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Abstract 

Better interrogation of antimicrobial resistance requires new approaches to detect the associated genes 

in metagenomic samples. Targeted enrichment is an ideal method for their sequencing and characterization. 

However, no open-source, up-to-date hybridization probe set targeting antimicrobial resistance genes exists. 

Here we describe CARPDM, a probe design software package made to run alongside all future 

Comprehensive Antibiotic Resistance Database releases. To test its efficacy, we have created and validated 

two separate probe sets: AllCARD, which enriches all genes encoded in the Comprehensive Antibiotic 

Resistance Database’s protein homolog models (n = 4,661), and clinicalCARD, which focuses on a clinically 

relevant subset of resistance genes (n = 323). We demonstrate that allCARD increases the number of reads 

mapping to resistance genes by up to 594-fold. ClinicalCARD performs similarly when clinically relevant genes 

are present, increasing the number of resistance-gene mapping reads by up to 598-fold. In parallel with this 

development, we have established a protocol to synthesize any probe set in-house, saving up to 350 dollars 

per reaction. Together, these probe sets, their associated design program CARPDM, and the protocol for in-

house synthesis will democratize metagenomic resistome analyses, allowing researchers access to a cost-

effective and efficient means to explore the antibiotic resistome. 

 

Introduction 

Antimicrobial resistance (AMR) is a growing and global problem. In 2019, AMR was estimated to be 

directly responsible for 1.27M deaths (1). By 2050, this number may be as high as 10M (2). Most of this impact 

is and will continue to be in regions least equipped to combat it, largely due to a lack of resources (1). 

Therefore, it is imperative that we devise cost-effective solutions to address AMR more effectively and 

equitably. Bacterial evolution has been marked by the arms race of antibiotics and their associated resistance 

genes, providing a competitive edge to their producers (3–8). This struggle is revealed in the vast reservoir of 

antimicrobial resistance genes (ARGs) in environmental microbes, requiring only mobilization through 

horizontal gene transfer to be effective against any treatment we deploy (9–12). Therefore, to better combat 

AMR emergence, we need to improve how we detect the full complement of ARGs (the resistome(13)) in 

environmental and other reservoirs. Attractive monitoring targets are environments such as wastewater, a 
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fertile ground for genetic exchange between bacteria [5] that provides a snapshot of ARG prevalence in the 

community (14–20). Natural environments such as soils, rivers, and farms are known reservoirs of ARGs, 

many with the potential to mobilize into pathogens (21–25). Finally, profiling the resistome of human and 

animal microbiomes allows us to identify critical determinants in the spread of resistance within and between 

these two groups (26, 27).  

Investigating these rich data sources requires methods to characterize their resistome. Several 

techniques exist that may fill this niche, each with its limitations. PCR, for example, is commonly used to detect 

ARGs in Mycobacterium tuberculosis isolates (28). While useful for a small, targeted set of genes, the 

Comprehensive Antibiotic Resistance Database (CARD) (29) hosts over 5000 resistance determinants, an 

untenable number for PCR methods. Furthermore, because of the specificity of PCR, there is little chance of 

detecting distantly related genes, as a single nucleotide substitution may eliminate any signal from the assay. 

Finally, even if one detects a novel sequence variant by PCR, without follow-up amplicon sequencing, there is 

no way to identify it. This makes phylogenetic tracking of the spread of AMR far more difficult. 

Shotgun DNA sequencing can detect all the genes in a sample given sufficient depth. Groups have 

used this method to characterize environmental (25, 30) and worldwide wastewater (14, 15) resistomes. A 

limitation of this technique is that all ARGs in a metagenomic sample typically represent <1% of the total DNA. 

Individual ARGs may be several orders of magnitude less than that in abundance. For example, a single 1kb 

ARG that makes up 1x10-6% of the DNA in a sample would require 10 Gbp of sequence data to obtain 10-fold 

coverage of the ARG. Performing this work on a NextSeq 2000 would cost over USD$1500. As such, while 

deep sequencing can be used to characterize metagenomic resistomes, it entails a high cost per sample, most 

of which will be spent sequencing background DNA. The associated volume of data also increases equipment 

costs and computing power needed to parse the data, further constraining this technique’s use in resource-

limited settings (31). 

Targeted enrichment is a modification to shotgun sequencing that allows robust detection of a broad 

range of specific, low-abundance targets with less sequencing. In this protocol, DNA from a sequencing library 

is denatured, allowing biotinylated RNA ‘probes’ complementary to a set of target sequences to hybridize (32, 

33). Streptavidin-coated magnetic beads capture these biotinylated RNA probes and their complementary DNA 
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partners from the background (Figure 1). This process increases the proportion of the target DNA in a library, 

allowing one to sequence less yet detect more. 

 

A probe-capture protocol is ideal for detecting thousands of ARGs with a fraction of the sequencing 

required by brute-force shotgun approaches. However, two challenges exist for the probe-capture strategy in 

the AMR space. First, there is no up-to-date and open-source AMR probe set, as the most recent was 

designed against only 2,021 ARGs from CARDv1.0.1, released in 2015 (34). The second is that the cost of 

probes from commercial suppliers can be up to $350 per reaction, diminishing cost savings relative to shotgun 

sequencing. To address the first of these challenges, we have written a software package – the 

Comprehensive Antibiotic Resistance Probe Design Machine (CARPDM) - to generate a stringently filtered 

probe set with minimal off-target enrichment from the CARD v3.2.5 protein homolog model (allCARD) ARGs. 

This software package will run alongside all new releases of CARD, ensuring there is always an open-source 

and up-to-date probe set to enrich ARGs from any sample. We also curated a list of 323 clinically relevant 

ARGs and generated a smaller probe set (clinicalCARD) with the same program, providing a more focused 

 

 

Figure 1: Targeted enrichment workflow. Magnetic streptavidin beads are used to bind biotinylated RNA 

molecules, which are, in turn, attached to a complementary DNA partner. One can considerably bias the 

resulting library towards a target fraction by pelleting the beads and washing away the background before 

amplification and sequencing. 
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alternative to the allCARD probe set, as the full complement of ARGs may not be necessary for many projects 

in healthcare settings. To address the cost of commercial probes, we have developed a protocol that allows in-

house synthesis of any probe set from a Twist Biosciences® oligo-pool. With this strategy, researchers can 

synthesize thousands of reactions worth of any probe set for a one-time fee lower than that of a typical 16-

reaction kit from a commercial supplier. 

For validation of our probe sets and in-house synthesis of probes, five conditions were tested on two 

wastewater and three soil samples in duplicate, comparing enrichment via the 2015 CARD v1.0.1 (34), 

allCARD, clinicalCARD probe sets to sequencing without enrichment, plus examination of the comparative 

performance of commercially supplied probes and probes synthesized using our new protocol. We 

demonstrate that our in-house synthesized probe set detected more ARGs with the same amount of 

sequencing on the samples we tested when compared to a commonly used commercial option. We also 

illustrate CARPDM’s capability as a probe design platform by validating allCARD and clinicalCARD probe sets 

on wastewater and soil samples. We found that allCARD detects far more ARGs than the probe set generated 

against CARD v1.0.1 (34). Finally, we show that clinicalCARD detects clinically relevant ARGs with less 

sequencing and better coverage than allCARD. 

 

Methods 

ARG Selection for AllCARD 

Only ARGs curated as protein homolog models were included from CARD v3.2.5 (n = 4,661), as these 

ARGs do not confer resistance via the acquisition of mutations (i.e., CARD’s protein variant models). Including 

mutation-based ARGs in the design would enrich wild-type alleles, as enrichment probes can readily hybridize 

over a single mutation, diluting sequencing effort. 

 

ARG Selection for ClinicalCARD 

The CARD prevalence data v4.0.0 [19] aided in identifying clinically relevant ARGs. This dataset is a 

collection of 221,175 sequencing assemblies from 377 pathogens with associated ARGs identified by CARD’s 

Resistome Gene Identifier RGI software (35). These data include a collection of 21,079 completely sequenced 
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chromosomes and 41,828 completely sequenced plasmids. Preliminary examination of these data illustrated 

that the distribution of ARGs was almost binary, i.e., each ARG predominantly occurred in either plasmids or 

chromosomes, but not both (Supplemental Figure 1). It also showed that ARGs with a higher occurrence on 

plasmids were far more likely to be clinically relevant (36–39). As such, the first list of candidate clinically 

relevant ARGs included any ARG in CARD with at least ten occurrences in plasmids, yielding 237 ARGs. Any 

ARG with >5% but <95% prevalence in any ESKAPE pathogen (40, 41) was also added to this list, yielding a 

further 124 ARGs. Finally, 42 ARGs identified as clinically significant via a literature review were added (42, 

43), resulting in a draft set of 403 total ARGs. This set was manually curated based on CARD prevalence data, 

considering the species they appeared in, the genomic context (whether it was mobile, i.e., on a plasmid), the 

drug classes they impact, the environment of the host organism, and the relative risk each species imposed as 

a pathogen. Our approach was developed following recent ARG risk frameworks developed for metagenomic 

data (42, 43). In short, our manual curation included mobile ARGs that confer resistance to a clinical antibiotic, 

are present in a human pathogen, and share an environment with humans or animals. After curation, 323 

ARGs were deemed clinically relevant and included in the clinicalCARD probe set design. 

 

Probe Design 

CARPDM is written in Python, save for the first step, which employs the program BaitsTools (44) to tile 

probe sequences along ARG sequences. Probes designed by CARPDM have an 80 nt length as per the prior 

validated ARG bait set for CARD v1.0.1. This is also an ideal size for adding amplification primers while 

remaining below the 120nt cut-off for the base level of a Twist oligo-pool if synthesizing probes in-house. The 

probes also have an extremely high density before filtering, with a tiling distance of 4 nt along ARG nucleotide 

sequences. This increases redundancy in the probe set and makes it more robust against stringent 

downstream filtering. As input, the allCARD design used all 4,661 CARD v3.2.5 protein homolog model ARGs, 

while clinicalCARD’s design used the curated 323 clinically relevant ARGs. 

There are three filtering steps after the initial probe construction (Supplemental Figure 2). The first is a 

filter based on sequence, in which the probes are deduplicated, confirmed as 80 nt, contain no ambiguous 

bases, have no perfect complements within the set, have a Tm >50°C, and contain no LguI restriction 
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endonuclease cut sites. The last condition is essential for the synthesis protocol. Since bacteria are likely to be 

the most abundant organism in most metagenomic samples (45), the second filter is a BLASTN (46) search 

against the nt database to minimize off-target enrichment and removes probes with >80% identity over <50 nt 

to any bacterial sequence, as any probe similar to a bacterial sequence over >50 nt is likely the ARG itself. 

This filter also removes probes with >80% similarity over >50 nt to any viral, archaeal, or eukaryotic sequence 

unless they match perfectly (i.e., likely sequence contamination by an ARG).  

The last filter removes redundancy in the probe set, using BLASTN to compare the probes against 

each other. To remove probes that could bind to each other rather than the target DNA, any probes found to be 

complementary over the entire 80 nt are collapsed to a single representative. After removing complementary 

probes, CARPDM determines if the number of probes in the set is below a pre-defined cut-off. For allCARD, 

we arbitrarily set this cut-off at 40,000 probes, while for clinicalCARD, it was set to 20,000 probes. If not below 

the cut-off, CARPDM collapses probes with 79 nt of complementarity to a single representative, repeating the 

process with decreasing length of complementarity until below the cut-off.  

 

In Silico Analysis of Probe Sets 

BLASTN (46) was used to compare the probe sets to the ARG sequences. Using Python and NumPy 

(47), “target” arrays of zeros were constructed. Each of these arrays represented a single ARG against which 

the probeset was designed. After aligning all probes against the input set of target sequences with BLASTN, 

arrays of ones (matches) and zeros (mismatches) were constructed for each probe:target alignment. These 

arrays were then added to the corresponding target array at the start position of the alignment. Repeating this 

for every probe:target alignment yields the tallied coverage of each nucleotide position by probes. This 

coverage array was used to compute summary statistics. 

 

Probe Synthesis 

For in-house synthesis of probes, the first step is to amplify an oligo pool by PCR. For this to happen, 

two PCR primers must flank each probe sequence, with one including the T7 transcription start site for RNA 

synthesis and the other including an LguI restriction endonuclease digest sequence so that it can be cleaved 
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after amplification (Supplemental Figure 3). In support of in-house synthesis, CARPDM first appends a T7 

transcription start site with three extra guanines to one end of every probe sequence to reduce transcription 

efficiency variability (48) and then creates every possible primer with a terminal LguI cut site of the correct 

length to yield a final oligo of 120 nt when appended to the opposite side. It compares these putative primers to 

the concatenated T7/probe sequences using BLASTN and selects the primer with the fewest matches as the 

second amplification primer, appending the reverse complement to the opposite side of each probe sequence. 

The resulting sequences were ordered as an oligo-pool from Twist Biosciences (San Francisco, CA), and the 

amplification primers were ordered from Integrated DNA Technologies (Coralville, IA). 

For probe synthesis, 16 50 µL PCR reactions were conducted in parallel, each with 1 ng oligo pool 

input using 0.5 µL Phusion polymerase with HF buffer (Thermo Fisher Scientific, Waltham, MA) 1 uM of each 

primer, and 0.2 mM dNTPs (Thermo Fisher Scientific, Waltham, MA). Cycling conditions were initial 

denaturation at 98°C for 30s, 12 cycles of 98°C for 10s, 60°C for 30s, and 72°C for 15s, and final extension at 

72°C for 10m. Reactions were purified with the QIAQuick Nucleotide Removal Kit (Qiagen, Hilden, Germany), 

pooling eight reactions per column and eluting each in 30 µL. The elutions were then pooled, and their 

concentrations were quantified via Qubit 1X dsDNA HS assay (Thermo Fisher Scientific, Waltham, MA). 

Four restriction 50µL endonuclease treatments were then performed in parallel, each with 2 µg PCR 

input and 2 µL FastDigest® LguI (Thermo Fisher Scientific, Waltham, MA). These reactions were then 

incubated at 37°C for two hours, followed by heat inactivation at 65°C for 5 min. Parallel reactions were then 

pooled over a single Qiagen MinElute® PCR Purification column (Qiagen, Hilden, Germany), eluted in 10µL, 

and quantified via Qubit 1X dsDNA HS assay.  

Finally, T7 transcription reactions were performed with up to 1 µg of purified LguI digest product, though 

similar yields were achieved with as little as ~250 ng. For this HiScribe® T7 High Yield RNA Synthesis Kit (New 

England Biolabs, Ipswitch, MA) was used according to the manufacturer’s instructions, with one-third of the 

UTP concentration comprised of Bio-16-UTP (Thermo Fisher Scientific, Waltham, MA). The 20 µL reactions 

were incubated for 16h at 37°C, after which 68 µL RNase-free H2O was added with 10 µL DNase I Buffer and 

2 µL DNase I (New England Biolabs, Ipswitch, MA). The resulting mix was incubated for 15m at 37°C, after 

which the RNA probes were purified using the Monarch® RNA Cleanup kit (50 µg) (New England Biolabs, 
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Ipswitch, MA). Finally, concentrations were quantified via Nanodrop (Thermo Fisher Scientific, Waltham, MA), 

and probes were diluted to 100 ng/µL. 100 ng of each probe set was then analyzed on a 12.5% Urea-PAGE 

gel stained with SYBR-Gold (Thermo Fisher Scientific, Waltham, MA). 

 

Samples 

Two wastewater samples and three soil samples were selected for probe validation with sequencing. 

The wastewater samples were 24h aggregate influent samples from the city of Hamilton (Ontario, Canada) 

Wastewater Treatment Plant (November 7, 2022 and March 20, 2023). DNA was extracted from 50 mL 

wastewater samples within 24h of sampling using the DNeasy® PowerWater Kit (Qiagen, Hilden, Germany) 

according to the manufacturer’s protocols, each with an associated H2O control. Soil samples were collected 

from three different environments selected to represent distinct levels of human impact. The first was from 

Holman Island in the Northwestern Territories of Canada, a pristine environment with little human influence. 

The second was from a local wetland in an urban setting in Hamilton (Ontario, Canada), representing an 

environment with middling human impact. The third was from a high-traffic pedestrian area frequented by 

smokers outside of a Hamilton (Ontario, Canada) hospital, a setting with heavy human influence. DNA was 

extracted from 250 mg soil samples using the Qiagen DNeasy® Powersoil Kit (Qiagen, Hilden, Germany) 

according to the manufacturer’s protocols alongside an associated H2O control. 

 

Sample Processing, Enrichment, and DNA Sequencing 

Commercially synthesized probes (CARD v1.0.1 only) and reagents for all enrichments were purchased 

from Daicel Arbor Biosciences (Ann Arbor, MI). Probes for the allCARD, clinicalCARD, and CARD v1.01 sets 

were synthesized as outlined above, with the latter allowing direct comparison with commercially synthesized 

probes. For each sample, extracted DNA was quantified via NanoDrop (Thermo Fisher Scientific, Waltham, 

MA), diluted, and sonicated to an average size of 400 bp using Covaris G-tubes (Woburn, MA). From this, 

libraries were prepared in quadruplicate from 1ug DNA using the NEBNext® Ultra II ligation kit (New England 

Biolabs, Ipswitch, MA) according to the manufacturer’s protocols. These libraries were then pooled before 

redistributing to half-size indexing reactions using NEBNext® Multiplex Oligos for Illumina (New England 
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Biolabs, Ipswitch, MA). Sample libraries were then enriched in two batches. The first batched performed 

allCARD and clinicalCARD enrichments, while the second batch performed commercial and in-house CARD 

v1.0.1 enrichments (Supplemental Figure 4). All enrichments were performed according to the manufacturer’s 

protocols (version 5.02) using the Daicel Arbor myBaits v5 kit and reagents in a half-size reaction format with a 

24h hybridization at 62°C, maximum library input, and 14 cycles of post-enrichment reamplification. In-house 

probes were diluted with RNase-free water to the same concentration as Daicel Arbor’s before use in the 

protocol. Each enriched library was accompanied by an aliquot without enrichment. 

Before sequencing, libraries were quantified in triplicate using NEB Luna® Universal Probe qPCR 

Master Mix (New England Biolabs, Ipswitch, MA), Illumina PhiX standard (San Diego, California) and the 

following primers, all ordered from Integrated DNA Technologies (Coralville, IA): P5: 

AATGATACGGCGACCACCGA, P7: CAAGCAGAAGACGGCATACGA, probe: /56-

FAM/CCCTACACG/ZEN/ACGCTCTTCCGATCT/3IABkFQ/. Cycling conditions were initial denaturation at 95°C 

for 3m, followed by 40 cycles of denaturation at 95°C for 15s and annealing/extension at 60°C for 1m. The 

resulting concentrations were used to make individual pools for each enrichment set above, alongside one 

replicate of the shotgun (without enrichment) libraries (Supplemental Figure 4). 2x150 bp paired-end reads 

were obtained from each pool using an Illumina NextSeq 2000 (San Diego, California), with samples having an 

average depth of 4.47M clusters sequenced (minimum of 3.26M clusters and a maximum of 6.71M clusters). 

  

Analysis and Visualization 

All analyses were performed with custom Python scripts and visualized with the ggplot2 (49) package in 

R. For rarefaction analysis, libraries were subsampled every 100,000 paired-end reads up to 3M using seqtk 

v1.3. Fastp v0.23.2 [28] performed initial read trimming, quality control, and deduplication for these 

subsamples without merging. CARD’s RGI bwt v6.0.2 tool with KMA v1.4.9 (50) then mapped reads to 

reference sequences in CARD v3.2.5. ARGs were classified as present if they had more than 100 reads 

mapping (regardless of the breadth of coverage of the reference sequence). Regression lines were determined 

without extrapolation using the ggplot local estimated scatterplot smoothing function with geom_smooth. Since 

one cannot extrapolate a locally estimated function, we used a standard log-linear model when extrapolating 
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the predicted number of ARGs detected at a sequencing depth of 10M. GNU parallel v20161222 (51), the 

Python pandas v1.5.3 library (52), and BioPython v1.78 (53) were used heavily for these analyses. 

For read distribution analysis, custom Python scripts used the CARD RGI bwt output to count the 

number of reads that mapped to each ARG in soil and wastewater samples, respectively. The top 20 most 

prevalent ARGs (i.e., ARGs with the highest number of reads mapping) in each sample source (soil, 

wastewater) were kept for the figure, while all others were collapsed to the ‘other’ category. This cut-off was 

chosen to keep figure legends readable while providing discriminatory power between the performance of 

different probe sets. Mean counts of the two replicates are used to determine the number plotted. The 

distribution of percent identity between read and reference for each sample was determined by a custom 

Python script that parsed the CIGAR strings in the BAM file that accompanies the RGI bwt output, where the 

percent identity was calculated as the number of nucleotide matches / 151 * 100. Replicates were pooled for 

this analysis. 

In a clinicalCARD versus allCARD overlap analysis, a custom Python script determined clinically 

relevant ARGs detected by allCARD or clinicalCARD with >=100 mapped reads in both replicates at each 

subsampling depth. A similar approach was used to determine the overlap between the in-house vs 

commercially synthesized CARD v1.01 probe sets. However, to compare these sets, only ARGs included in the 

initial design (i.e., in CARD v1.0.1) were considered. Coverage analysis only considered clinically relevant 

ARGs detected by both clinicalCARD and allCARD with at least one read at a subsampled sequencing depth 

of 3M paired-end reads in both replicates. Python scripts determined each ARG’s coverage using the CARD 

RGI bwt output from the rarefaction analysis. Once again, for a similar analysis comparing the commercial and 

in-house synthesis, only ARGs from CARD v1.0.1 were considered. 

For a wastewater read correlation analysis, only clinically relevant (i.e., in clinicalCARD) ARGs detected 

with at least one read in both shotgun and enriched in each sample were considered. All ARGs were included 

from soil samples, while clinicalCARD analysis was omitted due to the sparsity of detected ARGs. R2 values 

were calculated using scikit-learn v1.2.2 (54). The cmlA1 read number correction outlined below was 

accomplished by summing the number of reads attributed to all closely related cmlA variants (i.e., cmlA1, 4, 5, 

6, 8, 9) in each relevant treatment and manually adding the corresponding values to the plot. 
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Results 

Probe Design and Synthesis 

 After design and filtering, allCARD contained 34,915 unique probe sequences covering 4,661 ARGs. 

Alternatively, clinicalCARD contained 15,393 unique probes, covering 323 ARGs (Supplemental Figure 5). No 

probe set had zero coverage of an ARG against which it was designed. When analyzing probes against all 

ARGs curated as CARD protein homolog models (Figure 2A), the median value of all metrics other than the 

proportion covered per ARG was higher in the clinicalCARD probe set. The reason for clinicalCARD’s bimodal 

distribution compared to allCARD is that it was only designed against the clinically relevant subset. Therefore, 

the clinically irrelevant genes (e.g., TolC, H-NS) had no probes aligning since they were not included in the 

initial design. However, despite only being designed against 323 ARGs, over 50% of CARD ARGs had 

coverage of >75% by clinicalCARD. When analyzing both probe sets against the clinically relevant ARGs in 

clinicalCARD (Figure 2B), median values in clinicalCARD were higher than allCARD in every metric. 

 

 

Figure 2: In-silico probe analysis using BLAST to align all probes in allCARD and clinicalCARD against a) all genes in CARD and 
b) all genes deemed to be clinically relevant. 
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The increased in silico performance of clinicalCARD is a consequence of the smaller initial set of 

reference sequences. As such, it did not have to remove as many probes during the redundancy filter 

(Supplemental Figure 5A) and ended up with more redundancy and superior coverage of the ARGs against 

which it was designed. Probes in clinicalCARD had a lower median GC content and melting temperature. A 

higher proportion of probes also target only a single ARG in clinicalCARD relative to allCARD (Supplemental 

Figure 5B). After synthesis, a urea-PAGE gel shows a smear above 80 nt due to the stochastic incorporation of 

biotin into the probe (Supplemental Figure 6). A comparison of all pools against the commercially synthesized 

version indicates a similar size distribution, with a slight bias towards lower molecular weights in the in-house 

synthesized probe set. 

 

Probe Validation 

Five samples in five different treatments were employed to determine the efficacy of the probes when 

enriching for targets. No blanks had sufficient sequencing depth to be analyzed at even the lowest 

subsampling depth, indicating negligible contamination. First, the non-inferiority of the in-house synthesized 

probe set relative to the commercial option was established. After subsampling every 100k paired-end reads 

up to 3M with analysis by the CARD RGI bwt tool (55), the number of ARGs with >100 mapped reads was 

determined for each depth in each sample (Figure 3). This analysis illustrated that the in-house synthesized 

probes detected more ARGs at the same sequencing depth in every sample. This effect was more pronounced 

in the soil samples, where the in-house synthesized probe set detected as many as double the number of 

ARGs detected by the commercially synthesized probe set, despite both having identical probe sequences 

based on CARD v1.01. Yet, our in-house synthesized probe set had an almost identical distribution of the top 

20 detected ARGs after enrichment compared to the commercially synthesized set (Figure 4), indicating 

consistent enrichment efficiency between ARGs in the commercial and in-house synthesized sets. These 

results were further complemented by analyzing the overlap between ARGs detected by each set at each 

subsampling depth and the associated coverage distribution for all detected ARGs (Supplemental Figures 7 & 
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8). In these analyses, enrichment with our in-house synthesized probes detected ARGs with less sequencing 

effort than commercially synthesized probes and had greater coverage of detected ARGs. 

 

Enrichment with all probe sets detected vastly more ARGs in wastewater samples than by sequencing 

without enrichment. AllCARD detected the most, with up to 498 different ARGs, and clinicalCARD detected the 

least, with up to 300 ARGs. However, clinicalCARD efficiently retained the highest abundance ARGs, 

evidenced by the similar distributions between allCARD and clinicalCARD in Figure 4A. AllCARD detected by 

far the greatest number of ARGs in soil samples, up to 96 in the high-impact hospital grounds. ClinicalCARD 

 

Figure 3: Enrichment efficiency comparisons between different treatments. a) Rarefaction analysis of the number of detected genes 
at subsampling depths of every 100k reads up to 3M in wastewater samples and b) soil samples. Shaded areas represent the 95% 
confidence interval. c) Average enrichment factor ±1SD of different probe sets in different samples. The enrichment factor is defined 
here as the number of CARD-mapped reads after enrichment with the relevant probe set divided number of CARD-mapped reads in 
shotgun sequencing data. 
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did not detect a substantial number of ARGs in any soil sample, except for that taken from the high-impact 

hospital grounds, where it detected 24. 

 

The enrichment factor (i.e., the number of enriched reads mapped to CARD divided by the number of 

shotgun reads mapped to CARD) of different probe sets shows a more consistent value within each sample 

than expected, given the high performance of allCARD at detecting the most ARGs (Figure 3C). This is 

especially evident in wastewater, where clinicalCARD is on par with, if not outperforming, allCARD in terms of 

enrichment factor despite detecting far fewer ARGs in the rarefaction curve. There was a 400 to 600-fold 

enrichment in the wastewater samples in the November sample, depending on the probe set, which decreased 

 

Figure 4: Top 20 AMR genes according to overall count and their associated read proportions in each sample. a) Wastewater samples. 
b) Soil samples. Very long gene names were replaced with their CARD short name. 
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to 200 to 400-fold for the March sample. Soil samples had a markedly lower enrichment factor than 

wastewater, hovering between 0 to 200-fold enrichment depending on the probe set. Yet, enrichment was 

consistent between samples for different probe sets in soil. Based on the rarefaction curves (Figure 3), ARG 

detection in most samples begins to plateau by a sequencing depth of 3M paired-end reads. Extrapolation of 

these rarefaction curves to a sequencing depth of 10M paired-end reads indicates that at a subsampling depth 

of 3M, we have captured 70%-80% of the diversity of ARGs that may be detected at 10M (Supplemental Figure 

9).  

 

There were differences when comparing the top 20 most prevalent ARGs in soil and wastewater 

(Figure 4). First, all top 20 ARGs in wastewater data, save for adeJ and tetQ, were in our set of clinically 

relevant ARGs. However, in soil samples, not a single top 20 ARG was included in the clinically relevant set, 

which explains the lack of enrichment for any top 20 ARGs in soil by the clinicalCARD probe set. Most 

dominant ARGs in the soil samples were found across various species and associated with efflux pumps (e.g., 

Mex proteins) or transcriptional regulators (e.g., mtrA, vanR/S). Moreover, the percent identity of the ARG-

associated reads relative to the CARD reference sequences in the soil samples was lower than those from 

wastewater samples (Figure 5). Before enrichment, the wastewater sample had a mixture of high-identity 

 
Figure 5: Distribution of the number of similarity between read and reference, based on CIGAR strings from the BAM file output by 
the CARD RGI bwt module. The internal line of each violin plot indicates the median of the distribution. 
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(>90%) and mid-identity (60%-90%) reads relative to their references in CARD, but the soil samples had 

exclusively mid-identity to low-identity (<60%) reads. After enrichment, wastewater samples had almost 

exclusively high-identity reads in both the clinicalCARD and allCARD enrichments. In soil samples, enrichment 

with allCARD selected heavily for mid-identity reads, but clinicalCARD preferentially selected for high-identity 

reads, especially in the sample from the high-impact hospital grounds. 

 

AllCARD versus ClinicalCARD 

The wastewater samples were used to examine clinicalCARD’s efficacy relative to allCARD at enriching 

the clinically relevant ARGs it was designed against, as clinically relevant ARGs had the highest abundance in 

the wastewater samples. Overall, clinicalCARD detected an average of 16% more ARGs than allCARD in the 

November wastewater sample and 35% more in the March sample at each subsampling depth, with very rarely 

an ARG detected uniquely by allCARD (Figure 6A).  

 

 

Figure 6: Comparison of enrichment efficiency of clinically relevant ARGs between allCARD and clinicalCARD probe sets. a) Overlap 
analysis showing ARGs detected by allCARD, clinicalCARD, for both with at least 100 reads at different subsampling depths. b) 
Coverage analysis showing the distribution of coverage for ARGs detected by both probe sets with at least one read at a depth of 
3M. In the November sample, there were 226 such ARGS. In the March sample, there were 176. 
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To assess the breadth of coverage of individual ARGs after enrichment with allCARD or clinicalCARD, 

clinically relevant ARGs detected by both probe sets in both replicates at a subsampling depth of 3M paired-

end reads were analyzed. The distribution of coverage of these ARGs at each subsampling depth for allCARD 

and clinicalCARD was plotted (Figure 6B). ClinicalCARD delivered 100% coverage of at least 50% of the 

ARGs detected in the November sample at a subsampling depth of 1M reads, while allCARD took 1.5M reads 

to do the same. In the March sample, clinicalCARD took only 700k reads to reach this level of detection, while 

allCARD required 2.1M reads. Based on this analysis, clinicalCARD delivers better coverage of more clinically 

relevant ARGs at a lower sequencing depth than allCARD. 

Finally, a commonly perceived limitation of enrichment is that hybridization can be sequence-

dependant, which may introduce biases in the final library, thereby eliminating the ability to perform relative 

quantification of ARGs in a sample. To investigate the relationship between ARG abundance in enriched versus 

unenriched data, the clinically relevant ARGs present with at least one read in both replicates of shotgun and 

enriched data at a subsampling depth of 3M paired-end reads were analyzed (Figure 7). In the wastewater 

samples, due to the high identity between reads, the R2 value reached as high as 0.996 in the November 

sample with the allCARD probe set, while it was slightly lower after enrichment with clinicalCARD. In the March 

wastewater sample, R2 values were considerably lower, most likely due to the inconsistent replicates. 

Enrichment was generally less efficient in the soil samples due to the lower identity between DNA and probes; 

however, the R2 values remained high, reaching 0.897 in the low-impact sample, 0.936 in the medium-impact, 

and 0.775 in the high-impact sample from the hospital grounds. 

 In Figure 7, ARGs were labelled on the plot if the enrichment factor was significantly lower (p < 0.05) 

than the average enrichment factor within a sample and probe set. Two ARGs in the November wastewater 

sample were obvious outliers. The first, cmlA1, has several close homologs with >99% nucleotide identity to 

which thousands of reads were assigned. This occasional occurrence of reads mapping among highly similar 

alleles is known as the allele network problem (50, 56). When mapping to highly redundant databases, even 

with new tools such as KMA (50) as used by RGI bwt, reads can be misassigned to another closely related 

allele or ARG. To illustrate this, we superimposed corrected points onto the plot, i.e., showing where cmlA1 

would reside on the plot if all the reads attributed to its variants were attributed to it instead. As expected, this 
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correction brings it into far better agreement with the observed trend. The reads of the second outlier ARG, 

paxtA, appear to be from a distant homolog of the reference in CARD. Due to this sequence variance, it has a 

lower enrichment efficiency. 

 

  

 

Figure 7: Correlation of the number of enriched and shotgun reads for each ARG with associated R2 values. Shaded areas represent 
the 95% confidence interval. a) Wastewater analysis: 44 and 31 ARGs fit inclusion criteria for the November and March samples, 
respectively. The purple and pink dots show cmlA1’s position for allCARD and clinicalCARD enrichment, respectively, if all reads from 
all extremely closely related cmlA variants were considered to be from cmlA1. b) Soil analysis: clinicalCARD was not analyzed due to 
a lack of reads mapping to clinically relevant ARGs. In the low human impact sample, 19, 14, and 22 ARGS fit the inclusion criteria 
for the low human impact, medium impact, and high impact samples, respectively. 
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Discussion 

Our work has resulted in the design and validation of two probe sets to enrich ARGs in metagenomic 

sequencing libraries. Several improvements have been made relative to the first iteration of this probe set 

against the first version of CARD. First, a denser initial tiling and exclusion of perfect matches during the nt 

BLAST filter maximized coverage against all ARGs. Second, a stringent redundancy filter minimized unneeded 

probes. This enables allCARD to enrich all ARGs included in CARD more evenly with fewer probes. 

Alternatively, clinicalCARD has a much higher redundancy since it was designed against a much smaller set of 

clinically relevant ARGs. Our in-house synthesis protocol yields a similar smear pattern to the commercially 

synthesized version when run on a urea-PAGE Gel, indicating similar physical properties. There was a slight 

bias to lower molecular weights in the in-house synthesized probe sets, which may indicate more incorporation 

of biotin into the commercial probes. 

When comparing in silico statistics of allCARD versus clinicalCARD, it is evident that clinicalCARD 

outperforms allCARD when enriching for the ARGs it was designed against. ClinicalCARD is superior at 

targeting the ARGs against which it was designed due to its decreased need for redundancy filtering during 

probe design. Since it covers a smaller number of ARGs, fewer probes are made during the initial tiling step 

with BaitsTools, and fewer cycles of redundancy filtering are needed to satisfy the total probe number cut-off 

(Figure 2A). This translates to more probes per ARG and, therefore, better coverage of the ARGs against 

which it was designed. However, clinicalCARD also has coverage against a much larger portion of CARD than 

only those ARGs (i.e., median coverage of clinicalCARD probes against allCARD ARGs is >75%). This is 

because of the high degree of conservation of ARG nucleotide sequences and the resulting redundancy in 

CARD, where one ARG may have several closely related variants (35). Overall, ClinicalCARD has higher 

median scores in all tested metrics against its design set of ARGs. Based on this, clinicalCARD should be 

more effective when enriching clinically relevant ARGs. Additionally, since it is a smaller set of probes, it will be 

less expensive, even with in-house synthesis. However, it lacks coverage of many ARGs in allCARD. As some 

questions require comprehensive coverage of all ARGs, allCARD is the better choice in these situations.  

To test our new probe sets, five samples were used for validation: two wastewater samples spanning 

the beginning and end of winter and three soil samples from differently human-impacted sites. In all samples, 
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enrichment drastically improved the detection of ARGs relative to shotgun sequencing, with an enrichment 

factor of up to 598-fold. Our in-house synthesis consistently detected more ARGs at a lower sequencing depth 

than the commercially synthesized probes. This may be due to the evenness of coverage in the Twist 

Biosciences oligo-pool, which may provide a superior template for transcription and, thus, a superior capture 

reagent.  

In wastewater samples, allCARD detected the most ARGs by a considerable margin. ClinicalCARD 

detected relatively few ARGs, though those it did detect were among the most frequent ARGs in the 

sequencing data. AllCARD once again detected the most ARGs in the soil samples, but clinicalCARD missed 

many ARGs in soil except in the sample from the high-impact hospital grounds. This is likely due to the lack of 

clinically relevant ARGs in soil samples from environments with less human impact. We stress, however, that 

this experiment, as designed, does not indicate causality from being near a hospital. It merely supports the 

notion that samples from environments with high human influence carry more ARGs, a known phenomenon 

(57, 58). 

Compared to the large fluctuation in the number of ARGs detected between probe sets, the enrichment 

factor among probe sets was more consistent, especially in the wastewater samples. This suggests that with a 

certain input of probes, one can expect a given level of enrichment so long as the target is sufficiently 

abundant. Enrichment suffers when this is not the case, such as in the non-allCARD probe sets for the soil 

samples. When inspecting the number of identities between reads and references, there is a pronounced 

difference between wastewater and soil samples. Without enrichment, the distribution of the number of 

identities in unenriched reads of wastewater samples indicates the presence of both distant and close 

homologs to the references in CARD. After enrichment, only close homologs are present, suggesting that they 

are preferentially enriched. However, distant homologs are enriched in their absence, such as in the low- and 

medium-impact soil samples (Figure 5B). However, in the sample from the high-impact hospital grounds, there 

was a bias towards close homologs, especially in the sample enriched by clinicalCARD. Overall, this shows a 

pattern where clinically relevant ARGs have a higher identity to their references in CARD and thus are more 

efficiently enriched, particularly given that CARD and other ARG databases are biased towards clinical isolates 

(35). The distant homologs in soil samples are mainly associated with efflux and regulation, and we cannot 
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know that these distant homologs confer the same degree and type of AMR as their reference in CARD. For 

this, experimental data are required.  

There was a striking linearity when considering the correlation between the number of ARG-associated 

reads in enriched versus unenriched samples. This was unexpected due to the assumed effect that sequence 

differences, specifically GC content, would have on hybridization efficiency (59, 60). Relative quantification of 

ARGs within a sample and comparison among samples may be possible, i.e., a large difference in read 

abundance in enriched data indicates a proportionally large difference in shotgun data, although smaller 

differences may be challenging to detect reliably. However, our investigation contains few samples, and 

quantifying this relationship was not our primary aim.  

There are limitations to enrichment as a method for resistome profiling. Enrichment cannot detect 

entirely novel resistance genes that are not in CARD. As such, we designed CARPDM to update the probe set 

for each released version of CARD. Combined with reduced up-front costs via our novel synthesis method, 

researchers can update their probe set on demand. Moreover, when the genes that get enriched are distant 

homologs to those in CARD, we cannot be sure if they are actual resistance genes or if they would generate 

clinical levels of resistance. More work is required to validate these genes upon detection. Finally, this protocol 

relies on proprietary hybridization reagents and buffers from commercial suppliers. 

 

Conclusions 

The increasing global burden of AMR requires cost-effective and scalable solutions. Overall, our in-

house synthesized probes detect more ARGs with less sequencing than a commercial option in the samples 

tested. AllCARD robustly enriches the vast array of ARGs against which it was designed, as well as their 

distant homologs. ClinicalCARD even more robustly enriches the smaller set of clinically relevant ARGs 

against which it was designed. This work shows that targeted enrichment is a valuable companion to DNA 

sequencing when detecting ARGs. Future work will involve further updating and refining the set of clinically 

relevant ARGs and continually updating the probe set with every new CARD release. Additionally, while we 

have released a preliminary protocol for the in-house synthesis of any probe set, there remains room for this 

protocol to be optimized. Finally, to make this technology more accessible, future work should also investigate 
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its efficacy on alternative DNA sequencing platforms, such as Oxford Nanopore’s MinION. Yet, overall, this 

work has shown the power of enrichment to decrease the cost and increase the impact of large-scale 

monitoring of ARGs using DNA sequencing. Alongside CARD, this technology can help researchers investigate 

ARG prevalence and transmission patterns among different populations and environments. 

 

Data, Protocol, and Probe Sequence Availability 

Detailed laboratory protocols and FASTA sequence files for probe synthesis and library enrichment are 

available at the Comprehensive Antibiotic Resistance Database website: http://card.mcmaster.ca.  
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