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Abstract

Digital twins, driven by data and mathematical modelling, have emerged as powerful
tools for simulating complex biological systems. In this work, we focus on modelling the
clearance on a liver-on-chip as a digital twin that closely mimics the clearance
functionality of the human liver. Our approach involves the creation of a
compartmental physiological model of the liver using ordinary differential equations
(ODEs) to estimate pharmacokinetic (PK) parameters related to on-chip liver clearance.

The objectives of this study were twofold: first, to predict human clearance values,
and second, to propose a framework for bridging the gap between in vitro findings and
their clinical relevance. The methodology integrated quantitative Organ-on-Chip (OoC)
and cell-based assay analyses of drug depletion kinetics and is further enhanced by
incorporating an OoC-digital twin model to simulate drug depletion kinetics in humans.

The in vitro liver clearance for 32 drugs was predicted using a digital-twin model of
the liver-on-chip and in vitro to in vivo extrapolation (IVIVE) was assessed using time
series PK data. Three ODEs in the model define the drug concentrations in media,
interstitium and intracellular compartments based on biological, hardware, and
physicochemical information. A key issue in determining liver clearance appears to be
the insufficient drug concentration within the intracellular compartment. The digital
twin establishes a connection between the hardware chip structure and an advanced
mapping of the underlying biology, specifically focusing on the intracellular
compartment.

Our modelling offers the following benefits: i) better prediction of intrinsic liver
clearance of drugs compared to the state-of-the-art model and i) explainability of
behaviour based on physiological parameters. Finally, we illustrate the clinical
significance of this approach by applying the findings to humans, utilising propranolol
as a proof-of-concept example. This study stands out as the biggest cross-organ-on-chip
platform investigation to date, systematically analysing and predicting human clearance
values using data obtained from various in vitro liver-on-chip systems.

Author summary

Accurate prediction of in vivo clearance from in vitro data is important as inadequate
understanding of the clearance of a compound can lead to unexpected and undesirable
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outcomes in clinical trials, ranging from underdosing to toxicity. Physiologically based
pharmacokinetic (PBPK) model estimation of liver clearance is explored. The aim is to
develop digital twins capable of determining better predictions of clinical outcomes,
ultimately reducing the time, cost, and patient burden associated with drug
development. Various hepatic in vitro systems are compared and their effectiveness for
predicting human clearance is investigated. The developed tool, DigiLoCs, focuses

explicitly on accurately describing complex biological processes within liver-chip systems.

ODE-constrained optimisation is applied to estimate the clearance of compounds.
DigiLoCs enable differentiation between active biological processes (metabolism) and
passive processes (permeability and partitioning) by incorporating detailed information
on compound-specific characteristics and hardware-specific data. These findings signify

a significant stride towards more accurate and efficient drug development methodologies.

1 Introduction

The drug testing dilemma presents a significant challenge in pharmaceutical
development, marked by high costs and a distressing attrition rate in accurately
predicting human responses [Il [2]. A pivotal element in preclinical drug development is
the accurate estimation of the first-in-human dose and different dosing regimens to keep
drug levels within a therapeutic range. This demands precise assessments of hepatic
clearance and human pharmacokinetics [3} [4]. Typically, the gold standard in drug
development is the use of simpler in vitro systems to study drug metabolism, including
liver microsomes [5] and suspension or plated hepatocytes [6]. The drug depletion data
(time-concentration profile) are then analysed to determine the in vitro clearance rate.
A very simple mathematical model is employed that considers the in vitro system as a
single compartment, the one-compartment PK model [7]. Well-mixing and
instantaneous drug distribution is assumed, all biological processes, e.g., permeability
and partitioning from cell culture media into intracellular milieu are lumped into drug
clearance. This approach also cannot differentiate between compounds actually being
metabolised and compounds bound to media proteins or hardware. The so determined
in vitro clearance value is then extrapolated to humans (in vitro — in vivo extrapolation)
and integrated into human physiologically-based pharmacokinetic (PBPK) models [4] ]
to predict human pharmacokinetics (absorption, distribution, metabolism and excretion
(ADME)), before actually testing a new compound in humans. Although this approach
is well-established in drug development and easy to use, it also systematically
underpredicts human PK [9] by 5-10 fold across studies and compounds.
Microphysiological systems (MPS) and organ-on-chips as well as 3D organoids hold
great promise to address more complex in vitro ADME, toxicology and pharmacology
questions offering miniature, biomimetic systems that replicate key aspects of human
organ physiology [10] [IT], 12]. These technologies create an environment where human
cells can grow and interact in an organ-specific context, providing insights into human
biology and disease that were previously unattainable in conventional in vitro models or
animal studies. OoC and MPS-based systems are already used in today’s drug
development for PK, but also for assessing drug efficacy and toxicity [13, 14, [10} [15].
While the emulated in vitro biology of MPS and OoCs is getting ever more complex and
produces more human-relevant data, these systems still fall short in considerably
improving the prediction power of in-human situations, like PK [16] [13]. However, MPS
and OoC data are also still analysed using the state-of-the-art mathematical model
(one-compartment), that is not accounting for the advanced biology. It remains unclear
whether the OoC and MPS biology is still not human-relevant enough (and thus
producing human-relevant data) or the state-of-the-art mathematical analysis is the
cause for the underprediction. Potentially, a digital twin framework that enables the
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mapping of complex on-chip biology to advanced mathematical models could provide a
useful approach to enable OoC and MPS translation to humans and increase the
prediction power but is currently lacking.

The current study aimed at developing a digital twin approach integrating MPS and
00C data within advanced computational models of biology to improve the prediction
of clinical clearances. DigiLoCs, our developed digital liver-chip simulator, facilitates
the accurate description of on-chip complex biology. The tool comprises and utilises
information on complex biological processes (clearance, permeability, partitioning),
hardware-specific information from the studied in vitro system, and compound-specific
information. By accounting for more multi-dimensional information, the tool enables
differentiation between active biological processes, such as metabolism, and passive ones,
such as permeability and partitioning of a compound from cell culture media into the
cellular milieu. This contrasts with state-of-the-art approaches, where passive biological
processes are not considered specifically and lumped together into a single process, i.e.,
clearance. Drug depletion kinetics of 32 compounds were taken from literature covering
commercially available liver-on-chips (CnBio [I3] [I7], Javelin), and 3D spheroids
[18, [19], including fast and slow-cleared compounds. According to these studies,
DigiLoCs outperform the state-of-the-art prediction approach considerably. The impact
of a more accurate description of clinical clearance values on predicting human PK was
investigated in a proof-of-concept study using propranolol. The kinetics of propranolol
was predicted in humans using the state-of-the-art, Digil.oCs, and literature approach.
The results obtained from DigiLoCs for propranolol in the proof-of-concept study were
much closer to the actual observed human values as compared to other approaches.

To the best knowledge of the authors, this is the first and biggest study so far,
comparing head-to-head the performance of different hepatic in vitro systems to predict
human clearance and demonstrating the impact OoC and MPS systems can have, in the
drug development process enhanced through the modelling and prediction features of
DigiLoCs.

2 Methods

In this section, we describe the following: ) data used in the study for predicting
human clearance, i) DigiLocs, digital twin for liver-on-chip, i7) mathematical model,
parameter estimation and sensitivity analysis for DigiLocs, and iv) translation to
humans and prediction of human pharmacokinetics.

2.1 Data

In this work, published data on pharmacokinetics (metabolism) or toxicology studies of
32 drugs are used (See Table[l]) to predict human pharmacokinetics.

2.2 DigiLoCs: Digital Twins for cell-based liver assays

DigiLoCs is a software tool that describes the on-chip complex biology more accurately
in the context of use to predict clinical clearance values. The software comprises (Fig :

e modelling of complex biological processes (clearance, permeability, partitioning),
e hardware-specific information from the studied in vitro system and
e compound-specific information.

The tool differentiates between active biological processes, such as metabolism, and
passive ones, like permeability and partitioning of a compound from cell culture media
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Used in cell Media
Study Drugs this In vitro system number  volume Flow Compartments
study [a.u.] [ml]
Docci et al. 2022 [13] 9 9 CnBio Liver-Chip 3E5 1.60  Recirculation 1
Tsamandouras et al. 2017 [17] 6 3 CnBio Liver-Chip 3E5 1.60  Recirculation 1
Rajan et al. 2023 [20] 12 8 Javelin Liver-Chip 2.15E5 1.30 Recirculation 2
Kanebratt et al. 2021 [18] 4 4 3D Spheroid (Hurel) 6E3 0.05 No 1
Bonn et al. 2016 [19] 8 8 3D Spheroid (Hurel) 3E4 0.10 No 1
Total 38 32

Table 1. Overview of literature reports providing on-chip pharmacokinetic information

on compound clearance

into the cellular milieu. This contrasts with state-of-the-art approaches, where passive

biological processes are not considered especially and lumped together into a single
process, i.e., clearance.

Fig 1. Digital Twin (DT) Approach. Contrasting state-of-the-art, the DT approach
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1. Metabolism

2. Partitioning, permeability

uses biological, hardware, and physicochemical information to map the biological
processes on-chip more accurately to in silico, thereby maximising the information
leveraged. This results in the disentanglement of active (metabolism) and passive
(permeability, partitioning) processes.

Liver-on-chip technology provides a more physiologically relevant environment
compared to traditional cell cultures or animal models, enhancing the simulation of
drug responses using mathematical models. Hence, a more accurate mathematical

description is needed. The three primary compartments of the liver chip considered in

the model are media, interstitium, and intracellular space, which serve as dynamic

environments where drugs are distributed, metabolised, and interact with hepatic cells.
This compartmentalisation is based on concepts applied in human whole-body PBPK

modelling.

The software tool is developed in the open-source programming language R and
seamlessly communicates with PK-Sim

(https://www.open-systems-pharmacology.org/)) via in-house developed functions.

For more information, see esqlabsR package

(https://github.com/esqLABS/esqlabsR). All analysis and plotting were done in the

open-source programming language R. Moreover, the proposed workflow does not

interfere with existing wet lab Standard Operating Procedures (SOPs) for performing
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biological experiments and does not add an extra considerable burden to the user.
DigiLoCs uses existing biological data, and its performance may be improved by
measuring cell-associated compound concentrations in addition to the compound media
depletion time course, which would add a minor extra step in the lab SOP. This,
however, is negligible given the improvement in performance power and the confidence
in the prediction.

2.2.1 Implementation of hardware specifications

DigiL.oCs map the chip architecture to a compartmental model to describe the
time-dependent distribution of a compound on-chip. The compartment models use
time-dependent ordinary differential equations (ODEs) and assume well-mixing within
compartments. These are generally accepted to describe the distribution of exogenous
and endogenous compounds and molecules.

A physical chamber separated by a membrane or connected by flow to another
chamber is represented by a compartment in the software. Serial compartments are
connected via concentration-dependent flow rates (typically in ml/min) between the
compartments and normalised by the volume of the originating compartment.

2.2.2 Implementation of biological specifications

The biology (more precisely, the cell type exerting the biological function under
investigation; here: metabolism) is mapped by two additional compartments
representing the interstitial and intracellular space of the investigated biology (Fig .
Transition rates from the cell culture media into the interstitial and intracellular milieu
are described by two core processes:

e permeability (em/min, how fast is a compound taken up?)
e partitioning (how much of the compound is taken up by cells?)

These processes are proportional to the time-dependent concentration of the compound
and the surface area shared between the channels and the cell layer. Lastly, the
metabolism rate is allocated at the intracellular compartment and corrected by the
unbound fraction of the compound in the intracellular compartment. Similar to the
compartmental structure are these core processes accepted in describing the distribution
of compounds in a pharmacokinetic framework.

2.2.3 Implementation of compound-specific information

The following physicochemical properties of the investigated compounds are used in the
software: %) lipophilicity (logP), i) molecular weight (MW) and i) fraction unbound
(fu); to calculate up to six dependent downstream parameters (listed below). These
parameters describe the partitioning from the main media compartment into the
interstitial space and between the water fraction and both interstitial and intracellular
space. Additionally, permeability across the endothelial barrier and between interstitial
and intracellular spaces is calculated.

Partitioning: Z) Kint,pls Z'L) Kwatcr,ccll Z”) Kwatcr,int

Permeabﬂity: Z) Pendothelial ”) PAcelLint Z“) PAint,cell

Here int refers to interstitial space, pls refers to media, water refers to water
exchange fraction, and cell refers to intracellular space. These parameters are calculated
based on well-established and documented equations implemented in PK-Sim [3]. The
same partition coefficient calculation methods as implemented in PK-Sim are also
readily available and can be investigated:
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PK-Sim standard
Poulin and Theil

e Rodgers and Rowland
e Schmitt

e Berezhkovskiy

Further, only the unbound fraction of a compound can be taken up by cells and be
metabolised by cells. The unbound fraction in the cell culture media is typically
informed by biological experiments. However, the intracellular unbound fraction is not
often available or measured. Thus, two established QSAR models (quantitative
structure-activity relationship) are implemented in the software to predict the unbound
intracellular fraction of the investigated compound as a function of its physicochemical
properties [21], 22].

2.3 Mathematical model

A typical single-compartment model is described as: Let C(t) be the drug concentration
in the chip at time ¢, V' the volume of the chip, and CL. the clearance parameter. Then

we have
dC _CLc

— = C
dt Vo
with initial value C(t = 0) = Cy. The solution to this ODE is
C(t) =Cy - e~ V1, (1)
Taking the logarithm on both sides,
CL,
log C(1) =~ % -1+ G, (2)

which is equivalent to regression on log-transformed kinetic data.

We developed a digital twin of liver-on-chip with three compartments that
incorporates much more information on parameters related to both on-chip
characteristics and drug-specific properties. The three-compartment model considering
media, interstitium and intracellular compartment are described as follows: Let
Cy(t), Ci(t), Cc(t) and V,, V;, Ve be the concentration of the drug at time ¢, and volume
of the plasma, interstitium, and intracellular compartment respectively. CL, is the
clearance parameter. Then we have

de ]ﬁ k2
—=——-Cp+—=-Cj; 3
dt v, * - Vy ®)
dCZ‘ kl kz + k?, k4
=0, - Ci+ 2 G 4
a VT ( v; ) M7 )
dCc k3 k4
= — C’L - P CLC ° Cc~ 5
A (vc - ) ®)
The parameters here are defined as follows,
kl =fu- Pendothelial : SApls,int,liven (6)
k1
ko = ,
2 Kint,pls

k3 :Kwatcr,int . PAint,ccll and

k4 :Kwater,cell ' PAcelLint-
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where Kipt_pis is the rate constant for the transfer of drug between the plasma and
interstitium, Pepdothelial 1S the permeability coefficient of the drug between the
endothelial layer, SApis int_tiver i the surface area of the interstitium, Kywater_int s the
rate constant for water exchange or movement within the interstitium, Kyater_cen is the
rate constant for water exchange or movement within the intracellular compartment,
PA celing is the permeability coefficient of the cellular membrane in the intracellular
compartment, PAj,;_cenn is the permeability coefficient of the cellular membrane in the
interstitium compartment and fu is the fraction unbound (plasma, reference value).
We can write this system of linear ODEs in matrix form,

' =A-C, where (7)
k k
v, 0
0 B —(&+oL)

The general solution for the system of ODEs at time ¢:
C(t) =ett = X AMXT 0y =X M. X, (8)

where X is the matrix of eigenvectors of A, A is the diagonal matrix with eigenvalues
A1, A2, A3 as diagonal entries, and Cj is the initial value of variables at time 0.
The objective function for optimisation is as follows:

_ LAt
Yi, = € - Co
computed using eigenvalues

n
L 2
minimise »  (Yioy. — Yia) . i )
CLe = and eigenvectors with constraints

on parameters,

where y;_,_ is the observed data point and y;, is the computed value using the
eigenvalues and eigenvectors at the time ¢ respectively, n is the number of observed data
points.

2.4 Parameter Estimation

Parameter estimation aims to find unknown parameters in a computational model and
is estimated using experimental data collected from well-defined and standard
conditions. By minimising the distance of theoretical function values and experimentally
known data, the set of parameters in the model can be estimated. The parameters
which are not directly measurable can be estimated using least squares or any other
fitting methods to analyse the model quantitatively. Nominal parameter values are
obtained from PK-Sim, which is a comprehensive software tool for whole-body PBPK
modelling. It enables rapid access to all relevant anatomical and physiological
parameters for humans and common laboratory animals contained in the integrated
database for model building and parameterisation.

Parameter estimation in DigiLoCs is a two-step process. Firstly, a customised cost
function is implemented. This cost function calculates the weighted difference (ssq)
between the model simulation (pred) from a specific compartment and the
corresponding observed data (obs) for each time point according to:

obs — pred
ssq = ored (9)
Common parameter estimation methods include maximum likelihood estimation and
Nelder Mead optimisation. Nelder Mead, a non-linear optimisation method, is used to
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find the minima of the objective function in this work. Additionally, the partition
coefficient between the intracellular (IC) and the main media compartment is estimated
using the area under the simulated time-concentration profile of the IC and interstitial
(IST) compartment and corrected for by the QSAR-predicted cellular unbound fraction
(fucen) and the unbound fraction in the media (measured, fumedia):

AUC(IST +1C)  fueen
AUC(media)  fumedia

Kpuu,pred = (10)

Kpuu,obs is calculated from literature [23], where media and intracellular
concentrations in hepatocytes were determined. Initially investigated for suspension
hepatocytes in a 2D setting, the authors provide a scaling factor (~4.9) to apply to
human hepatocytes. Further, the ionisation state of the investigated compound (-1, 0, 1)
results in a different partitioning. Otherwise, a range of possible partition coefficients
are investigated. This is an additional anchor point for estimating the cost function

value and links the simulated intracellular and main media compartment concentrations.

Eventually, both differences are squared and summed up, resulting in the final sum of
residuals. Based on this, a compound-specific scaling factor (SF) is calculated and used
to scale the predicted human clearance:

Kpuu,obs
uu,pre

Specifically for the liver use cases, on-chip liver clearance and surface area between
the main plasma compartment and the cell layer are estimated. It is possible to estimate
other parameters, such as pre-calculated permeability or partition coefficient values.

2.4.1 Implementation of software

Methodologically, DigiL.oCs is implemented in the open-source programming
environment R with its own package. A library of two common chip architectures and
two cell types with six different chip-specific settings are already implemented:

1. One chamber, no media flow
2. Two chamber, recirculating flow
3. Organ-on-chip (hepatocytes)

a. CnBio
b. Hurel 1
Hurel 2
d. Dynamic42

e. Javelin

e

These building blocks can be interchangeably used and connected, similarly to the
building blocks in PK-Sim. While the R code and its package provide a step-by-step
guide to generate and run a simulation, the code communicates seamlessly with a
generic PK-Sim model to determine partitioning and permeability values as described
above, which are used in the simulation.
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2.5 Sensitivity Analysis

Both local and global sensitivity analyses are used to quantify the impact of input
parameters on the output variables. This involves varying certain input parameters and
observing changes in the output variable, intracellular concentration. The local
sensitivity is estimated by changing one input parameter at a time while other
parameters are held constant. The study provides insights into the sensitivity of various
parameters and how they affect the output of the model.

The input parameters Kint,pls, Pendothelial s SApls,int,livera Kyater_int, Kwater_cell,
PAceilints PAint_cen1, fu and CL. are varied to evaluate the sensitivity of the output
variable intracellular concentration (C,). First, the local sensitivity is estimated by
changing one input parameter by 10% at a time while the other parameters are held
constant, and the changes in output variable C. are compared. Eq [12| shows the local
sensitivity index for C. with respect to the varying model parameter (P; ), which is
approximated by a small perturbation AP;,

= lim )
(SPl AP;—+0 APl

where C.(P) is the model prediction of the intracellular concentration for parameter set
P. The local sensitivity index is normalised to eliminate the effect of units:

- 6C. Py

'8P, CL(P)
Global sensitivity analysis evaluates the effect of potential interactions of the input
parameters in an output variable. The Sobol sensitivity analysis of the SALib package
in Python is used to perform the global sensitivity analysis. Input parameters are
sampled using the Saltelli sampler. The lower and upper bound of the parameters are

set as 0.1-fold and 10-fold of the baseline parameter values, respectively. The first-order
and total-order indices are estimated using the Sobol sensitivity analysis.

(12)

(13)

2.6 Translation to Humans

Drug-related parameters extracted from OoC or any other in vitro studies can be scaled
to predict clinical parameters using in vitro-in vivo translation (IVIVT) [I7, [13]. The
typical value of unbound intrinsic clearance CLi,¢(,) determined for each drug from the
pharmacokinetic analysis of the in vitro depletion data is scaled up to a human liver
equivalent unbound intrinsic clearance CLjy(y),1 using

_ CLiny - HC - LW

fuinc

CLint(u),H ) (14)
where HC is the human hepatocellularity of 120 million cells / g of liver, LW is the
average human liver weight of 25.7g / kg of body weight [I7] and fuj, is the unbound
fraction of drug in the incubation medium. The hepatic clearance (referring to whole
blood concentrations) is then predicted (CLy pred) using the Well-Stirred (WS) model:
QH - fuy, - CLint(u) H
CLy(pred, WS) = —, 15
H( ) QH + fub ' CLint(u),H ( )

where Qg the average hepatic blood flow of 20.7 mL/min/kg of body weight and fuy, is
the fraction of the drug unbound in blood. The fraction unbound in the blood (fuy,) was
calculated for each compound from the known fraction unbound in the plasma (fu,) and
blood-to-plasma ratio (Rbp) according to the equation fuy, = fu,/Rbp or directly used,
if available from the literature. The predicted hepatic clearance, CLy preq values were
then compared to observed hepatic clearance, CLy obs values (referring to whole blood
concentrations).
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Fig 2. Translational workflow plan that integrates results from organ-on-chip with
computer modelling to predict the kinetics of drugs in humans. The digital twins of the
humanised organ-on-chip systems together with chip-specific information and
physicochemical information are developed in R.

2.7 Prediction of Human Pharmacokinetics 251
First, a physiologically-based kinetic model (PBK) is developed using qualified 252
installations of the PBK software PK-Sim. A whole-body PBK model includes an 253

explicit representation of the organs most relevant to the uptake, distribution, excretion, 2ss
and metabolism of the drug. These typically include the heart, lungs, brain, stomach,  2ss
spleen, pancreas, intestine, liver, kidney, gonads, thymus, adipose tissue, muscles, bones, s

and skin. More information can be found in S1 Text. 257
The tissues are interconnected by arterial and venous blood compartments, and each 258
is characterised by an associated blood flow rate, volume, tissue partition coefficient, 250

and permeability. If applicable, R (Distribution 4.0) and RStudio (Version 1.2.5) are 260
used in the analysis for preprocessing and post-processing of data and model outputs 261

[24]. The analytical approach is based on the principles set out in the guidelines of the 2
EMA, FDA, and/or OECD for reporting on PBK M&S [11]. The developed PBK model 2

is used to describe the human kinetics of propranolol. Key kinetic parameters are 264
informed by either clinical data, literature values or on-chip predictions. The 265
translational workflow that integrates organ-on-chip results to predict human 266
pharmacokinetics is shown in Fig 267
3 Results -
The liver clearance and surface area of the chip are estimated after fitting the drug 269
kinetic data. This section describes the following: digital twin-based model simulations 270
for selected compounds, sensitivity analysis results, predicting human clearance, and o
translation to human PK using propranolol as a proof-of-concept study. The Poulin and 2
Theil method of partition coefficient calculation was used due to its superior fit to 273
observed drug kinetics, as evidenced by lower residual error (data not shown), 274
outperforming alternative methods. 215
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3.1 Simulating compound depletion on-chip

The digital twins for the investigated in vitro liver systems were successfully
implemented in R and used to simulate the on-chip kinetics. After parameter
estimation, the resulting model simulations describing the observed compound depletion
data were visually inspected. The final parameter values can be found in Tables A and
B in S1 Text. Additionally, the squared sum of residuals was evaluated and deemed
acceptable < 0.01, which was the case for all simulations (data not shown). An example
of on-chip kinetics is presented in Fig 3. As can be seen, the digital twin approach

Drelofenac Mhgazolam

*e

Fig 3. Digital twin-based model simulation of on-chip kinetics after fitting parameters
for selected compounds; diclofenac, midazolam, and oxazepam are from Docci et al. [13],
while propranolol is from Tsamandouras et al. [I7]; IC = intracellular, Ist =
interstitium.

(violet line) captures the on-chip kinetics (blue dots) very well. Simultaneously, the
intracellular (IC) kinetics are plotted (red lines), clearly highlighting the difference in
compound uptake and, thus clearance rates. The remaining figures are presented in S1
Text (See Figs A-D).

3.2 Sensitivity analysis

The sensitivity analysis, both local and global, was conducted to quantify the sensitivity
of model output intracellular concentration with input parameters. The analyses were
performed for various parameters, and the results indicated that the output is more
sensitive to parameters such as the permeability coefficient of the endothelial layer,
surface area of the liver sinusoids, and clearance.

These parameters were estimated or calculated from experimental results. Clearance
(CL.) is identified as the most sensitive parameter with respect to intracellular
concentration. The results imply that accurate values of these sensitive parameters are
crucial for the model’s accuracy.

The normalized local sensitivity indices (Fig[4h) and the first-order and total-order
global sensitivity indices (Fig ) for intracellular concentration across the input the
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Fig 4. Local and global sensitivity of the parameters with respect to output intracellular concentration. (a) Blue bars
indicate that the output and the input change in the same direction and the red bar indicates that the output decreases when
the input increases. (b) The blue and orange bars represent first-order and total-order indices, respectively.

parameter set is shown. The results from both local and global sensitivity analyses
shows that the output is more sensitive to parameters Pendothelial, SApls_int_liver, fu and
CL.. These parameters were estimated or calculated from experimental results.
Clearance (CL,) is the most sensitive parameter with intracellular concentration.
SApis_int tiver and CL. were estimated and nominal values were used for all other
parameters. SA results imply that we need correct values of the constants Pepdothelial, fu
as they are more sensitive.

3.3 Predicting Human Clearance

Following, the on-chip estimated clearance values were translated to total human
clearance according to Eq More detailed information is available in S1 Text (see
Table A and B). Likewise, from the investigated studies (Table , in vitro unbound
clearance values were available and scaled to human equivalents.

Following, the ratio of clinical observed human clearance values and either predicted
human clearances using state-of-the-art mathematical modelling or the digital twin
approach were estimated and converted into a density function for easier graphical
visualisation. As can be seen in Fig the digital twin approach (DigiLoCs)
outperforms the standard approach considerably. The center of the distribution is
around 1 indicating a non-biased prediction of clinical clearance values, while the width
of the distribution is very small. Quantitatively, the ratio for the digital twin approach
over all compounds is 1.04 & 0.31, with a coefficient of variation of 30%. In contrast,
the standard approach (blue curve) majorly under-predicts the clearance values while
maintaining a broad distribution and thereby adding to uncertainty in the prediction
(0.56 £ 0.44, CV = 79.3%). The correlation plot between the observed and herein
predicted clinical clearance values highlights on a drug-individual level the improved
prediction performance of the DigilLoCs approach. As can be seen in Fig@ (example
graph for CnBio Liver-on-Chip data), most of the compounds fall within the 1.5-fold
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Predicting Human Clearance

Method

DiglaCs
Standad

Density

Rabo
Fig 5. Impact of DigiL.oCs on predicting clinical clearance values compared to the
state-of-the-art approach. In total, a set of 32 compounds across three different in vitro
liver-systems have been investigated. The x-axis presents the ratio of predicted/observed
clinical clearance values using either the DigiLoCs or the state-of-the-art approach.

line (Average fold error, AFE = 0.965). Similar correlation plots are presented in the S1
Text (See Figs E-G) for the other in vitro systems.

3.4 Translation to Human PK

We assessed the impact of accurately predicting human clearance values based on in
vitro cell-based assays on predicting human PK, using propranolol as a proof-of-concept
case study. First, a human PBPK model describing the human kinetics of propranolol
was implemented in PK-Sim and qualified with clinical observations. Next, the
predicted human clearance value using either the state-of-the-art modelling approach or
based on the same on-chip kinetic data, was implemented in the human PBPK model
simulating the kinetics after a single oral dose. Further, a population of n = 1000
patients was simulated to account for inter-patient variability. As shown in Fig 5, the
implemented human PBPK model describes observed clinical data well (using clinical
clearance values). When substituting only the clearance value with the state-of-the-art
or the digital twin-based values, the impact on simulating human PK becomes apparent,
while the standard approach would overpredict (i.e., the on-chip clearance is
underpredicted) the human PK (3-fold Cp,ax, up to 6-fold overprediction of AUC).
Moreover, this approach would actually simulate non-negligible concentrations of
propranolol left over after 24 h. For repeated daily dosing, this would result in
accumulation of propranolol in this hypothetical setting, which would have immediate
implications for potential toxicity or efficacy considerations. On the other hand, the
digital-twin based approach still slightly overpredicts the AUC and C,,.x, however only
by 1.5-fold and captures the terminal phase correctly.
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Fig 6. Correlation between observed and predicted in vivo intrinsic clearance (CLint)
using three-compartment ODE liver chip for 12 drugs from (Docci et al. 2022;
Tsamandouras et al. 2017). The solid line shows the line of unity, while dotted line is
1.5-fold and dashed line is 3-fold deviation.

4 Discussion

The aim of this work is to improve the current prediction of human clearance values and
to present a framework for translating in wvitro findings to relevant clinical situations.
The presented integrated translational approach combined quantitative OoC and
cell-based assay compound depletion kinetics with an OoC-digital twin to simulate drug
kinetics in humans.

Initial investigations revealed the potential to describe clinical clearance values more
appropriately than is currently possible with the state-of-the-art approach. This simpler
approach lumps biological processes together into a single process — clearance — and uses
only minimal information available, e.g., only the cell number and media volume. While
biological systems have evolved rapidly in the last decade, especially in the field of
organ-on-chip and microphysiological systems, the applied mathematical models to
analyse the quantitative complex biological data have been the same for decades (early
concept of clearance was introduced by Mollers in 1928, while well-stirred model is
1971).

In contrast, the developed digital twin approach for the organ-on-chip and 3D
spheroids comprises three building blocks: biological, hardware, and physicochemical
information. The distinction between active and passive processes is achieved by an
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Fig 7. Simulated kinetics of propranolol after a single oral dose (80 mg). Pink dots are
clinical observation (digitised from Borgstrom et al. [25]), while the blue solid line
represents the mean of the patient population using the clinical observed clearance
value. When using the state-of-the-art based clearance value (red line), the
area-under-the-curve is 6-fold overpredicted. In contrast, using the digital twin-based
clearance, the AUC is only 1.5-fold overpredicted, also simulating the right kinetics at
24 h (black curve). Shaded areas represent £+ 1 SD.

explicit description of uptake, distribution, and metabolism involved in the biological
processes. Further, the digital twin links the architecture of the hardware chip with an
advanced mapping of the underlying biology (intracellular compartment). The on-chip
kinetics for 32 compounds (six compounds were removed from the initial set due to
missing information) was well described, highlighting the drug-specific effects on cellular
uptake and hence metabolism. Note that this analysis used the same biological
information as used in the state-of-the-art approach, no additional biological
experiments were needed or performed to improve the outcome of the digital twin
approach.

The predictive power of organ-on-chip and 3D spheroids over conventional
approaches was revealed when the depletion data was analysed with the digital twins
(Fig . Not only was the systematic underprediction issue resolved, but the uncertainty
in prediction was also reduced by a factor of 3 (comparing CVs).

Lastly, we aimed to demonstrate the clinical impact of this approach by translating
the results to humans using propranolol as a proof-of-concept example. Here, the
head-to-head comparison clearly demonstrated the superior power of both quantitative
biological data from OoCs and digital twins over state-of-the-art approaches in
predicting human PK more appropriately (Fig . Although only one compound was
used to demonstrate clinical impact, the workflow and process is laid out and easily
applicable to other compounds. To the best of our knowledge, this study is the biggest
comprehensive report to systematically assess the predictive power of organ-on-chip in
the context of use of liver clearance.

The mathematical algorithm to determine liver clearance depends on the
time-concentration profiles and, if available, on intracellular or cell-associated compound
levels. The algorithm minimises a cost function by identifying a clearance value such
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that model prediction and data observation match. The cost function takes both the
PK profile from cell culture media and the cell-associated levels into account, which is
not the case for the state-of-the-art approach. Further, binding of the compound to
plastic/hardware of the chips, to proteins contained in the cell culture media, or any
other intracellular lipids can be accounted for to accurately determine liver clearance.
DigiLocs, further, also does not depend on a scaling factor, which overcomes the
systematic underprediction of state-of-the-art approaches (5-10 fold on average across
multiple studies).

So far, limited information is available from the literature or in-house measurements
on the observed partitioning of compounds into the intracellular or cell-associated
milieu of hepatocytes. If that data becomes available, it may be incorporated compared
to the adjustments made in the software to match the clinical clearance values. If the
predicted and observed Kp,, values match, the digital twin approach truly improves the
prediction. If there is a discrepancy between these values, the fitting process can be
re-run including the observed Kpy, value. This would inform the maximum capacity of
the system to metabolise the compound. If this final rate is still lower than the observed
clinical clearance value two options are possible to understand and improve the
prediction:

1. Calculate a correction factor, which is compound-specific and chip-specific and not
generic like in the state-of-the-art approaches.

2. Investigate other model-specific parameters to optimise, e.g., permeability or
partitioning.

Although initially developed for hepatic clearance, the mathematical model can be
employed for toxicity or efficacy-related questions depending on the context of use. In
such a setting, time-concentration profiles will be simulated and linked to other,
measured biomarkers (e.g., ATP (adenosine triphosphate), TEER (barrier integrity)) to
determine IC50 or EC50 values, and parameters to assess toxicity and efficacy,
respectively. Likewise, the same integration of complex biological processes, hardware-,
and drug-specific information can be used to model other cell and chip types, e.g., a
blood-brain-barrier-chip, which is used to determine the permeability of compounds
across the barrier.

Eventually, DigiLoCs shall act as decision-support tool for (pharmaceutical) research
in estimating the first-in-human doses, assessing human PK, and more importantly,
reducing animal experimentation, making drug development efficient, faster, and
sustainable.

5 Conclusion

The development of digital twins for organ-on-chips, reported here, incorporating
advanced mathematical equations and leveraging published data, holds great potential
to enhance our understanding of drug behaviour and clinical outcomes. The in vitro
liver clearance for 32 drugs was predicted using DigiLoCs and a proof-of-concept
(translation to human pharmacokinetics) study on propranolol was done. DigiLoCs are
envisioned to serve as a decision-support tool for pharmaceutical research, aiding in
estimating first-in-human doses, evaluating human pharmacokinetics, and importantly,
diminishing reliance on animal experimentation, thereby fostering more efficient,
expedited, and sustainable drug development processes. Our approach is generalisable
across various physiological contexts and not limited to liver metabolism but may be
extended to other organs as well, such as gut metabolism and barrier models such as the
brain or placenta.

March 27, 2024

16/|19

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

408

409

410

411

412

413

414

416

417

418

419

421

422

423

424

426

427

428

429

430

431

432

433

434

436

437

438


https://doi.org/10.1101/2024.03.28.587123
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.28.587123; this version posted March 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Author contributions

Participated in research design: Aravindakshan, Maass. Performed data analysis:
Aravindakshan, Maass. Investigation and Methodology: Aravindakshan, Mandal,

Pothen, Maass. Writing — Original Draft Preparation: Aravindakshan, Maass. Writing —

Review & Editing: Aravindakshan, Mandal, Pothen, Maass.

References

1.

10.

Franzen N, van Harten WH, Retel VP, Loskill P, van den Eijnden-van Raaij J,

IJzerman M. Impact of organ-on-a-chip technology on pharmaceutical R&D costs.

Drug Discovery Today. 2019;24(9):1720-1724. doi:10.1016/j.drudis.2019.06.003.

. Denayer T, Stohr T, Roy MV. Animal models in translational medicine:

Validation and prediction. European Journal of Molecular & Clinical Medicine.
2014;2(1):5. doi:10.1016/j.nhtm.2014.08.001.

. Thelen K, Coboeken K, Willmann S, Burghaus R, Dressman JB, Lippert J.

Evolution of a detailed physiological model to simulate the gastrointestinal
transit and absorption process in humans, Part 1: Oral solutions. Journal of
Pharmaceutical Sciences. 2011;100(12):5324-5345. doi:10.1002/jps.22726.

. Jones H, Chen Y, Gibson C, Heimbach T, Parrott N, Peters S, et al.

Physiologically based pharmacokinetic modeling in drug discovery and
development: A pharmaceutical industry perspective. Clinical Pharmacology &
Therapeutics. 2015;97(3):247-262. doi:10.1002/cpt.37.

. Obach RS. Prediction of human clearance of twenty-nine drugs from hepatic

microsomal intrinsic clearance data: An examination of in vitro half-life approach
and nonspecific binding to microsomes. Drug Metabolism and Disposition.
1999;27(11):1350-1359.

. Brown HS, Griffin M, Houston JB. Evaluation of Cryopreserved Human

Hepatocytes as an Alternative in Vitro System to Microsomes for the Prediction
of Metabolic Clearance. Drug Metabolism and Disposition. 2006;35(2):293-301.
d0i:10.1124 /dmd.106.011569.

. Reddy MB, Mccarley KD, Bunge AL. Physiologically Relevant

One-Compartment Pharmacokinetic Models for Skin. 2. Comparison of Models
when Combined with a Systemic Pharmacokinetic Model. Journal of
Pharmaceutical Sciences. 1998;87(4):482-490. doi:10.1021/js9702877.

. Murata Y, Neuhoff S, Rostami-Hodjegan A, Takita H, Al-Majdoub ZM,

Ogungbenro K. In Vitro to In Vivo Extrapolation Linked to Physiologically
Based Pharmacokinetic Models for Assessing the Brain Drug Disposition. The
AAPS Journal. 2022;24(1). doi:10.1208/s12248-021-00675-w.

. Hallifax D, Foster JA, Houston JB. Prediction of Human Metabolic Clearance

from In Vitro Systems: Retrospective Analysis and Prospective View.

Pharmaceutical Research. 2010;27(10):2150-2161. doi:10.1007/s11095-010-0218-3.

Shroff T, Aina K, Maass C, Cipriano M, Lambrecht J, Tacke F, et al. Studying
metabolism with multi-organ chips: new tools for disease modelling,
pharmacokinetics and pharmacodynamics. Open Biology. 2022;12(3).
d0i:10.1098 /rsob.210333.

March 27, 2024

1719

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481


https://doi.org/10.1101/2024.03.28.587123
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.28.587123; this version posted March 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

European Medicines Agency. Guideline on the Investigation of Drug Interactions;
2012. https://www.ema.europa.eu/en/documents/scientific-guideline/
guideline-investigation-drug-interactions-revision—-1_en.pdf.

Maass C, Stokes CL, Griffith LG, Cirit M. Multi-functional scaling methodology
for translational pharmacokinetic and pharmacodynamic applications using
integrated microphysiological systems (MPS). Integrative Biology.
2017;9(4):290-302. doi:10.1039/c6ib00243a.

Docci L, Milani N, Ramp T, Romeo AA, Godoy P, Franyuti DO, et al.
Exploration and application of a liver-on-a-chip device in combination with
modelling and simulation for quantitative drug metabolism studies. Lab on a
Chip. 2022;22(6):1187-1205. d0i:10.1039/d11c01161h.

Fowler S, Chen WLK, Duignan DB, Gupta A, Hariparsad N, Kenny JR, et al.

Microphysiological systems for ADME-related applications: current status and

recommendations for system development and characterization. Lab on a Chip.
2020;20(3):446-467. doi:10.1039/c91c00857h.

Maass C, Sorensen NB, Himmelfarb J, Kelly EJ, Stokes CL, Cirit M.
Translational Assessment of Drug-Induced Proximal Tubule Injury Using a
Kidney Microphysiological System. CPT: Pharmacometrics & Systems
Pharmacology. 2019;8(5):316-325. d0i:10.1002/psp4.12400.

Herland A, Maoz BM, Das D, Somayaji MR, Prantil-Baun R, Novak R, et al.
Quantitative prediction of human pharmacokinetic responses to drugs via
fluidically coupled vascularized organ chips. Nature Biomedical Engineering.
2020;4(4):421-436. doi:10.1038/s41551-019-0498-9.

Tsamandouras N, Kostrzewski T, Stokes CL, Griffith LG, Hughes DJ, Cirit M.
Quantitative Assessment of Population Variability in Hepatic Drug Metabolism
Using a Perfused Three-Dimensional Human Liver Microphysiological System.
Journal of Pharmacology and Experimental Therapeutics. 2016;360(1):95-105.
doi:10.1124/jpet.116.237495.

Kanebratt KP, Janefeldt A, Vilén L, Vildhede A, Samuelsson K, Milton L, et al.

Primary Human Hepatocyte Spheroid Model as a 3D In Vitro Platform for
Metabolism Studies. Journal of Pharmaceutical Sciences. 2021;110(1):422-431.
doi:10.1016/j.xphs.2020.10.043.

Bonn B, Svanberg P, Janefeldt A, Hultman I, Grime K. Determination of Human
Hepatocyte Intrinsic Clearance for Slowly Metabolized Compounds: Comparison
of a Primary Hepatocyte/Stromal Cell Co-culture with Plated Primary
Hepatocytes and HepaRG. Drug Metabolism and Disposition.
2016;44(4):527-533. doi:10.1124/dmd.115.067769.

Rajan SAP, Sherfey J, Ohri S, Nichols L, Smith JT, Parekh P, et al. A Novel
Milli-fluidic Liver Tissue Chip with Continuous Recirculation for Predictive
Pharmacokinetics Applications. The AAPS Journal. 2023;25(6).
doi:10.1208/512248-023-00870-x.

Poulin P, Haddad S. Hepatocyte Composition-Based Model as a Mechanistic
Tool for Predicting the Cell Suspension: Aqueous Phase Partition Coefficient of
Drugs in In Vitro Metabolic Studies. Journal of Pharmaceutical Sciences.
2013;102(8):2806-2818. doi:10.1002/jps.23602.

March 27, 2024

18/]19

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526


https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-drug-interactions-revision-1_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-drug-interactions-revision-1_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-drug-interactions-revision-1_en.pdf
https://doi.org/10.1101/2024.03.28.587123
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.28.587123; this version posted March 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

22.

23.

24.

25.

Austin RP, Barton P, Mohmed S, Riley RJ. The Binding of Drugs to
Hepatocytes and its Relationship to Physiochemical Properties. Drug Metabolism
and Disposition. 2004;33(3):419-425. doi:10.1124/dmd.104.002436.

Mateus A, Matsson P, Artursson P. Rapid Measurement of Intracellular

Unbound Drug Concentrations. Molecular Pharmaceutics. 2013;10(6):2467-2478.

doi:10.1021/mp4000822.

Kuepfer L, Niederalt C, Wendl T, Schlender J, Willmann S, Lippert J, et al.
Applied Concepts in PBPK Modeling: How to Build a PBPK/PD Model. CPT:
Pharmacometrics & Systems Pharmacology. 2016;5(10):516-531.
d0i:10.1002/psp4.12134.

Borgstrom L, Johansson CG, Larsson H, Lenander R. Pharmacokinetics of
propranolol. Journal of Pharmacokinetics and Biopharmaceutics.
1981;9(4):419-429. doi:10.1007/bf01060886.

March 27, 2024

19/]19

527

528

529

530

531

532

533

534

535

536

537

538

539


https://doi.org/10.1101/2024.03.28.587123
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Methods
	Data
	DigiLoCs: Digital Twins for cell-based liver assays
	Implementation of hardware specifications
	Implementation of biological specifications 
	Implementation of compound-specific information 

	Mathematical model
	Parameter Estimation
	Implementation of software

	Sensitivity Analysis
	Translation to Humans
	Prediction of Human Pharmacokinetics

	Results
	Simulating compound depletion on-chip
	Sensitivity analysis
	Predicting Human Clearance
	Translation to Human PK

	Discussion
	Conclusion

