
 

1 

Radioproteomics stratifies molecular response to antifibrotic treatment 
in pulmonary fibrosis 
 
David Lauer1,2,3, Cheryl Yael Magnin1,2, Luca Kolly1,2, Huijuan Wang1,2, Matthias Brunner1,2, Mamta 
Charbria4, Grazia Maria Cereghetti5, Hubert Gabryś6, Stephanie Tanadini-Lang6, Anne-Christine Uldry7, 
Manfred Heller7, Stijn E Verleden8, Kerstin Klein1,2, Adela-Cristina Sarbu1, Manuela Funke-Chambour2,9, 
Lukas Ebner5,10,11, Oliver Distler3, Britta Maurer1,2, Janine Gote-Schniering1,2,9 
 
1 Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, 
Switzerland. 2 Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, 
Bern, Switzerland. 3 Department of Rheumatology, Center of Experimental Rheumatology, University Hospital 
Zurich, University of Zurich, Zurich, Switzerland. 4 Department of Health Sciences and Technology, ETH Zurich, 
Zurich, Switzerland. 5 Department of Diagnostic, Interventional, and Pediatric Radiology, Inselspital, Bern 
University Hospital, University of Bern, Bern, Switzerland. 6 Department of Radiation Oncology, University 
Hospital Zurich, Zurich, Switzerland. 7 Proteomics & Mass Spectrometry Core Facility, Department for BioMedical 
Research (DBMR), University of Bern, Bern, Switzerland. 8 Department of ASTARC, University of Antwerp, 
Antwerp, Wilrijk, Belgium. 9 Department of Pulmonary Medicine, Allergology and Clinical Immunology, 
Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland. 10 Department of Radiology, Cantonal 
Hospital Lucerne, Luzern, Switzerland. 11 Institute for Radiology, Hirslanden Bern Klinik Beau-Site, Bern, 
Switzerland. 
 
 
Abstract  
 
Antifibrotic therapy with nintedanib is the clinical mainstay in the treatment of progressive fibrosing 
interstitial lung disease (ILD). High-dimensional medical image analysis, known as radiomics, provides 
quantitative insights into organ-scale pathophysiology, generating digital disease fingerprints. Here, 
we used an integrative analysis of radiomic and proteomic profiles (radioproteomics) to assess 
whether changes in radiomic signatures can stratify the degree of antifibrotic response to nintedanib 
in (experimental) fibrosing ILD. Unsupervised clustering of delta radiomic profiles revealed two 
distinct imaging phenotypes in mice treated with nintedanib, contrary to conventional densitometry 
readouts, which showed a more uniform response. Integrative analysis of delta radiomics and 
proteomics demonstrated that these phenotypes reflected different treatment response states, as 
further evidenced on transcriptional and cellular levels. Importantly, radioproteomics signatures 
paralleled disease- and drug related biological pathway activity with high specificity, including 
extracellular matrix (ECM) remodeling, cell cycle activity, wound healing, and metabolic activity. 
Evaluation of the preclinical molecular response-defining features, particularly those linked to ECM 
remodeling, in a cohort of nintedanib-treated fibrosing ILD patients, accurately stratified patients 
based on their extent of lung function decline. In conclusion, delta radiomics has great potential to 
serve as a non-invasive and readily accessible surrogate of molecular response phenotypes in fibrosing 
ILD. This could pave the way for personalized treatment strategies and improved patient outcomes. 
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Abbreviations 
α-SMA   Alpha-smooth muscle actin 
AT1   alveolar type I 
AT2   alveolar type II 
BP   Biological process (ontology) 
CC   Cellular compartment (ontology) 
CT   Computed tomography 
CTD   Connective tissue disease 
DAPI   4’,6-diamidino-2-phenylindole 
DE   Differentially expressed 
DLCO  Diffusing capacity of the lung for carbon monoxide 
DPBS   Dulbecco’s phosphate buffered saline 
ECM   Extracellular matrix 
FDR   False discovery rate 
FEV   Forced expiratory volume in the first second 
FVC   Forced vital capacity 
GO  Gene Ontology 
HP   Hypersensitivity pneumonitis 
HRCT   High-resolution computed tomography 
HU   Hounsfield unit 
i.t.   Intratracheal 
IBSI   Imaging biomarkers standardization initiative 
ICC   Intraclass correlation coefficient  
ILD   Interstitial lung disease 
IPF   Idiopathic pulmonary fibrosis 
IQR  Interquartile range 
KAEA  Kinase activity enrichment analysis 
MF   Molecular function (ontology) 
mPAP  Mean pulmonary arterial pressure 
MRI   Magnetic resonance imaging 
p.o.   per os (orally) 
P(A)H   Pulmonary (arterial) hypertension 
PDPN   Podoplanin 
PF-ILD   Progressive fibrosing interstitial lung disease 
PFT   Pulmonary function test 
proSP-C  Prosurfactant Protein C 
q.d.   quaque die (once a day) 
QLF   Quantitative lung fibrosis 
RTK   Receptor tyrosine kinase 
scRNA-seq  Single-cell RNA sequencing 
SSc  Systemic sclerosis 
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Introduction 
 
Fibrotic remodeling of the lung interstitium is the shared pathomechanism across various interstitial 
lung diseases (ILDs) of different etiologies, including idiopathic pulmonary fibrosis (IPF) and connective 
tissue disease (CTD)-associated ILD as the most prevalent subtypes. For patients with a progressive 
fibrosing (PF-ILD) phenotype, treatment with the antifibrotic multitarget tyrosine kinase inhibitor 
nintedanib is recommended 1. While nintedanib has proven effective in slowing pulmonary function 
decline in multiple clinical trials, it comes with a relatively high rate of side effects 2–4. Consequently, 
there is a pressing need to assess treatment efficacy and identify individuals who may not benefit 
from therapy early in the disease course. 
 
Current evaluation of treatment response primarily relies on longitudinal lung function 
measurements, which are prone to intra-subject variability, can be influenced by extrapulmonary 
parameters, and lack insights into the underlying molecular response 5,6. Liquid- or tissue-derived 
readouts could partially address these limitations, but validated biomarkers are not yet available and 
repeated lung biopsies are not a viable option due to the associated interventional risks 7. Radiomics 
analysis of routinely performed high-resolution computed tomography (HRCT) scans has great 
potential to serve as a non-invasive solution for evaluation of treatment response in individual 
patients in four dimensions (3D space + time) 8,9. Radiomic features are computationally retrieved, 
quantitative data extracted from radiological imaging data, which describe the tissue in terms of its 
intensity, texture and shape properties 10, thus creating digital disease fingerprints 11. The added value 
compared to conventional visual radiological analysis or quantitative characterization methodologies 
such as CALIPER 12, lies in their ability to capture image phenotypes beyond human visual perception 
13, thereby aiming to close the gap between patient screening and precision medicine 14.  
 
Radiomics is based on the premise that the underlying pathophysiology is reflected in the imaging 
phenotype and that radiomic features can quantify these links, offering insights into organ-scale 
pathophysiology. Previous work including our own has shown that radiomics can convey morphologic 
and molecular tissue characteristics with important implications for personalized diagnosis and 
prognostication 15–18. Delta radiomics, which quantifies the feature variation between two imaging 
time points, and thus captures longitudinal phenotypic changes, has emerged as a method to predict 
and quantify treatment response in various types of cancer 19–21. Its potential for the stratification of 
antifibrotic treatment response in (progressive) fibrosing ILD has not yet been studied. 
 
This study aimed to evaluate whether delta radiomics can be used to stratify the degree of molecular 
response to antifibrotic treatment with nintedanib using the well-established bleomycin-induced lung 
fibrosis model. 
 
Unsupervised clustering of delta radiomic profiles revealed two distinct imaging phenotypes in mice 
treated with nintedanib, despite conventional CT-derived lung densitometric readouts suggesting a 
uniform response. Radioproteomics demonstrated that these phenotypes reflected different 
treatment response states, which we could confirm by immunofluorescence and gene expression 
analysis. Importantly, we discovered that radioproteomic association modules paralleled distinct 
disease-related biological pathway activities and cell type signatures. Evaluation of the preclinical 
response-defining features in a nintedanib-treated PF-ILD cohort accurately stratified patients 
according to their extent of lung function decline. Collectively, our analyses demonstrate the ability of 
delta radiomics to non-invasively stratify molecular response to anti-fibrotic treatment in 
experimental fibrosing ILD and indicate its potential for application in human PF-ILD. 
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Methods 
A detailed description of the methods is provided in the supplementary material. 
 
Animal experimentation and ethics statement 
Lung-derived delta radiomic profiles were studied upon treatment with nintedanib in the well-
established murine bleomycin-induced fibrosing ILD model 22,23. Briefly, lung fibrosis was induced in 
C57BL/6J mice (n=30, female, 8-weeks old) by intratracheal instillation with 2 U/kg bleomycin sulfate 
17. Mice were randomized into study groups and treatment with 60 mg/kg nintedanib (n=15) or 
vehicle-only (deionized water, n=15) was provided once daily per os (p.o.) from day 7-20 in a double-
blinded manner. Lung microCT scans (SkyScan 1176; Bruker, Kontich, Belgium) of each animal were 
acquired pre- (day 7) and post-treatment (day 21) as previously described 17. All mice were sacrificed 
24 hours after the final treatment, followed by exsanguination, transcardial perfusion, and collection 
of the lung tissue for molecular analysis. Approval for animal experimentation was granted by the 
cantonal veterinary office (license number ZH082/2021) and experimentation was performed in strict 
compliance with Swiss animal protection laws. Mice were excluded from further analysis if humane 
endpoints were reached (n=3) or if severe lung abnormalities, including atelectasis or unilateral 
fibrosis development, were evident on microCT scans (n=3). The final sample size for nintedanib- and 
vehicle-treated mice was n=10 and n=14, respectively. 
 
Patient cohort, clinical data, and ethics statement 
We validated our experimental findings in a retrospectively selected PF-ILD cohort of 19 patients from 
the Bern University Hospital, Bern, Switzerland and the SWISS-IIP cohort that were undergoing 
treatment with nintedanib. Approval for the study was granted by the local ethics committee (BASEC-
ID: 2023-01920 [ILDALMO]; PB_2016_01524 [SWISS-IIP]). A total of 359 patients were screened for 
the following eligibility criteria: a) diagnosis of progressive fibrosing ILD 24, including IPF, systemic-
sclerosis associated ILD (SSc-ILD), hypersensitivity pneumonitis (HP), or drug-induced ILD, b) treatment 
with nintedanib (≥100 mg twice daily; ≥6 months), c) availability of pre- and post-treatment HRCT 
scans fulfilling the predefined quality criteria (supplementary methods), d) pre- and post-treatment 
pulmonary function test (PFT) recording fulfilling the predefined quality criteria (supplementary 
material), e) absence of secondary lung diseases at times of HRCT and PFT recordings.  In total, 54 out 
359 patients received nintedanib treatment for ≥6 months, with 19 fulfilling also the remaining 
inclusion criteria. Summaries of patient demographics and clinical characteristics, and the HRCT scan 
acquisition parameters are provided in Table 1 and Supplementary Table 1, respectively. 
 

Table 1. Summary of the clinical parameters of the PF-ILD cohort at baseline. 

 PF-ILD Cohort (n=19) 

Age (years)* 62.4 (±14.3) 
Sex 

Female 
Male 

 
3 (16%) 

16 (84%) 
Etiology 

IPF 
SSc-ILD 
HP 
Drug-induced ILD 

 
11 (58%) 
4 (21%) 
3 (16%) 
1 (5%) 

Smoking status 
Never 
Previous 
Current 

 
5 (26%) 

12 (63%) 
2 (11%) 

Disease duration (months)† 12.0 (±37.7) 
FVC (% pred) 69.0 (±27.0) 
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NA 0 (0%) 
FVC (liters) 

NA 
2.63 (±0.93) 

0 (0%) 
FEV1 (% pred) 

NA 
71.0 (±27.5) 

1 (5%) 
DLCO (% pred) 

NA 
50.5 (±20.0) 

2 (11%) 
Pulmonary hypertension‡ 

Yes 
No 

 
6 (32%) 

13 (68%) 
Immunomodulatory therapy§ 11 (58%) 

Data are presented as median (± interquartile range (IQR)) or n (%). The interval between HRCT scans and PFT 
recordings was 13.9±5.6 months and 12.4±4.5 months (median±IQR), respectively. Abbreviations: IPF, 
idiopathic pulmonary fibrosis; ILD, interstitial lung disease; SSc, systemic sclerosis; HP, hypersensitivity 
pneumonitis; FVC, forced vital capacity; FEV1, forced expiratory volume in 1 s; DLCO, diffusing capacity of the 
lung for carbon monoxide; P(A)H, pulmonary (arterial) hypertension. NA denotes missing values as n(%). *: 
Age at time of baseline (pre-treatment) HRCT scan. †: disease duration was defined as the period between 
first reported diagnosis of PF-ILD in the patient records and the baseline (pre-treatment) HRCT scan. ‡: PH 
was assessed by echocardiography or right heart catheterization. If right heart catheterization was 
performed, mean pulmonary arterial pressure (mPAP)>20 mmHg was considered diagnostic 25. §: 
Immunomodulatory therapy included prednisolone, mycophenolate mofetil, azathioprine, rituximab, 
tocilizumab, or combinations thereof and if indicated was provided concomitant to nintedanib treatment. 

 
Delta Radiomics Calculation 
Calculation of radiomic features was performed on semi-automatically segmented lungs using Z-Rad 
software (v.7.3.1, https://medical-physics-usz.github.io/) as previously described 17. Mouse lungs 
were resized to isotropic voxels of 0.15 mm. To achieve a comparable voxel size in patients, human 
lungs were resized to isotropic voxels of 2.75 mm, corresponding to an estimated 6000-fold volumetric 
difference 26. Both mouse and human lung volumes were discretized to a fixed bin size of 50 HU in a 
range of -1000 HU to 200 HU. From the resized volumes, 1’388 radiomic features were calculated per 
lung scan and time point, corresponding to histogram (n=17), texture (n=137), shape (n=2), and 
wavelet-transformed features (n=1’232). Delta radiomic features describing the change of each 
feature between pre-and post-treatment, were expressed as delta values: ΔFeature = Feature (t2) – 
Feature (t1) 27. Lung density measurement was inferred from the radiomic lung attenuation histogram-
derived feature hist_mean. 
 
Proteomics and Phosphoproteomics 
For proteomics and phosphoproteomics, the middle lobe of the right mouse lung was snap frozen in 
liquid nitrogen and stored at -80°C until processing. Sample preparation and mass spectrometry 
profiling was performed at the Proteomics & Mass Spectrometry Core Facility (PMSCF) at the 
University of Bern using standard protocols. For comparative proteomics, all vehicle- (n=14) and 
nintedanib-treated (n=10) samples were analyzed. One vehicle sample was excluded from analysis 
due to issues in sample preparation. Differential expression of proteins between groups of interest 
was calculated in R using the “limma” package with standard settings. For phosphoproteomics, 
randomly selected subsets of vehicle- (n=5) and nintedanib-treated (n=5) were analyzed. Differential 
expression of phosphosites and subsequent kinase activity enrichment analysis (KAEA) was performed 
as described in 28.  
 
Gene expression analysis 
Total RNA was isolated from blood-free cranial lobes of the right mouse lung using the RNeasy Tissue 
Mini Kit (Qiagen, Hombrechtikon, Switzerland). Isolated RNA was reverse-transcribed into cDNA using 
the Transcriptor First Strand cDNA Synthesis Kit (Roche Diagnostics, Switzerland). Expression of 
selected Nintedanib target genes was analyzed by SYBR Green quantitative PCR as described in 29. 
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Expression of mRNA was expressed to delta Ct values with Rplp0 as reference gene. Fold changes were 
calculated using the delta-delta Ct method. A list of the primer pairs is provided in Supplementary 
Table 2. 
 
Immunofluorescence and microscopy 
Formalin-fixed paraffin-embedded lung sections at 3 µm thickness were deparaffinized, followed by 
heat-mediated antigen retrieval and blocking for nonspecific antibody binding with 5% BSA. 
Incubation with primary antibodies was performed overnight at 4°C, followed by incubation with 
secondary fluorescence-labeled antibodies for 2 h at room temperature. Nuclei were visualized by 
counterstaining with 4’,6-diamidino-2-phenylindole (DAPI) for 10 min at RT. Antibodies and dilutions 
are listed in Supplementary Table 3. Microscopic imaging was performed with an AxioScan.Z1 slide 
scanner (Zeiss, Feldbach, Switzerland) using a Plan-Apochromat 20x/0.8 M27 objective. Cells positively 
stained for α-SMA were quantified using the “Positive cell detection” tool of the open source software 
QuPath (v.0.4.0). From each sample, five representative areas at 500x500 µm were analyzed and the 
sample average was used for statistical analyses. 
 
Unsupervised clustering 
Unsupervised agglomerative hierarchical or k-means clustering of z-scored features was performed to 
identify subgroups of mice or patients with similar delta radiomic feature patterns. Clusterability was 
evaluated by Hopkin’s statistic H. The optimal number of clusters was determined by average 
silhouette statistics. Stability of clusters was assessed by Jaccard bootstrapping. 
 
Variable importance evaluation 
The importance of each delta radiomic feature cluster assignment by unsupervised clustering was 
calculated by filter-based variable importance, retaining only features with classification score≥0.9 
(Supplementary Table 4). 
 
Radioproteomic Correlation Analysis 
Spearman’s rank correlation coefficient ⍴ was calculated between delta radiomic features subsets and 
the log2-transformed expression intensity of every protein, retaining only proteins with p<0.05 and 
⍴≥0.6 to establish radioproteomic association modules. Pearson’s correlation coefficient r was 
calculated between delta radiomic features subsets and the fraction of α-SMA positive cells.  
 
Gene Ontology and Reactome Pathway Enrichment  
Lists of differentially expressed (DE) proteins or radiomics-correlated proteins were entered into Gene 
Ontology (GO) or Reactome pathway enrichment analysis, retaining results after false discovery rate 
adjustment (p<0.05). 
 
Cell Type Signature Enrichment Analysis 
To infer relative cell type frequency changes between two groups from proteomics data, we applied 
signature enrichment analysis as described in 30,31, utilizing their single cell marker gene dataset. Cell 
type signatures were defined as sets of genes with cell-type specific gene expression of log2 fold 
change>0.3 and adjusted p<0.05 (Supplementary Table 5).  
 
Statistical Analyses 
All statistical analyses were performed in R (v.4.3.1.) environment. For all analyses, a p<0.05 was 
considered statistically significant unless stated otherwise. 
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Results 
 
Delta radiomics uncovers heterogeneity in antifibrotic drug response 
 
To study the effects of antifibrotic treatment on radiomic signatures, we collected microCT-derived 
radiomic features in mice with bleomycin-induced lung fibrosis (n=24) before (day 7) and after (day 
21) treatment with nintedanib (n=10) or vehicle (n=14) (Figure 1A). The change in feature expression 
between pre- and post-treatment was quantified as delta radiomics. We considered only variables 
that were stable (ICC≥0.75) against semi-automatic lung segmentation and excluded highly correlated 
(Spearman’s ⍴≥0.85) features, resulting in a final set of 244 delta radiomic features that entered 
analysis (Supplementary Figure 1A-C).  
 
Unsupervised hierarchical clustering of delta radiomics revealed heterogeneous response profiles in 
nintedanib-treated mice, highlighting the presence of two distinct imaging phenotypes (ncluster1=6, 
ncluster2=4) (Figure 1B). Subanalysis by k-means clustering confirmed their statistical stability (Jaccard 
coefficients>0.90) (Supplementary Figures 1D-E). Intriguingly, these clusters were not discernible 
through conventional lung densitometry, which showed a significantly (p=0.0157, unpaired Student’s 
t test) reduced tissue density in response to nintedanib treatment, consistent with previous reports 
23,32 (Figures 1C-D, Supplementary Figure 1F). Untargeted phosphoproteome quantification in a 
subset of vehicle and nintedanib-treated mice 24 hours after the final treatment further confirmed 
successful and homogeneous target engagement with suppression of key drug-related pathways 
based on kinase activity enrichment analysis, including MTOR and MAP2K1 signaling 33,34 
(Supplementary Figures 1G-H), thus affirming the efficiency of the drug treatment. 
 
To evaluate if the two delta radiomic clusters differ on molecular level, we performed proteomics 
analysis. Differential expression analysis of the 7006 identified proteins in cluster 1 and 2 against the 
vehicle group uncovered substantial differences between the two delta radiomics phenotypes. While 
414 proteins (373 downregulated and 41 upregulated) were differentially expressed in cluster 1, only 
169 proteins (127 downregulated and 42 upregulated) showed differential expression in cluster 2 
compared to vehicle-treated mice (Supplementary Figures 1I-J, Supplementary Tables 6-7). Most 
notably, only minor differentially expressed (DE) protein overlap (5%) was observed between the two 
clusters (Figures 1E-F), suggesting that different molecular response phenotypes are captured by delta 
radiomics.  
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Figure 1. Delta radiomics uncovers heterogeneity in antifibrotic drug response. (A) Experiment schematic. C57BL/6J mice 
with bleomycin-induced lung fibrosis received treatment with nintedanib (n=10) or vehicle (n=14). Lung microCT scans were 
acquired of each mouse pre- (day 7) and post-treatment (day 21) for analysis of radiomic measures. The change in radiomic 
feature expression was expressed as delta radiomics. Lung tissue was collected 24 hours after the final treatment application 
for molecular analyses. (B) Heatmap displaying the results of unsupervised hierarchical clustering of z-scored delta radiomic 
features (n=244) in all mice. Treatment groups and the class of each delta radiomic variable are indicated. (C) Representative 
lung microCT images and matching density-masked lobes of nintedanib- and vehicle-treated mice with bleomycin-induced 
lung fibrosis at pre- and post-treatment level. (D) Lung tissue density expressed as mean Hounsfield unit (HU) intensity post-
treatment. Unpaired Student's t-test was used to compare the groups. (E) Heatmap showing the expression profiles of the 
combined set of DE proteins (n=556) in cluster 1 and cluster 2 compared to vehicle-treated mice. Log2-transformed protein 
expression values were z-scored. (F) Venn diagram depicting the number of differentially expressed proteins in cluster 1 
(n=414) and cluster 2 (n=169) compared to the vehicle group. Selected DE proteins unique to cluster 1 or cluster 2 with 
functions implicated in disease pathophysiology are denoted. 
 
 
Delta radiomic phenotypes reflect differences in molecular response to antifibrotic treatment 
 
To describe the underlying biology of the two delta radiomic clusters in closer detail, we analyzed the 
differences on a molecular and cellular level. On protein level, 386 proteins were differentially 
regulated between the two clusters (Figure 2A, Supplementary Table 8). Gene Ontology (GO) 
mapping of the downregulated proteins (n=269) revealed enrichment of terms related to pro-fibrotic 
activity, including extracellular matrix (ECM) organization, regulation of cell growth, and fibroblast 
proliferation (Figure 2B, Supplementary Table 9). In contrast, the upregulated proteins (n=117) were 
enriched for pathways related to wound healing and tissue regeneration, including epithelial cell 
migration and hemostasis (Figure 2B, Supplementary Table 10).  
 
Furthermore, targeted activity analysis of pathways known to be modulated by nintedanib, including 
extracellular matrix (ECM) organization, receptor tyrosine kinase (RTK) signaling, and cytokine 
signaling 35, revealed more extensive pathway inhibition in cluster 1 (Figure 2C). Whereas most targets 
involved in ECM organization (e.g. COL5A1, COL12A1, TNC) and remodeling (e.g. MMP2, MMP14, 
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TIMP2, LOX) were downregulated in cluster 1 compared to vehicle, their expression was less changed 
in cluster 2. Similarly, proteins involved in RTK (e.g. SPP1, STAT1, AKT2, MAPK7, MAPK13) and cytokine 
signaling (IL6, IRAK1, IRAK2, and PIK3R2) showed higher suppression in cluster 1 than cluster 2. To 
independently validate our proteomics results, we performed quantitative PCR of selected gene 
targets of nintedanib. Aligning with the proteomic observations, we found significant (p<0.05, 
unpaired Student’s t-test) suppression of pro-fibrotic (Col1a1, Col3a1, Fn1), pro-inflammatory (Il6, 
Spp1), and nintedanib-targeted (Tgfb1, Cxcl1, Tnf, Cd40l) transcripts in cluster 1 compared to cluster 
2 (Supplementary Figure 2). 
 
Preclinical studies demonstrated that nintedanib inhibits myofibroblast differentiation 22, cell 
proliferation 23, and macrophage activation 36, thereby promoting regeneration of alveolar epithelial 
cells. To interrogate the cluster-specific effects of nintedanib on the cellular level, we performed cell 
type deconvolution analysis of our proteomics data as described in 30. This technique quantifies the 
enrichment of single cell RNA-sequencing (scRNA-seq)-derived cell type marker signatures in bulk cell 
analysis data such as proteomics or transcriptomics, allowing to estimate cell type frequency changes 
between two conditions. Deconvolution revealed lower levels of myofibroblasts, interstitial 
macrophages, and KI-67+ proliferating cells along with a higher fraction of alveolar type II (AT2) and 
type I (AT1) lung epithelial cells in cluster 1 compared to cluster 2 (Figure 2D). Tissue 
immunofluorescence staining for the myofibroblast marker α-SMA together with the AT1 marker 
Podoplanin (PDPN) and the AT2 marker proSP-C confirmed a significant (p=0.019, Mann-Whitney U 
test) lower abundance of α-SMA+ myofibroblast infiltrates in fibrotic regions in samples of cluster 1 
compared to cluster 2 (Figure 2E-F). 
 
Taken together, we found that delta radiomics-defined treatment sub-clusters exhibited distinct 
molecular and cellular characteristics, suggesting a higher degree of response to nintedanib in cluster 
1. 
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Figure 2. Delta radiomic phenotypes reflect molecular response to antifibrotic treatment. (A) Volcano plot of the DE proteins 
between clusters 1 and 2. Proteins with log2FC>0.3 and p<0.05 were considered significantly different. Down- and 
upregulated proteins are highlighted in blue and red, respectively. (B) GO pathway analysis of the down- and upregulated 
DE proteins. Terms marked with an asterisk are of cellular compartment (CC) ontology, all others are of biological process 
(BP) ontology. (C) Heatmap of DE proteins included in Reactome pathways “extracellular matrix organization”, “receptor 
tyrosine kinase signaling”, and “cytokine signaling”, and their expression in clusters 1 and 2 compared to vehicle-treated 
mice. (D) Analysis workflow and bar chart depicting the results from cell type deconvolution analysis. The change of the 
indicated cell type signature between clusters 1 and 2 is expressed as signed log10 enrichment p-value. (E) Representative 
immunofluorescence stainings of fibrotic regions in clusters 1 and 2. Images show nuclei (DAPI), AT2 cells (proSP-C), 
myofibroblasts (α-SMA), and AT1 cells (PDPN). Regions are 500x500 µm in size, scale bar 100 µm. (F) Percentage of α-SMA+ 
and proSP-C+ cells in fibrotic regions of cluster 1 and cluster 2 samples. Mann-Whitney U-test was used to compare the 
groups. 
 
 
Delta radiomic features reflect changes in disease-relevant molecular pathway activity 
 
Having established that delta radiomic phenotypes are able to characterize the extent of molecular 
response to nintedanib treatment, we next investigated the contribution of individual features to non-
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invasively convey pathway-specific molecular information. To do so, we first identified features 
promoting cluster separation by analysis of univariate variable importance, resulting in 54 variables 
with a classification score≥0.90 (Figure 3A, Supplementary Figure 3A-C). For each of these features, 
we then established radioproteomic association modules (n=54) by determining the respective 
correlating protein sets (Spearman’s |𝜌|≥0.6, p<0.05) in a sample-matched, cluster-independent 
approach. Pathway annotation of positively or negatively correlated proteins revealed significant 
enrichment of Reactome terms for 45 features, covering 367 unique pathways (Figure 3B, 
Supplementary Table 11). These findings were replicated through GO:BP database annotation 
(Supplementary Figure 3D, Supplementary Table 12). Importantly, subsets of association modules 
were highly distinctive towards specific disease pathophysiology-related pathway activity, including 
ECM remodeling, cell cycle activity, wound healing, or metabolic processes. K-means sub-clustering of 
nintedanib-treated samples on features positively correlating with ECM organization (n=8) or 
hemostasis (n=7) reproduced the original two clusters, thereby indicating suppression of ECM 
remodeling as well as promotion of wound healing in cluster 1 (Supplementary Figure 3E). 
 
To assess if delta radiomic features could provide further insights into changes at the cellular level, we 
performed cell type deconvolution analysis of the radioproteomic association module-derived protein 
sets (Spearman’s |𝜌|≥0.6, p<0.05) (Figure 3C, Supplementary Table 13). Proteins were ranked by 
log10 p-value and weighted by correlation coefficient prior to entering deconvolution analysis. 
Overall, we found 41 response-defining delta radiomic features with significant (p<0.01, Kolmogorov-
Smirnov test) cell type marker profile enrichment, accounting for 20 different cell types. Noticeably, 
myofibroblasts, AT2 cells, as well as vascular and capillary endothelial cell gene signatures, showed 
the most significant correlations. Typically, we observed an inverse correlative relationship between 
pro-fibrotic and pro-regenerative cell types, as for instance myofibroblasts and AT2 cells. Utilizing 
immunofluorescence quantification of α-SMA+ myofibroblasts, we validated the top positive and 
negative correlating features, LLH_GLSZM_GLnonuniformity_norm (Pearson’s r=0.85, p=0.002) and 
LHL_mGLCM_MCC (Pearson’s r=-077, p=0.010), which demonstrated significant correlations with 
myofibroblasts in fibrotic regions (Figure 3D-E). 
 
Collectively, our results demonstrated that delta radiomic features capture changes of highly specific 
molecular and cellular information, thereby highlighting their potential as surrogates for molecular 
treatment response phenotypes. 
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Figure 3. Delta radiomic features reflect changes in disease-relevant molecular pathway activity. (A) Schematic of analysis 
workflow. Variable importance of each delta radiomic feature (n=244) for assignment of clusters was assessed by univariate 
analysis, retaining only “response-defining” features (n=54) with classification score≥0.90. Radioproteomic association 
modules were compiled by assigning the set of highly-correlating proteins (Spearman’s |𝜌|≥0.6, p<0.05) to each response-
defining feature. These modules were subsequently entered into pathway and cell type signature enrichment analysis. (B) 
Heatmap displaying Reactome pathways enriched (GeneRatio≥0.10, p.adj<0.05) in radioproteomic association modules for 
positively (Spearman’s 𝜌≥0.6, p<0.05, red annotation) or negatively (Spearman’s 𝜌≤-0.6, p<0.05, blue annotation) correlating 
proteins. Only pathways enrichment in at least two radioproteomic association modules are displayed. Association modules 
without enriched pathways following filtering are not displayed. (C) Heatmap displaying cell type signatures enriched 
(p<0.01) in radioproteomic association modules for positively (Spearman’s 𝜌≥0.6, p<0.05, red annotation) or negatively 
(Spearman’s 𝜌≤-0.6, p<0.05, blue annotation) correlating proteins. Association modules without enriched cell type signatures 
following filtering are not displayed. (D) Representative IF stainings of fibrotic lung regions exhibiting a low (left) and high 
(right) fraction of α-SMA+ myofibroblasts. Relative expression of two selected delta radiomic features 
(LLH_GLSZM_GLnonuniformity_norm and LHL_mGLCM_MCC) showing positive or negative enrichment for myofibroblast cell 
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type signatures, respectively, is indicated. Images show nuclei (DAPI), AT2 cells (proSP-C), myofibroblasts (α-SMA), and AT1 
cells (PDPN). Regions are 500x500 µm in size, scale bar 100 µm. Each data point represents the sample average fraction of 
α-SMA+ cells of five representative fibrotic regions. (E) Scatter plot of the Pearson correlation coefficient between the α-
SMA+ cell fraction quantified by IF and the z-scored delta radiomic feature expression of LHL_mGLCM_MCC (left) and 
LLH_GLSZM_GLnonuniformity_norm (right). The red line represents the linear model of the best fit, with the gray area 
representing the 95% confidence intervals. The assigned cluster of each sample is indicated. 
 
 
Delta radiomics stratifies nintedanib-treated PF-ILD patients according to lung function decline 
 
We previously demonstrated the high transferability of radiomic signatures from experimental models 
to human ILD 37. To assess whether our preclinical delta radiomic features could stratify nintedanib-
treated patients based on their extent of lung function decline, we retrospectively analyzed delta 
radiomic feature profiles of 19 patients with PF-ILD that received antifibrotic therapy for a median of 
12.2±5.7 months (median±IQR) (Figure 4A). ILD etiologies included IPF (n=11), SSc-ILD (n=4), 
hypersensitivity pneumonitis (HP, n=3), and drug-induced ILD (n=1) (Table 1).  
 
Unsupervised k-means clustering on the preclinical response-defining delta radiomic feature set 
(n=54) revealed three fairly robust (Jaccard indices>0.60) clusters C1-C3 within the nintedanib-treated 
PF-ILD cohort (Figure 4B, Supplementary Figure 4A). These clusters stratified patients according to 
their annual rate of lung functional decline (Figure 4C, Supplementary Figure 4B, Supplementary 
Table 14). Within the observational period, cluster C1 showed a significantly (p<0.05, Mann-Whitney 
U test) lower FVC decline (1.0±2.5%, -50±125 mL; median±IQR) compared to cluster C3, which showed 
a substantial decline (-9.0±3.5%, -465±225 mL, median±IQR). Cluster C2 presented with an 
intermediate phenotype with a considerable FVC decline (-7.0±10.0%, -280±450 mL, median±IQR), 
although not statistically different from clusters C1 and C3 (p>0.05, Mann-Whitney U-test). Notably, 
no significant differences (p>0.05, Mann-Whitney U or Fisher’s Exact test) between the clusters were 
observed for pre-treatment FVC levels (Figure 4D), disease etiology, sex, smoking status, disease 
duration, presence of concomitant immunomodulatory therapy, or presence of pulmonary (arterial) 
hypertension (Figure 4E, Supplementary Figure 4C). 
 
Our preclinical results revealed subsets of radioproteomic association modules that were specifically 
linked to ECM remodeling activity, the key molecular target of antifibrotic therapy 35. To evaluate if 
the corresponding delta radiomic features (n=8, positive enrichment) would lead to improved 
stratification, we performed k-means clustering of the PF-ILD cohort using this feature subset (Figure 
4F, Supplementary Figure 4D). The resulting two stable clusters S1 and S2 (Jaccard indices>0.75) 
exhibited significant differences (p<0.05, Mann-Whitney U test) on delta FVC level, with cluster S1 (-
4.0±5.5%, -200±205 mL, median±IQR) displaying less functional decline compared to cluster S2 (-
10.5±5.5%, -530±245 mL, median±IQR). Notably, this effectively redefined the previous intermediate 
cluster C2 into either cluster S1 or S2, corresponding to low/intermediate and high FVC decline (Figure 
4G, Supplementary Table 15). Similar to our previous findings, we found no significant differences 
between clusters S1 and S2 for pre-treatment FVC levels (p>0.05, Mann-Whitney U-test) (Figure 4H) 
or demographic and clinical variables (p>0.05, Fisher’s exact test) (Supplementary Figure 4E-F). 
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Figure 4. Delta radiomics stratifies nintedanib-treated PF-ILD patients according to lung function decline. (A) Workflow 
schematic. We retrospectively included patients (n=19 out of 359 patients) with PF-ILD undergoing treatment with 
nintedanib at Bern University Hospital and the SWISS-IIP cohort fulfilling the inclusion criteria. For each patient, changes in 
pulmonary function parameters and radiomic features were calculated between pre- and post-treatment. Unsupervised k-
means clustering of patients was performed on subsets of experimentally defined delta radiomic features, including 
response-defining features (n=54) and features positively enriched for ECM remodeling pathway activity (n=8). The resulting 
clusters were investigated for differences in clinical outcome parameters and patient demographics. (B) Heatmap displaying 
the results of unsupervised k-means clustering of the z-scored response-defining delta radiomic feature set (n=54) in the PF-
ILD cohort. The feature class for each variable and the enrichment of the radioproteomic association module for Reactome 
pathways is indicated. (C-D) Box plots comparing FVC (% pred and liters) delta and baseline level between clusters C1-C3. (E) 
Associations of clusters C1-C3 with clinical and demographic parameters in the PF-ILD cohort. Fisher’s exact test was used to 
compare the categorical variables. (F) Heatmap displaying the results of unsupervised k-means sub-clustering of the z-scored 
features whose radioproteomic association modules are positively enriched with ECM remodeling Reactome pathway 
activity (n=8) in the PF-ILD cohort. The feature class for each variable and the enrichment of the radioproteomic association 
module for Reactome pathways is indicated. (G-H) Box plots comparing FVC (% pred and liters) delta and baseline level 
between clusters S1 and S2. 
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Discussion 
 
Accurate monitoring of response to antifibrotic therapy is an urgent need for effective management 
of patients with PF-ILD. However, differentiation between natural disease progression and treatment 
failure is difficult by means of conventional PFT and HRCT assessment 6. Molecular response markers, 
including peripheral blood biomarkers may improve precision, but these are still in early 
developmental stages and may not fully reflect lung tissue phenotypes 7,38,39. Over the last decade, 
radiomics has emerged as a powerful tool for drug response monitoring and predicting outcomes in 
various diseases, such as cancer, neurological disorders and recently also ILDs 40–42. The strength of 
radiomics lies in its ability to provide integrated information on whole lung tissue pathology, conveying 
both structural and molecular information 15,17,43. 
 
In this study, we employed an integrative radioproteomics approach to demonstrate that CT-based 
delta radiomic profiling can non-invasively stratify the molecular response to nintedanib treatment in 
a preclinical bleomycin-induced lung fibrosis model, which was not discernible through conventional 
histogram-based CT measures. We discovered distinct radioproteomic association modules that 
conveyed disease and drug-specific biological pathway activities and cell type signatures, including 
ECM remodeling, hemostasis, and fibroblast activation, respectively. Evaluating the preclinical 
response-defining delta radiomic features, in particular the ECM-associated features in a nintedanib-
treated PF-ILD cohort accurately stratified patients according to their extent of lung function decline.  
 
Previous reports have shown the potential of CT-derived imaging characteristics for assessing the 
response to antifibrotic treatment. Lung attenuation histogram-derived measures, for example, have 
proven reliable in studying the efficacy of antifibrotic drugs in preclinical lung fibrosis models 32,44,45. 
However, their use as surrogate markers is mostly limited to macroscopic tissue pathologic properties, 
falling short in resolving the underlying molecular landscape, as also evidenced in the current study. 
In addition, these variables represent the summary of gray-level intensities not taking the spatial 
interrelationship of voxels into account. This potentially limits their sensitivity to capture the subtle 
changes induced by antifibrotic treatment in PF-ILD patients, who often present with morphologically 
complex and heterogeneous disease patterns 46,47. In contrast, higher-order radiomic features, such 
as texture features quantify the spatial variations in image characteristics, offering added information 
for treatment monitoring. Utilizing a texture-based quantitative lung fibrosis (QLF) score Kim et al. 
were able to stratify IPF patients undergoing experimental antifibrotic treatment according to the rate 
of pulmonary function decline 48. Furthermore, Devkota et al. showed that texture-derived nano-
radiomics and not conventional quantitative CT features captured treatment-induced changes of 
cellular therapy in tumor xenografts 16.  
 
The added and complementary value of radiomics arises from the integrated in-depth analysis of 
tissue heterogeneity across spatial scales conveying pathophysiological information of the whole 
organ. Imaging omics approaches, including radiogenomics, -transcriptomics, and -proteomics 
investigate the association between macroscopic radiomic and microscopic molecular features 
derived from genomic, transcriptomic, or proteomic profiling, respectively to define the underlying 
biological basis of imaging phenotypes and derive non-invasive imaging surrogates for molecular 
profiles 49. So far, imaging omics have nearly exclusively been studied in the context of cancer. For 
instance, recent studies utilized radiogenomics to unravel intratumoral heterogeneity phenotypes in 
multi-center breast cancer cohorts 18,50 and identified activated ferroptosis pathways to be associated 
with high tumor heterogeneity 18. Moreover, radiogenomics has been employed to non-invasively 
characterize the biological activities of specific breast cancer subclones 50 . 
 
In this study, we provide first evidence that delta radiomic signatures are sensitive towards antifibrotic 
therapy-induced molecular changes in experimental fibrosing ILD. We add novelty by integrating delta 
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radiomics with proteomics and utilizing the resulting association modules to functionally explain 
different treatment response phenotypes on a pathophysiologic level. The ability to assess distinct 
pathway and cellular activities non-invasively from standard-of-care HRCT scans could pave the way 
towards digital molecular disease fingerprints that could inform precision medicine 51. 
 
Our study has some limitations. First, in our preclinical studies, the absence of pre-treatment 
proteome profiles in mice did not allow us to investigate the molecular landscape at therapy start, 
which may have confounded the antifibrotic treatment response. However, unlike human disease, 
inter-individual variance of lung fibrosis development in mice is considered to be low in presence of 
high bleomycin doses 52–54. Future validation of our findings in independent lung fibrosis models will 
be necessary to ensure the broader applicability of our approach. Secondly, generalizability of our 
findings to human ILD is limited by the pilot character and retrospective nature of our study. Although 
we could not find statistically significant differences in potential confounders, we cannot rule out that 
factors such as concomitant immunomodulatory therapy may have contributed to the effects 
observed on delta radiomic level given the relatively small sample size. Furthermore, the lack of pre-
and post-treatment biosamples precluded molecular validations. Future prospective multi-center 
studies which include the collection of liquid biopsies for molecular evaluation, together with the 
inclusion of a placebo group will be necessary to fully elucidate the applicability of delta radiomic 
signatures as a digital fingerprint for disease or drug-response monitoring. Nonetheless, our ability to 
detect significant changes in the extent of pulmonary function decline based on preclinical functionally 
described delta radiomic features in this small but well-defined cohort showcases the method’s 
inherent potential. Finally, due to the small sample sizes, we could not yet assess the predictive 
potential of delta radiomic profiles for treatment response, which will be the subject of future studies. 
 
In conclusion, this study highlights delta radiomics as a non-invasive tool to stratify response to 
antifibrotic treatment in experimental fibrosing ILD through its ability to decode tissue-underlying 
molecular information. Its potential for transferability to human disease is a first step towards 
precision medicine, facilitating individual therapy monitoring and risk-benefit assessment in the 
context of lifelong therapies.  
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Supplementary Figures 
 

 
 

Supplementary Figure 1. (A) Evaluation of the radiomic feature stability against inter- and intra-reader variation in the semi-
automated lung segmentation workflow. A representative transversal microCT image of a bleomycin-induced mouse lung is 
displayed. Outlined are three semi-automatically delineated lung contours of two different examiners (examiner 1: red and 
blue; examiner 2: yellow). For intra- and inter-operator ICC analysis, a total of n=16 randomly selected lung scans covering 
different time points were segmented in this manner. (B) Boxplots displaying the distribution of the ICC coefficient per 
radiomic feature class for inter-operator ICC analysis and (C) intra-operator ICC analysis. The red dashed line indicates the 
set intraclass correlation coefficient (ICC) threshold at 0.75. The stacked bar charts summarize the relative frequency and 
total number of robust and non-robust radiomic features. (D) K-means sub-clustering of z-scored delta radiomic features 
(n=244) of nintedanib-treated mice (n=10) indicates two stable clusters (Jaccard coefficients>0.90, where 1 describes perfect 
stability). (E) Heatmap summary of the k-means sub-clustering results (nintedanib-treated mice, n=10). Clusters and the 
feature class of each variable are indicated. (F) Lung tissue density in cluster 1 and 2 expressed as mean Hounsfield unit (HU) 
intensity post-treatment. Mann-Whitney U-test was used to compare the numerical variables. (G) Principal component 
analysis of the phosphosite expression (n=20’043) profiles in subsets of randomly selected nintedanib- (n=5) and vehicle-
treated (n=5) mice. (H) Kinase activity enrichment analysis (KAEA) of differentially expressed phosphosites in nintedanib 
against vehicle-treated mice. Under-active kinases colored in red, over-active kinases colored in blue. (I) Volcano plots of 
protein expression in cluster 1 and (J) cluster 2 compared to vehicle-treated mice. Proteins with log2FC>0.30 and p<0.05 
were considered to be differentially expressed. Down- and upregulated proteins are highlighted in blue and red, respectively. 
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Supplementary Figure 2. Quantitative PCR of pro-fibrotic (Col1a1, Col3a1, Fn1), pro-inflammatory (Il6, Ccl2, Spp1), and 
nintedanib-targeted (Tgfb1, Timp1, Cxcl1, Ifng, Il1b, Tnf, Cd40l) genes. Displayed is the mRNA fold change expression using 
the 2-ΔΔCt method in cluster 1 (blue) and cluster 2 (red) over vehicle-treated samples. Each data point represents the mean 
of two technical replicates. Unpaired Student’s t-test was used to compare the continuous variables. 
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Supplementary Figure 3. Identification of response-defining delta radiomic features and their correlation with disease-
relevant pathways. (A) Variable importance of each delta radiomic feature (n=244) for assignment of clusters was assessed 
by univariate analysis, retaining only “response-defining” features (n=54) with classification score≥0.90. (B) Histogram of the 
univariate analysis results of the delta radiomic features (n=244) for classification of cluster assignment. Variables with 
classification score≥0.90 (red) were considered to have response-defining properties. (C) Heatmap displaying the results of 
unsupervised hierarchical clustering of z-scored subset of response-defining delta radiomic features (n=54) in nintedanib-
treated mice (n=10). Cluster assignment and the feature class of each variable are indicated. (D) Heatmap displaying GO:BP 
pathways enriched (GeneRatio≥0.10, p-adjusted<0.05) in radioproteomic association modules for positively (Spearman’s 
𝜌≥0.6, p<0.05, red annotation) or negatively (Spearman’s 𝜌≤-0.6, p<0.05, blue annotation) correlating proteins. Only 
pathways enriched in at least two radioproteomic association modules are displayed. Association modules without enriched 
pathways following filtering are not displayed. (E) Heatmaps displaying the results of unsupervised k-means clustering of z-
scored subsets of delta radiomic features positively enriched in ECM remodeling (n=8) and wound healing (n=7) in 
nintedanib-treated mice (n=10), respectively. Cluster assignment of samples and Reactome pathway enrichment of variables 
are indicated. 
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Supplementary Figure 4. Delta radiomics stratifies the degree of pulmonary function decline in nintedanib-treated PF-ILD 
patients. (A) Left: K-means cluster plot for z-scored preclinical response-defining delta radiomic features (n=54) of the PF-
ILD cohort (n=19) indicates three fairly robust clusters (Jaccard coefficients>0.60, where 1 describes perfect stability). Right: 
Scatter plot showing the average silhouette coefficient versus the number of clusters for the k-means clustering input data. 
The blue dashed line indicates the global optimum. (B) Box plots comparing age (years)# and disease duration (years)¶ at 
baseline between clusters C1-C3. Mann-Whitney U test was used to compare the continuous outcomes. (C) Associations of 
clusters C1-C3 with clinical and demographic parameters in the PF-ILD cohort. Fisher’s exact test was used to compare the 
categorical variables. (D) Left: K-means cluster plot for z-scored delta radiomic features positively correlating with ECM-
remodeling (n=8) of the PF-ILD cohort (n=19) indicates two stable clusters (Jaccard coefficients>0.75, where 1 describes 
perfect stability). Right: Scatter plot showing the average silhouette coefficient versus the number of clusters for the k-means 
clustering input data. The blue and red dashed line indicate the global and local optimum, respectively. (E) Box plots 
comparing age (years)# and disease duration (years)¶ at baseline between clusters S1 and S2. Mann-Whitney U test was used 
to compare the continuous outcomes. (F) Associations of clusters S1 and S2 with clinical and demographic parameters in the 
PF-ILD cohort. Fisher’s exact test was used to compare the categorical variables. #Age is defined as the period between birth 
date and baseline HRCT scan. ¶Disease duration is defined as the period between the first reported diagnosis of PF-ILD and 
baseline HRCT scan. 
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Supplementary Methods 
 
Animal experimentation and ethics statement 
The effects of antifibrotic treatment on delta radiomics were studied in mice with bleomycin-induced 
lung fibrosis 22,23,32,55. To induce lung fibrosis, C57BL/6J-Rj mice (n=30, female, 8-weeks old, Janvier 
Labs, Le Genest-Saint-Isle, France) were intratracheally instilled with 2 U/kg bleomycin sulfate 
(Bleomycin Baxter 15’000 I.U., pharmacy of the canton Zurich, Switzerland) dissolved in saline on day 
0. Treatment with 60 mg/kg nintedanib (n=15) or vehicle-only (deionized water, n=15) was 
administered once daily by oral gavage (at a volume of 10 µL/g body weight) from day 7 to day 20 for 
a total of 14 applications. Lung MicroCT scans were acquired of each animal pre- (day 7) and post-
treatment (day 21) for generation of radiomic feature sets. All mice were sacrificed on day 21 by CO2 
inhalation (24 hours after the final treatment), followed by exsanguination of the vena cava and 
transcardial perfusion of the lungs with 10 mL ice-cold Dulbecco’s phosphate-buffered saline (DPBS) 
at a pressure of 100-120 cm H2O to remove residual blood from the lung. The lung was excised, rinsed 
with DPBS, dissected into the individual lobes, and processed according to the different assay 
requirements. Mice were allocated to different study groups by complete randomization and 
treatment was provided in a double-blinded manner. All mice were housed in groups of five with 
access to food and water ad libitum in standard housing conditions with 12 hour light-dark cycles. 
Animals were acclimatized for seven days prior to experimentation start. HydroGel® (ClearH2O Inc.) 
and water-soaked standard rodent diet were provided to alleviate body weight loss. Paracetamol 
analgesia was provided if mice showed signs of pain. Ethical approval for experimentation was granted 
by the cantonal veterinary office (license no. ZH082/2021) and experimentation was performed in 
strict compliance with Swiss animal protection laws and guidelines. Mice were excluded from analyses 
if humane endpoints were reached (n=3) or if microCT scans exhibited presence of severe lung 
abnormalities (n=3), including atelectasis or unilateral fibrosis development. 
 
Patient cohort, clinical data, and ethics statement 
In this study, 19 PF-ILD patients undergoing treatment with nintedanib at Bern University Hospital 
were retrospectively selected from the Bern University Hospital registry and the SWISS-IIP cohort. 
Approval for the study was granted by the local ethics committee (BASEC-ID: 2023-01920 [ILDALMO]; 
PB_2016_01524 [SWISS-IIP cohort]). Selection was performed based on the inclusion and exclusion 
criteria stated below. A total of 359 patients diagnosed with (progressive) fibrosing ILD were screened 
for fulfillment of the below criteria, of which 54 patients received nintedanib treatment for ≥6 months. 
Of these 54 patients, 19 fulfilled also the remaining inclusion criteria. 
 
Inclusion criteria 

1. Diagnosis of PF-ILD determined by a senior attending physician according to established 
guidelines 2,24 

2. Treatment with nintedanib (≥100 mg twice daily; min. 6 months at follow-up HRCT) 
3. Availability of HRCT chest scans fulfilling the following criteria: 

a. Pre-treatment HRCT (max. 1 month after treatment initiation) 
b. Post-treatment HRCT (min. 6 months interval to pre-treatment HRCT) 
c. Slice thickness in range 0.5 - 1.5 mm 
d. Acquisition at tube voltage in range 80-130 kVp 
e. One of the following reconstruction kernels: I70f, I80s, Br56f, Br56u, Br59f, LUNG, 

FC55 (sharp), YB 
f. Filtered-back projection as reconstruction algorithm 
g. Scans acquired in full inspiration mode 

4. Availability of PFT recordings fulfilling the following criteria: 
a. Pre-treatment PFT (max. 1 month after treatment initiation) 
b. Post-treatment PFT (min. 6 months interval to pre-treatment PFT) 
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Exclusion Criteria 
5. Presence of secondary lung disease at times any HRCT scans and PFT recording (e.g., cancer, 

COVID-19, pneumonia, bronchitis) 
6. Concomitant treatment with other antifibrotic drugs during the observation period (e.g. 

pirfenidone) 
 
Demographic and clinical parameters were derived from electronic patient records, including age 
(birth date), sex, disease etiology, date of diagnosis, date of nintedanib treatment start, presence of 
pulmonary (arterial) hypertension, smoking status, concomitant medications, and dates of PFT and 
HRCT scan recordings. The recorded PFT parameters included forced vital capacity (FVC) in % pred. 
and liters. Changes in PFT recordings between pre- and post-treatment were expressed as delta 
values. A Summary of patient demographics and clinical characteristics is provided in Table 1. 
 
MicroCT image acquisition 
Lung microCT images of each mouse were acquired at days 7 and 21 on a SkyScan 1176 (Bruker, 
Kontich, Belgium) in free-breathing conditions under isoflurane anesthesia using respiratory gated 
image acquisition. Anesthesia was induced by 5.0% and maintained by 1.5-2.5% isoflurane in air at 
0.8-1.0 L/min flow rate to achieve a breathing rate of 0.7-0.9 breaths/s for an average scan time of 15 
min. Animals were placed in supine position on the scanner bed with a styrofoam block mounted on 
the diaphragm to allow monitoring of respiratory gating. Image acquisition was performed with the 
following acquisition settings: tube voltage = 50 kV, tube current = 500 µA, filter = Al 0.5 mm, frame 
averaging = on (3), rotation step = 0.7 degrees, sync with events = 50 ms, X-ray tube rotation = 360 
degrees, exposure time = 77 ms, resolution = 35 µm, slice thickness = 35 µm. Images were 
reconstructed with NRecon software (v.1.6.8.0; Bruker) using Feldkamp filtered back-projection 
algorithm with the following parameters: misalignment compensation (scan-dependent manual 
adjustment), smoothing = 1 with Gaussian kernel, ring artifact compensation = 4, and beam hardening 
correction = 10%. Reconstructed images were converted to DICOM format. 
 
CT segmentation of mouse lungs  
Left and right lung lobes of mice were semi-automatically segmented by two readers (D.L., M.B.) using 
MIM software (v.7.1.6, MIM Software Inc., Cleveland, Ohio, USA). Briefly, a seed was set within the 
right and left lung using the “region grow” tool (upper limit = -600 HU, lower limit = -800 HU, tendril 
diameter = 0.2 mm, fill holes = strong), which then automatically defined the vast majority of the lung 
volumes in the 3D space. Manual contour alignment with the 2D/3D brush was used to correct 
potentially misaligned areas. Finally, the smoothing function was used to remove sharp edges. For 
medical diagnostics, the Hounsfield scale is usually normalized to 120 keV tube voltage, which could 
technically not be achieved by our microCT instrument. To enable direct comparison between CT-
derived radiomic datasets from patients and mice, the reconstructed microCT images of mouse lungs 
were pixel value corrected to match clinical specifications as previously described 17.  
 
HRCT image acquisition 
HRCT acquisition of human lungs was performed at Bern University Hospital or outpatient clinics. 
Instrument and scan settings used are summarized in Supplementary Table 1. All HRCT scans were 
evaluated by a senior radiologist (L.E.) at the Department of Diagnostic, Interventional, and Pediatric 
Radiology of the Bern University Hospital for the presence of PF-ILD on a standard picture archiving 
and communication system workstation and a radiology-grade display monitor. 
 
CT segmentation of human lungs 
Left and right lung lobes were semi-automatically segmented by two readers (C.M., L.K.) with the open 
source software 3D Slicer (v.5.2.1). Pulmonary hilar vessels and atelectatic areas were manually 
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excluded from the regions of interest. Manual contour corrections were only applied when spatially 
limited areas did not coincide with the actual borders of the lungs.  
 
Pulmonary function tests 
Pulmonary function tests were performed by trained personnel at the Department of Pulmonary 
Medicine of the Bern University Hospital or in outpatient clinics. All tests were performed following 
established protocols 56–59. 
 
Radiomic feature calculation 
Calculation of radiomic features was performed on merged structures of left and right lung lobes using 
Z-Rad software (v.7.3.1, https://medical-physics-usz.github.io/, Department of Medical Physics, 
University Hospital Zurich, Zurich, Switzerland), an image biomarker standardization initiative (IBSI)-
compliant Python-based software 60, as described in 17. Mouse lungs were resized to isotropic voxels 
of 0.15 mm. To achieve comparable voxel size in patients, human lungs were resized to isotropic voxels 
of 2.75 mm, corresponding to an estimated 6000-fold volumetric difference 26. Both mouse and 
human lung volumes were discretized to a fixed bin size of 50 HU in a range of -1000 HU to 200 HU. 
From the resized volumes, 1’388 radiomic features were calculated per lung scan and time point (HU 
limits: -1000 to 200 HU), corresponding to the following feature classes: 
 

1. Histogram features (n=17) 
2. Texture features (n=137): Gray Level Co-occurrence Matrix (n=52, GLCM), Neighborhood Gray 

Tone Difference Matrix (n=5, NGTDM), Gray Level Run Length Matrix (n=32, GLRLM), Gray 
Level Size Zone Matrix (n=16, GLSZM), Gray Level Distance Matrix (n=16, GLDZM), and 
Neighboring Gray Level Dependence Matrix (n=16, NGLDM) 

3. Wavelet features (n=1’232): Transformation of histogram and texture features following 
coiflet filter decomposition 

4. Shape features (n=2) 
 
Histogram features carry information about distribution of voxel intensities using first-order statistics 
(e.g. mean, standard deviation, skewness, kurtosis), describing tissue intensity characteristics. Texture 
features define intra-tissue heterogeneity by calculating the spatial relationship between neighboring 
voxel intensities 61. Wavelet features compute histogram and texture features after wavelet 
decompositions of the original image using eight different coiflet filters (high- to low-pass filters), 
thereby concentrating the features on different frequency ranges 62. Shape features describe tissue 
volume and size independent of intensity distribution.  
 
Delta radiomic features describing the change of each feature between pre-and post-treatment, were 
expressed as delta values: ΔFeature = Feature (t2) – Feature (t1) 27. Lung densitometric information 
was directly inferred from the radiomic histogram feature hist_mean, which describes the lung 
attenuation-based average HU intensity of the segmented lung volume. 
 
Radiomic feature stability evaluation 
Intraclass correlation coefficients (ICC) were calculated for each radiomic feature to evaluate stability 
against inter- and intra-reader bias in the lung segmentation process. For inter- and intra-reader ICC, 
two (D.L., M.B.) and one examiner(s) (D.L.), respectively, independently segmented 16 randomly 
selected mouse lung scans, followed by radiomic feature calculation of the delineation structures. ICCs 
were calculated using two-way mixed effect models with the consistency method in the “irr” R package 
according to published reports 63. Only stable/reproducible features (n=1’130) with ICC≥0.75 were 
considered for further analyses for both mouse and human datasets 64. Feature stability assessment 
was performed on the mouse dataset due to the lesser degree of automation in lung segmentation.  
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Proteomics 
For comparative proteomics, the middle lobe of the right mouse lung was snap frozen in liquid 
nitrogen and stored at -80°C until processing. Sample workup and data collection was performed by 
trained personnel at the Proteomics and Mass Spectrometry Core Facility (PMSCF) at the University 
of Bern using standard established protocols. All vehicle- (n=14) and nintedanib-treated (n=10) 
samples were analyzed. One vehicle sample was excluded from analysis due sample workup issues. 
Tissue homogenization was performed in 8M urea / 100 mM Tris (pH 8.0) buffer supplemented with 
cOmplete protease inhibitor cocktail (Roche Diagnostics, Mannheim, Germany) using the FastPrep 
system (MP Biomedicals). Following reduction, alkylation, and overnight protein precipitation with 
ice-cold acetone, 10 µg of the cleaned protein mixture was digested into peptides using a two-step 
digestion protocol (LysC for 2 h at 37 °C followed by Trypsin at room temperature overnight). Digests 
were analyzed by nano-liquid chromatography on a Dionex Ultimate 3000 (ThermoFisher Scientific, 
Reinach, Switzerland) through a CaptiveSpray source (Bruker, Bremen, Germany) with an end-plate 
offset of 500 V, a drying temperature of 200 °C, and with the capillary voltage fixed at 1.6 kV. A volume 
of 2 µL (200 ng) protein digest was loaded onto a pre-column (PepMap 100 C18, 5 µm, 100 A, 300 µm 
diameter x 5 mm length, ThermoFisher) at a flow rate of 10 µL/min with 0.05% trifluoroacetic acid in 
water / acetonitrile 98:2. After loading, peptides were eluted in back flush mode onto a in-house made 
C18 CSH Waters column (1.7 µm, 130 Å, 75 µm x 20 cm) by applying a 90-minute gradient of 5% 
acetonitrile to 40% in water / 0.1% formic acid, at a flow rate of 250 nL/min. The timsTOF Pro 
instrument (Bruker, Bremen, Germany) was operated either in data-dependent acquisition (DDA) or 
data-independent (DIA) mode using the Parallel Acquisition Serial Fragmentation (PASEF) option. The 
mass range was set between 100 and 1700 m/z, with 10 PASEF scans between 0.7 and 1.4 V s/cm2. 
The accumulation time was set to 2 ms, and the ramp time was set to 100 ms, respectively. 
Fragmentation was triggered at 20’000 arbitrary units, and peptides (up to charge of 5) were 
fragmented using collision induced dissociation with a spread between 20 and 59 eV. DDA data was 
processed further with FragPipe software (v.17.0) using the IonQuant algorithm and filtering protein 
identifications to a 1% false discovery rate (FDR) on the peptide level using the Percolator algorithm. 
Furthermore, protein groups were filtered by the criterion that at least two different razor peptide 
sequences were identified as evidence for the existence of the protein group. From the DDA data, a 
spectral library was built with the FragPipe software. This library was used to identify and quantify 
proteins with the DIA data using standard parameters in Spectronaut 16 software (Biognosys, 
Schlieren, Switzerland). Protein names (Uniprot IDs) were converted to Entrez IDs and Gene Symbols 
using “uniprot.ws” and “annotationDbi” R packages. Protein names without matching Entrez Gene ID 
were dropped, resulting in a final set of 7’006 proteins. 
 
Phosphoproteomics 
For phosphoproteomics, the middle lobe of the right mouse lung was snap frozen in liquid nitrogen 
after collection and stored at -80°C until processing. Sample workup and data pre-processing was 
performed by trained personnel at the Proteomics and Mass Spectrometry Core Facility (PMSCF) at 
the University of Bern using standard established protocols. Randomly selected subsets of vehicle- 
(n=5) and nintedanib-treated (n=5) were analyzed. A titanium dioxide phosphopeptide enrichment 
workflow 28 with subsequent DDA liquid chromatography tandem mass spectrometry (LC-MS) analysis 
on the same instrument and parameter settings as described above was applied. Samples were 
searched and quantified with FragPipe 65 (v.18.0, MSFragger version 3.5, Philosopher version 4.4.0, 
IonQuant version 1.8.0) using the following parameters: swissprot 66 Mus musculus database (release 
2022_01) with isoforms and common contaminants; 20 ppm and 0.05 Da mass tolerance for 
precursors and fragment, respectively; search enzyme trypsin with max 3 allowed missed cleavages; 
fix modification: carbamidomethylation of cysteine; variable modifications (altogether max 
4/peptide): methionine oxidation of methionine (max 3/peptide), phosphorylation of serine, 
threonine and tyrosine (max 3/peptide) and protein N-terminal acetylation. Peptide forms normalized 
with the variance stabilization 67 normalization method are reported as NormI, along FragPipe’s 
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MaxLFQ and IonQuant’s FragI abundance measures. The intensities of peptide forms were combined 
as protein phosphosite locations by summing the corresponding contributions.  
 
Kinase activity enrichment analysis 
Differential expression of phosphosites and subsequent kinase activity enrichment analysis was 
performed as described in 28. First, the phosphosites’ missing values were imputed using a left-
censored Gaussian replacement method if there was more than 1 missing value in a group of replicate, 
and a maximum likelihood estimation otherwise 68. A moderated t-statistic 68 was then calculated for 
each phosphosite, and used as the ranking metric for the Kinase Activity Enrichment Analysis (KAEA) 
tool 28. KAEA was then applied on the ranked phosphosite list and reversed ranked list using the 
included mouse kinase substrate database. SetRank set p-value and FDR cutoff were set to 0.01 and 
0.05, respectively. 
 
Differential protein expression analysis 
Differential expression of proteins between groups of interest was calculated in R using the “limma” 
package according to standard guidelines 69. At first, DIA-based Spectronaut protein expression 
intensities were log2-transformed. Then, log2 fold changes were calculated as contrasts by application 
of a linear model using robust regression for each protein. Finally, estimated coefficients and standard 
errors for the given set of contrasts were calculated for each protein, followed by Empirical Bayes 
smoothing of standard errors. Proteins with log2FC>0.3 (p<0.05), corresponding to 23% mean 
expression change, were considered as statistically significant. 
 
Gene expression analysis 
RNA was isolated from blood-free cranial lobes of the right mouse lung stored in RNAlater 
(ThermoFisher Scientific). Tissues were mechanically homogenized with the TissueLyser II instrument 
(Qiagen, Hombrechtikon, Switzerland), followed by total RNA isolation with the RNeasy Tissue Mini 
Kit (Qiagen, Hombrechtikon, Switzerland). Isolated RNA was reverse-transcribed into cDNA using the 
Transcriptor First Strand cDNA Synthesis Kit (Roche Diagnostics, Switzerland). Expression of fibrotic 
(Col1a1, Col3a1, Fn1), inflammatory (Ccl2, Il6, Spp1), and nintedanib-related (Tgfb1, Timp1, Tnf, Cxcl1, 
Cd40l, Il1b) genes was analyzed by SYBR Green quantitative PCR using GoTaq Green Master Mix kit 
(Promega) as described in 29. Expression of mRNA was expressed to delta Ct values (Ct [gene of 
interest] – Ct [reference gene]) with Rplp0 as reference gene. Lower delta Ct values indicate higher 
target gene expression. Fold changes relative to vehicle-treated samples were calculated using the 
delta-delta Ct method. The list of the primer pairs used in this study is provided in Supplementary 
Table 2. 
 
Immunofluorescence and microscopy 
Formalin-fixed paraffin-embedded lung sections (3 µm thickness) were cut on a HistoCore Multicut 
microtome (Biosystems Switzerland AG, Muttenz, Switzerland). Following deparaffinization, heat-
mediated antigen retrieval with R-Universal Buffer (Cat. AP0530-500, Aptum Biologics) was performed 
for 15 min at 95°C. After incubation for 25 min at RT for cooling, blocking of unspecific antibody 
staining was performed with 5% BSA in antibody diluent (Cat. S3022, Dako) for 1 h at RT. Primary 
antibodies dissolved in antibody diluent (Cat. S3022, Dako) were then applied and incubated overnight 
at 4°C. Next, samples were incubated with secondary antibodies dissolved in PBS supplemented with 
1% BSA for 2 h at RT. All antibodies and the dilutions used are listed in Supplementary Table 3. Finally, 
cell nuclei were counterstained with 4’,6-diamidino-2-phenylindole (DAPI) for 10 min at RT. The 
sections were then scanned in immunofluorescence mode on a AxioScan.Z1 slide scanner (Zeiss, 
Feldbach, Switzerland) using a Plan-Apochromat 20x/0.8 M27 objective. Cells positively stained for α-
SMA were quantified using the “Positive cell detection” tool of the open source software QuPath 
(v.0.4.0) at default parameter settings and detection thresholds 800, respectively 70. From each 
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sample, five representative areas at 500x500 µm were quantified and the average was used for 
statistical analyses. 
 
Unsupervised clustering 
All variables were z-scored ([x-mean]/standard deviation) prior to analysis (“clusterSim” R package). 
Unsupervised agglomerative hierarchical (using Euclidean distance with complete linkage method) or 
k-means clustering was performed to identify subgroups of mice or patients with similar delta 
radiomic feature patterns or proteomic profiles using base R functions. Clusterability was evaluated 
by Hopkin’s statistic H, with H>0.5 indicating clusterability (“hopkins” R package) 71. The optimal 
number of clusters was determined by average silhouette statistics inspecting k clusters between 2 
and 5, selecting the optimal k based on global or local optimum for separation (“factoextra” R 
package). Stability of clusters was assessed by Jaccard bootstrapping with n=1’000 iterations (“fpc” R 
package) 72. 
 
Variable importance evaluation 
To estimate the importance of each delta radiomic feature for the classification produced by 
unsupervised clustering, we calculated filter-based variable importance using the “caret” package 73 
and retained features with classification score≥0.9. Features (n=54) most important for differentiating 
clusters 1 and 2 in nintedanib-treated mice are listed in Supplementary Table 4. 
 
Gene Ontology and Reactome Pathway enrichment  
Curated lists of DE or highly-correlated proteins were used to perform Gene Ontology (GO) or 
Reactome pathway enrichment analysis using the R packages “clusterProfiler” and “ReactomePA”, 
respectively 74–76, retaining results after false discovery rate adjustment (p<0.05). In case of 
enrichment of proteins highly-correlated with delta radiomic features, proteins with positive and 
negative correlation coefficients were entered separately into GO or Reactome pathway enrichment 
analysis. To visualize and interpret results, the GeneRatios of positive and negative enriched pathways 
were transformed into matrices with delta radiomic features as columns and pathways terms as rows. 
Then, results with GeneRatios<0.10 were dropped (set to zero), and only pathway terms enriched 
(GeneRatio≥0.10) in at least two delta radiomic features were retained. Subsequently, the tables 
containing positive and negative enriched delta radiomic pathway pairs were aggregated, and rows 
and columns without significantly enriched results were removed, followed by visualization with the 
“pheatmap” R package. 
 
Correlation analysis 
Spearman’s rank correlation coefficient rho was calculated between selected delta radiomic features 
and the log2-transformed expression intensity of every protein using base R packages, retaining only 
proteins with p<0.05 and ⍴≥0.6 for further analysis. Pearson’s correlation coefficient r was calculated 
between selected delta radiomic features and the fraction of α-SMA positive cells using base R 
packages.  
 
Cell Type Signature Enrichment Analysis 
To infer relative cell type frequency changes between two groups from proteomics data, we applied 
signature enrichment analysis as described in 30,31, utilizing their published dataset. Cell type 
signatures were defined as sets of genes with cell-type specific gene expression of log2 fold 
change>0.3 and adjusted p<0.05 (Supplementary Table 5). For each cell type, we then tested for the 
enrichment in a ranked list of DE proteins (log2 fold changes) or correlation coefficients (weighted by 
-log10 p-value) using the Kolmogorov-Smirnow test. Positive and negative signed enrichment scores 
(-log10 p-values signed by effect size) reflect relative depletion and enrichment of the respective cell 
type, respectively. To visualize and interpret cell type signatures enriched in the the sets of proteins 
highly-correlation (Spearman’s |⍴|≥0.6, p<0.05) with delta radiomic features, the signed enrichment 
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scores of each variable were transformed into a matrix with delta radiomic features as columns and 
cell types as rows. Enriched results with enrichment score<2 were dropped (set to zero), followed by 
removal of rows and columns without enriched entries, and visualization with the “pheatmap” R 
package. 
 
Association analysis with clinical parameters 
Association analyses were performed to investigate associations of patient delta radiomics-derived (k-
means) clusters with clinical parameters. Mann-Whitney U test was used for comparison of numerical 
variables, and Fisher’s exact test was used to compare categorical variables. 
 
Statistical analyses 
All statistical analyses were performed in R (v.4.3.1.) environment. For all analyses, a p<0.05 was 
considered statistically significant unless stated otherwise. The following R packages were used: 
"readxl", "clusterSim", "dplyr", "tidyverse", "xlsx", "viridis", "hopkins", "seriation", "factoextra", 
"RColorBrewer", "pheatmap", "fpc", "caret", "rstatix", "pROC", "ggpubr", "ggpmisc", "ggrepel", 
"psych", "heatmaply", "UniProt.ws", "AnnotationDbi", "org.Mm.eg.db", "limma", "clusterProfiler", 
"ReactomePA", "parallel", "doParallel", "msigdbr", "scales", "DOSE". 
 
Data Visualization 
Figures were created in Adobe Illustrator (v.28.2) and partially contain graphics or illustrations from 
Adobe Stock and BioRender.com accessed through the academic licenses of the University of Bern. 
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Supplementary Tables 
 

Supplementary Table 1. Summary of HRCT scan acquisition parameters.  

CT Parameter Description 

Manufacturer(s)* Siemens, Siemens Healthineers, Philipps, Toshiba 
Acquisition mode Inspiration (breath hold) 
Position head first-supine (HFS), feet first-supine (FFS) 
Slice thickness (mm) 1 [range 0.5-1.5] 
Reconstruction kernels I70f, I80s, Br56f, Br56u, Br59f, LUNG, FC55 (sharp), YB 
Tube voltage (kVp) 120 (range 80-130) 

*HRCT scanner models included SOMATOM Definition Flash (Siemens), SOMATOM Definition Edge (Siemens), 
SOMATOM Scope (Siemens) NAEOTOM Alpha (Siemens Healthineers), Acquilion (Toshiba), Brilliance 64 
(Philips) 

 

Supplementary Table 2. Mouse primer sequences used for quantitative PCR reactions. 

Gene Forward Primer (5’ → 3’) Reverse Primer (5’ → 3’) 

Ccl2 CCA CTC ACC TGC TGC TAC TCA T  TGG TGA TCC TCT TGT AGC TCT CC  
Cd40l CAC ACG TTG TAA GCG AAG CC ACC GTC AGC TGT TTC CCA TT 
Col1a1 GAT GAC GTG CAA TGC AAT GAA  CCC TCG ACT CCT ACA TCT TCT GA  
Col3a1 AGC TTT GTG CAA AGT GGA ACC  ATA GGA CTG ACC AAG GTG GC  
Cxcl1 ACT CAA GAA TGG TCG CGA GG GTG CCA TCA GAG CAG TCT GT 
Fn1 ATG TGG ACC CCT CCT GAT AGT  GCC CAG TGA TTT CAG CAA AGG  
Il1b TGC CAC CTT TTG ACA GTG ATG TGA TGT GCT GCT GCG AGA TT 
Il6 TGA TGG ATG CTA CCA AAC TGG  GGT ACT CCA GAA GAC CAG AG  
Rplp0 GCA GGT GTT TGA CAA CGG CAG  GAT GAT GGA GTG TGG CAC CGA  
Spp1 AGT GAC TGA TTC TGG CAG CTC ATC TGG GTG CAG GCT GTA AA 
Tgfb1 CTG GAG TTG TAC GGC AGT GG GTT CAT GTC ATG GAT GGT GCC 
Timp1 GGC ATC TGG CAT CCT CTT GT CGC TGG TAT AAG GTG GTC TCG 
Tnf ACC ACG CTC TTC TGT CTA CTG ACT GAT GAG AGG GAG GCC ATT 

 

Supplementary Table 3. Primary and secondary antibodies used for immunofluorescence staining. 

Description Target Reactivity Host Company Label Catalog Dilution 

Primary Ab α-SMA ms (hu, rt) ms Sigma-Aldrich unconjugated A5228 1:1500 
Primary Ab proSP-C ms (hu, rt) rb Merck-Millipore unconjugated AB3786 1:200 
Primary Ab Podoplanin ms gt R&D Systems unconjugated AF3244 1:200 
Secondary Ab IgG ms dk Invitrogen Alexa488 A21202 1:250 
Secondary Ab IgG rb dk Invitrogen Alexa568 A10042 1:250 
Secondary Ab IgG gt dk Invitrogen Alexa647 A21447 1:250 

Abbreviations: ms, mouse; hu, human; rt, rat; rb, rabbit; gt, goat. Abbreviation: Ab, antibody. 

 

Supplementary Table 4. Variable importance selected delta radiomic features used to classify treatment 
response. 

# Feature Name Feature Class Feature Subclass Filter Score 

1 GLSZM_smallZone_lowGL_emp Texture Texture none 0.92 
2 LHL_GLSZM_GLvar Wavelet Texture-derived LHL 0.96 
3 center_mass_shift Shape Shape none 1.00 
4 LLL_hist_skewness Wavelet Intensity-derived LLL 1.00 
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5 HLH_mGLCM_clust_prominence Wavelet Texture-derived HLH 0.92 
6 LHL_GLRLM_entropy Wavelet Texture-derived LHL 0.92 
7 HHL_GLRLM_runPercentage Wavelet Texture-derived HHL 0.92 
8 LHH_GLRLM_shortRunEmp Wavelet Texture-derived LHH 1.00 
9 LLH_mGLCM_IMC1 Wavelet Texture-derived LLH 0.96 
10 HLL_hist_energy Wavelet Intensity-derived HLL 0.96 
11 LHH_mGLRLM_runPercentage Wavelet Texture-derived LHH 0.92 
12 LLL_GLSZM_largeZone_highGL_emp Wavelet Texture-derived LLL 0.92 
13 LHL_mGLCM_IMC2 Wavelet Texture-derived LHL 1.00 
14 LHL_mGLCM_IMC1 Wavelet Texture-derived LHL 1.00 
15 HLH_GLRLM_entropy Wavelet Texture-derived HLH 0.96 
16 LLH_mGLCM_MCC Wavelet Texture-derived LLH 0.92 
17 LLH_mGLCM_clust_prominence Wavelet Texture-derived LLH 1.00 
18 HLL_mGLCM_correlation Wavelet Texture-derived HLL 0.96 
19 HLH_hist_energy Wavelet Intensity-derived HLH 0.92 
20 LHL_mGLCM_MCC Wavelet Texture-derived LHL 1.00 
21 LLL_hist_coeffOfVar Wavelet Intensity-derived LLL 1.00 
22 HHL_mGLCM_IMC1 Wavelet Texture-derived HHL 0.92 
23 LLH_GLSZM_ZSnonuniformity Wavelet Texture-derived LLH 0.96 
24 LLL_GLSZM_GLvar Wavelet Texture-derived LLL 0.96 
25 LHL_GLDZM_ZSnonuniformity_norm Wavelet Texture-derived LHL 0.92 
26 LHL_mGLCM_homogeneity_norm Wavelet Texture-derived LHL 0.92 
27 LLH_hist_energy Wavelet Intensity-derived LLH 1.00 
28 LLL_hist_kurtosis Wavelet Intensity-derived LLL 0.92 
29 LLH_GLSZM_GLnonuniformity_norm Wavelet Texture-derived LLH 1.00 
30 LLL_hist_percentile90 Wavelet Intensity-derived LLL 0.92 
31 LHH_mGLCM_IMC2 Wavelet Texture-derived LHH 1.00 
32 LHL_GLCM_MCC Wavelet Texture-derived LHL 0.92 
33 HHH_GLCM_IMC1 Wavelet Texture-derived HHH 1.00 
34 HHH_GLRLM_LRvar Wavelet Texture-derived HHH 1.00 
35 GLSZM_smallZoneEmp Texture Texture none 0.98 
36 LHH_mGLCM_IMC1 Wavelet Texture-derived LHH 1.00 
37 HHH_mGLRLM_entropy Wavelet Texture-derived HHH 1.00 
38 LHL_hist_energy Wavelet Intensity-derived LHL 1.00 
39 LHH_mGLRLM_GLnonuniformity_norm Wavelet Texture-derived LHH 1.00 
40 HHL_mGLRLM_entropy Wavelet Texture-derived HHL 0.96 
41 LHL_NGTDM_contrast Wavelet Texture-derived LHL 0.92 
42 LLH_GLCM_MCC Wavelet Texture-derived LLH 0.92 
43 LHL_GLSZM_ZSnonuniformity Wavelet Texture-derived LHL 0.96 
44 HHH_NGTDM_busyness Wavelet Texture-derived HHH 1.00 
45 HHH_mGLCM_MCC Wavelet Texture-derived HHH 1.00 
46 HLH_GLSZM_ZSnonuniformity Wavelet Texture-derived HLH 1.00 
47 LHH_GLCM_IMC1 Wavelet Texture-derived LHH 0.94 
48 LHL_GLDZM_ZSnonuniformity Wavelet Texture-derived LHL 1.00 
49 HHH_GLRLM_longRun_lowGL_emp Wavelet Texture-derived HHH 0.96 
50 HHH_NGTDM_strength Wavelet Texture-derived HHH 1.00 
51 HHH_NGTDM_complexity Wavelet Texture-derived HHH 1.00 
52 LLH_GLSZM_entropy Wavelet Texture-derived LLH 0.92 
53 HHH_GLDZM_largeDistance_highGL_emp Wavelet Texture-derived HHH 0.92 
54 LHH_GLCM_MCC Wavelet Texture-derived LHH 0.96 

Abbreviations: GLCM = Gray Level Co-occurrence Matrix, NGTDM = Neighborhood Gray Tone Difference 
Matrix, GLRLM = Gray Level Run Length Matrix, GLDZM = Gray Level Distance Matrix and NGLDM = 
Neighboring Gray Level Dependence Matrix. 

 
Supplementary Table 5. Cell type signature marker table used for cell type signature enrichment in 
bulk proteomics data. Data was adapted from 30. Only markers exhibiting |log2FC|>0.3 and FDR-
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adjusted p<0.05 were considered. Each entry is described by gene symbol, p-value, average log2FC, 
percentage of cells where the gene is detected in the cluster for the assigned cluster (pct.1) and in the 
other cluster(s) (pct.2), adjusted p-value, cell type annotation, and meta cell type annotation. Table 
provided as XLSX file. Data available in Supplementary XLSX File. 
 
Supplementary Table 6. Differentially expressed proteins in nintedanib-treated mice in cluster 1 
compared to vehicle-treated mice. The list includes all identified 7006 proteins. Only proteins with 
|log2FC|>0.3 and p<0.05 were considered for analysis. Each entry is described by log2FC, confidence 
intervals, average expression, t-value, p-value, B-value, Entrez ID, and gene symbol. Table provided as 
XLSX file. Data available in Supplementary XLSX File. 
 
Supplementary Table 7. Differentially expressed proteins in nintedanib-treated mice in cluster 2 
compared to vehicle-treated mice. The list includes all identified 7006 proteins. Only proteins with 
|log2FC|>0.3 and p<0.05 were considered for analysis. Each entry is described by log2FC, confidence 
intervals, average expression, t-value, p-value, B-value, Entrez ID, and gene symbol. Table provided as 
XLSX file. Data available in Supplementary XLSX File. 
 
Supplementary Table 8. Differentially expressed proteins in nintedanib-treated mice in cluster 1 
compared to nintedanib-treated mice in cluster 2. The list includes all identified 7006 proteins. Only 
proteins with |log2FC|>0.3 and p<0.05 were considered for analysis. Each entry is described by log2FC, 
confidence intervals, average expression, t-value, p-value, B-value, Entrez ID, and gene symbol. Table 
provided as XLSX file. Data available in Supplementary XLSX File. 
 
Supplementary Table 9. Results of Gene Ontology enrichment analysis of differentially expressed, 
downregulated proteins (log2FC<-0.3, p<0.05) of nintedanib-treated mice in cluster 1 compared to 
nintedanib-treated mice in cluster 2. Each entry is described by ontology (BP, CC, or MF), GO identifier, 
pathway description, GeneRatio, BgRatio, p-value, FDR-adjusted p-value, q-value, and gene symbols. 
Table provided as XLSX file. Data available in Supplementary XLSX File. 
 
Supplementary Table 10. Results of Gene Ontology enrichment analysis of differentially expressed, 
upregulated proteins (log2FC>0.3, p<0.05) of nintedanib-treated mice in cluster 1 compared to 
nintedanib-treated mice in cluster 2. Each entry is described by ontology (BP, CC, or MF), GO identifier, 
pathway description, GeneRatio, BgRatio, p-value, FDR-adjusted p-value, q-value, and gene symbols. 
Table provided as XLSX file. Data available in Supplementary XLSX File. 
 
Supplementary Table 11. Result of Reactome enrichment analysis of the 54 radioproteomic 
association modules separated by annotation of proteins positively (Spearman’s ⍴≥0.6, p<0.05) and 
proteins negatively (Spearman’s ⍴≤-0.6, p<0.05) correlating with the preclinical response-defining 
delta radiomic feature. Each entry is described by delta radiomic feature name, protein subset entered 
into enrichment analysis, Reactome identifier, pathway description, GeneRatio, BgRatio, p-value, FDR-
adjusted p-value, q-value, gene symbols, and count. Data available in Supplementary XLSX File. 
 
Supplementary Table 12. Result of Gene Ontology - Biological Process (GO:BP) enrichment analysis of 
the 54 radioproteomic association modules separated by annotation of proteins positively 
(Spearman’s ⍴≥0.6, p<0.05) and proteins negatively (Spearman’s ⍴≤-0.6, p<0.05) correlating with the 
preclinical response-defining delta radiomic feature. Each entry is described by delta radiomic feature 
name, protein subset entered into enrichment analysis, GO identifier, pathway description, 
GeneRatio, BgRatio, p-value, FDR-adjusted p-value, q-value, gene symbols, and count. Data available 
in Supplementary XLSX File. 
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Supplementary Table 13. Results of cell type enrichment analysis of the 54 radioproteomic association 
modules. Proteins correlating (Spearman’s |⍴|≥0.6, p<0.05) with delta radiomic features were ranked 
by log10 p-value and weighted by correlation coefficient prior to entering into deconvolution analysis. 
Each entry is described by delta radiomic feature name, p-value, fold change difference, signed log10 
enrichment p-value, cell type, and enrichment trend. Data available in Supplementary XLSX File. 
 

Supplementary Table 14. Associations of patients’ groups resulting from unsupervised clustering on 
preclinical treatment response-defining delta radiomic features (n=54) with clinical parameters 

 Cluster p-value 

Characteristic C1 
(n=3) 

C2 
(n=10) 

C3 
(n=6) 

C1 vs. 
C2 

C1 vs. 
C3 

C2 vs. 
C3 

Baseline       
Age (years)* 55.8 (±15.8) 66.5 (±13.5) 58.6 (±5.5) 0.573 0.905 0.181 
Sex 

Female 
Male 

 
0 (0%) 

3 (100%) 

 
2 (20%) 
8 (80%) 

 
1 (17%) 
5 (83%) 

>0.999 >0.999 >0.999 

Etiology 
IPF 
SSc-ILD 
HP 
Drug-induced ILD 

 
2 (67%) 
1 (33%) 
0 (0%) 
0 (0%) 

 
6 (60%) 
1 (10%) 
3 (30%) 
0 (0%) 

 
3 (50%) 
2 (33%) 
0 (0%) 

1 (17%) 

0.7063 >0.999 0.1706 

Disease duration 
(months)† 

7.2 (±5.3) 9.6 (±32.2) 38.4 (±64.6) 0.937 0.381 0.492 

Smoking status 
Never 
Previous 
Current 

 
1 (33%) 
2 (67%) 
0 (0%) 

 
2 (20%) 
7 (70%) 
1 (10%) 

 
3 (50%) 
3 (50%) 
0 (0%) 

>0.999 >0.999 0.7902 

Pulmonary 
hypertension‡ 

Yes 
No 

 
0 (0%) 

3 (100%) 

 
4 (40%) 
6 (60%) 

 
2 (33%) 
4 (67%) 0.4965 0.500 >0.999 

Immunomodulatory 
therapy§ 

Yes 
No 

 
 

1 (33%) 
2 (67%) 

 
 

4 (40%) 
6 (60%) 

 
 

1 (17%) 
5 (83%) 

>0.999 >0.999 0.5879 

FVC (% pred) 
NA 

71.0 (±28.5) 
0 (0%) 

70.0 (±14.5) 
0 (0%) 

50.0 (±44.5) 
0 (0%) 0.866 0.905 0.313 

FVC (liters) 
NA 

3.010 (±0.920) 
0 (0%) 

2.640 (±0.475) 
0 (0%) 

2.015 (±2.310) 
0 (0%) 0.937 >0.999 0.368 

FEV1 (% pred) 
NA 

58.0 (±22.0) 
1 (0%) 

73.0 (±11.0) 
0 (0%) 

52.5 (±45.8) 
0 (0%) 0.758 0.857 0.278 

DLCO (% pred) 
NA 

44.0 (±6.0) 
1 (0%) 

52.5 (±11.9) 
0 (0%) 

45.0 (±10.0) 
1 (0%) 0.236 0.844 0.243 

Delta       
FVC (% pred) 

NA 
1.0 (±2.5) 

0 (0%) 
-7.0 (±10.0) 

0 (0%) 
-9.0 (3.5) 

0 (0%) 0.090 0.024 0.624 

FVC (liters) 
NA 

-0.050 (±0.125) 
0 (0%) 

-0.280 (±0.450) 
0 (0%) 

-0.465 (±0.225) 
0 (0%) 0.112 0.024 0.329 

FEV1 (% pred) 
NA 

1.5 (±4.5) 
1 (0%) 

-4.0 (±6.8) 
0 (0%) 

-9.0 (±10.0) 
1 (0%) 0.286 0.118 0.200 

DLCO (% pred) 
NA 

3.0 (±8.0) 
1 (0%) 

-6.0 (±11.0) 
5 (0%) 

-13.0 (±10.0) 
2 (0%) 0.381 0.267 0.461 
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Data are presented as median (± interquartile range (IQR)) or n (%). Mann-Whitney U and Fisher’s exact tests 
were used to compare the numerical and categorical variables, respectively. Abbreviations: IPF, idiopathic 
pulmonary fibrosis; ILD, interstitial lung disease; SSc, systemic sclerosis; HP, hypersensitivity pneumonitis; 
FVC, forced vital capacity; FEV1, forced expiratory volume in 1 s; DLCO, diffusing capacity of the lung for 
carbon monoxide; P(A)H, pulmonary (arterial) hypertension. NA denotes missing values as n (%). *: Age at 
time of baseline (pre-treatment) HRCT scan. †: disease duration was defined as the period (months) between 
first reported diagnosis of PF-ILD in the patient records and the baseline (pre-treatment) HRCT scan. ‡: PH 
was assessed by echocardiography or right heart catheterization. If right heart catheterization was 
performed, mPAP>20 mmHg was considered diagnostic 25. §: Immunomodulatory therapy included 
prednisolone, mycophenolate mofetil, azathioprine, rituximab, tocilizumab, or combinations thereof and if 
indicated was provided concomitant to nintedanib treatment. 

 

Supplementary Table 15. Associations of patients’ groups resulting from unsupervised clustering on ECM 
remodeling-associated delta radiomic features (n=8) with clinical parameters. 

 Cluster p-value 

Characteristic S1 
(n=11) 

S2 
(n=8) S1 vs. S2 

Baseline    
Age (years)* 58.3 (±16.1) 63.2 (±7.6) 0.717 
Sex 

Female 
Male 

 
2 (18%) 
9 (82%) 

 
1 (12%) 
7 (88%) 

>0.999 

Etiology 
IPF 
SSc-ILD 
HP 
Drug-induced ILD 

 
7 (64%) 
2 (18%) 
2 (18%) 
0 (0%) 

 
4 (50%) 
2 (26%) 
1 (12%) 
1 (12%) 

0.890 

Disease duration (months)† 12.0 (±32.2) 11.1 (±50.5) 0.717 
Smoking status 

Never 
Previous 
Current 

 
3 (27%) 
7 (64%) 
1 (9%) 

 
3 (38%) 
5 (62%) 
0 (0%) 

>0.999 

Pulmonary hypertension‡ 

Yes 
No 

 
2 (18%) 
9 (82%) 

 
4 (50%) 
4 (50%) 

0.3189 

Immunomodulatory therapy§ 
Yes 
No 

 
3 (27%) 
8 (73%) 

 
3 (38%) 
5 (62%) 

>0.999 

FVC (% pred) 
NA 

69.0 (±18.0) 
0 (0%) 

64.5 (±37.0) 
0 (0%) >0.999 

FVC (liters) 
NA 

2.630 (±0.845) 
0 (0%) 

2.665 (±1.248) 
0 (0%) 0.778 

FEV1 (% pred) 
NA 

71.0 (±23.8) 
1 (9%) 

69.0 (±40.0) 
0 (0%) 0.859 

DLCO (% pred) 
NA 

50.8 (±10.8) 
1 (9%) 

45.0 (±22.0) 
1 (12%) 0.557 

Delta    
FVC (% pred) 

NA 
-4.0 (±5.5) 

0 (0%) 
-10.5 (±5.5) 

0 (0%) 0.047 

FVC (liters) 
NA 

-0.200 (±0.205) 
0 (0%) 

-0.530 (±0.245) 
0 (0%) 0.035 

FEV1 (% pred) 
NA 

-3.0 (±3.0) 
1 (9%) 

-9.0 (±7.5) 
1 (12%) 0.055 

DLCO (% pred) -5.5 (±14.8) -9.0 (±7.0) >0.999 
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NA 3 (27%) 5 (50%) 
Data are presented as median (± interquartile range (IQR)) or n (%). Mann-Whitney U and Fisher’s exact tests 
were used to compare the numerical and categorical variables, respectively. Abbreviations: IPF, idiopathic 
pulmonary fibrosis; ILD, interstitial lung disease; SSc, systemic sclerosis; HP, hypersensitivity pneumonitis; 
FVC, forced vital capacity; FEV1, forced expiratory volume in 1 s; DLCO, diffusing capacity of the lung for 
carbon monoxide; P(A)H, pulmonary (arterial) hypertension. NA denotes missing values as n (%). *: Age at 
time of baseline (pre-treatment) HRCT scan. †: disease duration was defined as the period (months) between 
first reported diagnosis of PF-ILD in the patient records and the baseline (pre-treatment) HRCT scan. ‡: PH 
was assessed by echocardiography or right heart catheterization. If right heart catheterization was 
performed, mPAP>20 mmHg was considered diagnostic 25. §: Immunomodulatory therapy included 
prednisolone, mycophenolate mofetil, azathioprine, rituximab, tocilizumab, or combinations thereof and if 
indicated was provided concomitant to nintedanib treatment. 
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