

¹ Title: Mixed *Wolbachia* infections resolve rapidly during *in vitro* evolution

²

³

⁴ **Authors:** Cade Mirchandani^{1,2}, Pingting Wang¹, Jodie Jacobs¹, Maximilian Genetti^{1,2}, Evan Pepper-Tunick^{3,4},
⁵ William T Sullivan⁵, Russ Corbett-Detig^{1,2}, and Shelbi L Russell^{1,2*}

⁶

⁷

⁸ **Affiliations:**

⁹ 1. Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, United
¹⁰ States
¹¹ 2. Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, United States
¹² 3. Institute for Systems Biology, Seattle, Washington, USA
¹³ 4. Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington, USA
¹⁴ 5. Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa
¹⁵ Cruz, CA, United States

¹⁶

¹⁷

¹⁸ *corresponding author: shelbilrussell@gmail.com

19 Abstract:

20 The intracellular symbiont *Wolbachia pipipientis* evolved after the divergence of arthropods and nematodes, but
21 it reached high prevalence in many of these taxa through its abilities to infect new hosts and their germlines.
22 Some strains exhibit long-term patterns of co-evolution with their hosts, while other strains are capable of
23 switching hosts. This makes strain selection an important factor in symbiont-based biological control. However,
24 little is known about the ecological and evolutionary interactions that occur when a promiscuous strain
25 colonizes an infected host. Here, we study what occurs when two strains come into contact in host cells
26 following horizontal transmission and infection. We focus on the faithful wMel strain from *Drosophila*
27 *melanogaster* and the promiscuous wRi strain from *Drosophila simulans* using an *in vitro* cell culture system
28 with multiple host cell types and combinatorial infection states. Mixing *D. melanogaster* cell lines stably infected
29 with wMel and wRi revealed that wMel outcompetes wRi quickly and reproducibly. Furthermore, wMel was able
30 to competitively exclude wRi even from minuscule starting quantities, indicating that this is a nearly
31 deterministic outcome, independent of the starting infection frequency. This competitive advantage was not
32 exclusive to wMel's native *D. melanogaster* cell background, as wMel also outgrew wRi in *D. simulans* cells.
33 Overall, wRi is less adept at *in vitro* growth and survival than wMel and its *in vivo* state, revealing differences
34 between cellular and humoral regulation. These attributes may underlie the observed low rate of mixed
35 infections in nature and the relatively rare rate of host-switching in most strains. Our *in vitro* experimental
36 framework for estimating cellular growth dynamics of *Wolbachia* strains in different host species, tissues, and
37 cell types provides the first strategy for parameterizing endosymbiont and host cell biology at high resolution.
38 This toolset will be crucial to our application of these bacteria as biological control agents in novel hosts and
39 ecosystems.

40 Author Summary:

41 *Wolbachia pipipientis* is one of the most common bacterial endosymbionts due to its ability to manipulate host
42 reproduction, and it has become a useful biological control tool for mosquito populations. *Wolbachia* is passed
43 from mother to offspring, however the bacterium can also "jump" to new hosts via horizontal transmission.
44 When a *Wolbachia* strain successfully infects a new host, it often encounters a resident strain that it must
45 either replace or co-exist with as a superinfection. Here, we use a *Drosophila melanogaster* cell culture system
46 to study the dynamics of mixed *Wolbachia* infections consisting of the high-fidelity wMel and promiscuous wRi
47 strains. The wMel strain consistently outcompetes the wRi strain, regardless of wMel's initial frequency in *D.*
48 *melanogaster* cells. This competitive advantage is independent of host species. While both strains significantly
49 impede host cell division, only the wMel strain is able to rapidly expand into uninfected cells. Our results
50 suggest that the wRi strain is pathogenic in nature and a poor cellular symbiont, and it is retained in natural
51 infections because cell lineages are not expendable or replaceable in development. These findings provide
52 insights into mixed infection outcomes, which are crucial for the use of the bacteria in biological control.

53 Introduction

54 The alphaproteobacterium *Wolbachia pipiensis* became a widespread intracellular symbiont of arthropods and
55 nematodes through its ability to infect novel hosts and establish germline transmission. Hundreds of millions of
56 years after the divergence of Arthropoda and Nematoda (ca. 500 mya [1,2], *Wolbachia* endosymbionts evolved
57 (ca. 100-200 mya [3]) and spread to infect a high proportion of these hosts [4–6]. Following horizontal
58 transmission to a new host and establishment of a stable infection, *Wolbachia* targets the host germline to
59 achieve vertical transmission from one host generation to the next [4,7,8]. Thus, at least two core mechanisms
60 have contributed to the rise of *Wolbachia* in ecdysozoan hosts: high infectivity and targeted germline
61 transmission. These two traits appear primed for conflict, as natural selection for infectivity is often linked to
62 pathogenicity, which could interfere with normal host development. However, they have harmonized in
63 *Wolbachia* to produce the planet's largest pandemic [9].

64

65 Significant variation exists among closely related *Wolbachia* strains in their ability to infect new hosts. While all
66 strains examined undergo vertical transmission through the host germline [10], some strains are also adept at
67 colonizing new hosts through horizontal transmission and novel infection establishment. Promiscuous
68 *Wolbachia* strains, such as the wRi strain from *Drosophila* [11] and wJho from butterflies [12], are found in
69 unrelated hosts or multiple hosts (i.e., superinfections, see S1 Fig). These strains often exhibit strong
70 reproductive manipulations, such as cytoplasmic incompatibility (CI), that drive *Wolbachia* infections to high
71 frequencies in host populations from low starting frequencies [13]. Indeed, recent biological control applications
72 using *Wolbachia* infections rely on strong and predictable CI in non-native hosts for their spread across
73 targeted populations [14]. Selection for beneficial host-symbiont emergent functions and phenotypes may also
74 be sufficient to increase and maintain infection frequencies in strains lacking reproductive manipulations [4,15].

75

76 Successful host-switches are the culmination of a successful horizontal transmission event, stable host
77 colonization and propagation, co-option of germline transmission, and establishment across individuals in a
78 population (Supplemental Figure S1 and reviewed in [4]). Attempts to model *Wolbachia* infection distributions
79 based on an average turnover process produce estimates that explain global infection frequencies, but that fail
80 to explain strain-to-strain variation in horizontal transmission ability and novel infection establishment [16]. A
81 major challenge involves parameterizing the infrequent, but vital events in the process. Based upon the low
82 rates of mixed infections in infected hosts and the novel infections in uninfected hosts [17–19], joint rates of
83 horizontal transmission and successful proliferation in a new host are exceedingly low. However, it is unclear
84 whether both rates are low, or if horizontal transmission rates are high, but exceedingly few bacteria persist
85 and colonize host tissues. Furthermore, it is unknown how divergent strains ecologically interact within a single
86 host, especially if one strain is more promiscuous than the other.

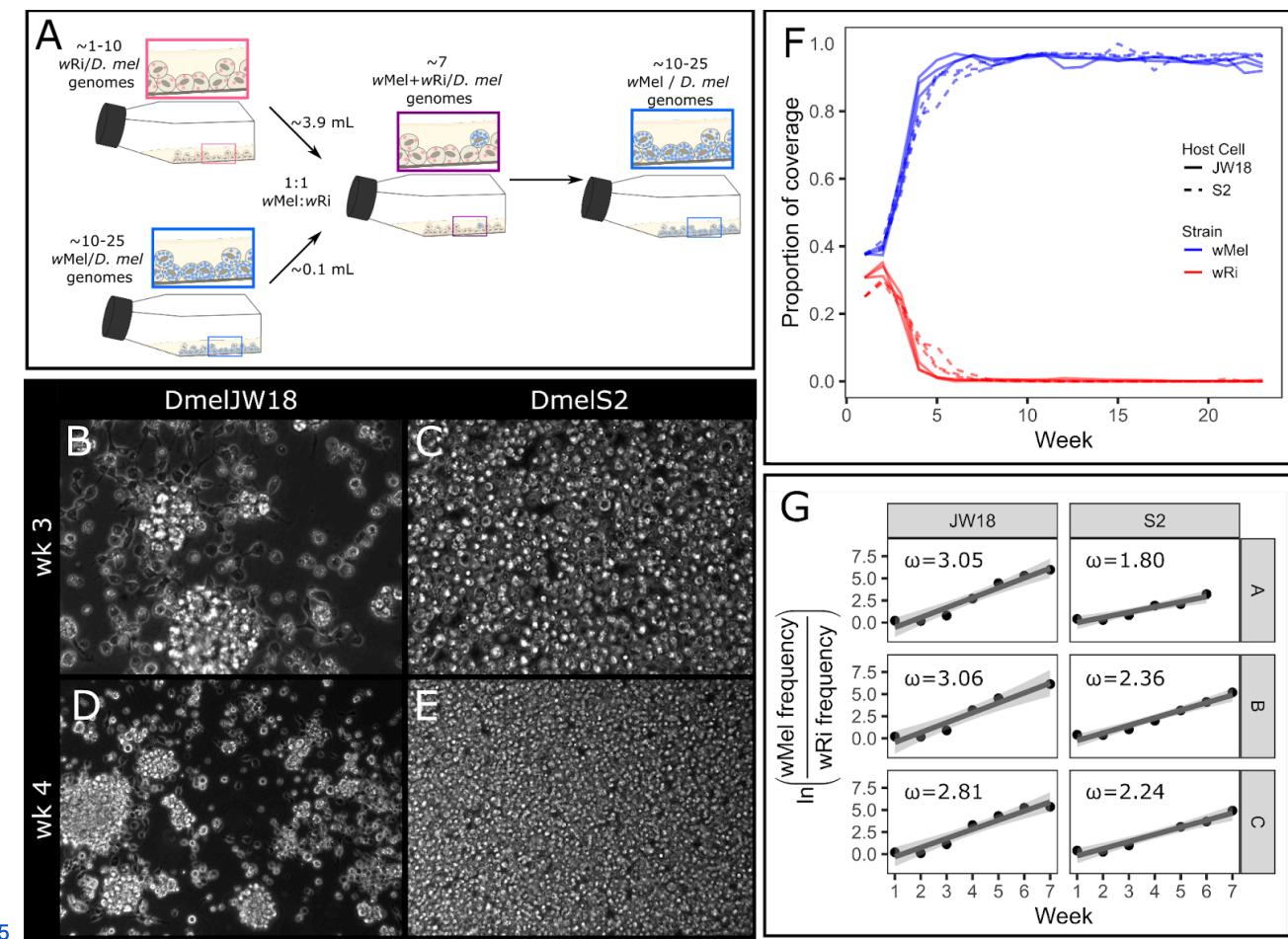
87

88 To study the finescale ecological events that occur among endosymbionts and hosts in novel host infections,
89 we developed an *in vitro* *Drosophila* cell line system infected with faithful and promiscuous strains of
90 *Wolbachia*. We leveraged two different *Drosophila melanogaster* somatic cell types infected with the native
91 wMel strain and the non-native, promiscuous wRi strain from *Drosophila simulans* to study what occurs when a
92 promiscuous strain infects a host with a stable endosymbiont. Then, we use a novel *D. simulans* cell line
93 immortalized for this study to explore the reciprocal mixed infection in one of wRi's native hosts. Lastly, we
94 measure infection expansion into uninfected host cells to parameterize a model of endosymbiont *in vitro*
95 growth, host cell segregation, and cell-to-cell transfer. Overall, this work reveals that closely related strains
96 have significantly different capacities for cellular proliferation that are counterintuitive based on their
97 distributions among hosts. Furthermore, we show that mixed infections resolve rapidly and predictably across
98 cell types and hosts, shedding light on the rarity of mixed infections in nature. These results significantly
99 increase our understanding of what occurs when novel strains interact within host cells and tissues. This

101 knowledge is critical to ensuring the safety of biological applications that release hosts infected with non-native
102 Wolbachia strains into natural ecosystems.

103 Results and Discussion

104 *In vitro* Wolbachia infections in *D. melanogaster* cell culture are stable over time


105 We successfully established and maintained *in vitro* wMel and wRi infections in two *D. melanogaster* cell lines,
106 the neuroblast-like JW18 cell line [20] and the macrophage-like S2 cell line [21] (diagramed in Fig S2).
107 Fluorescence in situ hybridization (FISH) with 16S rRNA probes visually confirmed the presence of *Wolbachia*
108 in infected cells (Supplemental Fig S1B-F) and its absence from doxycycline-cured (DOX) cells (Supplemental
109 Fig S3A-F). We used whole genome sequencing (WGS) and reference genome mapping to confirm infection
110 strain identities, estimate the genomic titer of each symbiont infected cell line, and observe fluctuations in titers
111 over time. We consistently observe wMel at a higher titer (~10-30) than wRi (~0.1-3) (Fig S3G).

112 The wMel strain outcompetes the wRi strain from equal starting ratios

113 The wMel strain of *Wolbachia* outcompetes the wRi strain in *D. melanogaster* *in vitro* infections. To recapitulate
114 the conditions of a mixed *Wolbachia* strain infection *in vitro*, we mixed wMel and wRi infected cells at
115 approximately equal genomic titers (Fig 1A). This equal starting ratio was selected to not advantage either
116 strain and study the differences in infected host cell and strain growth rates. Each mixed culture was split into
117 triplicate, and passaged every seven days, with a sample collected for sequencing at each passage. We
118 estimated the abundance of each symbiont by calculating the proportion of total coverage contributed by that
119 symbiont, which is the average coverage of the symbiont divided by the sum of the average coverages of both
120 symbionts and the host. In the first 3 weeks immediately following the initial mixing of the two strains, both
121 wMel and wRi increased in frequency. However, after this phase of initial expansion, only wMel continued to
122 increase in frequency. By week 5, wMel accounted for an average proportion of total coverage of 90% (Fig 1F).
123 During this timeframe, the JW18 neuroblast-like *D. melanogaster* cell culture cells exhibited adherence defects
124 that suggested the cells were under stressful conditions, whereas the S2 cells maintained their normal
125 phenotypes (Fig 1B-E).

126

127 We used a simple haploid model of relative fitness (see Methods) to estimate the selection coefficient (ω) of
128 wMel in the mixed infection experiments. Because we observed that wMel replaces wRi within five to seven
129 weeks post mixing, we constrained our selection coefficient estimates to six weeks post-mixing in order to
130 capture the early dynamics of selection acting on the two strains (Fig 1G). We estimated selection coefficients
131 ranging from 2.81-3.06 in the JW18 cell line, and 1.80-2.36 in the S2 cell line (Table S1). These values indicate
132 that wMel is far fitter in *D. melanogaster* cells than wRi. However, this selective advantage may have been
133 influenced by wMel's high starting concentration. Next, we explore whether wMel outcompetes wRi when it is a
134 minority constituent in two-strain mixtures.

136 **Fig 1. The wMel strain consistently outcompetes the wRi strain in *D. melanogaster* cell culture.**

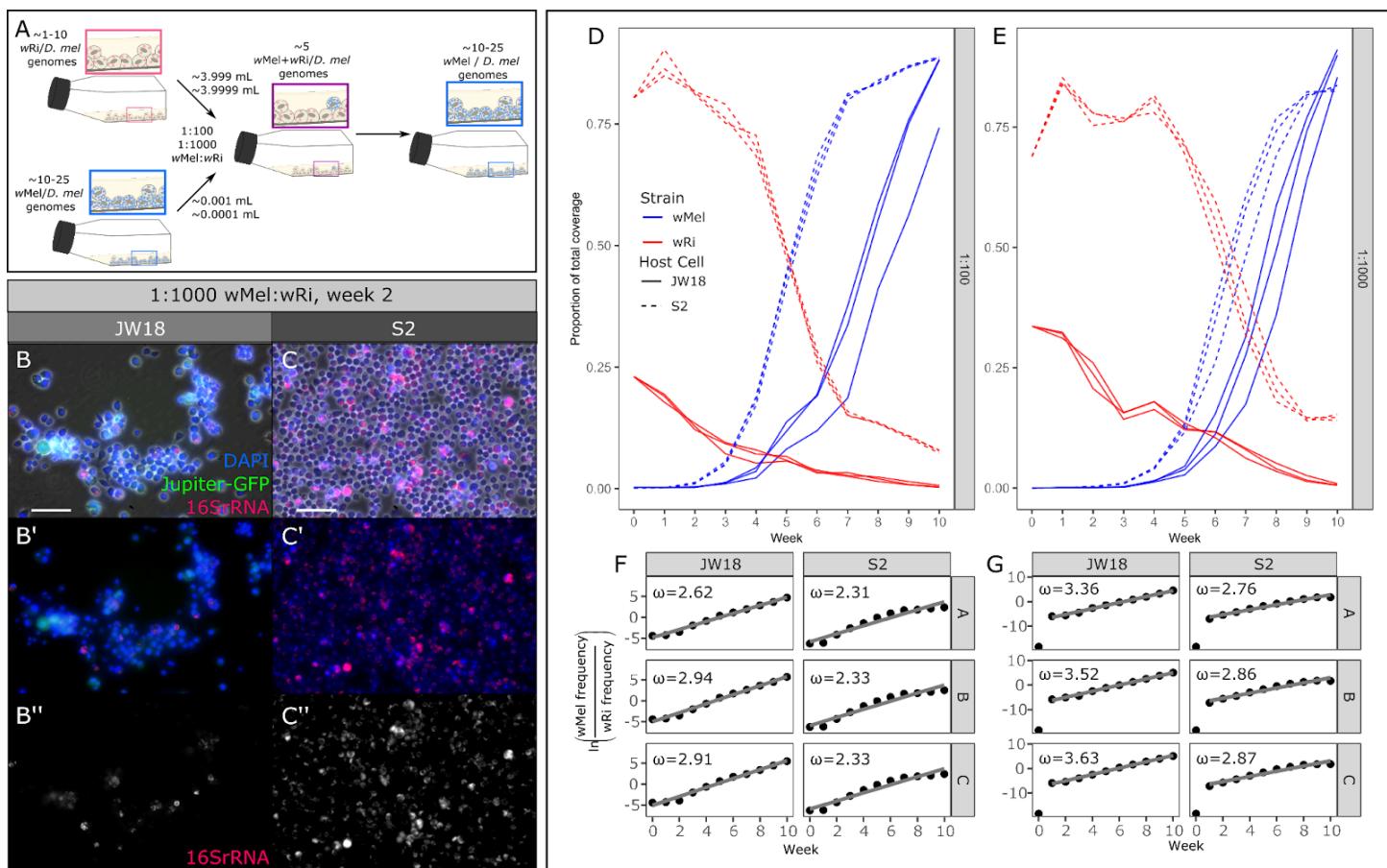
137 A) Schematic overview of the 1:1 wRi:wMel mixed infected cell line experiment. B-E) Tissue culture
 138 micrographs of the mixed cell lines at B,D) week 3 and C,E) week 4. B,C at 40x and D,E at 20x magnification.
 139 F) Proportion of Illumina whole genome sequencing coverage mapped to the wMel (blue) and wRi (red)
 140 genomes out of the total coverage mapped to all *Wolbachia* and *D. melanogaster* host genomes, plotted by
 141 replicate and host cell type (S2, dashed or JW18, solid). G) Relative growth rates of wMel compared to wRi
 142 over the first seven weeks of wMel exponential growth for the cell lines and replicates in (F). The slope of these
 143 plots was used to calculate the selection coefficients in Table S1.

144 Deterministic growth: wMel's selective advantage is independent of starting infection
 145 frequency

146 The wMel strain outcompetes wRi when it is the minority strain in host cell culture cells, indicating that wMel is
 147 a deterministic competitor whose selective advantages are not dependent on starting infection frequency. To
 148 assess whether wMel's competitive advantage is frequency-dependent or deterministic, we mixed
 149 wMel-infected and wRi-infected cells at approximately 1:100 and 1:1000 ratios based on the relative genomic
 150 titers of the respective strain in the stable-infected cell lines. The wRi strain is at lower titer than the wMel strain
 151 in both S2 and JW18 cells, limiting the titer mixtures to this value (~0.3-4.1). Relative titers were measured by
 152 Illumina whole genome sequencing each week over 11 weeks. Similar to the equal titer mixtures, we observed
 153 a rapid increase of the frequency of wMel within five to seven weeks post-mixing in both the 1:100 and 1:1000
 154 mixtures across both cell lines and all replicates (Figure 2A,B). However, in contrast to the 1:1 mixtures, the
 155 wMel strain required more time to become fixed, only reaching an average proportion of total coverage of 86%
 156 by week 10 in both the 1:100 and 1:1000 mixtures.

157

158 The frequency of wMel relative to wRi increased continually over the 11 week experiment in both cell lines in
159 the 1:100 mixtures, allowing us to estimate the strength of selection acting on wMel over the total length of the
160 experiment (Figure 2C). However, in the 1:1000 mixtures wMel was undetectable in week 0, highlighting the
161 extreme disadvantage in initial frequency when compared to wRi. Therefore, we estimated selection
162 coefficients for these mixtures from week 1 onwards (Figure 2D). In the 1:100 mixtures, selection coefficients
163 (ω) for wMel ranged between 2.62-2.92 and 2.31-2.33 in the JW18 and S2 cell lines, respectively. In the
164 1:1000 mixtures ω ranged from 3.36-3.63 in the JW18 cell line, and 2.76-2.87 in the S2 cell line (Fig 2F,G).
165 Interestingly, we found that in the 1:1000 mixtures, the wMel strain grows significantly faster than wRi and
166 exhibits higher selection coefficients than in the 1:100 mixtures across both cell lines (Fig S4). This suggests
167 that wMel is able to modulate its growth rate to more efficiently populate host cells when starting at a lower
168 initial frequency.


169

170 Given *Wolbachia*'s propensity for recombination [22–24], we tested for the presence of recombinant
171 haplotypes between the competing strain genomes in the 1:1, 1:100, and 1:1000 wMel:wRi mixed infection
172 experiments (Supplemental Fig S5). Recombinant haplotypes were detected by their chimeric alignments to
173 both the wMel and wRi genomes in regions of high mappability. While more of these alignments were found in
174 cultures with more equal mixtures of the two strains, they were still quite rare: at most 1 in 500,000 alignments
175 were recombinant. The highest recombinant fractions occurred when strains co-occurred the longest, in the
176 1:1000 S2 mixtures. These results make intuitive sense, as recombination mediated through passive
177 processes such as homology-directed repair with divergent strain eDNA requires high concentrations (equal
178 strain mixtures) and many chances (long co-culture times).

179

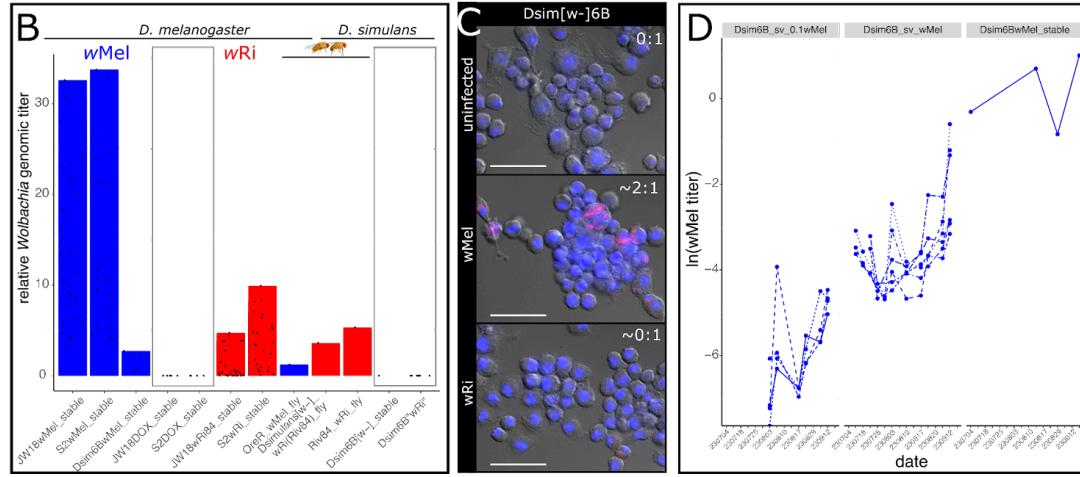
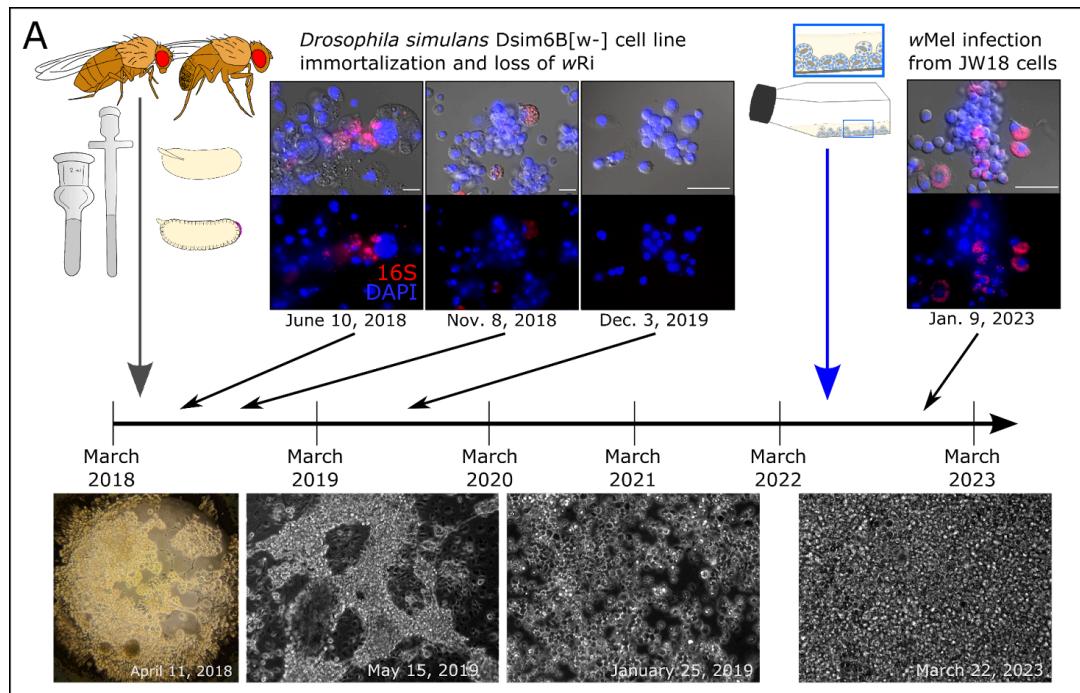
180 The competitive dynamics between wMel and wRi in our *in vitro* experiments offer insight into the mechanisms
181 that might limit the frequency and stability of mixed infections *in vivo*, in nature. The quick and reproducible
182 competitive exclusion of wRi by wMel in two *D. melanogaster* cell types across a range of starting frequencies
183 suggests that mixed infections resolve reliably and quickly, consistent with theoretical predictions [25]. This
184 potentially explains why unstable mixed infections (opposed to stable superinfections) are rarely observed in
185 nature [17–19]. The selection coefficients estimated for wMel demonstrate a strong relative fitness compared
186 to wRi across both *D. melanogaster* cell lines. However, wMel is natively associated with *D. melanogaster*,
187 therefore this competitive advantage may reflect host-specific adaptations [26]. To explore whether the relative
188 superiority of wMel as a cellular symbiont is specific to its native host, we immortalized a *D. simulans* cell line
189 to repeat these investigations in wRi's native host background.

190

191

192 **Fig 2. The wMel strain deterministically outcompetes the wRi strain in mixed infections, even**
193 **when starting at only 1/100th or 1/1000th the frequency of wRi.**

194 A) Schematic overview of the 1:100 and 1:1000 wRi:wMel mixed infected cell line experiments. B,C)
195 Representative epifluorescence FISH images of week two of the 1:1000 wMel:wRi mixture (replicate A). B)
196 JW18 cell line and C) S2 cell line at 20x; scale bar = 50 μ m, DAPI=blue, Jupiter-GFP=green (JW18 only), and
197 Wolbachia 16S rRNA=red. D,E) Proportion of wMel (blue) and wRi (red) genome coverage out of the total
198 coverage of all Wolbachia strains and *D. melanogaster* host genomes, plotted by replicate and host cell type
199 (S2, dashed or JW18, solid) in mixed infections started at wMel:wRi ratios of D) 1:100 and E) 1:1000. F,G)
200 Relative growth rates of wMel compared to wRi in mixed infections started at F) 1:100 and G) 1:1000 ratios.
201 The slopes from F and G were used to calculate the selection coefficients (ω) overlaid in the plots, also in
202 Table S1.



203 Reciprocal infections: The wMel strain maintains its competitive advantage in wRi's
204 native host *D. simulans*

205 To assess the contribution of host-specific adaptations to the competitive advantage of wMel in *Drosophila*
206 *melanogaster*, we immortalized a new *D. simulans* cell line from the white eye fly stock infected with the Riv84
207 wRi strain named Dsim6B. Initially, these cells were heterogeneous and infected with wRi (Fig 3A). Often the
208 wRi-infected cells exhibited aberrant cellular morphologies. As the Dsim6B cell line stabilized and became
209 more clonal, the infection was lost (Fig 3A, S5). Despite high wRi titers in *D. simulans* *in vivo* fly tissues (4.5x
210 average genomic titer, Figure 3B)[6], repeated attempts to reinfect the cells with wRi from the stably infected *D.*
211 *melanogaster* cell lines via the shell vial technique failed (Figure 3C, S6). In contrast, infections of Dsim6B cells

212 with the wMel strain were very successful (Fig S6), and the rate of titer increased to stable levels of 1-2x
 213 genomic titer depending on the initial input concentration (Figure 3D).

214

215 The differential success of wRi and wMel infections observed in our *D. simulans* cell line suggests that host
 216 developmental programs may enable the persistence of costly *Wolbachia* infections. Cell culture conditions are
 217 distinguished from *in vivo* conditions primarily by their simplicity of cell and organism types (sterile monoculture
 218 for both host and symbiont), which wRi may be poorly evolved to handle, despite its close relationship to wMel
 219 (99.91% identical across the 1.3-1.4 Mb genomes). Alternatively, wRi may be a better “developmental
 220 symbiont” than a “cellular symbiont”. The wRi strain’s *in vivo* high titers and promiscuity across fly species
 221 suggests that its persistence may be heavily reliant on a developmentally-constrained system in which the
 222 maintenance of specific host cell lineages is crucial for organismal survival. In a cell culture system, cells can
 223 replicate freely because they are free of the limitations placed on cell proliferation in a developing host.
 224 Consequently, if the growth of uninfected cells outpaces infected cells, then the infection will be lost. Given that
 225 we were able to establish and maintain wMel infections in both *D. melanogaster* and *D. simulans* cell lines,
 226 wMel may not rely as heavily on the developmental context of the host as wRi. To explore this idea further, we
 227 characterize the growth dynamics of each strain into uninfected host cells over time.

228

229 **Fig 3. The wMel strain is better at infecting *D. simulans* cells than *D. simulans*' native strain,
230 wRi.**

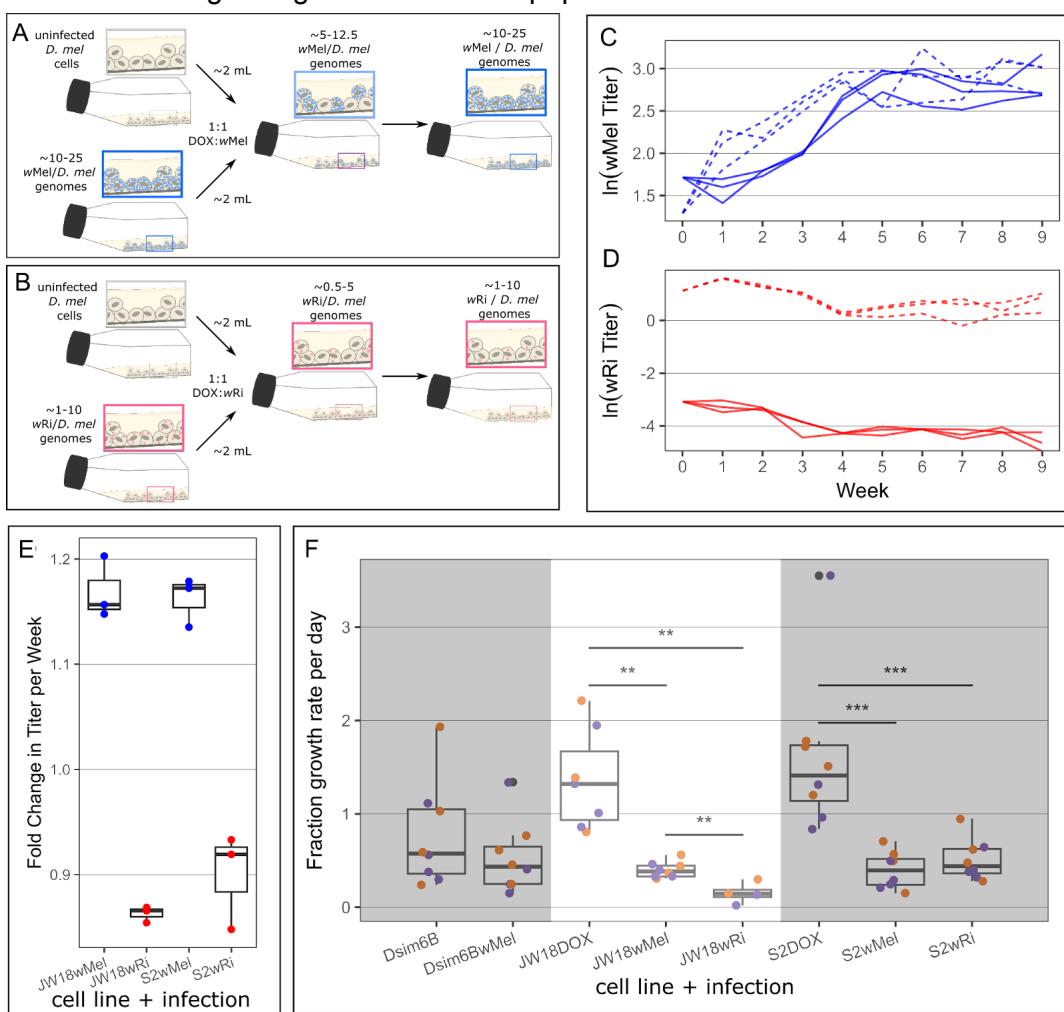
231 A) The Dsim6B cell line was immortalized from *D. simulans* [w-] embryos infected with the Riv84 strain of wRi.
232 The primary and early immortalized cell line was infected with wRi, but the bacteria were gradually lost as the
233 cells increased in growth rate and clonality. By nine months post-infection the Dsim6B cell line had cured itself
234 of its wRi infection. Repeated attempts to reinfect the Dsim6B cell line with wRi were unsuccessful. B) Bar plots
235 of stable wMel (blue) and wRi (red) titers in *D. melanogaster* and *D. simulans* cells and flies (three bars
236 indicated with fly icons). C) FISH widefield images of Dsim6B cell lines uninfected (0:1 titer), infected with the
237 wMel strain (2:1 titer), and after attempts to reinfect with the wRi strain (~0:1). D) Titer increase over time in the
238 Dsim6B cell line infected with wMel via the shell vial technique at 1/10x the concentration in JW18 cells and at
239 1x, compared to stable Dsim6BwMel cell line infections (maintained for more than three months).

240 Infection expansion into uninfected host cells recapitulates wMel's spread into
241 wRi-containing cells

242 Successful *Wolbachia* cellular infections require healthy host cell growth, in addition to some rate of bacterial
243 segregation during host cell division and cell-to-cell transfer to uninfected host cells. The weights of these three
244 parameters are interdependent: if infections impact host cell growth, then cell-to-cell transfer rates need to be
245 high to enable the infection of faster-growing uninfected cells. Otherwise, the infection will be lost due to
246 uninfected cell overgrowth. Similarly, cell-to-cell transfer rates can only be negligible if the infection has minimal
247 cost on host cell growth rates and segregation is efficient.

248

249 To understand the cellular basis for wMel's competitive advantage over wRi *in vitro*, we studied the expansion
250 of these *Wolbachia* strains into uninfected host cells, revealing that wRi fails to establish when fewer than 50%
251 of host cells are infected. We mixed JW18 and S2 cells infected with the wMel or the wRi strain of *Wolbachia*
252 and uninfected at approximately equal quantities. Infection growth curves following the addition of 1:1
253 uninfected host cells to wMel-infected cell lines revealed a similar pattern of expansion as in the wMel-wRi
254 competition experiments: across both the JW18 and S2 cell lines and all three replicates, wMel genomic titer
255 increased rapidly in the first five weeks, and remained at a relatively stable frequency throughout the rest of the
256 experiment (Fig 4A, S7). On average, wMel titer increased by 17% and 16% per week in the JW18 and S2 cell
257 lines, respectively (Fig 4E, Table S2). Conversely, in the wRi-DOX mixtures, we observed the continuous
258 decline of wRi genomic titer in the JW18 cell line, with an average rate of 14% per week. Similarly, in the S2
259 cell line wRi genomic titer declined on average by 10% per week, despite the initial increase in the first week
260 post co-culture (Fig 4B,E, Table S2). Overall, the observed patterns of wMel's growth in the wMel-DOX
261 mixtures illustrate that the symbiont can effectively establish and expand an infection within the cell lines, and
262 suggests horizontal transmission as a mechanism for infection establishment. To assess the impact of
263 *Wolbachia* infection on host cell dynamics, we next compared the growth rates of infected and uninfected *D.*
264 *melanogaster* cells.


265

266 Measuring the growth rate of *D. melanogaster* cells with and without *Wolbachia* infections revealed that both
267 strains slow host cell division, suggesting that successful establishment requires cell-to-cell transfer. Both
268 JW18 and S2 cell lines divide significantly faster when uninfected than when infected with either the wMel or
269 wRi strain of *Wolbachia* ($p < 0.01$ Wilcoxon rank sum test; Fig 4C). When uninfected, JW18 cells double in 2.09
270 ± 0.31 days (a growth rate of $1.45x$ cells per day), whereas wMel-infected JW18 cells require 3.75 ± 0.34
271 days to double ($0.385x$ cells per day) and wRi-infected JW18 cells require a massive 25.0 ± 29.3 days to
272 double ($0.16x$ cells per day). Similarly, when uninfected, S2 cells double in 2.02 ± 0.37 days ($1.73x$ cells per
273 day). When infected with the wMel strain, S2 cells require 3.71 ± 1.06 days to double ($0.46x$ cells per day)
274 and infected with wRi, they require 3.21 ± 0.63 days to double ($0.57x$ cells per day). Interestingly, wMel
275 *Wolbachia* infection has minimal impact on the *D. simulans* Dsim6B cell line (3.11 ± 1.26 vs 3.23 ± 0.95

276 days to double and 0.86x and 0.64x cells per day, respectively). This may be due to the Dsim6B cell line's
277 lower growth rate: this cell line is highly adherent and fails to grow well at the 1/6 starting dilution that the
278 uninfected S2 and JW18 *D. melanogaster* cell lines thrive with.

279

280 The negative impact of *Wolbachia* infection on host cell growth combined with wMel's ability to rapidly increase
281 in titer upon exposure to uninfected host cells indicates that cell-to-cell transfer is essential to the colonization
282 process. *D. melanogaster* host cells require nearly twice as long to divide when infected with *Wolbachia* than
283 when uninfected (Fig 4C). The loss of wRi from the 1:1 DOX-wRi mixtures is consistent with the replacement of
284 infected cells with faster-growing uninfected cells over the ten weeks of co-culture (Fig 4B). In contrast, wMel's
285 increase in frequency over time after 1:1 mixture with DOX-cured host cells (Fig 4A), despite their inhibition of
286 host cell division rates (Fig 4C), is consistent with efficient cell-to-cell transfer to uninfected host cells. This
287 transfer process not only increases wMel frequency in the culture, but also prevents uninfected host cells from
288 remaining uninfected and out-growing the infected cell population.

289

290 **Fig 4. The wMel strain is able to efficiently spread to uninfected cells through faithful
291 segregation and cell-to-cell transfer, whereas the wRi strain cannot.**

292 A) Schematic overview of the 1:1 wMel:DOX and wRi:DOX mixed infected cell line experiments. C,D) Genomic
293 titers for C) wMel (blue) and D) wRi (red) over time in 1:1 mixtures with uninfected JW18 (solid line) and S2
294 (dashed line) cells. E) Fold change in symbiont titer per week in each mixture. Fold change was calculated by
295 log-linear regression (Fig S8, Table S2). F) Cell growth rates measured by hemocytometer cell counts,
296 quantified as the proportional growth per day from the starting cell count at 23°C (purple) and 26°C (orange).
297 Wilcoxon rank sum p-values **p<=0.01 and ***p<=0.001.

298 Conclusion

299 *Wolbachia pipiensis* is an obligate intracellular alphaproteobacterium that infects a diverse range of arthropods,
300 many of which are disease agents, vectors, and agricultural pests [10]. Composed of genetically distinct strains
301 spanning 16 lineage groups [27], *Wolbachia* demonstrate a variety of interactions with their hosts, ranging from
302 mutualism to reproductive parasitism [28]. The widespread prevalence of *Wolbachia* is largely due to its ability
303 to rapidly shift to new and diverse hosts [4,29], but little is known about the microevolutionary events that occur
304 immediately after a strain infects a novel host. Here, we used a *Wolbachia*-infected *Drosophila melanogaster*
305 cell line system to investigate the outcomes of mixed and novel infections *in vitro*.

306

307 Our findings provide valuable insight into the ability of an invading *Wolbachia* strain to establish an infection in
308 a host already infected by a different, resident *Wolbachia* strain. We show that wMel consistently emerges as
309 the dominant strain, quickly and effectively supplanting wRi in mixed infections, independent of starting
310 frequency. These results confirm predictions made by Keeling et al. in 2003, that one strain is always driven
311 extinct in homogeneous mixed infections. However, the strain that wins is not determined by founder effects in
312 the wMel-vs-wRi case, but the differential intrinsic abilities to propagate and colonize new host cells. These
313 quick and reproducible resolutions of mixed infections in our cell culture system suggest an explanation for the
314 paucity of observations from nature: mixed infections resolve quickly by competitive exclusion, before they can
315 be sampled.

316

317 In addition to providing insight into *Wolbachia* infection establishment and mixed infection dynamics, this work
318 highlights the potential role host development may play in determining the success or failure to establish an
319 infection. Despite the promiscuous wRi's strain's relatively high titer in whole-fly extracts (4.5x vs. wMel at
320 0.79x, Fig 3B) and tissues [6,30], it occurs at titers an order of magnitude lower than wMel in *D. melanogaster*
321 cell lines (Fig S2C,F) and fails to persist in cell lines derived from its native *D. simulans* host (Fig 3C). This
322 suggests that wRi is costly at the cellular level and *in vivo* development offers a mechanism of protection from
323 loss because most cell lineages are required for normal development. Similarly, wMel's higher titer *in vitro* than
324 *in vivo* suggests that host development and non-cell autonomous mechanisms are involved in their regulation
325 in nature. Thus, in a developmentally constrained system, wRi's high cellular cost and failure to transmit to
326 uninfected cells (Fig 4B,C) do not prevent its persistence like they do *in vitro*.

327

328 The future of *Wolbachia*-mediated host biological control applications rely on understanding the mechanisms of
329 novel *Wolbachia* infection and persistence in non-native hosts. From understanding which cell types and
330 developmental time points different strains have affinities for, to predicting the outcome of rare mixed infections
331 in unintended hosts, this work offers a powerful platform to disentangling bacterial-vs-host and
332 cellular-vs-organismal driven phenotypes. Given that rare horizontal transmission events can produce mixed
333 infections in novel hosts that may persist, generate recombinant *Wolbachia* strain genomes [5,31,32], and
334 have unintended ecosystem-level consequences, these results are vital to future safe applications of
335 *Wolbachia* in the field.

336 Methods

337 Cell Culture Maintenance and Cell Line Generation

338 All *Drosophila* cells were maintained on either Shields and Sang M3 Insect Medium (MilliporeSigma S3652) or
339 Schneider's Insect Medium (MilliporeSigma S0146) supplemented with 10% v/v Fetal Bovine Serum (FBS,
340 ThermoFisher A3160502). Cells were maintained in 4 mL of media in plug-seal T-25 flasks (Corning 430168) in
341 a refrigerated incubator at either 25-27°C or 22.5-23.5°C, as indicated in the text. We performed weekly cell
342 splits at a 1:6 dilution for uninfected cell lines and 1:2 or 1:3 dilutions for *Wolbachia*-infected cell lines, following

343 visual inspections of cell growth and contamination. Adherent cells were removed by scraping with sterile, bent
344 glass pipettes. Transitions between media types were performed in 25% intervals, requiring four weeks to
345 transition to 100% Shields and Sang or Schneider's Medium.

346

347 *Drosophila melanogaster* JW18 cells [20] and S2 cells (Thermo Fisher and [21]) were derived from a primary
348 culture of 1-15 hr and 20–24 hr-old embryos, respectively. JW18 cells are naturally infected with the wMel
349 strain of *Wolbachia* (from the *in vivo* infection in the fly line the cells were derived from) and S2 cells are
350 naturally uninfected. We found that incubation temperature exerts an observable effect on *Wolbachia* density
351 within these cell lines, supporting the well established relationship between *Wolbachia* density and temperature
352 [33]. Specifically, cells cultured at 26°C in 2021 exhibited higher symbiont titers compared to the same cultures
353 incubated at 23°C in 2023. Importantly, the relative differences between wMel and wRi titer are consistent
354 between these temperature regimes: wMel is always at an order of magnitude higher titer than wRi. The
355 difference in incubator temperatures was necessitated by the last author's starting her new lab and buying a
356 new incubator capable of maintaining 23°C. To generate uninfected JW18 cells, we treated JW18
357 wMel-infected cells with 10 µg/mL doxycycline in supplemented Shields and Sang media.

358

359 We generated the *Drosophila simulans* Dsim[w-]6B cell line from a w[-] (white eye) fly line previously infected
360 with the Riverside 1984 strain of wRi *Wolbachia* [34,35] according to the method described in [36]. Briefly, 1-20
361 hr old embryos laid on grape-agar plates by *Wolbachia*-infected flies were collected, surface sterilized,
362 homogenized, and plated in flasks on rich media containing 20% FBS and *Wolbachia*-resistant antibiotics, 60
363 and 100 µg/ml penicillin-streptomycin and 50 µg/ml gentamicin. During the next six months of maintenance,
364 two of the initial twenty seed flasks converted into immortal tissue culture lines. The Dsim[w-]6B cell line was
365 selected for further pursuit due to its planar growth pattern and ability to hold a *Wolbachia* infection. The native
366 wRi infection is unstable in *Drosophila* *in vitro* culture systems long-term, as described in the Results and
367 Discussion sections, and the natural infection was lost naturally over the course of the first year of culture.

368

369 *Wolbachia* infections were introduced by adding 1.2 µm-filtered infected cell lysate to uninfected *D.*
370 *melanogaster* JW18 and S2 and *D. simulans* Dsim[w-]6B cells. Infected cell lysate was either obtained from
371 *Wolbachia*-infected cell cultures or fly embryos (collected on grape plates, as described in [36]). Infected cells
372 were serially passed through 5 µM and 1.2 µM syringe filters to produce *Wolbachia*-containing cell lysate. The
373 wMel strain was applied directly (in 3 mL lysate) to uninfected S2 cells to produce the S2wMel cell line in 2017.
374 To produce the wRi-infected cell lines and the Dsim[w-]6B cell lines, we applied 0.5-1 mL of
375 *Wolbachia*-containing cell lysate to a monolayer of uninfected host cells in a flat-bottom shell vial and
376 centrifuged the bacterial cells down onto the cell surface in a swinging bucket centrifuge at 2500 x g for 1 hr at
377 15°C (i.e., the shell vial technique [37]). We transferred these cells to T-12 flasks in a final volume of 2 mL for
378 five days before scraping and transferring the cells to a T-25 flask with 2 mL of fresh media. These lines were
379 maintained by weekly 1:2 “soft splits”, which removed no media.

380

381 All cell lines were validated with DNA-based probes and whole genome sequencing after construction and
382 continuously during maintenance and experimentation. Cell line infection status was continuously monitored by
383 PCR and fluorescence *in situ* hybridization (FISH) of *Wolbachia*-specific markers. Primers for the *Wolbachia*
384 Surface Protein (WSP) gene [35] were used to confirm the presence and absence of wMel and wRi strains in
385 infected and uninfected cell lines, respectively. Sanger sequencing of the WSP amplicons was performed by
386 Azenta to confirm the strain-specific amplicon sequences. Oligonucleotide DNA probes complementary to the
387 *Wolbachia* 16S rRNA sequence were used in FISH experiments following the protocol in [38] to confirm
388 infections and estimate per-cell *Wolbachia* titer. Whole genome shotgun sequencing was performed with
389 Illumina sequencing (see below) to confirm host species and *Wolbachia* strain identities and test for
390 contamination.

391 Mixed cell line experiments

392 We used average genomic titer measurements from sequencing stable cell line infections to calculate how
393 many cells of each infection and host cell type to mix for the desired mixture ratios. Host cell concentrations
394 were quantified with a hemocytometer manually or with a Millicell® Digital Cell Imager.

395

396 For strains A and B at titers of Y_A and Y_B symbiont cells/host cell, within host cells growing at densities of X_A
397 and X_B cells/mL, mixed at a ratio of A/B, in a final volume of 4 mL per cell culture flask:

398

399 Volume of host cell culture infected with strain A = $V_A = 4 \text{ mL} / (X_A/X_B * Y_A/Y_B * 1/(A/B) + 1)$

400 Volume of host cell culture infected with strain B = $V_B = 4 \text{ mL} - V_A$

401

402 Samples were collected prior to mixing, immediately after mixing, and weekly when splitting infected cell
403 cultures into new flasks at 1/2 dilutions. For each culture at each timepoint, one mL of scraped and mixed
404 cell-containing media was transferred to a 1.5 mL Eppendorf tube, the cells were centrifuged at 16,000xg at
405 4-10°C for 10 min, supernatant was discarded, and the cell pellet was snap-frozen and stored at -80°C until
406 DNA extraction. Pellets were processed for library prep within one month of sample collection.

407 Shell vial experiments

408 To monitor how *Wolbachia* infections spread across uninfected host cells following introduction with the shell
409 vial technique [37], we performed shell vial infections as described above for the creation of novel cell lines.
410 Given the limited material at the start of these protocols (~2 mL per experiment and < 1 million cells), we
411 waited until the transfer step to T-25 flasks to take the first sample for Illumina sequencing and genomic titer
412 quantification. Host cell-free wMel *Wolbachia* lysate was either added at the full concentration derived from
413 host cell lysis or a 1/10 dilution to approximate the lower concentrations exhibited by wRi infections.

414 Cell growth rate experiments

415 Cell line cells were quantified upon splitting and seeding into new flasks and after a week's incubation with a
416 hemocytometer and Millicell® Digital Cell Imager. While handling the cell lines as described above for "Cell
417 Culture Maintenance", we added one extra mL of fresh media to each flask so that one mL could be removed
418 for sampling cell concentration and relative *Wolbachia* genomic titer (as a final step in the splits). These one
419 mL samples were then quantified by counting cells in a 10 uL volume (X number of cells (>100) measured per
420 Y number of boxes (>1 if <100 cells/box) * W dilution factor (2 if diluted by $\frac{1}{2}$) * $10,000 \text{ mL}^{-1} = Z$ number of
421 cells/mL). The rest of the cell suspension was pelleted by centrifugation (as described above), snap-frozen,
422 and stored at -20-80°C until DNA extraction. This process was repeated one week later, except cells were
423 resuspended by scraping prior to media removal so that the week's worth of growth could be quantified. Cells
424 were then diluted as described above for normal maintenance. This modified step was repeated every other
425 week for six weeks, at most frequent.

426 Cell Imaging and Image Analysis

427 Cell lines and experiments were continuously monitored with a tissue culture (TC) microscope and imaged with
428 a monochromatic digital camera. Weekly, stable line and experiment cell splits were imaged on Zeiss Primovert
429 TC microscope or a Leica DMi8 inverted microscope for confluence and contamination.

430

431 Infections were confirmed by fluorescence in situ hybridization (FISH) using DNA oligonucleotide probes
432 complementary to the *Wolbachia* 16S ribosomal RNA sequence, following the protocol in White et al. 2017.

433 Briefly, for each cell type, infection state, or experimental replicate, 1 mL of confluent cells were pipetted from a
434 T-25 flask into a 6-well dish (Corning) one to three days before fixation. Upon confluence in the dish, cells were

433 fixed in 8% paraformaldehyde in 1x phosphate-buffered saline (PBS) for 15 min at room temperature (RT).
434 Following two washes with 1x PBS, cells were treated with prehybridization buffer, consisting of 50% deionized
435 formamide by volume, 4x saline sodium citrate (SSC), 0.5x Denhardt's solution, 0.1 M dithiothreitol (DTT), and
436 0.1% Tween 20 in deionized water, for one and a half hours. Following prehybridization, cells were incubated in
437 hybridization buffer (prehybridization buffer without Tween 20) containing 500 nM Wolbachia W2 fluorescent
438 DNA probe (5-CTTCTGTGAGTACCGTCATTATC-3) (Bioresearch Technologies) [39] at 37°C overnight. Wet
439 kimwipes were added to the dish to prevent dehydration. The next day, cells were washed three times with 1x
440 SSC with 0.1% Tween 20 at RT quickly, at RT for 15 min, and at 42°C for 30 min. Next, the cells were washed
441 with 0.5x SSC at RT quickly, at 42°C for 30 min, and at RT for 15 min. These stringent washes aimed to
442 remove unbound FISH probes from the cells. Finally, cells were washed three times with 1x PBS at RT before
443 either staining with 3uM DAPI (4',6-diamidino-2-phenylindole) in 1x PBS for 10 min or mounting in Vectashield
444 fluorescent mounting medium with DAPI (Vector Laboratories).

445

446 FISH experiments were imaged on a Leica DM5500B widefield microscope or an inverted DMi8 equipped with
447 LEDs for epifluorescence imaging. Raw Leica images were processed in Fiji [40] and analyzed in R [41].

448 Whole genome resequencing and analysis

449 DNA Extraction

450 Cell pellets were lysed and digested using lysis buffer (100mM NaCl, 50mM Tris-HCl pH 8, 1mM EDTA pH 8,
451 0.5% sodium dodecyl sulfate) and Proteinase K (NEB). Reactions were incubated at room temperature
452 overnight. Genomic DNA was purified from cell lysates using SPRI beads and quantified using a Thermo
453 Fisher Qubit fluorometer and Qubit dsDNA Broad Range assay kit.

454 Tn5 Library Prep

455 We generated short-read sequence libraries using a custom tagmentation protocol adapted from [42]. The full
456 protocol is available on <https://www.protocols.io/> [43]. Briefly, Tn5 Tagmentation reactions were prepared as
457 follows: 10ng gDNA, 1uL Tn5-AR, 1uL Tn5-BR, 4uL TAPS-PEG 8000 and nuclease free water to final volume
458 of 20uL. See Table S3 for Tn5-A, -B, and -R oligo sequences. Reactions were incubated at 55C for 8 minutes
459 then killed by transferring to ice and adding 5uL 0.2% sodium dodecyl sulfate. Tagmentation product was
460 amplified using the KAPA Biosystems HiFi polymerase kit and unique indexed primers. Pooled libraries were
461 size selected using the Zymo Select-a-Size DNA Clean & Concentrator Kit and NEB Monarch Gel Extraction
462 Kit. Library pools were then quantified using the Qubit dsDNA HS Assay Kit and the Agilent TapeStation.

463 Data processing

464 We developed a Snakemake [44] workflow to estimate symbiont titers from the raw sequencing data
465 (<https://github.com/cademirch/wolb-cov-workflow>). First, we generated a composite reference genome
466 consisting of the host and symbiont genomes (Table S4). We then calculated per-base mappability scores
467 across the merged genome using *genmap* [45] with the parameters “-k 150 -e 0”. Next, reads are
468 trimmed of sequencing adapters and filtered for quality using *fastp* [46]. We aligned the filtered reads to the
469 composite reference genome using *bwa mem* [47]. The resulting alignments were then filtered using *samtools*
470 [48], keeping only unique alignments with a mapping quality greater than 20. Additionally, we used *sambamba*
471 [49] to mark optical duplicates in the filtered alignments. Next, we calculated the mean depth for each
472 mappable (mappability == 1) position in the merged genome using *mosdepth* [50]. Using mean depth statistics,
473 we estimated symbiont genomic titer using the following equation:

474

475 Symbiont titer = mean depth of symbiont / mean depth of host

476

477 Note, we only considered the 5 autosomal chromosomes (2L, 2R, 3L, 3R, and 4) of the host *Drosophila*
478 genome for our titer calculations.

479 Selection coefficient calculation

480 We leveraged population genomics theory on selection between competing strains in a chemostat [51] to
481 model selection in *Wolbachia*-infected *Drosophila* cell culture. Weekly splits with removal and disposal of the
482 overlying media approximate a chemostat, as the number of cells is kept within a tolerance range and the
483 physical and chemical resources are kept plentiful.

484

485 In a bacterial chemostat (extracellular or intracellular), the frequencies of strains A and a under selection at
486 time t can be shown to be $p_t = (p_{t-1})\omega_{11}/\omega$ and $q_t = (q_{t-1})\omega_{22}/\omega$, respectively. Let the selection parameter
487 $\omega = \omega_{11}/\omega_{22}$.

488

489 Measuring strain A's fitness as a fraction of strain a's fitness from one generation to the next is described by
490 the equation $p_t/q_t = (p_{t-1}/q_{t-1})\omega$. Solving for any generation gives the formula, $p_t/q_t = (p_0/q_0)\omega^t$. The plot of $\ln(p_t/q_t)$
491 should be linear with a slope equal to $\ln\omega$: $\ln(p_t/q_t) = \ln(p_0/q_0) + t\ln\omega$.

492

493 Thus, the selection coefficient (ω) for strain A versus strain a is given by the e raised to the slope of the line fit
494 to the plot of relative strain frequency over time. In our calculations, p = frequency of wMel and q = (1-p) =
495 frequency of wRi. Thus ω reflects wMel's selection coefficient relative to wRi. We fit linear regressions to the
496 wMel growth curves using R v4.1.2 [41] and ggplot2 v3.4.1 [52].

497

498 In order to understand the effects of cell line and starting infection ratio on relative strain frequency over time,
499 and consequently selection coefficients, we used a linear mixed-effects model with autoregressive moving
500 average using nlme v3.1-146 [53]. Then, we plotted the observed points, fitted lines, and 95% confidence
501 intervals using ggplot2 v.3.4.1.

502 Recombinant haplotype detection with Illumina sequencing

503 To detect potential recombinant haplotypes stemming from recombination between wMel and wRi, we used a
504 custom Python script to select paired-end alignments where one end aligned with wMel and the other wRi.
505 Then, using samtools, we filtered these chimeric alignments, keeping only alignments that overlapped a
506 "mappable" region within the respective genome of that alignment. By filtering the alignments this way, each
507 end of alignment is anchored to a sequence that is unique to each symbiont genome, suggesting that the
508 alignment is truly chimeric, likely due to recombination. Normalized recombinant read counts were calculated
509 by dividing the number of chimeric reads by the total number of sequence reads for a given sample.

510 Acknowledgements:

511 We thank the UCSC Life Sciences Microscopy Center (RRID:SCR_021135) and Ben Abrams for training and
512 the use of their microscopes. We thank Brandt Warecki and others in the Sullivan Lab for their thoughtful
513 comments and feedback throughout this project. This work was supported by UC Santa Cruz and the NIH
514 (R00GM135583 to SLR; R35GM139595 to WTS; R35GM128932 to RCD).

515 Author Contributions:

516 CM: data production and analysis, and writing.

517 JJ, EPT, PW, and MG: data production.

518 WTS: study conception and writing.

520 RCD: study conception and design and writing.

521 SLR: study conception and design, data production and analysis, and writing.

522 Supporting Information

523 **Fig S1. Schematic overview of steps required for successful horizontal transmission.**

524 Host-switching of an endosymbiont requires successful horizontal transmission, intracellular proliferation,
525 germline targeting for vertical transmission, and a mechanism for population establishment. Here, we use an *in*
526 *vitro* *Wolbachia*-infected cell culture system to study the early stages in this process (#1 and 2 in bold) that are
527 often lost to chance. By focusing on closely related strains with promiscuous and stable host-associations, we
528 can understand how cell identities, divergent hosts, and resident strains impact novel infection events.

529

530 **Fig S2. Overview of *Drosophila* *in vivo* and *in vitro* resources.**

531 The S2 and JW18 *D. melanogaster* cell lines were derived previously from fly embryos of unknown infection
532 status and infected with wMel, respectively. The Dsim6B cell line was derived in this work, from embryos from
533 the *D. simulans* white eye fly line infected with the Riv84 wRi strain (see methods panel through embryo
534 homogenization). Uninfected cell lines were obtained by treatment with 10 µg/mL doxycycline (DOX) in the cell
535 culture media for nine weeks, followed by at least two months recovery from antibiotic treatment mitochondrial
536 effects. *Wolbachia* strains were swapped among cell lines with the shell vial technique (see methods panel
537 through shell vial technique).

538

539 **Fig S3. Natural and introduced *Wolbachia* infections in *D. melanogaster* cell lines are stable over time.**

540 The wMel strain is consistently at ~10x higher titer than the wRi strain in *D. melanogaster* cells. Titers
541 measured in 2021 were from cells maintained at 25–26°C, whereas titers measured in 2023 were from cells
542 maintained at 23°C. Temperature has a similar impact on both strains titers, with both exhibiting proportionately
543 lower titers at 23°C than 25–26°C.

544

545 **Fig S4. Mixed Effects Regression analysis of relative strain frequency**

546 To assess how cell line and initial infection ratios influenced wMel's competitive advantage over wRi, we
547 utilized a linear mixed-effects model incorporating these variables as fixed effects. Prediction lines and 95%
548 confidence intervals from the model and observed points for the two cell lines A) JW18 and B) S2 at starting
549 ratios 1:100 (red) and 1:1000 (blue).

550

551 **Fig S5. Recombinants detected between the wMel and wRi strains in *D. melanogaster* cell culture.**

552 Recombinant alignments were detected by extracting the reads chimerically mapped to the wMel and wRi
553 genomes in regions of high mappability (containing SNPs, indels, or structural variation).

554

555 **Fig S6. Loss of the native wRi infection during Dsim[w-]6B cell line immortalization.**

556

557 **Fig S7. Shell-vial reinfection of Dsim6B[w-] cell line**

558 wMel (top) and wRi (bottom) strains of *Wolbachia*.

559

560 **Fig S8. Log-linear regression analysis of infected-uninfected mixtures**

561 Log-linear regression analysis for A) wMel and B) wRi in 1:1 mixtures with uninfected cells. Regression
562 summary statistics are annotated in Table S2.

563

564 **Table S1. Selection coefficients estimated in competition experiments.**

565

565 **Table S2. Regression statistics from log-linear regression analysis of wMel:DOX and wRi:DOX**
566 **experiments.**

567

568 **Table S3. Oligonucleotide sequences used for Tn5 based library preps.**

569

570 **Table S4. NCBI RefSeq genome accessions for reference genomes used in bioinformatics analyses.**

571 **References**

- 572 1. Rota-Stabelli O, Daley AC, Pisani D. Molecular timetrees reveal a Cambrian colonization of land and a
573 new scenario for ecdysozoan evolution. *Curr Biol.* 2013;23: 392–398.
- 574 2. Howard RJ, Giacomelli M, Lozano-Fernandez J, Edgecombe GD, Fleming JF, Kristensen RM, et al. The
575 Ediacaran origin of Ecdysozoa: integrating fossil and phylogenomic data. *J Geol Soc London.* 2022;179.
576 doi:10.1144/jgs2021-107
- 577 3. Kaur R, Shropshire JD, Cross KL, Leigh B, Mansueto AJ, Stewart V, et al. Living in the endosymbiotic
578 world of Wolbachia: A centennial review. *Cell Host Microbe.* 2021;29: 879–893.
- 579 4. Sanaei E, Charlat S, Engelstädter J. Wolbachia host shifts: routes, mechanisms, constraints and
580 evolutionary consequences. *Biol Rev Camb Philos Soc.* 2021;96: 433–453.
- 581 5. Gomes TMFF, Wallau GL, Loreto ELS. Multiple long-range host shifts of major Wolbachia supergroups
582 infecting arthropods. *Sci Rep.* 2022;12: 8131.
- 583 6. Medina P, Russell SL, Corbett-Detig R. Deep data mining reveals variable abundance and distribution of
584 microbial reproductive manipulators within and among diverse host species. *PLoS One.* 2023;18:
585 e0288261.
- 586 7. Frydman HM, Li JM, Robson DN, Wieschaus E. Somatic stem cell niche tropism in Wolbachia. *Nature.*
587 2006;441: 509–512.
- 588 8. Toomey ME, Panaram K, Fast EM, Beatty C, Frydman HM. Evolutionarily conserved *Wolbachia*-encoded
589 factors control pattern of stem-cell niche tropism in *Drosophila* ovaries and favor infection. *Proc Natl Acad
590 Sci U S A.* 2013;110: 10788–10793.
- 591 9. Gerth M, Gansauge M-T, Weigert A, Bleidorn C. Phylogenomic analyses uncover origin and spread of the
592 Wolbachia pandemic. *Nat Commun.* 2014;5: 5117.
- 593 10. Landmann F. The *Wolbachia* Endosymbionts. Bacteria and Intracellularity. Hoboken, NJ, USA: John Wiley
594 & Sons, Inc.; 2020. pp. 139–153.
- 595 11. Turelli M, Cooper BS, Richardson KM, Ginsberg PS, Peckenpaugh B, Antelope CX, et al. Rapid Global
596 Spread of wRi-like Wolbachia across Multiple *Drosophila*. *Curr Biol.* 2018;28: 963–971.e8.
- 597 12. Zhao Z, Zhu J, Hoffmann AA, Cao L, Shen L, Fang J, et al. Horizontal transmission and recombination of
598 Wolbachia in the butterfly tribe Aeromachini Tutt, 1906 (Lepidoptera: Hesperiidae). *G3*. 2021;11.
599 doi:10.1093/g3journal/jkab221
- 600 13. Jansen VAA, Turelli M, Godfray HCJ. Stochastic spread of Wolbachia. *Proc Biol Sci.* 2008;275:
601 2769–2776.
- 602 14. Utarini A, Indriani C, Ahmad RA, Tantowijoyo W, Arguni E, Ansari MR, et al. Efficacy of Wolbachia-Infected
603 Mosquito Deployments for the Control of Dengue. *N Engl J Med.* 2021;384: 2177–2186.
- 604 15. Russell SL, Castillo JR, Sullivan WT. Wolbachia endosymbionts manipulate the self-renewal and

607 607 differentiation of germline stem cells to reinforce fertility of their fruit fly host. PLoS Biol. 2023;21:
608 e3002335.

609 16. Bailly-Bechet M, Martins-Simões P, Szöllösi GJ, Mialdea G, Sagot M-F, Charlat S. How Long Does
610 Wolbachia Remain on Board? Mol Biol Evol. 2017;34: 1183–1193.

611 17. Scholz M, Albanese D, Tuohy K, Donati C, Segata N, Rota-Stabelli O. Large scale genome
612 reconstructions illuminate Wolbachia evolution. Nat Commun. 2020;11: 5235.

613 18. Ogunlade ST, Adekunle AI, McBryde ES, Meehan MT. Modelling the ecological dynamics of mosquito
614 populations with multiple co-circulating Wolbachia strains. Sci Rep. 2022;12: 20826.

615 19. Morrow JL, Frommer M, Shearman DCA, Riegler M. Tropical tephritid fruit fly community with high
616 incidence of shared Wolbachia strains as platform for horizontal transmission of endosymbionts. Environ
617 Microbiol. 2014;16: 3622–3637.

618 20. Serbus LR, Landmann F, Bray WM, White PM, Ruybal J, Lokey RS, et al. A cell-based screen reveals that
619 the albendazole metabolite, albendazole sulfone, targets Wolbachia. PLoS Pathog. 2012;8: e1002922.

620 21. Schneider I. Cell lines derived from late embryonic stages of *Drosophila melanogaster*. J Embryol Exp
621 Morphol. 1972;27: 353–365.

622 22. Baldo L, Bordenstein S, Werren JJ, Werren JH. Widespread recombination throughout Wolbachia
623 genomes. Mol Biol Evol. 2006;23: 437–449.

624 23. Werren JH, Bartos JD. Recombination in Wolbachia. Curr Biol. 2001;11: 431–435.

625 24. Wang X, Xiong X, Cao W, Zhang C, Werren JH, Wang X. Phylogenomic Analysis of Wolbachia Strains
626 Reveals Patterns of Genome Evolution and Recombination. Genome Biol Evol. 2020;12: 2508–2520.

627 25. Keeling MJ, Jiggins FM, Read JM. The invasion and coexistence of competing Wolbachia strains. Heredity
628 . 2003;91: 382–388.

629 26. Brownlie JC, Adamski M, Slatko B, McGraw EA. Diversifying selection and host adaptation in two
630 endosymbiont genomes. BMC Evol Biol. 2007;7: 68.

631 27. Lefoulon E, Clark T, Borveto F, Perriat-Sanguinet M, Moulia C, Slatko BE, et al. Pseudoscorpion
632 Wolbachia symbionts: diversity and evidence for a new supergroup S. BMC Microbiol. 2020;20: 188.

633 28. Driscoll TP, Verhoeve VI, Brockway C, Shrewsberry DL, Plumer M, Sevdalis SE, et al. Evolution of
634 Wolbachia mutualism and reproductive parasitism: insight from two novel strains that co-infect cat fleas.
635 PeerJ. 2020;8: e10646.

636 29. Baldo L, Ayoub NA, Hayashi CY, Russell JA, Stahlhut JK, Werren JH. Insight into the routes of Wolbachia
637 invasion: high levels of horizontal transfer in the spider genus *Agelenopsis* revealed by Wolbachia strain
638 and mitochondrial DNA diversity. Mol Ecol. 2008;17: 557–569.

639 30. Serbus LR, Sullivan W. A cellular basis for Wolbachia recruitment to the host germline. PLoS Pathog.
640 2007;3: e190.

641 31. Vavre F, Fleury F, Lepetit D, Fouillet P, Boulétreau M. Phylogenetic evidence for horizontal transmission of
642 Wolbachia in host-parasitoid associations. Mol Biol Evol. 1999;16: 1711–1723.

643 32. Siozios S, Gerth M, Griffin JS, Hurst GDD. Symbiosis: Wolbachia Host Shifts in the Fast Lane. Current
644 biology: CB. 2018. pp. R269–R271.

645 33. Mouton L, Henri H, Bouletreau M, Vavre F. Effect of temperature on Wolbachia density and impact on
646 cytoplasmic incompatibility. Parasitology. 2006;132: 49–56.

649 34. Serbus LR, White PM, Silva JP, Rabe A, Teixeira L, Albertson R, et al. The impact of host diet on
650 Wolbachia titer in *Drosophila*. *PLoS Pathog.* 2015;11: e1004777.

651 35. Casper-Lindley C, Kimura S, Saxton DS, Essaw Y, Simpson I, Tan V, et al. Rapid fluorescence-based
652 screening for Wolbachia endosymbionts in *Drosophila* germ line and somatic tissues. *Appl Environ
653 Microbiol.* 2011;77: 4788–4794.

654 36. Debec A, Megraw TL, Guichet A. Methods to Establish *Drosophila* Cell Lines. *Methods Mol Biol.*
655 2016;1478: 333–351.

656 37. Dobson SL, Marsland EJ, Veneti Z, Bourtzis K, O'Neill SL. Characterization of Wolbachia host cell range
657 via the in vitro establishment of infections. *Appl Environ Microbiol.* 2002;68: 656–660.

658 38. White PM, Pietri JE, Debec A, Russell S, Patel B, Sullivan W. Mechanisms of Horizontal Cell-to-Cell
659 Transfer of Wolbachia spp. in *Drosophila melanogaster*. *Appl Environ Microbiol.* 2017;83.
660 doi:10.1128/AEM.03425-16

661 39. Heddi A, Grenier AM, Khatchadourian C, Charles H, Nardon P. Four intracellular genomes direct weevil
662 biology: nuclear, mitochondrial, principal endosymbiont, and Wolbachia. *Proc Natl Acad Sci U S A.*
663 1999;96: 6814–6819.

664 40. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source
665 platform for biological-image analysis. *Nat Methods.* 2012;9: 676–682.

666 41. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation
667 for Statistical Computing; 2022. Available: <https://www.r-project.org/>

668 42. Picelli S, Björklund AK, Reinius B, Sagasser S, Winberg G, Sandberg R. Tn5 transposase and
669 tagmentation procedures for massively scaled sequencing projects. *Genome Res.* 2014;24: 2033–2040.

670 43. Mirchandani C, Genetti M, Wang P, Pepper-Tunick E, Russell S, Corbett-Detig R. Plate Scale Tn5 based
671 tagmentation library prep protocol. In: protocols.io [Internet]. 2024. Available:
672 <https://dx.doi.org/10.17504/protocols.io.4r3l2qmzpl1y/v1>

673 44. Mölder F, Jablonski KP, Letcher B, Hall MB, Tomkins-Tinch CH, Sochat V, et al. Sustainable data analysis
674 with Snakemake. *F1000Res.* 2021;10: 33.

675 45. Pockrandt C, Alzamel M, Iliopoulos CS, Reinert K. GenMap: ultra-fast computation of genome mappability.
676 *Bioinformatics.* 2020;36: 3687–3692.

677 46. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. *Bioinformatics.*
678 2018;34: i884–i890.

679 47. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. *arXiv [q-bio.GN].*
680 2013. Available: <http://arxiv.org/abs/1303.3997>

681 48. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format
682 and SAMtools. *Bioinformatics.* 2009;25: 2078–2079.

683 49. Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast processing of NGS alignment
684 formats. *Bioinformatics.* 2015;31: 2032–2034.

685 50. Pedersen BS, Quinlan AR. Mosdepth: quick coverage calculation for genomes and exomes.
686 *Bioinformatics.* 2018;34: 867–868.

687 51. Dykhuizen DE, Hartl DL. Selection in chemostats. *Microbiol Rev.* 1983;47: 150–168.

688 52. Wickham H. *ggplot2: Elegant Graphics for Data Analysis*. Springer; 2016.

690 53. Pinheiro J, Bates D, R-core. Linear and Nonlinear Mixed Effects Models [R package nlme version
691 3.1-149]. 2020. Available: <https://cran.r-project.org/package=nlme>

692