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Abstract

Antifibrotic therapy with nintedanib is the clinical mainstay in the treatment of progressive fibrosing
interstitial lung disease (ILD). High-dimensional medical image analysis, known as radiomics, provides
guantitative insights into organ-scale pathophysiology, generating digital disease fingerprints. Here,
we used an integrative analysis of radiomic and proteomic profiles (radioproteomics) to assess
whether changes in radiomic signatures can stratify the degree of antifibrotic response to nintedanib
in (experimental) fibrosing ILD. Unsupervised clustering of delta radiomic profiles revealed two
distinct imaging phenotypes in mice treated with nintedanib, contrary to conventional densitometry
readouts, which showed a more uniform response. Integrative analysis of delta radiomics and
proteomics demonstrated that these phenotypes reflected different treatment response states, as
further evidenced on transcriptional and cellular levels. Importantly, radioproteomics signatures
paralleled disease- and drug related biological pathway activity with high specificity, including
extracellular matrix (ECM) remodeling, cell cycle activity, wound healing, and metabolic activity.
Evaluation of the preclinical molecular response-defining features, particularly those linked to ECM
remodeling, in a cohort of nintedanib-treated fibrosing ILD patients, accurately stratified patients
based on their extent of lung function decline. In conclusion, delta radiomics has great potential to
serve as a hon-invasive and readily accessible surrogate of molecular response phenotypes in fibrosing
ILD. This could pave the way for personalized treatment strategies and improved patient outcomes.
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Abbreviations

a-SMA Alpha-smooth muscle actin

AT1 alveolar type |

AT2 alveolar type Il

BP Biological process (ontology)

cC Cellular compartment (ontology)

CT Computed tomography

CTD Connective tissue disease

DAPI 4’ ,6-diamidino-2-phenylindole

DE Differentially expressed

DLCO Diffusing capacity of the lung for carbon monoxide
DPBS Dulbecco’s phosphate buffered saline

ECM Extracellular matrix

FDR False discovery rate

FEV Forced expiratory volume in the first second
FvC Forced vital capacity

GO Gene Ontology

HP Hypersensitivity pneumonitis

HRCT High-resolution computed tomography

HU Hounsfield unit

i.t. Intratracheal

IBSI Imaging biomarkers standardization initiative
ICC Intraclass correlation coefficient

ILD Interstitial lung disease

IPF Idiopathic pulmonary fibrosis

IQR Interquartile range

KAEA Kinase activity enrichment analysis

MF Molecular function (ontology)

mPAP Mean pulmonary arterial pressure

MRI Magnetic resonance imaging

p.o. per os (orally)

P(AH Pulmonary (arterial) hypertension

PDPN Podoplanin

PF-ILD Progressive fibrosing interstitial lung disease
PFT Pulmonary function test

proSP-C Prosurfactant Protein C

g.d. quaque die (once a day)

QLF Quantitative lung fibrosis

RTK Receptor tyrosine kinase

scRNA-seq Single-cell RNA sequencing
SSc Systemic sclerosis
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Introduction

Fibrotic remodeling of the lung interstitium is the shared pathomechanism across various interstitial
lung diseases (ILDs) of different etiologies, including idiopathic pulmonary fibrosis (IPF) and connective
tissue disease (CTD)-associated ILD as the most prevalent subtypes. For patients with a progressive
fibrosing (PF-ILD) phenotype, treatment with the antifibrotic multitarget tyrosine kinase inhibitor
nintedanib is recommended 1. While nintedanib has proven effective in slowing pulmonary function
decline in multiple clinical trials, it comes with a relatively high rate of side effects 2. Consequently,
there is a pressing need to assess treatment efficacy and identify individuals who may not benefit
from therapy early in the disease course.

Current evaluation of treatment response primarily relies on longitudinal lung function
measurements, which are prone to intra-subject variability, can be influenced by extrapulmonary
parameters, and lack insights into the underlying molecular response >°. Liquid- or tissue-derived
readouts could partially address these limitations, but validated biomarkers are not yet available and
repeated lung biopsies are not a viable option due to the associated interventional risks ’. Radiomics
analysis of routinely performed high-resolution computed tomography (HRCT) scans has great
potential to serve as a non-invasive solution for evaluation of treatment response in individual
patients in four dimensions (3D space + time) ®°. Radiomic features are computationally retrieved,
guantitative data extracted from radiological imaging data, which describe the tissue in terms of its
intensity, texture and shape properties 1°, thus creating digital disease fingerprints 1. The added value
compared to conventional visual radiological analysis or quantitative characterization methodologies
such as CALIPER 12, lies in their ability to capture image phenotypes beyond human visual perception
13 thereby aiming to close the gap between patient screening and precision medicine 4.

Radiomics is based on the premise that the underlying pathophysiology is reflected in the imaging
phenotype and that radiomic features can quantify these links, offering insights into organ-scale
pathophysiology. Previous work including our own has shown that radiomics can convey morphologic
and molecular tissue characteristics with important implications for personalized diagnosis and
prognostication * %8, Delta radiomics, which quantifies the feature variation between two imaging
time points, and thus captures longitudinal phenotypic changes, has emerged as a method to predict
and quantify treatment response in various types of cancer *21, Its potential for the stratification of
antifibrotic treatment response in (progressive) fibrosing ILD has not yet been studied.

This study aimed to evaluate whether delta radiomics can be used to stratify the degree of molecular
response to antifibrotic treatment with nintedanib using the well-established bleomycin-induced lung
fibrosis model.

Unsupervised clustering of delta radiomic profiles revealed two distinct imaging phenotypes in mice
treated with nintedanib, despite conventional CT-derived lung densitometric readouts suggesting a
uniform response. Radioproteomics demonstrated that these phenotypes reflected different
treatment response states, which we could confirm by immunofluorescence and gene expression
analysis. Importantly, we discovered that radioproteomic association modules paralleled distinct
disease-related biological pathway activities and cell type signatures. Evaluation of the preclinical
response-defining features in a nintedanib-treated PF-ILD cohort accurately stratified patients
according to their extent of lung function decline. Collectively, our analyses demonstrate the ability of
delta radiomics to non-invasively stratify molecular response to anti-fibrotic treatment in
experimental fibrosing ILD and indicate its potential for application in human PF-ILD.
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Methods

A detailed description of the methods is provided in the supplementary material.

Animal experimentation and ethics statement

Lung-derived delta radiomic profiles were studied upon treatment with nintedanib in the well-
established murine bleomycin-induced fibrosing ILD model 2%%. Briefly, lung fibrosis was induced in
C57BL/6J mice (n=30, female, 8-weeks old) by intratracheal instillation with 2 U/kg bleomycin sulfate
7. Mice were randomized into study groups and treatment with 60 mg/kg nintedanib (n=15) or
vehicle-only (deionized water, n=15) was provided once daily per os (p.o.) from day 7-20 in a double-
blinded manner. Lung microCT scans (SkyScan 1176; Bruker, Kontich, Belgium) of each animal were
acquired pre- (day 7) and post-treatment (day 21) as previously described . All mice were sacrificed
24 hours after the final treatment, followed by exsanguination, transcardial perfusion, and collection
of the lung tissue for molecular analysis. Approval for animal experimentation was granted by the
cantonal veterinary office (license number ZH082/2021) and experimentation was performed in strict
compliance with Swiss animal protection laws. Mice were excluded from further analysis if humane
endpoints were reached (n=3) or if severe lung abnormalities, including atelectasis or unilateral
fibrosis development, were evident on microCT scans (n=3). The final sample size for nintedanib- and
vehicle-treated mice was n=10 and n=14, respectively.

Patient cohort, clinical data, and ethics statement

We validated our experimental findings in a retrospectively selected PF-ILD cohort of 19 patients from
the Bern University Hospital, Bern, Switzerland and the SWISS-IIP cohort that were undergoing
treatment with nintedanib. Approval for the study was granted by the local ethics committee (BASEC-
ID: 2023-01920 [ILDALMO]; PB_2016_01524 [SWISS-IIP]). A total of 359 patients were screened for
the following eligibility criteria: a) diagnosis of progressive fibrosing ILD 2%, including IPF, systemic-
sclerosis associated ILD (SSc-ILD), hypersensitivity pneumonitis (HP), or drug-induced ILD, b) treatment
with nintedanib (2100 mg twice daily; 26 months), c) availability of pre- and post-treatment HRCT
scans fulfilling the predefined quality criteria (supplementary methods), d) pre- and post-treatment
pulmonary function test (PFT) recording fulfilling the predefined quality criteria (supplementary
material), e) absence of secondary lung diseases at times of HRCT and PFT recordings. In total, 54 out
359 patients received nintedanib treatment for 26 months, with 19 fulfilling also the remaining
inclusion criteria. Summaries of patient demographics and clinical characteristics, and the HRCT scan
acquisition parameters are provided in Table 1 and Supplementary Table 1, respectively.

Table 1. Summary of the clinical parameters of the PF-ILD cohort at baseline.

PF-ILD Cohort (n=19)

Age (years)” 62.4 (+14.3)
Sex

Female 3(16%)

Male 16 (84%)
Etiology

IPF 11 (58%)

SSc-ILD 4 (21%)

HP 3 (16%)

Drug-induced ILD 1 (5%)
Smoking status

Never 5 (26%)

Previous 12 (63%)

Current 2 (11%)
Disease duration (months)’ 12.0 (¥37.7)
FVC (% pred) 69.0 (+27.0)
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NA 0 (0%)
FVC (liters) 2.63 (+0.93)
NA 0 (0%)
FEV; (% pred) 71.0 (+27.5)
NA 1 (5%)
Dico (% pred) 50.5 (+20.0)

NA 2 (11%)
Pulmonary hypertension*

Yes 6 (32%)

No 13 (68%)
Immunomodulatory therapy® 11 (58%)

Data are presented as median (z interquartile range (IQR)) or n (%). The interval between HRCT scans and PFT
recordings was 13.915.6 months and 12.4+4.5 months (mediantIQR), respectively. Abbreviations: IPF,
idiopathic pulmonary fibrosis; ILD, interstitial lung disease; SSc, systemic sclerosis; HP, hypersensitivity
pneumonitis; FVC, forced vital capacity; FEV1, forced expiratory volume in 1 s; Dico, diffusing capacity of the
lung for carbon monoxide; P(A)H, pulmonary (arterial) hypertension. NA denotes missing values as n(%). *:
Age at time of baseline (pre-treatment) HRCT scan. T: disease duration was defined as the period between
first reported diagnosis of PF-ILD in the patient records and the baseline (pre-treatment) HRCT scan. %: PH
was assessed by echocardiography or right heart catheterization. If right heart catheterization was
performed, mean pulmonary arterial pressure (mPAP)>20 mmHg was considered diagnostic 2°. §:
Immunomodulatory therapy included prednisolone, mycophenolate mofetil, azathioprine, rituximab,
tocilizumab, or combinations thereof and if indicated was provided concomitant to nintedanib treatment.

Delta Radiomics Calculation

Calculation of radiomic features was performed on semi-automatically segmented lungs using Z-Rad
software (v.7.3.1, https://medical-physics-usz.github.io/) as previously described . Mouse lungs
were resized to isotropic voxels of 0.15 mm. To achieve a comparable voxel size in patients, human
lungs were resized to isotropic voxels of 2.75 mm, corresponding to an estimated 6000-fold volumetric
difference 2°. Both mouse and human lung volumes were discretized to a fixed bin size of 50 HU in a
range of -1000 HU to 200 HU. From the resized volumes, 1’388 radiomic features were calculated per
lung scan and time point, corresponding to histogram (n=17), texture (n=137), shape (n=2), and
wavelet-transformed features (n=1'232). Delta radiomic features describing the change of each
feature between pre-and post-treatment, were expressed as delta values: AFeature = Feature (t,) —
Feature (t1) ¥’. Lung density measurement was inferred from the radiomic lung attenuation histogram-
derived feature hist_mean.

Proteomics and Phosphoproteomics

For proteomics and phosphoproteomics, the middle lobe of the right mouse lung was snap frozen in
liquid nitrogen and stored at -80°C until processing. Sample preparation and mass spectrometry
profiling was performed at the Proteomics & Mass Spectrometry Core Facility (PMSCF) at the
University of Bern using standard protocols. For comparative proteomics, all vehicle- (n=14) and
nintedanib-treated (n=10) samples were analyzed. One vehicle sample was excluded from analysis
due to issues in sample preparation. Differential expression of proteins between groups of interest
was calculated in R using the “limma” package with standard settings. For phosphoproteomics,
randomly selected subsets of vehicle- (n=5) and nintedanib-treated (n=5) were analyzed. Differential
expression of phosphosites and subsequent kinase activity enrichment analysis (KAEA) was performed
as described in %,

Gene expression analysis

Total RNA was isolated from blood-free cranial lobes of the right mouse lung using the RNeasy Tissue
Mini Kit (Qiagen, Hombrechtikon, Switzerland). Isolated RNA was reverse-transcribed into cDNA using
the Transcriptor First Strand cDNA Synthesis Kit (Roche Diagnostics, Switzerland). Expression of
selected Nintedanib target genes was analyzed by SYBR Green quantitative PCR as described in .
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Expression of mMRNA was expressed to delta Ct values with Rp/p0 as reference gene. Fold changes were
calculated using the delta-delta Ct method. A list of the primer pairs is provided in Supplementary
Table 2.

Immunofluorescence and microscopy

Formalin-fixed paraffin-embedded lung sections at 3 um thickness were deparaffinized, followed by
heat-mediated antigen retrieval and blocking for nonspecific antibody binding with 5% BSA.
Incubation with primary antibodies was performed overnight at 4°C, followed by incubation with
secondary fluorescence-labeled antibodies for 2 h at room temperature. Nuclei were visualized by
counterstaining with 4’,6-diamidino-2-phenylindole (DAPI) for 10 min at RT. Antibodies and dilutions
are listed in Supplementary Table 3. Microscopic imaging was performed with an AxioScan.Z1 slide
scanner (Zeiss, Feldbach, Switzerland) using a Plan-Apochromat 20x/0.8 M27 objective. Cells positively
stained for a-SMA were quantified using the “Positive cell detection” tool of the open source software
QuPath (v.0.4.0). From each sample, five representative areas at 500x500 pum were analyzed and the
sample average was used for statistical analyses.

Unsupervised clustering

Unsupervised agglomerative hierarchical or k-means clustering of z-scored features was performed to
identify subgroups of mice or patients with similar delta radiomic feature patterns. Clusterability was
evaluated by Hopkin's statistic H. The optimal number of clusters was determined by average
silhouette statistics. Stability of clusters was assessed by Jaccard bootstrapping.

Variable importance evaluation

The importance of each delta radiomic feature cluster assignment by unsupervised clustering was
calculated by filter-based variable importance, retaining only features with classification score=0.9
(Supplementary Table 4).

Radioproteomic Correlation Analysis

Spearman’s rank correlation coefficient p was calculated between delta radiomic features subsets and
the log2-transformed expression intensity of every protein, retaining only proteins with p<0.05 and
p=0.6 to establish radioproteomic association modules. Pearson’s correlation coefficient r was
calculated between delta radiomic features subsets and the fraction of a-SMA positive cells.

Gene Ontology and Reactome Pathway Enrichment

Lists of differentially expressed (DE) proteins or radiomics-correlated proteins were entered into Gene
Ontology (GO) or Reactome pathway enrichment analysis, retaining results after false discovery rate
adjustment (p<0.05).

Cell Type Signature Enrichment Analysis

To infer relative cell type frequency changes between two groups from proteomics data, we applied
sighature enrichment analysis as described in 331, utilizing their single cell marker gene dataset. Cell
type signatures were defined as sets of genes with cell-type specific gene expression of log2 fold
change>0.3 and adjusted p<0.05 (Supplementary Table 5).

Statistical Analyses
All statistical analyses were performed in R (v.4.3.1.) environment. For all analyses, a p<0.05 was
considered statistically significant unless stated otherwise.
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Results
Delta radiomics uncovers heterogeneity in antifibrotic drug response

To study the effects of antifibrotic treatment on radiomic signatures, we collected microCT-derived
radiomic features in mice with bleomycin-induced lung fibrosis (n=24) before (day 7) and after (day
21) treatment with nintedanib (n=10) or vehicle (n=14) (Figure 1A). The change in feature expression
between pre- and post-treatment was quantified as delta radiomics. We considered only variables
that were stable (ICC>0.75) against semi-automatic lung segmentation and excluded highly correlated
(Spearman’s p=0.85) features, resulting in a final set of 244 delta radiomic features that entered
analysis (Supplementary Figure 1A-C).

Unsupervised hierarchical clustering of delta radiomics revealed heterogeneous response profiles in
nintedanib-treated mice, highlighting the presence of two distinct imaging phenotypes (Nciuster1=6,
Neiusterz=4) (Figure 1B). Subanalysis by k-means clustering confirmed their statistical stability (Jaccard
coefficients>0.90) (Supplementary Figures 1D-E). Intriguingly, these clusters were not discernible
through conventional lung densitometry, which showed a significantly (p=0.0157, unpaired Student’s
t test) reduced tissue density in response to nintedanib treatment, consistent with previous reports
2332 (Figures 1C-D, Supplementary Figure 1F). Untargeted phosphoproteome quantification in a
subset of vehicle and nintedanib-treated mice 24 hours after the final treatment further confirmed
successful and homogeneous target engagement with suppression of key drug-related pathways
based on kinase activity enrichment analysis, including MTOR and MAP2K1 signaling 333
(Supplementary Figures 1G-H), thus affirming the efficiency of the drug treatment.

To evaluate if the two delta radiomic clusters differ on molecular level, we performed proteomics
analysis. Differential expression analysis of the 7006 identified proteins in cluster 1 and 2 against the
vehicle group uncovered substantial differences between the two delta radiomics phenotypes. While
414 proteins (373 downregulated and 41 upregulated) were differentially expressed in cluster 1, only
169 proteins (127 downregulated and 42 upregulated) showed differential expression in cluster 2
compared to vehicle-treated mice (Supplementary Figures 1l-J, Supplementary Tables 6-7). Most
notably, only minor differentially expressed (DE) protein overlap (5%) was observed between the two
clusters (Figures 1E-F), suggesting that different molecular response phenotypes are captured by delta
radiomics.
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Figure 1. Delta radiomics uncovers heterogeneity in antifibrotic drug response. (A) Experiment schematic. C57BL/6J mice
with bleomycin-induced lung fibrosis received treatment with nintedanib (n=10) or vehicle (n=14). Lung microCT scans were
acquired of each mouse pre- (day 7) and post-treatment (day 21) for analysis of radiomic measures. The change in radiomic
feature expression was expressed as delta radiomics. Lung tissue was collected 24 hours after the final treatment application
for molecular analyses. (B) Heatmap displaying the results of unsupervised hierarchical clustering of z-scored delta radiomic
features (n=244) in all mice. Treatment groups and the class of each delta radiomic variable are indicated. (C) Representative
lung microCT images and matching density-masked lobes of nintedanib- and vehicle-treated mice with bleomycin-induced
lung fibrosis at pre- and post-treatment level. (D) Lung tissue density expressed as mean Hounsfield unit (HU) intensity post-
treatment. Unpaired Student's t-test was used to compare the groups. (E) Heatmap showing the expression profiles of the
combined set of DE proteins (n=556) in cluster 1 and cluster 2 compared to vehicle-treated mice. Log2-transformed protein
expression values were z-scored. (F) Venn diagram depicting the number of differentially expressed proteins in cluster 1
(n=414) and cluster 2 (n=169) compared to the vehicle group. Selected DE proteins unique to cluster 1 or cluster 2 with

functions implicated in disease pathophysiology are denoted.

Delta radiomic phenotypes reflect differences in molecular response to antifibrotic treatment

To describe the underlying biology of the two delta radiomic clusters in closer detail, we analyzed the
differences on a molecular and cellular level. On protein level, 386 proteins were differentially
regulated between the two clusters (Figure 2A, Supplementary Table 8). Gene Ontology (GO)
mapping of the downregulated proteins (n=269) revealed enrichment of terms related to pro-fibrotic
activity, including extracellular matrix (ECM) organization, regulation of cell growth, and fibroblast
proliferation (Figure 2B, Supplementary Table 9). In contrast, the upregulated proteins (n=117) were
enriched for pathways related to wound healing and tissue regeneration, including epithelial cell
migration and hemostasis (Figure 2B, Supplementary Table 10).

Furthermore, targeted activity analysis of pathways known to be modulated by nintedanib, including
extracellular matrix (ECM) organization, receptor tyrosine kinase (RTK) signaling, and cytokine
signaling 3°, revealed more extensive pathway inhibition in cluster 1 (Figure 2C). Whereas most targets
involved in ECM organization (e.g. COL5A1, COL12A1, TNC) and remodeling (e.g. MMP2, MMP14,
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TIMP2, LOX) were downregulated in cluster 1 compared to vehicle, their expression was less changed
in cluster 2. Similarly, proteins involved in RTK (e.g. SPP1, STAT1, AKT2, MAPK7, MAPK13) and cytokine
signaling (IL6, IRAK1, IRAK2, and PIK3R2) showed higher suppression in cluster 1 than cluster 2. To
independently validate our proteomics results, we performed quantitative PCR of selected gene
targets of nintedanib. Aligning with the proteomic observations, we found significant (p<0.05,
unpaired Student’s t-test) suppression of pro-fibrotic (Collal, Col3al, Fnl), pro-inflammatory (//6,
Spp1), and nintedanib-targeted (Tgfb1, Cxcl1, Tnf, Cd40l) transcripts in cluster 1 compared to cluster
2 (Supplementary Figure 2).

Preclinical studies demonstrated that nintedanib inhibits myofibroblast differentiation %2, cell
proliferation 23, and macrophage activation 3¢, thereby promoting regeneration of alveolar epithelial
cells. To interrogate the cluster-specific effects of nintedanib on the cellular level, we performed cell
type deconvolution analysis of our proteomics data as described in *°. This technique quantifies the
enrichment of single cell RNA-sequencing (scRNA-seq)-derived cell type marker signatures in bulk cell
analysis data such as proteomics or transcriptomics, allowing to estimate cell type frequency changes
between two conditions. Deconvolution revealed lower levels of myofibroblasts, interstitial
macrophages, and KI-67+ proliferating cells along with a higher fraction of alveolar type Il (AT2) and
type | (AT1) lung epithelial cells in cluster 1 compared to cluster 2 (Figure 2D). Tissue
immunofluorescence staining for the myofibroblast marker a-SMA together with the AT1 marker
Podoplanin (PDPN) and the AT2 marker proSP-C confirmed a significant (p=0.019, Mann-Whitney U
test) lower abundance of a-SMA+ myofibroblast infiltrates in fibrotic regions in samples of cluster 1
compared to cluster 2 (Figure 2E-F).

Taken together, we found that delta radiomics-defined treatment sub-clusters exhibited distinct
molecular and cellular characteristics, suggesting a higher degree of response to nintedanib in cluster
1.
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Figure 2. Delta radiomic phenotypes reflect molecular response to antifibrotic treatment. (A) Volcano plot of the DE proteins
between clusters 1 and 2. Proteins with log2FC>0.3 and p<0.05 were considered significantly different. Down- and
upregulated proteins are highlighted in blue and red, respectively. (B) GO pathway analysis of the down- and upregulated
DE proteins. Terms marked with an asterisk are of cellular compartment (CC) ontology, all others are of biological process
(BP) ontology. (C) Heatmap of DE proteins included in Reactome pathways “extracellular matrix organization”, “receptor
tyrosine kinase signaling”, and “cytokine signaling”, and their expression in clusters 1 and 2 compared to vehicle-treated
mice. (D) Analysis workflow and bar chart depicting the results from cell type deconvolution analysis. The change of the
indicated cell type signature between clusters 1 and 2 is expressed as signed log10 enrichment p-value. (E) Representative
immunofluorescence stainings of fibrotic regions in clusters 1 and 2. Images show nuclei (DAPI), AT2 cells (proSP-C),
myofibroblasts (a-SMA), and AT1 cells (PDPN). Regions are 500x500 pum in size, scale bar 100 um. (F) Percentage of a-SMA+
and proSP-C+ cells in fibrotic regions of cluster 1 and cluster 2 samples. Mann-Whitney U-test was used to compare the
groups.

Delta radiomic features reflect changes in disease-relevant molecular pathway activity

Having established that delta radiomic phenotypes are able to characterize the extent of molecular
response to nintedanib treatment, we next investigated the contribution of individual features to non-
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invasively convey pathway-specific molecular information. To do so, we first identified features
promoting cluster separation by analysis of univariate variable importance, resulting in 54 variables
with a classification score>0.90 (Figure 3A, Supplementary Figure 3A-C). For each of these features,
we then established radioproteomic association modules (n=54) by determining the respective
correlating protein sets (Spearman’s |p|20.6, p<0.05) in a sample-matched, cluster-independent
approach. Pathway annotation of positively or negatively correlated proteins revealed significant
enrichment of Reactome terms for 45 features, covering 367 unique pathways (Figure 3B,
Supplementary Table 11). These findings were replicated through GO:BP database annotation
(Supplementary Figure 3D, Supplementary Table 12). Importantly, subsets of association modules
were highly distinctive towards specific disease pathophysiology-related pathway activity, including
ECM remodeling, cell cycle activity, wound healing, or metabolic processes. K-means sub-clustering of
nintedanib-treated samples on features positively correlating with ECM organization (n=8) or
hemostasis (n=7) reproduced the original two clusters, thereby indicating suppression of ECM
remodeling as well as promotion of wound healing in cluster 1 (Supplementary Figure 3E).

To assess if delta radiomic features could provide further insights into changes at the cellular level, we
performed cell type deconvolution analysis of the radioproteomic association module-derived protein
sets (Spearman’s |p|20.6, p<0.05) (Figure 3C, Supplementary Table 13). Proteins were ranked by
logl0 p-value and weighted by correlation coefficient prior to entering deconvolution analysis.
Overall, we found 41 response-defining delta radiomic features with significant (p<0.01, Kolmogorov-
Smirnov test) cell type marker profile enrichment, accounting for 20 different cell types. Noticeably,
myofibroblasts, AT2 cells, as well as vascular and capillary endothelial cell gene signatures, showed
the most significant correlations. Typically, we observed an inverse correlative relationship between
pro-fibrotic and pro-regenerative cell types, as for instance myofibroblasts and AT2 cells. Utilizing
immunofluorescence quantification of a-SMA+ myofibroblasts, we validated the top positive and
negative correlating features, LLH_GLSZM_GLnonuniformity_norm (Pearson’s r=0.85, p=0.002) and
LHL mGLCM_MCC (Pearson’s r=-077, p=0.010), which demonstrated significant correlations with
myofibroblasts in fibrotic regions (Figure 3D-E).

Collectively, our results demonstrated that delta radiomic features capture changes of highly specific

molecular and cellular information, thereby highlighting their potential as surrogates for molecular
treatment response phenotypes.
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Figure 3. Delta radiomic features reflect changes in disease-relevant molecular pathway activity. (A) Schematic of analysis
workflow. Variable importance of each delta radiomic feature (n=244) for assignment of clusters was assessed by univariate
analysis, retaining only “response-defining” features (n=54) with classification score>0.90. Radioproteomic association
modules were compiled by assigning the set of highly-correlating proteins (Spearman’s | p|20.6, p<0.05) to each response-
defining feature. These modules were subsequently entered into pathway and cell type signature enrichment analysis. (B)
Heatmap displaying Reactome pathways enriched (GeneRatio=0.10, p.adj<0.05) in radioproteomic association modules for
positively (Spearman’s p20.6, p<0.05, red annotation) or negatively (Spearman’s p<-0.6, p<0.05, blue annotation) correlating
proteins. Only pathways enrichment in at least two radioproteomic association modules are displayed. Association modules
without enriched pathways following filtering are not displayed. (C) Heatmap displaying cell type signatures enriched
(p<0.01) in radioproteomic association modules for positively (Spearman’s p20.6, p<0.05, red annotation) or negatively
(Spearman’s p<-0.6, p<0.05, blue annotation) correlating proteins. Association modules without enriched cell type signatures
following filtering are not displayed. (D) Representative IF stainings of fibrotic lung regions exhibiting a low (left) and high
(right) fraction of a-SMA+ myofibroblasts. Relative expression of two selected delta radiomic features
(LLH_GLSZM_GLnonuniformity_norm and LHL_mGLCM_MCC) showing positive or negative enrichment for myofibroblast cell
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type signatures, respectively, is indicated. Images show nuclei (DAPI), AT2 cells (proSP-C), myofibroblasts (a-SMA), and AT1
cells (PDPN). Regions are 500x500 um in size, scale bar 100 um. Each data point represents the sample average fraction of
a-SMA+ cells of five representative fibrotic regions. (E) Scatter plot of the Pearson correlation coefficient between the a-
SMA+ cell fraction quantified by IF and the z-scored delta radiomic feature expression of LHL_mGLCM_MCC (left) and
LLH_GLSZM_GLnonuniformity_norm (right). The red line represents the linear model of the best fit, with the gray area
representing the 95% confidence intervals. The assigned cluster of each sample is indicated.

Delta radiomics stratifies nintedanib-treated PF-ILD patients according to lung function decline

We previously demonstrated the high transferability of radiomic signatures from experimental models
to human ILD ¥’. To assess whether our preclinical delta radiomic features could stratify nintedanib-
treated patients based on their extent of lung function decline, we retrospectively analyzed delta
radiomic feature profiles of 19 patients with PF-ILD that received antifibrotic therapy for a median of
12.245.7 months (mediantIQR) (Figure 4A). ILD etiologies included IPF (n=11), SSc-ILD (n=4),
hypersensitivity pneumonitis (HP, n=3), and drug-induced ILD (n=1) (Table 1).

Unsupervised k-means clustering on the preclinical response-defining delta radiomic feature set
(n=54) revealed three fairly robust (Jaccard indices>0.60) clusters C1-C3 within the nintedanib-treated
PF-ILD cohort (Figure 4B, Supplementary Figure 4A). These clusters stratified patients according to
their annual rate of lung functional decline (Figure 4C, Supplementary Figure 4B, Supplementary
Table 14). Within the observational period, cluster C1 showed a significantly (p<0.05, Mann-Whitney
U test) lower FVC decline (1.0£2.5%, -50+125 mL; medianzIQR) compared to cluster C3, which showed
a substantial decline (-9.0£3.5%, -4651+225 mL, medianzlQR). Cluster C2 presented with an
intermediate phenotype with a considerable FVC decline (-7.0£10.0%, -280+450 mL, medianIQR),
although not statistically different from clusters C1 and C3 (p>0.05, Mann-Whitney U-test). Notably,
no significant differences (p>0.05, Mann-Whitney U or Fisher’s Exact test) between the clusters were
observed for pre-treatment FVC levels (Figure 4D), disease etiology, sex, smoking status, disease
duration, presence of concomitant immunomodulatory therapy, or presence of pulmonary (arterial)
hypertension (Figure 4E, Supplementary Figure 4C).

Our preclinical results revealed subsets of radioproteomic association modules that were specifically
linked to ECM remodeling activity, the key molecular target of antifibrotic therapy °. To evaluate if
the corresponding delta radiomic features (n=8, positive enrichment) would lead to improved
stratification, we performed k-means clustering of the PF-ILD cohort using this feature subset (Figure
4F, Supplementary Figure 4D). The resulting two stable clusters S1 and S2 (Jaccard indices>0.75)
exhibited significant differences (p<0.05, Mann-Whitney U test) on delta FVC level, with cluster S1 (-
4.0+5.5%, -200+205 mL, medianIQR) displaying less functional decline compared to cluster S2 (-
10.5+5.5%, -5304+245 mL, median£IQR). Notably, this effectively redefined the previous intermediate
cluster C2 into either cluster S1 or S2, corresponding to low/intermediate and high FVC decline (Figure
4G, Supplementary Table 15). Similar to our previous findings, we found no significant differences
between clusters S1 and S2 for pre-treatment FVC levels (p>0.05, Mann-Whitney U-test) (Figure 4H)
or demographic and clinical variables (p>0.05, Fisher’s exact test) (Supplementary Figure 4E-F).
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Figure 4. Delta radiomics stratifies nintedanib-treated PF-ILD patients according to lung function decline. (A) Workflow
schematic. We retrospectively included patients (n=19 out of 359 patients) with PF-ILD undergoing treatment with
nintedanib at Bern University Hospital and the SWISS-IIP cohort fulfilling the inclusion criteria. For each patient, changes in
pulmonary function parameters and radiomic features were calculated between pre- and post-treatment. Unsupervised k-
means clustering of patients was performed on subsets of experimentally defined delta radiomic features, including
response-defining features (n=54) and features positively enriched for ECM remodeling pathway activity (n=8). The resulting
clusters were investigated for differences in clinical outcome parameters and patient demographics. (B) Heatmap displaying
the results of unsupervised k-means clustering of the z-scored response-defining delta radiomic feature set (n=54) in the PF-
ILD cohort. The feature class for each variable and the enrichment of the radioproteomic association module for Reactome
pathways is indicated. (C-D) Box plots comparing FVC (% pred and liters) delta and baseline level between clusters C1-C3. (E)
Associations of clusters C1-C3 with clinical and demographic parameters in the PF-ILD cohort. Fisher’s exact test was used to
compare the categorical variables. (F) Heatmap displaying the results of unsupervised k-means sub-clustering of the z-scored
features whose radioproteomic association modules are positively enriched with ECM remodeling Reactome pathway
activity (n=8) in the PF-ILD cohort. The feature class for each variable and the enrichment of the radioproteomic association
module for Reactome pathways is indicated. (G-H) Box plots comparing FVC (% pred and liters) delta and baseline level
between clusters S1 and S2.
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Discussion

Accurate monitoring of response to antifibrotic therapy is an urgent need for effective management
of patients with PF-ILD. However, differentiation between natural disease progression and treatment
failure is difficult by means of conventional PFT and HRCT assessment . Molecular response markers,
including peripheral blood biomarkers may improve precision, but these are still in early
developmental stages and may not fully reflect lung tissue phenotypes 7383, Over the last decade,
radiomics has emerged as a powerful tool for drug response monitoring and predicting outcomes in
various diseases, such as cancer, neurological disorders and recently also ILDs “°*2, The strength of
radiomics lies in its ability to provide integrated information on whole lung tissue pathology, conveying
both structural and molecular information 51743,

In this study, we employed an integrative radioproteomics approach to demonstrate that CT-based
delta radiomic profiling can non-invasively stratify the molecular response to nintedanib treatment in
a preclinical bleomycin-induced lung fibrosis model, which was not discernible through conventional
histogram-based CT measures. We discovered distinct radioproteomic association modules that
conveyed disease and drug-specific biological pathway activities and cell type signatures, including
ECM remodeling, hemostasis, and fibroblast activation, respectively. Evaluating the preclinical
response-defining delta radiomic features, in particular the ECM-associated features in a nintedanib-
treated PF-ILD cohort accurately stratified patients according to their extent of lung function decline.

Previous reports have shown the potential of CT-derived imaging characteristics for assessing the
response to antifibrotic treatment. Lung attenuation histogram-derived measures, for example, have
proven reliable in studying the efficacy of antifibrotic drugs in preclinical lung fibrosis models 32444,
However, their use as surrogate markers is mostly limited to macroscopic tissue pathologic properties,
falling short in resolving the underlying molecular landscape, as also evidenced in the current study.
In addition, these variables represent the summary of gray-level intensities not taking the spatial
interrelationship of voxels into account. This potentially limits their sensitivity to capture the subtle
changes induced by antifibrotic treatment in PF-ILD patients, who often present with morphologically
complex and heterogeneous disease patterns *’. In contrast, higher-order radiomic features, such
as texture features quantify the spatial variations in image characteristics, offering added information
for treatment monitoring. Utilizing a texture-based quantitative lung fibrosis (QLF) score Kim et al.
were able to stratify IPF patients undergoing experimental antifibrotic treatment according to the rate
of pulmonary function decline *¢. Furthermore, Devkota et al. showed that texture-derived nano-
radiomics and not conventional quantitative CT features captured treatment-induced changes of
cellular therapy in tumor xenografts .

The added and complementary value of radiomics arises from the integrated in-depth analysis of
tissue heterogeneity across spatial scales conveying pathophysiological information of the whole
organ. Imaging omics approaches, including radiogenomics, -transcriptomics, and -proteomics
investigate the association between macroscopic radiomic and microscopic molecular features
derived from genomic, transcriptomic, or proteomic profiling, respectively to define the underlying
biological basis of imaging phenotypes and derive non-invasive imaging surrogates for molecular
profiles . So far, imaging omics have nearly exclusively been studied in the context of cancer. For
instance, recent studies utilized radiogenomics to unravel intratumoral heterogeneity phenotypes in
multi-center breast cancer cohorts ¥°° and identified activated ferroptosis pathways to be associated
with high tumor heterogeneity . Moreover, radiogenomics has been employed to non-invasively
characterize the biological activities of specific breast cancer subclones ° .

In this study, we provide first evidence that delta radiomic signatures are sensitive towards antifibrotic
therapy-induced molecular changes in experimental fibrosing ILD. We add novelty by integrating delta
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radiomics with proteomics and utilizing the resulting association modules to functionally explain
different treatment response phenotypes on a pathophysiologic level. The ability to assess distinct
pathway and cellular activities non-invasively from standard-of-care HRCT scans could pave the way
towards digital molecular disease fingerprints that could inform precision medicine *%.

Our study has some limitations. First, in our preclinical studies, the absence of pre-treatment
proteome profiles in mice did not allow us to investigate the molecular landscape at therapy start,
which may have confounded the antifibrotic treatment response. However, unlike human disease,
inter-individual variance of lung fibrosis development in mice is considered to be low in presence of
high bleomycin doses >*™>*, Future validation of our findings in independent lung fibrosis models will
be necessary to ensure the broader applicability of our approach. Secondly, generalizability of our
findings to human ILD is limited by the pilot character and retrospective nature of our study. Although
we could not find statistically significant differences in potential confounders, we cannot rule out that
factors such as concomitant immunomodulatory therapy may have contributed to the effects
observed on delta radiomic level given the relatively small sample size. Furthermore, the lack of pre-
and post-treatment biosamples precluded molecular validations. Future prospective multi-center
studies which include the collection of liquid biopsies for molecular evaluation, together with the
inclusion of a placebo group will be necessary to fully elucidate the applicability of delta radiomic
signatures as a digital fingerprint for disease or drug-response monitoring. Nonetheless, our ability to
detect significant changes in the extent of pulmonary function decline based on preclinical functionally
described delta radiomic features in this small but well-defined cohort showcases the method’s
inherent potential. Finally, due to the small sample sizes, we could not yet assess the predictive
potential of delta radiomic profiles for treatment response, which will be the subject of future studies.

In conclusion, this study highlights delta radiomics as a non-invasive tool to stratify response to
antifibrotic treatment in experimental fibrosing ILD through its ability to decode tissue-underlying
molecular information. Its potential for transferability to human disease is a first step towards
precision medicine, facilitating individual therapy monitoring and risk-benefit assessment in the
context of lifelong therapies.
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Supplementary Figure 1. (A) Evaluation of the radiomic feature stability against inter- and intra-reader variation in the semi-
automated lung segmentation workflow. A representative transversal microCT image of a bleomycin-induced mouse lung is
displayed. Outlined are three semi-automatically delineated lung contours of two different examiners (examiner 1: red and
blue; examiner 2: yellow). For intra- and inter-operator ICC analysis, a total of n=16 randomly selected lung scans covering
different time points were segmented in this manner. (B) Boxplots displaying the distribution of the ICC coefficient per
radiomic feature class for inter-operator ICC analysis and (C) intra-operator ICC analysis. The red dashed line indicates the
set intraclass correlation coefficient (ICC) threshold at 0.75. The stacked bar charts summarize the relative frequency and
total number of robust and non-robust radiomic features. (D) K-means sub-clustering of z-scored delta radiomic features
(n=244) of nintedanib-treated mice (n=10) indicates two stable clusters (Jaccard coefficients>0.90, where 1 describes perfect
stability). (E) Heatmap summary of the k-means sub-clustering results (nintedanib-treated mice, n=10). Clusters and the
feature class of each variable are indicated. (F) Lung tissue density in cluster 1 and 2 expressed as mean Hounsfield unit (HU)
intensity post-treatment. Mann-Whitney U-test was used to compare the numerical variables. (G) Principal component
analysis of the phosphosite expression (n=20'043) profiles in subsets of randomly selected nintedanib- (n=5) and vehicle-
treated (n=5) mice. (H) Kinase activity enrichment analysis (KAEA) of differentially expressed phosphosites in nintedanib
against vehicle-treated mice. Under-active kinases colored in red, over-active kinases colored in blue. (1) Volcano plots of
protein expression in cluster 1 and (J) cluster 2 compared to vehicle-treated mice. Proteins with log2FC>0.30 and p<0.05
were considered to be differentially expressed. Down- and upregulated proteins are highlighted in blue and red, respectively.
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Supplementary Figure 2. Quantitative PCR of pro-fibrotic (Col1al, Col3al, Fnl), pro-inflammatory (//6, Ccl2, Spp1), and
nintedanib-targeted (Tgfb1, Timp1, Cxcl1, Ifng, ll1b, Tnf, Cd40Il) genes. Displayed is the mRNA fold change expression using
the 2-24Ct method in cluster 1 (blue) and cluster 2 (red) over vehicle-treated samples. Each data point represents the mean
of two technical replicates. Unpaired Student’s t-test was used to compare the continuous variables.
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Supplementary Figure 3. Identification of response-defining delta radiomic features and their correlation with disease-
relevant pathways. (A) Variable importance of each delta radiomic feature (n=244) for assighment of clusters was assessed
by univariate analysis, retaining only “response-defining” features (n=54) with classification score>0.90. (B) Histogram of the
univariate analysis results of the delta radiomic features (n=244) for classification of cluster assignment. Variables with
classification score>0.90 (red) were considered to have response-defining properties. (C) Heatmap displaying the results of
unsupervised hierarchical clustering of z-scored subset of response-defining delta radiomic features (n=54) in nintedanib-
treated mice (n=10). Cluster assignment and the feature class of each variable are indicated. (D) Heatmap displaying GO:BP
pathways enriched (GeneRatio>0.10, p-adjusted<0.05) in radioproteomic association modules for positively (Spearman’s
p20.6, p<0.05, red annotation) or negatively (Spearman’s p<-0.6, p<0.05, blue annotation) correlating proteins. Only
pathways enriched in at least two radioproteomic association modules are displayed. Association modules without enriched
pathways following filtering are not displayed. (E) Heatmaps displaying the results of unsupervised k-means clustering of z-
scored subsets of delta radiomic features positively enriched in ECM remodeling (n=8) and wound healing (n=7) in
nintedanib-treated mice (n=10), respectively. Cluster assignment of samples and Reactome pathway enrichment of variables
are indicated.
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Supplementary Figure 4. Delta radiomics stratifies the degree of pulmonary function decline in nintedanib-treated PF-ILD
patients. (A) Left: K-means cluster plot for z-scored preclinical response-defining delta radiomic features (n=54) of the PF-
ILD cohort (n=19) indicates three fairly robust clusters (Jaccard coefficients>0.60, where 1 describes perfect stability). Right:
Scatter plot showing the average silhouette coefficient versus the number of clusters for the k-means clustering input data.
The blue dashed line indicates the global optimum. (B) Box plots comparing age (years)* and disease duration (years)" at
baseline between clusters C1-C3. Mann-Whitney U test was used to compare the continuous outcomes. (C) Associations of
clusters C1-C3 with clinical and demographic parameters in the PF-ILD cohort. Fisher’s exact test was used to compare the
categorical variables. (D) Left: K-means cluster plot for z-scored delta radiomic features positively correlating with ECM-
remodeling (n=8) of the PF-ILD cohort (n=19) indicates two stable clusters (Jaccard coefficients>0.75, where 1 describes
perfect stability). Right: Scatter plot showing the average silhouette coefficient versus the number of clusters for the k-means
clustering input data. The blue and red dashed line indicate the global and local optimum, respectively. (E) Box plots
comparing age (years)” and disease duration (years)" at baseline between clusters S1 and S2. Mann-Whitney U test was used
to compare the continuous outcomes. (F) Associations of clusters S1 and S2 with clinical and demographic parameters in the
PF-ILD cohort. Fisher’s exact test was used to compare the categorical variables. *Age is defined as the period between birth
date and baseline HRCT scan. Disease duration is defined as the period between the first reported diagnosis of PF-ILD and
baseline HRCT scan.
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Supplementary Methods

Animal experimentation and ethics statement

The effects of antifibrotic treatment on delta radiomics were studied in mice with bleomycin-induced
lung fibrosis 22233255 To induce lung fibrosis, C57BL/6J-Rj mice (n=30, female, 8-weeks old, Janvier
Labs, Le Genest-Saint-Isle, France) were intratracheally instilled with 2 U/kg bleomycin sulfate
(Bleomycin Baxter 15’000 I.U., pharmacy of the canton Zurich, Switzerland) dissolved in saline on day
0. Treatment with 60 mg/kg nintedanib (n=15) or vehicle-only (deionized water, n=15) was
administered once daily by oral gavage (at a volume of 10 uL/g body weight) from day 7 to day 20 for
a total of 14 applications. Lung MicroCT scans were acquired of each animal pre- (day 7) and post-
treatment (day 21) for generation of radiomic feature sets. All mice were sacrificed on day 21 by CO;
inhalation (24 hours after the final treatment), followed by exsanguination of the vena cava and
transcardial perfusion of the lungs with 10 mL ice-cold Dulbecco’s phosphate-buffered saline (DPBS)
at a pressure of 100-120 cm H,0 to remove residual blood from the lung. The lung was excised, rinsed
with DPBS, dissected into the individual lobes, and processed according to the different assay
requirements. Mice were allocated to different study groups by complete randomization and
treatment was provided in a double-blinded manner. All mice were housed in groups of five with
access to food and water ad libitum in standard housing conditions with 12 hour light-dark cycles.
Animals were acclimatized for seven days prior to experimentation start. HydroGel® (ClearH20 Inc.)
and water-soaked standard rodent diet were provided to alleviate body weight loss. Paracetamol
analgesia was provided if mice showed signs of pain. Ethical approval for experimentation was granted
by the cantonal veterinary office (license no. ZH082/2021) and experimentation was performed in
strict compliance with Swiss animal protection laws and guidelines. Mice were excluded from analyses
if humane endpoints were reached (n=3) or if microCT scans exhibited presence of severe lung
abnormalities (n=3), including atelectasis or unilateral fibrosis development.

Patient cohort, clinical data, and ethics statement

In this study, 19 PF-ILD patients undergoing treatment with nintedanib at Bern University Hospital
were retrospectively selected from the Bern University Hospital registry and the SWISS-1IP cohort.
Approval for the study was granted by the local ethics committee (BASEC-ID: 2023-01920 [ILDALMO];
PB_2016_01524 [SWISS-IIP cohort]). Selection was performed based on the inclusion and exclusion
criteria stated below. A total of 359 patients diagnosed with (progressive) fibrosing ILD were screened
for fulfillment of the below criteria, of which 54 patients received nintedanib treatment for 26 months.
Of these 54 patients, 19 fulfilled also the remaining inclusion criteria.

Inclusion criteria
1. Diagnosis of PF-ILD determined by a senior attending physician according to established
guidelines %%
2. Treatment with nintedanib (2100 mg twice daily; min. 6 months at follow-up HRCT)
3. Availability of HRCT chest scans fulfilling the following criteria:
a. Pre-treatment HRCT (max. 1 month after treatment initiation)
Post-treatment HRCT (min. 6 months interval to pre-treatment HRCT)
Slice thickness in range 0.5 - 1.5 mm
Acquisition at tube voltage in range 80-130 kVp
One of the following reconstruction kernels: 170f, 180s, Br56f, Br56u, Br59f, LUNG,
FC55 (sharp), YB
f. Filtered-back projection as reconstruction algorithm
g. Scans acquired in full inspiration mode
4. Availability of PFT recordings fulfilling the following criteria:
a. Pre-treatment PFT (max. 1 month after treatment initiation)
b. Post-treatment PFT (min. 6 months interval to pre-treatment PFT)

© oo o
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Exclusion Criteria
5. Presence of secondary lung disease at times any HRCT scans and PFT recording (e.g., cancer,
COVID-19, pneumonia, bronchitis)
6. Concomitant treatment with other antifibrotic drugs during the observation period (e.g.
pirfenidone)

Demographic and clinical parameters were derived from electronic patient records, including age
(birth date), sex, disease etiology, date of diagnosis, date of nintedanib treatment start, presence of
pulmonary (arterial) hypertension, smoking status, concomitant medications, and dates of PFT and
HRCT scan recordings. The recorded PFT parameters included forced vital capacity (FVC) in % pred.
and liters. Changes in PFT recordings between pre- and post-treatment were expressed as delta
values. A Summary of patient demographics and clinical characteristics is provided in Table 1.

MicroCT image acquisition

Lung microCT images of each mouse were acquired at days 7 and 21 on a SkyScan 1176 (Bruker,
Kontich, Belgium) in free-breathing conditions under isoflurane anesthesia using respiratory gated
image acquisition. Anesthesia was induced by 5.0% and maintained by 1.5-2.5% isoflurane in air at
0.8-1.0 L/min flow rate to achieve a breathing rate of 0.7-0.9 breaths/s for an average scan time of 15
min. Animals were placed in supine position on the scanner bed with a styrofoam block mounted on
the diaphragm to allow monitoring of respiratory gating. Image acquisition was performed with the
following acquisition settings: tube voltage = 50 kV, tube current = 500 pA, filter = Al 0.5 mm, frame
averaging = on (3), rotation step = 0.7 degrees, sync with events = 50 ms, X-ray tube rotation = 360
degrees, exposure time = 77 ms, resolution = 35 um, slice thickness = 35 um. Images were
reconstructed with NRecon software (v.1.6.8.0; Bruker) using Feldkamp filtered back-projection
algorithm with the following parameters: misalignment compensation (scan-dependent manual
adjustment), smoothing = 1 with Gaussian kernel, ring artifact compensation = 4, and beam hardening
correction = 10%. Reconstructed images were converted to DICOM format.

CT segmentation of mouse lungs

Left and right lung lobes of mice were semi-automatically segmented by two readers (D.L., M.B.) using
MIM software (v.7.1.6, MIM Software Inc., Cleveland, Ohio, USA). Briefly, a seed was set within the
right and left lung using the “region grow” tool (upper limit = -600 HU, lower limit = -800 HU, tendril
diameter = 0.2 mm, fill holes = strong), which then automatically defined the vast majority of the lung
volumes in the 3D space. Manual contour alignment with the 2D/3D brush was used to correct
potentially misaligned areas. Finally, the smoothing function was used to remove sharp edges. For
medical diagnostics, the Hounsfield scale is usually normalized to 120 keV tube voltage, which could
technically not be achieved by our microCT instrument. To enable direct comparison between CT-
derived radiomic datasets from patients and mice, the reconstructed microCT images of mouse lungs
were pixel value corrected to match clinical specifications as previously described *’.

HRCT image acquisition

HRCT acquisition of human lungs was performed at Bern University Hospital or outpatient clinics.
Instrument and scan settings used are summarized in Supplementary Table 1. All HRCT scans were
evaluated by a senior radiologist (L.E.) at the Department of Diagnostic, Interventional, and Pediatric
Radiology of the Bern University Hospital for the presence of PF-ILD on a standard picture archiving
and communication system workstation and a radiology-grade display monitor.

CT segmentation of human lungs
Left and right lung lobes were semi-automatically segmented by two readers (C.M., L.K.) with the open
source software 3D Slicer (v.5.2.1). Pulmonary hilar vessels and atelectatic areas were manually
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excluded from the regions of interest. Manual contour corrections were only applied when spatially
limited areas did not coincide with the actual borders of the lungs.

Pulmonary function tests

Pulmonary function tests were performed by trained personnel at the Department of Pulmonary
Medicine of the Bern University Hospital or in outpatient clinics. All tests were performed following
established protocols >,

Radiomic feature calculation

Calculation of radiomic features was performed on merged structures of left and right lung lobes using
Z-Rad software (v.7.3.1, https://medical-physics-usz.github.io/, Department of Medical Physics,
University Hospital Zurich, Zurich, Switzerland), an image biomarker standardization initiative (I1BSI)-
compliant Python-based software ©, as described in . Mouse lungs were resized to isotropic voxels
of 0.15 mm. To achieve comparable voxel size in patients, human lungs were resized to isotropic voxels
of 2.75 mm, corresponding to an estimated 6000-fold volumetric difference 2. Both mouse and
human lung volumes were discretized to a fixed bin size of 50 HU in a range of -1000 HU to 200 HU.
From the resized volumes, 1’388 radiomic features were calculated per lung scan and time point (HU
limits: -1000 to 200 HU), corresponding to the following feature classes:

1. Histogram features (n=17)

2. Texture features (n=137): Gray Level Co-occurrence Matrix (n=52, GLCM), Neighborhood Gray
Tone Difference Matrix (n=5, NGTDM), Gray Level Run Length Matrix (n=32, GLRLM), Gray
Level Size Zone Matrix (n=16, GLSZM), Gray Level Distance Matrix (n=16, GLDZM), and
Neighboring Gray Level Dependence Matrix (n=16, NGLDM)

3. Wavelet features (n=1'232): Transformation of histogram and texture features following
coiflet filter decomposition

4. Shape features (n=2)

Histogram features carry information about distribution of voxel intensities using first-order statistics
(e.g. mean, standard deviation, skewness, kurtosis), describing tissue intensity characteristics. Texture
features define intra-tissue heterogeneity by calculating the spatial relationship between neighboring
voxel intensities ®1. Wavelet features compute histogram and texture features after wavelet
decompositions of the original image using eight different coiflet filters (high- to low-pass filters),
thereby concentrating the features on different frequency ranges 2. Shape features describe tissue
volume and size independent of intensity distribution.

Delta radiomic features describing the change of each feature between pre-and post-treatment, were
expressed as delta values: AFeature = Feature (t;) — Feature (t1) ?’. Lung densitometric information
was directly inferred from the radiomic histogram feature hist mean, which describes the lung
attenuation-based average HU intensity of the segmented lung volume.

Radiomic feature stability evaluation

Intraclass correlation coefficients (ICC) were calculated for each radiomic feature to evaluate stability
against inter- and intra-reader bias in the lung segmentation process. For inter- and intra-reader ICC,
two (D.L., M.B.) and one examiner(s) (D.L.), respectively, independently segmented 16 randomly
selected mouse lung scans, followed by radiomic feature calculation of the delineation structures. ICCs
were calculated using two-way mixed effect models with the consistency method in the “irr” R package
according to published reports . Only stable/reproducible features (n=1’130) with ICC>0.75 were
considered for further analyses for both mouse and human datasets ®*. Feature stability assessment
was performed on the mouse dataset due to the lesser degree of automation in lung segmentation.
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Proteomics

For comparative proteomics, the middle lobe of the right mouse lung was snap frozen in liquid
nitrogen and stored at -80°C until processing. Sample workup and data collection was performed by
trained personnel at the Proteomics and Mass Spectrometry Core Facility (PMSCF) at the University
of Bern using standard established protocols. All vehicle- (n=14) and nintedanib-treated (n=10)
samples were analyzed. One vehicle sample was excluded from analysis due sample workup issues.
Tissue homogenization was performed in 8M urea / 100 mM Tris (pH 8.0) buffer supplemented with
cOmplete protease inhibitor cocktail (Roche Diagnostics, Mannheim, Germany) using the FastPrep
system (MP Biomedicals). Following reduction, alkylation, and overnight protein precipitation with
ice-cold acetone, 10 pug of the cleaned protein mixture was digested into peptides using a two-step
digestion protocol (LysC for 2 h at 37 °C followed by Trypsin at room temperature overnight). Digests
were analyzed by nano-liquid chromatography on a Dionex Ultimate 3000 (ThermoFisher Scientific,
Reinach, Switzerland) through a CaptiveSpray source (Bruker, Bremen, Germany) with an end-plate
offset of 500 V, a drying temperature of 200 °C, and with the capillary voltage fixed at 1.6 kV. A volume
of 2 uL (200 ng) protein digest was loaded onto a pre-column (PepMap 100 C18,5 pum, 100 A, 300 um
diameter x 5 mm length, ThermoFisher) at a flow rate of 10 pL/min with 0.05% trifluoroacetic acid in
water / acetonitrile 98:2. After loading, peptides were eluted in back flush mode onto a in-house made
C18 CSH Waters column (1.7 pm, 130 A, 75 pm x 20 cm) by applying a 90-minute gradient of 5%
acetonitrile to 40% in water / 0.1% formic acid, at a flow rate of 250 nL/min. The timsTOF Pro
instrument (Bruker, Bremen, Germany) was operated either in data-dependent acquisition (DDA) or
data-independent (DIA) mode using the Parallel Acquisition Serial Fragmentation (PASEF) option. The
mass range was set between 100 and 1700 m/z, with 10 PASEF scans between 0.7 and 1.4 V s/cm?.
The accumulation time was set to 2 ms, and the ramp time was set to 100 ms, respectively.
Fragmentation was triggered at 20’000 arbitrary units, and peptides (up to charge of 5) were
fragmented using collision induced dissociation with a spread between 20 and 59 eV. DDA data was
processed further with FragPipe software (v.17.0) using the lonQuant algorithm and filtering protein
identifications to a 1% false discovery rate (FDR) on the peptide level using the Percolator algorithm.
Furthermore, protein groups were filtered by the criterion that at least two different razor peptide
sequences were identified as evidence for the existence of the protein group. From the DDA data, a
spectral library was built with the FragPipe software. This library was used to identify and quantify
proteins with the DIA data using standard parameters in Spectronaut 16 software (Biognosys,
Schlieren, Switzerland). Protein names (Uniprot IDs) were converted to Entrez IDs and Gene Symbols
using “uniprot.ws” and “annotationDbi” R packages. Protein names without matching Entrez Gene ID
were dropped, resulting in a final set of 7’7006 proteins.

Phosphoproteomics

For phosphoproteomics, the middle lobe of the right mouse lung was snap frozen in liquid nitrogen
after collection and stored at -80°C until processing. Sample workup and data pre-processing was
performed by trained personnel at the Proteomics and Mass Spectrometry Core Facility (PMSCF) at
the University of Bern using standard established protocols. Randomly selected subsets of vehicle-
(n=5) and nintedanib-treated (n=5) were analyzed. A titanium dioxide phosphopeptide enrichment
workflow 28 with subsequent DDA liquid chromatography tandem mass spectrometry (LC-MS) analysis
on the same instrument and parameter settings as described above was applied. Samples were
searched and quantified with FragPipe ® (v.18.0, MSFragger version 3.5, Philosopher version 4.4.0,
lonQuant version 1.8.0) using the following parameters: swissprot °® Mus musculus database (release
2022 _01) with isoforms and common contaminants; 20 ppm and 0.05 Da mass tolerance for
precursors and fragment, respectively; search enzyme trypsin with max 3 allowed missed cleavages;
fix modification: carbamidomethylation of cysteine; variable modifications (altogether max
4/peptide): methionine oxidation of methionine (max 3/peptide), phosphorylation of serine,
threonine and tyrosine (max 3/peptide) and protein N-terminal acetylation. Peptide forms normalized
with the variance stabilization ®’ normalization method are reported as Norml, along FragPipe’s
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MaxLFQ and lonQuant’s Fragl abundance measures. The intensities of peptide forms were combined
as protein phosphosite locations by summing the corresponding contributions.

Kinase activity enrichment analysis

Differential expression of phosphosites and subsequent kinase activity enrichment analysis was
performed as described in 2. First, the phosphosites’ missing values were imputed using a left-
censored Gaussian replacement method if there was more than 1 missing value in a group of replicate,
and a maximum likelihood estimation otherwise . A moderated t-statistic ®® was then calculated for
each phosphosite, and used as the ranking metric for the Kinase Activity Enrichment Analysis (KAEA)
tool 2. KAEA was then applied on the ranked phosphosite list and reversed ranked list using the
included mouse kinase substrate database. SetRank set p-value and FDR cutoff were set to 0.01 and
0.05, respectively.

Differential protein expression analysis

Differential expression of proteins between groups of interest was calculated in R using the “limma”
package according to standard guidelines . At first, DIA-based Spectronaut protein expression
intensities were log,-transformed. Then, log; fold changes were calculated as contrasts by application
of a linear model using robust regression for each protein. Finally, estimated coefficients and standard
errors for the given set of contrasts were calculated for each protein, followed by Empirical Bayes
smoothing of standard errors. Proteins with log,FC>0.3 (p<0.05), corresponding to 23% mean
expression change, were considered as statistically significant.

Gene expression analysis

RNA was isolated from blood-free cranial lobes of the right mouse lung stored in RNAlater
(ThermoFisher Scientific). Tissues were mechanically homogenized with the Tissuelyser Il instrument
(Qiagen, Hombrechtikon, Switzerland), followed by total RNA isolation with the RNeasy Tissue Mini
Kit (Qiagen, Hombrechtikon, Switzerland). Isolated RNA was reverse-transcribed into cDNA using the
Transcriptor First Strand cDNA Synthesis Kit (Roche Diagnostics, Switzerland). Expression of fibrotic
(Col1a1, Col3a1, Fn1), inflammatory (Ccl2, 16, Spp1), and nintedanib-related (Tgfb1, Timp1, Tnf, Cxcl1,
Cd40l, 111b) genes was analyzed by SYBR Green quantitative PCR using GoTaq Green Master Mix kit
(Promega) as described in %°. Expression of mRNA was expressed to delta Ct values (Ct [gene of
interest] — Ct [reference gene]) with Rplp0 as reference gene. Lower delta Ct values indicate higher
target gene expression. Fold changes relative to vehicle-treated samples were calculated using the
delta-delta Ct method. The list of the primer pairs used in this study is provided in Supplementary
Table 2.

Immunofluorescence and microscopy

Formalin-fixed paraffin-embedded lung sections (3 um thickness) were cut on a HistoCore Multicut
microtome (Biosystems Switzerland AG, Muttenz, Switzerland). Following deparaffinization, heat-
mediated antigen retrieval with R-Universal Buffer (Cat. AP0530-500, Aptum Biologics) was performed
for 15 min at 95°C. After incubation for 25 min at RT for cooling, blocking of unspecific antibody
staining was performed with 5% BSA in antibody diluent (Cat. $3022, Dako) for 1 h at RT. Primary
antibodies dissolved in antibody diluent (Cat. S3022, Dako) were then applied and incubated overnight
at 4°C. Next, samples were incubated with secondary antibodies dissolved in PBS supplemented with
1% BSA for 2 h at RT. All antibodies and the dilutions used are listed in Supplementary Table 3. Finally,
cell nuclei were counterstained with 4’,6-diamidino-2-phenylindole (DAPI) for 10 min at RT. The
sections were then scanned in immunofluorescence mode on a AxioScan.Z1 slide scanner (Zeiss,
Feldbach, Switzerland) using a Plan-Apochromat 20x/0.8 M27 objective. Cells positively stained for a-
SMA were quantified using the “Positive cell detection” tool of the open source software QuPath
(v.0.4.0) at default parameter settings and detection thresholds 800, respectively 7°. From each
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sample, five representative areas at 500x500 um were quantified and the average was used for
statistical analyses.

Unsupervised clustering

All variables were z-scored ([x-mean]/standard deviation) prior to analysis (“clusterSim” R package).
Unsupervised agglomerative hierarchical (using Euclidean distance with complete linkage method) or
k-means clustering was performed to identify subgroups of mice or patients with similar delta
radiomic feature patterns or proteomic profiles using base R functions. Clusterability was evaluated
by Hopkin’s statistic H, with H>0.5 indicating clusterability (“hopkins” R package) ’*. The optimal
number of clusters was determined by average silhouette statistics inspecting k clusters between 2
and 5, selecting the optimal k based on global or local optimum for separation (“factoextra” R
package). Stability of clusters was assessed by Jaccard bootstrapping with n=1'000 iterations (“fpc” R
package) 2.

Variable importance evaluation

To estimate the importance of each delta radiomic feature for the classification produced by
unsupervised clustering, we calculated filter-based variable importance using the “caret” package ”
and retained features with classification score>0.9. Features (n=54) most important for differentiating
clusters 1 and 2 in nintedanib-treated mice are listed in Supplementary Table 4.

Gene Ontology and Reactome Pathway enrichment

Curated lists of DE or highly-correlated proteins were used to perform Gene Ontology (GO) or
Reactome pathway enrichment analysis using the R packages “clusterProfiler” and “ReactomePA”,
respectively 747, retaining results after false discovery rate adjustment (p<0.05). In case of
enrichment of proteins highly-correlated with delta radiomic features, proteins with positive and
negative correlation coefficients were entered separately into GO or Reactome pathway enrichment
analysis. To visualize and interpret results, the GeneRatios of positive and negative enriched pathways
were transformed into matrices with delta radiomic features as columns and pathways terms as rows.
Then, results with GeneRatios<0.10 were dropped (set to zero), and only pathway terms enriched
(GeneRatio=0.10) in at least two delta radiomic features were retained. Subsequently, the tables
containing positive and negative enriched delta radiomic pathway pairs were aggregated, and rows
and columns without significantly enriched results were removed, followed by visualization with the
“pheatmap” R package.

Correlation analysis

Spearman’s rank correlation coefficient rho was calculated between selected delta radiomic features
and the log2-transformed expression intensity of every protein using base R packages, retaining only
proteins with p<0.05 and p>0.6 for further analysis. Pearson’s correlation coefficient r was calculated
between selected delta radiomic features and the fraction of a-SMA positive cells using base R
packages.

Cell Type Signature Enrichment Analysis

To infer relative cell type frequency changes between two groups from proteomics data, we applied
sighature enrichment analysis as described in 3%31, utilizing their published dataset. Cell type
signatures were defined as sets of genes with cell-type specific gene expression of log2 fold
change>0.3 and adjusted p<0.05 (Supplementary Table 5). For each cell type, we then tested for the
enrichment in a ranked list of DE proteins (log2 fold changes) or correlation coefficients (weighted by
-log10 p-value) using the Kolmogorov-Smirnow test. Positive and negative signed enrichment scores
(-log10 p-values signed by effect size) reflect relative depletion and enrichment of the respective cell
type, respectively. To visualize and interpret cell type signatures enriched in the the sets of proteins
highly-correlation (Spearman’s |p|20.6, p<0.05) with delta radiomic features, the signed enrichment
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scores of each variable were transformed into a matrix with delta radiomic features as columns and
cell types as rows. Enriched results with enrichment score<2 were dropped (set to zero), followed by
removal of rows and columns without enriched entries, and visualization with the “pheatmap” R
package.

Association analysis with clinical parameters

Association analyses were performed to investigate associations of patient delta radiomics-derived (k-
means) clusters with clinical parameters. Mann-Whitney U test was used for comparison of numerical
variables, and Fisher’s exact test was used to compare categorical variables.

Statistical analyses

All statistical analyses were performed in R (v.4.3.1.) environment. For all analyses, a p<0.05 was
considered statistically significant unless stated otherwise. The following R packages were used:
"readx!", "clusterSim", "dplyr", "tidyverse", "xlsx", "viridis", "hopkins", "seriation", "factoextra",
"RColorBrewer", "pheatmap", "fpc", "caret", "rstatix", "pROC", "ggpubr", "ggpmisc", "ggrepel",
"psych"”, "heatmaply", "UniProt.ws", "AnnotationDbi", "org.Mm.eg.db", "limma", "clusterProfiler",
"ReactomePA", "parallel", "doParallel", "msigdbr", "scales", "DOSE".

Data Visualization
Figures were created in Adobe lllustrator (v.28.2) and partially contain graphics or illustrations from
Adobe Stock and BioRender.com accessed through the academic licenses of the University of Bern.
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Supplementary Tables

Supplementary Table 1. Summary of HRCT scan acquisition parameters.

CT Parameter Description

Manufacturer(s)* Siemens, Siemens Healthineers, Philipps, Toshiba
Acquisition mode Inspiration (breath hold)

Position head first-supine (HFS), feet first-supine (FFS)

Slice thickness (mm) 1 [range 0.5-1.5]

Reconstruction kernels 170f, 180s, Br56f, Br56u, Br59f, LUNG, FC55 (sharp), YB
Tube voltage (kVp) 120 (range 80-130)

*HRCT scanner models included SOMATOM Definition Flash (Siemens), SOMATOM Definition Edge (Siemens),
SOMATOM Scope (Siemens) NAEOTOM Alpha (Siemens Healthineers), Acquilion (Toshiba), Brilliance 64
(Philips)

Supplementary Table 2. Mouse primer sequences used for quantitative PCR reactions.

Gene Forward Primer (5’ > 3’) Reverse Primer (5’ > 3’)

Ccl2 CCA CTC ACC TGC TGC TAC TCA T TGG TGA TCC TCT TGT AGC TCT CC
Cd4ol CAC ACG TTG TAA GCG AAG CC ACC GTC AGC TGT TTC CCA TT
Collal GAT GAC GTG CAA TGC AAT GAA CCC TCG ACT CCT ACA TCT TCT GA
Col3a1 AGC TTT GTG CAA AGT GGA ACC ATA GGA CTG ACC AAG GTG GC
Cxcl1 ACT CAA GAA TGG TCG CGA GG GTG CCA TCA GAG CAG TCT GT

Fn1l ATG TGG ACC CCT CCT GAT AGT GCC CAG TGA TTT CAG CAA AGG
11b TGC CAC CTT TTG ACA GTG ATG TGA TGT GCT GCT GCG AGA TT

16 TGA TGG ATG CTA CCA AAC TGG GGT ACT CCA GAA GAC CAG AG
Rpip0 GCA GGT GTT TGA CAA CGG CAG GAT GAT GGA GTG TGG CAC CGA
Spp1 AGT GAC TGA TTC TGG CAG CTC ATC TGG GTG CAG GCT GTA AA
Tgfb1 CTG GAG TTG TAC GGC AGT GG GTT CAT GTC ATG GAT GGT GCC
Timp1 GGC ATC TGG CAT CCT CTT GT CGC TGG TAT AAG GTG GTC TCG
Tnf ACC ACG CTC TTC TGT CTA CTG ACT GAT GAG AGG GAG GCC ATT

Supplementary Table 3. Primary and secondary antibodies used for immunofluorescence staining.

Description Target Reactivity Host Company Label Catalog  Dilution
Primary Ab a-SMA ms (hu, rt) ms Sigma-Aldrich unconjugated A5228 1:1500
Primary Ab proSP-C ms (hu, rt) rb Merck-Millipore  unconjugated AB3786  1:200
Primary Ab Podoplanin  ms gt R&D Systems unconjugated AF3244  1:200
Secondary Ab  IgG ms dk Invitrogen Alexa488 A21202  1:250
Secondary Ab  IgG rb dk Invitrogen Alexa568 A10042  1:250
Secondary Ab  IgG gt dk Invitrogen Alexa647 A21447  1:250

Abbreviations: ms, mouse; hu, human; rt, rat; rb, rabbit; gt, goat. Abbreviation: Ab, antibody.

Supplementary Table 4. Variable importance selected delta radiomic features used to classify treatment

response.
#  Feature Name Feature Class  Feature Subclass Filter Score
1 GLSZM_smallZone_lowGL_emp Texture Texture none 0.92
2 LHL GLSZM_GLvar Wavelet Texture-derived LHL 0.96
3 center_mass_shift Shape Shape none 1.00
4 LLL hist_skewness Wavelet Intensity-derived LLL 1.00
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5  HLH_mGLCM_clust_prominence Wavelet Texture-derived HLH 0.92
6 LHL GLRLM_entropy Wavelet Texture-derived LHL 0.92
7  HHL_GLRLM_runPercentage Wavelet Texture-derived HHL 0.92
8 LHH_GLRLM_shortRunEmp Wavelet Texture-derived LHH 1.00
9 LLH _mGLCM_IMC1 Wavelet Texture-derived LLH 0.96
10 HLL_hist_energy Wavelet Intensity-derived HLL 0.96
11 LHH_mGLRLM_runPercentage Wavelet Texture-derived LHH 0.92
12 LLL GLSZM_largeZone_highGL_emp Wavelet Texture-derived LLL 0.92
13 LHL mGLCM_IMC2 Wavelet Texture-derived LHL 1.00
14 [LHL mGLCM_IMC1 Wavelet Texture-derived LHL 1.00
15 HLH_GLRLM_entropy Wavelet Texture-derived HLH 0.96
16 LLH_mGLCM_MCC Wavelet Texture-derived LLH 0.92
17 LLH_mGLCM_clust_prominence Wavelet Texture-derived LLH 1.00
18 HLL_mGLCM_correlation Wavelet Texture-derived HLL 0.96
19 HLH_hist_energy Wavelet Intensity-derived HLH 0.92
20 LHL mGLCM_McCC Wavelet Texture-derived LHL 1.00
21 LLL hist_coeffOfvar Wavelet Intensity-derived LLL 1.00
22 HHL_mGLCM_IMC1 Wavelet Texture-derived HHL 0.92
23 LLH GLSZM_ZSnonuniformity Wavelet Texture-derived LLH 0.96
24 LLL GLSZM_Glvar Wavelet Texture-derived LLL 0.96
25 LHL _GLDZM_ZSnonuniformity_norm Wavelet Texture-derived LHL 0.92
26 LHL mGLCM_homogeneity_norm Wavelet Texture-derived LHL 0.92
27 LLH_hist_energy Wavelet Intensity-derived LLH 1.00
28 LLL hist_kurtosis Wavelet Intensity-derived LLL 0.92
29 LLH GLSZM_GLnonuniformity_norm Wavelet Texture-derived LLH 1.00
30 LLL hist_percentile90 Wavelet Intensity-derived LLL 0.92
31 LHH_mGLCM_IMC2 Wavelet Texture-derived LHH 1.00
32 L[HL GLCM_McCC Wavelet Texture-derived LHL 0.92
33 HHH_GLCM_IMC1 Wavelet Texture-derived HHH 1.00
34 HHH_GLRLM_LRvar Wavelet Texture-derived HHH 1.00
35 GLSZM_smallZoneEmp Texture Texture none 0.98
36 LHH_mGLCM_IMC1 Wavelet Texture-derived LHH 1.00
37 HHH_mGLRLM_entropy Wavelet Texture-derived HHH 1.00
38 LHL_hist_energy Wavelet Intensity-derived LHL 1.00
39 LHH_mGLRLM_GLnonuniformity_norm Wavelet Texture-derived LHH 1.00
40 HHL_mGLRLM_entropy Wavelet Texture-derived HHL 0.96
41 L[HL_NGTDM_contrast Wavelet Texture-derived LHL 0.92
42 [LH _GLCM_MCC Wavelet Texture-derived LLH 0.92
43 LHL_GLSZM_ZSnonuniformity Wavelet Texture-derived LHL 0.96
44 HHH_NGTDM_busyness Wavelet Texture-derived HHH 1.00
45 HHH_mGLCM_MCC Wavelet Texture-derived HHH 1.00
46 HLH_GLSZM_ZSnonuniformity Wavelet Texture-derived HLH 1.00
47 LHH_GLCM_IMC1 Wavelet Texture-derived LHH 0.94
48 LHL_GLDZM_ZSnonuniformity Wavelet Texture-derived LHL 1.00
49 HHH_GLRLM_longRun_lowGL_emp Wavelet Texture-derived HHH 0.96
50 HHH_NGTDM_strength Wavelet Texture-derived HHH 1.00
51 HHH_NGTDM_complexity Wavelet Texture-derived HHH 1.00
52 LLH GLSZM_entropy Wavelet Texture-derived LLH 0.92
53 HHH_GLDZM_largeDistance_highGL_emp  Wavelet Texture-derived HHH 0.92
54 [HH GLCM_MCC Wavelet Texture-derived LHH 0.96

Abbreviations: GLCM = Gray Level Co-occurrence Matrix, NGTDM = Neighborhood Gray Tone Difference
Matrix, GLRLM = Gray Level Run Length Matrix, GLDZM = Gray Level Distance Matrix and NGLDM =
Neighboring Gray Level Dependence Matrix.

Supplementary Table 5. Cell type signature marker table used for cell type signature enrichment in
bulk proteomics data. Data was adapted from 3°. Only markers exhibiting |log,FC|>0.3 and FDR-
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adjusted p<0.05 were considered. Each entry is described by gene symbol, p-value, average log,FC,
percentage of cells where the gene is detected in the cluster for the assigned cluster (pct.1) and in the
other cluster(s) (pct.2), adjusted p-value, cell type annotation, and meta cell type annotation. Table
provided as XLSX file. Data available in Supplementary XLSX File.

Supplementary Table 6. Differentially expressed proteins in nintedanib-treated mice in cluster 1
compared to vehicle-treated mice. The list includes all identified 7006 proteins. Only proteins with
|log2FC|>0.3 and p<0.05 were considered for analysis. Each entry is described by log,FC, confidence
intervals, average expression, t-value, p-value, B-value, Entrez ID, and gene symbol. Table provided as
XLSX file. Data available in Supplementary XLSX File.

Supplementary Table 7. Differentially expressed proteins in nintedanib-treated mice in cluster 2
compared to vehicle-treated mice. The list includes all identified 7006 proteins. Only proteins with
|log2FC|>0.3 and p<0.05 were considered for analysis. Each entry is described by log,FC, confidence
intervals, average expression, t-value, p-value, B-value, Entrez ID, and gene symbol. Table provided as
XLSX file. Data available in Supplementary XLSX File.

Supplementary Table 8. Differentially expressed proteins in nintedanib-treated mice in cluster 1
compared to nintedanib-treated mice in cluster 2. The list includes all identified 7006 proteins. Only
proteins with |log,FC|>0.3 and p<0.05 were considered for analysis. Each entry is described by log,FC,
confidence intervals, average expression, t-value, p-value, B-value, Entrez ID, and gene symbol. Table
provided as XLSX file. Data available in Supplementary XLSX File.

Supplementary Table 9. Results of Gene Ontology enrichment analysis of differentially expressed,
downregulated proteins (log,FC<-0.3, p<0.05) of nintedanib-treated mice in cluster 1 compared to
nintedanib-treated mice in cluster 2. Each entry is described by ontology (BP, CC, or MF), GO identifier,
pathway description, GeneRatio, BgRatio, p-value, FDR-adjusted p-value, g-value, and gene symbols.
Table provided as XLSX file. Data available in Supplementary XLSX File.

Supplementary Table 10. Results of Gene Ontology enrichment analysis of differentially expressed,
upregulated proteins (log,FC>0.3, p<0.05) of nintedanib-treated mice in cluster 1 compared to
nintedanib-treated mice in cluster 2. Each entry is described by ontology (BP, CC, or MF), GO identifier,
pathway description, GeneRatio, BgRatio, p-value, FDR-adjusted p-value, g-value, and gene symbols.
Table provided as XLSX file. Data available in Supplementary XLSX File.

Supplementary Table 11. Result of Reactome enrichment analysis of the 54 radioproteomic
association modules separated by annotation of proteins positively (Spearman’s p>0.6, p<0.05) and
proteins negatively (Spearman’s p<-0.6, p<0.05) correlating with the preclinical response-defining
delta radiomic feature. Each entry is described by delta radiomic feature name, protein subset entered
into enrichment analysis, Reactome identifier, pathway description, GeneRatio, BgRatio, p-value, FDR-
adjusted p-value, g-value, gene symbols, and count. Data available in Supplementary XLSX File.

Supplementary Table 12. Result of Gene Ontology - Biological Process (GO:BP) enrichment analysis of
the 54 radioproteomic association modules separated by annotation of proteins positively
(Spearman’s p>0.6, p<0.05) and proteins negatively (Spearman’s p<-0.6, p<0.05) correlating with the
preclinical response-defining delta radiomic feature. Each entry is described by delta radiomic feature
name, protein subset entered into enrichment analysis, GO identifier, pathway description,
GeneRatio, BgRatio, p-value, FDR-adjusted p-value, g-value, gene symbols, and count. Data available
in Supplementary XLSX File.
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Supplementary Table 13. Results of cell type enrichment analysis of the 54 radioproteomic association
modules. Proteins correlating (Spearman’s |p|>0.6, p<0.05) with delta radiomic features were ranked
by log10 p-value and weighted by correlation coefficient prior to entering into deconvolution analysis.
Each entry is described by delta radiomic feature name, p-value, fold change difference, sighed log10
enrichment p-value, cell type, and enrichment trend. Data available in Supplementary XLSX File.

Supplementary Table 14. Associations of patients’ groups resulting from unsupervised clustering on

preclinical treatment response-defining delta radiomic features (n=54) with clinical parameters

Cluster p-value
Characteristic C1 C2 C3 Cluvs. Cluvs. C2 vs.
(n=3) (n=10) (n=6) Cc2 Cc3 Cc3
Baseline
Age (years)’ 55.8 (+15.8) 66.5 (+13.5) 58.6 (+5.5) 0.573 0.905 0.181
Sex
Female 0 (0%) 2 (20%) 1(17%) >0.999 >0.999 >0.999
Male 3 (100%) 8 (80%) 5(83%)
Etiology
IPF 2 (67%) 6 (60%) 3 (50%)
SSc-ILD 1(33%) 1(10%) 2 (33%) 0.7063 >0.999 0.1706
HP 0 (0%) 3 (30%) 0 (0%)
Drug-induced ILD 0 (0%) 0 (0%) 1(17%)
Disease duration 7.2 (£5.3) 9.6 (+32.2) 38.4 (+64.6) 0.937 0.381 0.492
(months)* ‘ ‘ ‘
Smoking status
Never 1(33%) 2 (20%) 3 (50%)
Previous 2 (67%) 7 (70%) 3 (50%) >0.999  >0.999  0.7902
Current 0 (0%) 1(10%) 0 (0%)
Pulmonary
hypertension® 0 (0%) 4 (40%) 2 (33%)
A4 . .
Yes 3 (100%) 6 (60%) ale7%) 049> 000 >0999
No
Immunomodulatory
therapy?®
Ves 1 (33%) 4 (40%) 1 (17%) >0.999 >0.999 0.5879
No 2 (67%) 6 (60%) 5 (83%)
FVC (% pred) 71.0 (£28.5) 70.0 (£14.5) 50.0 (+44.5)
. . 31
NA 0 (0%) 0(0%) 0(0%) 0866 0.905  0.313
FVC (liters) 3.010 (+0.920)  2.640 (+0.475)  2.015 (+2.310)
A 0 (0%) 0 (0%) 0 (0%) 0.937 >0.999 0.368
FEV: (% pred) 58.0 (+22.0) 73.0 (x11.0) 52.5 (+45.8)
NA 1(0%) 0 (0%) 0 (0%) 0.758  0.857 0.278
Dico (% pred) 44.0 (+6.0) 52.5 (+11.9) 45.0 (+10.0)
NA 1(0%) 0 (0%) 1 (0%) 0236 0.844  0.243
Delta
FVC (% pred) 1.0 (+2.5) -7.0 (+10.0) 9.0 (3.5)
A 0 (0%) 0 (0%) 0 (0%) 0.090 0.024 0.624
FVC (liters) -0.050 (+0.125)  -0.280 (+0.450)  -0.465 (+0.225)
112 .024 .32
NA 0(0%) 0 (0%) 0(0%) 0 0.024 0329
FEV; (% pred) 1.5 (+4.5) -4.0 (+6.8) -9.0 (+10.0)
NA 1 (0%) 0 (0%) 1(0%) 0.286 0.118  0.200
Di.co (% pred) 3.0 (+8.0) -6.0 (¥11.0) -13.0 (¥10.0)
NA 1 (0%) 5 (0%) 2 (0%) 0.381 0.267 0.461
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Data are presented as median (x interquartile range (IQR)) or n (%). Mann-Whitney U and Fisher’s exact tests
were used to compare the numerical and categorical variables, respectively. Abbreviations: IPF, idiopathic
pulmonary fibrosis; ILD, interstitial lung disease; SSc, systemic sclerosis; HP, hypersensitivity pneumonitis;
FVC, forced vital capacity; FEV1, forced expiratory volume in 1 s; DLCO, diffusing capacity of the lung for
carbon monoxide; P(A)H, pulmonary (arterial) hypertension. NA denotes missing values as n (%). *: Age at
time of baseline (pre-treatment) HRCT scan. T: disease duration was defined as the period (months) between
first reported diagnosis of PF-ILD in the patient records and the baseline (pre-treatment) HRCT scan. %: PH
was assessed by echocardiography or right heart catheterization. If right heart catheterization was
performed, mPAP>20 mmHg was considered diagnostic . § Immunomodulatory therapy included
prednisolone, mycophenolate mofetil, azathioprine, rituximab, tocilizumab, or combinations thereof and if
indicated was provided concomitant to nintedanib treatment.

Supplementary Table 15. Associations of patients’ groups resulting from unsupervised clustering on ECM

remodeling-associated delta radiomic features (n=8) with clinical parameters.

Cluster p-value
Characteristic S1 S2
(n=11) (n=8) S1vs.S2
Baseline
Age (years)” 58.3 (+16.1) 63.2 (17.6) 0.717
Sex
Female 2 (18%) 1(12%) >0.999
Male 9 (82%) 7 (88%)
Etiology
IPF 7 (64%) 4 (50%)
SSc-ILD 2 (18%) 2 (26%) 0.890
HP 2 (18%) 1(12%)
Drug-induced ILD 0 (0%) 1(12%)
Disease duration (months)* 12.0 (£32.2) 11.1 (£50.5) 0.717
Smoking status
Never 3(27%) 3 (38%)
Previous 7 (64%) 5 (62%) >0.999
Current 1(9%) 0 (0%)
Pulmonary hypertension*
Yes 2 (18%) 4 (50%) 0.3189
No 9 (82%) 4 (50%)
Immunomodulatory therapy®
Yes 3 (27%) 3 (38%) >0.999
No 8 (73%) 5 (62%)
FVC (% pred) 69.0 (+18.0) 64.5 (+37.0) 50.999
NA 0 (0%) 0 (0%)

FVC (liters) 2.630 (+0.845) 2.665 (+1.248) 0.778
NA 0 (0%) 0 (0%) '
FEV: (% pred) 71.0 (+23.8) 69.0 (+40.0) 0.859
NA 1(9%) 0 (0%) '
Dico (% pred) 50.8 (+10.8) 45.0 (+22.0) 0.557
NA 1(9%) 1(12%) '

Delta

FVC (% pred) -4.0 (£5.5) -10.5 (+5.5) 0.047
NA 0 (0%) 0 (0%) '

FVC (liters) -0.200 (+0.205) -0.530 (10.245) 0.035
NA 0 (0%) 0 (0%) )

FEV; (% pred) -3.0 (£3.0) -9.0 (7.5) 0.055
NA 1(9%) 1(12%) '

Di.co (% pred) -5.5(+14.8) -9.0 (¢7.0) >0.999
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NA 3 (27%) 5 (50%)

Data are presented as median (x interquartile range (IQR)) or n (%). Mann-Whitney U and Fisher’s exact tests
were used to compare the numerical and categorical variables, respectively. Abbreviations: IPF, idiopathic
pulmonary fibrosis; ILD, interstitial lung disease; SSc, systemic sclerosis; HP, hypersensitivity pneumonitis;
FVC, forced vital capacity; FEV1, forced expiratory volume in 1 s; DLCO, diffusing capacity of the lung for
carbon monoxide; P(A)H, pulmonary (arterial) hypertension. NA denotes missing values as n (%). *: Age at
time of baseline (pre-treatment) HRCT scan. T: disease duration was defined as the period (months) between
first reported diagnosis of PF-ILD in the patient records and the baseline (pre-treatment) HRCT scan. #: PH
was assessed by echocardiography or right heart catheterization. If right heart catheterization was
performed, mPAP>20 mmHg was considered diagnostic . § Immunomodulatory therapy included
prednisolone, mycophenolate mofetil, azathioprine, rituximab, tocilizumab, or combinations thereof and if
indicated was provided concomitant to nintedanib treatment.
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