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Abstract

Digital twins, driven by data and mathematical modelling, have emerged as powerful
tools for simulating complex biological systems. In this work, we focus on modelling the
clearance on a liver-on-chip as a digital twin that closely mimics the clearance
functionality of the human liver. Our approach involves the creation of a
compartmental physiological model of the liver using ordinary differential equations
(ODEs) to estimate pharmacokinetic (PK) parameters related to on-chip liver clearance.

The objectives of this study were twofold: first, to predict human clearance values,
and second, to propose a framework for bridging the gap between in vitro findings and
their clinical relevance. The methodology integrated quantitative Organ-on-Chip (OoC)
and cell-based assay analyses of drug depletion kinetics and is further enhanced by
incorporating an OoC-digital twin model to simulate drug depletion kinetics in humans.

The in vitro liver clearance for 32 drugs was predicted using a digital-twin model of
the liver-on-chip and in vitro to in vivo extrapolation (IVIVE) was assessed using time
series PK data. Three ODEs in the model define the drug concentrations in media,
interstitium and intracellular compartments based on biological, hardware, and
physicochemical information. A key issue in determining liver clearance appears to be
the insufficient drug concentration within the intracellular compartment. The digital
twin establishes a connection between the hardware chip structure and an advanced
mapping of the underlying biology, specifically focusing on the intracellular
compartment.

Our modelling offers the following benefits: i) better prediction of intrinsic liver
clearance of drugs compared to the state-of-the-art model and ii) explainability of
behaviour based on physiological parameters. Finally, we illustrate the clinical
significance of this approach by applying the findings to humans, utilising propranolol
as a proof-of-concept example. This study stands out as the biggest cross-organ-on-chip
platform investigation to date, systematically analysing and predicting human clearance
values using data obtained from various in vitro liver-on-chip systems.

Author summary

Accurate prediction of in vivo clearance from in vitro data is important as inadequate
understanding of the clearance of a compound can lead to unexpected and undesirable
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outcomes in clinical trials, ranging from underdosing to toxicity. Physiologically based
pharmacokinetic (PBPK) model estimation of liver clearance is explored. The aim is to
develop digital twins capable of determining better predictions of clinical outcomes,
ultimately reducing the time, cost, and patient burden associated with drug
development. Various hepatic in vitro systems are compared and their effectiveness for
predicting human clearance is investigated. The developed tool, DigiLoCs, focuses
explicitly on accurately describing complex biological processes within liver-chip systems.
ODE-constrained optimisation is applied to estimate the clearance of compounds.
DigiLoCs enable differentiation between active biological processes (metabolism) and
passive processes (permeability and partitioning) by incorporating detailed information
on compound-specific characteristics and hardware-specific data. These findings signify
a significant stride towards more accurate and efficient drug development methodologies.

1 Introduction 1

The drug testing dilemma presents a significant challenge in pharmaceutical 2

development, marked by high costs and a distressing attrition rate in accurately 3

predicting human responses [1, 2]. A pivotal element in preclinical drug development is 4

the accurate estimation of the first-in-human dose and different dosing regimens to keep 5

drug levels within a therapeutic range. This demands precise assessments of hepatic 6

clearance and human pharmacokinetics [3, 4]. Typically, the gold standard in drug 7

development is the use of simpler in vitro systems to study drug metabolism, including 8

liver microsomes [5] and suspension or plated hepatocytes [6]. The drug depletion data 9

(time-concentration profile) are then analysed to determine the in vitro clearance rate. 10

A very simple mathematical model is employed that considers the in vitro system as a 11

single compartment, the one-compartment PK model [7]. Well-mixing and 12

instantaneous drug distribution is assumed, all biological processes, e.g., permeability 13

and partitioning from cell culture media into intracellular milieu are lumped into drug 14

clearance. This approach also cannot differentiate between compounds actually being 15

metabolised and compounds bound to media proteins or hardware. The so determined 16

in vitro clearance value is then extrapolated to humans (in vitro – in vivo extrapolation) 17

and integrated into human physiologically-based pharmacokinetic (PBPK) models [4, 8] 18

to predict human pharmacokinetics (absorption, distribution, metabolism and excretion 19

(ADME)), before actually testing a new compound in humans. Although this approach 20

is well-established in drug development and easy to use, it also systematically 21

underpredicts human PK [9] by 5-10 fold across studies and compounds. 22

Microphysiological systems (MPS) and organ-on-chips as well as 3D organoids hold 23

great promise to address more complex in vitro ADME, toxicology and pharmacology 24

questions offering miniature, biomimetic systems that replicate key aspects of human 25

organ physiology [10, 11, 12]. These technologies create an environment where human 26

cells can grow and interact in an organ-specific context, providing insights into human 27

biology and disease that were previously unattainable in conventional in vitro models or 28

animal studies. OoC and MPS-based systems are already used in today’s drug 29

development for PK, but also for assessing drug efficacy and toxicity [13, 14, 10, 15]. 30

While the emulated in vitro biology of MPS and OoCs is getting ever more complex and 31

produces more human-relevant data, these systems still fall short in considerably 32

improving the prediction power of in-human situations, like PK [16, 13]. However, MPS 33

and OoC data are also still analysed using the state-of-the-art mathematical model 34

(one-compartment), that is not accounting for the advanced biology. It remains unclear 35

whether the OoC and MPS biology is still not human-relevant enough (and thus 36

producing human-relevant data) or the state-of-the-art mathematical analysis is the 37

cause for the underprediction. Potentially, a digital twin framework that enables the 38
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mapping of complex on-chip biology to advanced mathematical models could provide a 39

useful approach to enable OoC and MPS translation to humans and increase the 40

prediction power but is currently lacking. 41

The current study aimed at developing a digital twin approach integrating MPS and 42

OoC data within advanced computational models of biology to improve the prediction 43

of clinical clearances. DigiLoCs, our developed digital liver-chip simulator, facilitates 44

the accurate description of on-chip complex biology. The tool comprises and utilises 45

information on complex biological processes (clearance, permeability, partitioning), 46

hardware-specific information from the studied in vitro system, and compound-specific 47

information. By accounting for more multi-dimensional information, the tool enables 48

differentiation between active biological processes, such as metabolism, and passive ones, 49

such as permeability and partitioning of a compound from cell culture media into the 50

cellular milieu. This contrasts with state-of-the-art approaches, where passive biological 51

processes are not considered specifically and lumped together into a single process, i.e., 52

clearance. Drug depletion kinetics of 32 compounds were taken from literature covering 53

commercially available liver-on-chips (CnBio [13, 17], Javelin), and 3D spheroids 54

[18, 19], including fast and slow-cleared compounds. According to these studies, 55

DigiLoCs outperform the state-of-the-art prediction approach considerably. The impact 56

of a more accurate description of clinical clearance values on predicting human PK was 57

investigated in a proof-of-concept study using propranolol. The kinetics of propranolol 58

was predicted in humans using the state-of-the-art, DigiLoCs, and literature approach. 59

The results obtained from DigiLoCs for propranolol in the proof-of-concept study were 60

much closer to the actual observed human values as compared to other approaches. 61

To the best knowledge of the authors, this is the first and biggest study so far, 62

comparing head-to-head the performance of different hepatic in vitro systems to predict 63

human clearance and demonstrating the impact OoC and MPS systems can have, in the 64

drug development process enhanced through the modelling and prediction features of 65

DigiLoCs. 66

2 Methods 67

In this section, we describe the following: i) data used in the study for predicting 68

human clearance, ii) DigiLocs, digital twin for liver-on-chip, iii) mathematical model, 69

parameter estimation and sensitivity analysis for DigiLocs, and iv) translation to 70

humans and prediction of human pharmacokinetics. 71

2.1 Data 72

In this work, published data on pharmacokinetics (metabolism) or toxicology studies of 73

32 drugs are used (See Table 1) to predict human pharmacokinetics. 74

2.2 DigiLoCs: Digital Twins for cell-based liver assays 75

DigiLoCs is a software tool that describes the on-chip complex biology more accurately 76

in the context of use to predict clinical clearance values. The software comprises (Fig 1): 77

• modelling of complex biological processes (clearance, permeability, partitioning), 78

• hardware-specific information from the studied in vitro system and 79

• compound-specific information. 80

The tool differentiates between active biological processes, such as metabolism, and 81

passive ones, like permeability and partitioning of a compound from cell culture media 82
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Study Drugs
Used in
this
study

In vitro system
cell

number
[a.u.]

Media
volume
[ml]

Flow Compartments

Docci et al. 2022 [13] 9 9 CnBio Liver-Chip 3E5 1.60 Recirculation 1
Tsamandouras et al. 2017 [17] 6 3 CnBio Liver-Chip 3E5 1.60 Recirculation 1
Rajan et al. 2023 [20] 12 8 Javelin Liver-Chip 2.15E5 1.30 Recirculation 2
Kanebratt et al. 2021 [18] 4 4 3D Spheroid (Hurel) 6E3 0.05 No 1
Bonn et al. 2016 [19] 8 8 3D Spheroid (Hurel) 3E4 0.10 No 1
Total 38 32

Table 1. Overview of literature reports providing on-chip pharmacokinetic information
on compound clearance

into the cellular milieu. This contrasts with state-of-the-art approaches, where passive 83

biological processes are not considered especially and lumped together into a single 84

process, i.e., clearance.

Fig 1. Digital Twin (DT) Approach. Contrasting state-of-the-art, the DT approach
uses biological, hardware, and physicochemical information to map the biological
processes on-chip more accurately to in silico, thereby maximising the information
leveraged. This results in the disentanglement of active (metabolism) and passive
(permeability, partitioning) processes.

85

Liver-on-chip technology provides a more physiologically relevant environment 86

compared to traditional cell cultures or animal models, enhancing the simulation of 87

drug responses using mathematical models. Hence, a more accurate mathematical 88

description is needed. The three primary compartments of the liver chip considered in 89

the model are media, interstitium, and intracellular space, which serve as dynamic 90

environments where drugs are distributed, metabolised, and interact with hepatic cells. 91

This compartmentalisation is based on concepts applied in human whole-body PBPK 92

modelling. 93

The software tool is developed in the open-source programming language R and 94

seamlessly communicates with PK-Sim 95

(https://www.open-systems-pharmacology.org/) via in-house developed functions. 96

For more information, see esqlabsR package 97

(https://github.com/esqLABS/esqlabsR). All analysis and plotting were done in the 98

open-source programming language R. Moreover, the proposed workflow does not 99

interfere with existing wet lab Standard Operating Procedures (SOPs) for performing 100
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biological experiments and does not add an extra considerable burden to the user. 101

DigiLoCs uses existing biological data, and its performance may be improved by 102

measuring cell-associated compound concentrations in addition to the compound media 103

depletion time course, which would add a minor extra step in the lab SOP. This, 104

however, is negligible given the improvement in performance power and the confidence 105

in the prediction. 106

2.2.1 Implementation of hardware specifications 107

DigiLoCs map the chip architecture to a compartmental model to describe the 108

time-dependent distribution of a compound on-chip. The compartment models use 109

time-dependent ordinary differential equations (ODEs) and assume well-mixing within 110

compartments. These are generally accepted to describe the distribution of exogenous 111

and endogenous compounds and molecules. 112

A physical chamber separated by a membrane or connected by flow to another 113

chamber is represented by a compartment in the software. Serial compartments are 114

connected via concentration-dependent flow rates (typically in ml/min) between the 115

compartments and normalised by the volume of the originating compartment. 116

2.2.2 Implementation of biological specifications 117

The biology (more precisely, the cell type exerting the biological function under 118

investigation; here: metabolism) is mapped by two additional compartments 119

representing the interstitial and intracellular space of the investigated biology (Fig 1). 120

Transition rates from the cell culture media into the interstitial and intracellular milieu 121

are described by two core processes: 122

• permeability (cm/min, how fast is a compound taken up?) 123

• partitioning (how much of the compound is taken up by cells?) 124

These processes are proportional to the time-dependent concentration of the compound 125

and the surface area shared between the channels and the cell layer. Lastly, the 126

metabolism rate is allocated at the intracellular compartment and corrected by the 127

unbound fraction of the compound in the intracellular compartment. Similar to the 128

compartmental structure are these core processes accepted in describing the distribution 129

of compounds in a pharmacokinetic framework. 130

2.2.3 Implementation of compound-specific information 131

The following physicochemical properties of the investigated compounds are used in the 132

software: i) lipophilicity (logP), ii) molecular weight (MW) and iii) fraction unbound 133

(fu); to calculate up to six dependent downstream parameters (listed below). These 134

parameters describe the partitioning from the main media compartment into the 135

interstitial space and between the water fraction and both interstitial and intracellular 136

space. Additionally, permeability across the endothelial barrier and between interstitial 137

and intracellular spaces is calculated. 138

Partitioning: i) Kint pls ii) Kwater cell iii) Kwater int 139

Permeability: i) Pendothelial ii) PAcell int iii) PAint cell 140

Here int refers to interstitial space, pls refers to media, water refers to water 141

exchange fraction, and cell refers to intracellular space. These parameters are calculated 142

based on well-established and documented equations implemented in PK-Sim [3]. The 143

same partition coefficient calculation methods as implemented in PK-Sim are also 144

readily available and can be investigated: 145
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• PK-Sim standard 146

• Poulin and Theil 147

• Rodgers and Rowland 148

• Schmitt 149

• Berezhkovskiy 150

Further, only the unbound fraction of a compound can be taken up by cells and be 151

metabolised by cells. The unbound fraction in the cell culture media is typically 152

informed by biological experiments. However, the intracellular unbound fraction is not 153

often available or measured. Thus, two established QSAR models (quantitative 154

structure-activity relationship) are implemented in the software to predict the unbound 155

intracellular fraction of the investigated compound as a function of its physicochemical 156

properties [21, 22]. 157

2.3 Mathematical model 158

A typical single-compartment model is described as: Let C(t) be the drug concentration
in the chip at time t, V the volume of the chip, and CLc the clearance parameter. Then
we have

dC

dt
= −CLc

V
· C,

with initial value C(t = 0) = C0. The solution to this ODE is

C(t) =C0 · e−
CLc
V ·t. (1)

Taking the logarithm on both sides,

log C(t) =− CLc

V
· t+ C0, (2)

which is equivalent to regression on log-transformed kinetic data. 159

We developed a digital twin of liver-on-chip with three compartments that
incorporates much more information on parameters related to both on-chip
characteristics and drug-specific properties. The three-compartment model considering
media, interstitium and intracellular compartment are described as follows: Let
Cp(t), Ci(t), Cc(t) and Vp, Vi, Vc be the concentration of the drug at time t, and volume
of the plasma, interstitium, and intracellular compartment respectively. CLc is the
clearance parameter. Then we have

dCp

dt
= − k1

Vp
· Cp +

k2
Vp

· Ci; (3)

dCi

dt
=

k1
Vi

· Cp −
(
k2 + k3

Vi

)
· Ci +

k4
Vi

· Cc; (4)

dCc

dt
=

k3
Vc

· Ci −
(
k4
Vc

+CLc

)
· Cc. (5)

The parameters here are defined as follows,

k1 =fu · Pendothelial · SApls int liver, (6)

k2 =
k1

Kint pls
,

k3 =Kwater int · PAint cell and

k4 =Kwater cell · PAcell int.
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where Kint pls is the rate constant for the transfer of drug between the plasma and 160

interstitium, Pendothelial is the permeability coefficient of the drug between the 161

endothelial layer, SApls int liver is the surface area of the interstitium, Kwater int is the 162

rate constant for water exchange or movement within the interstitium, Kwater cell is the 163

rate constant for water exchange or movement within the intracellular compartment, 164

PAcell int is the permeability coefficient of the cellular membrane in the intracellular 165

compartment, PAint cell is the permeability coefficient of the cellular membrane in the 166

interstitium compartment and fu is the fraction unbound (plasma, reference value). 167

We can write this system of linear ODEs in matrix form,

C ′ =A · C, where (7)

A =


− k1

Vp

k2

Vp
0

k1

Vi
−
(

k2+k3

Vi

)
k4

Vi

0 k3

Vc
−
(

k4

Vi
+CLc

)
 .

The general solution for the system of ODEs at time t:

C(t) =eA·t = eX·Λt·X−1

· C0 = X · eΛt ·X−1 · C0, (8)

where X is the matrix of eigenvectors of A, Λ is the diagonal matrix with eigenvalues 168

λ1, λ2, λ3 as diagonal entries, and C0 is the initial value of variables at time 0. 169

The objective function for optimisation is as follows: 170

minimise
CLc

n∑
i=1

(yiobs − yia)
2


yia = eA·ti · C0

computed using eigenvalues

and eigenvectors with constraints

on parameters,

where yiobs is the observed data point and yia is the computed value using the 171

eigenvalues and eigenvectors at the time i respectively, n is the number of observed data 172

points. 173

2.4 Parameter Estimation 174

Parameter estimation aims to find unknown parameters in a computational model and 175

is estimated using experimental data collected from well-defined and standard 176

conditions. By minimising the distance of theoretical function values and experimentally 177

known data, the set of parameters in the model can be estimated. The parameters 178

which are not directly measurable can be estimated using least squares or any other 179

fitting methods to analyse the model quantitatively. Nominal parameter values are 180

obtained from PK-Sim, which is a comprehensive software tool for whole-body PBPK 181

modelling. It enables rapid access to all relevant anatomical and physiological 182

parameters for humans and common laboratory animals contained in the integrated 183

database for model building and parameterisation. 184

Parameter estimation in DigiLoCs is a two-step process. Firstly, a customised cost 185

function is implemented. This cost function calculates the weighted difference (ssq) 186

between the model simulation (pred) from a specific compartment and the 187

corresponding observed data (obs) for each time point according to: 188

ssq =
obs− pred

pred
. (9)

Common parameter estimation methods include maximum likelihood estimation and 189

Nelder Mead optimisation. Nelder Mead, a non-linear optimisation method, is used to 190
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find the minima of the objective function in this work. Additionally, the partition 191

coefficient between the intracellular (IC) and the main media compartment is estimated 192

using the area under the simulated time-concentration profile of the IC and interstitial 193

(IST) compartment and corrected for by the QSAR-predicted cellular unbound fraction 194

(fucell) and the unbound fraction in the media (measured, fumedia): 195

Kpuu,pred =
AUC(IST + IC)

AUC(media)
· fucell
fumedia

. (10)

Kpuu,obs is calculated from literature [23], where media and intracellular 196

concentrations in hepatocytes were determined. Initially investigated for suspension 197

hepatocytes in a 2D setting, the authors provide a scaling factor (∼4.9) to apply to 198

human hepatocytes. Further, the ionisation state of the investigated compound (-1, 0, 1) 199

results in a different partitioning. Otherwise, a range of possible partition coefficients 200

are investigated. This is an additional anchor point for estimating the cost function 201

value and links the simulated intracellular and main media compartment concentrations. 202

Eventually, both differences are squared and summed up, resulting in the final sum of 203

residuals. Based on this, a compound-specific scaling factor (SF) is calculated and used 204

to scale the predicted human clearance: 205

SF(drug) =
Kpuu,obs
Kpuu,pred

. (11)

Specifically for the liver use cases, on-chip liver clearance and surface area between 206

the main plasma compartment and the cell layer are estimated. It is possible to estimate 207

other parameters, such as pre-calculated permeability or partition coefficient values. 208

2.4.1 Implementation of software 209

Methodologically, DigiLoCs is implemented in the open-source programming 210

environment R with its own package. A library of two common chip architectures and 211

two cell types with six different chip-specific settings are already implemented: 212

1. One chamber, no media flow 213

2. Two chamber, recirculating flow 214

3. Organ-on-chip (hepatocytes) 215

a. CnBio 216

b. Hurel 1 217

c. Hurel 2 218

d. Dynamic42 219

e. Javelin 220

These building blocks can be interchangeably used and connected, similarly to the 221

building blocks in PK-Sim. While the R code and its package provide a step-by-step 222

guide to generate and run a simulation, the code communicates seamlessly with a 223

generic PK-Sim model to determine partitioning and permeability values as described 224

above, which are used in the simulation. 225
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2.5 Sensitivity Analysis 226

Both local and global sensitivity analyses are used to quantify the impact of input 227

parameters on the output variables. This involves varying certain input parameters and 228

observing changes in the output variable, intracellular concentration. The local 229

sensitivity is estimated by changing one input parameter at a time while other 230

parameters are held constant. The study provides insights into the sensitivity of various 231

parameters and how they affect the output of the model. 232

The input parameters Kint pls, Pendothelial, SApls int liver, Kwater int, Kwater cell,
PAcell int, PAint cell, fu and CLc are varied to evaluate the sensitivity of the output
variable intracellular concentration (Cc). First, the local sensitivity is estimated by
changing one input parameter by 10% at a time while the other parameters are held
constant, and the changes in output variable Cc are compared. Eq 12 shows the local
sensitivity index for Cc with respect to the varying model parameter (Pi ), which is
approximated by a small perturbation ∆Pi,

δCc

δPi
= lim

∆Pi→+0

Cc(Pi +∆Pi,Pn ̸=i)− Cc(Pi)

∆Pi
, (12)

where Cc(P) is the model prediction of the intracellular concentration for parameter set
P. The local sensitivity index is normalised to eliminate the effect of units:

Si =
δCc

δPi

Pi

Cc(P)
. (13)

Global sensitivity analysis evaluates the effect of potential interactions of the input 233

parameters in an output variable. The Sobol sensitivity analysis of the SALib package 234

in Python is used to perform the global sensitivity analysis. Input parameters are 235

sampled using the Saltelli sampler. The lower and upper bound of the parameters are 236

set as 0.1-fold and 10-fold of the baseline parameter values, respectively. The first-order 237

and total-order indices are estimated using the Sobol sensitivity analysis. 238

2.6 Translation to Humans 239

Drug-related parameters extracted from OoC or any other in vitro studies can be scaled
to predict clinical parameters using in vitro-in vivo translation (IVIVT) [17, 13]. The
typical value of unbound intrinsic clearance CLint(u) determined for each drug from the
pharmacokinetic analysis of the in vitro depletion data is scaled up to a human liver
equivalent unbound intrinsic clearance CLint(u),H using

CLint(u),H =
CLint(u) ·HC · LW

fuinc
, (14)

where HC is the human hepatocellularity of 120 million cells / g of liver, LW is the 240

average human liver weight of 25.7g / kg of body weight [17] and fuinc is the unbound 241

fraction of drug in the incubation medium. The hepatic clearance (referring to whole 242

blood concentrations) is then predicted (CLH,pred) using the Well-Stirred (WS) model: 243

CLH(pred,WS) =
QH · fub · CLint(u),H

QH + fub · CLint(u),H
, (15)

where QH the average hepatic blood flow of 20.7 mL/min/kg of body weight and fub is 244

the fraction of the drug unbound in blood. The fraction unbound in the blood (fub) was 245

calculated for each compound from the known fraction unbound in the plasma (fup) and 246

blood-to-plasma ratio (Rbp) according to the equation fub = fup/Rbp or directly used, 247

if available from the literature. The predicted hepatic clearance, CLH,pred values were 248

then compared to observed hepatic clearance, CLH,obs values (referring to whole blood 249

concentrations). 250
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Fig 2. Translational workflow plan that integrates results from organ-on-chip with
computer modelling to predict the kinetics of drugs in humans. The digital twins of the
humanised organ-on-chip systems together with chip-specific information and
physicochemical information are developed in R.

2.7 Prediction of Human Pharmacokinetics 251

First, a physiologically-based kinetic model (PBK) is developed using qualified 252

installations of the PBK software PK-Sim. A whole-body PBK model includes an 253

explicit representation of the organs most relevant to the uptake, distribution, excretion, 254

and metabolism of the drug. These typically include the heart, lungs, brain, stomach, 255

spleen, pancreas, intestine, liver, kidney, gonads, thymus, adipose tissue, muscles, bones, 256

and skin. More information can be found in S1 Text. 257

The tissues are interconnected by arterial and venous blood compartments, and each 258

is characterised by an associated blood flow rate, volume, tissue partition coefficient, 259

and permeability. If applicable, R (Distribution 4.0) and RStudio (Version 1.2.5) are 260

used in the analysis for preprocessing and post-processing of data and model outputs 261

[24]. The analytical approach is based on the principles set out in the guidelines of the 262

EMA, FDA, and/or OECD for reporting on PBK M&S [11]. The developed PBK model 263

is used to describe the human kinetics of propranolol. Key kinetic parameters are 264

informed by either clinical data, literature values or on-chip predictions. The 265

translational workflow that integrates organ-on-chip results to predict human 266

pharmacokinetics is shown in Fig 2. 267

3 Results 268

The liver clearance and surface area of the chip are estimated after fitting the drug 269

kinetic data. This section describes the following: digital twin-based model simulations 270

for selected compounds, sensitivity analysis results, predicting human clearance, and 271

translation to human PK using propranolol as a proof-of-concept study. The Poulin and 272

Theil method of partition coefficient calculation was used due to its superior fit to 273

observed drug kinetics, as evidenced by lower residual error (data not shown), 274

outperforming alternative methods. 275
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3.1 Simulating compound depletion on-chip 276

The digital twins for the investigated in vitro liver systems were successfully 277

implemented in R and used to simulate the on-chip kinetics. After parameter 278

estimation, the resulting model simulations describing the observed compound depletion 279

data were visually inspected. The final parameter values can be found in Tables A and 280

B in S1 Text. Additionally, the squared sum of residuals was evaluated and deemed 281

acceptable < 0.01, which was the case for all simulations (data not shown). An example 282

of on-chip kinetics is presented in Fig 3. As can be seen, the digital twin approach

Fig 3. Digital twin-based model simulation of on-chip kinetics after fitting parameters
for selected compounds; diclofenac, midazolam, and oxazepam are from Docci et al. [13],
while propranolol is from Tsamandouras et al. [17]; IC = intracellular, Ist =
interstitium.

283

(violet line) captures the on-chip kinetics (blue dots) very well. Simultaneously, the 284

intracellular (IC) kinetics are plotted (red lines), clearly highlighting the difference in 285

compound uptake and, thus clearance rates. The remaining figures are presented in S1 286

Text (See Figs A-D). 287

3.2 Sensitivity analysis 288

The sensitivity analysis, both local and global, was conducted to quantify the sensitivity 289

of model output intracellular concentration with input parameters. The analyses were 290

performed for various parameters, and the results indicated that the output is more 291

sensitive to parameters such as the permeability coefficient of the endothelial layer, 292

surface area of the liver sinusoids, and clearance. 293

These parameters were estimated or calculated from experimental results. Clearance 294

(CLc) is identified as the most sensitive parameter with respect to intracellular 295

concentration. The results imply that accurate values of these sensitive parameters are 296

crucial for the model’s accuracy. 297

The normalized local sensitivity indices (Fig 4a) and the first-order and total-order 298

global sensitivity indices (Fig 4b) for intracellular concentration across the input the 299
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(a) Local sensitivity analysis (b) Global sensitivity analysis

Fig 4. Local and global sensitivity of the parameters with respect to output intracellular concentration. (a) Blue bars
indicate that the output and the input change in the same direction and the red bar indicates that the output decreases when
the input increases. (b) The blue and orange bars represent first-order and total-order indices, respectively.

parameter set is shown. The results from both local and global sensitivity analyses 300

shows that the output is more sensitive to parameters Pendothelial, SApls int liver, fu and 301

CLc. These parameters were estimated or calculated from experimental results. 302

Clearance (CLc) is the most sensitive parameter with intracellular concentration. 303

SApls int liver and CLc were estimated and nominal values were used for all other 304

parameters. SA results imply that we need correct values of the constants Pendothelial, fu 305

as they are more sensitive. 306

3.3 Predicting Human Clearance 307

Following, the on-chip estimated clearance values were translated to total human 308

clearance according to Eq 15. More detailed information is available in S1 Text (see 309

Table A and B). Likewise, from the investigated studies (Table 1), in vitro unbound 310

clearance values were available and scaled to human equivalents. 311

Following, the ratio of clinical observed human clearance values and either predicted 312

human clearances using state-of-the-art mathematical modelling or the digital twin 313

approach were estimated and converted into a density function for easier graphical 314

visualisation. As can be seen in Fig 5, the digital twin approach (DigiLoCs) 315

outperforms the standard approach considerably. The center of the distribution is 316

around 1 indicating a non-biased prediction of clinical clearance values, while the width 317

of the distribution is very small. Quantitatively, the ratio for the digital twin approach 318

over all compounds is 1.04 ± 0.31, with a coefficient of variation of 30%. In contrast, 319

the standard approach (blue curve) majorly under-predicts the clearance values while 320

maintaining a broad distribution and thereby adding to uncertainty in the prediction 321

(0.56 ± 0.44, CV = 79.3%). The correlation plot between the observed and herein 322

predicted clinical clearance values highlights on a drug-individual level the improved 323

prediction performance of the DigiLoCs approach. As can be seen in Fig 6 (example 324

graph for CnBio Liver-on-Chip data), most of the compounds fall within the 1.5-fold 325
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Fig 5. Impact of DigiLoCs on predicting clinical clearance values compared to the
state-of-the-art approach. In total, a set of 32 compounds across three different in vitro
liver-systems have been investigated. The x-axis presents the ratio of predicted/observed
clinical clearance values using either the DigiLoCs or the state-of-the-art approach.

line (Average fold error, AFE = 0.965). Similar correlation plots are presented in the S1 326

Text (See Figs E-G) for the other in vitro systems. 327

3.4 Translation to Human PK 328

We assessed the impact of accurately predicting human clearance values based on in 329

vitro cell-based assays on predicting human PK, using propranolol as a proof-of-concept 330

case study. First, a human PBPK model describing the human kinetics of propranolol 331

was implemented in PK-Sim and qualified with clinical observations. Next, the 332

predicted human clearance value using either the state-of-the-art modelling approach or 333

based on the same on-chip kinetic data, was implemented in the human PBPK model 334

simulating the kinetics after a single oral dose. Further, a population of n = 1000 335

patients was simulated to account for inter-patient variability. As shown in Fig 5, the 336

implemented human PBPK model describes observed clinical data well (using clinical 337

clearance values). When substituting only the clearance value with the state-of-the-art 338

or the digital twin-based values, the impact on simulating human PK becomes apparent, 339

while the standard approach would overpredict (i.e., the on-chip clearance is 340

underpredicted) the human PK (3-fold Cmax, up to 6-fold overprediction of AUC). 341

Moreover, this approach would actually simulate non-negligible concentrations of 342

propranolol left over after 24 h. For repeated daily dosing, this would result in 343

accumulation of propranolol in this hypothetical setting, which would have immediate 344

implications for potential toxicity or efficacy considerations. On the other hand, the 345

digital-twin based approach still slightly overpredicts the AUC and Cmax, however only 346

by 1.5-fold and captures the terminal phase correctly. 347
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Fig 6. Correlation between observed and predicted in vivo intrinsic clearance (CLint)
using three-compartment ODE liver chip for 12 drugs from (Docci et al. 2022;
Tsamandouras et al. 2017). The solid line shows the line of unity, while dotted line is
1.5-fold and dashed line is 3-fold deviation.

4 Discussion 348

The aim of this work is to improve the current prediction of human clearance values and 349

to present a framework for translating in vitro findings to relevant clinical situations. 350

The presented integrated translational approach combined quantitative OoC and 351

cell-based assay compound depletion kinetics with an OoC-digital twin to simulate drug 352

kinetics in humans. 353

Initial investigations revealed the potential to describe clinical clearance values more 354

appropriately than is currently possible with the state-of-the-art approach. This simpler 355

approach lumps biological processes together into a single process – clearance – and uses 356

only minimal information available, e.g., only the cell number and media volume. While 357

biological systems have evolved rapidly in the last decade, especially in the field of 358

organ-on-chip and microphysiological systems, the applied mathematical models to 359

analyse the quantitative complex biological data have been the same for decades (early 360

concept of clearance was introduced by Möllers in 1928, while well-stirred model is 361

1971). 362

In contrast, the developed digital twin approach for the organ-on-chip and 3D 363

spheroids comprises three building blocks: biological, hardware, and physicochemical 364

information. The distinction between active and passive processes is achieved by an 365
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Fig 7. Simulated kinetics of propranolol after a single oral dose (80 mg). Pink dots are
clinical observation (digitised from Borgström et al. [25]), while the blue solid line
represents the mean of the patient population using the clinical observed clearance
value. When using the state-of-the-art based clearance value (red line), the
area-under-the-curve is 6-fold overpredicted. In contrast, using the digital twin-based
clearance, the AUC is only 1.5-fold overpredicted, also simulating the right kinetics at
24 h (black curve). Shaded areas represent ± 1 SD.

explicit description of uptake, distribution, and metabolism involved in the biological 366

processes. Further, the digital twin links the architecture of the hardware chip with an 367

advanced mapping of the underlying biology (intracellular compartment). The on-chip 368

kinetics for 32 compounds (six compounds were removed from the initial set due to 369

missing information) was well described, highlighting the drug-specific effects on cellular 370

uptake and hence metabolism. Note that this analysis used the same biological 371

information as used in the state-of-the-art approach, no additional biological 372

experiments were needed or performed to improve the outcome of the digital twin 373

approach. 374

The predictive power of organ-on-chip and 3D spheroids over conventional 375

approaches was revealed when the depletion data was analysed with the digital twins 376

(Fig 5). Not only was the systematic underprediction issue resolved, but the uncertainty 377

in prediction was also reduced by a factor of 3 (comparing CVs). 378

Lastly, we aimed to demonstrate the clinical impact of this approach by translating 379

the results to humans using propranolol as a proof-of-concept example. Here, the 380

head-to-head comparison clearly demonstrated the superior power of both quantitative 381

biological data from OoCs and digital twins over state-of-the-art approaches in 382

predicting human PK more appropriately (Fig 7). Although only one compound was 383

used to demonstrate clinical impact, the workflow and process is laid out and easily 384

applicable to other compounds. To the best of our knowledge, this study is the biggest 385

comprehensive report to systematically assess the predictive power of organ-on-chip in 386

the context of use of liver clearance. 387

The mathematical algorithm to determine liver clearance depends on the 388

time-concentration profiles and, if available, on intracellular or cell-associated compound 389

levels. The algorithm minimises a cost function by identifying a clearance value such 390
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that model prediction and data observation match. The cost function takes both the 391

PK profile from cell culture media and the cell-associated levels into account, which is 392

not the case for the state-of-the-art approach. Further, binding of the compound to 393

plastic/hardware of the chips, to proteins contained in the cell culture media, or any 394

other intracellular lipids can be accounted for to accurately determine liver clearance. 395

DigiLocs, further, also does not depend on a scaling factor, which overcomes the 396

systematic underprediction of state-of-the-art approaches (5-10 fold on average across 397

multiple studies). 398

So far, limited information is available from the literature or in-house measurements 399

on the observed partitioning of compounds into the intracellular or cell-associated 400

milieu of hepatocytes. If that data becomes available, it may be incorporated compared 401

to the adjustments made in the software to match the clinical clearance values. If the 402

predicted and observed Kpuu values match, the digital twin approach truly improves the 403

prediction. If there is a discrepancy between these values, the fitting process can be 404

re-run including the observed Kpuu value. This would inform the maximum capacity of 405

the system to metabolise the compound. If this final rate is still lower than the observed 406

clinical clearance value two options are possible to understand and improve the 407

prediction: 408

1. Calculate a correction factor, which is compound-specific and chip-specific and not 409

generic like in the state-of-the-art approaches. 410

2. Investigate other model-specific parameters to optimise, e.g., permeability or 411

partitioning. 412

Although initially developed for hepatic clearance, the mathematical model can be 413

employed for toxicity or efficacy-related questions depending on the context of use. In 414

such a setting, time-concentration profiles will be simulated and linked to other, 415

measured biomarkers (e.g., ATP (adenosine triphosphate), TEER (barrier integrity)) to 416

determine IC50 or EC50 values, and parameters to assess toxicity and efficacy, 417

respectively. Likewise, the same integration of complex biological processes, hardware-, 418

and drug-specific information can be used to model other cell and chip types, e.g., a 419

blood-brain-barrier-chip, which is used to determine the permeability of compounds 420

across the barrier. 421

Eventually, DigiLoCs shall act as decision-support tool for (pharmaceutical) research 422

in estimating the first-in-human doses, assessing human PK, and more importantly, 423

reducing animal experimentation, making drug development efficient, faster, and 424

sustainable. 425

5 Conclusion 426

The development of digital twins for organ-on-chips, reported here, incorporating 427

advanced mathematical equations and leveraging published data, holds great potential 428

to enhance our understanding of drug behaviour and clinical outcomes. The in vitro 429

liver clearance for 32 drugs was predicted using DigiLoCs and a proof-of-concept 430

(translation to human pharmacokinetics) study on propranolol was done. DigiLoCs are 431

envisioned to serve as a decision-support tool for pharmaceutical research, aiding in 432

estimating first-in-human doses, evaluating human pharmacokinetics, and importantly, 433

diminishing reliance on animal experimentation, thereby fostering more efficient, 434

expedited, and sustainable drug development processes. Our approach is generalisable 435

across various physiological contexts and not limited to liver metabolism but may be 436

extended to other organs as well, such as gut metabolism and barrier models such as the 437

brain or placenta. 438
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