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ABSTRACT

Mediation analysis has emerged as a versatile tool for answering mechanistic questions
in microbiome research because it provides a statistical framework for attributing
treatment effects to alternative causal pathways. Using a series of linked regressions, this
analysis quantifies how complementary data relate to one another and respond to
treatments. Despite these advances, existing software’s rigid assumptions often result in
users viewing mediation analysis as a black box. We designed the multimedia R package
to make advanced mediation analysis techniques accessible, ensuring that statistical

components are interpretable and adaptable. The package provides a uniform interface to
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direct and indirect effect estimation, synthetic null hypothesis testing, bootstrap
confidence interval construction, and sensitivity analysis, enabling experimentation with
various mediator and outcome models while maintaining a simple overall workflow. The
software includes modules for regularized linear, compositional, random forest,
hierarchical, and hurdle modeling, making it well-suited to microbiome data. We
illustrate the package through two case studies. The first re-analyzes a study of the
microbiome and metabolome of Inflammatory Bowel Disease patients, uncovering
potential mechanistic interactions between the microbiome and disease-associated
metabolites, not found in the original study. The second analyzes new data about the
influence of mindfulness practice on the microbiome. The mediation analysis highlights
shifts in taxa previously associated with depression that cannot be explained indirectly by
diet or sleep behaviors alone. A gallery of examples and further documentation can be

found at https://go.wisc.edu/830110.

IMPORTANCE

Microbiome studies routinely gather complementary data to capture different aspects of a
microbiome’s response to a change, such as the introduction of a therapeutic. Mediation
analysis clarifies the extent to which responses occur sequentially via mediators, thereby
supporting causal, rather than purely descriptive, interpretation. multimedia is a modular
R package with close ties to the wider microbiome software ecosystem that makes
statistically rigorous, flexible mediation analysis easily accessible, setting the stage for

precise and causally informed microbiome engineering.

INTRODUCTION

Treatments often cause change indirectly, triggering a chain of effects that eventually
influences outcomes of interest. A standard approach to disentangling these pathways is
to distinguish between indirect paths through candidate mediators and direct paths from
treatment to outcome. Fig. 1A represents this graphically, with separate paths for

treatment T — mediator M — outcome Y and treatment T — outcome Y. In the causal
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inference literature, this exercise is called mediation analysis, and various techniques have
emerged to support it [37, 10]. Several adaptations have been proposed for the

microbiome setting, where mediators, outcomes, and controls may be high-dimensional
[46, 56, 6, 26]. These efforts have already uncovered clinically relevant relationships, like

the existence of microbial taxa that mediate the success of chemotherapy treatments [49].
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FIG1 A. The graphical model underlying mediation analysis. Using combined
mediation (purple) and outcome (blue) models, mediation analysis makes it
possible to distinguish between direct and indirect causal pathways between
treatments and outcomes. The conventional mediation analysis typically
requires all nodes except for the covariates X to be univariate, whereas our
package operates without such constraints. B. The overall multimedia workflow.
Multimedia defines a modular interface to mediation analysis with utilities for

summarizing and evaluating uncertainty in estimated effects.

Despite these successes, existing methodology places strong requirements on the
distribution of the mediators or outcome variables and the functional form of their
relationships. For example, [46, 67, 56, 65] assume that mediators are compositional and
that outcomes are univariate, focusing on how microbiome relative abundance profiles
mediate treatment effects on downstream host phenotypes, like the relationship between
fat intake and body mass index [46]. This precludes analysis where outcomes are

multidimensional, like metabolic profiles, or where mediators are clinical measurements.
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Further, with the exception of the mediation package [52], existing implementations are
not modular, fixing the estimator used in both the mediator and outcome regressions.
This rigidity limits the range of settings in which mediation analysis can be applied.
Moreover, it discourages critical evaluation or interactive model building, since model
components are difficult (or impossible) to interchange. Unfortunately, even the adaptable

mediation package is limited to one-dimensional mediator and outcome variables.

To enable more flexible and transparent mediation analysis of microbiome data, we
extend the methodology of [29, 52] to high-dimensional mediator and outcome variables.
This makes it possible to include sparse regression, logistic-normal multinomial, random
forest, hierarchical Bayesian, and hurdle mediator and outcome models within a uniform
package interface. Moreover, we have documented the process of inserting custom
models into the overall workflow. These models can all be specified using R’s formula
notation, and components can be easily interchanged according to context. We include
operations for summarization, alteration, and uncertainty quantification for the resulting
models, encouraging interactive and critical microbiome mediation analysis. We ensure
strong ties to the wider microbiome software ecosystem by including methods to convert
to and from phyloseq [38] and SummarizedExperiment [21, 34] data structures. Briefly,

this research makes the following contributions:

* We define a flexible implementation of the generalized mediation analysis
framework that applies to multivariate mediators and outcomes, and we develop
modules for nonlinear (random forest), high-dimensional (regularized linear model),
zero-inflated (hurdle model) and compositional (logistic-normal multinomial)
mediator and outcome models.

* We define a transparent interface linking widely-used microbiome data structures to
mediation analysis routines, including direct and indirect effect estimation, bootstrap
inference, synthetic null hypothesis testing, sensitivity analysis, and summary
visualization.

* We provide detailed case studies of how causal mediation analysis can guide

principled data integration in multi-omics settings.


https://doi.org/10.1101/2024.03.27.587024
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.27.587024; this version posted October 4, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

91 Altogether, the multimedia package unlocks the potential for mediation analysis for
92 microbiome studies with complex experimental designs, enabling model-based
93 integration of diverse data types, including microbial community composition,

94 high-throughput molecular profiles, and host health surveys.

95 RESULTS

96 Mediation analysis with our package is a three-step process. First, users specify the
97 hypothesized causal relationships between variables with a concise syntax that represents
98 diverse modeling choices (Model Setup). Next, they estimate the model parameters and
99 the associated causal effects (Counterfactual Analysis). Finally, they can compare
100 synthetic data from alternative models and calibrate inferences using either bootstrap
101 confidence intervals or hypothesis tests (Evaluating Uncertainty). This overall workflow
102 isillustrated in Fig. 1B and detailed in the first three sections below. A summary of key
103 package functions is given in Table 1. The last two sections demonstrate the package

104 workflow with case studies on metabolomic data integration and the gut-brain axis.
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Stage Function Description

Model Setup mediation_data Convert phyloseq, Summarized Experiment,
or data.frame objects into S4 classes
representing all components of a mediation
analysis study.

multimedia Define the form of the mediator and outcome
models for estimation and effect calculations.
Counterfactual | direct effect Estimate direct effects for each outcome
Analysis (Equation (8)) using the estimator in
Equation (16).

indirect _overall Estimate overall indirect effects for each
outcome (Equation (7)) using the estimator
in Equation (15).

indirect _pathwise Estimate indirect effects for each
mediator-outcome pair (Equation (9))
using the estimator in (17).

105 Statistical bootstrap Re-estimate models and effects on bootstrap
Inference resampled versions of the experiment.
nullify Define a version of an existing model with

a subset of edges removed from either the
mediation or outcome model.

fdr _summary Calibrate a false discovery rate controlling
selection rule using synthetic null data and
Equation (18).
Sensitivity sensitivity Evaluate the sensitivity of estimated overall
Analysis indirect effects to violations of assumption

following Equation (20).

sensitivity pathwise | Evaluate the sensitivity of estimated
pathwise indirect effects to violations of
assumptions following Equation (20).
sensitivity _perturb | Evaluate the sensitivity of estimated overall
indirect effects to violations of assumptions
106 following Equation (21).

TABLE1 Core functions for problem specification, effect estimation, and
uncertainty quantification available through the multimedia package. The
complete function reference can be read online at https://go.wisc.edu/830110 or
as a PDF manual at https:/ /go.wisc.edu/olm213.

107 Model Setup To estimate a mediation model, it is necessary to fully specify the nodes
108 and edges in Fig. 1A. The nodes are used to divide data sources into categories according

109 to their role in the causal model. Edges correspond to mediator and outcome models.
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110 Rather than requiring specification of all mediation analysis components at once in a

111 single function, multimedia allows users to define separate components and then glue
112 them together to define an overall analysis. The package exports a mediation_ data data
113 structure for storing the samples used in model fitting. We use R’s 54 system [58] to define
114 separate slots for each node in Fig. 1A. This data structure can be created by applying the
115 accompanying mediation_data function to accompanying R data.frame, phyloseq, and

116 SummarizedExperiment objects. We support tidyverse-style syntax [59], meaning that many
117 variables can be assigned to a node using concise queries. For example, mediation =

118 starts_ with(“diet”) will search the input data for any features starting with the string “diet”
119 and will tag them as mediators in the downstream analysis. This efficient matching

120 simplifies data manipulation in high-dimensional settings, where the user may need to

121 work with hundreds of mediators or outcomes.

122 Next, we must specify the mediator and outcome models. The package exports

123 wrappers to several regression families, ensuring that, despite their differing underlying
124 methodology, all families can be used interchangeably for estimation, sampling, and

125 prediction in the overall mediation analysis workflow. Specifically, multimedia includes
126 (1) linear regression, which ensures that the package generalizes the earlier mediation

127 package, (2) ¢! and ¢?-regularized linear regression [20, 51], which can be more stable and
128 interpretable in the presence of numerous predictors, (3) random forests [61], which

129 supports detection of nonlinear relationships between variables, and (4) hierarchical

130 Bayesian regression [4], which can be useful for sharing information across related groups.
131 Among the hierarchical Bayesian models, we highlight the available hurdle regression
132 models, which have previously proven useful for modeling zero-inflated microbiome data
133 [63, 64].

134 Counterfactual Analysis After using the estimate function to fit models to the

135 observed data, we can reason about potential outcomes under different treatment regimes.
136 This allows us to clarify the relative importance of direct and indirect pathways. For

137 example, to estimate a direct effect (T — Y), we can block effects that travel along the
138 indirect path (T — M — Y) and measure the changes to the responses that persist.

139 Formally, in the counterfactual language of the Materials and Methods, direct and indirect
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effects are estimated using predicted mediators M (t) and outcomes Y (¢, M (t)), where ¢
and ¢’ correspond to mediator and outcome-specific treatment assignments. To this end,
multimedia defines a data structure for storing (,¢') within two data.frames whose rows
are samples and columns are treatment settings. The predict and sample methods allow
users to compute expected values and draw samples according to arbitrary treatment
profiles (t,t'). Note that, in addition to the standard treatment vs. control setup,
multimedia supports treatment profiles with multiple concurrent treatments and

multilevel or continuous treatment.

Given a fitted model, multimedia outputs estimated direct and indirect effects. We
formally define these effects in Equations (7) - (9). Here, we offer an overview of their
motivation and interpretation. Direct effects are the changes we would observe in the
outcome if we changed the treatment node in Fig. 1A but held all the mediators fixed.
This is the effect that travels along the edge T — Y, and it measures the extent to which
the treatment can influence the outcome while bypassing the mediators. We evaluate
different direct effects for each outcome. For example, in the mindfulness case study
below, direct effects can be interpreted as microbiome shifts (changes in Y) following the
mindfulness training (treatment T') that are not a consequence of changes in participant
sleep or diet behaviors (mediators M). Next, we support estimation of two types of
indirect effects. Total indirect effects measure the changes in the outcome when setting all
mediators to their potential values when the treatment is present, keeping the
contribution of the direct path T — Y fixed. This aggregates the effect across the full
collection of indirect paths. In contrast, pathwise indirect effects measure the changes in
outcome when comparing counterfactuals that are equal except at a single mediator. This
isolates the indirect effect along a single indirect path. In this case, an indirect effect is
reported for each outcome-mediator pair, rather than only for each outcome. Note that the
definitions of these effects involve unobservable quantities. Their identification relies on
assumptions about the absence of confounding both before and after treatment
assignment across configurations of mediators and outcomes, which are detailed in

Section “Counterfactual framework” in the Materials and Methods.
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169 To increase modeling transparency, multimedia includes functions for interacting with
170 and altering fitted models. Direct and indirect effects can be visualized within the context
171 of the original data. This can serve as a sanity check and guide further model refinements.
172 Outputs are created with ggplot2 [57], which allows users to customize plot appearance.
173 The case studies include outputs from these helper visualization functions. Further, given
174 a fitted model, we allow users to refit new versions with sets of edges removed. Fig. 2
175 1illustrates the main idea with a toy dataset. In the second column, the mediator takes on a
176 larger value under the red treatment, while in the third, the mediators have identical

177 distributions under the two treatments. Similarly, in the fourth, the relationship between
178 the mediator and outcome no longer depends on treatment status. We can also alter the
179 overall model structure, like the switch to a linear outcome model in the last column. If
180 the model quality deteriorates significantly in an altered submodel, then those edges play
181 a critical role. This heuristic is formalized in the synthetic null hypothesis testing strategy
182 discussed below. Finally, we have built the package with extensibility in mind. If

183 functions can be written for estimation and prediction from a new model type, then it can
184 be passed in to multimedia as a custom mediation or outcome model.
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FIG 2 Samples from altered versions of a mediation analysis model fitted to the
toy data at the far left. Each row describes a different outcome variable, and
colors represent different treatments. The first column gives the original data,
and the remaining columns give simulated data from alternative models

specified by the DAGs on the top and column titles.
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186 Statistical Inference The multimedia package offers bootstrap [15, 16, 17] and

187 synthetic null hypothesis testing [35, 48, 47] approaches for quantifying uncertainty in
188 estimates of mediation effects. To bootstrap in the mediation analysis context, we refit the
189 mediator and outcome models to bootstrap resampled versions of the data and compute
190 summary statistics (e.g., direct effect estimates) on each bootstrap sample. The percentiles
191 of the resulting summary statistic distribution defines the bootstrap confidence interval.
192 Importantly, the bootstrap is model agnostic and can apply to any instantiation of the
193 counterfactual mediation analysis framework. The primary assumption made by the
194 bootstrap is that its test statistics vary smoothly to small perturbations of the data. For this
195 reason, it is worthwhile to check that the histogram associated with the full bootstrap
196 distribution is well-behaved before computing confidence intervals. Like the boot

197 function in base R, multimedia’s bootstrap uses a functional implementation — any

198 function that transforms an experiment and fitted model into a summary statistic can be
199 used as input. For example, it can accept a list of direct and indirect effect estimators, and

200 these will be computed on bootstrap resample.

201 An alternative approach to inference in high-dimensions is based on synthetic null
202 hypothesis testing. In this approach, rather than resampling the original data, the modeler
203 simulates synthetic data from an assumed null distribution. Effect estimates are computed
204 wusing both the original and the synthetic null data, and the fraction of synthetic null

205 “negative controls” among the strongest observed effects can be used to calibrate a

206 selection rule with false discovery rate control. The alteration functions above can be used
207 to define synthetic nulls; e.g., after zeroing out the edges from either T —- Mor M — Y,
208 any estimated indirect effects can be treated as negative controls. Two advantages of the
209 synthetic null approach are that (1) it only requires the mediator and outcome models be
210 estimated twice and (2) multiple hypothesis testing is accounted for via the false

211 discovery rate. The key disadvantage of this approach, relative to the bootstrap, is that it
212 requires a realistic synthetic null data generating mechanism. For example, if the synthetic
213 null data are generated from a linear model, but real effects are nonlinear, then the

214 resulting selection sets will not provide valid false discovery rate control.

10
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215 Microbiome-Metabolome Integration We next illustrate the multimedia workflow
216 with case studies. Our first concerns Inflammatory Bowel Disease (IBD), which is closely
217 tied to gut microbiome community composition [39]. [18] investigated the relationship
218 between the gut microbiome and metabolome between IBD patients and healthy controls,
219 concluding that microbial community members may be partly responsible for the

220 formation of metabolites that lead to inflammation and IBD. By applying clustering and
221 canonical correlation analysis to untargeted mass spectrometry data, they flagged a

222 number of disease-relevant metabolites. We re-analyze the data using model-based

223 mediation analysis, viewing IBD status — Healthy Control, Ulcerative Colitis (UC), or
224 Crohn’s Disease (CD) — as treatments T, metabolic profile as the outcome Y, and

225 microbiome community composition as a mediator M. The data are downloaded from the
226 microbiome-metabolome curated data repository [40]. We have further filtered to the top
227 173 and 155 most abundant microbes and metabolites, and we apply centered log-ratio
228 (CLR) and log (1 + x) transformations to each source, respectively. Further details about

229 the experimental cohort and data preparation are available in the Materials and Methods.

230 We use parallel linear and ¢!-regularized regression for mediator and outcome models,
231 respectively. Note that treatment is the only predictor in the mediator model, which is
232 why no regularization is required. We ran the bootstrap for 1000 iterations, and 95%

233 confidence intervals and bootstrap distributions for the features with the strongest direct
234 and overall indirect effects contrasting CD with healthy controls are shown in Fig. 3.

235 Metabolites with strong indirect effects are influenced by IBD-induced changes in

236 microbiome community composition, while those with large direct effects change due to
237 other unknown factors. Fig. 4 explores a small subset of these overall effects by

238 overlaying metabolite abundances onto multidimensional scaling (MDS) plots derived
239 from microbiome community profiles. Though metabolites with strong direct effects have
240 differential abundance across IBD and healthy groups, only metabolites with indirect
241 effects show variation that is also associated with microbiome composition. We caution
242 that these results are potentially conservative. To ensure stability in high dimensions, the
243 (! and (?-regularized regression estimators implemented in multimedia are biased

244 towards 0 [66]. This may cause both direct and indirect effects to appear inappropriately

11
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245 weak, and extensions to debiased alternatives like [33] are an important line of future

246 work.
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FIG 3 95% Bootstrap confidence intervals for metabolites with the strongest
estimated direct and overall indirect effects associated with CD. Effects are
sorted according to magnitude, and only the top 15 of each type are shown.
Within the interval, the inner rectangle captures 66% of the bootstrap samples. In
this data, indirect effects are stronger than direct effects.
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FIG 4 Microbiome composition and metabolite abundance for three
metabolites with the strongest direct (top row) and indirect (bottom row) effects.
Samples (points) are arranged according to an MDS on CLR transformed

12
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microbiome profiles with Euclidean Distance. Axis titles give Zk)’\lj\k’ from the

associated eigenvalues. Each panel corresponds to a metabolite, and point size
encodes metabolite abundance, normalized to panel-specific quantiles.
Metabolites with strong indirect effects vary more systematically with
microbiome composition — for example, samples with low abundance of
lithocholate are localized to the right of the MDS plot.

249 Moreover, by analyzing pathwise indirect effects, we can uncover genus-level

250 relationships. A subset of the strongest pathwise indirect effects are shown in Fig. 5.

251 Among the microbe-metabolite pairs with the strongest pathwise indirect effects, we find
252 arelationship between the metabolite taurine and genus Bilophila (Fig. 5). High levels of
253 fecal taurine, one of the primary conjugates of primary bile acids [60], has been previously
254 associated with IBD [31, 54]. It has also been found that Bilophila wadsworthia, one of the
255 most prominent taurine metabolizers, is often associated with lower levels of taurine [54].
256 Here, our results suggest that higher levels of taurine in IBD patients is mediated in part,
257 Dby the abundance of Bilophila. We also find microbes in the genus Firmicutes bacterium
258 CAG:103, are paired with several metabolites: cholate, chenodeoxycholate, and

259 7-ketodeoycholate (Fig. 5). Cholate and chenodeoxycholate are primary bile acids

260 produced by the host, which are the metabolized by gut bacteria to form secondary bile
261 acids. 7a-dehydroxylation, is one of the pathways that bacteria metabolize primary bile
262 acids, an intermediate of which is 7-ketodeoycholate [44]. Recent work has found that
263 bacteria closely related to Firmicutes bacterium CAG:103 contain the majority of predicted
264 genes associated with the 7a-dehydroxylation pathway within metagenomic samples [53].
265 Our results suggest that the increasing abundance of Firmicutes bacterium CAG:103, may
266 Dbe driving the decrease in these primary bile acid metabolites and intermediates, which is
267 associated more with the non-IBD controls [50]. Host deficiency in creatine uptake has
268 been associated with poor mucosal health in IBD patients [12]. In our results, we find that
269 there is a strong microbe-metabolite pair between microbes in the genus Choladousia

270 (family: Lachnospiraceae) and creatine/creatinine levels. Lachnospiraceae, (which is often at
271 lower levels in IBD patients), are known to produce short chain fatty acids, that have been

272 shown to help with mucosal health [41] (Fig. 5). Overall, these results suggest that
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273 Choladousia may utilize creatine/creatinine as a nitrogen source, thus explaining its higher

274 abundance in the controls.
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FIG 5 Microbe-metabolite pairs with the strongest pathwise indirect effects
from IBD status. Each panel corresponds to one pair, CLR-transformed genus
abundance is given on the x-axis, and log (1 + x)-transformed metabolite
abundance is given on the y-axis. Effects are sorted from most negative (top left)
to most positive (bottom right). For a pathwise indirect effect to be strong, there
must be both a shift in microbe abundance due to IBD state (T — M) and also an
association between microbe and metabolite abundance (M — Y).
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FIG 6 Sensitivity analysis for three metabolite-genus pairs in the IBD study.
The strength of unmeasured confounding between mediators and outcomes is

reflected in the x-axis parameter p. When the sign of the estimated indirect effect
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flips for small values of |p|, then the estimate is sensitive to violations in the

identification assumptions.

277 Our discussion assumed no unmeasured confounding between mediators and

278 outcomes. Sensitivity analysis can clarify whether these conclusions remain true even
279 when assumptions are violated. Using the approach detailed in the Materials and

280 Methods (Equation (19)), we assessed pathwise indirect effects for three metabolite-genus
281 pairs. The results in Figure 6 show the robustness of the taurine-Bilophila and sensitivity
282 of the taurine-Choladousia indirect effect estimates. The ketodeoxycholate-CAG103 effect
283 is intermediate between these extremes, with indirect effects present up to confounding
284 strength p = 0.5. More generally, multimedia offers functionality for evaluating sensitivity
285 for a range of user-specified pretreatment confounding patterns. Our online vignette
286 provides an additional example of sensitivity analysis for total, rather than pathwise,

287 indirect effects.

288 Note that, since this mediation model is built from a regularized linear regression
289 outcome model, it is more sensitive to linear associations between microbe and metabolite
290 abundances. The official package documentation includes an alternative Bayesian hurdle
291 outcome model, which exhibits higher sensitivity to outcomes with changes in metabolite
292 presence-absence probability. The easy interchangeability of mediation analysis

293 components makes this contrasting analysis simple to implement — it only requires

294 change in a single line of code — and reflects multimedia’s modular design.

295 Evaluating a Mindfulness Intervention Studies of the gut-brain axis have yielded
296 experimental evidence for interactions between the gut microbiome and the brain. For
297 example, germ-free mice colonized with the microbiota from human patients with clinical
298 depression develop depression-like symptoms [36, 13], and observational studies have
299 linked particular bacterial taxa to depression [2, 43]. Given this growing body of evidence,
300 ateam from the UW-Madison Center for Healthy Minds and the Wisconsin Institute for
301 Discovery profiled microbiome composition, surveyed psychological symptoms, and
302 tracked behavior change among 54 subjects before and after participation in a two-month

303 mindfulness training [9, 23] — see the Methods and Materials for details of the study
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304 design and data processing. This study aimed to determine the nature of the

305 mindfulness-microbiome relationship and to identify potential causal pathways. Such
306 understanding could lead to novel interventions that influence mood through the

307 microbiome. As a first step, we use mediation analysis to understand the mechanisms
308 linking mindfulness and the microbiome in this randomized controlled trial. Our

309 intervention T is the mindfulness training program, the outcome of interest is microbiome
310 composition Y, and mediators M are survey responses related to diet and sleep that are
311 hypothesized to influence the microbiome. To control for subject-to-subject level variation,

312 participant ID is used as a pretreatment variable X.

313 For mediator and outcome models, we apply ridge and logistic-normal multinomial
314 regressions, respectively [25, 62]. We choose a ridge regression model so that intercepts
315 across the large number of participants are shrunk towards their global mean. We choose
316 logistic-normal multinomial regression to jointly model microbiome composition. We also
317 define altered submodels where all direct and indirect effects have been removed.

318 Simulated genera compositions from all models are shown in Fig. 7. In the newly

319 simulated data, subjects have been randomly re-assigned to the treatment and control
320 groups. These submodels can support synthetic null hypothesis testing, since the

321 synthetic null data appear to capture relevant properties of the real microbiome

322 composition profiles, like the average relative abundances across genera and the range of
323 observed abundances within most genera. Their main limitation is that some genera, like
324 Methanobrevibacter, Paraprevotella, and Akkermansia, have much wider ranges than the
325 synthetic data, and Fig. S1 suggests that this is due to a failure to capture the unusually

326 high zero inflation present in these genera.

327 For synthetic null hypothesis testing, models without T — Y and M — Y associations
328 are used to generate negative controls for direct and total indirect effect estimates,

329 respectively. Fig. 8 shows the estimated effects from real and synthetic data, together with
330 the estimated false discovery rates. At a level g = 0.15, five genera are selected as having
331 either significant direct or indirect effects. Fig. S2 provides the analog of Fig. 5 for this

332 case study. Indirect effects are an order of magnitude weaker than direct effects,
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333 suggesting that changes in microbiome composition following the mindfulness
334 intervention cannot simply be attributed to changes in diet or sleep alone.
335 We cannot externally validate these findings, since there is no consensus on the
336 relationship between specific taxonomic groups and common psychiatric disorders (for a
337 description of current sources of controversy, see [1]). However, our findings are broadly
338 consistent with those from a recent large-scale human cohort, which found that most
339 genera belonging to the families Ruminococcaceae were depleted in people with more
340 symptoms of depression and that Bifidobacterium was an important predictor of
341 depressive symptoms in a random forest classifier [2].
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FIG 7 Real and synthetic null relative abundances across a subset of genera at
different overall relative abundances. Color distinguishes whether the
participant belonged to the treatment (mindfulness training) or control groups.
The full model (left panel) captures the overall abundances and trajectories
present in the real data, though it tends to underestimate the heaviness of the
tails. The second and third panels show the analogous models with direct

(T — Y) and indirect (M — Y) effects removed.
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FIG 8 Estimated direct and total indirect effects and false discovery rates
derived from real and synthetic null data. Each point corresponds to one genus
in either real (blue) or simulated (orange) data. The genera selected to control the
false discovery rate at g < 0.15 are drawn larger than the rest. Direct effects are
both larger in magnitude and easier to distinguish than their indirect

counterparts.

344 DISCUSSION

345 Mediation analysis makes it possible to study causal pathways in multimodal

346 microbiome data, and it is an essential tool for discovery of subtle relationships that span
347 multiple host measurements and high-throughput assays. Statistical techniques in this
348 space are needed to support interrogation of varied causal relationships, not simply

349 studies where microbiome profiles serve as mediators and outcomes are one-dimensional,

350 as has been the historical focus of the field.
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Our case studies illustrate the flexibility and analytical depth supported by
multimedia. Unlike traditional microbiome mediation analysis software, the package
allows specification of diverse regression components, and the interface simplifies
interpretation of effect types and model criticism. In this way, multimedia encourages
interactive, rigorous mediation analysis for microbiome data. It is written to interface
closely with the existing microbiome software ecosystem, and since analysis are carried

out in reproducible code notebooks, it supports scientific transparency.

We note that multimedia is related to other recent approaches to transparent
microbiome mediation analysis, most notably MiMed [32], which provides a
self-contained graphical interface to support this task. The MiMed interface is available as
a web server and a standalone Shiny App [8]. MiMed and multimedia make recent
statistical advances in microbiome mediation analysis more accessible and offer advanced
customizability. Further, both software packages implement the generalized causal
mediation analysis framework [29]; the effect estimates and confidence intervals output
by the packages share the same conceptual foundation. Nonetheless, there are critical
distinctions. For example, MiMed is accessible to users with no programming experience,
while multimedia requires familiarity with R software. Limiting multimedia to those with
programming experience allows for a more modular design, with easily interchangeable
and extensible code components. In particular, multimedia offers a more thorough
instantiation of the generalized mediation analysis framework. MiMed’s implementation
requires linear mediator and outcome models, and the outcome models must have
univariate responses. In contrast, multimedia offers a broader range of model types (e.g.,
regularized linear or logistic-normal multinomial) that fit within the framework of [29],
and both mediator and outcome models can be multivariate. As seen in both case studies,
this additional flexibility enables the integration of more complex multivariate mediator

and outcome data.

We have created a gallery of example notebooks that use the multimedia package.
These include alternative analyses of the IBD and mindfulness data explored here. We
invite users to contribute further examples, and we plan to structure further

developments according to community needs.
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381 MATERIALS AND METHODS

382 Counterfactual framework Let T € T be the treatment, M € M be the mediators of
383 interest, Y € ) be the outcome, and X € X be the pretreatment covariates, where

384 TCcRMcCRKYcR,and X c R? represent the supports of T, M, Y, and X. For
385 simplicity, we assume 7 = {0,1} and T is a binary indicator of either treatment (T = 1) or
386 control (T = 0), though multimedia supports categorical, continuous, and multi-treatment

387 cases.

388 We first consider the total indirect effect through all mediators and the direct effect
389 through other mechanisms. Applying a counterfactual perspective, we define M(f) as the
390 potential values of the mediators under T = ¢, and Y (¢, m) as the potential outcome under
391 T =tand M = m. Therefore, we can use Y (¢, M(t')) to denote the potential outcome
392 under the treatment status t when the mediators are set to be the potential values under #'.
393 In reality, we can only ever observe the case where t and t' are the same, i.e., Y(1, M(1)) in
394 the treated group and Y(0, M(0)) in the control group —but conceptually ¢ and ' can be
395 different. For example, Y(0, M(1)) represents the potential outcome when only the

396 mediators are intervened upon and Y(1, M(0)) represents the potential outcome when we
397 make interventions while keeping the mediators at their values under the control. For

398 notational simplicity, we omit the dependence of M and Y on X.

399 We adopt the definitions in [29], where the indirect effect is defined as
400 6(t) = E{Y(t, M(1)) — Y(t, M(0))} (1)
401 and the direct effect is defined as

402 () =E{Y(1, M(t')) = Y (0, M(t')) } (2)
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403 fort,t' € {0,1}. It has been shown in [27] that both effects are nonparametrically

404 identifiable under the sequential ignorability assumption:

405 (Y(t,m), M(t)} LLT|X =x, (3)
406 Y(t,m) 1L M(t) | T =t,X = x, 4)
407 P(T=t|X=x)>0, (5)
408 pmp(m | T=tX=x)>0, (6)

409 forany t,t',m, x.

410 Without additional assumptions, 6(t) and ¢ (t) may vary with ¢. To provide a
411 consistent and interpretable summary, we measure the total indirect effect and direct

412 effect defined as follows,

(%]
Il

413 )) = Y(t,M(0))} )

i]E{Y(t M(1))
t=0
i E{Y(1, M(t)
t'=0

N — N

414 ") =Y (0, M(#))}. )

N
Il

415 Large magnitudes of 6 and { suggest strong indirect and direct effects.

416 Moreover, we can also examine the pathwise indirect effect through each mediator. We
417 assume there is no causal relationship between the mediators M = (My, ..., Mg). When
418 interest lies in the mediator My, we emphasize the dependence of the potential outcome
419 onboth My and the remaining mediators M_j by writing Y (¢, m, w), explicitly

420 distinguishing My = m and M_j = w. To evaluate the pathwise indirect effect through
421 My, we consider different treatment assignments for My and M_. For example,

422 Y(t, Mi(t'), M_i(t")) represents the potential outcome under the treatment status t when
423 M is set to be its potential value under t' and M _, (") are set to be their potential values

424 under t”. Using these notations, we can define the pathwise indirect effect through M as:

1
425 Wf = % Y E{Y(¥, My(1), M (1)) — Y (¥, My (0), M_(t")) }. ©)
=0
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426 This quantity has been proven to be nonparametrically identifiable under a generalized

427 version of sequential ignorability assumption [30]:

428 {Y(t,m,w), Mc(t'), M_ (")} LL T | X =x, (10)
429 Y(t',m,M_;(t')) IL My | T =1t,X = x, (11)
430 Y(t, M(t),w) L M_; |T=1tX =x, (12)
431 P(T=t|X=x)>0, (13)
432 Pimem_py(mw | T=tX=x)>0, (14)

433 for any possible t,t',t",m, w, x.

434 Mediator and outcome model definition Multimedia estimates the population
435 quantities 4, {, and @ by replacing the expectations in Equations (7) - (9) with the average

436 of fitted values under the estimated mediator and outcome models:

. 1 n
137 §= 330 Y Vilt, (1)) — Yi(e, N1(0)), (15)
t=0i=1
. 1 n . . .
438 E=3 Y YT NL(E)) — Vi(0, M(t)), (16)
t'=0i=1
1 n
439 w = % )N Yi(t', Mg (1), M (') = Y;(#', My (0), M; () }. (17)

~
<
|
o
~
I
—

440 A benefit of applying this generalized causal mediation analysis framework is that

441 various prediction models can be used to obtain estimates M (t, x) and Y (¢, m, x) of

442 M (t,x) and Y (t,m, x), respectively. This flexibility is especially valuable in the

443 microbiome context, where both Y and M may be multivariate and where observations
444 may be zero-inflated, high-dimensional, compositional, or highly skewed. For example,
445 the mediators and outcomes may represent survey responses, community taxonomic
446 compositions, or metabolomic profiles. The approach of the multimedia package is to
447 define an interface where prediction methods that have been designed to address these
448 complexities can be easily swapped in and out. Therefore, advances in prediction of
449 microbiome data can be easily incorporated to improve causal effect estimation through

450 higher-quality mediator and outcome models.
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451 Specifically, the estimates in Formula (15) - (17) allow these prediction algorithms to be
452 used as building blocks in support of estimating direct and indirect causal mediation
453 effects. For example, on its own, random forests are only useful for prediction. But

454 through M (t,x) or Y (t,m, x), they can provide plug-in estimates for causal analysis. We
455 next provide details of the specific estimates used in our case studies, though we again
456 emphasize the broader generality of the underlying implementation. In the Section

457 “Microbiome-Metabolome Integration,” we fit a separate sparse linear regression model to
458 each metabolite with all CLR-transformed microbe abundances as inputs. Letting Yj;

459 represent the peak intensity for metabolite j in sample i and M; the relative abundances of

460 microbes in sample i, we estimate:

461 pj= argéré}g X; (log (1+7Y) —CLR (Mi)Tﬁj>2 + AllBjll

462 1In this case, the outcome model Y (t,m, x) is a collection of metabolite-specific estimates
463 By,..., By fit simultaneously. Note that the regularization parameter A is fixed across all
464 responses, rather than adaptive to metabolite j. The package supports linear, elastic net
465 [19], random forest [61], hurdle [3], and hierarchical (including hurdle) models [4] for
466 either mediator M (t, x) or outcome Y (¢, m, x) models similarly. Alternatively, instead of a
467 collection of univariate models, a multivariate regression model can be fit to relate

468 covariates with the high-dimensional response. This is the approach used in the Section
469 “Evaluating a Mindfulness Intervention,” where a single logistic-normal multinomial
470 model [62] is applied to model community composition as a function of treatment T,
471 survey-derived mediators M;, and pretreatment features X;. In this case, the outcome
472 model is a single, multivariate model estimated using the maximum a posteriori

473 parameter B from a logistic-normal multinomial model with a normal prior:

p(B).

474 B:=arg max [H Mult (Z Yij, ¢~ >

BER (J-1)x(14+K+P)

475 Zi= [Ti|Mi|Xz}T
476 p(B) = Ik"[N (bplo, 0?)
p
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where ¢! : R/=! — R/ is the mapping

(P—l (lu) _ ( exp (Vl) exp (}1]_1) 1 > _

1+ Y exp (yj)"”'1+z]-exp (yj)'1+2jexp (1))

Note that all bootstrap, synthetic null testing, and sensitivity analysis functions are
designed to operate on an abstract mediation _model S4 class. In this way, multimedia is
easily extensible, and its causal mediation framework can be applied to various models,

including those supplied by a user, as long as they satisfy the 54 class requirements.

Bootstrap and synthetic null testing Form a bootstrap resample of the data
D* = (X*,M*, T*, Y*) by independently resampling the n observations with replacement.
A summary statistic computed on the b*" resampled dataset is denoted by 8*? (D*). For
brevity, we will omit the data arguments. For example, 8*¥ could correspond to an
estimator of § or { derived from mediator and outcome models learned from D*. Repeat
this process B times and refit M (¢, x), Y (t,m, x) and the provided summary statistic 8 for

~ B
each of the bootstrapped datasets, yielding the bootstrap distribution (G*b ) Nt Let g4

and q;_g represent the 5 and 1 — 5 quantiles of this set. Then [q%, ql_%} forms an a-level

bootstrap confidence interval for 6.

For synthetic null hypothesis testing, estimate mediator and outcome models
Mg (t, %), Yeup (£, m, x) using only a subset of edges within the DAG. This defines the
null data generating mechanism. Using the same pretreatment and treatment profiles
X;, T; from the original experiment, simulate synthetic null data M*0, Y*0 from the
submodel. For D taxa of interest, compute summary statistics (é;)(?:l and (92)5:1 based
on the original and the synthetic null data, respectively. For example, BA(}I could estimate
taxon d’s direct effect 5, using the original data, and ég could be the corresponding
estimate derived from synthetic null data. Next, for any threshold ¢, we estimate the false
discovery rate using

_ #{d (09| >t}

FDR (t) := — — .
= @0 >+ {d: 01 > 1)

(18)
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502 The numerator counts the number of estimates from the synthetic null data that are larger
503 than t, and the denominator counts the number of discoveries across either simulated or
504 real data at that threshold. Given a desired FDR level g, the selection rule is defined by
505 selecting t* = min {t : FDR (1) < q}and selecting all features d such that ‘é{ﬂ > t*. Under
506 the null samples generated by Mgy, (£, ), Yeup (£, 1, x), this rule controls the false

507 discovery rate below level g, regardless of the choice of estimator 8,5, though better

508 estimators lead to improved power.

509 Sensitivity analysis Mediation analysis relies on untestable identification

510 assumptions, detailed in the “Counterfactual framework” section above. While these
511 assumptions cannot be directly tested, the consequences of their violation can be explored
512 through sensitivity analysis. We next review the sensitivity analysis methods available in
513 the multimedia package, which are motivated by the more general methodology [28].
514 Sensitivity is evaluated by simulating counterfactual mediator and outcome variables
515 with correlated noise terms, representing the situation where the assumption of no

516 pretreatment confounding is violated. Specifically, we sample:
517 Y*(t,m) = Y(t,m) +€/ and M*(t) = M(t) +€™. (19)

518 where Cov (€™, €Y) # 0. Given this data, we re-estimate either the total or pathwise
519 indirect effects. This helps identify cases where the estimated indirect effects become zero

520 or change signs when confounding is present compared to when Cov (e”,€¥) = 0.

521 Specifically, the package offers tools for simulating and assessing effects under
522 covariance structures for (€, €Y) that represent pretreatment confounding. For example,
523 users can generate data from Equation (19) with:
diag (0% oMoy ©1
524 S (p,G) == 8(7n) pomdy ©lg (20)
poyoy © 1 diag (67)
525 ?712\/[ € RX and (AT% € ]RLr represent the estimated noise variances of mediators and
526 outcomes, and 1 € {0,1}X*/ is an indicator over mediator-outcome pairs G on which to

527 evaluate sensitivity. When p # 0, unmeasured confounding is present between these
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528 pairs. We recommend keeping G small, because confounding patterns induced by large G
529 are less plausible. For example, it is unlikely that a single mediator can be confounded
530 with all outcomes, while all other mediators remain unconfounded. By adjusting p and G,

531 package users can evaluate sensitivity to various patterns of pretreatment confounding.

532 The package also offers a more general form of sensitivity analysis, where users can

533 supply an arbitrary matrix A and simulate noise from:
534 X(8,v) = diag ( [0F, 6] ) +vA. (1)

535 For example, this allows the evaluation of sensitivity with varying confounding strengths
536 across mediator-outcome pairs. It can also be used to assess the effect of correlation across
537 mediators. Note that when using either Equations (20) and (21), we can simulate repeated
538 datasets with the assumed covariance structure and refit models to estimate effects on
539 each simulated dataset. This allows us to report the standard error of the estimated effects
540 across choices of sensitivity analysis hyperparameters, helping to ensure that the

541 sensitivity analysis itself is reliable.

542 Microbiome-metabolome data processing We obtained the data from the

543 microbiome-metagenome curated database. Details of the library preparation and

544 bioinformatics can be found in [42]. Briefly, metagenomic sequencing was done on an
545 Illumina HiSeq 2500, and metabolites were profiled using LC-MS in non-targeted mode.
546 For metagenomics, fastp was applied to raw reads for quality filtering, adapter trimming,
547 and deduplication. bowtie2 was used to remove human reads by aligning to the hg38.

548 kraken2.1.1 and braken 2.8 were used to estimate taxonomic relative abundances.

549 A total of 11,720 taxa and 8,848 metabolites are present in the public data. We applied
550 a centered log-ratio transformation to the microbiome relative abundances profiles:

551 CLR(xq,...,xp):= <log (xg) — % Y 4 log xd/> ;)_1. We then filtered to taxa whose average
552 transformed abundance was larger than 3, which reduced the number of taxa to 173. We
553 kept only metabolites with confident HMDB assignments, applied a log (1 + x)

554 transformation, and further filtered to those whose average transformed intensity was

555 larger than 6. This resulted in 155 well-annotated and generally abundant metabolites.
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556 Mindfulness study design and processing The initial Center for Healthy Minds study
557 recruited 114 police officers participants across two cohorts. Microbiome samples were
558 obtained only from participants in the second cohort (n = 54), who were randomly

559 assigned to mindfulness training or waitlist control with 27 cases each. We removed four
560 participants due to incomplete responses — three lacked microbiome data, and one had
561 missing mediators. Our analysis considers a mindfulness training treatment group of size
562 n = 24 and a waitlist control group of size n = 26. Participants in the mindfulness group
563 took part in an 8-week, 18-hour mindfulness training developed specifically for their
564 career and inspired by Mindfulness-Based Stress Reduction and Mindfulness-Based

565 Resilience Training [9]. Weekly two-hour classes (and a four-hour class in week 7)

566 consisted of didactic instruction, embodied mindfulness practices, and individual and
567 group-based inquiry (for full intervention details, see [24]). Microbiota and behavioral
568 survey data were gathered at 2 - 3 timepoints for each participant — samples in the

569 treatment group provided data before, within two weeks following, and, in a subset of

570 cases, four months after the 8-week intervention, resulting in 118 samples total.

571 Gut microbiome composition was assessed using 165 rRNA gene sequencing, and
572 participants completed surveys, as reported previously [24]. One to four technical

573 replicates (on average, 2.6) were sequenced for each 16S rRNA gene sample, resulting in
574 307 microbiome composition profiles in total. Amplicon Sequence Variants (ASV) were
575 called using the DADAZ2 pipeline [5]. The first ten base pairs were removed, and all reads
576 were truncated to a length of 250. Otherwise, we set all pipeline hyperparameters to their
577 defaults. Since the total number of participants is relatively small, we chose to concentrate
578 on the core microbiome [45]. To this end, we assigned taxonomic identity to each ASV
579 using the RDP database and aggregated all counts to the genus level [11]. We removed
580 any genera that did not appear in at least 40% of the samples, thereby generating a core
581 microbiome. On average, this preserved 98.7% of the reads within each sample. After
582 filtering to the core microbiome, sequences for 55 genera remained. To define mediators,
583 we manually selected four variables from the National Cancer Institute Quick Food Scan
584 and self-reported questionnaires on fatigue and sleep disturbance scores based on the

585 Patient-Reported Outcomes Measurement Information System subscale [7]. We
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586 concentrated on these questions because changes in both diet and sleep have previously

587 been associated with mindfulness interventions and the microbiome [22, 14, 55].

588 In detail, we consider four mediators — two diet mediators from the National Cancer
589 Institute Quick Food Scan and two stress variables from the Patient-Reported Outcomes
590 Measurement Information System (43-item inventory; version 2.0) following [7]. They are
591 all calculated from questionnaires. The two diet variables indicate the frequency that
592 participants eat cold cereal and fruit (not juices), respectively, in the past 12 months

593 (Supplementary Table 1). The two stress variables, fatigue and sleep disturbance, profile
594 the stress of a participant in the past 7 days (Supplementary Table 2).
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