic Loon

Common Loon
Great Cormorant L
Red-throated Loon
Gray Heron

Great Egret
Common Kingfisher
Eurasian Coot
Eurasian Moorhen
Great Crasted Grebe
Horned Grebe
Water Ralil
Bar-tailed Godwit
Black-bellied Plover

{

Common Green

Common F{mgse over
andpiper

Dunlin

Commeon

pea den-Plov
Northern Lapwing
Purple Sandpiper
ied Knot

Ruddy Tmr\i‘,rnr\ef

T'H’""

u
Sanderling
Whimbrel
Common Shelduck
Eurasian Wigeon

Gadwa
Green-wingsd lea

{Hh

Northern Pintalil
Northem Shoveler
Common Eider
Common Goldeneye
Common Merganser
Greater Scaup

——
—_—
——
—_—
——
——
——
A
——
——
—_——

Wild Bird cases ——

|

2 s
—
i
i
0 o o 0 o
- o o o -

Abundance model coefficient

00 = ===k

0
05
1

0 0
< <

821

822  S4Fig. Linear model coefficients for effects of weighted relative species abundance on probability of

823  HPAI cases in premises. ‘Wild Bird cases' refers to a count of HPAI positive cases in wild birds within
824 the relevant epidemic period rather than weighted relative species abundance. Only positive model
825  coefficients are shown. Error bars indicate the 95% confidence interval. Model coefficients were
826  derived from independent spatial GAM models run for each species and epidemic period (EP1 = 19%
827  October 2021 — 9t February 2022; EP2 = 10" February 2022 — 16" August 2022; EP3 = 17" August
828 2022 -20% January 2023).
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830

831 S5 Fig. Linear model coefficients for effects of weighted relative species abundance on probability of
832  HPAI cases in premises. ‘Wild Bird cases’ refers to a count of HPAI positive cases in wild birds within
833  the relevant period rather than weighted relative species abundance. Only negative model

834  coefficients are shown. Error bars indicate the 95% confidence interval. Model coefficients were

835  derived from independent spatial GAM models run for each species and epidemic period (EP1 = 19t
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836  October 2021 — 9t February 2022; EP2 = 10" February 2022 — 16" August 2022; EP3 = 17" August

837 2022 -20% January 2023).
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840  S6 Fig. Count of reported cases of highly pathogenic avian influenza (HPAI) across three epidemic
841  periods (EP1 = 19t October 2021 — 9 February 2022; EP2 = 10t February 2022 — 16" August 2022;
842 EP3 = 17" August 2022 — 20" January 2023) on premises (red) and in wild birds (blue). Where

843  multiple individual birds are infected at the same location at the same time this represents a single
844  case.
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846
847  S7 Fig. Adjusted R-squared values for each of the 389 independent spatial-GAM models assessing
848 associations between weighted relative species abundance and HPAI cases in premises for each

849  species and epidemic period (EP1 = 19t October 2021 — 9% February 2022; EP2 = 10" February 2022
850 - 16™ August 2022; EP3 = 17" August 2022 — 20 January 2023).

851

852  S1 Data. Linear model coefficients for the intercept, and effects of weighted relative species

853  abundance and total poultry stock numbers on probability of HPAI cases in premises. ‘Wild Bird

854  cases’ refers to a count of HPAI positive cases in wild birds within the relevant period rather than

855  weighted relative species abundance. Model coefficients were derived from independent spatial GAM
856  models run for each species and epidemic period (EP1 = 19t October 2021 — 9t February 2022; EP2 =

857  10% February 2022 — 16™ August 2022; EP3 = 17" August 2022 — 20" January 2023). Species codes

858  arethose used by eBird.
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