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Abstract

Aging is the predominant cause of morbidity and mortality in industrialized countries. The
specific molecular mechanisms that drive aging are poorly understood, especially the
contribution of the microbiota in these processes. Here, we combined multi-omics with metabolic
modeling in mice to comprehensively characterize host—-microbiome interactions and how they
are affected by aging. Our findings reveal a complex dependency of host metabolism on
microbial functions, including previously known as well as novel interactions. We observed a
pronounced reduction in metabolic activity within the aging microbiome, which we attribute to
reduced beneficial interactions in the microbial community and a reduction in its metabolic
output. These microbial changes coincided with a corresponding downregulation of key host
pathways predicted by our model to be dependent on the microbiome that are crucial for
maintaining intestinal barrier function, cellular replication, and homeostasis. Our results
elucidate microbiome—host interactions that potentially influence host aging processes, focusing
on microbial nucleotide metabolism as a pivotal factor in aging dynamics. These pathways could
serve as future targets for the development of microbiome-based therapies against aging.


https://doi.org/10.1101/2024.03.28.587009
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.28.587009; this version posted March 31, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Graphical abstract

Metaboli i

Metamode! Brain

- Homeostasis
09
C'} S Inflammation

Cg_ Liver

Energy

Inflammation

Colon Energy, Homeostasis &

Barrier function

Inflammation

Bloodstream

pithelium

VIV uleJnunwuﬂ T

i  Microbiome : .
Nucleotides ‘ BuiyrateL Galactose ‘ Succinate ‘
o ~ e® o ® o 'Y ] ° ®

O T ' o % L e ‘
e < \ \\)' « ! 8-\ '\.:
EN’J/, N “ 1S 0] ’ ‘ @

Growth & Cooperation _

Created with BioRender.com

Introduction

Aging and aging-related diseases are central contributors to morbidity and mortality in Western
societies '. Although research has identified specific hallmarks of aging ? and revealed the
conservation of aging-associated changes across species and tissues 3, the primary causative
factors of aging remain elusive ?*. The microbiome, comprising a diverse bacterial community
that resides within and on host organisms, is gaining recognition for its significant interplay with
host aging processes. It is implicated in many aging-associated physiological processes *”,
showing notable shifts in its composition as the host ages and exhibiting strong correlations with
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aging-related phenotypes 8. Microbiome transfer experiments revealed that introducing old
microbiota to young hosts induces aging-associated inflammation ¢, whereas transferring young
microbiota to old hosts extends lifespan > and reverses specific aspects of aging in animal
models '. Pathological changes in the host's gastroenteric system, such as obstipation,
constipation, and barrier dysfunction, are comorbidities of many aging-related diseases and
often precede the manifestation of these diseases by many years '*. Moreover, the
aging-associated loss of intestinal barrier function, which facilitates the translocation of living
bacteria and their products into the bloodstream, is implicated as a driver of systemic
inflammaging, a hallmark of aging characterized by a constant low-grade inflammation even
without presence of a detectable pathogen *'41°,

However, it remains unclear which microbiome changes are causes of aging in the host and
which are consequences °. The primary reasons for this uncertainty are the high plasticity and
complexity of the microbiota, which comprise dozens to hundreds of species ¢, the low
species-level conservation of microbes across human cohorts '/, and the myriad of metabolites
through which the microbiota and host can interact '®%. One approach to overcome this
complexity is constraint-based metabolic modeling 2'??; this method builds on in silico
representations of the metabolic networks of individual species—so-called genome-scale
metabolic networks and allows the prediction of metabolic fluxes in individual species 2! or entire
communities %22, This approach enables the integration of different types of omics datasets to
derive context-specific metabolic networks (i.e., networks representing the metabolic state of
particular tissues or cells) ?*. Therefore, several studies have used constraint-based metabolic
modeling to investigate changes in microbiome-host interactions in various diseases #¢ and
identify specific microbial processes linked to therapeutic response 2?7,

In this study, we used tissue transcriptomic, metagenomic, and metabolomic data to elucidate
the metabolic mechanisms through which the gut microbiota could contribute to host aging. We
extensively characterized microbiome—host interactions at the level of global associations
between host transcript levels and microbiome functions and then focused on metabolic
interactions using an integrated metabolic model of the host and the microbiota. Our results
revealed many known interactions between the host and the microbiota and postulated
numerous novel ones. Next we investigated how these interactions change in the context of
aging. We observed a considerable reduction in microbiome metabolic activity with age, which
seemed to be driven by substantial changes in within-microbiota ecological interactions. We
then linked aging-associated changes between the host and the microbiota and found that
aging-regulated genes were highly enriched for microbiome-dependent genes and
model-predicted microbiota-dependent host functions, showing a pronounced suppression with
age. These findings indicate that the microbiome is a major contributor to aging-associated
metabolic decline, which we also observe at the metabolome level and thereby pinpoints
metabolic pathways through which the microbiome may influence aging in the host.
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Results

Taxonomic and functional description of the mouse microbiome

We studied the effects of aging in 52 male wild-type C57BL/6J/Ukj mice, separated into five age
groups between 2 to 30 months old; 2 months corresponds to the stage after the transition from
adolescence to adulthood, and 30 months marks late aging, with a 5% survival rate ?®. We
obtained transcriptome sequencing data for the colon, liver, and brain of these mice, as well as
shotgun (167 Gbp) and long-read sequencing data (13.7 Gbp) for fecal samples, which we used
to reconstruct 181 metagenome-assembled genomes (MAGs) of bacteria comprising their gut
microbiome (Fig. 1A, see Supplementary Figs. 1A-B and Methods). The combined genome size
over all 181 MAGs summed up to 367 Mbp and was distributed across 16,656 scaffolds.
Taxonomic classification with the genome taxonomy database toolkit (GTDB-Tk) 2° assigned
175 MAGs to known taxa by closest phylogenetic placement or average nucleotide identity
value (with the prefix “GCA_” or “GCF_" in Fig. 1A), whereas 6 MAGs could not be assigned
(prefixed “NEW_" in Fig. 1A). Of those 181 MAGs, 25 were considered high-quality drafts
according to established criteria *, and the rest were considered medium-quality drafts. Notably,
we used more stringent cutoffs (280% completeness and <10% contamination) than those
suggested by Bowers et al. ¥ for medium-quality MAGs to require less gap-filling and thus
obtain more reliable metabolic models for downstream analysis (Fig. 1A). Most of the MAGs
were attributed to the phyla Bacillota (previously Firmicutes; n = 97) and Bacteroidota (n = 65).
The reconstructed genomes from rarer phyla included Pseudomonadota (previously
Proteobacteria; n = 9), Cyanobacteriota (previously Cyanobacteria; n = 4), Campylobacterota (n
= 3), Deferribacterota (n = 1), Desulfobacterota (n = 1), and Verrucomicrobiota (n = 1).
Regarding overall abundance, the most abundant MAGs, with a coverage depth >1%, belonged
to Bacteroidota in the families Bacteroidaceae (n = 5) and Muribaculaceae (n = 12). Only three
MAGs in the Lachnospiraceae family (Bacillota) and one in Akkermansiaceae (Verrumicrobiota)
surpassed a 1% coverage depth (Fig. 1A; Supplementary Table S1.2, Supplementary Fig. 1F).
The genome sizes of the MAGs ranged from 0.9 to 6.7 Mbp (Fig. 1A).

To functionally annotate the assembled MAGs, we used gapseq 3' to reconstruct their
corresponding genome-scale metabolic networks. We explored their metabolic diversity with
principal component analysis (Fig. 1B). Principal component (PC) 1 mainly separated the
metabolic models by the completeness score (R* = 0.15) of the underlying MAGs, but it also
separated them by the taxonomic rank “order” (R? = 0.87). The completeness of the MAGs
significantly impacted the prevalence of pathway gaps within the reconstructed models.
Consequently, the occurrence of such gaps (R? = 0.55) and the sizes of the models (R? = 0.84)
or genomes (R? = 0.58) partially accounted for the observed differentiation along the first two
PCs. PC2 separated the metabolic models by the phylum, GC content (R*> = 0.29), and
contamination score (R? = 0.06) of the underlying MAGs. The contamination score was inversely
associated with the number of successfully recovered tRNA genes in the MAGs (R? = 0.17).
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Figure 1: Mouse microbiome and metabolic model characterization. A Phylogenetic tree of the
181 MAGs (split after 97 Bacillota MAGs for clarity), with the MAGs assigned names,
completeness (81.6%—100%), and contamination (0%-9.8%), as well as the total coverage
depth across the entire cohort (26.9—2846.5), the draft genome sizes (0.9—6.7 Mbp), their MAG
fragmentation (5-554 scaffolds), and the number of reactions in the reconstructed metabolic
models (726—1985). See Supplementary Table S1.2 for further metadata information. B
Principal component analysis of the metabolic models of the mouse microbiota. Inter-model
distances are based on the Horn—Morisita dissimilarity index of the functional content of each
model (see Methods). Metadata associations to PCs are overlaid as arrows. The shapes denote
the taxonomic rank “order,” whereas the coloring of the symbols in B follows the coloring for the
phyla in A.

Microbiome functions correlate widely with host transcripts across tissues

After reconstructing the metabolic models of the bacterial species of the mice, we first
conducted a global assessment of which host functions were associated with microbial
metabolic activity independent of their association with age. This was achieved by correlating
the occurrence of metabolic reactions within the microbiota with host gene expression, adjusting
for age with partial Spearman’s rank correlation. Considering associations with a strong
correlation coefficient and a false discovery rate (FDR)-adjusted p-value of < 0.1, we identified
12,732 strongly correlated microbiome reactions and host genes for the colon, along with 3,425
for the liver and 2,499 for the brain. Enriching these correlated features with gene ontology (GO)
%2 biological processes (host genes), and metabolic subsystems (microbiome reactions),
respectively, we obtained 1,377 pairs of host—-microbiome-associated processes for the colon,
283 for the liver, and 167 for the brain; we further summarized these with level 2 GO biological
processes and MetaCyc *® superpathways (Fig. 2A—F; Supplementary Tables S2.1-S2.4).

The most strongly correlated host functions for the colon involved innate and adaptive immune
processes and protein processing (Figs. 2A and 2B; Supplementary Table S2.1). These
included a negative correlation between host immune system processes and microbial
galactose and arabinose degradation pathways. Moreover, we observed strong positive
correlations between microbial purine metabolism and mitochondrial respiration in the host.
Furthermore, we found that microbial pathways involved in lipid metabolism were correlated with
host processes involved in tissue homeostasis, such as DNA damage responses and cell death.
For the liver, we detected strong correlations between the central metabolic pathways of the
microbiota and chromatin organization in the host and between T-cell proliferation and microbial
branched-chain amino acid metabolism (Figs. 2C and 2D; Supplementary Table S2.2). For the
brain, we found strong correlations between protein catabolic processes and microbial
nucleotide metabolism (Figs. 2E and 2F; Supplementary Table S2.3).
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Figure 2: Correlation-derived host—microbiome interactions. A, C, E Summaries of interaction
scores (sum of -log,, FDRs) between host level 2 GO biological processes and microbiome
super-pathways for the colon (A), liver (C), and brain (E). B, D, F Interactions between host
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biological processes and microbiome metabolic subsystems for the colon (B), liver (D), and
brain (F). Dot size represents the log,, FDR-corrected p-values from over-representation tests,
and the color represents either negative (blue) or positive (red) associations. The processes
with the most significant associations (colon FDR <1-107'°, liver FDR <1-107%, and brain FDR
<1-107%) with at least two interactions are shown (see Supplementary Tables S2.1-2.4 for the
complete list).

Metabolic metaorganism models reveal widespread metabolic interactions
between host and microbiota

After extensively characterizing the associations between host transcripts and microbiome
metabolic functions, we next aimed to gain a more mechanistic understanding of the underlying
pathways mediating those associations at the metabolic level with an integrated metabolic
metamodel of the host and the microbiome. In this metamodel, the host is represented by three
different tissues (colon, liver, and brain) connected through the bloodstream and interacting with
the microbiome through the gut lumen (Fig. 3A). Each host tissue is represented by a unique
instance of the human metabolic reconstruction Recon 2.2 **, whereas the microbiome is
represented by a combined model including all the metabolic reactions occurring in at least one
bacterial metabolic model reconstructed from the MAGs (Fig. 3A). Starting from the generic
metamodel, context-specific metabolic metamodels representing the metabolic state of each
mouse were built by inputting tissue transcriptomic data and metagenomic abundance data into
fastcore *° (Supplementary Table S3.1).

To explore the extent to which the metamodel could reconstitute known host—-microbiome
interactions at the metabolic level, we used it to predict mutual metabolic exchanges between
the host and the microbiota (Fig. 3B; Supplementary Table S3.2). Among the metabolites
identified in the colon, several involved known host-derived compounds, such as bile acids and
fucose, a component of mucins *. The microbiota provided the short-chain fatty acids
propionate and butyrate as well as tryptophan and other essential amino acids, as previously
documented *. Moreover, we observed that the microbiota produced many nucleotides,
including nucleotide derivatives such as NAD and coenzyme A. For the liver, we observed
metabolic interactions involving the provision of primary bile acids to the microbiota and
microbial production of nucleotides and short-chain fatty acids. For the brain, we observed that
the host was provided with the microbial fermentation product ethanol and several pyrimidines.
As observed in the colon, the host provided the pyrimidine precursor orotate and the nucleotide
degradation product uracil to the microbiota, and the microbiota provided uridine and
deoxycytidine in return.

To elucidate the underlying metabolic pathways between the host and the microbiota that
mediate the extensive associations we identified between host transcripts and microbiome
metabolic functions, we sampled elementary flux modes (EFMs) corresponding to minimal
metabolic pathways * in the metamodel with EFMSampler **. Each host reaction was defined
as an indicator reaction through which EFMs were sampled. By recording the frequency at
which microbial reactions occurred in the EFMs of a host indicator reaction, we obtained an
interaction matrix of the frequency at which microbiome reactions occurred in the pathways
sampled for individual host indicator reactions. This matrix indicates direct dependencies of host
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reactions on microbial reactions. Reassuringly, when comparing the predicted interaction scores
of pairs of host—-microbiome-associated processes (cf. Fig. 2B, D, F) with randomly sampled
pairs, we found significantly higher interaction scores among the correlated pairs of
host—microbiome-associated processes for the liver and colon. However, the interaction scores
of the randomly sampled interaction pairs were slightly higher for the brain (Fig. 3C; see
Methods).

To further functionally characterize the interaction matrix, we performed enrichments for host
and microbial metabolic subsystems (Fig. 3D—F). We found that the most extensive interactions
in the colon involved host pathways associated with energy metabolism, nucleotide metabolism,
vitamin metabolism, and amino acid metabolism (Fig. 3D). Consistent with the correlational
analyses, the colon depended on fermentation products, nucleotide metabolism, and vitamin
biosynthesis pathways of the microbiota. In the liver, energy-producing pathways and bile acid
synthesis were prominent on the host side, whereas the microbial side exhibited enrichment in
microbial fermentation pathways (Fig. 3E). In the brain, microbiome-dependent host reactions
exhibited enrichment in nucleotide metabolism, folate metabolism, and the metabolism of
various amino acids, including the precursors of essential neurotransmitters, such as tryptophan
and tyrosine (Fig. 3F). Although most host—microbe interactions were relatively generic, relying
on basic microbial metabolic functions (such as glycolysis and fermentation), we also identified
specific interactions, such as colonic nucleotide interconversion dependent on microbial ATP
synthesis and colonic coenzyme A catabolism reliant on microbial production of
phosphopantothenate, a coenzyme A precursor.
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Figure 3: Model-predicted host—-microbiome interactions. A Schematic structure of the
metamodels. Solid borders indicate compartments of the metamodel with individual metabolic
reactions and metabolites. Black arrows indicate metabolite exchanges between compartments
and their surroundings (i.e., the gut lumen and bloodstream). Dashed borders indicate
compartments only represented by inflow or outflow reactions. White arrows indicate the
direction of metabolic exchanges along the bloodstream. BBB, blood-brain barrier. B Frequency
of microbiome dependence on metabolite import (positive numbers) and export (negative
numbers) across organs. Metabolites with the highest frequency of exchange across 52 models
are shown (see Supplementary Table S3.2 for the complete list). C Maximal interaction scores
for pairs of host—microbiome-associated processes versus 100 randomly selected pairs of host
genes and microbiome reactions for each tissue (see Methods). The p-values indicate the
significance of the differences according to the Wilcoxon rank-sum test. D-E Subsystem
enrichment of model-predicted interactions between host and microbiome reactions. Only
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microbiome subsystems interacting with at least two host subsystems with an enrichment
p-value <10™* are shown (Fisher’s exact test; see Supplementary Tables S3.3-S3.5 for the
complete list).

Aging is associated with a profound loss of microbiome metabolic activity

After extensively characterizing host—microbiome interactions in the mouse cohort, we explored
how these interactions change in the context of aging. First, we identified aging-associated
changes in the microbiota. Consistent with previous reports in mice “°*', we observed that
increased age was associated with a decrease in the abundance of species in the phylum
Bacillota and an increase in the abundance of most species in the phylum Bacteroidota (Fig.
4A). To obtain a better functional understanding of these species-level changes, we used
community flux balance analysis (FBA) % to predict microbial metabolic activities on the basis of
dietary and bacterial abundance information (see Methods). We determined the associations
between metabolic activities and age and summarized them at the pathway level. We mainly
observed negative associations (Fig. 4B) involving many biosynthetic pathways essential for
bacterial replication, such as synthesizing amino acids, nucleotides, vitamins, and cell wall
components. Similarly, for metabolic interactions between the microbiota and the host, we
mainly observed strong reductions in both the consumption and production of metabolites (Fig.
4C), including microbial production of the anti-inflammatory short-chain fatty acid butyrate, and
increased production of selected metabolites, such as pro-inflammatory succinate “2. Consistent
with a generally reduced microbial metabolism, we also found that model-predicted and
metagenomics-derived microbial growth rates decreased considerably with age (Fig. 4D) and
were strongly correlated (Supplementary Fig. 4C).

To gain insight into the potential microbiome-intrinsic causes of the observed aging-associated
reduction in microbiome metabolism, we used community FBA ** to predict the frequencies of
ecological interactions (see Methods). We observed a significant decrease in amensal,
commensal, and neutral interactions at the expense of increased competitive interactions (Fig.
4E). These shifts in community interactions were also observed at the level of individual
microbial ecological strategies derived from the universal adaptive strategies theory framework
4445 “indicating a shift in the community toward the dominance of ruderals, which are less
diverse metabolically and interact less frequently with other species (Supplementary Fig. 4B).

To further explore the predicted loss of microbiome metabolic activity with age, we performed an
untargeted metabolomics analysis of fecal samples from an independent cohort of 82 mice
across all age groups. We determined the correlation between the abundance of identified
metabolic clusters and age and found that 374 out of 561 clusters (67%) showed significant
downregulation (FDR-adjusted p < 0.1), further supporting age-associated repression of
microbial metabolism (Fig. 4F). Within this dataset, we specifically annotated bile acids using
reference standards because of their previously documented role in host aging “¢ and the
possibility of distinguishing between host-regulated and microbiome-regulated bile acids.
Consistent with the reduction in microbiome metabolic activity with age, we found that the
concentrations of host-regulated bile acids were significantly increased (four out of six clusters).
By contrast, the concentrations of microbiome-regulated bile acids were mostly reduced (seven
out of eight clusters). Intriguingly, clusters annotated as cholic acid-7-sulfate were exclusively
downregulated with age. Although this bile acid is known to be produced by the host #, a
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previous study demonstrated that its synthesis in the host is regulated by microbial production of
lithocholic acid and is strongly downregulated in antibiotic-treated animals “¢. Further annotation
of metabolic clusters identified that other microbiome-regulated metabolites, including
valine/betaine, nicotinamide, enterolactone, and 3-hydroxykynurenine, were downregulated with
age (Supplementary Table S4.12). Moreover, we found an increase in the pro-inflammatory
microbial metabolite D-galactose, for which we observed a strong association with host immune
processes in the colon (Fig. 2B), although this aging-associated increase was only significant
before FDR correction (Supplementary Fig. 4D).
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Figure 4: Microbiome alterations associated with host age. A Aging-associated changes in
MAG abundance. B Aging-associated changes in microbiome internal reaction fluxes at the
subsystem level. C Aging-associated changes in the host—microbiota metabolic exchange. D
Comparison of community growth rates derived from FBA or peak-to-trough ratio. E
Aging-associated changes in model-predicted ecological interactions in the microbiota. F
Aging-associated changes in fecal metabolite concentrations in mice. All metabolites that were
significantly associated with age (FDR-adjusted p < 0.1) are shown. For clarity, only log, fold
changes in the range [-7.5, +5] and -log,, p-values of <4.5 are shown (no annotated
metabolites were outside this range; see Supplementary Table S4.12 for the complete data).
The origin of bile acids is indicated. “Both” refers to cholic acid-7-sulfate produced by the host
but whose production is regulated by the microbiota “°. Metabolite names starting with
“BA_Cluster” indicate bile acids that have not been fully resolved. Abbreviations: CA-7S, cholic
acid-7-sulfate; CDCA-7S, chenodeoxycholic acid-7-sulfate; MCA, muricholic acid; TMCA,
tauromuricholic acid. Asterisks indicate the significance of differences: *, p < 0.05; **, p < 0.01;
*** p<0.001.

Conserved aging-associated changes across mouse tissues

We conducted a differential gene expression analysis followed by GO enrichment of the
significantly changed transcripts to gain insights into aging-associated changes in the host.
Consistent with our previous observation of a signature of aging conserved across species and
tissues 3, we observed a strong conserved signature of aging across the colon, liver, and brain
in our mice. Overall, we observed increased activity for inflammatory and immune processes in
aged mice across all three tissues (inflammaging) and decreased proliferative potential in the
colon and brain. Other examples of aging-induced processes shared across all tissues were
lipopolysaccharide (LPS), defense, immune, and inflammatory responses, along with the
formation of blood vessels (Fig. 5A). Nervous system development was downregulated in both
the aged colon and brain, which appeared to occur at an earlier age in the colon (9—15 months)
than in the brain (15-24 months). The downregulation of cell division was unique to the aged
colon (Fig. 5B). In the liver, processes related to mitochondrial energy production, protein
translation, and assembly showed age-related decreases, whereas immune processes,
signaling pathways, and proliferation processes (such as cell migration, cell proliferation, and
extracellular signal-regulated kinase cascades) showed age-related increases (Fig. 5C). In the
brain, gene expression related to microglial cell activation and LPS-related and pattern
recognition signaling pathways showed age-related increases, whereas many learning, memory,
synaptic plasticity, and synaptic signaling pathways showed age-related decreases (Fig. 5A, D).
Focusing on gene-level conservation of aging-associated regulation, we found 157 transcripts
that were consistently downregulated with age and 526 transcripts that were consistently
upregulated with age. The significantly induced genes were enriched for regulation of interleukin
(IL)-1b, IL-2, IL-4, IL-6, IL-10, IL-12, IL-17, tumor necrosis factor (TNF), interferon (IFN)-q,
IFN-B, IFN-y, C-X-C motif chemokine ligand 2 (CXCL2), and immunoglobulin and cytokine
production (Supplementary Fig. 5; Supplementary Tables S5.7-S5.9). Because we found an
aging-associated increase in microbial production of the pro-inflammatory metabolite succinate
4249 (Fig. 4C), we further explored aging-associated changes in succinate-related genes. The
sodium succinate transmembrane antiporter solute carrier family 13 member 3 (Slc13a3) was
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significantly downregulated in the colon and the brain of aged mice, whereas it was upregulated
in the liver. Conversely, sirtuin 5 (Sirt5), a regulator of mitochondrial energy production and
succinate dehydrogenase *°, showed the opposite regulation patterns (upregulation in the colon
and brain and downregulation in the liver; Supplementary Tables S5.1-S5.3).
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Figure 5: Aging-associated transcriptomic changes across host tissues. Differentially expressed
genes were enriched for GO biological processes. The average expression abundance of all
enriched features for each GO term is plotted stratified by age group and organ. A Enriched GO
terms shared by at least two organs. B-D Enriched GO terms unique to each organ. The
enrichment FDR-adjusted p-value cutoff for displaying a GO term was 107 for the colon and
1076 for the liver and brain.

Aging-associated decline in microbial metabolic activity impacts host
functions

Next, we investigated how the aging-associated loss of microbiome metabolic function
potentially impacted host functions. Among aging-regulated host genes, we found a highly
significant enrichment of microbiome-correlated transcripts across all three tissues (Fig. 6A).
This correlation was not driven by the indirect correlation of host and microbiome functions with
age; we explicitly corrected for age when obtaining microbiome-correlated host genes (see
Methods). Along with the loss of microbiome metabolic function with age, we also found a
significant decrease in the frequency of significant correlations between host transcripts and
microbiome metabolic functions with age (Supplementary Fig. 6A—E). GO biological process
enrichment of genes associated with both aging and the microbiome revealed extensive
aging-regulated and microbiome-associated processes in the colon but fewer in the liver and
brain (Fig. 6B, Supplementary Fig. 6F, G; Supplementary Tables S6.5-S6.8). Notably, tissue
homeostasis and organ regeneration processes were downregulated in the colon with age but
positively correlated with microbial metabolic pathways. Conversely, aging-induced processes,
primarily defense, inflammatory, and immune responses, were negatively associated with
microbial metabolism (Fig. 6B). Brain development was negatively correlated with microbial
metabolism and down-regulated with aging (Supplementary Fig. 6G). Further analysis of
microbial subsystems identified a reduction in glycolysis, nucleotide synthesis, and D-galactose
degradation with age, which were mostly inversely related to host gene expression (Fig. 6C).
Given the observed reduction in interactions at the level of associations between host transcript
levels and microbiome metabolic functions, we next aimed to identify the metabolic pathways
linking the host and microbiota that underlie these associations. To achieve this, we defined
aging-regulated metabolic modules within the metamodel’s metabolic reactions with the
reaction-level interaction matrix between host and microbiome reactions obtained by EFM
sampling. Metabolic modules were determined according to sampled EFMs (cf. Fig. 3D-F),
selecting reactions present in at least 20% of the EFMs for each indicator reaction (see
Methods). Thus, each metabolic module was associated with an indicator reaction used for EFM
sampling. Aging-regulated modules were then identified by assessing the enrichment of
aging-associated reactions, as indicated by the translation of aging-regulated genes into their
corresponding metabolic reactions.

In the colon, liver, and brain, we identified significant enrichment in pathways for aging-induced
(51, 88, and 99, respectively) and aging-repressed (2509, 1702, and 524, respectively)
metabolic modules (Supplementary Tables S6.1-S6.3), which showed a much greater number
of aging-repressed metabolic modules despite the lack of bias in the aging regulation of genes
(Supplementary Tables S5.1-S5.3). Focusing on metabolic modules dependent on the
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microbiota (see Methods), we observed that aging-repressed modules were more frequently
microbiome-dependent across all tissues (Fig. 6D). Further analysis of microbiota-dependent
aging-regulated modules revealed a notable downregulation of colon metabolic modules related
to amino acids, nucleotide uptake, and fatty acid oxidation, which are central to cellular
homeostasis (Fig. 6E), along with a downregulation of metabolic modules involved in fatty acid
oxidation. In the liver, we observed the greatest enrichment of downregulated
microbiome-dependent metabolic modules in bile acid synthesis and folate metabolism,
consistent with the increases in hostregulated bile acids and decreases in
microbiome-regulated bile acids in the feces with age (Fig. 4F). In the brain, aging-regulated
microbiome-dependent metabolic modules were enriched in nucleotide metabolism, sphingolipid
metabolism, and branched-chain amino acid metabolism.

Given that we observed a particularly strong effect of aging-suppressed microbiome metabolic
function on the brain (cf. Fig. 6D,E), we investigated the impact of aging on the
microbiome-dependent metabolome in the brain by employing previously published brain
metabolome data %'. To achieve this, we determined the correlations between metabolite
concentrations and the age of the mice and separated the metabolites into two groups: those
predicted by the metamodel to be provided by the microbiota to the brain and those predicted to
be provided by the brain to the microbiota. Similar to our findings for the fecal metabolome data,
metabolites provided by the host to the microbiota accumulated in the brain with age, whereas
microbiota-produced metabolites were depleted (Fig. 6F). This involved nucleotide precursors,
such as orotate and uracil, which accumulated in the host, whereas the intermediates and
products of nucleotide salvage, such as adenosine, 2-deoxycytidine, and uridine, were depleted
(Fig. 6G).
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Figure 6: Aging-associated changes in host—-microbiome interactions. A Overlap between
aging-regulated and microbiome-regulated host genes. Asterisks indicate significant enrichment
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in the overlap according to a hypergeometric test. B Colon-specific gene expression changes
with age in GO biological processes that were also correlated with microbiome metabolic
functions. C Aging-dependent changes in microbiome functions that were correlated with host
gene expression. D Frequency of microbiome dependence of aging-repressed and
aging-induced metabolic modules across host tissues. The metabolic modules are assumed to
be microbiome-dependent if they include at least one microbial reaction. The p-values indicate
significance as determined by Fisher’s exact test. E Enrichment of the indicator reactions of
aging-regulated metabolic modules among annotated metabolic host subsystems. The x-axis
represents host metabolic subsystems, and the y-axis represents the corresponding
aging-regulated gene sets. F Comparison of aging-associated changes in the brain
concentrations of metabolites produced or consumed by the microbiome. Data were obtained
from Feng et al. ° (see Supplementary Table S6.4 for the complete dataset). G
Aging-associated metabolome changes for selected model-predicted microbiota-produced and
microbiota-consumed metabolites. Data were obtained from Feng et al. °'. Asterisks indicate the
significance of differences: *, p < 0.05; **, p < 0.01; ***, p < 0.001.

Discussion

In this study, we performed a comprehensive model-based analysis of aging-associated
alterations in the interactions between the host and its microbiota in mice. We acquired 181
MAGs using shotgun and long-read sequencing techniques, which were then converted into
constraint-based metabolic networks. Our investigation into the correlations between host
transcript levels and microbiome metabolic functions revealed extensive associations between
the microbiome and host organs, even remote organs such as the brain. On the host side, many
of these correlations were linked to immune processes, mitochondrial function, and chromatin
modification, whereas on the microbiome side, they were linked to metabolites with known
immune-modulatory functions. These metabolites included D-galactose (which has an
immunomodulatory effect on the microbiome 2 and an effect on aging * in mice) and leucine
(an important regulator of T-cell function **). Moreover, we observed strong associations
between host functions and microbial fermentation and nucleotide metabolism pathways,
consistent with the central role of microbe-produced short-chain fatty acids and nucleotides in
colonic energy balance *® and intestinal barrier function %, respectively.

One key component of our analysis was the reconstruction of metabolic metaorganism models
for each mouse from transcriptomic and metagenomic data, which allowed us to propose the
underlying pathways that might mediate associations between the host and the microbiota.
These metamodels followed a similar setup to whole-body metabolic models previously
reconstructed for humans *. Reassuringly, these metamodels were able to recover many
well-known metabolic microbiome—host interactions involving, for example, short-chain fatty
acids, bile acids, and essential amino acids.

We found that host genes that were correlated with microbiome functions were highly enriched
for model-predicted interactions between the host and the microbiota. A closer inspection of the
reaction-level dependencies between the host and the microbiota via EFM analysis revealed
that the host most often depended on central metabolic microbiome reactions. From an
evolutionary perspective, a host's dependence on central metabolic microbiome functions is
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plausible because they are likely present in many bacteria, reducing the host’s dependence on
specific bacterial species and providing a larger pool of potential interaction partners . In
addition, this dependence is consistent with prior observations of a much stronger conservation
of microbiome functions compared with microbial species in the human gut microbiota across
cohorts *°.

Another interesting aspect of the predicted microbiome—host exchanges is metabolites that the
host can produce itself, such as nucleotides. The reasons for the existence of such exchanges
could include advantages from a division of labor, as frequently observed within microbial
communities °°, a reliance of the host on the microbiota as a metabolic backup system to
increase phenotypic plasticity ®', or evolutionary addiction, whereby mutual dependencies
develop due to the constant exposure of the host to microbially produced metabolites 2.

Having characterized the potential interactions between the host and the microbiome in-depth,
we next investigated how they changed in the context of aging. We observed significant
decreases in microbiome metabolic activity and growth, including in microbial production of the
short-chain fatty acid butyrate, consistent with previous observations of reduced butyrate levels
in the serum of aged mice *' and humans ®. In contrast, metabolic modeling predicted
increased production of the proinflammatory metabolite succinate %%, which has been
previously shown to be an indicator for a dysbiotic gut environment *° and is consistent with the
deregulation of succinate metabolism and succinate-dependent regulatory pathways involving
the aging-regulator SIRT5 on the host side ®. Moreover, our observation of reduced microbial
growth with age could provide an additional mechanism mediating the increased likelihood of
constipation " and longer colonic transit times ® during aging since the latter predominantly
depend on microbial growth rates ©°.

Our analysis of predicted ecological interactions in the aging gut microbiome indicated that
these changes are likely driven by an increase in competitive metabolic interactions within the
gut microbiota with age alongside a decrease in cross-feeding interactions and, thereby, less
efficient utilization of dietary resources. The reduced metabolic activity of the aging microbiome
was also reflected in fecal metabolomics data, in which most identified metabolic features
showed a reduction with age. In particular, host-regulated bile acids increased with age, while
microbiome-regulated bile acids decreased. Moreover, we found that anti-inflammatory
metabolites such as valine, betaine " and 3-hydroxykynurenine "> decreased while
pro-inflammatory metabolites such as D-galactose *? increased. On the host side, we found
appreciable conservation of aging-associated changes across tissues, including the induction of
inflammatory processes and suppression of cellular replication, consistent with the conserved
signature of aging that we identified previously 3. Our results for the individual organs were also
consistent with prior observations, including altered gut motility (linked to enteric neurons) 7374,
reduced colonic barrier function ', reduced proliferative potential ”°, and altered mitochondrial
morphology and reduced mitochondrial DNA in the liver of aged mice .

Considering aging-associated changes in host—microbiome interactions, we found that
aging-regulated host genes were highly enriched for genes that were correlated with
microbiome functions. In particular, downregulated metabolic modules in the host depended on
the microbiota. These suppressed microbiome-dependent metabolic modules were particularly
enriched among processes centrally involved in cellular homeostasis and proliferation, such as
amino acid and nucleotide uptake. Importantly, these trends were also evident in correlation
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analyses in which host homeostatic processes were positively associated with microbial
metabolic processes, whereas immune-associated host pathways were negatively associated
with these processes. This demonstrates that the aging-associated reduction in microbial
metabolism is negatively associated with host homeostatic processes and positively associated
with inflammation. The observed loss of host—microbiome interactions across all organs
indicates that the microbiome might contribute to crucial aspects of the systemic aging process,
such as metabolic decline 778 and the loss of cellular proliferation, along with stem cell
exhaustion 2.

We identified microbially-produced nucleotides as a key metabolic exchange in
host—microbiome interactions. According to the model predictions, this interaction involved the
host’s provision of nucleotide precursors, such as orotate, and nucleotide degradation products,
such as uracil, to the microbiota, while the microbiota provided nucleotides and nucleotide
salvage products in return. This interaction is further supported by the widespread correlations
between host gene expression and microbial processes involved in nucleotide metabolism
across all tissues examined. Although the host can synthesize all nucleotides de novo and
obtain nucleotides from its diet, recent studies have indicated that the microbiota are a key
source of nucleotides, particularly in the colon *6°. On the microbiome side, Escherichia coli
and Bacteroides spp. have been reported to excrete ATP during growth 82" Moreover,
microbially-sourced nucleotides were identified as important contributors to intestinal barrier
function %¢. Furthermore, the host's sensing of microbially-produced ATP by purinergic receptors
in the colon is an important modulator of germinal center-mediated immune reactions toward the
microbiota °. In this context, our observation of an aging-associated loss of host-microbiome
nucleotide co-metabolism may be critical in key aspects of host aging, including the
documented decline in intestinal barrier function * associated with various age-related diseases
82-8 the decreased cellular proliferative capacity in the intestine and systemically 8% and the
impaired mitochondrial function with age #. According to the model predictions and brain
metabolome data, the microbiome may play a key role in nucleotide salvage in the brain, which
is essential for DNA damage repair and cellular homeostasis 2. In addition, an association
between neurodegeneration and microbial pyrimidine metabolism was observed in an
experimental mouse model of Alzheimer’s disease ®°.

In summary, we comprehensively characterized microbiome—host interactions in mice and
identified pronounced aging-associated changes in these interactions primarily driven by a loss
of microbial metabolic activity. Although our study is limited by its reliance on modeling, we
predicted many known microbiome—host interactions and attempted to corroborate model-based
predictions through complementary independent analyses. Notably, although the metabolic
metamodels identified that specific metabolites are exchanged, the promiscuity of transporters
and the underlying modeling procedure might mean that compounds with closely related
molecular structures are exchanged in vivo. Moreover, since our mouse cohort was exclusively
comprised of males to avoid confounding due to sex differences, we could not detect
sex-specific changes; future studies should apply our modeling approach to investigate this.
Additionally, we based our analysis only on chronological age and did not assess more
fine-grained markers of biological age, such as frailty, loss of motor function, or cognitive
function impairment. Finally, our identification of a loss of microbiome metabolic activity
indicates a potentially crucial aging-associated change that could contribute to many
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aging-associated pathologies in the host. Therefore, microbiome metabolic activity could be a
target for future microbiome-based therapies. Our modeling approach could be a key ingredient
in designing such interventions to guide the development of therapies counteracting
microbiome-driven aspects of aging.
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Methods

Mouse strain

The mice used in this study were an in-house strain derived from the C57BL/6J strain (The
Jackson Laboratory, Bar Harbor, ME, USA). These C57BL/6J/Ukj mice lack two common
mutations found in the C57BL/6J strain: the DIP686 mutation in the crumbs family member 1
(Crb1) gene, which is vital for eyesight in aging mice, and a mutation in the nicotinamide
nucleotide transhydrogenase (Nnt) gene, which encodes mitochondrial NAD(P)
transhydrogenase, protecting against oxidative stress. Preserving both these genes is
advantageous for metabolic and aging studies in mice.

Animal handling

Male C57BL/6J/Ukj mice were bred in the Central Experimental Animal Facility at Jena
University Hospital (Jena, Germany). The mice were housed at 22 + 2°C with a 14/10 h
day/night cycle and a relative humidity of 55% £ 10%. They were co-housed according to their
birth cohort (similar ages) in standard cages (GM500, Type IlI; Tecniplast Deutschland GmbH,
Hohenpeillenberg, Germany), and a maximum of two mice from the same cage were used for
experiments. The mice had unlimited access to water and food (mouse V1534-300, ssniff
Spezialdiaten GmbH, Soest, Germany). Next-generation RNA sequencing of host tissues and
metagenomics of fecal samples were conducted in 52 mice of different ages spanning the
mouse’s adult lifespan (2—3 [mean = 2.5] months, 9—10 [mean = 9.8] months, 15-17 [mean =
15.9] months, 24-25 [mean = 24.8] months, and 28-31 [mean 29.1] months). For simplicity, the
five age groups are referred to as 2 (n = 10), 9 (n = 10), 15 (n =10), 24 (n = 10), and 30 (n = 12)
months throughout the manuscript (see Supplementary Table S1.1).

An independent mouse cohort was used for the metabolomics analysis of fecal samples; this
cohort comprised 83 male mice in five age groups: 3 (n = 16), 9 (n = 16), 15 (n = 16), 24 (n =
17), and 28 (n = 18) months (see Supplementary Table S4.11). These mice were bred and
housed in the same mouse facility under the same conditions.

Sample collection

The mice were sacrificed by cervical dislocation in three cohorts (randomized by age) on three
consecutive mornings. The left hemisphere of the brain was prepped on ice, transferred to liquid
nitrogen for storage, and used later for RNA extraction. Feces were collected from the colon by
squeezing the colon contents toward the distal end and snap-freezing one pellet in liquid
nitrogen; the pellets were used later for metagenomic sequencing (for the first cohort) or
metabolite measurement by hydrophilic interaction liquid chromatography (HILIC)
ultrahigh-performance liquid chromatography (UHPLC)-tandem mass spectrometry (MS/MS)
(for the second cohort). The colons were rinsed with sterile PBS and cut longitudinally; a piece
measuring the length of one-eighth of the left half of the mid colon was frozen in liquid nitrogen
for later use for RNA extraction. A piece with a length of approximately 1 cm length was cut from
the end of the left lateral lobe of the liver and snap-frozen in liquid nitrogen for later use for RNA
extraction.
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All studies were performed in strict compliance with the recommendations of the European
Commission for the protection of animals used for scientific purposes and with the approval of
the local government (Thiringer Landesamt fur Verbraucherschutz, Germany; license:
02-024/15; TWZ-000-2017). Experiments were performed according to the ARRIVE guidelines

90

Metagenomic sequencing

Microbial DNA was extracted from colon contents with the DNeasy PowerSoil Kit (Qiagen,
Hilden, Germany) following the manufacturer’s protocol. Next, the DNA was prepared at the
Max Planck Institute for Evolutionary Biology (Pl6n, Germany) with the lllumina NexteraXT
Library Kit. All 52 samples were pooled and sequenced for 2 x 150 cycles in paired-end mode
on all four lanes of an lllumina NextSeq 500 machine. Demultiplexing was performed with one
mismatch allowed in barcodes. The raw read data were merged sample-wise and subjected to
quality control for adaptor contamination and base call qualities. Adaptor sequences with an
overlap of 23 bp and base calls with a Phred+33 quality score of <30 were trimmed from the 3’
ends of reads using Cutadapt (version 1.12). lllumina’s Nextera transposon sequence and the
reverse complement of TruSeq primer sequences were used as adaptor sequences.
Subsequently, reads were subjected to quality control using Prinseq lite (version 0.20.4) with a
sliding window approach that applied a step size of 5 bp, a window size of 10 bp, a mean base
quality of <30, and a minimum-length filter that discarded any reads shorter than 50 bp after all
other quality control steps. To filter out host sequences, the remaining sequences were mapped
to the mouse reference genome (GRCm38.99) with Bowtie (version 2.2.5). The remaining
unmapped reads were then used for MAG assembly.

No significant differences were detected in the total microbial read depth or host contamination
between age groups (Kruskal-Wallis test with post hoc Dunn’s test and Benjamini-Hochberg
multiple testing correction conducted with the DunnTest function in the DescTools R package
[version 0.99.50]; see Supplementary Figs. 1C and 1D).

Long-read sequencing was performed at the NGS core facility of the FLI Leibniz Institute on
Aging (Jena, Germany). The DNA quality was assessed with an Agilent Bioanalyzer 2100 with a
DNA 12000 Kit (Agilent Technologies, Santa Clara, CA, United States) and quantified with an
Invitrogen Quant-iT PicoGreen dsDNA Assay (Thermo Fisher Scientific, Waltham, MA, United
States). The sequencing library was prepared according to the Pacific Biosystems’ manual
“Procedure & Checklist - 20 kb Template PreparationUsingBluePippin Size-SelectionSystem”
(version 10, Jan. 2018) with the SMRTbell Template Prep Kit 1.0 (Pacific Biosciences, Menlo
Park, CA, United States). Specifically, DNA from age-matched samples was pooled, fragmented
(75 kb) by a Megaruptor (Diagenode, Denville, NJ, United States), and size-selected for >6 kbp
fragments with a BluePippin and 0.75% Gel Cassette (program: 0.75% DF Marker S1
High-Pass 6—-10 kb vs3; Sage Science, Beverly, MA, United States). Each pool was loaded onto
a SMRTcell and sequenced on a Pacific Biosystems RSII machine with DNA-Sequencing Kit 4.0
v2, MagBeadBuffer Kit v2, MagBead Binding Buffer Kit v2, and DNA Polymerase Kit P6v2. The
sequence output of this run had an average read length of 7.8-9.7 kb with a minimum yield of
750 kbp per pool/SMRTcell. The raw read data were subjected to quality control, processed into
circular consensus sequences and subreads, and exported as FASTQ files via the SMRTportal
(provided by Pacific Biosciences).
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MAG assembly and annotation

MAGs were constructed as follows (outlined in Supplementary Fig. 1B). Pacific Biosystems
circular consensus sequences and subreads were used as is, while lllumina shotgun reads
were filtered for low read quality, adapters, and host contamination (see the Metagenomic
Sequencing section). A full cohort assembly was done in metaSPAdes (SPAdes version 3.13.1)
in hybrid mode with k-mer sizes of 21, 33, 55, and 77. Concatenated, quality-controlled, forward
and reverse lllumina short read files of all samples were used as input. Additionally, the
assembly software was informed with the eight Pacific Biosystems long read banks (hybrid
mode) in the form of filtered subreads and circular consensus sequences.

The resulting scaffolds were filtered for a minimum length of 1000 bp and coverage 27.7815.
The cutoffs were determined by scatter plotting coverage versus length, as described by °'. The
quality-controlled metagenomic reads were mapped back to the filtered scaffolds with Bowtie
(version 2.2.5); the insert size was 0-1000 bp in the very sensitive, non-deterministic, “fr”
stranded mode with end-to-end alignment. Non-unique mappings and unaligned reads were
discarded. The scaffold coverage depth was determined with the
jgi_summarize_bam_contig_depths script from MetaBAT (version 2.12.1). This coverage depth
information was then used to sort the remaining scaffolds into bins, each representing single
bacterial genomes, with the binning tools MetaBAT (version 2.12.1), CONCOCT (version 1.1.0),
and MaxBin (version 2.2.4). For CONCOCT, the scaffolds were broken up into 10 kbp chunks.
Bin refinement was conducted with the combined results of all three binners (252 bins) with
DASTool (version 1.1.2); subsequently, quality metrics were calculated by CheckM (version
1.1.2). Bins with a quality estimate of >80% and a contamination estimate of <10% were
considered for further analysis and are henceforth referred to as MAGs. The 181 final MAGs
were taxonomically annotated with GTDB-Tk (version 2.1.1) and database version r214. The
tRNA genes were characterized using tRNAscan-SE (version 2.0.9) and in-house Bash scripts.
The 16S rRNA genes were detected by barrnap (version 0.9) in “kingdom bacteria” mode. A
phylogenetic tree of the 181 MAGs (Fig. 1A) was created from a multiple sequence alignment
created by GTDB-Tk (align/gtdbtk.bac120.user_msa.fasta.gz) with the European Bioinformatics
Institute’s online Simple Phylogeny tool (ClustalW version 2.1) and visualized with R statistical
software. The complete characterization of the MAGs is provided in Supplementary Table S1.2.
For association with age, MAG abundances were calculated from the scaffold coverage depths
described above, normalized by sample, and then correlated with age in linear models for each
MAG across all samples. The p-values were corrected for multiple testing with the
Benjamini-Hochberg FDR method. Significant age-associated MAGs (FDR-adjusted p-value
<0.05) were plotted (Fig. 4A).

Microbiome metabolic model construction

Metabolic models were constructed for each of the 181 murine gut bacteria inferred from our
MAGs in samples from the 52 mice. The reconstruction was performed in gapseq (version 1.2)
with default settings (git commit: 159ad378; sequence DB md5sum: bf8ba98) 3'. The nutritional
input for the computational models was designed according to the fortified rat and mouse diet
(V1534-300; ssniff Spezialdidten GmbH). The diet was reconstructed according to the vendor’s
information on its molecular constituents translated into the corresponding metabolites in the
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models (following the protocol described in Marinos et al. %2). We assumed an average daily
uptake of 3.5 g of food based on reference values®. This amount was used to transform the
percentages into grams and then millimoles (millimoles/day). Limited information was reported
on fiber in the mouse diet; therefore, their values were imputed from the consumed quantities of
cereal and grain products of a human German cohort 2. Because the simulations depicted the
intestinal setting, the absorption in the small intestine was considered when calculating the
dietary input (see Supplementary Tables S1.3 - S1.11 for the respective calculations and
references).

Comparing metabolic models via principal component analysis

Metabolic models were used to create an incidence matrix of all available reactions per model.
The incidence matrix was normalized sample wise in order to weigh the importance of reactions
by the size of the model. This means larger models with more reactions had lower weight per
reaction compared to smaller models containing less reactions. Dissimilarity between bacterial
metabolic models was calculated from this incidence matrix via Horn—Morisita index as
implemented in the function vegdist from R-package vegan v2.6-4. Principal Component
Analysis was performed on these dissimilarity indices via function prcomp from R-package stats
v4.3.2. Metadata information of each model, namely count of tRNAs, completeness,
contamination, GC-content, genome size, model size and model gaps, was fitted to the principal
coordinates with the function envfit (vegan v2.6-4). The first two principal components were
plotted together with the metadata vectors in Fig. 1B. Explained variance for model fitting of
each metadata variable separately against the first two principal components was reported as
R? values in the text.

Estimation of functional capacity of microbiomes

Flux variability analysis (FVA) was used to calculate all possible flux ranges for each reaction in
each metabolic model constrained by the ssniff diet. The biomass production was set as the
objective function to obtain flux ranges that satisfied maximal model growth (99% percent of
maximal growth used as cut-off). A binary incidence matrix was constructed with bacteria as
columns and biochemical reactions as rows. All reactions that carried a non-zero (>107°) flux
were assigned “1”. This matrix was first normalized to the number of active reactions in each
bacterium and then multiplied by each mouse’s bacterial abundances to obtain a reaction
abundance for the microbiome of each mouse. Finally, the reaction abundance table was
normalized by the sum of each mouse’s reaction scores, making the resulting relative reaction
abundances comparable between mice.

Growth rate prediction from metagenomic data

To further validate the model growth rates, CoPTR software * was used to estimate growth
rates from the MAGs in each sample. This software uses the peak-to-trough ratio (PTR) (i.e.,
the ratio of sequencing coverage near the replication origin and the replication terminus) to
estimate the growth of a MAG in a sample . We first indexed the MAGs with the command
“‘coptr index --bt2-threads”. Next, using this index, we mapped our quality-controlled
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metagenomic reads against our 181 MAGs with the command “coptr map --threads 4 --paired”.
Then, read positions were extracted with the command “coptr extract,” and the PTR was
estimated with the command “coptr estimate.” Default parameters were used for all commands
except “coptr index” and “coptr map” for which the number of threads was specified.
Additionally, “--paired” was set for the “coptr map” command to inform the software about the
use of paired-end reads. Community growth was determined for each mouse’s microbiome
community by calculating the median growth rate across all MAGs in its sample.

Inferring microbial niche strategies via the universal adaptive strategies
theory

Microbial life history traits, defined by the universal adaptive strategies theory (UAST)
framework **%, were predicted (similar to a previous study *°). Microbial traits were inferred by
gapseq (version 1.2; sequence DB md5sum: bf8ba98) 3! using MetaCyc pathways **, Bakta v1.8
% abricate (version 1.0; https://github.com/tseemann/abricate) with the virulence factor
database %, and gRodon (version 2.3) *. The competitive strategy was defined by the following
traits: genome length (high quantities), antibiotic biosynthesis pathways (high), siderophore
biosynthesis pathways (high), and catabolic pathways (high). The stress toleration strategy was
defined by rRNA genes (low quantities), biofilm genes (high quantities), and auxotrophies (high
quantities). The ruderal strategy was defined by catabolic pathways (low quantities), rRNA
genes (high quantities), and codon usage bias (high quantities). Given the distribution of each
trait among all species, a species’ trait belonging to the 0.75 (traits with high quantities) or 0.25
(traits with low quantities) quantile was considered to contribute to a strategy. The number of
contributing traits was summed for each strategy, and the strategy with the highest number of
contributing traits was considered a species’ final life history strategy. In the case of multiple
strategies with the same highest number of contributing traits, multiple strategies were assumed
to be relevant. In addition to the 0.75 and 0.25 quartiles, different percentiles (0.7/0.3 and
0.8/0.2) were tested to assess stability.

The niche strategies of all species from one microbial community (per mouse) were summed,
with a down-weighting of the impact of species with two equally likely strategies by 0.5 and a
down-weighting of the impact of species with three equally likely strategies by 0.333. The niche
strategy abundances were normalized by sample and multiplied by 100 to obtain percentages.
Differences between age groups were tested for each of the three possible niche strategies
using Kruskal-Wallis tests with pairwise post hoc Dunn’s tests and Benjamini—-Hochberg FDR
correction (using the DunnTest function of the R DescTools package [version 0.99.50]) and
plotted (Supplementary Fig. 4B).

Microbiome Community Modeling

The microbial communities were modeled using FBA to study the association between the
microbiome metabolic network and the age of the mouse hosts. FBA is a mathematical
approach for studying metabolic networks built from all known reactions in an organism. By
estimating the flow of metabolites in the network, FBA allows the prediction of the growth rate of
the organism and the fluxes of all metabolites. This is carried out under the evolutionary
assumption that the preferable path maximizes the biomass compounds. For prediction of
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microbial community fluxes, we used community FBA 2, a variant of FBA working on the
community level. To this end, the metabolic networks of different microbial species within the
community were connected in a common compartment for metabolic exchange within the
community and with the environment (the host’s intestinal tract). A community-level biomass
reaction was introduced draining the biomass of individual species according to their abundance
as inferred from metagenomic data. Additionally, we introduced coupling constraints to prevent
excessive flux through individual microbes’ reactions’ without concomitant growth (coupling
parameters ¢=400, u=0.01). For predicting maximal growth, we optimized the community-level
biomass reaction while subtracting the total sum of fluxes across all reactions multiplied with a
factor of 10 to obtain a parsimonious solution. No feasible solution could be obtained for two
microbiome communities from age group 30, leaving 50 communities for downstream analysis
(10 for each age group).

This analysis identified three types of reaction fluxes. Exchange fluxes of metabolites exported
and taken up from outside the community were considered metabolites that may be exchanged
with the host (Fig. 4C). Metabolites shared between different microbes were represented by
reaction fluxes that were exchanged among members of the microbial community
(Supplementary Fig. 4A). Finally, the reaction fluxes within each respective bacterial model were
considered as internal reaction fluxes (Fig. 4B).

All three types of reaction fluxes were normalized to the community growth rate and analyzed
separately. Absolute flux values were correlated with age using Spearman’s rank correlation
coefficient (using the cor.test function in the R package stats [version 4.3.2]) separately for each
reaction flux. The p-values were corrected for multiple testing with the Benjamini-Hochberg
FDR method, and only results with FDR-adjusted p-values of <0.05 were plotted (Fig. 4B, C,
and Supplementary Fig. 4A).

Significant age-correlated internal reaction fluxes were enriched for MetaCyc pathways,
stratified by positive and negative correlations, with an overrepresentation test implemented in
the enricher function of the R package clusterProfiler (version 4.8.3). The pathways with an
enrichment p-value of <0.05 and at least three enriched features were reported (Fig. 4B;
Supplementary Tables S4.2-S4 .4).

The ecological relationships for each pair of bacteria across all species were predicted. To this
end, the growth achieved as a single bacterium was compared with that achieved when each
bacterium was co-grown with another. The relationships were characterized using the ecological
relationships described by Zélé et al. (Figure 1 in Ref. ). as a reference. Growth was
estimated by FBA for single growth and community FBA for combined growth. To achieve this,
we used the R packages sybil 101 and MicrobiomeGS2
(www.github.com/Waschina/MicrobiomeGS2) and the linear programming solver IBM ILOG
CPLEX 22.10. The MicrobiomeGS2 simulations followed the principles described previously ’.
The six types of ecological relationships and their frequencies among each microbial community
were inferred with the R EcoGS package (https://github.com/maringos/EcoGS).

To obtain relative frequencies, the abundance of ecological relations was normalized by sample
to a sum of 1. Next, a linear model analysis of each ecological interaction type with age was
conducted and p-values were adjusted for multiple testing using the Benjamini-Hochberg FDR
method.
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Transcriptome Sequencing

RNA was extracted from tissue samples of the liver, colon, and left brain hemisphere using the
phenol-chloroform extraction method with 1 mL of Qiazol Lysis Reagent (Qiagen, Hilden,
Germany), as previously described in Ederer et al. '%. Next, the RNA was reverse-transcribed
into lllumina shotgun sequencing libraries with TruSeq RNA stranded kit and polyA enrichment
following the manufacturer’s protocol (lllumina, San Diego, CA) at the Competence Centre for
Genomic Analysis (Kiel, Germany) and sequenced for 2 x 75 cycles (2 x 100 for colon) in
paired-end mode with ~13 samples per lane on an lllumina HiSeq4000 machine. Demultiplexing
was conducted with zero mismatches allowed in the barcodes. lllumina TruSeq adapter
sequences were trimmed from the forward and reverse reads with Cutadapt (version 1.12) with
a minimum sequence overlap of 3 bp and no more than 10% mismatches; they were also
filtered for a minimum read length of 20 bp and trimmed for 3’-end quality using a Phred score
of 230. Additional quality filters were applied with Prinseq lite (version 0.20.4), allowing at most
eight unknown nucleotides (“N”) per read and requiring an overall mean Phred score (read
quality) of 215; the reads were also trimmed for 5’-end quality using a Phred score of 212.

The filtered reads were mapped against the Mus musculus reference genome (GRCm38.99) in
Hisat2 (version 2.1.0) with the RNA strandedness set to FR, applying non-deterministic random
seeds and suppressing mixed alignments of read pairs. Only primary alignments for each read
were kept, via a filtering step (-F 256) in Samtools (version 1.9). Gene counts were extracted in
HTSeq count (version 0.6.1) with reverse-stranded information in union mode.

Differential gene expression analysis

Differentially expressed genes were identified using the R package DESeq2 (version 1.40.2)
1 The samples were stratified by organ (colon, liver, and brain) and then analyzed with a
design formula that accounted for the age (humeric, centered, and scaled) and the sequencing
batch, if applicable (liver and brain). Genes differentially expressed according to age were
reported, controlling for independent filtering at 0.05 using DESeq2 (function: results, variable:
alpha). Genes with an adjusted p-value of <0.05 were considered significantly differentially
expressed. Differentially expressed genes were stratified by their positive or negative
association with age and annotated separately with GO biological processes via enrichment
analysis using the enricher function of the R clusterProfiler package (version 4.8.3). For plotting
(Fig. 5), the GO terms were filtered using an FDR-adjusted p-value cutoff of 10~ for the colon
and 107° for the liver and brain; redundant higher-level GO terms were then removed, as
described in ref. 1%,

Variance-stabilizing transformed gene abundance data were exported for downstream use with
host—microbiome partial correlations using DESeqg2 (function “getVarianceStabilizedData” with
parameter blind = FALSE).

All samples were jointly loaded and processed with a design formula accounting for the
sequencing batch and age group. The results were stratified by organ and extracted from the
DESeq results object for each of the 10 possible pairwise age group comparisons.
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Host—Microbiome Partial Correlations

The transcriptomic data was normalized separately for each organ (colon, liver, and brain) using
variance-stabilizing transformation informed with age and sequencing batch (blind = FALSE)
implemented in the R package DESeq2 (version 1.40.2) '%. A near-zero variance filter was also
applied using the nearZeroVar function of the R package caret (version 6.0-94). The active
reactions of each mouse’s microbiome community were predicted as described in “Estimation of
Functional Capacity of Microbiomes”. The host transcript abundances were correlated pairwise
with microbiome active reactions (each transcript with each reaction), correcting for age and
sequencing batch (only for the liver and brain), with Spearman’s partial correlations
(implemented in the R package ppcor [version 1.0] ). To balance stringent false discovery
cutoffs with reasonable result counts, strong correlations with a Benjamini-Hochberg
FDR-corrected "% p-value of <0.1 and Spearman’s p of 20.55 were considered for downstream
analysis. The strong correlations were stratified into either positive or negative correlations
according to their correlation values and then annotated with GO biological processes *? (host
transcripts) or MetaCyc Pathways 3* (microbiome reactions) using hypergeometric
overrepresentation tests with the phyper function of the R stats package (version 4.3.2; x =
“correlated features enriched for the term” — 1, m = “the total of all correlated features,” n = “all
features” — “correlated features,” and k = “the total of the features in the term”). Enriched terms
(pathways/processes) with at least three features and an FDR-corrected overrepresentation
p-value of <0.05 were reported (Supplementary Tables S2.1-S2.3; Fig. 2). The negative decadic
logarithm of the overrepresentation FDR p-values was calculated and reported as-is for positive
correlations and multiplied by -1 for negative correlations. Only process pairs that were
associated with at least two other pathways were plotted (Fig. 2) and filtered to highlight the
most significant enrichments with FDR p-value cutoffs of <1-107"° for the colon (Fig. 2B), <1-10™*
for the liver (Fig. 2D), and <1-1073 for the brain (Fig. 2F).

Correlated feature pairs were obtained for the colon (n = 12,732), liver (n = 3,425), and brain (n
= 2,499). They consisted of n unique features for the colon (microbiome, n = 1,606; host, n =
2,815), liver (microbiome, n = 1,359; host, n = 1,277), and brain (microbiome, n = 1,236; host, n
= 926). After enrichment, we obtained n process pairs for the colon (n = 1,377), liver (n = 283),
and brain (n = 167), as shown in Fig. 2 and Supplementary Tables S2.1-S2.3.

For a broader overview of host—microbiome associations, the GO biological processes were
grouped by their higher-ranking level 2 GO biological process, and the MetaCyc pathways were
grouped by their respective highest-level super-pathways (see Supplementary Tables S2.5 and
S2.6 for the process and pathway groups). The level 2 GO biological process groups were
cellular process, metabolic process, biological regulation, localization, developmental process,
response to stimulus, immune system process, multicellular organismal process, viral process,
reproduction, homeostatic process, and growth. The MetaCyc microbial super-pathways were
lipids, carbohydrates, utilization, energy metabolism, nucleotides, secondary metabolites, amino
acids, other, signaling, carboxylates, cofactors, carriers, metabolic regulators, c1 compounds,
electron transfer, noncarbon nutrients, cell structure, biosynthesis, detoxification,
interconversion, glycans, tRNA, and bioluminescence. The -log,,(FDR-corrected p-values) were
summed for each level 2 GO and MetaCyc superpathway pair. The values are plotted in Fig. 2A,
C, E as well as Supplementary Fig. 2 and listed in Supplementary Table S2.4.
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The pairwise correlations between all host features and all microbiome features were repeated,
stratified by organ and age group. Thus, the ratio of significant, strong host—-microbiome
correlations to all tested correlation pairs was obtained separately for each organ and age
group. These ratios were compared using Pearson’s Chi-squared test with Yates’ continuity
correction and Bonferroni’s multiple testing correction to identify significant differences between
consecutive age groups (Supplementary Fig. 6A-E).

The overlaps of aging-regulated and microbiome-associated transcripts between the three
studied organs were determined to identify shared aging-regulated and microbiome-regulated
host transcripts. The overlap between microbiome-associated and aging-associated transcripts
was statistically evaluated using hypergeometric overrepresentation tests separately for each
organ. The numbers of shared transcripts were plotted (Fig. 6A) for each possible combination
for the colon (age-associated, n = 4,715; microbiome-associated, n = 2,326; shared, n = 527;
hypergeometric p-value = 6.9 x 1072), brain (age-associated, n = 6,505;
microbiome-associated, n = 888; shared, n = 260; hypergeometric p-value = 1.8 x 107™""), and
liver (age-associated, n = 8,285; microbiome-associated, n = 1,265; shared, n = 500;
hypergeometric p-value = 1.6 x 107°).

Non-targeted Metabolomics using HILIC UHPLC-MS/MS

Fecal pellets (~40 mg) were weighed in sterile ceramic bead tubes (NucleoSpin Bead Tubes;
Macherey-Nagel, Dueren, Germany) and extracted with 1 mL of chilled methanol (-20 °C;
LiChrosolv, Supelco; Merck KGaA, Darmstadt, Germany). Fecal matter was homogenized and
extracted with a Precellys Evolution Homogenizer (Bertin Corp., Rockville, MD, USA; 4,500 rpm,
three 40-second cycles with a two-second pause). The samples were centrifuged for 10 minutes
at 21,000 xg and 4°C, and the supernatant was transferred into sterile tubes until analysis. Next,
100 uL of fecal methanolic extract was evaporated at 40°C with a SpeedVac concentrator
(Savant SPD121P; Thermo Fisher Scientific, Waltham, MA, USA) and reconstituted in 75%
acetonitrile (ACN; LiChrosolv, hypergrade for LC-MS; Merck KGaA), spiked with
L-leucine-5,5,5-d; at 5 mg/L (99 atom % D; Merck KGaA), which was prepared in a methanol
and water solution (50:50).

The samples were analyzed by using a UHPLC system (Acquity; Waters, Eschborn, Germany)
coupled to a quadrupole time-of-flight (TOF) mass spectrometer (maXis; Bruker Daltonics,
Bremen, Germany), as described previously /. Mass spectra were acquired at electrospray
ionization of positive and negative modes (+/-). Spectrometric data were acquired in line and
profile mode with an acquisition rate of 5 Hz from 50 to 1500 Da. Fragmentation experiments
were set to the data-dependent mode (MS/MS [Auto]), where the three most intense ions were
fragmented within one scan when a count reached over 2000. lons were excluded after
acquiring three MS/MS and reconsidered for fragmentation after six seconds. The collision
energy was set to 20 eV for both modes with an isolation width of 8 Da. The electrospray
ionization source parameters were as follows: capillary voltage of 4500 V for (+) and 4000 V for
(=), end plate offset of (+/-) 500V, nebulizer gas of 2 bar, dry gas of 10 L/min, and dry heater of
200°C. Before measurements, the MS was calibrated using the ESI-L Low Concentration
Tuning Mix (Agilent, Santa Clara, CA, USA). The ESI-L Low Concentration Tuning Mix (diluted
1:4 [viv] with 75% ACN) was injected in the first 0.3 min of each run by a switching valve for
internal recalibration by post-processing software.
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Ammonium acetate (NH,Ac; LiChropur eluent additive for LC—MS; Merck KGaA) at 0.5 mol/L
was adjusted to pH 4.6 with glacial acetic acid (Honeywell; Fluka, Seelze, Germany). Milli-Q
water was obtained from a Milli-Q Integral Water Purification System (Billerica, MA, USA). Polar
metabolites were separated by HILIC by using an iHILIC-Fusion UHPLC column SS (100 x 2.1
mm, 1.8 um, 100 A; HILICON AB, Umea, Sweden). The eluent compositions were as follows:
Eluent A consisted of 5 mmol/L NH,Ac (pH 4.6) in 95% ACN (pH 4.6), and eluent B consisted of
25 mmol/L NH,Ac (pH 4.6) in 30% ACN. We started with 0.1% B, keeping it constant for two
minutes, then increased B to 99.9% over 7.5 minutes. The condition of 99.9% B was kept for
two minutes and reversed to 0.1% B within 0.1 minutes, held for 0.1 minutes. The run was
completed after 12.1 minutes, and the column was equilibrated for five minutes before the next
injection. The flow rate was set to 0.5 mL/min, the column temperature to 40°C, and the sample
manager was cooled to 4°C; 5 pL of the sample was injected into the column (partial loop). The
weak and strong washes consisted of 95% and 10% ACN, respectively.

Metabolite Identification and Metabolomic Data Processing

The raw LC-MS data were post-processed in GeneData Expressionist Refiner MS (version
13.5.4; GeneData GmbH, Basel, Switzerland), including chemical noise subtraction, internal
calibration, chromatographic peak picking, chromatogram isotope clustering, valid feature filter
(cut-off of 100 [+] or 2000 [-] maximum intensity and presence of features in at least 20% of
samples for [+/-]), retention time range restriction (0.4-10.7 minutes), annotation of known
peaks (mass-to-charge tolerance of 0.01-0.005 Da and retention time tolerance of 0.1), and
MS/MS consolidation and export to merged MASCOT generic files (MGFs). Data processing
resulted in a matrix containing features with mass-to-charge ratios (m/z), retention times, and
observed maximum intensities for each sample. The data were normalized to the weighed-in
wet fecal weight and a maximum intensity of 5 mg/L L-leucine-5,5,5-d,.

The merged MGF files were used to search a spectral library using MSPepSearch (0.01 Da
mass tolerance for precursor and fragment searches). Experimental and in silico spectral
libraries were downloaded from MassBank of North America
(https://mona.fiehnlab.ucdavis.edu/). ldentification was performed by matching experimental
MS/MS spectra against MS/MS of spectral libraries downloaded from MassBank of North
America using MS PepSearch (release: 02/22/2019; 0.01 Da mass tolerance for precursor and
fragment searches). From the MS PepSearch output, features with the highest dot product of
the same identifier were retained, and then metabolites with a dot product of <500 were
removed. Furthermore, Global Natural Products Social (GNPS) Molecular Networking and
Library Search were used to identify metabolites in the experimental MS/MS data ', Therefore,
for each feature from the metabolite data table, an MS/MS was selected based on the highest
total ion count. The MS/MS with the highest count was submitted to GNPS (201 features for [+]
and 361 features for [-]). The GNPS Library Search was conducted with the following settings:
The precursor ion mass tolerance and fragment ion mass tolerance were set to 0.01 Da,
minimum matched peaks were set to 1, and the score threshold was set to 0.5. GNPS Molecular
Networking was performed with the following settings: the precursor ion mass tolerance was set
to 0.01 Da, the MS/MS fragment ion tolerance was set to 0.01 Da, and the cosine score was set
to >0.5 with a minimum matched peak of 1, TopK was set to 10, the maximum component size
was set to 100, the maximum shift was set to 200 Da, the minimum cluster size was set to 1,
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and the maximum analog search mass difference was set to 500.

Bile acids were also annotated in the (-)) HILIC dataset with an error window of 0.005 Da,
taking the following adducts into account: [M-H]~, [M+CI]", [2M-H]~, and [M+CH;CHOO]". Seven
bile acids conjugated with sulfate were putatively annotated as [M-H]~ with an error window of
0.005 Da, resulting in 53 features. To confirm the identity of bile acids, we performed an
identification step with semi-targeted peak picking of bile acids, as described by Sillner et al. ',
with a UHPLC system (ExionLC; AB Sciex LLC, Framingham, MA, USA) coupled to a
quadrupole TOF mass spectrometer (X500 QTOF MS; AB Sciex LLC). The chromatographic
settings were identical to those used by Sillner et al., whereas MS detection was performed by
the Q-TOF instrument in (-) ionization mode (TurbolonSpray; AB Sciex LLC). The curtain gas
was set to 30 psi, ion source gases 1 and 2 were set to 45 psi, and the temperature was set to
500 °C. The MS was operated in the TOF MS and TOF MS/MS scan mode. The TOF MS
analyzed molecules between 65 and 1000 Da. The ion spray voltage was set to —4500 V, CAD
gas was set to 7, accumulation time was set to 0.1 seconds, the declustering potential was set
to —50 V, the declustering potential spread was set to 0 V, the collision energy was setto -5V,
and the collision energy spread was set to 0 V in TOF MS mode. In TOF MS/MS mode,
information-dependent acquisition (small molecule) was selected, and the following parameters
were used: a maximum of 10 candidate ions, an intensity threshold of 1000 counts per second,
activated dynamic background subtraction, excluding isotopes (x4 Da), and mass tolerance of
150 mDa. The TOF MS/MS acquired data between 50 and 1000 Da, with an accumulation time
of 0.025 seconds, a declustering potential of =80 V, a declustering potential spread of 0 V, a
collision energy of =35 V, and a collision energy spread of 15 V; the Q1 resolution was set to
unit.

Forty-five bile acids (0.05-0.4 mg/mL in methanol) and 50 pL of fecal methanolic extracts of 24
mice (two [n=5], 9 [n = 5], 15 [n = 4], 24 [n = 5], and 30 [n = 5] months) were analyzed for bile
acid identification. Bile acid retention times (0.05 mg/mL) were manually selected using Sciex
OS Analytics (version 3.0.0.3399) with an extraction width of 0.02 Da. Raw files (.wiff2) derived
from the LC—MS-based separation of bile acids were processed as described above, including
chemical noise subtraction, chromatographic peak picking, chromatogram isotope clustering,
and annotation of known peak function (with an rt tolerance window of 0.1 minutes and an m/z
tolerance of 0.005 Da). The bile acid data (m/z, rt, and maximum intensity values for each
sample) were normalized to the wet fecal weight. Pearson’s correlation was performed between
the bile acid data and the (=) HILIC data subset (annotated bile acids), and features with
coefficients >0.8 were considered for manual identification. Using this approach, 47 features
were identified, including different adducts, and 23 features were identified as [M-H] species.
Supplementary Table S4.12 summarizes all the identified and age-associated metabolites from
spectral library searches and the semi-targeted identification of bile acids.

Reconstruction of the generic metamodel

A two-step procedure was followed to obtain a metamodel for each mouse. In the first step, a
generic metamodel representing the individual organs and the microbiome was assembled. In
the second step, a specific metamodel of each mouse was derived by integrating the expression
and metagenomics data.
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In the first step (i.e., reconstruction of a generic metamodel), we joined three times the human
metabolic reconstruction Recon 2.2 * representing the individual organs with a microbiome
metabolic model according to their physiological interactions (Fig. 3A). Therefore, the
metamodel comprised three compartments corresponding to the host tissues (brain, colon, and
liver), each represented by one Recon 2.2 instance and one compartment corresponding to the
microbiome. A mouse-specific metabolic reconstruction was not used, as the human
reconstructions are by far the best curated, and a very high overlap in metabolic content exists
between mice and humans '°. All compartments interfaced with each other via common
exchange environments, such as the gut lumen (microbiome and colon) and the bloodstream
(colon, brain, and liver). To some extent, exchanges along the bloodstream are directional,
following the physiological interactions of the organs. Therefore, metabolites taken up from the
diet or excreted by the colon must first pass through the liver before they can be taken up by the
brain. Metabolite uptake into the brain was restricted to metabolites known to cross the
blood—brain barrier (see Supplementary Table S3.7 for a list) according to published data. To
compile this list of compounds, literature resources °'""""2 were utilized; in addition, we
selected the compounds in Recon 2.2 *, along with those identified on the Virtual Metabolic
Human website (www.vmbh.life) whose physicochemical properties (according to the Human
Metabolome Database '°) would allow them to cross the blood—brain barrier 4. For the
microbiome metabolic model, all individually reconstructed MAGs were merged into a single
model by combining all microbial reactions of the individual bacterial cellular compartments into
a single reaction space. This merged microbiome model could then interact with the human
metabolic models via the lumen exchange environment where it was located.

To better account for organ- and microbiome-specific uptake and secretion of metabolites,
exchange reactions of the individual compartments were split into irreversible forward and
backward directions for metabolite secretion and uptake, respectively. To model the dietary
uptake of the mice, the molar concentrations of all metabolites in their diet were derived and
represented in the model following an established protocol 2. Additionally, information on the
absorption of different dietary metabolites before entry into the colon was obtained to
differentiate between their ileal uptake and concentrations reaching the colon. The derived diet
was then integrated into the model by adding an inflow of compounds taken up in the small
intestine (i.e., the absorbed part of the diet) as a direct inflow to the bloodstream upstream of
the colon. The remainder of the diet was modeled as an inflow to the colonic lumen, which
would thus be available for the microbiome and the colonic compartment.

Following the merging of the human metabolic reconstruction and the gapseqg-derived bacterial
metabolic reconstructions and integrating of dietary uptake, several energy-generating cycles
(i.e., sets of metabolic reactions encompassing human and bacterial metabolic reactions that
can form ATP from ADP and phosphate without the consumption of other metabolites) were
identified. The reactions involved in energy-generating cycles were screened for potential
problems in reaction reversibility and adapted to prevent energy generation (see Supplementary
Table S3.6 for a list of modified reactions). The final generic metamodel did not contain any
energy-generating cycles. The metamodel can be found under accession MODEL2310020001
in the EBI BioModels database (https://www.ebi.ac.uk/biomodels/)".
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Reconstruction of mouse/context-specific metamodels

In the second step, the transcriptomic and metagenomic data of each respective mouse were
mapped to the metamodel. To achieve this, StanDep "'® was applied to the transcriptomic and
metagenomic data to derive the core reactions for each tissue required to reconstruct
context-specific models using fastcore . Transcriptomic data were preprocessed by
transforming counts into fragments per kilobase of transcript per million mapped reads (FPKMs).
After removing genes with at least one sample with zero detected expression or a mean FPKM
below 0.1 after log, transformation, FPKM values were normalized using Combat "” and then
transformed back to their original scale. To identify core reactions, mouse genes were mapped
to their corresponding human orthologues using Ensembl Biomart "'8; these data were then
used as input for StanDep. The gene expression values of all tissues were combined into a
single matrix, and tissue and age groups were used as separating categories for StanDep.
StanDep was applied with “chi2dist’ as the distance method and “complete” as the linkage
method. After screening optimal cluster numbers, predicted core reactions remained stable
when using 39 clusters (i.e., the Jaccard distance of derived core reactions for StanDep runs
with increasing cluster numbers was below 0.05 using at least 39 clusters).

For metagenomic data, reads were mapped to the assembled MAGs to derive species-level
counts, which were then transformed to reaction abundances by deriving a reaction contribution
matrix, multiplying it by the species abundance matrix, and normalizing it to a sum of one across
all reactions in a sample. A reaction contribution matrix containing reactions as rows and
species in columns was obtained by setting each reaction entry to “1” if the corresponding
species contained the respective reaction. Subsequently, the reaction contribution matrix was
normalized to a sum of one across the reactions of each species. Similar to how core reactions
were derived from gene activity, reaction abundances were used as input to StanDep with the
age group of the sample as the separating factor, “chi2dist” as the distance method, and
“‘complete” as the linkage method. Following the same procedure as for the gene activity data,
15 clusters were identified as optimal for reaction abundance data.

Because mapping the microbiome data enabled the direct identification of reaction activity, it
was not necessary to map gene activity (as internally carried out by StanDep) for the
microbiome data. In addition to information on gene activity and reaction abundances, metabolic
exchanges between individual organs and the bloodstream previously measured in pigs were
included '°. To this end, metabolites that had been identified to be exchanged between
individual organs and the bloodstream were mapped to the corresponding metabolite identifiers
in Recon 2.2. If an organ took up a metabolite, the corresponding uptake reaction was added to
the core reactions, and if it was secreted, the secretion reaction was added to the core
reactions. Similarly, if the kidney took up a metabolite, the corresponding outflow reaction from
the blood was added to the core reactions because the kidney was not modeled explicitly.
Subsequently, the core reactions for each sample and the generic metamodel were used as
input for fastcore to derive a context-specific metamodel for each mouse. To run fastcore,
CORPSE (htips:/qithub.com/Porthmeus/ CORPSE) was wused as an interface to the
corresponding function of the TROPPO toolbox '%°.
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Characterization of host- and microbiome-dependence of metabolite
exchange

To characterize the metamodels of individual mice, flux ranges were identified for each reaction
in the model, reactions and metabolites dependent on the microbiota were determined, and
dependencies of individual host reactions on microbial reactions were identified. To identify flux
ranges for each reaction in each model, FVA was performed '*' by maximizing and minimizing
flux through each reaction using the “flux_variability analysis()” function of CobraPy 2 with
fraction_of_optimum = 0 (no consideration of an objective function). Because internal exchange
reactions were split into irreversible forward and backward steps, they were treated separately
by running FVA for each reaction while blocking the corresponding opposing direction. The FVA
results were summarized by determining admissible flux ranges by subtracting minimal from
maximal flux. Microbiome-dependent reactions in the host were identified by repeating the FVA
but blocking each microbiome reaction. A reaction was deemed microbiome-dependent if its flux
range was reduced to less than 10% of the flux range of the wild-type reaction when blocking
microbiome reactions. To elucidate the metabolites exchanged between the host and the
microbiota (Fig. 3B), the microbiota-dependent uptake and secretion reactions of metabolites for
a given organ were counted. The number of cases of microbiome-dependent secretion was
subtracted from the frequency of microbiome-dependent uptake, and a metabolite was
classified as being provided by microbiota to the host or vice versa if the difference was 210
(20% of samples).

Identification of reaction-level dependencies between host and the
microbiota

To determine the dependencies of individual host reactions on individual microbial reactions,
EFMSampler *° was used to sample EFMs with each host and microbial reaction as the indicator
reaction for sampling. The indicator reaction is used to define the specific reaction in a model
through which EFMs should be determined. For each reaction in each metamodel, EFMSampler
was run either until 10,000 EFMs were sampled or >200 seconds had elapsed. The sampling
parameters were eight parallel threads for sampling EFMs and minimizing the total sum of
fluxes, as the objective function when determining EFMs. For each EFMSampler run, the
average flux through all reactions was recorded, along with the average frequency of
occurrence of reactions in EFMs. Subsequently, the sampled frequencies were averaged across
all 52 mice to obtain the average participation of reactions in EFMs containing the target
reaction. This yielded a matrix in which each column corresponded to a target reaction and each
row indicated the frequency at which all other reactions (including microbial reactions) occurred
in EFMs containing that reaction. Thus, a non-zero value for a microbiome reaction in the
column of a host reaction indicates that it occurred at least once in an EFM containing the host
target reaction. Similarly, a value of “1” indicates microbiome reactions that always co-occur in
EFMs of the target reaction.

To compare EFM-predicted interactions to host—microbiome correlations, scores in the
interaction matrix were compared between genes and microbiome reactions with significant
associations versus randomly sampled pairs of host—microbiome-associated processes. To this
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end, for each significant host gene-microbiome reaction association for each tissue
(FDR-adjusted p < 0.1), the reactions catalyzed by the host gene were identified, and the
submatrix of the interaction matrix containing those host reactions and the microbiome reaction
was determined. Subsequently, the maximal interaction score for this submatrix was
determined, and these scores were collected across all significant host gene—microbiome
reaction associations in a tissue. Thus, a set of “true” maximal interaction scores was derived.
The same analysis was performed for randomly drawn genes associated with reactions present
in the tissue and randomly selected microbiome reactions. We generated 100 such randomly
drawn pairs of host—microbiome-associated processes for each tissue to obtain “random”
maximal interaction scores. Then, true and randomly generated maximal interaction scores
were compared using the Wilcoxon rank-sum test.

To analyze the most strongly interacting metabolic processes between the host and microbiome,
an interaction between a host and microbiome reaction was assumed if the microbiome reaction
occurred in at least 50% of the EFMs sampled from that host reaction across all metamodels.
Then, for each host—microbiome reaction pair, we determined which metabolic subsystems they
were associated with and counted each corresponding host—microbiome subsystem pair across
all such pairs in the interaction matrix. The enrichment of host—-microbiome subsystem pairs was
then tested using Fisher’s exact test comparing for each host—-microbiome subsystem pair the
number of mutual interactions of reactions belonging to the host and microbiome subsystems to
the frequency of interactions across the entire interaction matrix. An enrichment was assumed
with an FDR-corrected p-value of <0.05, calculated using the p.adjust function in R.

|dentification of aging-regulated metabolic modules

To identify aging-regulated metabolic modules, we defined sets of reactions associated with
each indicator reaction used for EFM sampling. A reaction was assumed to belong to the
metabolic modules of an indicator reaction if it occurred in at least 20% of the EFMs sampled for
that indicator reaction. Unlike in the analysis of reaction-level dependencies between host and
microbiota, we considered both the host and microbiome components of the EFMs; thus,
metabolic modules contained both host and microbiome reactions. To identify aging-regulated
metabolic modules, aging-induced and aging-repressed genes for each tissue (Supplementary
Tables S5.1-S5.3) were translated into the reactions with which they were associated in the
metabolic model. Then, for each metabolic module, we tested whether the corresponding set of
reactions was enriched for aging-induced or aging-repressed metabolic reactions using Fisher’s
exact test, assuming the entire set of reactions occurring in a tissue as background. A metabolic
module was considered dependent on the microbiome if it contained at least five microbial
reactions. Enrichment was determined according to the subsystem annotation of each reaction
in Recon 2.2 using Fisher's exact test. For transport reactions, we also added a subsystem
annotation for the transport of nucleotides (encompassing desoxyribonucleic and ribonucleic
acids) and amino acids. As the underlying reaction universe for each tissue in Fisher’s exact
test, all reactions occurring in that tissue were used that occurred in at least one metamodel.
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Aging brain metabolome analysis

To analyze aging-associated changes in the metabolome, data provided by Feng et al. *
(Supplementary Table S2 in the referenced paper) that comprised metabolites measured across
several age groups for ten anatomical brain regions were utilized. Data for three-week-old mice
were excluded to avoid confounding by pre-aging trajectories. Metabolites were mapped to the
IDs contained in the metamodel using the provided PubChem IDs '? and information from the
BiGG database '**. Subsequently, for each metabolite, concentrations for each measured tissue
were correlated against the age of the mice using Spearman’s rank correlation. Only
associations with a Benjamini-Hochberg FDR-adjusted ' p-value of <0.05 were retained. In the
analysis of microbiome-produced and microbiome-consumed brain metabolites, a metabolite
was assumed to be provided from the microbiome to the brain if its number of cases of
microbiome-dependent uptake was greater than its number of cases of microbiome-dependent
secretion. An uptake or secretion reaction of the brain was assumed microbiome-dependent if
its flux range was reduced to £10% of its wild-type value when microbiome reactions were
blocked.

Data Availability

Metagenomic raw read and MAG assembly data was deposited in the European Nucleotide
Archive (ENA) under BioProject PRJEB73981 (ebi.ac.uk/ena/browser/view/PRJEB73981).
Individual accession numbers for each MAG were listed in Supplementary Table S1.2. Gene
expression data was published in the GEO database under record GSE262290
(ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE262290). Metabolomics data has been made
available at the MassIVE database (massive.ucsd.edu) with Identifiers MSV000094409 and
MSV000094410. The metamodel can be found under accession MODEL2310020001 in the
BioModels database (ebi.ac.uk/biomodels/MODEL2310020001) "°. Detailed sample metadata,
the microbial metabolic models and supplementary resources as well as source code used for
data analysis (github.com/sciwitch/MouseMicrobiomeAging) were deposited in a zenodo record
(doi.org/10.5281/zenodo.10844503).
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Suppl. Fig. 1: A Study setup and B Metagenomics workflow and Metagenome characterization.
Abundance of metagenomics reads derived from microbes C or mouse DNA D. Read depths
and host reads did not differ significantly between age groups according to pairwise
comparisons using the Kruskal-Wallis test. E Alpha diversity derived from metagenomic reads
mapped against MAGs. Metagenomic-derived alpha diversity did not differ significantly between
the age groups according to pairwise comparisons using the Kruskal-Wallis test. F Abundance
profile of the 60 most abundant MAGs in the full cohort. Bacteroidota predominated in the cohort
while some species in Bacillota and other phyla contributed only a small amount to the total
microbiome biomass. Phylum colors are reused from main Fig. 1A.
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Suppl. Fig. 2: High-level pathway overview of host—-microbiome abundance. Sum of
-log,o(FDR-adjusted p-values) for the odds ratios of correlation-based host—microbiome
pathway interactions.
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Suppl. Fig. 4: A Age-associated changes in metabolic fluxes within the community. B Relative
abundance of universal adaptive strategies in microbiome communities by age. We investigated
the extent to which aging-associated shifts in microbiome ecology were related to species-level
ecological strategies according to the universal adaptive strategies theory (UAST) framework,
which categorizes species into ruderals, competitors, and stress tolerators **°. Within this
framework, ruderals are species that focus on rapid growth, competitors are species that can
outcompete other species through direct antimicrobial effectors and broader resource utilization,
and stress tolerators are species that are resistant to stress. We observed a significant increase
in the ruderal strategy with age, whereas stress tolerators and competitors significantly
decreased in frequency. C Comparison of community growth rates derived from FBA or PTR.
Growth rate estimates from metabolic modeling community simulations and metagenomic
peak-to-trough analysis were strongly and positively correlated and indicated reduced growth
rates of models or MAGs in older mice. D Changes in D-galactose concentration with age. The
D-galactose concentration in mouse feces increased with age (Spearman’s p = 0.22, p = 0.04
[not FDR-adjusted)]).
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Suppl. Fig. 5: Aging-associated transcriptomic changes across host tissues. Each row
represents a gene that shows common expression changes across all tissues studied (see
Supplementary Table S5.7 for the complete list and Tables S5.8 and S5.9 for GO enrichment).
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Suppl. Fig. 6: Host-Microbiome associations in aging. A-E Strong host—microbiome
correlations stratified by age group. A Frequency of microbiome—colon correlations stratified by
age group. Significance was tested with Pearson’s Chi-squared test with Yates’ continuity
correction and Bonferroni multiple testing correction. B Liver transcripts correlated with
microbiome reactions. C Liver transcripts partially correlated with microbiome reactions,
corrected for sequencing batch. D Brain transcripts correlated with microbiome reactions.
E Brain transcripts partially correlated with microbiome reactions, corrected for sequencing
batch. F-G Organ-specific gene expression changes with age in GO biological processes that
were also correlated with microbiome metabolic functions (F = liver, G = brain).
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