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ABSTRACT

Coccidiosis, caused by Eimeria parasites, poses significant economic and welfare
challenges in poultry farming. Beyond its direct impact on health, Eimeria infection
disrupts enteric microbial populations leading to dysbiosis and increases vulnerability
to secondary diseases such as necrotic enteritis, caused by Clostridium perfringens.
The impact of Eimeria infection or anticoccidial vaccination on host gastrointestinal
phenotypes and enteric microbiota remains understudied. In this study, the
metabolomic profiles and microbiota composition of chicken caecal tissue and
contents were evaluated concurrently during a controlled experimental vaccination
and challenge trial. Cobb500 broilers were vaccinated with a Saccharomyces
cerevisiae-vectored anticoccidial vaccine and challenged with 15,000 Eimeria tenella
oocysts. Assessment of caecal pathology and quantification of parasite load revealed
correlations with alterations to caecal microbiota and host metabolome linked to
infection and vaccination status. Infection heightened microbiota richness with
increases in potentially pathogenic species, while vaccination elevated beneficial
Bifidobacterium. Using a multi-omics factor analysis (MOFA) machine learning model,
data on caecal microbiota and host metabolome were integrated and distinct profiles
for healthy, infected, and recovering chickens were identified. Healthy and recovering
chickens exhibited higher vitamin B metabolism linked to short-chain fatty acid-
producing bacteria, whereas essential amino acid and cell membrane lipid
metabolisms were prominent in infected and vaccinated chickens. Notably,
vaccinated chickens showed distinct metabolites related to the enrichment of
sphingolipids, important components of nerve cells and cell membranes. Our
integrated multi-omics model revealed latent biomarkers indicative of vaccination
and infection status, offering potential tools for diagnosing infection, monitoring

vaccination efficacy, and guiding the development of novel treatments or controls.

Keywords: Eimeria, yeast-based anticoccidial vaccine, gut microbiota, metabolome,
multi-omics
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INTRODUCTION

Protozoan parasites of the genus Eimeria cause coccidiosis in poultry and costs
to the industry have been estimated to exceed £10 billion annually [1]. Clinical
coccidiosis manifests as poor body weight gain and feed conversion with diarrhoea,
bloody droppings, and mortality in severe cases. Infection induces strong pro- and
anti-inflammatory cytokine responses that may exacerbate pathology [2-5]. Clinical
coccidiosis is commonly avoided through a combination of good husbandry, parasite
chemoprophylaxis with anticoccidial drugs and/or vaccination using varied
formulations of live parasites [6, 7]. In some countries, public concern related to
pathogen drug resistance and widespread use of antimicrobials in animal production
are driving legislative and commercial changes, including increased use of
anticoccidial vaccination [8]. Although current live parasite vaccines are effective,
considerable efforts are also being made to develop recombinant anticoccidial
vaccines [9]. In a previous study, a novel prototype inactivated yeast-based
recombinant oral vaccine for Eimeria tenella was shown to result in reduced parasite
replication, reduced caecal pathology and improved chicken performance compared
to controls [10]. Using Saccharomyces cerevisiae to express and deliver E. tenella
antigens apical membrane antigen 1 (EtAMA1) [11], immune mapped protein 1
(EtIMP1) [12] and repeat 3 from microneme protein 3 (EtMIC3) [13] induced
significant protection against high-level challenge in vaccinated Cobb500 broiler
chickens [10]. However, the impact of vaccination and subsequent parasite challenge
on the host gut and its enteric microbiota was not evaluated. Oral administration of
heat-inactivated and freezed dried S. cerevisiae has previously been shown to
ameliorate the effects of coccidiosis in broiler chickens while modulating the host
immune response and microbiota [14, 15]. Understanding the influence of a yeast-
vectored anticoccidial vaccine on host metabolome and microbiomes could therefore
be used to inform future vaccine development.

Enteric microbiomes play crucial roles in shaping host physiological functions
including provision of nutrients [16, 17], immune system maturation and regulation
[18, 19]. Eimeria infection can cause imbalance in gastrointestinal ecosystems [20,
21], commonly referred to as dysbiosis, and raises the risk of enteric comorbidities
such as necrotic enteritis caused by Clostridium perfringens [22]. Variation in the
severity of damage caused by Eimeria infection has also been shown to associate
with differences in enteric microbiomes. For example, high level caecal lesion scores
recorded during E. tenella infection correlated with increased Enterobacteriaceae
occurrence but decreased Bacillales and Lactobacillales [21]. However, little is known
about physiological responses in gastrointestinal molecular and biochemical

mechanisms, or variation in microbiota between immunologically naive, infected and
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101  vaccinated chickens. Few studies have provided insight into chickens' metabolic

102  responses to infection or vaccination. Using an untargeted metabolomic profile

103  assessment, Aggrey et al. (2019) found that carnitine-derived metabolites involved in
104 fatty acid metabolism, and thromboxane B2, 12-HHTrE and itaconate involved in

105 inflammatory responses, were influenced by Eimeria acervulina infection [23]. In the
106  same way, a human shingles vaccine trial revealed that key metabolites such as sterol
107  class metabolites, arachidonic acids, phosphoinositide, and diacylglycerol, were

108  essential to immune signalling [24]. Here, we have created a multi-omics dataset

109  defining caecal microbial populations (lumen contents and tissue-associated) and
110  caecal tissue metabolomes using high-throughput sequencing of the 16S rRNA gene
111  and liquid chromatography-mass spectrometry (LC-MS), respectively. We have used a
112 Multi-Omics Factor Analysis (MOFA) [25, 26] machine learning model to

113 systematically integrate data on caecal microbiota and the host metabolome

114  sampled during an anticoccidial vaccine trial, investigating host microbe-associated
115  signatures that can predict chicken health status and vaccine efficacy.

116
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RESULTS
Caecal pathology and parasite load post-Eimeria challenge demonstrates efficacy of
a candidate yeast-vectored anticoccidial vaccine

We previously evaluated the efficacy of an experimental S. cerevisiae-vectored
anticoccidial vaccine using readouts of gut pathology (caecal lesion scores: 0-4),
parasite replication (quantitative PCR of caecal tissue) and chicken performance
(body weight gain, BWG) following oral challenge with 15,000 sporulated oocysts of
E. tenella [10]. Briefly, lesion scores at 6 dpi were lower in vaccinated chickens
compared to unvaccinated controls (V-C vs UV-C; p<0.001; Figure 1A). Parasite
replication measured by qPCR as parasite genomes per host genome was also lower
in vaccinated chickens at 6 dpi (p<0.001; Figure 1B). In contrast, BWG was not
significantly different at 6 dpi (Figure 1C) although it was by 10 dpi [10].

In the present study, the level of E. tenella replication at 6 dpi was confirmed by
guantification of Eimeria mitochondrial 16S rRNA amplicon reads in NGS microbiome
data from caecal tissue and contents (Figures 1D and 1E). Comparison of all three E.
tenella replication measures revealed a significant association with lesion score
severity (QPCR ratio: r=0.89, NGS reads of caecal contents: r=0.8, NGS reads of caecal
tissue: r=0.63; all p<0.001; Figure 1F). For comparison, 10 dpi unvaccinated and
challenged chickens (UV-C10) considered to be recovering from infection also
showed a significant reduction in gut pathology and Eimeria load compared to all
infected subjects at 6 dpi (p<0.001; Figures 1A and 1E).

Gut pathology and parasite load correlate with changes in gut microbiota

The composition of enteric microbial populations can reflect the health status of
micro-ecosystems in the gastrointestinal (Gl) tract. We performed 16S amplicon
sequencing from caecal contents and tissues collected from the same individuals to
characterize gut microbiota composition, with no significant differences in beta
diversity detected between sample types (caecal tissue compared to caecal contents;
PERMANOVA test R>=0.026, p=0.052) (Figure S1A). Comparison between caecal
contents and tissue found 62.7-73.6% of microbiota composition to be shared
(Figures S1B). Microbial populations enriched in caecal contents included
Lactobacillus mucosae, Lactobacillus salivarius, Paludicola psychrotolerans,
Kineothrix alysoides, Anaerostipes butyraticus, and [Clostridium]
polysaccharolyticum; while microbial populations of Anaerotruncus colihominis (KTU
13) and Flavonifractor plautii (KTU 14) were enriched in caecal tissues (i.e. UV-C, MV-
C, and V-C) (Figure S1C).

Principal coordinates analysis (PCoA) based on Bray-Curtis dissimilarity
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155 measurements showed that the caecal contents microbiota composition of

156  unchallenged versus all challenged groups were distinct from each other (6 dpi) along
157  the PCoA1 axis (31.15% of observed variation) (Figure 2). A PERMANOVA test

158  confirmed significant differences in microbiota (R?=0.33, p=0.001) (Figure 2A) and
159 there were significant correlations with caecal lesion scores (|r|=0.73, p<0.001),

160  parasite load in caecal tissues (qQPCR ratio: |r|=0.76, p<0.001) and caecal contents
161  (NGSreads: |r|=0.67, p<0.001) (Figure 2B-D).

162

163 On average a low alpha diversity index of microbial richness was found in all
164  chickens across all groups (71.64+14.21) compared to a previous study by Hay et al.
165  (2023) (493.13£201.60, re-analysed using the same pipeline used in the present

166  study)[27]. This disparity may be due to requirement for broad-spectrum

167  enrofloxacin treatment during this trial (Figure 2E). Comparison between the groups
168 revealed a higher richness index in all challenged groups 6 dpi compared to the

169  unvaccinated, unchallenged group (UV-UC), although the difference was not

170  statistically significant. The dominant phyla were Firmicutes, followed by

171  Proteobacteria in all chickens (combined, accounting for more than 98%) (Figure 2F);
172 however, Proteobacteria were reduced in UV-UC chickens (4.83% comparing to

173  13.5%/26.65%/22.36% in other groups). Actinobacteria were enriched in both mock
174  and true vaccinated groups (1.55% and 1.35%, respectively), dominated by genus
175  Bifidobacterium (1.50% and 1.30%, respectively). Since the lesion scores and Eimeria
176 loads were significantly correlated with the PCoA1 axis of beta diversity, 36

177  associated taxa enriched in challenged chickens were identified by Pearson's

178  correlation analysis (|r|> 0.4, FDR < 0.1), including Escherichia coli, Clostridium

179  difficile, C. innocuum, and Proteus mirabilis (Figure 2G).

180

181 Metabolomes reflect the molecular alterations of host physiology responses in

182  health, infection, and recovery

183 Caecal tissue metabolomic profiling was performed for the same chickens as
184  described above using samples collected in parallel with those used for microbiome
185 sequencing analysis to characterize host physiological responses. An untargeted

186 metabolomics approach was applied for screening metabolites within the tissues.
187 Based on Euclidean distance measurements, PCoA of caecal tissue metabolome

188  profiles showed a similar pattern to the caecal microbiota with unchallenged and
189 challenged individuals differentiated along the PCoA1 axis (52.73% of observed

190 variation) (Figure 3). The recovering (UV-C10) group displayed a broad but

191 intermediate metabolome profile to that of 6 dpi challenged chickens and uninfected

192  chickens and this group was also differentiated along the PCoA2 axis (9.57%). Host
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metabolome profiles correlated with caecal lesion scores (|r|=0.83, p<0.001) and
Eimeria loads (qPCR ratio: |r|=0.73, p<0.001; NGS reads of caecal contents: |r|=0.83,
p<0.001; NGS reads of caecal tissues: |r|=0.68, p<0.001) (Figure 3B-C). Among 1,180
metabolites belonging to the 10 categories that were detected from all chickens
(including partially characterized and uncharacterized; Figure 3D), 954 metabolites
were either negatively (606, non-infection-associated) or positively (348, infection-
associated) correlated with pathophysiology changes (lesion scores and Eimeria
loads; significant negative correlation with PCo1l in Figure 3A by Pearson's correlation
analysis, FDR < 0.1; Figure 3E). In more detail, xenobiotics, cofactors and vitamins,
especially vitamin Bs, were characterized as non-infection-associated metabolites
(Figure S2A and Table S2); while lipids, especially the sphingolipids, nucleotides, and
carbohydrates, were characterized as infection-associated metabolites (Figure S2B
and Table S2).

Multi-omics factor analysis reveals covariation patterns of disease status

Using multi-omics factor analysis (MOFA), integration of parallel caecal tissue
and content microbiomes with host tissue metabolome data showed concordant
responses that associated with gut pathology and parasite load. Host-microbe
intercorrelated features were assessed between microbial and metabolite features
using Spearman’s correlation. A total of 151 KTUs and 767 metabolites were
significantly associated (FDR<0.05), resulting in a MOFA model that contained 15
representative factors. The factors were decomposed and ordered by the fraction of
significant associations they contributed to the major variances (Figure 4A). The first
two MOFA factors explained the most variance that differentiated the unchallenged,
challenged, and recovering groups on the MOFA scatter plot (Figure 4B). In addition,
covariate (phenotype) correlation analysis demonstrated that the first two MOFA
factors were associated with the majority of the covariates (Figure 4C) where factor 1
(FA1) was particularly associated with covariates related to infection (r <-0.6) and
factor 2 (FA2) was associated with BWG (r=0.56); associations not identified in

correlations of single omics analyses.

Multi-omics networks can contextualize the multiple types of microbiome
disruption associated with various biological molecules found in different health
statuses [28]. Additionally, a network's hotspot molecular features (hubs and
clusters) can highlight targets to be followed-up. Here, we conducted network
analyses downstream of MOFA to explore biomarkers that might associate with
anticoccidial vaccination. Network analyses for the MOFA factors showed sub-

structures (clusters of intercorrelated features) that were enriched in each MOFA
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factor (Figure 4D-E). Three clusters were identified from FA1 components; two
associated with Eimeria challenged chickens (including unvaccinated, vaccinated and
recovering groups) (FA1-C1 and C3 in Figure 4D), whilst the third associated
exclusively with unchallenged chickens (FA1-C2 in Figure 4D). Additionally, cluster 1
in the FA2 network demonstrated associations between unchallenged/recovering
groups and the 6 dpi-challenged group (FA2-C1 in Figure 4E). Clustered components
from the FA1 and FA2 networks associated with non-challenge and recovery were
enriched by vitamin B and derivatives (e.g., pyridoxine, riboflavin, nicotinate
derivatives), short-chain fatty acids (e.g., butyrate/isobutyrate and valerate), and
short-chain fatty acid-producing bacteria (e.g., Caproicibacter fermentans and
Ruminococcoides bili). Itaconate, an antipathogenic organic acid was enriched in
recovering chickens. In contrast, uremic toxin (e.g., p-cresol sulfate), the long-chain
fatty acids and derivatives (e.g., 14—18C fatty acids and glycerophospholipids (GPs),
glycerophosphocholine (GPC), phosphoethanolamine (PE) derivatives), metabolites
of fatty acid metabolism (eicosenoylcarnitine and docosadienoylcarnitine), and gut
pathogens (e.g., Clostridium difficile and C. innocuum) and commensal bacteria (e.g,
Escherichia coli, Clostridium bolteae, and Fecalibacterium prausnitzii), were enriched

in post-Eimeria challenged associated clusters of both networks (Figure S3).

MOFA models discover potential signature markers of host response to challenge
after vaccination

While highlighting the covariation patterns of disease status, the MOFA model
constructed using data from all samples did not reveal factors specifically associated
with unvaccinated-challenged and vaccinated-challenged (mock and true vaccines)
chickens. A more focused MOFA model was performed on all 6 dpi challenged groups
to identify signature markers after vaccination. In the second model, the first four
MOFA factors contributed to the major variation of the data and the fraction of
significant associations (Figure 5A). Interestingly, the phenotypic and pathological
covariates were more closely associated with FA4 and FA11 (e.g., lesion score
severity was more associated with FA4 than other FA; r=-0.57). Vaccine treatment
conditions (Yeast: treating with yeast vectors or not; Vaccination: treating with the
true vaccine or not) were negatively associated with FA4 and FA11, and the parasite
load (gPCR ratio) was associated with both FAs (r=-0.59 and -0.37) (Figure 5C).
Comparison of FA4 and FA11 using a scatter plot demonstrated that FA4 clearly
distinguished the treatment condition of yeast vectors between unvaccinated (UV-C)
and vaccinated groups (MV-C and V-C). FA11 showed a different trend between the
mock vaccine group (MV-C) and the true vaccine group (V-C) (Figure 5B). Using

network analysis, the signature features of various sphingolipids (e.g, sphingosine,
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sphingomyelin) and Ruminococcus lactaris were clustered from both FAs and
enriched in most vaccinated subjects; whereas the long-chain fatty acids (e.g.,
linoleoyl-arachidonoyl-glycerol and oleoyl-oleoyl-glycerol) were enriched in
unvaccinated-unchallenged chickens (Figure 5D-E, and Figure S4).
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274  DISCUSSION

275  An experimental yeast-vectored anticoccidial vaccine has recently been described as
276  astep towards improved control of Eimeria species such as E. tenella, which cause
277  coccidiosis in chickens [10]. Small-scale studies under commercial conditions found
278  that vaccination could partially control the direct consequences of live parasite

279  challenge, reducing parasite replication and its associated enteric pathology, while
280 protecting performance (BWG and feed conversion ratio). In the present study, we
281 have assessed the impact of vaccination on indirect consequences of Eimeria

282  infection including microbial dysbiosis and metabolic disruption.

283

284  Using 16S rDNA amplicon sequencing from caecal contents and caecal tissue of

285  experimentally vaccinated and challenged chickens (specific pathogen-free sourced),
286  the microbiota richness was lower than in a previous farm study (Hay et al. 2023),
287  likely due to the necessary enrofloxacin medication in the early rearing period to
288  control an outbreak of colibacillosis. Indeed, it is well described that antibiotic

289  treatment severly impacts on microbiome composition and richness, but recovering
290 toits normal composition after stopping the treatment. While this was unexpected,
291  such treatments are common under field conditions. Microbiota richness is also

292  expected to be higher in populations of mixed breed chickens reared in the field

293  under varied husbandry regimes than under the controlled conditions used in the
294  present study. Comparison between caecal contents and tissues found no significant
295  differences in alpha diversity (p=0.87) and beta diversity (p=0.052) (Figure S1). Only
296  Anaerotruncus (A.) colihominis and Flavonifractor (F.) plautii were consistently

297  enriched in caecal tissue samples across multiple groups (UV-UC, MV-C, and V-C),
298 indicating their association with the intestinal mucosal environment. A. colihominis,
299  originally isolated from mouse colonic mucosa by the Leibniz Institute DSMZ, has
300 been detected in the intestinal lumen and stool samples of patients with

301 bacteraemia and colorectal cancer, suggesting a potential broader role in gut

302 dysbiosis and pathology [29, 30]. Similarly, F. plautii, known for its ability to degrade
303 flavonoids and potentially mucins, was isolated by Levine et al. from mammalian
304 intestinal mucosa [31]. Its presence in these tissue samples underscores its

305 importance in gut health and disease [31, 32]. Based on our findings, investigation of
306 caecal contents alone appears to be sufficient to investigate total gut microbiota
307 because these reflect the primary condition of the intestinal ecosystem.

308

309 Eimeria infection is known to predispose chickens to diseases such as necrotic

310 enteritis, caused by C. perfringens [33], and can disrupt enteric microbial populations

311 leading to dysbiosis [21]. We anticipated that beta diversity, but not alpha diversity,
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would change following Eimeria challenge. However, although average richness was
lower in unchallenged chickens, the difference was not statistically significant (Figure
2). Comparison of bacterial abundance between infected and non-infected chickens
revealed increased Gammaproteobacteria and pathogenic Clostridia in Eimeria-
challenged chickens. Common gastrointestinal pathogens, including Escherichia (E.)
coli, Clostridium (C.) difficile, Enterococcus (E.) cecorum, Proteus mirabilis, and
Clostridium (C.) innocuum, were also in higher abundance (Figure 2G) suggesting
significant dysbiosis occurred following Eimeria challenge infection. It is notable that
some strains of E. caecorum have been reported to cause high morbidity and
mortality in broiler chickens [34]. Additionally, C. difficile and C. innocuum can cause
antibiotic-associated diarrhea and have shown vancomycin resistance [35, 36],
suggesting that a compromised gut environment may facilitate colonization by
antibiotic-resistant strains; this condition mirrors the mechanism of human
pseudomembranous colitis, which arises due to the overgrowth of C. difficile
following extensive antibiotic usage. Eimeria infection can alter the gut
microenvironment by increasing intestinal permeability and inflammation [37],
thereby interacting bidirectionally with the gut microbiota. Consequences of enteric
dysbiosis include immune dysregulation causing gut-related disorders such as
allergies, inflammatory bowel disease (IBD) and autoimmune disorders [38-40]. Thus,
Eimeria challenge is likely to activate a synergistic response between the host’s
physiology and the commensal gut microbiota. Intestinal infections can decrease
oxygen levels and lead to chronic tissue and mucosal hypoxia with dysregulation of
activation of hypoxia-inducible factors (HIFs) and NF-kB, exacerbating inflammation
and injury of intestinal tissues [41, 42]. The metabolic environment of the mucosa is
also altered during inflammation since the Enterobacteriaceae require terminal
electron acceptors from the mucosa for anaerobic respiration and blooming [43, 44].
Inflammatory cells release ROS and RNS, forming NOs™ as a terminal electron

acceptor for Gammaproteobacteria growth via denitrification [43, 45-51].

In all Eimeria-challenged groups (UV-C, MV-C, V-C) the gut microbiota composition
was similar (Figure 2A). However, yeast treatment groups (MV-C and V-C) showed a
significant increase in E. coli abundance, nearly double in UV-C and over six times
higher in UV-UC. While harmful E. coli may increase due to infection, it is possible
that some protective E. coli strains that can stimulate an innate immune mechanism
[52] and produce vitamins [53, 54] colonize after the reversion of dysbiosis. Notably,
Bifidobacterium, a common lactic acid-producing probiotic, was present in both yeast
treatment groups, irrespective of Eimeria antigen expression. In addition,

Lactobacillales family bacteria (Enterococcus, Lactobacillus, Pediococcus) were
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enriched in both non-infected and yeast treatment groups, with Lactobacillus and
Pediococcus being particularly higher in non-infected groups. This enrichment
suggests a beneficial modulation of the gut microbiota. Yeasts and lactic acid-
producing bacteria, often found together in nature [55], decrease pH value during

fermentation creating an unfavourable environment for some pathogens [56, 57].

We used a multi-omics integrative tool, MOFA, to infer how the host metabolome
interacts with gut microbes under a range of vaccination and Eimeria infection
conditions. MOFA modelling confirmed that metabolites involved in fatty acid
metabolism and B-oxidation pathways were altered by Eimeria infection [23].
Inflammation and oxidative stress induced by Eimeria invasion and subsequent
pathology increase demand for metabolites involved in fatty acid metabolism [58].
The model found that carnitine derivatives such as eicosenolycarnitine and
docosadienolycarnitine, intermediate metabolites involved in fatty acid metabolism,
were enriched in the Eimeria challenged groups (challenge groups compared to non-
challenge and recovering groups; factor 2 of MOFA model 1). In addition, p-cresol
sulfate (pCS), a uremic toxin formed by gut microbial fermentation of tyrosine [59,
60], was also enriched in all challenged groups, especially in unvaccinated,
challenged chickens (factor 1 of MOFA model 1). The main producer of pCS, C.
difficile, a significant cause of diarrhoea during microbial ecosystem collapse, was
also identified (factor 1 of MOFA model 1) [61, 62]. These findings link both layers of

omics and prove evidence that Eimeria infection causes dysbiosis.

Since the first MOFA model (the full model with all groups of the trial) could not
distinguish an effect of vaccination among the challenged, non-challenged and
recovering groups, a second MOFA model was used to explore latent grouping
among vaccinated and non-vaccinated chickens. We found sphingolipids, including
sphingosine, sphingomyelin, and sphingoinositol, were significant factors associated
with vaccination. Sphingolipids are required in cell membrane structures of
eukaryotes (especially the Schwann's cell, which surrounds the neuron axon) and
some prokaryotes [63], as well as essential signalling molecules of inflammatory,
immunity, cell autophagy, growth, and survival regulations [63-67]. Brown et al.
(2019) indicated that the microbe-derived sphingolipids (especially from Bacteroides)
are negatively correlated with gastrointestinal inflammation (i.e., inflammatory
bowel disease) and maintaining homeostasis and symbiosis of gut microbiota [68].
This finding supports the efficacy of the yeast-based oral anti-coccidiosis vaccine and
indicates that the vaccine can alter the symbiosis status of gut microbiota. However,

only a few reads of Bacteroides were detected from yeast-based vaccine-treated
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samples and non-Eimeria-challenged samples (including from caecal tissues and
contents), possibly due to the early antibiotic treatment of all study subjects. It
implies that the microbial anti-inflammatory sphingolipids could be produced via
other microbial species in the chicken gut microbiota, then act as a signal of anti-

coccidiosis for the further applications.

In conclusion, using MOFA machine learning to integrate evaluation of potential
interactions between the enteric microbiome and host metabolism provided a
mechanistic insight into effects of anticoccidial vaccination and Eimeria challenge. In
the present study, we identified Gamma-proteobacteria, p-cresol sulfate,
Bifidobacterium, carnitine-derived metabolites and sphingolipids as host-microbe-
associated biomarkers that vary between healthy, infected, vaccinated and/or
recovering chickens, providing insights into potential strategies for controlling,
treating and preventing coccidiosis. As we look to the future, the findings of this
study are poised to contribute to the advancement of precision agriculture,
particularly in enhancing poultry health management and the development of novel

interventions against coccidiosis.
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406  MATERIALS AND METHODS

407  Ethics statement

408 The animal experiments in this study were approved by the Royal Veterinary College
409  (RVC) Animal Welfare Ethical Review Body (AWERB) and performed under the

410 Animals in Scientific Procedures Act 1986 (ASPA) with a UK Home Office Licence.

411

412  Study animals, metadata measurement and study design

413  Cobb500 broiler chickens were purchased from P. D. Hook (Hatcheries) Ltd. (Cote,
414  UK) at day of hatch. All chickens received enrofloxacin (Baytril®, Bayer, Leverkusen,
415  Germany, 10 mg Kg) from days 16 to 18 of the trial due to an outbreak of

416  colibacillosis. Feeding and vaccination treatments were as described in a previous
417  study (Study 4 in [10] ). Briefly, four groups of ten chickens were sampled from a

418 larger vaccination study six days post E. tenella challenge including (1) unvaccinated,
419 challenged (UV-C), (2) unvaccinated, unchallenged (UV-UC), (3) mock vaccinated,
420 challenged (MV-C), and (4) vaccinated, challenged (V-C) groups. A fifth group of eight
421  unvaccinated, challenged chickens were sampled ten days post challenge (UV-C10;
422  Table S1). Mock and experimental vaccines were administered by oral inoculation in
423 100 ul phosphate buffer saline (PBS) every 3-4 days from day 7 of age (five doses per
424  chicken in total). Group 3 (MV-C) was vaccinated using a mock vaccine including S.
425  cerevisiae EBY100 strain (Invitrogen, Thermofisher Scientific, Waltham, MA, USA)
426  containing the empty yeast display plasmid vector pYD1 (Invitrogen). Group 4 (V-C)
427  was vaccinated at the same timepoints by oral inoculation of an experimental

428  trivalent formulation of S. cerevisiae-vectored recombinant vaccine using pYD1 to
429  separately express each of three E. tenella antigens including EtAMA1 ectodomain
430  [11], EtIMP1 [12] and EtMIC3 [13]. The vaccine design and administration procedures
431  were as described previously [10]. Groups 1, 3, 4 and 5 were challenged by oral

432  inoculation with 15,000 sporulated E. tenella Houghton strain oocysts at 21 days of
433  age. Challenge oocysts were prepared and inoculated following established protocols
434  [69]. Caeca (paired) were collected immediately post-mortem at six or ten days post
435 infection (dpi, Groups 1-4, and 5, respecitively). The severity of infection was

436  assessed using the Johnson and Reid scoring system [70]. Overall production

437  performance was defined by Body Weight Gain (BWG) between 0 and 6 dpi. Parasite
438  replication was measured using quantitative PCR for parasite genomes per host

439  genome [10].

440

441  DNA extraction and 16S amplicon sequencing

442  Bacterial genomic DNA was extracted separately from caecal tissue (~100 mg) and
443  caecal contents (~200 mg) using a QlAamp Fast DNA Stool Mini kit (QIAGEN, Valencia,
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CA, USA) following the manufacturer’s pathogen detection protocol. 16S amplicon
library preparation followed the Illumina 16S Metagenomic Sequencing Library
Preparation guidelines [71]. The 16S ribosomal RNA (rRNA) gene V3-V4
hypervariable regions were amplified by PCR with the adapter overhang primers
341F (5 ~ -TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGC CCTACGGGNGGCWGCAG-
3 ") and 805R (5 ~ -GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG
GACTACHVGGGTATCTAATCC-3 ~ ) for 25 cycles. Indices and Illumina sequencing

adapters were attached using the Nextera XT Index Kit with 8 cycles of a second

amplification reaction. The final PCR products were purified using AMPure XP beads
(Beckman Coulter, Brea, CA, USA). The amplicon DNA concentration was measured
using Qubit dsDNA HS and BR Assay Kits (Thermo Fisher Scientific, Waltham, MA,
USA). Library quality was determined using the Agilent Technologies 2100
Bioanalyzer system with a DNA-1000 chip. Eighty-eight samples representing caecal
tissues from all chickens in Groups 1-5 (n=48) and caecal contents from all chickens in
Groups 1-4 (n=40) were pooled with equal molality. The 16S amplicon libraries were
sequenced using a 301 bp paired-end (301bp x 2) approach on an Illumina MiSeq

platform using V3 chemistry.

Bioinformatic processing and microbiota analyses

The lllumina MiSeq platform generated a total of 22,525,182 paired-end sequences.
Sequences were cleaned by sequence length > 300bp using Trimmomatic [72]. The
16S amplicon sequences were processed using the Quantitative Insights Into
Microbial Ecology 2 (QIIME 2) pipeline (version 2019.10) [73]. Primer sequences were
removed by Cutadapt (version 1.15) [74]. Trimmed sequences were truncated at
240 bp (forward) and 210 (reverse) and denoised using the DADA?2 algorithm [75].
Amplicon sequence variants (ASVs) were obtained via the denoising process with
quality filtering and chimera removal. A k-mer based re-clustering algorithm ‘KTU’
[76] was subsequently applied to assemble ASVs into optimal biological taxonomic
units (KTUs). KTUs taxonomy was assigned by comparison with the SILVA SSU
reference nr99 (v138) [77, 78] and NCBI 16S RefSeq (retrieved 10t Feb. 2022)
databases using the kaxonomy function of the KTU R-package. Eukaryotic organelle
16S sequences (identified as Eimeria) were extracted and used for supplementary
parasite load quantification; non-prokaryotic and unassigned KTUs were removed
from the microbiota dataset. The 309 KTU microbiota dataset was rarefied at the
minimum read counts among samples (10,034 reads) after removing twelve samples

with shallow sequence depth (< 10,000 reads).

Microbiota analyses were conducted and visualized using the Microbiome Analysis R
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482  code (MARco) [79], Community Ecology ‘vegan’ [80], and Pretty Heatmap

483  (pheatmap) [81] packages in R (version 4.0.1) [82]. The ANOVA test with Tukey HSD
484  post-hoc multiple comparison test or Kruskal-Wallis test with Dunn’s post-hoc

485  multiple comparison test were used for parametric and non-parametric statistical
486  analyses of group comparisons with a significance level of a = 0.05, and the P values
487  were adjusted with a false discovery rate (FDR). Alpha diversity indices were

488  estimated by richness. Beta diversity of microbial communities was measured by
489  Bray-Curtis dissimilarity using principal coordinates analysis (PCoA), and

490 heterogeneity was tested using ADONIS and ANOSIM tests.

491

492  Metabolome profiling

493  Untargeted metabolome profiling of caecal tissues was performed by Metabolon
494  (NC, USA) using their vendor protocol. Briefly, all samples were deproteinized by
495  dissociating small molecules bound to protein or trapped in the precipitated protein
496  matrix. To recover chemically diverse metabolites, methanol was used for protein
497  precipitation under vigorous shaking for 2 min (Glen Mills GenoGrinder 2000)

498 followed by centrifugation. The extract was aliquoted into five fractions: two for
499  analysis by separate reverse phase (RP)/UPLC-MS/MS methods with positive ion
500 mode electrospray ionization (ESI), one for analysis by RP/UPLC-MS/MS with negative
501 ion mode ESI, one for analysis by HILIC/UPLC-MS/MS with negative ion mode ESI, and
502 one sample was reserved as backup. Samples were placed briefly on a TurboVap®
503  (Zymark) to remove the organic solvent. The sample extracts were stored overnight
504  under nitrogen before preparation for analysis.

505

506  All methods used Waters ACQUITY ultra-performance liquid chromatography (UPLC)
507 and a Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer
508 interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap mass
509 analyzer operated at 35,000 mass resolution. Each sample extract was dried then
510 reconstituted in solvents compatible to each of the four methods. Each

511 reconstitution solvent contained a series of standards at fixed concentrations to
512  ensure injection and chromatographic consistency. One aliquot was analyzed using
513  acidic positive ion conditions, chromatographically optimized for more hydrophilic
514  compounds. The extract was gradient eluted from a C18 column (Waters UPLC BEH
515 C18-2.1x100 mm, 1.7 um) using water and methanol, containing 0.05%

516  perfluoropentanoic acid (PFPA) and 0.1% formic acid (FA). Another aliquot was also
517 analyzed using acidic positive ion conditions; however, it was chromatographically
518 optimized for more hydrophobic compounds. The extract was gradient eluted from

519 the same afore mentioned C18 column using methanol, acetonitrile, water, 0.05%
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PFPA and 0.01% FA and was operated at an overall higher organic content. Another
aliquot was analyzed using basic negative ion optimized conditions using a separate
dedicated C18 column. The basic extracts were gradient eluted from the column
using methanol and water, however with 6.5mM ammonium bicarbonate at pH 8.
The fourth aliquot was analyzed via negative ionization following elution from a HILIC
column (Waters UPLC BEH Amide 2.1x150 mm, 1.7 um) using a gradient consisting of
water and acetonitrile with 10mM ammonium formate, pH 10.8. The MS analysis
alternated between MS and data-dependent MS" scans using dynamic exclusion. The

scan range varied slightly between methods, but covered 70-1000 m/z.

Raw data were extracted, peak-identified and QC processed by Metabolon’s in-house
systems. Compounds were identified by comparison to library entries of purified
standards or recurrent unknown entities. The in-house library was built and
maintained by Metabolon, and contained more than 3,300 commercially available
purified standard compounds with the information of retention time/index (RI), mass
to charge ratio (m/z), and chromatographic data (including MS/MS spectral data).
Compound identification was based on the following criteria: retention index within a
narrow Rl window of the proposed identification, accurate mass match to the library
+/- 10 ppm, and the MS/MS forward and reverse scores between the experimental

data and authentic standards.

A subset of 1,180 metabolites was detected from the untargeted metabolomics screen.
Each metabolite's peak area (i.e. total ion counts, integrated area-under-the-curve)
was median-scaled to normalize. The missing values were then imputed with the
observed minimum of each metabolite. Since the metabolomic data were typically
close to log-normal distribution, the normalized-imputed data were transformed using

the natural log for subsequent analyses.

Multi-Omics Factor Analysis (MOFA) model for microbiota and metabolome
integrative analysis

MOFA model fittings were performed to integrate multi-omics data modalities based
on an unsupervised machine learning model formulated in a probabilistic Bayesian
framework. The 16S rRNA amplicons of caecal tissue and content, and host caecal
metabolome were the separate data modalities in this study. In order to make all
omics data comparable, the amplicon abundance was centered log-ratio transformed
using the ‘clr’ function of the compositions R-package. Spearman’s correlation (FDR
<0.05) was implemented to select associated features from the omics datasets [83].

Downstream characterization was performed by variance decomposition, detecting
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the fraction of significant associations between the features and each factor using
Pearson’s correlation (FDR < 0.1), and correlation of phenotype covariates. A sub-
grouped MOFA model fitting was performed on all 6 dpi challenged groups. A
network analysis for identifying sub-structures of MOFA factors was performed with
the R package igraph47 [84]. An adjacency matrix based on Spearman’s correlation
coefficients of intercorrelated features was constructed from a MOFA factor of
interest; these coefficients were also used for assessing length of edges on the
network. The latter was conducted with the fast greedy modularity optimization

algorithm [85] to identify clusters in the network.
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SUPPORTING INFORMATION

Figure S1. Comparisons of microbiota profiles between chicken caecal contents and
caecal tissues. (A) Beta diversity analysis with the PERMANOVA test demonstrateed
no significant differences between caecal contents and caecal tissues (p=0.052). (B)
Venn diagrams show 62.7-73.6% microbiota composition shared between caecal
contents and tissues in four study groups (UV-C, UV-UC, MV-C, and V-C). (C)
Differential abundance (p<0.05 by DESeq2 test) of microbes between caecal contents

and caecal tissues in four study groups, respectively.

Figure S2. Lesion score and Eimeria load correlated metabolites. (A) Categories of
non-infection-associated metabolites. (B) Categories of infection-associated

metabolites.

Figure S3. Details of subnetworks from the MOFA model. Microbial and
metabolomic features of each cluster (C1-C3) in FA1(Figure 4D) and FA2(Figure 4E)—
the abundance of microbial and metabolomic features among groups were
presented by heatmap. The left columns were annotated by sample sources (C:
caecal content microbiome; T: caecal tissue microbiome; M: caecal tissue

metabolite).

Figure S4. Details of subnetworks from 6dpi -challenged MOFA model. Microbial
and metabolomic features of each cluster (C1-C2) in FA4(Figure 5D) and FA11(Figure
5E)—the abundance of microbial and metabolomic features among groups were
presented by heatmap. The left columns were annotated by sample sources (C:
caecal content microbiome; T: caecal tissue microbiome; M: caecal tissue

metabolite).

Table S1. Sample information of studying groups

Table S2. Infection-associated metabolites
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The original data set presented in the study is publicly available. These data can be
found at NCBI under BioProject accession number: PRINA990995.
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621  Figure 1. Summary of vaccine trial phenotypes assessed six days post infection (dpi)
622  with 15,000 sporulated Eimeria tenella oocysts. (A) Caecal lesion scores, (B) parasite
623 load represented as parasite genomes per host genome, determined using qPCR, (C)
624  bodyweight gain from 0 to 6 dpi, (D and E) parasite load represented by Eimeria

625 mitochondrial 16S rRNA sequence reads in caecal contents and tissue, (F) association
626  between caecal lesion score and parasite load measures. Panels A-C reanalysed from
627  Soutter et al., 2022.

628  Groups UV-C: unvaccinated, challenged, UV-UC: unvaccinated, unchallenged, MV-C:
629  mock vaccinated, challenged, V-C vaccinated, challenged.

630
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632  Figure 2. Gut microbiota profiling and associations of gut pathology and parasite
633  loads. (A) Principal coordinates analysis (based on Bray-Curtis distance) for beta
634  diversity of gut microbiota composition (caecal contents) among four groups of
635 chickens. (B) The correlation between microbiota composition and lesion scores. (C)-
636 (D) The correlations between microbiota composition and parasite loads, (C) based
637  on gPCR quantification of the ratio of Eimeria and host genes, (D) based on NGS
638 reads of Eimeria apicoplast 16S rRNA gene. (E) Alpha diversity (richness) of four
639  groups of chickens. (F) Relative abundance of gut microbiota composition at the
640  phylum level. (G) Gut pathology and parasite load associated microbes (Pearson's r >
641 0.4 or <-0.4, FDR-adjusted p < 0.05) extracted from PCoA1l of panel (A).
642  Groups UV-C: unvaccinated, challenged, UV-UC: unvaccinated, unchallenged, MV-C:
643  mock vaccinated, challenged, V-C vaccinated, challenged.

644
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646  Figure 3. Chicken caeal tissue metabolome profiling and associations of gut

647  pathology and parasite loads. (A) Principal coordinates analysis (based on Euclidean
648  distance) for chicken caecal tissue metabolome composition among five groups of
649  chickens. (B) The correlation between metabolome composition and lesion scores.
650 (C) The correlation between metabolome composition and parasite loads, based on
651  NGS reads of Eimeria apicoplast 16S rRNA gene. (D) Compositions and categories of
652  the metabolome of five groups of chickens. (E) Gut pathology and parasite load

653  associated metabolites (Pearson's r > 0.4 or < -0.4, FDR-adjusted p < 0.05) extracted
654  from PCoAl of panel (A).

655  Groups UV-C: unvaccinated, challenged, UV-UC: unvaccinated, unchallenged, MV-C:
656  mock vaccinated, challenged, V-C vaccinated, challenged, UV-C10: unvaccinated,
657 challenged, 10 days post-infection.
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Figure 4. MOFA model for all trial groups and downstream signature marker
identification by network analysis. (A) Bar plots showing the fraction of significant
associations between the features of each microbiome or metabolome modality and
each factor. The stacked bars interpret whether the variance-explained values are
driven by a strong change in a small number of features or by a moderate effect
across a large range of features. (B) Scatterplot of factor 1 (x axis) versus factor 2 (y
axis). Each dot represents a sample, colored by the trial group. (C) The correlation
heatmap of MOFA factors and phenotypes (Eimeria.c: NGS read-based Eimeria load
in caecal contents; Eimeria.t: NGS read-based Eimeria load in caecal tissues; qPCR:
gPCR-based Eimeria load in caecal tissues; Infection: infection condition- infected or

non-infected; Yeast: yeast vector exposure or not; Vaccination: vaccination condition-
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671  vaccinated or non-vaccinated). (D)-(E) Network analysis and visualization for the
672  features from (D) factor 1 and (E) factor 2. Thumbnail legends present the regions of
673  subnetworks.
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676  Figure 5. MOFA model for challenged 6dpi chickens and downstream signature

677  marker identification by network analysis. (A) Bar plots showing the fraction of

678 significant associations between the features of each microbiome or metabolome
679 modality and each factor. The stacked bars interpret whether the variance-explained
680 values are driven by a strong change in a small number of features or by a moderate
681  effect across a large range of features. (B) Scatterplot of factor 4 (x axis) versus factor

682 11 (y axis). Each dot represents a sample, colored by the trial group. (C) The
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correlation heatmap of MOFA factors and phenotypes (Eimeria.c: NGS read-based

Eimeria load in caecal contents; Eimeria.t: NGS read-based Eimeria load in caecal

tissues; qPCR: qPCR-based Eimeria load in caecal tissues; Yeast: yeast vector

exposure or not; Vaccination: vaccination condition- vaccinated or non-vaccinated).

(D)-(E) Network analysis and visualization for the features from (D) factor 4 and (E)

factor 11. Thumbnail legends present the regions of subnetworks.

PCoA2 (15.37%)

A

0.4

0.3

o
N

o
=

o
(=}

1
o
=

!
o
N

1
©
w

=AN SIUdu0Y

1dp 9 ‘0

~AN sanssi|

dp 9 ‘D

-AN Sluduon

1dp 90N

1dp 9 ‘ON-AN"senssi|

—AW Siuajuo)

1dp 9 ‘0

-AW senssi|

dp 9 'O

—-A_Sju8u0)

idp 9 O

N ° a 13
o ot uv-C (8.78%)
. 109
(73.6%)
4 ° 26
(17.6%)
- 29
. Mv-C (16.1%)
N 125
_ (69.4%)
R?=0.026 ) o
| p =0.052 (14.4%)
T T T T 1
-0.4 -0.2 0.0 0.2 0.4
PCoA1 (27.19%)
| KTU_92 Lactobacillus mucosae
KTU_125 Subdoligranulum variabile
| KTU_4 Oscillibacter ruminantium GH1

KTU_13 Anaerotruncus colihominis
KTU_9 Anaerotignum aminivorans
KTU_29 Lactobacillus salivarius

@ Caecal contents
Caecal tissues

A 25
uv-uc B2,

107
(66.5%)

29
(18%)

21
(11.9%)

KTU_38 Pseudoflavonifractor capillosus ATCC 29799

KTU_69 Acetanaerobacterium elongatum
KTU_31 Paludicola psychrotolerans
KTU_14 Flavonifractor plautii

KTU_12 Kineothrix alysoides

KTU_10 Unassigned

KTU_121 Blautia luti

KTU_5 Fournierella massiliensis
KTU_13 Anaerotruncus colihominis
KTU_44 Unassigned

KTU_14 Flavonifractor plautii
KTU_3 Flintibacter butyricus

KTU_80 Roseburia intestinalis

| KTU_16 Anaerostipes butyraticus

-\ Senssi|

1dp 9D

KTU:1 3 Anaerotruncus colihominis
KTU_74 [Clostridium] polysaccharolyticum
KTU_20 Kineothrix alysoides

KTU_43 Merdimonas faecis

Figure S1. Comparisons of microbiota profiles between chicken caecal contents and

caecal tissues. (A) Beta diversity analysis with the PERMANOVA test demonstrateed
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no significant differences between caecal contents and caecal tissues (p=0.052). (B)

Venn diagrams show 62.7-73.6% microbiota composition shared between caecal
contents and tissues in four study groups (UV-C, UV-UC, MV-C, and V-C). (C)

Differential abundance (p<0.05 by DESeq2 test) of microbes between caecal contents

and caecal tissues in four study groups, respectively.
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Figure S3. Details of subnetworks from the MOFA model. Microbial and
metabolomic features of each cluster (C1-C3) in FA1(Figure 4D) and FA2(Figure 4E)—

the abundance of microbial and metabolomic features among groups were

presented by heatmap. The left columns were annotated by sample sources (C:
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713  Figure S4. Details of subnetworks from 6dpi -challenged MOFA model. Microbial
714  and metabolomic features of each cluster (C1-C2) in FA4(Figure 5D) and FA11(Figure

715  5E)—the abundance of microbial and metabolomic features among groups were

716  presented by heatmap. The left columns were annotated by sample sources (C:

717  caecal content microbiome; T: caecal tissue microbiome; M: caecal tissue

718 metabolite).
719

Table S1. Sample information of studying groups

Groups # of

samples

Description

Content Tissue ID

ID

uv-C 10

Unvaccinated, challenged, 6 dpi C1 T1
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Uv-ucC 10 Unvaccinated, unchallenged, 6 Cc2 T2
dpi

MV-C 10 Mock vaccinated, challenged, 6 Cc3 T3
dpi

V-C 10 Vaccinated, challenged, 6 dpi ca T4

UV-C10 8 Unvaccinated, challenged, 10 dpi - T5
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