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Abstract

Better interrogation of antimicrobial resistance requires new approaches to detect the associated genes
in metagenomic samples. Targeted enrichment is an ideal method for their sequencing and characterization.
However, no open-source, up-to-date hybridization probe set targeting antimicrobial resistance genes exists.
Here we describe CARPDM, a probe design software package made to run alongside all future
Comprehensive Antibiotic Resistance Database releases. To test its efficacy, we have created and validated
two separate probe sets: AIICARD, which enriches all genes encoded in the Comprehensive Antibiotic
Resistance Database’s protein homolog models (n = 4,661), and clinical CARD, which focuses on a clinically
relevant subset of resistance genes (n = 323). We demonstrate that allCARD increases the number of reads
mapping to resistance genes by up to 594-fold. Clinical CARD performs similarly when clinically relevant genes
are present, increasing the number of resistance-gene mapping reads by up to 598-fold. In parallel with this
development, we have established a protocol to synthesize any probe set in-house, saving up to 350 dollars
per reaction. Together, these probe sets, their associated design program CARPDM, and the protocol for in-
house synthesis will democratize metagenomic resistome analyses, allowing researchers access to a cost-

effective and efficient means to explore the antibiotic resistome.

Introduction

Antimicrobial resistance (AMR) is a growing and global problem. In 2019, AMR was estimated to be
directly responsible for 1.27M deaths (1). By 2050, this number may be as high as 10M (2). Most of this impact
is and will continue to be in regions least equipped to combat it, largely due to a lack of resources (1).
Therefore, it is imperative that we devise cost-effective solutions to address AMR more effectively and
equitably. Bacterial evolution has been marked by the arms race of antibiotics and their associated resistance
genes, providing a competitive edge to their producers (3—8). This struggle is revealed in the vast reservoir of
antimicrobial resistance genes (ARGs) in environmental microbes, requiring only mobilization through
horizontal gene transfer to be effective against any treatment we deploy (9—-12). Therefore, to better combat
AMR emergence, we need to improve how we detect the full complement of ARGs (the resistome(13)) in

environmental and other reservoirs. Attractive monitoring targets are environments such as wastewater, a
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fertile ground for genetic exchange between bacteria [5] that provides a snapshot of ARG prevalence in the
community (14—20). Natural environments such as soils, rivers, and farms are known reservoirs of ARGs,
many with the potential to mobilize into pathogens (21-25). Finally, profiling the resistome of human and
animal microbiomes allows us to identify critical determinants in the spread of resistance within and between
these two groups (26, 27).

Investigating these rich data sources requires methods to characterize their resistome. Several
techniques exist that may fill this niche, each with its limitations. PCR, for example, is commonly used to detect
ARGs in Mycobacterium tuberculosis isolates (28). While useful for a small, targeted set of genes, the
Comprehensive Antibiotic Resistance Database (CARD) (29) hosts over 5000 resistance determinants, an
untenable number for PCR methods. Furthermore, because of the specificity of PCR, there is little chance of
detecting distantly related genes, as a single nucleotide substitution may eliminate any signal from the assay.
Finally, even if one detects a novel sequence variant by PCR, without follow-up amplicon sequencing, there is
no way to identify it. This makes phylogenetic tracking of the spread of AMR far more difficult.

Shotgun DNA sequencing can detect all the genes in a sample given sufficient depth. Groups have
used this method to characterize environmental (25, 30) and worldwide wastewater (14, 15) resistomes. A
limitation of this technique is that all ARGs in a metagenomic sample typically represent <1% of the total DNA.
Individual ARGs may be several orders of magnitude less than that in abundance. For example, a single 1kb
ARG that makes up 1x10°% of the DNA in a sample would require 10 Gbp of sequence data to obtain 10-fold
coverage of the ARG. Performing this work on a NextSeq 2000 would cost over USD$1500. As such, while
deep sequencing can be used to characterize metagenomic resistomes, it entails a high cost per sample, most
of which will be spent sequencing background DNA. The associated volume of data also increases equipment
costs and computing power needed to parse the data, further constraining this technique’s use in resource-
limited settings (31).

Targeted enrichment is a modification to shotgun sequencing that allows robust detection of a broad
range of specific, low-abundance targets with less sequencing. In this protocol, DNA from a sequencing library

is denatured, allowing biotinylated RNA ‘probes’ complementary to a set of target sequences to hybridize (32,

33). Streptavidin-coated magnetic beads capture these biotinylated RNA probes and their complementary DNA
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partners from the background (Figure 1). This process increases the proportion of the target DNA in a library,

allowing one to sequence less yet detect more.
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Figure 1: Targeted enrichment workflow. Magnetic streptavidin beads are used to bind biotinylated RNA
molecules, which are, in turn, attached to a complementary DNA partner. One can considerably bias the
resulting library towards a target fraction by pelleting the beads and washing away the background before

amplification and sequencing.

A probe-capture protocol is ideal for detecting thousands of ARGs with a fraction of the sequencing
required by brute-force shotgun approaches. However, two challenges exist for the probe-capture strategy in
the AMR space. First, there is no up-to-date and open-source AMR probe set, as the most recent was
designed against only 2,021 ARGs from CARDv1.0.1, released in 2015 (34). The second is that the cost of
probes from commercial suppliers can be up to $350 per reaction, diminishing cost savings relative to shotgun
sequencing. To address the first of these challenges, we have written a software package — the
Comprehensive Antibiotic Resistance Probe Design Machine (CARPDM) - to generate a stringently filtered
probe set with minimal off-target enrichment from the CARD v3.2.5 protein homolog model (all CARD) ARGs.
This software package will run alongside all new releases of CARD, ensuring there is always an open-source
and up-to-date probe set to enrich ARGs from any sample. We also curated a list of 323 clinically relevant

ARGs and generated a smaller probe set (clinical CARD) with the same program, providing a more focused
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alternative to the allCARD probe set, as the full complement of ARGs may not be necessary for many projects
in healthcare settings. To address the cost of commercial probes, we have developed a protocol that allows in-
house synthesis of any probe set from a Twist Biosciences® oligo-pool. With this strategy, researchers can
synthesize thousands of reactions worth of any probe set for a one-time fee lower than that of a typical 16-
reaction kit from a commercial supplier.

For validation of our probe sets and in-house synthesis of probes, five conditions were tested on two
wastewater and three soil samples in duplicate, comparing enrichment via the 2015 CARD v1.0.1 (34),
allCARD, clinical CARD probe sets to sequencing without enrichment, plus examination of the comparative
performance of commercially supplied probes and probes synthesized using our new protocol. We
demonstrate that our in-house synthesized probe set detected more ARGs with the same amount of
sequencing on the samples we tested when compared to a commonly used commercial option. We also
illustrate CARPDM'’s capability as a probe design platform by validating allCARD and clinical CARD probe sets
on wastewater and soil samples. We found that allCARD detects far more ARGs than the probe set generated

against CARD v1.0.1 (34). Finally, we show that clinical CARD detects clinically relevant ARGs with less

sequencing and better coverage than allCARD.

Methods

ARG Selection for AIICARD

Only ARGs curated as protein homolog models were included from CARD v3.2.5 (n = 4,661), as these
ARGs do not confer resistance via the acquisition of mutations (i.e., CARD’s protein variant models). Including
mutation-based ARGs in the design would enrich wild-type alleles, as enrichment probes can readily hybridize

over a single mutation, diluting sequencing effort.

ARG Selection for Clinical CARD

The CARD prevalence data v4.0.0 [19] aided in identifying clinically relevant ARGs. This dataset is a
collection of 221,175 sequencing assemblies from 377 pathogens with associated ARGs identified by CARD’s

Resistome Gene Identifier RGI software (35). These data include a collection of 21,079 completely sequenced
5
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chromosomes and 41,828 completely sequenced plasmids. Preliminary examination of these data illustrated
that the distribution of ARGs was almost binary, i.e., each ARG predominantly occurred in either plasmids or
chromosomes, but not both (Supplemental Figure 1). It also showed that ARGs with a higher occurrence on
plasmids were far more likely to be clinically relevant (36—39). As such, the first list of candidate clinically
relevant ARGs included any ARG in CARD with at least ten occurrences in plasmids, yielding 237 ARGs. Any
ARG with >5% but <95% prevalence in any ESKAPE pathogen (40, 41) was also added to this list, yielding a
further 124 ARGs. Finally, 42 ARGs identified as clinically significant via a literature review were added (42,
43), resulting in a draft set of 403 total ARGs. This set was manually curated based on CARD prevalence data,
considering the species they appeared in, the genomic context (whether it was mobile, i.e., on a plasmid), the
drug classes they impact, the environment of the host organism, and the relative risk each species imposed as
a pathogen. Our approach was developed following recent ARG risk frameworks developed for metagenomic
data (42, 43). In short, our manual curation included mobile ARGs that confer resistance to a clinical antibiotic,

are present in a human pathogen, and share an environment with humans or animals. After curation, 323

ARGs were deemed clinically relevant and included in the clinical CARD probe set design.

Probe Design

CARPDM is written in Python, save for the first step, which employs the program BaitsTools (44) to tile
probe sequences along ARG sequences. Probes designed by CARPDM have an 80 nt length as per the prior
validated ARG bait set for CARD v1.0.1. This is also an ideal size for adding amplification primers while
remaining below the 120nt cut-off for the base level of a Twist oligo-pool if synthesizing probes in-house. The
probes also have an extremely high density before filtering, with a tiling distance of 4 nt along ARG nucleotide
sequences. This increases redundancy in the probe set and makes it more robust against stringent
downstream filtering. As input, the all CARD design used all 4,661 CARD v3.2.5 protein homolog model ARGs,
while clinical CARD’s design used the curated 323 clinically relevant ARGs.

There are three filtering steps after the initial probe construction (Supplemental Figure 2). The first is a
filter based on sequence, in which the probes are deduplicated, confirmed as 80 nt, contain no ambiguous

bases, have no perfect complements within the set, have a T, >50°C, and contain no Lgul restriction
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endonuclease cut sites. The last condition is essential for the synthesis protocol. Since bacteria are likely to be
the most abundant organism in most metagenomic samples (45), the second filter is a BLASTN (46) search
against the nt database to minimize off-target enrichment and removes probes with >80% identity over <50 nt
to any bacterial sequence, as any probe similar to a bacterial sequence over >50 nt is likely the ARG itself.
This filter also removes probes with >80% similarity over >50 nt to any viral, archaeal, or eukaryotic sequence
unless they match perfectly (i.e., likely sequence contamination by an ARG).

The last filter removes redundancy in the probe set, using BLASTN to compare the probes against
each other. To remove probes that could bind to each other rather than the target DNA, any probes found to be
complementary over the entire 80 nt are collapsed to a single representative. After removing complementary
probes, CARPDM determines if the number of probes in the set is below a pre-defined cut-off. For allCARD,
we arbitrarily set this cut-off at 40,000 probes, while for clinical CARD, it was set to 20,000 probes. If not below

the cut-off, CARPDM collapses probes with 79 nt of complementarity to a single representative, repeating the

process with decreasing length of complementarity until below the cut-off.

In Silico Analysis of Probe Sets

BLASTN (46) was used to compare the probe sets to the ARG sequences. Using Python and NumPy
(47), “target” arrays of zeros were constructed. Each of these arrays represented a single ARG against which
the probeset was designed. After aligning all probes against the input set of target sequences with BLASTN,
arrays of ones (matches) and zeros (mismatches) were constructed for each probe:target alignment. These
arrays were then added to the corresponding target array at the start position of the alignment. Repeating this
for every probe:target alignment yields the tallied coverage of each nucleotide position by probes. This

coverage array was used to compute summary statistics.

Probe Synthesis
For in-house synthesis of probes, the first step is to amplify an oligo pool by PCR. For this to happen,
two PCR primers must flank each probe sequence, with one including the T7 transcription start site for RNA

synthesis and the other including an Lgul restriction endonuclease digest sequence so that it can be cleaved
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after amplification (Supplemental Figure 3). In support of in-house synthesis, CARPDM first appends a T7
transcription start site with three extra guanines to one end of every probe sequence to reduce transcription
efficiency variability (48) and then creates every possible primer with a terminal Lgul cut site of the correct
length to yield a final oligo of 120 nt when appended to the opposite side. It compares these putative primers to
the concatenated T7/probe sequences using BLASTN and selects the primer with the fewest matches as the
second amplification primer, appending the reverse complement to the opposite side of each probe sequence.
The resulting sequences were ordered as an oligo-pool from Twist Biosciences (San Francisco, CA), and the
amplification primers were ordered from Integrated DNA Technologies (Coralville, 1A).

For probe synthesis, 16 50 yL PCR reactions were conducted in parallel, each with 1 ng oligo pool
input using 0.5 puL Phusion polymerase with HF buffer (Thermo Fisher Scientific, Waltham, MA) 1 uM of each
primer, and 0.2 mM dNTPs (Thermo Fisher Scientific, Waltham, MA). Cycling conditions were initial
denaturation at 98°C for 30s, 12 cycles of 98°C for 10s, 60°C for 30s, and 72°C for 15s, and final extension at
72°C for 10m. Reactions were purified with the QIAQuick Nucleotide Removal Kit (Qiagen, Hilden, Germany),
pooling eight reactions per column and eluting each in 30 pL. The elutions were then pooled, and their
concentrations were quantified via Qubit 1X dsDNA HS assay (Thermo Fisher Scientific, Waltham, MA).

Four restriction 50uL endonuclease treatments were then performed in parallel, each with 2 yg PCR
input and 2 L FastDigest® Lgul (Thermo Fisher Scientific, Waltham, MA). These reactions were then
incubated at 37°C for two hours, followed by heat inactivation at 65°C for 5 min. Parallel reactions were then
pooled over a single Qiagen MinElute® PCR Purification column (Qiagen, Hilden, Germany), eluted in 10pL,
and quantified via Qubit 1X dsDNA HS assay.

Finally, T7 transcription reactions were performed with up to 1 ug of purified Lgul digest product, though
similar yields were achieved with as little as ~250 ng. For this HiScribe® T7 High Yield RNA Synthesis Kit (New
England Biolabs, Ipswitch, MA) was used according to the manufacturer’s instructions, with one-third of the
UTP concentration comprised of Bio-16-UTP (Thermo Fisher Scientific, Waltham, MA). The 20 pL reactions
were incubated for 16h at 37°C, after which 68 uL RNase-free H20 was added with 10 yL DNase | Buffer and

2 uL DNase | (New England Biolabs, Ipswitch, MA). The resulting mix was incubated for 15m at 37°C, after

which the RNA probes were purified using the Monarch® RNA Cleanup kit (50 ug) (New England Biolabs,


https://doi.org/10.1101/2024.03.27.587061
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.27.587061; this version posted March 30, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.
Ipswitch, MA). Finally, concentrations were quantified via Nanodrop (Thermo Fisher Scientific, Waltham, MA),
and probes were diluted to 100 ng/uL. 100 ng of each probe set was then analyzed on a 12.5% Urea-PAGE

gel stained with SYBR-Gold (Thermo Fisher Scientific, Waltham, MA).

Samples

Two wastewater samples and three soil samples were selected for probe validation with sequencing.
The wastewater samples were 24h aggregate influent samples from the city of Hamilton (Ontario, Canada)
Wastewater Treatment Plant (November 7, 2022 and March 20, 2023). DNA was extracted from 50 mL
wastewater samples within 24h of sampling using the DNeasy® PowerWater Kit (Qiagen, Hilden, Germany)
according to the manufacturer’s protocols, each with an associated H>O control. Soil samples were collected
from three different environments selected to represent distinct levels of human impact. The first was from
Holman Island in the Northwestern Territories of Canada, a pristine environment with little human influence.
The second was from a local wetland in an urban setting in Hamilton (Ontario, Canada), representing an
environment with middling human impact. The third was from a high-traffic pedestrian area frequented by
smokers outside of a Hamilton (Ontario, Canada) hospital, a setting with heavy human influence. DNA was
extracted from 250 mg soil samples using the Qiagen DNeasy® Powersoil Kit (Qiagen, Hilden, Germany)

according to the manufacturer’s protocols alongside an associated H>O control.

Sample Processing, Enrichment, and DNA Sequencing

Commercially synthesized probes (CARD v1.0.1 only) and reagents for all enrichments were purchased
from Daicel Arbor Biosciences (Ann Arbor, Ml). Probes for the allCARD, clinical CARD, and CARD v1.01 sets
were synthesized as outlined above, with the latter allowing direct comparison with commercially synthesized
probes. For each sample, extracted DNA was quantified via NanoDrop (Thermo Fisher Scientific, Waltham,
MA), diluted, and sonicated to an average size of 400 bp using Covaris G-tubes (Woburn, MA). From this,
libraries were prepared in quadruplicate from 1ug DNA using the NEBNext® Ultra Il ligation kit (New England
Biolabs, Ipswitch, MA) according to the manufacturer’s protocols. These libraries were then pooled before

redistributing to half-size indexing reactions using NEBNext® Multiplex Oligos for lllumina (New England
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Biolabs, Ipswitch, MA). Sample libraries were then enriched in two batches. The first batched performed
allCARD and clinical CARD enrichments, while the second batch performed commercial and in-house CARD
v1.0.1 enrichments (Supplemental Figure 4). All enrichments were performed according to the manufacturer’s
protocols (version 5.02) using the Daicel Arbor myBaits v5 kit and reagents in a half-size reaction format with a
24h hybridization at 62°C, maximum library input, and 14 cycles of post-enrichment reamplification. In-house
probes were diluted with RNase-free water to the same concentration as Daicel Arbor’s before use in the
protocol. Each enriched library was accompanied by an aliquot without enrichment.

Before sequencing, libraries were quantified in triplicate using NEB Luna® Universal Probe gPCR
Master Mix (New England Biolabs, Ipswitch, MA), lllumina PhiX standard (San Diego, California) and the
following primers, all ordered from Integrated DNA Technologies (Coralville, I1A): P5:
AATGATACGGCGACCACCGA, P7: CAAGCAGAAGACGGCATACGA, probe: /56-
FAM/CCCTACACG/ZEN/ACGCTCTTCCGATCT/3IABKFQ/. Cycling conditions were initial denaturation at 95°C
for 3m, followed by 40 cycles of denaturation at 95°C for 15s and annealing/extension at 60°C for 1m. The
resulting concentrations were used to make individual pools for each enrichment set above, alongside one
replicate of the shotgun (without enrichment) libraries (Supplemental Figure 4). 2x150 bp paired-end reads

were obtained from each pool using an Illlumina NextSeq 2000 (San Diego, California), with samples having an

average depth of 4.47M clusters sequenced (minimum of 3.26M clusters and a maximum of 6.71M clusters).

Analysis and Visualization

All analyses were performed with custom Python scripts and visualized with the ggplot2 (49) package in
R. For rarefaction analysis, libraries were subsampled every 100,000 paired-end reads up to 3M using seqtk
v1.3. Fastp v0.23.2 [28] performed initial read trimming, quality control, and deduplication for these
subsamples without merging. CARD’s RGI bwt v6.0.2 tool with KMA v1.4.9 (50) then mapped reads to
reference sequences in CARD v3.2.5. ARGs were classified as present if they had more than 100 reads
mapping (regardless of the breadth of coverage of the reference sequence). Regression lines were determined
without extrapolation using the ggplot local estimated scatterplot smoothing function with geom_smooth. Since

one cannot extrapolate a locally estimated function, we used a standard log-linear model when extrapolating

10
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the predicted number of ARGs detected at a sequencing depth of 10M. GNU parallel v20161222 (51), the
Python pandas v1.5.3 library (52), and BioPython v1.78 (53) were used heavily for these analyses.

For read distribution analysis, custom Python scripts used the CARD RGI bwt output to count the
number of reads that mapped to each ARG in soil and wastewater samples, respectively. The top 20 most
prevalent ARGs (i.e., ARGs with the highest number of reads mapping) in each sample source (soil,
wastewater) were kept for the figure, while all others were collapsed to the ‘other’ category. This cut-off was
chosen to keep figure legends readable while providing discriminatory power between the performance of
different probe sets. Mean counts of the two replicates are used to determine the number plotted. The
distribution of percent identity between read and reference for each sample was determined by a custom
Python script that parsed the CIGAR strings in the BAM file that accompanies the RGI bwt output, where the
percent identity was calculated as the number of nucleotide matches / 151 * 100. Replicates were pooled for
this analysis.

In a clinical CARD versus allCARD overlap analysis, a custom Python script determined clinically
relevant ARGs detected by allCARD or clinical CARD with >=100 mapped reads in both replicates at each
subsampling depth. A similar approach was used to determine the overlap between the in-house vs
commercially synthesized CARD v1.01 probe sets. However, to compare these sets, only ARGs included in the
initial design (i.e., in CARD v1.0.1) were considered. Coverage analysis only considered clinically relevant
ARGs detected by both clinical CARD and allCARD with at least one read at a subsampled sequencing depth
of 3M paired-end reads in both replicates. Python scripts determined each ARG’s coverage using the CARD
RGI bwt output from the rarefaction analysis. Once again, for a similar analysis comparing the commercial and
in-house synthesis, only ARGs from CARD v1.0.1 were considered.

For a wastewater read correlation analysis, only clinically relevant (i.e., in clinical CARD) ARGs detected
with at least one read in both shotgun and enriched in each sample were considered. All ARGs were included
from soil samples, while clinical CARD analysis was omitted due to the sparsity of detected ARGs. R? values
were calculated using scikit-learn v1.2.2 (54). The cmlA1 read number correction outlined below was

accomplished by summing the number of reads attributed to all closely related cmlA variants (i.e., cmlA1, 4, 5,

6, 8, 9) in each relevant treatment and manually adding the corresponding values to the plot.

11
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Results

Probe Design and Synthesis

After design and filtering, allCARD contained 34,915 unique probe sequences covering 4,661 ARGs.
Alternatively, clinical CARD contained 15,393 unique probes, covering 323 ARGs (Supplemental Figure 5). No
probe set had zero coverage of an ARG against which it was designed. When analyzing probes against all
ARGs curated as CARD protein homolog models (Figure 2A), the median value of all metrics other than the
proportion covered per ARG was higher in the clinical CARD probe set. The reason for clinical CARD’s bimodal
distribution compared to allCARD is that it was only designed against the clinically relevant subset. Therefore,
the clinically irrelevant genes (e.g., TolC, H-NS) had no probes aligning since they were not included in the
initial design. However, despite only being designed against 323 ARGs, over 50% of CARD ARGs had
coverage of >75% by clinical CARD. When analyzing both probe sets against the clinically relevant ARGs in

clinical CARD (Figure 2B), median values in clinical CARD were higher than allCARD in every metric.
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Figure 2: In-silico probe analysis using BLAST to align all probes in allCARD and clinical CARD against a) all genes in CARD and
b) all genes deemed to be clinically relevant.
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The increased in silico performance of clinical CARD is a consequence of the smaller initial set of
reference sequences. As such, it did not have to remove as many probes during the redundancy filter
(Supplemental Figure 5A) and ended up with more redundancy and superior coverage of the ARGs against
which it was designed. Probes in clinical CARD had a lower median GC content and melting temperature. A
higher proportion of probes also target only a single ARG in clinical CARD relative to allCARD (Supplemental
Figure 5B). After synthesis, a urea-PAGE gel shows a smear above 80 nt due to the stochastic incorporation of
biotin into the probe (Supplemental Figure 6). A comparison of all pools against the commercially synthesized

version indicates a similar size distribution, with a slight bias towards lower molecular weights in the in-house

synthesized probe set.

Probe Validation

Five samples in five different treatments were employed to determine the efficacy of the probes when
enriching for targets. No blanks had sufficient sequencing depth to be analyzed at even the lowest
subsampling depth, indicating negligible contamination. First, the non-inferiority of the in-house synthesized
probe set relative to the commercial option was established. After subsampling every 100k paired-end reads
up to 3M with analysis by the CARD RGI bwt tool (55), the number of ARGs with >100 mapped reads was
determined for each depth in each sample (Figure 3). This analysis illustrated that the in-house synthesized
probes detected more ARGs at the same sequencing depth in every sample. This effect was more pronounced
in the soil samples, where the in-house synthesized probe set detected as many as double the number of
ARGs detected by the commercially synthesized probe set, despite both having identical probe sequences
based on CARD v1.01. Yet, our in-house synthesized probe set had an almost identical distribution of the top
20 detected ARGs after enrichment compared to the commercially synthesized set (Figure 4), indicating
consistent enrichment efficiency between ARGs in the commercial and in-house synthesized sets. These
results were further complemented by analyzing the overlap between ARGs detected by each set at each

subsampling depth and the associated coverage distribution for all detected ARGs (Supplemental Figures 7 &
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8). In these analyses, enrichment with our in-house synthesized probes detected ARGs with less sequencing

effort than commercially synthesized probes and had greater coverage of detected ARGs.
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Figure 3: Enrichment efficiency comparisons between different treatments. a) Rarefaction analysis of the number of detected genes
at subsampling depths of every 100k reads up to 3M in wastewater samples and b) soil samples. Shaded areas represent the 95%
confidence interval. c) Average enrichment factor £1SD of different probe sets in different samples. The enrichment factor is defined
here as the number of CARD-mapped reads after enrichment with the relevant probe set divided number of CARD-mapped reads in
shotgun sequencing data.

Enrichment with all probe sets detected vastly more ARGs in wastewater samples than by sequencing

without enrichment. AlICARD detected the most, with up to 498 different ARGs, and clinical CARD detected the

least, with up to 300 ARGs. However, clinical CARD efficiently retained the highest abundance ARGs,

evidenced by the similar distributions between allCARD and clinical CARD in Figure 4A. AlICARD detected by

far the greatest number of ARGs in soil samples, up to 96 in the high-impact hospital grounds. Clinical CARD
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did not detect a substantial number of ARGs in any soil sample, except for that taken from the high-impact

hospital grounds, where it detected 24.
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Figure 4: Top 20 AMR genes according to overall count and their associated read proportions in each sample. a) Wastewater samples.
b) Soil samples. Very long gene names were replaced with their CARD short name.

The enrichment factor (i.e., the number of enriched reads mapped to CARD divided by the number of

shotgun reads mapped to CARD) of different probe sets shows a more consistent value within each sample

than expected, given the high performance of all CARD at detecting the most ARGs (Figure 3C). This is

especially evident in wastewater, where clinical CARD is on par with, if not outperforming, allCARD in terms of

enrichment factor despite detecting far fewer ARGs in the rarefaction curve. There was a 400 to 600-fold

enrichment in the wastewater samples in the November sample, depending on the probe set, which decreased
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to 200 to 400-fold for the March sample. Soil samples had a markedly lower enrichment factor than
wastewater, hovering between 0 to 200-fold enrichment depending on the probe set. Yet, enrichment was
consistent between samples for different probe sets in soil. Based on the rarefaction curves (Figure 3), ARG
detection in most samples begins to plateau by a sequencing depth of 3M paired-end reads. Extrapolation of
these rarefaction curves to a sequencing depth of 10M paired-end reads indicates that at a subsampling depth

of 3M, we have captured 70%-80% of the diversity of ARGs that may be detected at 10M (Supplemental Figure
9).
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Figure 5: Distribution of the number of similarity between read and reference, based on CIGAR strings from the BAM file output by
the CARD RGI bwt module. The internal line of each violin plot indicates the median of the distribution.

There were differences when comparing the top 20 most prevalent ARGs in soil and wastewater
(Figure 4). First, all top 20 ARGs in wastewater data, save for adeJ and tetQ, were in our set of clinically
relevant ARGs. However, in soil samples, not a single top 20 ARG was included in the clinically relevant set,
which explains the lack of enrichment for any top 20 ARGs in soil by the clinical CARD probe set. Most
dominant ARGs in the soil samples were found across various species and associated with efflux pumps (e.g.,
Mex proteins) or transcriptional regulators (e.g., mtrA, vanR/S). Moreover, the percent identity of the ARG-
associated reads relative to the CARD reference sequences in the soil samples was lower than those from

wastewater samples (Figure 5). Before enrichment, the wastewater sample had a mixture of high-identity
16
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(>90%) and mid-identity (60%-90%) reads relative to their references in CARD, but the soil samples had

exclusively mid-identity to low-identity (<60%) reads. After enrichment, wastewater samples had almost

exclusively high-identity reads in both the clinical CARD and allCARD enrichments. In soil samples, enrichment

with allCARD selected heavily for mid-identity reads, but clinical CARD preferentially selected for high-identity

reads, especially in the sample from the high-impact hospital grounds.

AIICARD versus ClinicalCARD

The wastewater samples were used to examine clinicalCARD'’s efficacy relative to all CARD at enriching

the clinically relevant ARGs it was designed against, as clinically relevant ARGs had the highest abundance in

the wastewater samples. Overall, clinical CARD detected an average of 16% more ARGs than allCARD in the

November wastewater sample and 35% more in the March sample at each subsampling depth, with very rarely

an ARG detected uniquely by allCARD (Figure 6A).
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Figure 6: Comparison of enrichment efficiency of clinically relevant ARGs between allCARD and clinical CARD probe sets. a) Overlap
analysis showing ARGs detected by allCARD, clinicalCARD, for both with at least 100 reads at different subsampling depths. b)
Coverage analysis showing the distribution of coverage for ARGs detected by both probe sets with at least one read at a depth of
3M. In the November sample, there were 226 such ARGS. In the March sample, there were 176.
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To assess the breadth of coverage of individual ARGs after enrichment with allCARD or clinical CARD,
clinically relevant ARGs detected by both probe sets in both replicates at a subsampling depth of 3M paired-
end reads were analyzed. The distribution of coverage of these ARGs at each subsampling depth for allCARD
and clinical CARD was plotted (Figure 6B). Clinical CARD delivered 100% coverage of at least 50% of the
ARGs detected in the November sample at a subsampling depth of 1M reads, while allCARD took 1.5M reads
to do the same. In the March sample, clinical CARD took only 700k reads to reach this level of detection, while
allCARD required 2.1M reads. Based on this analysis, clinical CARD delivers better coverage of more clinically
relevant ARGs at a lower sequencing depth than allCARD.

Finally, a commonly perceived limitation of enrichment is that hybridization can be sequence-
dependant, which may introduce biases in the final library, thereby eliminating the ability to perform relative
quantification of ARGs in a sample. To investigate the relationship between ARG abundance in enriched versus
unenriched data, the clinically relevant ARGs present with at least one read in both replicates of shotgun and
enriched data at a subsampling depth of 3M paired-end reads were analyzed (Figure 7). In the wastewater
samples, due to the high identity between reads, the R? value reached as high as 0.996 in the November
sample with the allCARD probe set, while it was slightly lower after enrichment with clinical CARD. In the March
wastewater sample, R? values were considerably lower, most likely due to the inconsistent replicates.
Enrichment was generally less efficient in the soil samples due to the lower identity between DNA and probes;
however, the R? values remained high, reaching 0.897 in the low-impact sample, 0.936 in the medium-impact,
and 0.775 in the high-impact sample from the hospital grounds.

In Figure 7, ARGs were labelled on the plot if the enrichment factor was significantly lower (p < 0.05)
than the average enrichment factor within a sample and probe set. Two ARGs in the November wastewater
sample were obvious outliers. The first, cmlA1, has several close homologs with >99% nucleotide identity to
which thousands of reads were assigned. This occasional occurrence of reads mapping among highly similar
alleles is known as the allele network problem (50, 56). When mapping to highly redundant databases, even
with new tools such as KMA (50) as used by RGI bwt, reads can be misassigned to another closely related

allele or ARG. To illustrate this, we superimposed corrected points onto the plot, i.e., showing where cmIA1

would reside on the plot if all the reads attributed to its variants were attributed to it instead. As expected, this
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correction brings it into far better agreement with the observed trend. The reads of the second outlier ARG,

paxtA, appear to be from a distant homolog of the reference in CARD. Due to this sequence variance, it has a

lower enrichment efficiency.
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Figure 7: Correlation of the number of enriched and shotgun reads for each ARG with associated R? values. Shaded areas represent
the 95% confidence interval. a) Wastewater analysis: 44 and 31 ARGs fit inclusion criteria for the November and March samples,
respectively. The purple and pink dots show cmlA1’s position for all CARD and clinical CARD enrichment, respectively, if all reads from
all extremely closely related cmlA variants were considered to be from cmlA1. b) Soil analysis: clinical CARD was not analyzed due to
a lack of reads mapping to clinically relevant ARGs. In the low human impact sample, 19, 14, and 22 ARGS fit the inclusion criteria
for the low human impact, medium impact, and high impact samples, respectively.
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Discussion

Our work has resulted in the design and validation of two probe sets to enrich ARGs in metagenomic
sequencing libraries. Several improvements have been made relative to the first iteration of this probe set
against the first version of CARD. First, a denser initial tiling and exclusion of perfect matches during the nt
BLAST filter maximized coverage against all ARGs. Second, a stringent redundancy filter minimized unneeded
probes. This enables allCARD to enrich all ARGs included in CARD more evenly with fewer probes.
Alternatively, clinical CARD has a much higher redundancy since it was designed against a much smaller set of
clinically relevant ARGs. Our in-house synthesis protocol yields a similar smear pattern to the commercially
synthesized version when run on a urea-PAGE Gel, indicating similar physical properties. There was a slight
bias to lower molecular weights in the in-house synthesized probe sets, which may indicate more incorporation
of biotin into the commercial probes.

When comparing in silico statistics of allCARD versus clinical CARD, it is evident that clinical CARD
outperforms allCARD when enriching for the ARGs it was designed against. Clinical CARD is superior at
targeting the ARGs against which it was designed due to its decreased need for redundancy filtering during
probe design. Since it covers a smaller number of ARGs, fewer probes are made during the initial tiling step
with BaitsTools, and fewer cycles of redundancy filtering are needed to satisfy the total probe number cut-off
(Figure 2A). This translates to more probes per ARG and, therefore, better coverage of the ARGs against
which it was designed. However, clinical CARD also has coverage against a much larger portion of CARD than
only those ARGs (i.e., median coverage of clinicalCARD probes against all CARD ARGs is >75%). This is
because of the high degree of conservation of ARG nucleotide sequences and the resulting redundancy in
CARD, where one ARG may have several closely related variants (35). Overall, Clinical CARD has higher
median scores in all tested metrics against its design set of ARGs. Based on this, clinical CARD should be
more effective when enriching clinically relevant ARGs. Additionally, since it is a smaller set of probes, it will be
less expensive, even with in-house synthesis. However, it lacks coverage of many ARGs in allCARD. As some
questions require comprehensive coverage of all ARGs, allCARD is the better choice in these situations.

To test our new probe sets, five samples were used for validation: two wastewater samples spanning
the beginning and end of winter and three soil samples from differently human-impacted sites. In all samples,
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enrichment drastically improved the detection of ARGs relative to shotgun sequencing, with an enrichment
factor of up to 598-fold. Our in-house synthesis consistently detected more ARGs at a lower sequencing depth
than the commercially synthesized probes. This may be due to the evenness of coverage in the Twist
Biosciences oligo-pool, which may provide a superior template for transcription and, thus, a superior capture
reagent.

In wastewater samples, allCARD detected the most ARGs by a considerable margin. Clinical CARD
detected relatively few ARGs, though those it did detect were among the most frequent ARGs in the
sequencing data. AICARD once again detected the most ARGs in the soil samples, but clinical CARD missed
many ARGs in soil except in the sample from the high-impact hospital grounds. This is likely due to the lack of
clinically relevant ARGs in soil samples from environments with less human impact. We stress, however, that
this experiment, as designed, does not indicate causality from being near a hospital. It merely supports the
notion that samples from environments with high human influence carry more ARGs, a known phenomenon
(57, 58).

Compared to the large fluctuation in the number of ARGs detected between probe sets, the enrichment
factor among probe sets was more consistent, especially in the wastewater samples. This suggests that with a
certain input of probes, one can expect a given level of enrichment so long as the target is sufficiently
abundant. Enrichment suffers when this is not the case, such as in the non-allCARD probe sets for the soil
samples. When inspecting the number of identities between reads and references, there is a pronounced
difference between wastewater and soil samples. Without enrichment, the distribution of the number of
identities in unenriched reads of wastewater samples indicates the presence of both distant and close
homologs to the references in CARD. After enrichment, only close homologs are present, suggesting that they
are preferentially enriched. However, distant homologs are enriched in their absence, such as in the low- and
medium-impact soil samples (Figure 5B). However, in the sample from the high-impact hospital grounds, there
was a bias towards close homologs, especially in the sample enriched by clinical CARD. Overall, this shows a
pattern where clinically relevant ARGs have a higher identity to their references in CARD and thus are more

efficiently enriched, particularly given that CARD and other ARG databases are biased towards clinical isolates

(35). The distant homologs in soil samples are mainly associated with efflux and regulation, and we cannot
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know that these distant homologs confer the same degree and type of AMR as their reference in CARD. For
this, experimental data are required.

There was a striking linearity when considering the correlation between the number of ARG-associated
reads in enriched versus unenriched samples. This was unexpected due to the assumed effect that sequence
differences, specifically GC content, would have on hybridization efficiency (59, 60). Relative quantification of
ARGs within a sample and comparison among samples may be possible, i.e., a large difference in read
abundance in enriched data indicates a proportionally large difference in shotgun data, although smaller
differences may be challenging to detect reliably. However, our investigation contains few samples, and
quantifying this relationship was not our primary aim.

There are limitations to enrichment as a method for resistome profiling. Enrichment cannot detect
entirely novel resistance genes that are not in CARD. As such, we designed CARPDM to update the probe set
for each released version of CARD. Combined with reduced up-front costs via our novel synthesis method,
researchers can update their probe set on demand. Moreover, when the genes that get enriched are distant
homologs to those in CARD, we cannot be sure if they are actual resistance genes or if they would generate

clinical levels of resistance. More work is required to validate these genes upon detection. Finally, this protocol

relies on proprietary hybridization reagents and buffers from commercial suppliers.

Conclusions

The increasing global burden of AMR requires cost-effective and scalable solutions. Overall, our in-
house synthesized probes detect more ARGs with less sequencing than a commercial option in the samples
tested. AlICARD robustly enriches the vast array of ARGs against which it was designed, as well as their
distant homologs. Clinical CARD even more robustly enriches the smaller set of clinically relevant ARGs
against which it was designed. This work shows that targeted enrichment is a valuable companion to DNA
sequencing when detecting ARGs. Future work will involve further updating and refining the set of clinically
relevant ARGs and continually updating the probe set with every new CARD release. Additionally, while we
have released a preliminary protocol for the in-house synthesis of any probe set, there remains room for this
protocol to be optimized. Finally, to make this technology more accessible, future work should also investigate
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its efficacy on alternative DNA sequencing platforms, such as Oxford Nanopore’s MinlON. Yet, overall, this
work has shown the power of enrichment to decrease the cost and increase the impact of large-scale
monitoring of ARGs using DNA sequencing. Alongside CARD, this technology can help researchers investigate

ARG prevalence and transmission patterns among different populations and environments.

Data, Protocol, and Probe Sequence Availability

Detailed laboratory protocols and FASTA sequence files for probe synthesis and library enrichment are

available at the Comprehensive Antibiotic Resistance Database website: http://card.mcmaster.ca.
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