

1 multimedia: Multimodal Mediation Analysis

2 of Microbiome Data

3 Hanying Jiang^{1,†}, Xinran Miao^{1,†}, Margaret W. Thairu², Mara Beebe², Dan W. Grupe³,

4 Richard J. Davidson^{3,4,5}, Jo Handelsman^{2,6}, Kris Sankaran^{1,2}

5 ¹Statistics Department, UW-Madison, Madison, WI, USA

6 ²Wisconsin Institute for Discovery, UW-Madison, Madison, WI, USA

7 ³Center for Healthy Minds, UW-Madison, Madison, WI, USA

8 ⁴Psychology Department, UW-Madison, Madison, WI, USA

9 ⁵Psychiatry Department, UW-Madison, Madison, WI, USA

10 ⁶Plant Pathology Department, UW-Madison, Madison, WI, USA

11 *Address correspondence to Kris Sankaran, ksankaran@wisc.edu.

12 † Equal contribution.

13 ABSTRACT

14 Mediation analysis has emerged as a versatile tool for answering mechanistic questions
15 in microbiome research because it provides a statistical framework for attributing
16 treatment effects to alternative causal pathways. Using a series of linked regressions, this
17 analysis quantifies how complementary data relate to one another and respond to
18 treatments. Despite these advances, existing software's rigid assumptions often result in
19 users viewing mediation analysis as a black box. We designed the multimedia R package
20 to make advanced mediation analysis techniques accessible, ensuring that statistical
21 components are interpretable and adaptable. The package provides a uniform interface to

22 direct and indirect effect estimation, synthetic null hypothesis testing, bootstrap
23 confidence interval construction, and sensitivity analysis, enabling experimentation with
24 various mediator and outcome models while maintaining a simple overall workflow. The
25 software includes modules for regularized linear, compositional, random forest,
26 hierarchical, and hurdle modeling, making it well-suited to microbiome data. We
27 illustrate the package through two case studies. The first re-analyzes a study of the
28 microbiome and metabolome of Inflammatory Bowel Disease patients, uncovering
29 potential mechanistic interactions between the microbiome and disease-associated
30 metabolites, not found in the original study. The second analyzes new data about the
31 influence of mindfulness practice on the microbiome. The mediation analysis highlights
32 shifts in taxa previously associated with depression that cannot be explained indirectly by
33 diet or sleep behaviors alone. A gallery of examples and further documentation can be
34 found at <https://go.wisc.edu/830110>.

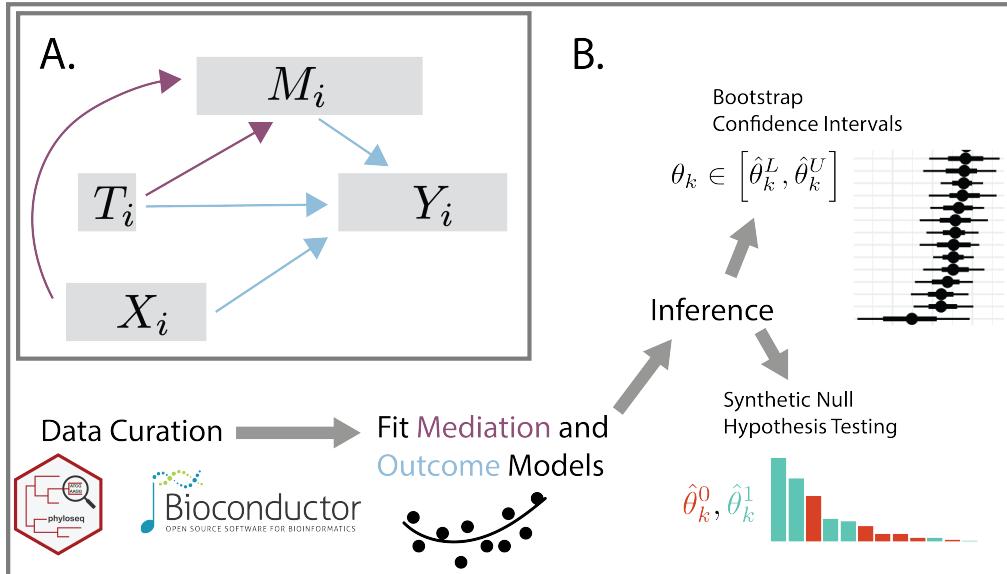
35 **IMPORTANCE**

36 Microbiome studies routinely gather complementary data to capture different aspects of a
37 microbiome's response to a change, such as the introduction of a therapeutic. Mediation
38 analysis clarifies the extent to which responses occur sequentially via mediators, thereby
39 supporting causal, rather than purely descriptive, interpretation. multimedia is a modular
40 R package with close ties to the wider microbiome software ecosystem that makes
41 statistically rigorous, flexible mediation analysis easily accessible, setting the stage for
42 precise and causally informed microbiome engineering.

43 **INTRODUCTION**

44 Treatments often cause change indirectly, triggering a chain of effects that eventually
45 influences outcomes of interest. A standard approach to disentangling these pathways is
46 to distinguish between indirect paths through candidate mediators and direct paths from
47 treatment to outcome. Fig. 1A represents this graphically, with separate paths for
48 treatment $T \rightarrow$ mediator $M \rightarrow$ outcome Y and treatment $T \rightarrow$ outcome Y . In the causal

49 inference literature, this exercise is called mediation analysis, and various techniques have
50 emerged to support it [37, 10]. Several adaptations have been proposed for the
51 microbiome setting, where mediators, outcomes, and controls may be high-dimensional
52 [46, 56, 6, 26]. These efforts have already uncovered clinically relevant relationships, like
53 the existence of microbial taxa that mediate the success of chemotherapy treatments [49].



54

FIG 1 A. The graphical model underlying mediation analysis. Using combined mediation (purple) and outcome (blue) models, mediation analysis makes it possible to distinguish between direct and indirect causal pathways between treatments and outcomes. The conventional mediation analysis typically requires all nodes except for the covariates X to be univariate, whereas our package operates without such constraints. B. The overall multimedia workflow. Multimedia defines a modular interface to mediation analysis with utilities for summarizing and evaluating uncertainty in estimated effects.

55 Despite these successes, existing methodology places strong requirements on the
56 distribution of the mediators or outcome variables and the functional form of their
57 relationships. For example, [46, 67, 56, 65] assume that mediators are compositional and
58 that outcomes are univariate, focusing on how microbiome relative abundance profiles
59 mediate treatment effects on downstream host phenotypes, like the relationship between
60 fat intake and body mass index [46]. This precludes analysis where outcomes are
61 multidimensional, like metabolic profiles, or where mediators are clinical measurements.

62 Further, with the exception of the mediation package [52], existing implementations are
63 not modular, fixing the estimator used in both the mediator and outcome regressions.
64 This rigidity limits the range of settings in which mediation analysis can be applied.
65 Moreover, it discourages critical evaluation or interactive model building, since model
66 components are difficult (or impossible) to interchange. Unfortunately, even the adaptable
67 mediation package is limited to one-dimensional mediator and outcome variables.

68 To enable more flexible and transparent mediation analysis of microbiome data, we
69 extend the methodology of [29, 52] to high-dimensional mediator and outcome variables.
70 This makes it possible to include sparse regression, logistic-normal multinomial, random
71 forest, hierarchical Bayesian, and hurdle mediator and outcome models within a uniform
72 package interface. Moreover, we have documented the process of inserting custom
73 models into the overall workflow. These models can all be specified using R's formula
74 notation, and components can be easily interchanged according to context. We include
75 operations for summarization, alteration, and uncertainty quantification for the resulting
76 models, encouraging interactive and critical microbiome mediation analysis. We ensure
77 strong ties to the wider microbiome software ecosystem by including methods to convert
78 to and from phyloseq [38] and SummarizedExperiment [21, 34] data structures. Briefly,
79 this research makes the following contributions:

80 • We define a flexible implementation of the generalized mediation analysis
81 framework that applies to multivariate mediators and outcomes, and we develop
82 modules for nonlinear (random forest), high-dimensional (regularized linear model),
83 zero-inflated (hurdle model) and compositional (logistic-normal multinomial)
84 mediator and outcome models.

85 • We define a transparent interface linking widely-used microbiome data structures to
86 mediation analysis routines, including direct and indirect effect estimation, bootstrap
87 inference, synthetic null hypothesis testing, sensitivity analysis, and summary
88 visualization.

89 • We provide detailed case studies of how causal mediation analysis can guide
90 principled data integration in multi-omics settings.

91 Altogether, the multimedia package unlocks the potential for mediation analysis for
92 microbiome studies with complex experimental designs, enabling model-based
93 integration of diverse data types, including microbial community composition,
94 high-throughput molecular profiles, and host health surveys.

95 **RESULTS**

96 Mediation analysis with our package is a three-step process. First, users specify the
97 hypothesized causal relationships between variables with a concise syntax that represents
98 diverse modeling choices (**Model Setup**). Next, they estimate the model parameters and
99 the associated causal effects (**Counterfactual Analysis**). Finally, they can compare
100 synthetic data from alternative models and calibrate inferences using either bootstrap
101 confidence intervals or hypothesis tests (**Evaluating Uncertainty**). This overall workflow
102 is illustrated in Fig. 1B and detailed in the first three sections below. A summary of key
103 package functions is given in Table 1. The last two sections demonstrate the package
104 workflow with case studies on metabolomic data integration and the gut-brain axis.

Stage	Function	Description
Model Setup	mediation_data	Convert phyloseq, SummarizedExperiment, or data.frame objects into S4 classes representing all components of a mediation analysis study.
	multimedia	Define the form of the mediator and outcome models for estimation and effect calculations.
Counterfactual Analysis	direct_effect	Estimate direct effects for each outcome (Equation (8)) using the estimator in Equation (16).
	indirect_overall	Estimate overall indirect effects for each outcome (Equation (7)) using the estimator in Equation (15).
	indirect_pathwise	Estimate indirect effects for each mediator-outcome pair (Equation (9)) using the estimator in (17).
Statistical Inference	bootstrap	Re-estimate models and effects on bootstrap resampled versions of the experiment.
	nullify	Define a version of an existing model with a subset of edges removed from either the mediation or outcome model.
	fdr_summary	Calibrate a false discovery rate controlling selection rule using synthetic null data and Equation (18).
Sensitivity Analysis	sensitivity	Evaluate the sensitivity of estimated overall indirect effects to violations of assumption following Equation (20).
	sensitivity_pathwise	Evaluate the sensitivity of estimated pathwise indirect effects to violations of assumptions following Equation (20).
	sensitivity_perturb	Evaluate the sensitivity of estimated overall indirect effects to violations of assumptions following Equation (21).

TABLE 1 Core functions for problem specification, effect estimation, and uncertainty quantification available through the multimedia package. The complete function reference can be read online at <https://go.wisc.edu/830110> or as a PDF manual at <https://go.wisc.edu/olm213>.

107 **Model Setup** To estimate a mediation model, it is necessary to fully specify the nodes
 108 and edges in Fig. 1A. The nodes are used to divide data sources into categories according
 109 to their role in the causal model. Edges correspond to mediator and outcome models.

110 Rather than requiring specification of all mediation analysis components at once in a
111 single function, multimedia allows users to define separate components and then glue
112 them together to define an overall analysis. The package exports a mediation_data data
113 structure for storing the samples used in model fitting. We use R's S4 system [58] to define
114 separate slots for each node in Fig. 1A. This data structure can be created by applying the
115 accompanying mediation_data function to accompanying R data.frame, phyloseq, and
116 SummarizedExperiment objects. We support tidyverse-style syntax [59], meaning that many
117 variables can be assigned to a node using concise queries. For example, mediation =
118 starts_with("diet") will search the input data for any features starting with the string "diet"
119 and will tag them as mediators in the downstream analysis. This efficient matching
120 simplifies data manipulation in high-dimensional settings, where the user may need to
121 work with hundreds of mediators or outcomes.

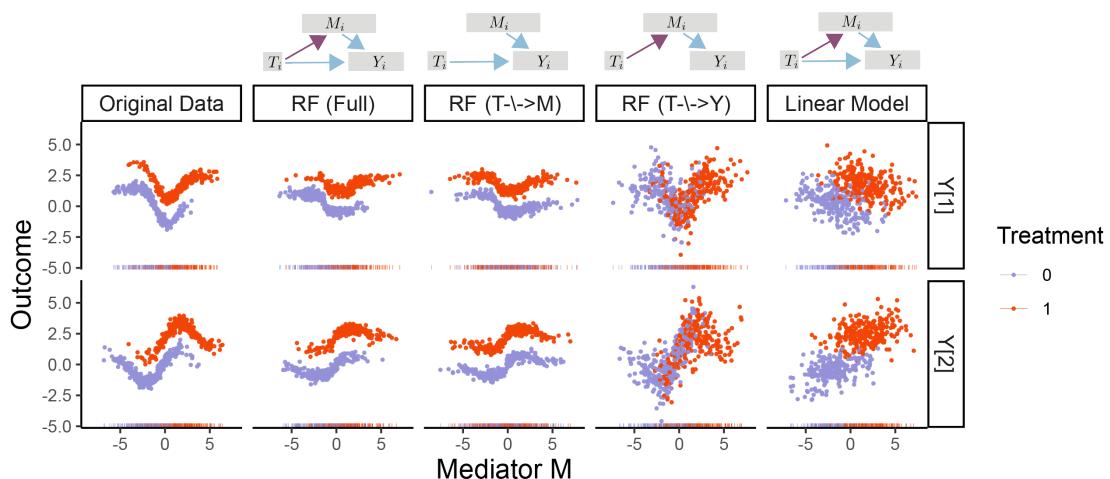
122 Next, we must specify the mediator and outcome models. The package exports
123 wrappers to several regression families, ensuring that, despite their differing underlying
124 methodology, all families can be used interchangeably for estimation, sampling, and
125 prediction in the overall mediation analysis workflow. Specifically, multimedia includes
126 (1) linear regression, which ensures that the package generalizes the earlier mediation
127 package, (2) ℓ^1 and ℓ^2 -regularized linear regression [20, 51], which can be more stable and
128 interpretable in the presence of numerous predictors, (3) random forests [61], which
129 supports detection of nonlinear relationships between variables, and (4) hierarchical
130 Bayesian regression [4], which can be useful for sharing information across related groups.
131 Among the hierarchical Bayesian models, we highlight the available hurdle regression
132 models, which have previously proven useful for modeling zero-inflated microbiome data
133 [63, 64].

134 **Counterfactual Analysis** After using the estimate function to fit models to the
135 observed data, we can reason about potential outcomes under different treatment regimes.
136 This allows us to clarify the relative importance of direct and indirect pathways. For
137 example, to estimate a direct effect ($T \rightarrow Y$), we can block effects that travel along the
138 indirect path ($T \rightarrow M \rightarrow Y$) and measure the changes to the responses that persist.
139 Formally, in the counterfactual language of the Materials and Methods, direct and indirect

140 effects are estimated using predicted mediators $\hat{M}(t)$ and outcomes $\hat{Y}(t', \hat{M}(t))$, where t
141 and t' correspond to mediator and outcome-specific treatment assignments. To this end,
142 multimedia defines a data structure for storing (t, t') within two data.frames whose rows
143 are samples and columns are treatment settings. The predict and sample methods allow
144 users to compute expected values and draw samples according to arbitrary treatment
145 profiles (t, t') . Note that, in addition to the standard treatment vs. control setup,
146 multimedia supports treatment profiles with multiple concurrent treatments and
147 multilevel or continuous treatment.

148 Given a fitted model, multimedia outputs estimated direct and indirect effects. We
149 formally define these effects in Equations (7) - (9). Here, we offer an overview of their
150 motivation and interpretation. Direct effects are the changes we would observe in the
151 outcome if we changed the treatment node in Fig. 1A but held all the mediators fixed.
152 This is the effect that travels along the edge $T \rightarrow Y$, and it measures the extent to which
153 the treatment can influence the outcome while bypassing the mediators. We evaluate
154 different direct effects for each outcome. For example, in the mindfulness case study
155 below, direct effects can be interpreted as microbiome shifts (changes in Y) following the
156 mindfulness training (treatment T) that are not a consequence of changes in participant
157 sleep or diet behaviors (mediators M). Next, we support estimation of two types of
158 indirect effects. Total indirect effects measure the changes in the outcome when setting all
159 mediators to their potential values when the treatment is present, keeping the
160 contribution of the direct path $T \rightarrow Y$ fixed. This aggregates the effect across the full
161 collection of indirect paths. In contrast, pathwise indirect effects measure the changes in
162 outcome when comparing counterfactuals that are equal except at a single mediator. This
163 isolates the indirect effect along a single indirect path. In this case, an indirect effect is
164 reported for each outcome-mediator pair, rather than only for each outcome. Note that the
165 definitions of these effects involve unobservable quantities. Their identification relies on
166 assumptions about the absence of confounding both before and after treatment
167 assignment across configurations of mediators and outcomes, which are detailed in
168 Section “Counterfactual framework” in the Materials and Methods.

169 To increase modeling transparency, multimedia includes functions for interacting with
170 and altering fitted models. Direct and indirect effects can be visualized within the context
171 of the original data. This can serve as a sanity check and guide further model refinements.
172 Outputs are created with `ggplot2` [57], which allows users to customize plot appearance.
173 The case studies include outputs from these helper visualization functions. Further, given
174 a fitted model, we allow users to refit new versions with sets of edges removed. Fig. 2
175 illustrates the main idea with a toy dataset. In the second column, the mediator takes on a
176 larger value under the red treatment, while in the third, the mediators have identical
177 distributions under the two treatments. Similarly, in the fourth, the relationship between
178 the mediator and outcome no longer depends on treatment status. We can also alter the
179 overall model structure, like the switch to a linear outcome model in the last column. If
180 the model quality deteriorates significantly in an altered submodel, then those edges play
181 a critical role. This heuristic is formalized in the synthetic null hypothesis testing strategy
182 discussed below. Finally, we have built the package with extensibility in mind. If
183 functions can be written for estimation and prediction from a new model type, then it can
184 be passed in to multimedia as a custom mediation or outcome model.



185

FIG 2 Samples from altered versions of a mediation analysis model fitted to the toy data at the far left. Each row describes a different outcome variable, and colors represent different treatments. The first column gives the original data, and the remaining columns give simulated data from alternative models specified by the DAGs on the top and column titles.

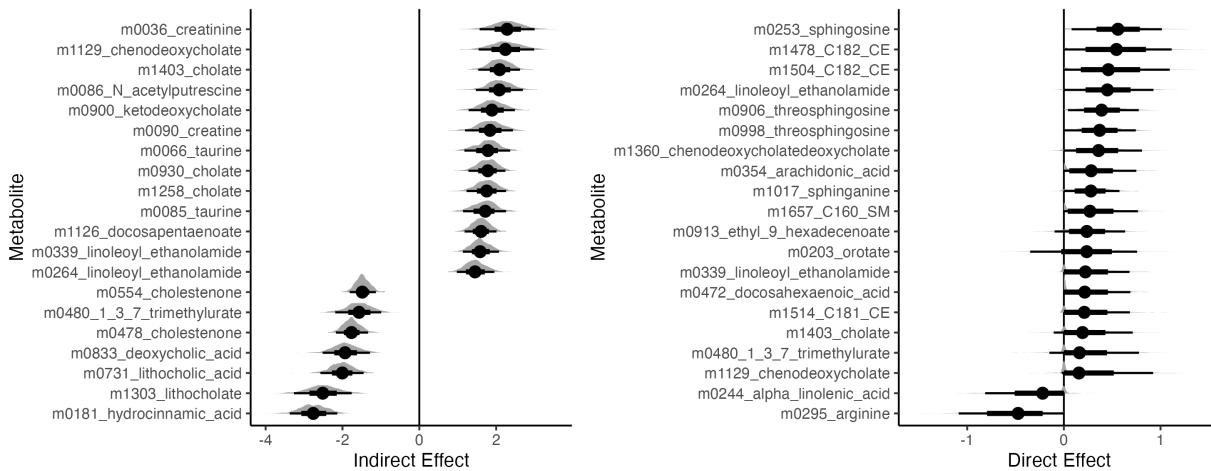
186 **Statistical Inference** The multimedia package offers bootstrap [15, 16, 17] and
187 synthetic null hypothesis testing [35, 48, 47] approaches for quantifying uncertainty in
188 estimates of mediation effects. To bootstrap in the mediation analysis context, we refit the
189 mediator and outcome models to bootstrap resampled versions of the data and compute
190 summary statistics (e.g., direct effect estimates) on each bootstrap sample. The percentiles
191 of the resulting summary statistic distribution defines the bootstrap confidence interval.
192 Importantly, the bootstrap is model agnostic and can apply to any instantiation of the
193 counterfactual mediation analysis framework. The primary assumption made by the
194 bootstrap is that its test statistics vary smoothly to small perturbations of the data. For this
195 reason, it is worthwhile to check that the histogram associated with the full bootstrap
196 distribution is well-behaved before computing confidence intervals. Like the `boot`
197 function in base R, multimedia's bootstrap uses a functional implementation – any
198 function that transforms an experiment and fitted model into a summary statistic can be
199 used as input. For example, it can accept a list of direct and indirect effect estimators, and
200 these will be computed on bootstrap resample.

201 An alternative approach to inference in high-dimensions is based on synthetic null
202 hypothesis testing. In this approach, rather than resampling the original data, the modeler
203 simulates synthetic data from an assumed null distribution. Effect estimates are computed
204 using both the original and the synthetic null data, and the fraction of synthetic null
205 “negative controls” among the strongest observed effects can be used to calibrate a
206 selection rule with false discovery rate control. The alteration functions above can be used
207 to define synthetic nulls; e.g., after zeroing out the edges from either $T \rightarrow M$ or $M \rightarrow Y$,
208 any estimated indirect effects can be treated as negative controls. Two advantages of the
209 synthetic null approach are that (1) it only requires the mediator and outcome models be
210 estimated twice and (2) multiple hypothesis testing is accounted for via the false
211 discovery rate. The key disadvantage of this approach, relative to the bootstrap, is that it
212 requires a realistic synthetic null data generating mechanism. For example, if the synthetic
213 null data are generated from a linear model, but real effects are nonlinear, then the
214 resulting selection sets will not provide valid false discovery rate control.

215 **Microbiome-Metabolome Integration** We next illustrate the multimedia workflow
216 with case studies. Our first concerns Inflammatory Bowel Disease (IBD), which is closely
217 tied to gut microbiome community composition [39]. [18] investigated the relationship
218 between the gut microbiome and metabolome between IBD patients and healthy controls,
219 concluding that microbial community members may be partly responsible for the
220 formation of metabolites that lead to inflammation and IBD. By applying clustering and
221 canonical correlation analysis to untargeted mass spectrometry data, they flagged a
222 number of disease-relevant metabolites. We re-analyze the data using model-based
223 mediation analysis, viewing IBD status – Healthy Control, Ulcerative Colitis (UC), or
224 Crohn’s Disease (CD) – as treatments T , metabolic profile as the outcome Y , and
225 microbiome community composition as a mediator M . The data are downloaded from the
226 microbiome-metabolome curated data repository [40]. We have further filtered to the top
227 173 and 155 most abundant microbes and metabolites, and we apply centered log-ratio
228 (CLR) and $\log(1 + x)$ transformations to each source, respectively. Further details about
229 the experimental cohort and data preparation are available in the Materials and Methods.

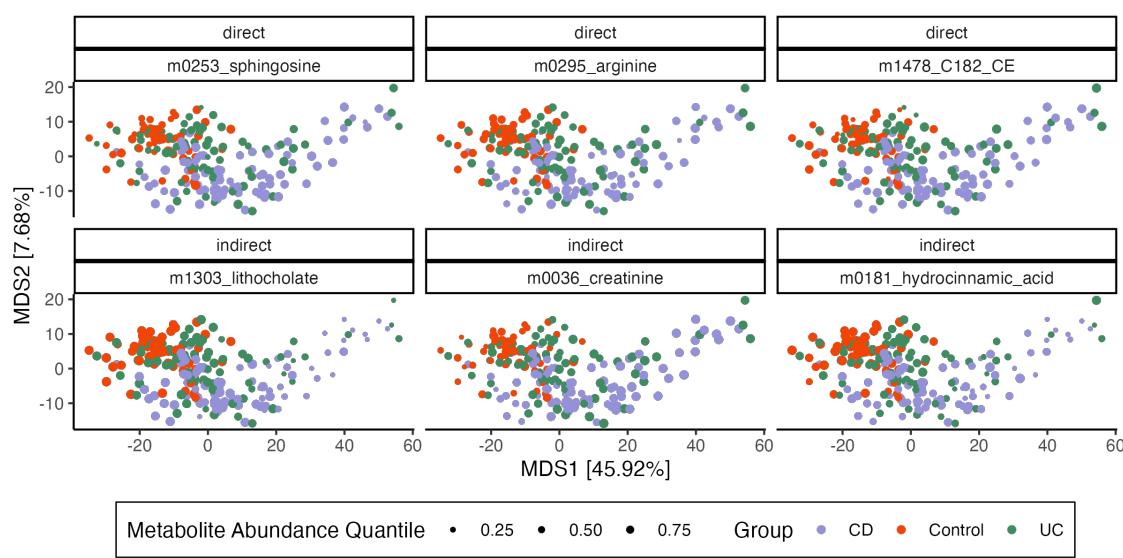
230 We use parallel linear and ℓ^1 -regularized regression for mediator and outcome models,
231 respectively. Note that treatment is the only predictor in the mediator model, which is
232 why no regularization is required. We ran the bootstrap for 1000 iterations, and 95%
233 confidence intervals and bootstrap distributions for the features with the strongest direct
234 and overall indirect effects contrasting CD with healthy controls are shown in Fig. 3.
235 Metabolites with strong indirect effects are influenced by IBD-induced changes in
236 microbiome community composition, while those with large direct effects change due to
237 other unknown factors. Fig. 4 explores a small subset of these overall effects by
238 overlaying metabolite abundances onto multidimensional scaling (MDS) plots derived
239 from microbiome community profiles. Though metabolites with strong direct effects have
240 differential abundance across IBD and healthy groups, only metabolites with indirect
241 effects show variation that is also associated with microbiome composition. We caution
242 that these results are potentially conservative. To ensure stability in high dimensions, the
243 ℓ^1 and ℓ^2 -regularized regression estimators implemented in multimedia are biased
244 towards 0 [66]. This may cause both direct and indirect effects to appear inappropriately

245 weak, and extensions to debiased alternatives like [33] are an important line of future
246 work.



247

FIG 3 95% Bootstrap confidence intervals for metabolites with the strongest estimated direct and overall indirect effects associated with CD. Effects are sorted according to magnitude, and only the top 15 of each type are shown. Within the interval, the inner rectangle captures 66% of the bootstrap samples. In this data, indirect effects are stronger than direct effects.



248

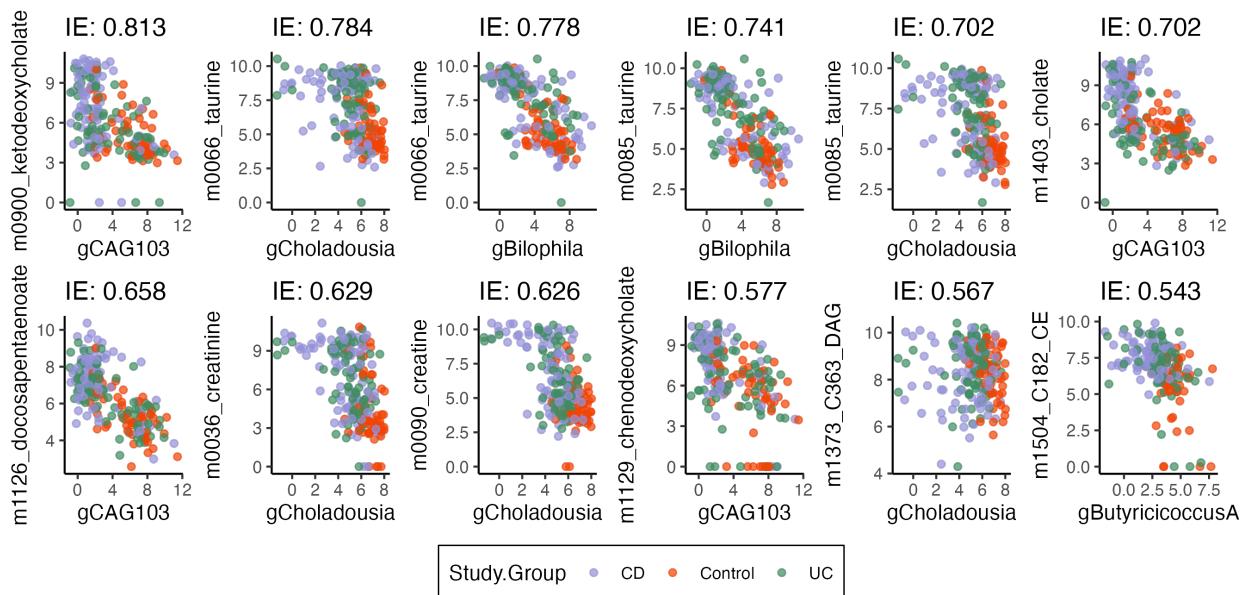
FIG 4 Microbiome composition and metabolite abundance for three metabolites with the strongest direct (top row) and indirect (bottom row) effects. Samples (points) are arranged according to an MDS on CLR transformed

microbiome profiles with Euclidean Distance. Axis titles give $\frac{\lambda_k}{\sum_{k'} \lambda_{k'}}$ from the associated eigenvalues. Each panel corresponds to a metabolite, and point size encodes metabolite abundance, normalized to panel-specific quantiles.

Metabolites with strong indirect effects vary more systematically with microbiome composition – for example, samples with low abundance of lithocholate are localized to the right of the MDS plot.

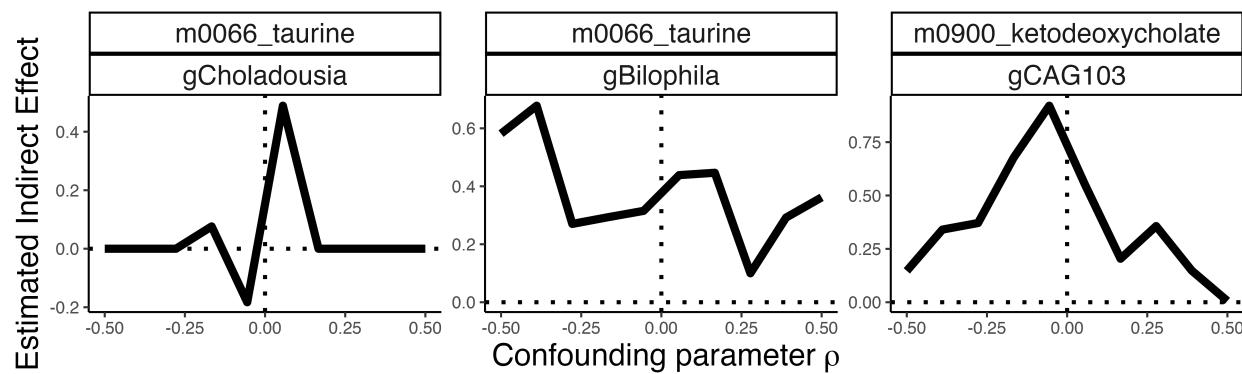
249 Moreover, by analyzing pathwise indirect effects, we can uncover genus-level
250 relationships. A subset of the strongest pathwise indirect effects are shown in Fig. 5.
251 Among the microbe-metabolite pairs with the strongest pathwise indirect effects, we find
252 a relationship between the metabolite taurine and genus *Bilophila* (Fig. 5). High levels of
253 fecal taurine, one of the primary conjugates of primary bile acids [60], has been previously
254 associated with IBD [31, 54]. It has also been found that *Bilophila wadsworthia*, one of the
255 most prominent taurine metabolizers, is often associated with lower levels of taurine [54].
256 Here, our results suggest that higher levels of taurine in IBD patients is mediated in part,
257 by the abundance of *Bilophila*. We also find microbes in the genus *Firmicutes* bacterium
258 CAG:103, are paired with several metabolites: cholate, chenodeoxycholate, and
259 7-ketodeoxycholate (Fig. 5). Cholate and chenodeoxycholate are primary bile acids
260 produced by the host, which are the metabolized by gut bacteria to form secondary bile
261 acids. 7 α -dehydroxylation, is one of the pathways that bacteria metabolize primary bile
262 acids, an intermediate of which is 7-ketodeoxycholate [44]. Recent work has found that
263 bacteria closely related to *Firmicutes* bacterium CAG:103 contain the majority of predicted
264 genes associated with the 7 α -dehydroxylation pathway within metagenomic samples [53].
265 Our results suggest that the increasing abundance of *Firmicutes* bacterium CAG:103, may
266 be driving the decrease in these primary bile acid metabolites and intermediates, which is
267 associated more with the non-IBD controls [50]. Host deficiency in creatine uptake has
268 been associated with poor mucosal health in IBD patients [12]. In our results, we find that
269 there is a strong microbe-metabolite pair between microbes in the genus *Choladousia*
270 (family: *Lachnospiraceae*) and creatine/creatinine levels. *Lachnospiraceae*, (which is often at
271 lower levels in IBD patients), are known to produce short chain fatty acids, that have been
272 shown to help with mucosal health [41] (Fig. 5). Overall, these results suggest that

273 *Choladousia* may utilize creatine/creatinine as a nitrogen source, thus explaining its higher
 274 abundance in the controls.



275

FIG 5 Microbe-metabolite pairs with the strongest pathwise indirect effects from IBD status. Each panel corresponds to one pair, CLR-transformed genus abundance is given on the x -axis, and $\log(1+x)$ -transformed metabolite abundance is given on the y -axis. Effects are sorted from most negative (top left) to most positive (bottom right). For a pathwise indirect effect to be strong, there must be both a shift in microbe abundance due to IBD state ($T \rightarrow M$) and also an association between microbe and metabolite abundance ($M \rightarrow Y$).



276

FIG 6 Sensitivity analysis for three metabolite-genus pairs in the IBD study. The strength of unmeasured confounding between mediators and outcomes is reflected in the x -axis parameter ρ . When the sign of the estimated indirect effect

flips for small values of $|\rho|$, then the estimate is sensitive to violations in the identification assumptions.

277 Our discussion assumed no unmeasured confounding between mediators and
278 outcomes. Sensitivity analysis can clarify whether these conclusions remain true even
279 when assumptions are violated. Using the approach detailed in the Materials and
280 Methods (Equation (19)), we assessed pathwise indirect effects for three metabolite-genus
281 pairs. The results in Figure 6 show the robustness of the taurine-Bilophila and sensitivity
282 of the taurine-Choladousia indirect effect estimates. The ketodeoxycholate-CAG103 effect
283 is intermediate between these extremes, with indirect effects present up to confounding
284 strength $\rho = 0.5$. More generally, multimedia offers functionality for evaluating sensitivity
285 for a range of user-specified pretreatment confounding patterns. Our online vignette
286 provides an additional example of sensitivity analysis for total, rather than pathwise,
287 indirect effects.

288 Note that, since this mediation model is built from a regularized linear regression
289 outcome model, it is more sensitive to linear associations between microbe and metabolite
290 abundances. The official package documentation includes an alternative Bayesian hurdle
291 outcome model, which exhibits higher sensitivity to outcomes with changes in metabolite
292 presence-absence probability. The easy interchangeability of mediation analysis
293 components makes this contrasting analysis simple to implement — it only requires
294 change in a single line of code — and reflects multimedia’s modular design.

295 **Evaluating a Mindfulness Intervention** Studies of the gut-brain axis have yielded
296 experimental evidence for interactions between the gut microbiome and the brain. For
297 example, germ-free mice colonized with the microbiota from human patients with clinical
298 depression develop depression-like symptoms [36, 13], and observational studies have
299 linked particular bacterial taxa to depression [2, 43]. Given this growing body of evidence,
300 a team from the UW-Madison Center for Healthy Minds and the Wisconsin Institute for
301 Discovery profiled microbiome composition, surveyed psychological symptoms, and
302 tracked behavior change among 54 subjects before and after participation in a two-month
303 mindfulness training [9, 23] — see the Methods and Materials for details of the study

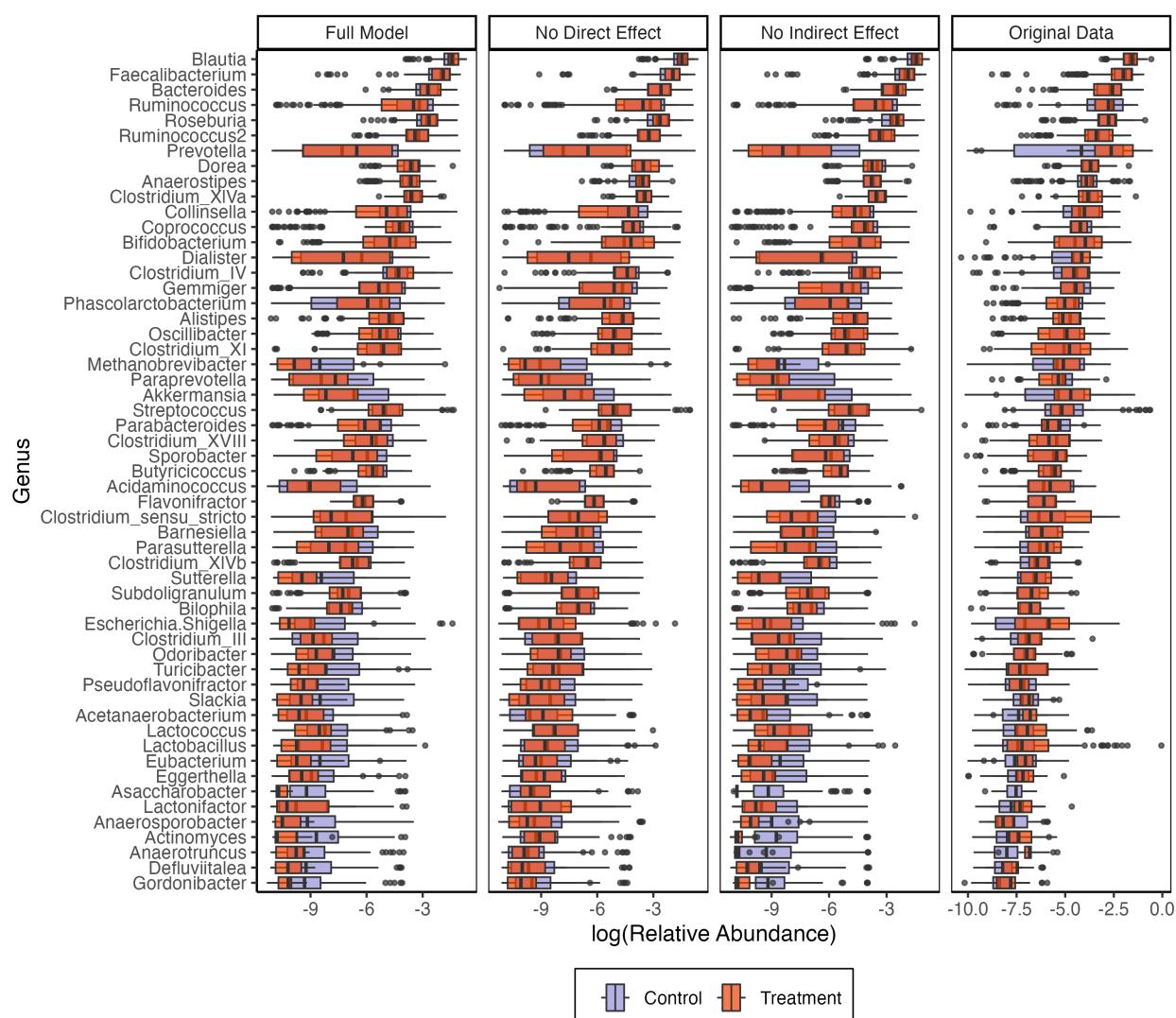
304 design and data processing. This study aimed to determine the nature of the
305 mindfulness-microbiome relationship and to identify potential causal pathways. Such
306 understanding could lead to novel interventions that influence mood through the
307 microbiome. As a first step, we use mediation analysis to understand the mechanisms
308 linking mindfulness and the microbiome in this randomized controlled trial. Our
309 intervention T is the mindfulness training program, the outcome of interest is microbiome
310 composition Y , and mediators M are survey responses related to diet and sleep that are
311 hypothesized to influence the microbiome. To control for subject-to-subject level variation,
312 participant ID is used as a pretreatment variable X .

313 For mediator and outcome models, we apply ridge and logistic-normal multinomial
314 regressions, respectively [25, 62]. We choose a ridge regression model so that intercepts
315 across the large number of participants are shrunk towards their global mean. We choose
316 logistic-normal multinomial regression to jointly model microbiome composition. We also
317 define altered submodels where all direct and indirect effects have been removed.
318 Simulated genera compositions from all models are shown in Fig. 7. In the newly
319 simulated data, subjects have been randomly re-assigned to the treatment and control
320 groups. These submodels can support synthetic null hypothesis testing, since the
321 synthetic null data appear to capture relevant properties of the real microbiome
322 composition profiles, like the average relative abundances across genera and the range of
323 observed abundances within most genera. Their main limitation is that some genera, like
324 *Methanobrevibacter*, *Paraprevotella*, and *Akkermansia*, have much wider ranges than the
325 synthetic data, and Fig. S1 suggests that this is due to a failure to capture the unusually
326 high zero inflation present in these genera.

327 For synthetic null hypothesis testing, models without $T \rightarrow Y$ and $M \rightarrow Y$ associations
328 are used to generate negative controls for direct and total indirect effect estimates,
329 respectively. Fig. 8 shows the estimated effects from real and synthetic data, together with
330 the estimated false discovery rates. At a level $q = 0.15$, five genera are selected as having
331 either significant direct or indirect effects. Fig. S2 provides the analog of Fig. 5 for this
332 case study. Indirect effects are an order of magnitude weaker than direct effects,

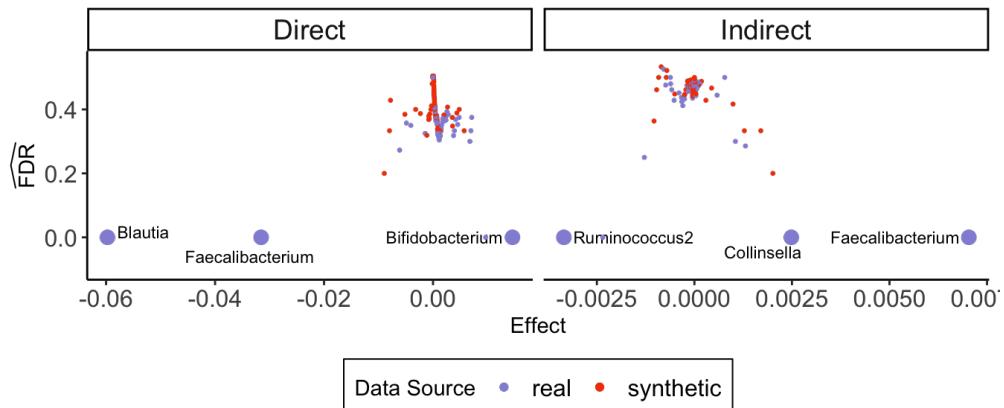
333 suggesting that changes in microbiome composition following the mindfulness
334 intervention cannot simply be attributed to changes in diet or sleep alone.

335 We cannot externally validate these findings, since there is no consensus on the
336 relationship between specific taxonomic groups and common psychiatric disorders (for a
337 description of current sources of controversy, see [1]). However, our findings are broadly
338 consistent with those from a recent large-scale human cohort, which found that most
339 genera belonging to the families *Ruminococcaceae* were depleted in people with more
340 symptoms of depression and that *Bifidobacterium* was an important predictor of
341 depressive symptoms in a random forest classifier [2].



342

FIG 7 Real and synthetic null relative abundances across a subset of genera at different overall relative abundances. Color distinguishes whether the participant belonged to the treatment (mindfulness training) or control groups. The full model (left panel) captures the overall abundances and trajectories present in the real data, though it tends to underestimate the heaviness of the tails. The second and third panels show the analogous models with direct ($T \rightarrow Y$) and indirect ($M \rightarrow Y$) effects removed.



343

FIG 8 Estimated direct and total indirect effects and false discovery rates derived from real and synthetic null data. Each point corresponds to one genus in either real (blue) or simulated (orange) data. The genera selected to control the false discovery rate at $q \leq 0.15$ are drawn larger than the rest. Direct effects are both larger in magnitude and easier to distinguish than their indirect counterparts.

344 **DISCUSSION**

345 Mediation analysis makes it possible to study causal pathways in multimodal
346 microbiome data, and it is an essential tool for discovery of subtle relationships that span
347 multiple host measurements and high-throughput assays. Statistical techniques in this
348 space are needed to support interrogation of varied causal relationships, not simply
349 studies where microbiome profiles serve as mediators and outcomes are one-dimensional,
350 as has been the historical focus of the field.

351 Our case studies illustrate the flexibility and analytical depth supported by
352 multimedia. Unlike traditional microbiome mediation analysis software, the package
353 allows specification of diverse regression components, and the interface simplifies
354 interpretation of effect types and model criticism. In this way, multimedia encourages
355 interactive, rigorous mediation analysis for microbiome data. It is written to interface
356 closely with the existing microbiome software ecosystem, and since analysis are carried
357 out in reproducible code notebooks, it supports scientific transparency.

358 We note that multimedia is related to other recent approaches to transparent
359 microbiome mediation analysis, most notably MiMed [32], which provides a
360 self-contained graphical interface to support this task. The MiMed interface is available as
361 a web server and a standalone Shiny App [8]. MiMed and multimedia make recent
362 statistical advances in microbiome mediation analysis more accessible and offer advanced
363 customizability. Further, both software packages implement the generalized causal
364 mediation analysis framework [29]; the effect estimates and confidence intervals output
365 by the packages share the same conceptual foundation. Nonetheless, there are critical
366 distinctions. For example, MiMed is accessible to users with no programming experience,
367 while multimedia requires familiarity with R software. Limiting multimedia to those with
368 programming experience allows for a more modular design, with easily interchangeable
369 and extensible code components. In particular, multimedia offers a more thorough
370 instantiation of the generalized mediation analysis framework. MiMed's implementation
371 requires linear mediator and outcome models, and the outcome models must have
372 univariate responses. In contrast, multimedia offers a broader range of model types (e.g.,
373 regularized linear or logistic-normal multinomial) that fit within the framework of [29],
374 and both mediator and outcome models can be multivariate. As seen in both case studies,
375 this additional flexibility enables the integration of more complex multivariate mediator
376 and outcome data.

377 We have created a gallery of example notebooks that use the multimedia package.
378 These include alternative analyses of the IBD and mindfulness data explored here. We
379 invite users to contribute further examples, and we plan to structure further
380 developments according to community needs.

381 MATERIALS AND METHODS

382 **Counterfactual framework** Let $T \in \mathcal{T}$ be the treatment, $M \in \mathcal{M}$ be the mediators of
383 interest, $Y \in \mathcal{Y}$ be the outcome, and $X \in \mathcal{X}$ be the pretreatment covariates, where
384 $\mathcal{T} \subset \mathbb{R}$, $\mathcal{M} \subset \mathbb{R}^K$, $\mathcal{Y} \subset \mathbb{R}^J$, and $\mathcal{X} \subset \mathbb{R}^P$ represent the supports of T , M , Y , and X . For
385 simplicity, we assume $\mathcal{T} = \{0, 1\}$ and T is a binary indicator of either treatment ($T = 1$) or
386 control ($T = 0$), though multimedia supports categorical, continuous, and multi-treatment
387 cases.

388 We first consider the total indirect effect through all mediators and the direct effect
389 through other mechanisms. Applying a counterfactual perspective, we define $M(t)$ as the
390 potential values of the mediators under $T = t$, and $Y(t, m)$ as the potential outcome under
391 $T = t$ and $M = m$. Therefore, we can use $Y(t, M(t'))$ to denote the potential outcome
392 under the treatment status t when the mediators are set to be the potential values under t' .
393 In reality, we can only ever observe the case where t and t' are the same, i.e., $Y(1, M(1))$ in
394 the treated group and $Y(0, M(0))$ in the control group – but conceptually t and t' can be
395 different. For example, $Y(0, M(1))$ represents the potential outcome when only the
396 mediators are intervened upon and $Y(1, M(0))$ represents the potential outcome when we
397 make interventions while keeping the mediators at their values under the control. For
398 notational simplicity, we omit the dependence of M and Y on X .

399 We adopt the definitions in [29], where the indirect effect is defined as

$$400 \quad \delta(t) = \mathbb{E}\{Y(t, M(1)) - Y(t, M(0))\} \quad (1)$$

401 and the direct effect is defined as

$$402 \quad \zeta(t') = \mathbb{E}\{Y(1, M(t')) - Y(0, M(t'))\} \quad (2)$$

403 for $t, t' \in \{0, 1\}$. It has been shown in [27] that both effects are nonparametrically
 404 identifiable under the sequential ignorability assumption:

405 $\{Y(t', m), M(t)\} \perp\!\!\!\perp T \mid X = x,$ (3)

406 $Y(t', m) \perp\!\!\!\perp M(t) \mid T = t, X = x,$ (4)

407 $\mathbb{P}(T = t \mid X = x) > 0,$ (5)

408 $p_{M(t)}(m \mid T = t, X = x) > 0,$ (6)

409 for any t, t', m, x .

410 Without additional assumptions, $\delta(t)$ and $\zeta(t)$ may vary with t . To provide a
 411 consistent and interpretable summary, we measure the total indirect effect and direct
 412 effect defined as follows,

413 $\bar{\delta} = \frac{1}{2} \sum_{t=0}^1 \mathbb{E}\{Y(t, M(1)) - Y(t, M(0))\}$ (7)

414 $\bar{\zeta} = \frac{1}{2} \sum_{t'=0}^1 \mathbb{E}\{Y(1, M(t')) - Y(0, M(t'))\}.$ (8)

415 Large magnitudes of $\bar{\delta}$ and $\bar{\zeta}$ suggest strong indirect and direct effects.

416 Moreover, we can also examine the pathwise indirect effect through each mediator. We
 417 assume there is no causal relationship between the mediators $M = (M_1, \dots, M_K)$. When
 418 interest lies in the mediator M_k , we emphasize the dependence of the potential outcome
 419 on both M_k and the remaining mediators M_{-k} by writing $Y(t, m, w)$, explicitly
 420 distinguishing $M_k = m$ and $M_{-k} = w$. To evaluate the pathwise indirect effect through
 421 M_k , we consider different treatment assignments for M_k and M_{-k} . For example,
 422 $Y(t, M_k(t'), M_{-k}(t''))$ represents the potential outcome under the treatment status t when
 423 M_k is set to be its potential value under t' and $M_{-k}(t'')$ are set to be their potential values
 424 under t'' . Using these notations, we can define the pathwise indirect effect through M_k as:

425 $\bar{\omega}_k = \frac{1}{2} \sum_{t'=0}^1 \mathbb{E}\{Y(t', M_k(1), M_{-k}(t')) - Y(t', M_k(0), M_{-k}(t'))\}.$ (9)

426 This quantity has been proven to be nonparametrically identifiable under a generalized
 427 version of sequential ignorability assumption [30]:

$$428 \quad \{Y(t, m, w), M_k(t'), M_{-k}(t'')\} \perp\!\!\!\perp T \mid X = x, \quad (10)$$

$$429 \quad Y(t', m, M_{-k}(t')) \perp\!\!\!\perp M_k \mid T = t, X = x, \quad (11)$$

$$430 \quad Y(t', M_k(t'), w) \perp\!\!\!\perp M_{-k} \mid T = t, X = x, \quad (12)$$

$$431 \quad \mathbb{P}(T = t \mid X = x) > 0, \quad (13)$$

$$432 \quad p_{(M_k t, M_{-k}(t))}(m, w \mid T = t, X = x) > 0, \quad (14)$$

433 for any possible t, t', t'', m, w, x .

434 **Mediator and outcome model definition** Multimedia estimates the population
 435 quantities $\bar{\delta}, \bar{\zeta}$, and $\bar{\omega}$ by replacing the expectations in Equations (7) - (9) with the average
 436 of fitted values under the estimated mediator and outcome models:

$$437 \quad \hat{\delta} = \frac{1}{2} \sum_{t=0}^1 \sum_{i=1}^n \hat{Y}_i(t, \hat{M}_i(1)) - \hat{Y}_i(t, \hat{M}_i(0)), \quad (15)$$

$$438 \quad \hat{\zeta} = \frac{1}{2} \sum_{t'=0}^1 \sum_{i=1}^n \hat{Y}_i(1, \hat{M}_i(t')) - \hat{Y}_i(0, \hat{M}_i(t')), \quad (16)$$

$$439 \quad \hat{\omega} = \frac{1}{2} \sum_{t'=0}^1 \sum_{i=1}^n \hat{Y}_i(t', M_{ik}(1), M_{i,-k}(t')) - \hat{Y}_i(t', M_{ik}(0), M_{i,-k}(t')). \quad (17)$$

440 A benefit of applying this generalized causal mediation analysis framework is that
 441 various prediction models can be used to obtain estimates $\hat{M}(t, x)$ and $\hat{Y}(t, m, x)$ of
 442 $M(t, x)$ and $Y(t, m, x)$, respectively. This flexibility is especially valuable in the
 443 microbiome context, where both Y and M may be multivariate and where observations
 444 may be zero-inflated, high-dimensional, compositional, or highly skewed. For example,
 445 the mediators and outcomes may represent survey responses, community taxonomic
 446 compositions, or metabolomic profiles. The approach of the multimedia package is to
 447 define an interface where prediction methods that have been designed to address these
 448 complexities can be easily swapped in and out. Therefore, advances in prediction of
 449 microbiome data can be easily incorporated to improve causal effect estimation through
 450 higher-quality mediator and outcome models.

451 Specifically, the estimates in Formula (15) - (17) allow these prediction algorithms to be
 452 used as building blocks in support of estimating direct and indirect causal mediation
 453 effects. For example, on its own, random forests are only useful for prediction. But
 454 through $\hat{M}(t, x)$ or $\hat{Y}(t, m, x)$, they can provide plug-in estimates for causal analysis. We
 455 next provide details of the specific estimates used in our case studies, though we again
 456 emphasize the broader generality of the underlying implementation. In the Section
 457 "Microbiome-Metabolome Integration," we fit a separate sparse linear regression model to
 458 each metabolite with all CLR-transformed microbe abundances as inputs. Letting Y_{ij}
 459 represent the peak intensity for metabolite j in sample i and M_i the relative abundances of
 460 microbes in sample i , we estimate:

$$461 \quad \hat{\beta}_j := \arg \min_{\beta_j \in \mathbb{R}^K} \sum_{i=1}^n \left(\log(1 + Y_{ij}) - \text{CLR}(M_i)^T \beta_j \right)^2 + \lambda \|\beta_j\|_1$$

462 In this case, the outcome model $\hat{Y}(t, m, x)$ is a collection of metabolite-specific estimates
 463 $\hat{\beta}_1, \dots, \hat{\beta}_J$ fit simultaneously. Note that the regularization parameter λ is fixed across all
 464 responses, rather than adaptive to metabolite j . The package supports linear, elastic net
 465 [19], random forest [61], hurdle [3], and hierarchical (including hurdle) models [4] for
 466 either mediator $\hat{M}(t, x)$ or outcome $\hat{Y}(t, m, x)$ models similarly. Alternatively, instead of a
 467 collection of univariate models, a multivariate regression model can be fit to relate
 468 covariates with the high-dimensional response. This is the approach used in the Section
 469 "Evaluating a Mindfulness Intervention," where a single logistic-normal multinomial
 470 model [62] is applied to model community composition as a function of treatment T_i ,
 471 survey-derived mediators M_i , and pretreatment features X_i . In this case, the outcome
 472 model is a single, multivariate model estimated using the maximum a posteriori
 473 parameter \hat{B} from a logistic-normal multinomial model with a normal prior:

$$474 \quad \hat{B} := \arg \max_{B \in \mathbb{R}^{(J-1) \times (1+K+P)}} \left[\prod_{i=1}^N \text{Mult} \left(\sum_j Y_{ij}, \varphi^{-1}(B Z_i) \right) \right] p(B).$$

$$475 \quad Z_i := [T_i | M_i | X_i]^\top$$

$$476 \quad p(B) := \prod_{kp} \mathcal{N}(b_{kp} | 0, \sigma^2)$$

477 where $\varphi^{-1} : \mathbb{R}^{J-1} \rightarrow \mathbb{R}^J$ is the mapping

478
$$\varphi^{-1}(\mu) = \left(\frac{\exp(\mu_1)}{1 + \sum_j \exp(\mu_j)}, \dots, \frac{\exp(\mu_{J-1})}{1 + \sum_j \exp(\mu_j)}, \frac{1}{1 + \sum_j \exp(\mu_j)} \right).$$

479 Note that all bootstrap, synthetic null testing, and sensitivity analysis functions are
 480 designed to operate on an abstract mediation_model S4 class. In this way, multimedia is
 481 easily extensible, and its causal mediation framework can be applied to various models,
 482 including those supplied by a user, as long as they satisfy the S4 class requirements.

483 **Bootstrap and synthetic null testing** Form a bootstrap resample of the data

484 $\mathcal{D}^* = (\mathbf{X}^*, \mathbf{M}^*, \mathbf{T}^*, \mathbf{Y}^*)$ by independently resampling the n observations with replacement.
 485 A summary statistic computed on the b^{th} resampled dataset is denoted by $\hat{\theta}^{*b}(\mathcal{D}^*)$. For
 486 brevity, we will omit the data arguments. For example, $\hat{\theta}^{*b}$ could correspond to an
 487 estimator of $\bar{\delta}$ or $\bar{\zeta}$ derived from mediator and outcome models learned from \mathcal{D}^* . Repeat
 488 this process B times and refit $\hat{M}(t, x)$, $\hat{Y}(t, m, x)$ and the provided summary statistic $\hat{\theta}$ for
 489 each of the bootstrapped datasets, yielding the bootstrap distribution $(\hat{\theta}^{*b})_{b=1}^B$. Let $q_{\frac{\alpha}{2}}$
 490 and $q_{1-\frac{\alpha}{2}}$ represent the $\frac{\alpha}{2}$ and $1 - \frac{\alpha}{2}$ quantiles of this set. Then $[q_{\frac{\alpha}{2}}, q_{1-\frac{\alpha}{2}}]$ forms an α -level
 491 bootstrap confidence interval for $\hat{\theta}$.

492 For synthetic null hypothesis testing, estimate mediator and outcome models

493 $\hat{M}_{\text{sub}}(t, x)$, $\hat{Y}_{\text{sub}}(t, m, x)$ using only a subset of edges within the DAG. This defines the
 494 null data generating mechanism. Using the same pretreatment and treatment profiles
 495 X_i, T_i from the original experiment, simulate synthetic null data $\mathbf{M}^{*0}, \mathbf{Y}^{*0}$ from the
 496 submodel. For D taxa of interest, compute summary statistics $(\hat{\theta}_d^1)_{d=1}^D$ and $(\hat{\theta}_d^0)_{d=1}^D$ based
 497 on the original and the synthetic null data, respectively. For example, $\hat{\theta}_d^1$ could estimate
 498 taxon d 's direct effect $\hat{\delta}_d$ using the original data, and $\hat{\theta}_d^0$ could be the corresponding
 499 estimate derived from synthetic null data. Next, for any threshold t , we estimate the false
 500 discovery rate using

501
$$\widehat{\text{FDR}}(t) := \frac{\#\{d : |\hat{\theta}_d^0| > t\}}{\#\{d : |\hat{\theta}_d^0| > t\} + \#\{d : |\hat{\theta}_d^1| > t\}}. \quad (18)$$

502 The numerator counts the number of estimates from the synthetic null data that are larger
 503 than t , and the denominator counts the number of discoveries across either simulated or
 504 real data at that threshold. Given a desired FDR level q , the selection rule is defined by
 505 selecting $t^* = \min \left\{ t : \widehat{\text{FDR}}(t) \leq q \right\}$ and selecting all features d such that $|\hat{\theta}_d^1| > t^*$. Under
 506 the null samples generated by $\hat{M}_{\text{sub}}(t, x), \hat{Y}_{\text{sub}}(t, m, x)$, this rule controls the false
 507 discovery rate below level q , regardless of the choice of estimator $\hat{\theta}_d$, though better
 508 estimators lead to improved power.

509 **Sensitivity analysis** Mediation analysis relies on untestable identification
 510 assumptions, detailed in the “Counterfactual framework” section above. While these
 511 assumptions cannot be directly tested, the consequences of their violation can be explored
 512 through sensitivity analysis. We next review the sensitivity analysis methods available in
 513 the multimedia package, which are motivated by the more general methodology [28].
 514 Sensitivity is evaluated by simulating counterfactual mediator and outcome variables
 515 with correlated noise terms, representing the situation where the assumption of no
 516 pretreatment confounding is violated. Specifically, we sample:

$$517 \quad Y^*(t, m) = \hat{Y}(t, m) + \epsilon^y \quad \text{and} \quad M^*(t) = \hat{M}(t) + \epsilon^m. \quad (19)$$

518 where $\text{Cov}(\epsilon^m, \epsilon^y) \neq \mathbf{0}$. Given this data, we re-estimate either the total or pathwise
 519 indirect effects. This helps identify cases where the estimated indirect effects become zero
 520 or change signs when confounding is present compared to when $\text{Cov}(\epsilon^m, \epsilon^y) = \mathbf{0}$.

521 Specifically, the package offers tools for simulating and assessing effects under
 522 covariance structures for (ϵ^m, ϵ^y) that represent pretreatment confounding. For example,
 523 users can generate data from Equation (19) with:

$$524 \quad \Sigma(\rho, G) := \begin{pmatrix} \text{diag}(\hat{\sigma}_M^2) & \rho \hat{\sigma}_M \hat{\sigma}_Y^\top \odot \mathbf{1}_G \\ \rho \hat{\sigma}_Y \hat{\sigma}_M^\top \odot \mathbf{1}_G^\top & \text{diag}(\hat{\sigma}_Y^2) \end{pmatrix} \quad (20)$$

525 $\hat{\sigma}_M^2 \in \mathbb{R}_+^K$ and $\hat{\sigma}_Y^2 \in \mathbb{R}_+^J$ represent the estimated noise variances of mediators and
 526 outcomes, and $\mathbf{1}_G \in \{0, 1\}^{K \times J}$ is an indicator over mediator-outcome pairs G on which to
 527 evaluate sensitivity. When $\rho \neq 0$, unmeasured confounding is present between these

528 pairs. We recommend keeping G small, because confounding patterns induced by large G
529 are less plausible. For example, it is unlikely that a single mediator can be confounded
530 with all outcomes, while all other mediators remain unconfounded. By adjusting ρ and G ,
531 package users can evaluate sensitivity to various patterns of pretreatment confounding.

532 The package also offers a more general form of sensitivity analysis, where users can
533 supply an arbitrary matrix Δ and simulate noise from:

534
$$\Sigma(\Delta, \nu) = \text{diag}\left(\left[\hat{\sigma}_M^2, \hat{\sigma}_Y^2\right]\right) + \nu\Delta. \quad (21)$$

535 For example, this allows the evaluation of sensitivity with varying confounding strengths
536 across mediator-outcome pairs. It can also be used to assess the effect of correlation across
537 mediators. Note that when using either Equations (20) and (21), we can simulate repeated
538 datasets with the assumed covariance structure and refit models to estimate effects on
539 each simulated dataset. This allows us to report the standard error of the estimated effects
540 across choices of sensitivity analysis hyperparameters, helping to ensure that the
541 sensitivity analysis itself is reliable.

542 **Microbiome-metabolome data processing** We obtained the data from the
543 microbiome-metagenome curated database. Details of the library preparation and
544 bioinformatics can be found in [42]. Briefly, metagenomic sequencing was done on an
545 Illumina HiSeq 2500, and metabolites were profiled using LC-MS in non-targeted mode.
546 For metagenomics, fastp was applied to raw reads for quality filtering, adapter trimming,
547 and deduplication. bowtie2 was used to remove human reads by aligning to the hg38.
548 kraken2.1.1 and braken 2.8 were used to estimate taxonomic relative abundances.

549 A total of 11,720 taxa and 8,848 metabolites are present in the public data. We applied
550 a centered log-ratio transformation to the microbiome relative abundances profiles:
551
$$\text{CLR}(x_1, \dots, x_D) := \left(\log(x_d) - \frac{1}{D} \sum_{d'} \log x_{d'} \right)_{d=1}^D$$
. We then filtered to taxa whose average
552 transformed abundance was larger than 3, which reduced the number of taxa to 173. We
553 kept only metabolites with confident HMDB assignments, applied a $\log(1 + x)$
554 transformation, and further filtered to those whose average transformed intensity was
555 larger than 6. This resulted in 155 well-annotated and generally abundant metabolites.

556 **Mindfulness study design and processing** The initial Center for Healthy Minds study
557 recruited 114 police officers participants across two cohorts. Microbiome samples were
558 obtained only from participants in the second cohort ($n = 54$), who were randomly
559 assigned to mindfulness training or waitlist control with 27 cases each. We removed four
560 participants due to incomplete responses – three lacked microbiome data, and one had
561 missing mediators. Our analysis considers a mindfulness training treatment group of size
562 $n = 24$ and a waitlist control group of size $n = 26$. Participants in the mindfulness group
563 took part in an 8-week, 18-hour mindfulness training developed specifically for their
564 career and inspired by Mindfulness-Based Stress Reduction and Mindfulness-Based
565 Resilience Training [9]. Weekly two-hour classes (and a four-hour class in week 7)
566 consisted of didactic instruction, embodied mindfulness practices, and individual and
567 group-based inquiry (for full intervention details, see [24]). Microbiota and behavioral
568 survey data were gathered at 2 - 3 timepoints for each participant — samples in the
569 treatment group provided data before, within two weeks following, and, in a subset of
570 cases, four months after the 8-week intervention, resulting in 118 samples total.

571 Gut microbiome composition was assessed using 16S rRNA gene sequencing, and
572 participants completed surveys, as reported previously [24]. One to four technical
573 replicates (on average, 2.6) were sequenced for each 16S rRNA gene sample, resulting in
574 307 microbiome composition profiles in total. Amplicon Sequence Variants (ASV) were
575 called using the DADA2 pipeline [5]. The first ten base pairs were removed, and all reads
576 were truncated to a length of 250. Otherwise, we set all pipeline hyperparameters to their
577 defaults. Since the total number of participants is relatively small, we chose to concentrate
578 on the core microbiome [45]. To this end, we assigned taxonomic identity to each ASV
579 using the RDP database and aggregated all counts to the genus level [11]. We removed
580 any genera that did not appear in at least 40% of the samples, thereby generating a core
581 microbiome. On average, this preserved 98.7% of the reads within each sample. After
582 filtering to the core microbiome, sequences for 55 genera remained. To define mediators,
583 we manually selected four variables from the National Cancer Institute Quick Food Scan
584 and self-reported questionnaires on fatigue and sleep disturbance scores based on the
585 Patient-Reported Outcomes Measurement Information System subscale [7]. We

586 concentrated on these questions because changes in both diet and sleep have previously
587 been associated with mindfulness interventions and the microbiome [22, 14, 55].

588 In detail, we consider four mediators – two diet mediators from the National Cancer
589 Institute Quick Food Scan and two stress variables from the Patient-Reported Outcomes
590 Measurement Information System (43-item inventory; version 2.0) following [7]. They are
591 all calculated from questionnaires. The two diet variables indicate the frequency that
592 participants eat cold cereal and fruit (not juices), respectively, in the past 12 months
593 (Supplementary Table 1). The two stress variables, fatigue and sleep disturbance, profile
594 the stress of a participant in the past 7 days (Supplementary Table 2).

595 **ACKNOWLEDGMENTS**

596 **DATA AVAILABILITY STATEMENT**

597 The multimedia package is available at <https://go.wisc.edu/830110>. Notebooks to
598 reproduce the case studies are available at <https://go.wisc.edu/787g25>. These notebooks
599 link to the original versions of both case study datasets and include all preprocessing code.
600 The package manual can be read at <https://go.wisc.edu/olm213>.

601 **FUNDING**

602 K.S. and J.H. were funded by award R01GM152744 from the National Institute of
603 General Medical Sciences of the National Institutes of Health.

604 **CONFLICTS OF INTEREST**

605 The authors declare no conflict of interest

606 **References**

607 [1] Thomaz FS Bastiaanssen, Sofia Cussotto, Marcus J Claesson, Gerard Clarke,
608 Timothy G Dinan, and John F Cryan. Gutted! unraveling the role of the microbiome
609 in major depressive disorder. *Harvard Review of Psychiatry*, 28(1):26, 2020.

610 [2] Jos A Bosch, Max Nieuwdorp, Aeilko H Zwinderman, Mélanie Deschaseaux, Djawad
611 Radjabzadeh, Robert Kraaij, Mark Davids, Susanne R de Rooij, and Anja Lok. The
612 gut microbiota and depressive symptoms across ethnic groups. *Nature
613 Communications*, 13(1):7129, 2022.

614 [3] Paul-Christian Bürkner. Advanced bayesian multilevel modeling with the r package
615 brms. *arXiv preprint arXiv:1705.11123*, 2017.

616 [4] Paul-Christian Bürkner. brms: An R package for bayesian multilevel models using
617 stan. *Journal of Statistical Software*, 080:1–28, 2017.

618 [5] Benjamin J Callahan, Paul J McMurdie, Michael J Rosen, Andrew W Han, Amy Jo A
619 Johnson, and Susan P Holmes. Dada2: High-resolution sample inference from
620 illumina amplicon data. *Nature Methods*, 13(7):581–583, 2016.

621 [6] Kyle M. Carter, Meng Lu, Hongmei Jiang, and Lingling An. An information-based
622 approach for mediation analysis on high-dimensional metagenomic data. *Frontiers in
623 Genetics*, 11, 2020.

624 [7] David Cella, William Riley, Arthur Stone, Nan Rothrock, Bryce Reeve, Susan Yount,
625 Dagmar Amtmann, Rita Bode, Daniel Buysse, Seung Choi, et al. The patient-reported
626 outcomes measurement information system (promis) developed and tested its first
627 wave of adult self-reported health outcome item banks: 2005–2008. *Journal of clinical
628 epidemiology*, 63(11):1179–1194, 2010.

629 [8] Winston Chang, Joe Cheng, JJ Allaire, Carson Sievert, Barret Schloerke, Yihui Xie, Jeff
630 Allen, Jonathan McPherson, Alan Dipert, and Barbara Borges. *shiny: Web Application
631 Framework for R*, 2024. R package version 1.9.1.9000,
632 <https://github.com/rstudio/shiny>.

633 [9] Michael S Christopher, Richard J Goerling, Brant S Rogers, Matthew Hunsinger, Greg
634 Baron, Aaron L Bergman, and David T Zava. A pilot study evaluating the
635 effectiveness of a mindfulness-based intervention on cortisol awakening response
636 and health outcomes among law enforcement officers. *Journal of police and criminal*
637 *psychology*, 31:15–28, 2016.

638 [10] Dylan Clark-Boucher, Xiang Zhou, Jiacong Du, Yongmei Liu, Belinda L Needham,
639 Jennifer A. Smith, and Bhramar Mukherjee. Methods for mediation analysis with
640 high-dimensional dna methylation data: Possible choices and comparisons. *PLOS*
641 *Genetics*, 19, 2023.

642 [11] James R Cole, Qiong Wang, Jordan A Fish, Benli Chai, Donna M McGarrell, Yanni
643 Sun, C Titus Brown, Andrea Porras-Alfaro, Cheryl R Kuske, and James M Tiedje.
644 Ribosomal database project: data and tools for high throughput rrna analysis. *Nucleic*
645 *acids research*, 42(D1):D633–D642, 2014.

646 [12] Sean P. Colgan, Ruth X. Wang, Caroline H.T. Hall, Geetha Bhagavatula, and J. Scott
647 Lee. Revisiting the “starved gut” hypothesis in inflammatory bowel disease.
648 *Immunometabolism*, 5(1):e0016, January 2023.

649 [13] John F Cryan and Sarkis K Mazmanian. Microbiota–brain axis: Context and causality.
650 *Science*, 376(6596):938–939, 2022.

651 [14] Lawrence A David, Corinne F Maurice, Rachel N Carmody, David B Gootenberg,
652 Julie E Button, Benjamin E Wolfe, Alisha V Ling, A Sloan Devlin, Yug Varma,
653 Michael A Fischbach, et al. Diet rapidly and reproducibly alters the human gut
654 microbiome. *Nature*, 505(7484):559–563, 2014.

655 [15] Bradley Efron. Bootstrap methods: Another look at the jackknife. *Annals of Statistics*,
656 7:1–26, 1979.

657 [16] Bradley Efron. The jackknife, the bootstrap, and other resampling plans. *SIAM*, 38,
658 1987.

659 [17] Bradley Efron and Robert Tibshirani. *An Introduction to the Bootstrap*. Chapman &
660 Hall/CRC Monographs on Statistics and Applied Probability. Chapman &
661 Hall/CRC, Philadelphia, PA, May 1994.

662 [18] Eric A. Franzosa, Alexandra Sirota-Madi, Julián Ávila-Pacheco, Nadine Fornelos,
663 Henry J. Haiser, Stefan Reinker, Tommi Vatanen, A. Brantley Hall, FASA
664 Himel Mallick, PhD, Lauren J. McIver, Jenny S. Sauk, Robin G. Wilson, Betsy W.
665 Stevens, Justin Scott, Kerry A. Pierce, Amy Anderson Deik, Kevin Bullock, Floris
666 Imhann, Jeffrey A. Porter, Alexandra Zhernakova, Jingyuan Fu, Rinse K. Weersma,
667 Cisca Wijmenga, Clary B. Clish, Hera Vlamakis, Curtis Huttenhower, and Ramnik J.
668 Xavier. Gut microbiome structure and metabolic activity in inflammatory bowel
669 disease. *Nature microbiology*, 4:293 – 305, 2018.

670 [19] Jerome Friedman, Trevor Hastie, Rob Tibshirani, Balasubramanian Narasimhan,
671 Kenneth Tay, Noah Simon, Junyang Qian, and James Yang. glmnet: Lasso and
672 elastic-net regularized generalized linear models. Astrophysics Source Code Library,
673 record ascl:2308.011, August 2023.

674 [20] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Regularization paths for
675 generalized linear models via coordinate descent. *Journal of Statistical Software*, 33(1),
676 2010.

677 [21] Robert Gentleman, Vincent J. Carey, Douglas M. Bates, Benjamin M. Bolstad, Marcel
678 Dettling, Sandrine Dudoit, Byron Ellis, Laurent Gautier, Yongchao Ge, Jeff Gentry,
679 Kurt Hornik, Torsten Hothorn, Wolfgang Huber, S. Iacus, Rafael A. Irizarry, Friedrich
680 Leisch, Cheng Li, Martin Maechler, Anthony J. Rossini, Günther Sawitzki, Colin
681 Smith, Gordon Smyth, Luke Tierney, Jean YH Yang, and Jianhua Zhang.
682 Bioconductor: open software development for computational biology and
683 bioinformatics. *Genome Biology*, 5:R80 – R80, 2004.

684 [22] Desleigh Gilbert and Jennifer Waltz. Mindfulness and health behaviors. *Mindfulness*,
685 1(4):227–234, 2010.

686 [23] Daniel W. Grupe, Jonah L. Stoller, Carmen Alonso, C. R. Mcgehee, Christion Smith,
687 Jeanette A. Mumford, Melissa A. Rosenkranz, and Richard J. Davidson. The impact
688 of mindfulness training on police officer stress, mental health, and salivary cortisol
689 levels. *Frontiers in Psychology*, 12, 2021.

690 [24] Daniel W Grupe, Jonah L Stoller, Carmen Alonso, Chad McGehee, Chris Smith,
691 Jeanette A Mumford, Melissa A Rosenkranz, and Richard J Davidson. The impact of
692 mindfulness training on police officer stress, mental health, and salivary cortisol
693 levels. *Frontiers in Psychology*, 12:720753, 2021.

694 [25] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. *The Elements of Statistical*
695 *Learning: Data Mining, Inference, and Prediction*. Springer Series in Statistics. Springer
696 New York, New York, NY, 2009.

697 [26] Qilin Hong, Guanhua Chen, and Zheng-Zheng Tang. A phylogeny-based test of
698 mediation effect in microbiome. 2021.

699 [27] Kosuke Imai, Luke Keele, and Teppei Yamamoto. Identification, inference and
700 sensitivity analysis for causal mediation effects. *Statistical Science*, 25(1):51–71, 2010.

701 [28] Kosuke Imai, Luke Keele, and Teppei Yamamoto. Identification, inference and
702 sensitivity analysis for causal mediation effects. *Statistical Science*, 25(1), February
703 2010.

704 [29] Kosuke Imai, Luke J. Keele, and Dustin Tingley. A general approach to causal
705 mediation analysis. *Political Methods: Quantitative Methods eJournal*, 2010.

706 [30] Kosuke Imai and Teppei Yamamoto. Identification and sensitivity analysis for
707 multiple causal mechanisms: Revisiting evidence from framing experiments. *Political*
708 *Analysis*, 21(2):141–171, 2013.

709 [31] Jasmijn Z Jagt, Eduard A Struys, Ibrahim Ayada, Abdellatif Bakkali, Erwin E W
710 Jansen, Jürgen Claesen, Johan E van Limbergen, Marc A Benninga, Nanne K H
711 de Boer, and Tim G J de Meij. Fecal amino acid analysis in newly diagnosed pediatric
712 inflammatory bowel disease: A multicenter case-control study. *Inflammatory Bowel*
713 *Diseases*, 28(5):755–763, November 2021.

714 [32] Hyojung Jang, Solha Park, and Hyunwook Koh. Comprehensive microbiome causal
715 mediation analysis using mimed on user-friendly web interfaces. *Biology Methods and*
716 *Protocols*, 8(1), January 2023.

717 [33] Adel Javanmard and Andrea Montanari. Debiasing the lasso: Optimal sample size
718 for gaussian designs. *The Annals of Statistics*, 46(6A), December 2018.

719 [34] Leo Lahti, Felix G. M. Ernst, Sudarshan A. Shetty, Tuomas Borman, Ruizhu Huang,
720 Domenick J. Braccia, and Hector Corrado Bravo. Microbiome data science in the
721 summarized experiment universe. *F1000Research*, 10, 2021.

722 [35] Wei Vivian Li and Jingyi Jessica Li. A statistical simulator scdesign for rational
723 scrna-seq experimental design. *Bioinformatics*, 35:i41 – i50, 2018.

724 [36] Yuanyuan Luo, Benhua Zeng, Li Zeng, Xiangyu Du, Bo Li, Ran Huo, Lanxiang Liu,
725 Haiyang Wang, Meixue Dong, Junxi Pan, et al. Gut microbiota regulates mouse
726 behaviors through glucocorticoid receptor pathway genes in the hippocampus.
727 *Translational psychiatry*, 8(1):1–10, 2018.

728 [37] David P. Mackinnon, Amanda J. Fairchild, and Matthew S. Fritz. Mediation analysis.
729 *Annual review of psychology*, 58:593–614, 2019.

730 [38] Paul J. McMurdie and Susan P. Holmes. phyloseq: An r package for reproducible
731 interactive analysis and graphics of microbiome census data. *PLoS ONE*, 8, 2013.

732 [39] Indrani Mukhopadhyay, Richard Hansen, Emad M El-Omar, and Georgina L Hold.
733 Ibd—what role do proteobacteria play? *Nature reviews Gastroenterology & hepatology*,
734 9(4):219–230, 2012.

735 [40] Efrat Muller, Yadiel M Algavi, and Elhanan Borenstein. The gut
736 microbiome-metabolome dataset collection: a curated resource for integrative
737 meta-analysis. *NPJ Biofilms and Microbiomes*, 8, 2022.

738 [41] Daniela Parada Venegas, Marjorie K. De la Fuente, Glauben Landskron, María Julieta
739 González, Rodrigo Quera, Gerard Dijkstra, Hermie J. M. Harmsen, Klaas Nico Faber,
740 and Marcela A. Hermoso. Short chain fatty acids (scfas)-mediated gut epithelial and
741 immune regulation and its relevance for inflammatory bowel diseases. *Frontiers in
742 Immunology*, 10, March 2019.

743 [42] Edoardo Pasolli, Lucas Schiffer, Paolo Manghi, Audrey Renson, Valerie Obenchain,
744 Duy Tin Truong, Francesco Beghini, Fa Malik, Marcel Ramos, Jennifer Beam Dowd,

745 746 747 Curtis Huttenhower, Martin T. Morgan, N. Segata, and Levi Waldron. Accessible, curated metagenomic data through experimenthub. *Nature Methods*, 14:1023–1024, 2017.

748 [43] Djawad Radjabzadeh, Jos A Bosch, André G Uitterlinden, Aeilko H Zwinderman, M Arfan Ikram, Joyce BJ van Meurs, Annemarie I Luik, Max Nieuwdorp, Anja Lok, Cornelia M van Duijn, et al. Gut microbiome-wide association study of depressive symptoms. *Nature Communications*, 13(1):7128, 2022.

752 [44] Jason M. Ridlon, Steven L. Daniel, and H. Rex Gaskins. The hylemon-björkhem pathway of bile acid 7-dehydroxylation: history, biochemistry, and microbiology. *Journal of Lipid Research*, 64(8):100392, August 2023.

755 [45] Ashley Shade and Jo Handelsman. Beyond the venn diagram: the hunt for a core microbiome. *Environmental microbiology*, 14(1):4–12, 2012.

757 [46] Michael B. Sohn and Hongzhe Li. Compositional mediation analysis for microbiome studies. *The Annals of Applied Statistics*, 13(1), March 2019.

759 [47] Dongyuan Song, Qingyang Wang, Guanao Yan, Tianyang Liu, Tianyi Sun, and Jingyi Jessica Li. scdesign3 generates realistic in silico data for multimodal single-cell and spatial omics. *Nature Biotechnology*, 42:247–252, 2023.

762 [48] Tianyi Sun, Dongyuan Song, Wei Vivian Li, and Jingyi Jessica Li. scdesign2: a transparent simulator that generates high-fidelity single-cell gene expression count data with gene correlations captured. *Genome Biology*, 22, 2021.

765 [49] Ying Taur and Eric G. Pamer. Microbiome mediation of infections in the cancer setting. *Genome Medicine*, 8, 2016.

767 [50] John P. Thomas, Dezso Modos, Simon M. Rushbrook, Nick Powell, and Tamas Korcsmaros. The emerging role of bile acids in the pathogenesis of inflammatory bowel disease. *Frontiers in Immunology*, 13, February 2022.

770 [51] Robert Tibshirani, Jacob Bien, Jerome Friedman, Trevor Hastie, Noah Simon, Jonathan Taylor, and Ryan J. Tibshirani. Strong rules for discarding predictors in

772 lasso-type problems. *Journal of the Royal Statistical Society Series B: Statistical*
773 *Methodology*, 74(2):245–266, November 2011.

774 [52] Dustin Tingley, Teppei Yamamoto, Kentaro Hirose, Luke Keele, and Kosuke Imai.
775 mediation: R package for causal mediation analysis. *Journal of Statistical Software*,
776 59:1–38, 2014.

777 [53] Arnau Vich Vila, Shixian Hu, Sergio Andreu-Sánchez, Valerie Collij, Bernadien H
778 Jansen, Hannah E Augustijn, Laura A Bolte, Renate A A A Ruigrok, Galeb Abu-Ali,
779 Cosmas Giallourakis, Jessica Schneider, John Parkinson, Amal Al-Garawi, Alexandra
780 Zhernakova, Ranko Gacesa, Jingyuan Fu, and Rinse K Weersma. Faecal metabolome
781 and its determinants in inflammatory bowel disease. *Gut*, 72(8):1472–1485, March
782 2023.

783 [54] Marius Vital, Tatjana Rud, Silke Rath, Dietmar H. Pieper, and Dirk Schlüter. Diversity
784 of bacteria exhibiting bile acid-inducible 7-dehydroxylation genes in the human gut.
785 *Computational and Structural Biotechnology Journal*, 17:1016–1019, 2019.

786 [55] Jolana Wagner-Skacel, Nina Dalkner, Sabrina Moerkl, Kathrin Kreuzer, Aitak Farzi,
787 Sonja Lackner, Annamaria Painold, Eva Z Reininghaus, Mary I Butler, and Susanne
788 Bengesser. Sleep and microbiome in psychiatric diseases. *Nutrients*, 12(8):2198, 2020.

789 [56] Chan Wang, Jiyuan Hu, Martin J Blaser, and Huilin Li. Estimating and testing the
790 microbial causal mediation effect with high-dimensional and compositional
791 microbiome data. *Bioinformatics*, 36(2):347–355, July 2019.

792 [57] Hadley Wickham. ggplot2 - elegant graphics for data analysis. In *Use R!*, 2009.

793 [58] Hadley Wickham. *Advanced R*. Chapman and Hall/CRC, September 2014.

794 [59] Hadley Wickham, Mara Averick, Jennifer Bryan, Winston Chang, Lucy McGowan,
795 Romain François, Garrett Grolemund, Alex Hayes, Lionel Henry, Jim Hester, Max
796 Kuhn, Thomas Pedersen, Evan Miller, Stephanie Bache, Kirill Müller, Jeroen Ooms,
797 David G. Robinson, Dana Paige Seidel, Vitalie Spinu, Kohske Takahashi, Davis
798 Vaughan, Claus Wilke, Kara H. Woo, and Hiroaki Yutani. Welcome to the tidyverse. *J.*
799 *Open Source Softw.*, 4:1686, 2019.

800 [60] Jenessa A. Winston and Casey M. Theriot. Diversification of host bile acids by
801 members of the gut microbiota. *Gut Microbes*, 11(2):158–171, October 2019.

802 [61] Marvin N. Wright and Andreas Ziegler. ranger: A fast implementation of random
803 forests for high dimensional data in c++ and r. *Journal of Statistical Software*, 077:1–17,
804 2015.

805 [62] Fan Xia, Jun Chen, Wing Kam Fung, and Hongzhe Li. A logistic normal multinomial
806 regression model for microbiome compositional data analysis. *Biometrics*, 69, 2013.

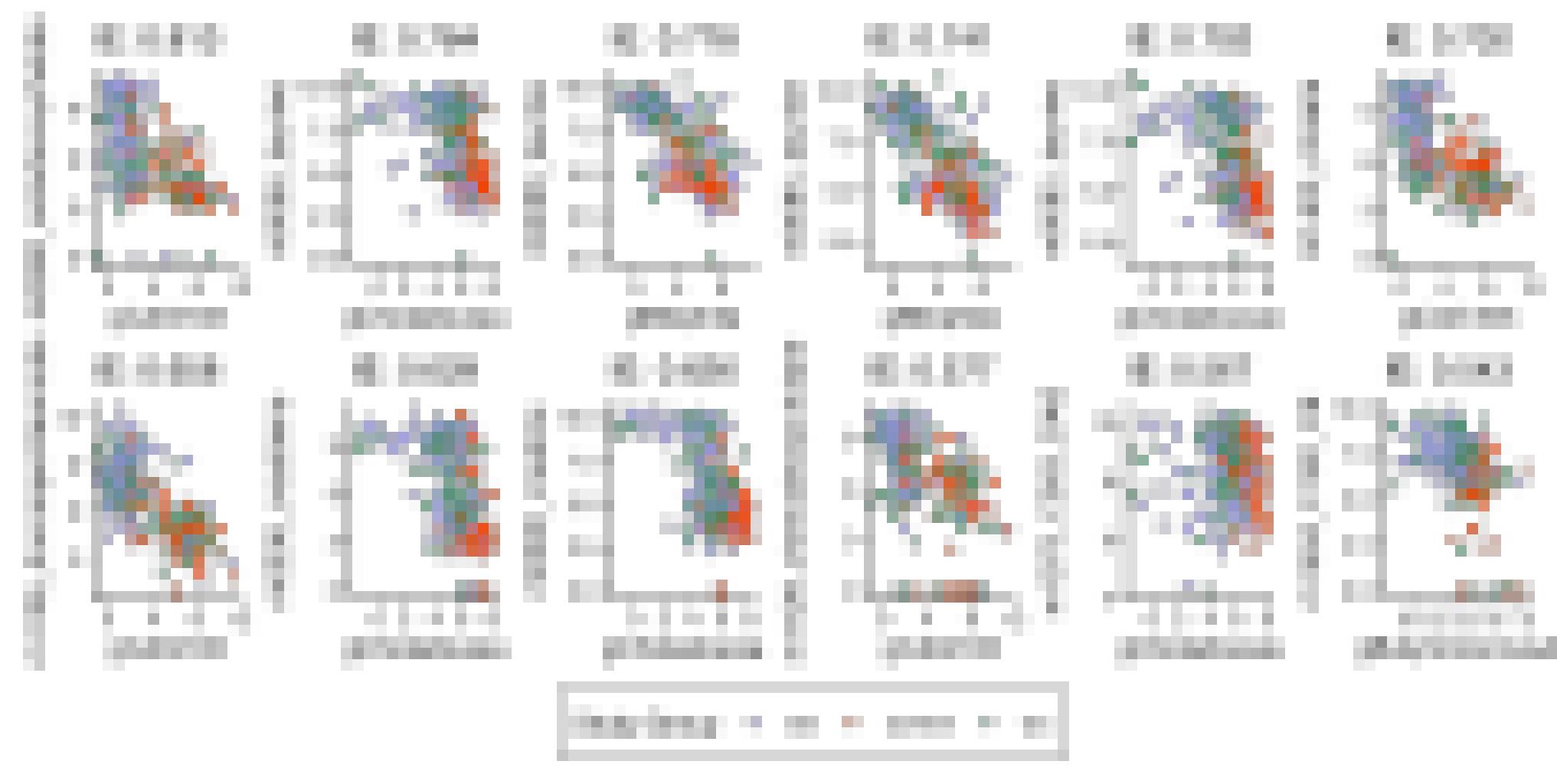
807 [63] Yinglin Xia, Jun Sun, and Ding-Geng Chen. Modeling zero-inflated microbiome data.
808 In *Statistical Analysis of Microbiome Data with R*, pages 453–496. Springer Singapore,
809 Singapore, 2018.

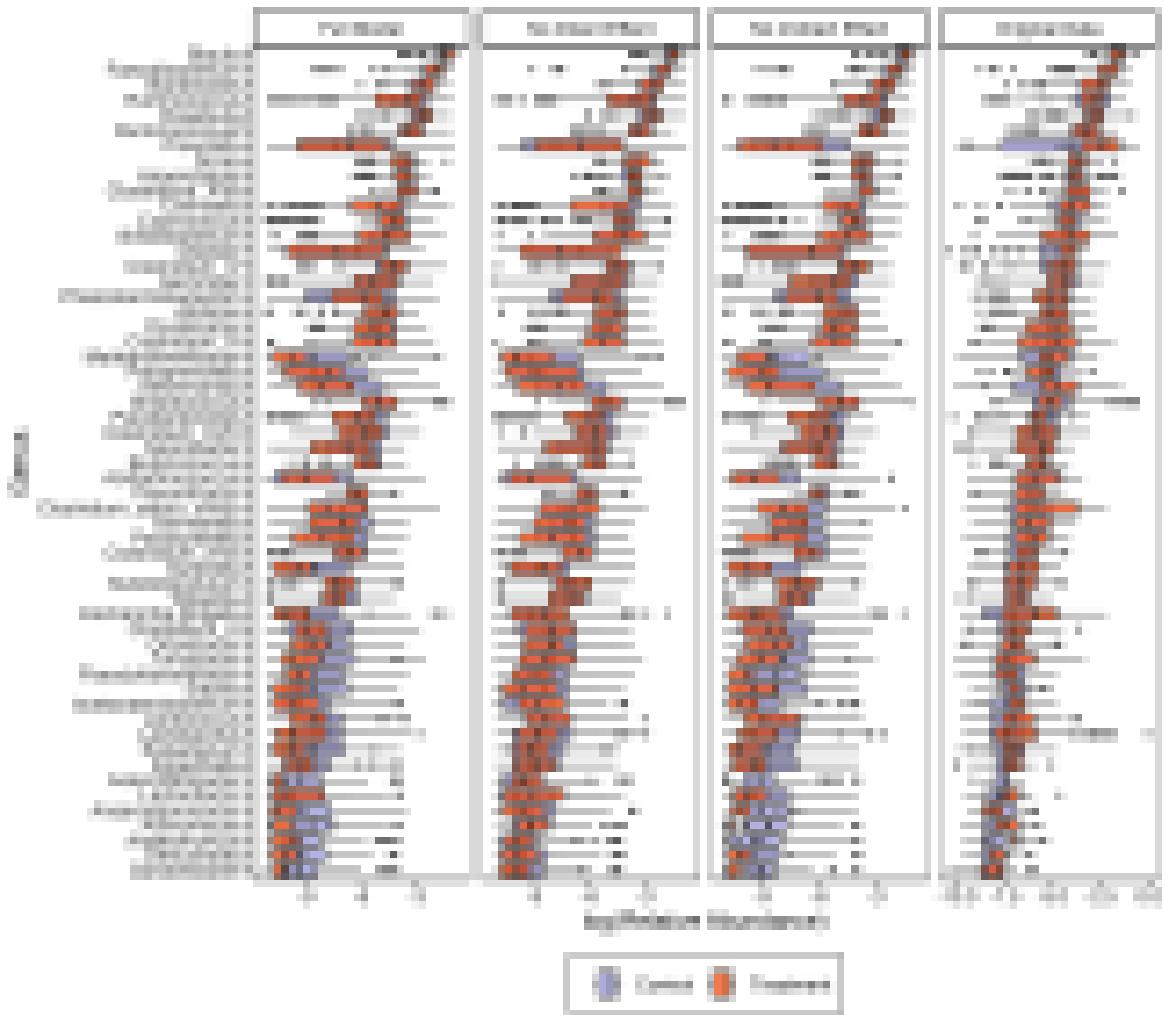
810 [64] Lizhen Xu, Andrew D Paterson, Williams Turpin, and Wei Xu. Assessment and
811 selection of competing models for zero-inflated microbiome data. *PLoS One*,
812 10(7):e0129606, July 2015.

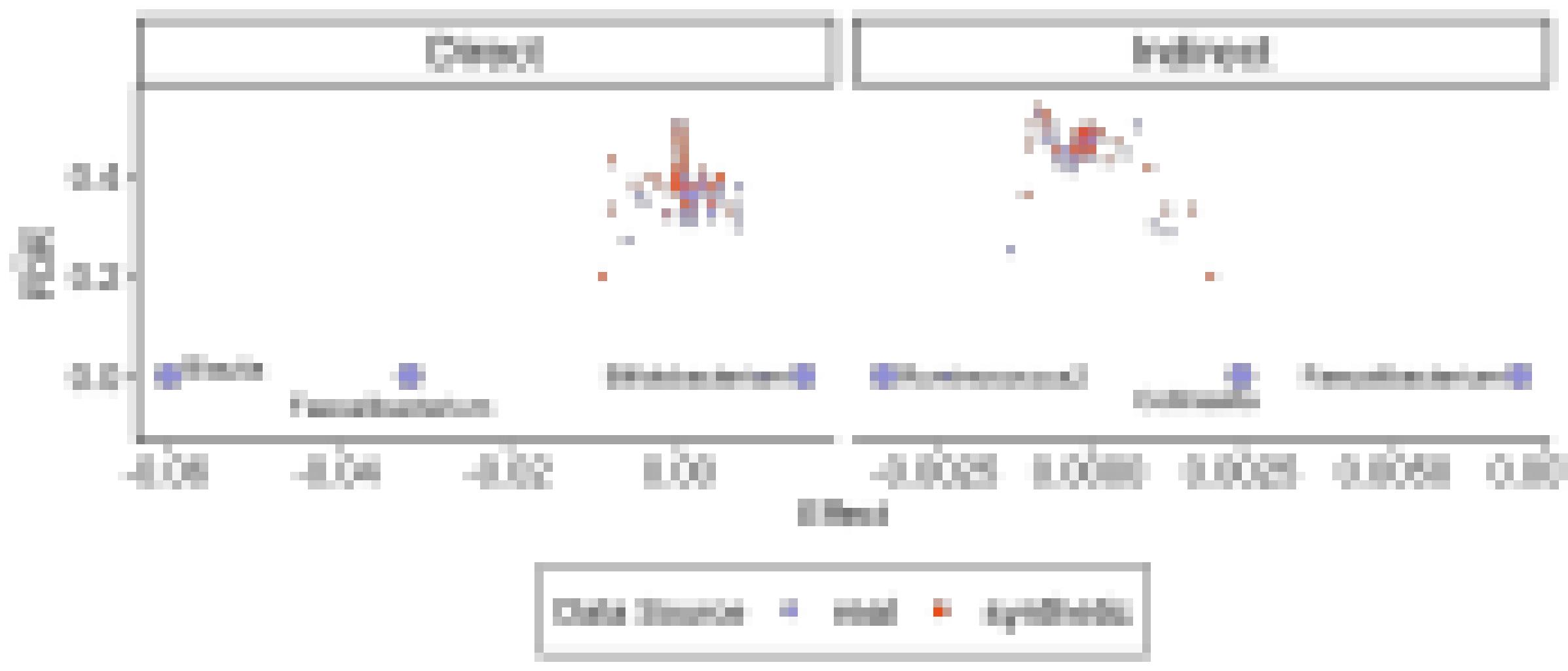
813 [65] Dongyang Yang and Wei Xu. Estimation of mediation effect on zero-inflated
814 microbiome mediators. *Mathematics*, 11(13):2830, June 2023.

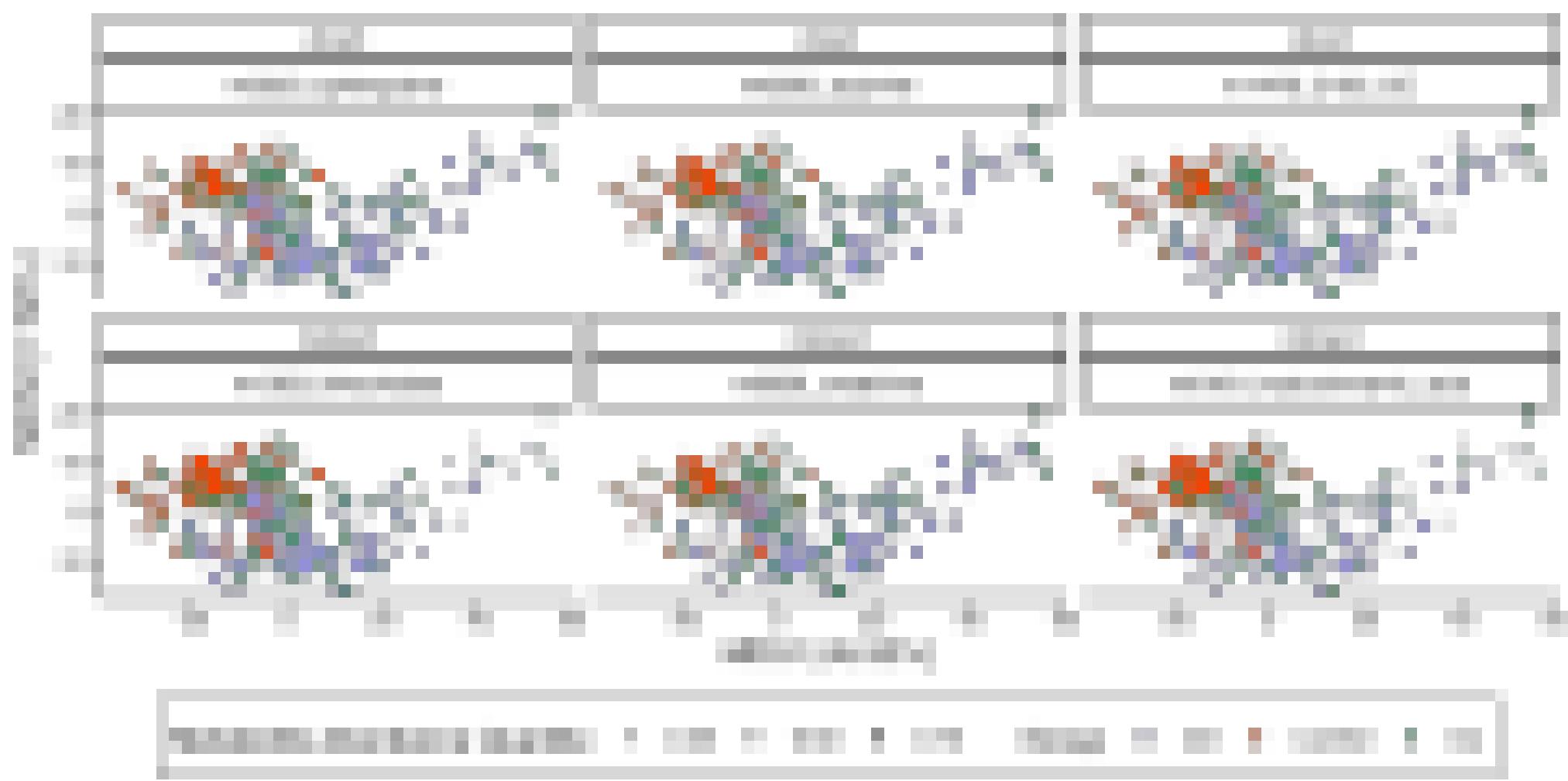
815 [66] Cun-Hui Zhang and Jian Huang. The sparsity and bias of the lasso selection in
816 high-dimensional linear regression. *The Annals of Statistics*, 36(4), August 2008.

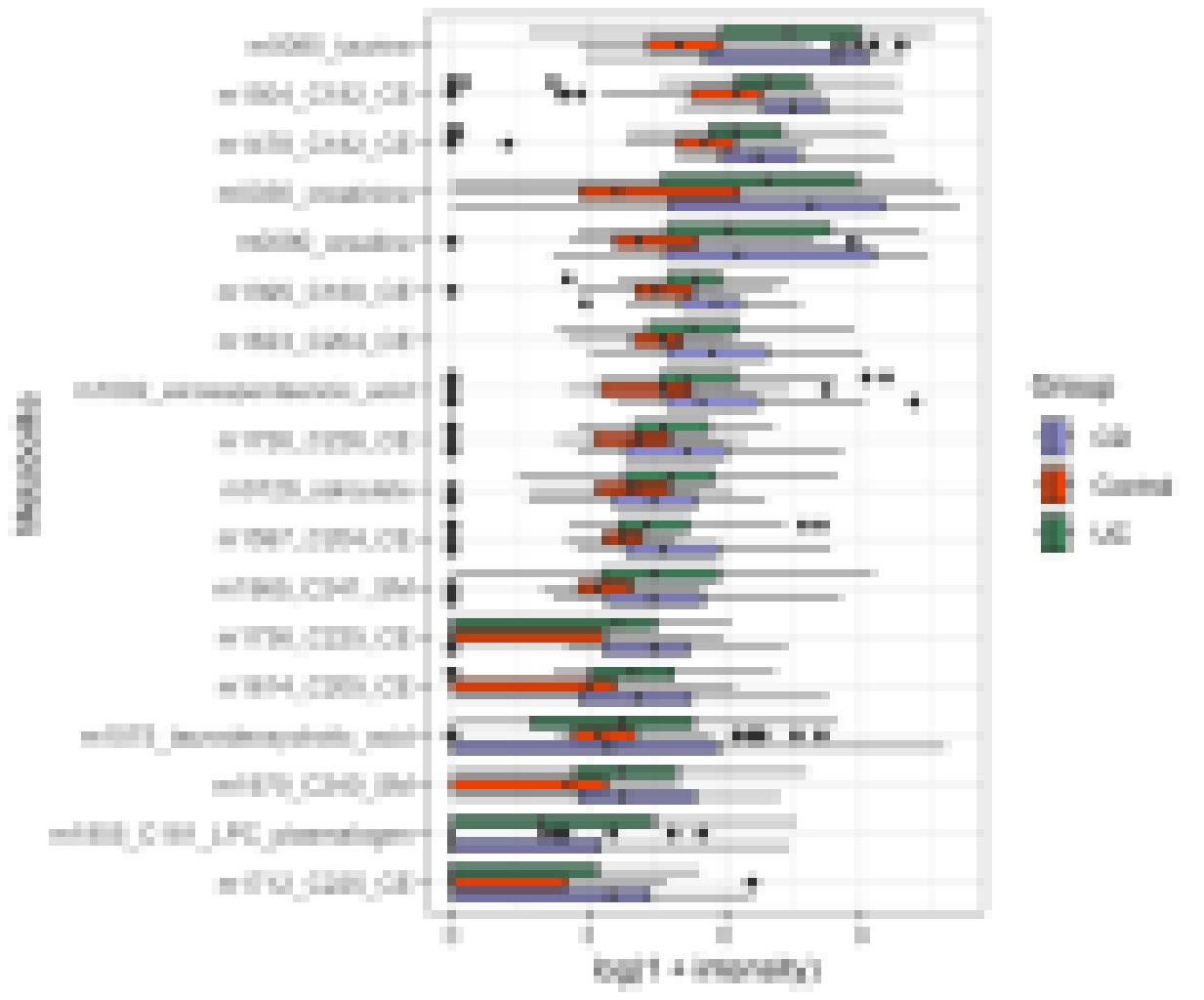
817 [67] Haixiang Zhang, Jun Chen, Zhigang Li, and Lei Liu. Testing for mediation effect
818 with application to human microbiome data. *Statistics in Biosciences*, 13(2):313–328,
819 July 2019.



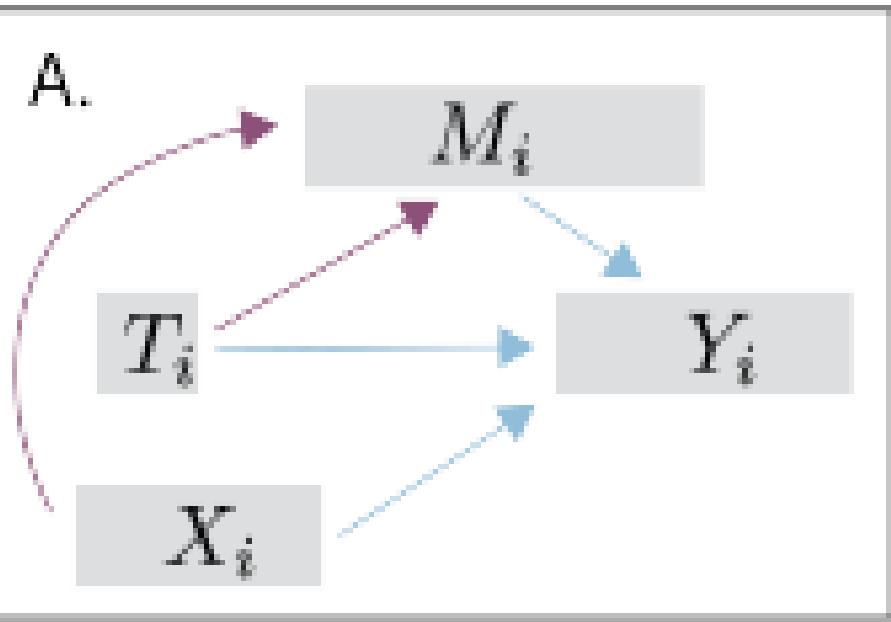








A.

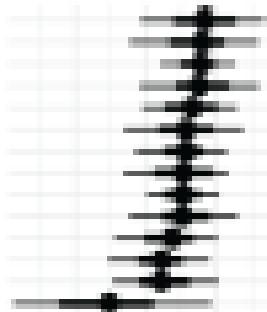


B.

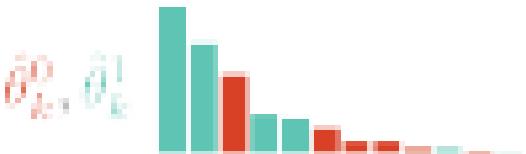
Bootstrap
Confidence Intervals

$$\theta_k \in [\hat{\theta}_k^L, \hat{\theta}_k^U]$$

Inference

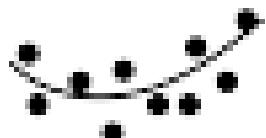


Synthetic Null
Hypothesis Testing



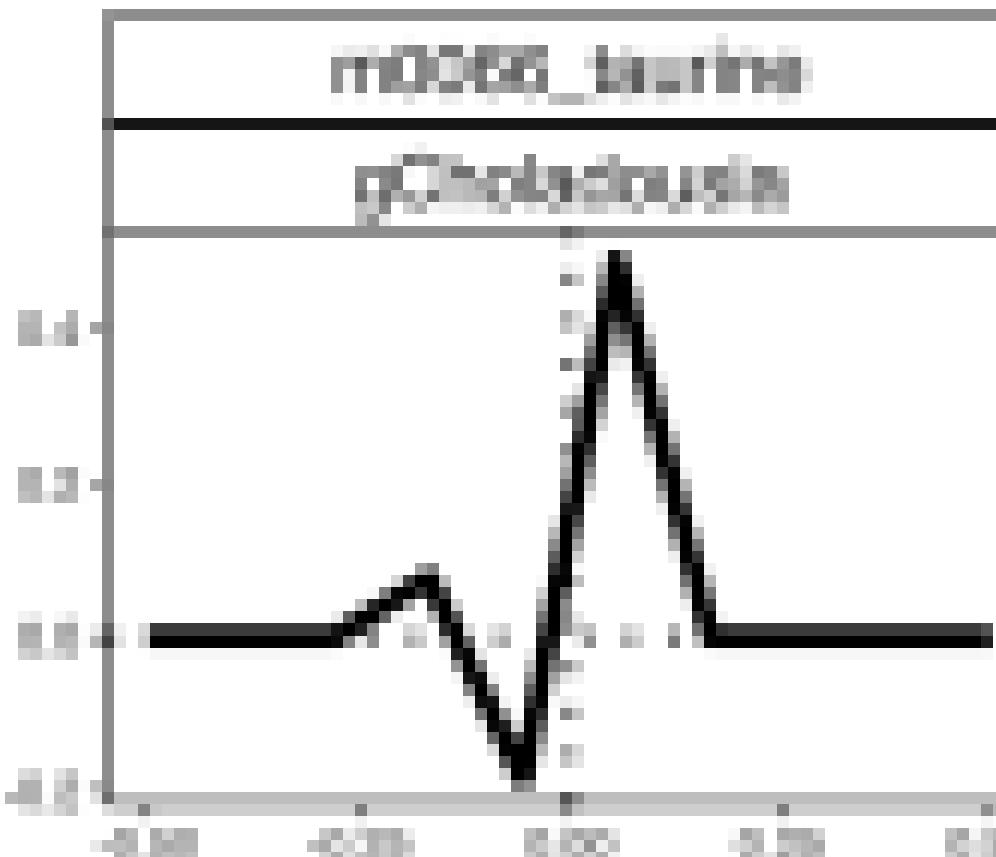
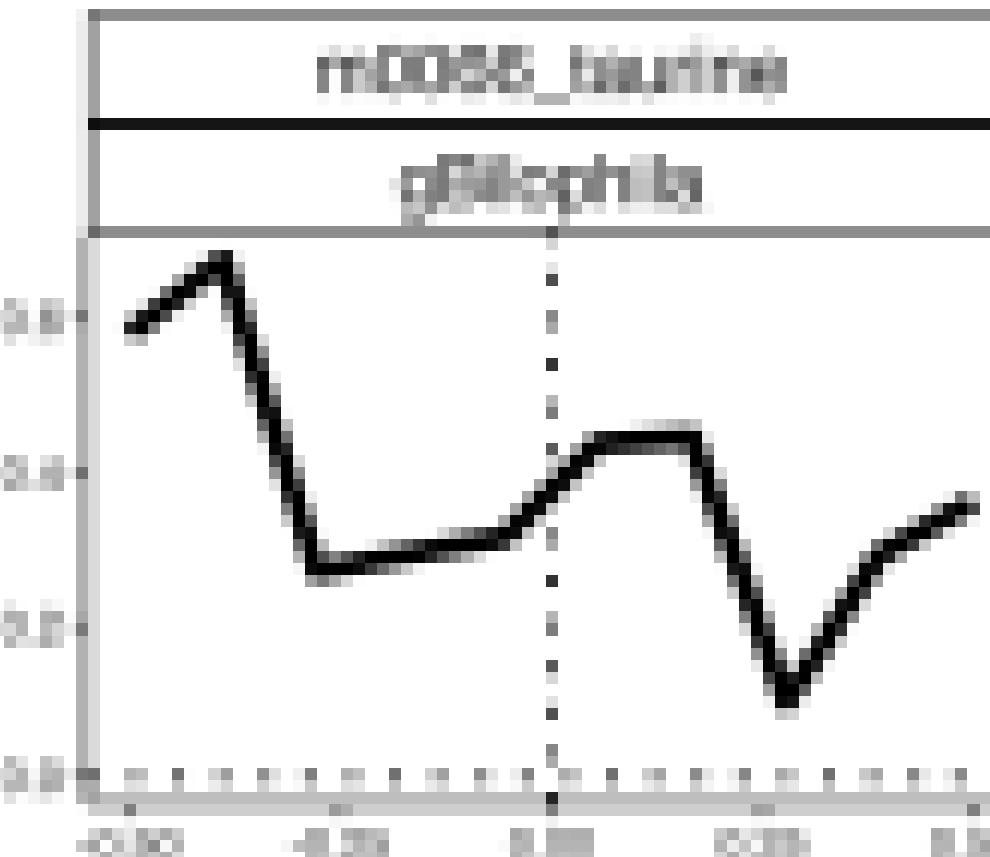
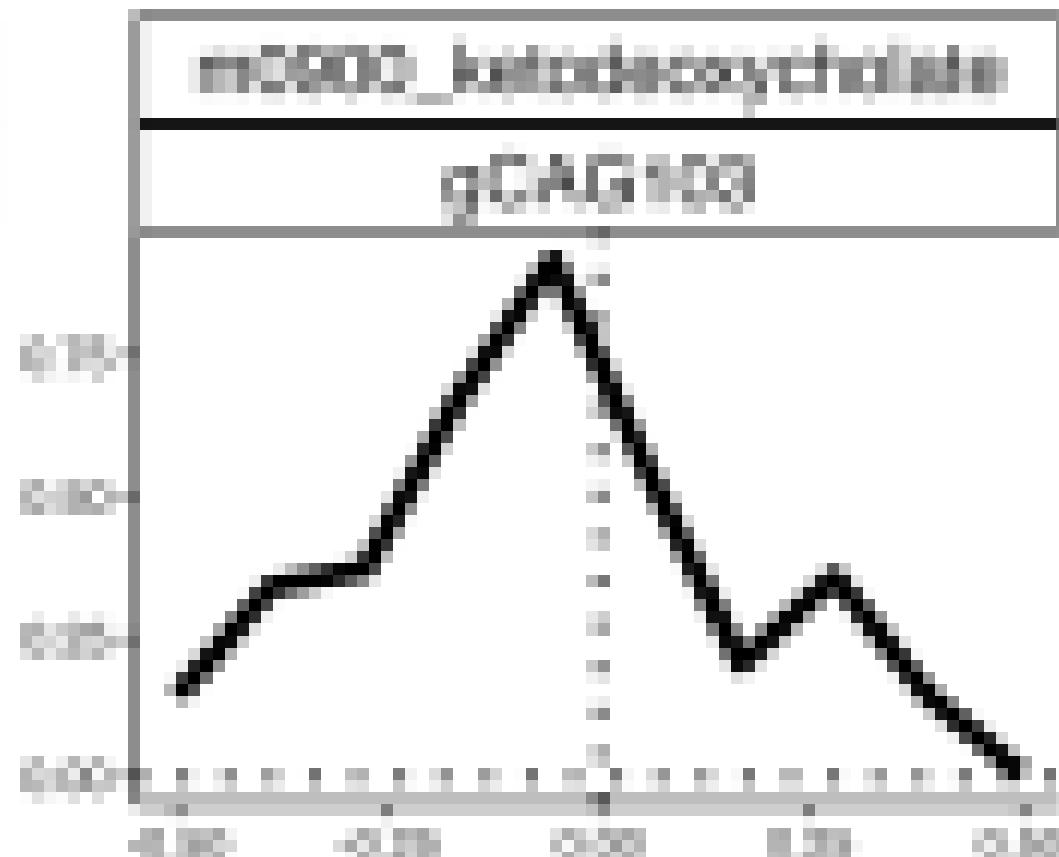
Data Curation

Fit Mediation and
Outcome Models



 Bioconductor
bioconductor.org | Bioconductor.org

Estimated Inherent Effect



Confounding parameter p

