
inSēquio: A Programmable 3D CAD Application for Designing DNA Nanostructures

Authors: Curt LaRock, Paul Sorensen, Douglas Blair, Dabrien Murphy, James O’Connor,
 and Steven Armentrout (corresponding author)

Affiliation: Parabon NanoLabs, Inc.

Abstract:

DNA nanotechnology is evolving rapidly, paralleling the historic trajectory of the 1970s
electronics industry. However, current DNA nanostructure (DN) design software limits users to
either manual design with minimal automation or a constrained range of automated designs.
inSēquio Design Studio, developed by Parabon® NanoLabs, bridges this gap as a
programmable 3D computer-aided design (CAD) application, integrating a domain-specific
graphical editor with a Python API for versatile DN design.

Developed in C++ for Windows® and Macintosh® systems, inSēquio features a user-friendly GUI
with extensive CAD tools, capable of managing complex designs and offloading computational
tasks to the cloud. It supports various DNA design formats, PDB molecule integration, residue
modifications, and includes preloaded designs and thorough documentation.

With its combination of features, inSēquio enables a code-centric design (CCD) approach,
enhancing DN construction with improved precision, scalability, and efficiency. This approach is
elucidated through a streptavidin barrel cage designed via Python notebook and a spheroid
origami case study.

Marking a significant advance in DN design automation, inSēquio, the first fully programmable
3D CAD tool for DN design, enables both manual and programmatic 3D editing. This fusion of
features establishes inSēquio as a transformative tool, poised to significantly enhance designer
productivity and expand the scope of possible designs.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.27.586810doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.27.586810
http://creativecommons.org/licenses/by-nc-nd/4.0/

 2

Extended Abstract
Advances in DNA nanotechnology have positioned the field at a juncture reminiscent of the
pivotal growth phase of the electronics industry in the 1970s. The evolution of software for
designing DNA nanostructures (DNs) is following a similar historical trajectory and dozens of
software packages have been developed for creating them. Existing software options, however,
require users to choose between manual design with minimal automation support or selecting
from a limited set of designs, typically wireframe, that can be generated from a high-level
structural description. Here, we introduce the inSēquio Design Studio, a programmable 3D
computer-aided design (CAD) application that effectively bridges this gap. By integrating a
domain-specific, freeform graphical editor with a Python application programming interface
(API), inSēquio provides a comprehensive and extensible platform for designing complex
nucleic acid (NA) nanostructures.

The inSēquio desktop application, developed in C++, runs on Windows® and Macintosh®
operating systems. Its graphical user interface (GUI) features multiple synchronized view panels
and a diverse set of CAD and NA-specific editing tools. Its optimized graphics pipeline enables
editing of designs with >2M nucleotides, and it includes an integrated service infrastructure for
offloading heavy computations to cloud servers. The software also supports import and export
of various DNA design file formats, integration of arbitrary PDB molecules, and specification of
residue modifications. Additionally, it includes preloaded sample designs, scripts, and
comprehensive documentation.

Parabon has used evolving versions of inSēquio for over a decade to design a variety of
proprietary DNs and have now transitioned it into a commercially available product. This paper
summarizes inSēquio’s features, discusses its strengths and limitations, and outlines planned
enhancements. Although freeform 3D design is well supported in inSēquio, the integration of its
CAD environment with its API facilitates a code-centric design (CCD) approach for DN
construction that offers notable productivity advantages over traditional methods, including
enhanced precision, scalability, and efficiency. Here we describe CCD, outline its benefits and
demonstrate its use through a well-documented Python notebook, included with the product,
which generates a sample design within the inSēquio application. A spheroid origami created
using CCD is also presented.

As the first commercial fully programmable 3D CAD application specifically created for DN
design, the release of inSēquio represents a milestone in the field of DN design automation. It
introduces a new dimension to the discipline by enabling both manual and programmatic 3D
editing, thereby facilitating an innovative CCD approach. The availability of extensive
documentation and technical support enables designers to efficiently adopt and utilize these
capabilities. This combination of features establishes inSēquio as a noteworthy addition to the
tools available for DN design, with the potential to significantly increase designer productivity
and broaden the scope of designs that can be developed by practitioners of all skill levels.

Windows and Mac versions of the inSēquio desktop application are available for download at
https://parabon.com/insequio.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.27.586810doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.27.586810
http://creativecommons.org/licenses/by-nc-nd/4.0/

 3

Graphical Abstract

An illustration of the inSēquio Design Studio desktop application interoperating with a Python Jupyter
notebook and molecular dynamics (MD) simulation tools to support an iterative code-centric design (CCD)
process. The design cycle includes (a) programmatic and/or manual creation of objects in the inSēquio
editors; (b) visual inspection and manipulation of objects via user interface; (c) in silico evaluation of designs
via MD simulation using native or external tools; repeating a-c as necessary; and (d) procurement of
strands and synthesis of DNA nanostructures (DNs).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.27.586810doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.27.586810
http://creativecommons.org/licenses/by-nc-nd/4.0/

 4

INTRODUCTION
In fields as diverse as naval architecture and microelectronics, the challenges of product design
have spurred development of computer-aided design (CAD) software to manage complexity and
streamline design workflows. The significance of design software for the field of DNA
nanotechnology was evident from the early work of its founding father, Nadrian Seeman1. Our
own interest in such tools stemmed from his personal demonstration of GIDEON, arguably the
first 3D DNA CAD program, just when it was becoming operational2. Paul Rothemund’s
introduction of DNA origami cemented software’s critical role in the field3.

The evolution of DNA design packages since that time has been well covered in recent
reviews4,5,6. Dey et al. classified DNA design software into three generations, roughly
characterized as G1) graphical editors (e.g., cadnano7 and Tiamat8), G2) top-down wireframe
generators (e.g., vHelix9, DAEDALUS10, etc.) and G3) editors that also integrate second-
generation features and simulation tools (e.g., Adenita11, ATHENA12).

oxView, ENSnano and MagicDNA represent the latest third-generation tools. oxView is a
browser-based visualizer that provides robust simulation and analytical tools; however, the
authors indicate it is not intended for de novo design, despite possessing basic editing
functions13,14. ENSnano provides 2D editing in a split view to facilitate 3D design, and can
display resulting 3D designs, but has no 3D editing features besides the ability to make a
crossover15. MagicDNA is a collection of MATLAB-based CAD tools for producing
conventionally shaped components – wireframe, surface, and lattice structures – that can be
connected to form larger DNA assemblies16. The latest release moves closer towards genuine
freeform design by adding tools for converting splines into curvilinear DNA bundles17.

Catana offers tools for combining DNs with proteins; however, it has few DNA editing
capabilities and expects designs to be imported18. The Common-Lisp framework ‘small’
emphasizes the importance of programmatic design, but lacks a graphical editor and depends
on external tools for visualization19. DNAxiS is a collection of Python algorithms for generating
designs with axial or cyclically symmetric curvature that can be displayed via its web server20.

These and other software contributions have facilitated creation of a diverse array of DN
designs. It is evident, however, though not unexpected, that advancing CAD editing interfaces
has not been a research priority. Nonetheless, the evolution of design needs compels us to look
beyond conventional improvements. It is well recognized that even the most sophisticated CAD
user interfaces (UIs) ultimately encounter their limits in effectively managing complexity and
ensuring precise control — requirements that invariably demand programmability. We suggest
that CAD editors specifically tailored for nucleic acid (NA) design, when complemented by an
associated API, represent what might be termed fourth-generation (4G) DN design
environments.

An example 4G environment from the literature is scadnano. Drawing inspiration from the
graphical UI design of cadnano – the most popular CAD application in the field – scadnano
("scriptable cadnano") offers a comprehensive Python API to augment its graphical editing
capabilities21. However, like cadnano, scadnano is limited to 2D editing of designs, requiring one
to export to the oxDNA22 format to visualize the 3D structure in oxView. Despite this limitation, it
exemplifies the advantages of combining manual with programmatic editing for DN design.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.27.586810doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.27.586810
http://creativecommons.org/licenses/by-nc-nd/4.0/

 5

4G design environments, which combine both manual and programmatic control over the design
process, offer a blend of advantages not achievable by either approach alone. Programmatic
control facilitates automation of repetitive tasks, algorithmic optimization of design topology and
geometry, and enhanced reproducibility and adaptability, permitting swift modifications to design
features without the tedious overhead of editor-only design. Conversely, manual UIs provide the
ability to rapidly prototype design concepts, make modifications that are difficult or costly to
codify, and an interactive environment for creative exploration. Together, these dual capabilities
facilitate a code-centric design (CCD) approach to the challenging task of DN design that
provides practitioners significant gains in efficiency and design quality. In this paper, we
introduce our 4G contribution, the inSēquio Design Studio, the first fully programmable 3D CAD
editor created exclusively for designing DNA and RNA nanostructures. (For brevity, our
discussion hereafter refers only to DNA nanostructures [DNs].) This paper provides an overview
of inSēquio’s primary and differentiating features, but does not comprehensively describe the
product. Detailed documentation, tutorials, and the Python API are available for review with the
free trial version of the software available at https://parabon.com/insequio.

MATERIALS AND METHODS

Software development objectives and system requirements
Whereas the initial implementation of inSēquio (not released) was limited to 2D schematic
editing, the current version (v1.0.4.3) was architected as a 3D CAD application from its
inception. Recognizing that nanoengineers might have limited experience with CAD
applications, we aimed to blend the 3D object manipulation capabilities essential for CAD
design with drawing tools and functions typically encountered in standard office software suites.
We opted for desktop versus browser-based implementation to maximize UI richness and
responsiveness, and to grant users direct control over data security - designs stay local unless
deliberately transmitted for server-based processing. This also allowed us to implement our own
graphics pipeline and optimize its performance to enable extended reality product extensions.

The Qt application framework was chosen to facilitate cross-platform development. This release
of inSēquio is compatible with Windows® 10 and 11 (x86-64 only) and Macintosh® macOS
12/Monterey and later (Intel and Apple Silicon). We anticipate releasing a version for Linux in
the near future. We chose Python (v3.10 or later) for the initial API implementation because of
its pervasive use for interactive scientific computing. While extremely large designs benefit from
computers with large RAM, we routinely run inSēquio on laptops with 16GB of RAM and we
expect good performance on less capable computers.

RESULTS

The inSēquio desktop application

Synchronized view panels

inSēquio’s main application window has three view panels: Schematic (2D), Design (3D) and
Analysis (3D). Users can create and edit objects in the Schematic and Design views, either
manually or through the API. When an object is created using the API, its representation can be

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.27.586810doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.27.586810
http://creativecommons.org/licenses/by-nc-nd/4.0/

 6

directed to appear in either view or both. In cases where the object is generated in both views,
their representations will be synchronized, i.e., selections and many types of edits made in one
view will automatically be reflected in the other (Figure 1). Objects resulting from various
analyses are generated in the Analysis view and are synchronized with their corresponding
elements in the other views. This integration of different yet synchronized views has, in our
experience, offered unique design insights and significantly enhanced the detection of potential
issues that could otherwise be easily overlooked.

Figure 1. A simple six-helix bundle imported from cadnano, a portion of which is shown in all three view
panels. A nucleotide and duplex have been deliberately repositioned in the Design view leaving them with
unnaturally long bonds. The Analysis view shows the result of performing energy minimization on
contents of the Design view calculated using the Minimize Energy command, which eliminates the long
bonds. Selection of an object in any one view highlights it (in yellow by default) in all synchronized views
as shown.

Native molecular species

DNA and RNA nucleotides and amino acid (AA) residues are represented as visually distinct
single-particle beads that can be drawn individually or as linear, circular or polyline strands and
duplexes (nucleic acids only). NA strand termini are distinguishable by their geometric forms,
specifically, 5’ and 3’ nucleotides are represented as a cube and cone, respectively. Likewise,
peptide N- and C-termini are represented by rectangular and triangular pyramids, respectively.
A rich set of G-quadruplexes is also provided.

To facilitate functionalization, residues can be decorated with chemical modifications selected
from a built-in catalog; users can also create their own modifications for inclusion in the catalog.
Modification codes are persisted with strands when they are exported to CSV file format
(typically for procurement). A generic linker object can also be used to connect species in non-
standard manners, such as splicing the 5’ ends of two NA or joining a peptide to a NA. (planned
enhancements for this feature are discussed in Future Directions).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.27.586810doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.27.586810
http://creativecommons.org/licenses/by-nc-nd/4.0/

 7

Object mesh representations of other molecule types can also be drawn. A small set of
molecules is included and users can install others (e.g., from PDB) using the File → Import →
Molecule Mesh menu. Figure 2 shows how these species appear in inSēquio’s Design view.

Freeform editing in 3D

Navigating three dimensions in CAD applications presents
unique challenges, particularly given the 2D constraints of
standard mouse and keyboard interfaces. inSēquio
addresses these challenges with a rich set of inherently 3D
CAD editing features. Central to the 3D interface is the
application’s Construction Plane (CP), which can be
positioned anywhere in the 3D Design view via intuitive six-
degrees-of-freedom (6DF) controls. The CP panel also
offers customization options for its appearance, such as
adjusting its axis visibility, grid extent, and grid density.
Object creation, movement and rotation are performed with
respect to the current orientation of the CP. Objects can
also be moved by arbitrary distances and angles via the
Geometry → Transform Selected command, the UI panel
for which provides convenient 6DF controls.

Figure 2. The molecular
species natively supported by
inSēquio. Circular DNA duplex
(cyan and orange) surrounds a
DNA parallel G-quadruplex
(blue) and RNA antiparallel
G-quadruplex (red), each
comprised of three tetrads
(four nucleotides connected by
green rectangles). Single-
stranded DNA (blue) is
conjugated to a short peptide
(lime) via a generic linker
object with user defined
connections. A single-stranded
RNA strand (red) has a
3’ terminal that is modified with
3’ biotin-TEG (gold stellated
octahedron). A portion of a
protein, imported as a ribbon
mesh, is in the foreground
(maroon).

Figure 3. The Edit menu
provides several commands for
manipulating strands and
sequences.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.27.586810doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.27.586810
http://creativecommons.org/licenses/by-nc-nd/4.0/

 8

Commands for topologically editing strands, found in the
Topology menu, include Nick (cut a strand), Splice (join
two strands), and Pair and Unpair nucleotide bases. The
Cross command performs the nicking and splicing
commands to effect a double-crossover; Uncross inverts
these operations. Geometric mouse editing commands
include Move, Rotate, and Rotate Axle; these actions
can also be effected precisely with the Transform
Selected command, which accepts six conventional
spatial transformation parameters. A variety of other
editing commands are provided for manipulating strands
and their sequences (Figure 3). The design in Figure 4
demonstrates what one designer accomplished using
these freeform editing tools in ~10 minutes at the end of
a long day.

Data import and export

The current version of inSēquio is a single-document application, hence Copy/Paste between
two inSēquio documents is not possible. However, structures from multiple inSēquio files can be
combined by importing a source design into a target design using the Import command.
cadnano files can also be imported, creating both 2D and 3D representations in the Schematic
and Design views, respectively. NA components of a design can be exported to oxDNA22 and
PDB23 file formats. inSēquio uses oxDNA24 and tacoxDNA25 software components in the
implementation of its import and export services.

Standard-resolution images, as well as high-resolution images suitable for publication, can be
copied to a file or the clipboard using the Capture Image command. The former is a pixel-for-
pixel reproduction of the designated view; the latter produces the same image at 5x resolution.

Functionalization via residue modifications and generic linkers

The application potential of DNs arises from their capacity for molecular species
functionalization. They uniquely enable colocation, spatial organization, and transport facilitation
for a wide range of molecules, distinguishing them from other current nanoengineering
technologies. A variety of oligonucleotide modifications are now available to facilitate
conjugation with peptides, antibodies, small molecules and many other species. To support
inclusion of such modifications in NA designs, inSēquio has a Modify Residue command that
displays a catalog of standard oligo modifications (e.g., 5’ Hexynyl, 3’ Cholesterol-TEG and Cy5
fluorophore among many others). Entries include customizable fields such as the text code used
during export of strand sequences to CSV format (e.g., /5Hexynyl/ACGTACGT), an image of the
chemical structure, detailed notes (e.g., from the vendor), SMILES codes and references. Users
can simultaneously apply modifications to one or more selected residues after which their shape
changes to a stellated octahedron to facilitate easy identification. Additionally, the
Draw → Linker command can be used to insert a namable and colorable hexagonal ring that
can be spliced to strand termini to represent a generic conjugation between strands.

Figure 4. A playful design created
entirely with 3D freeform editing tools.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.27.586810doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.27.586810
http://creativecommons.org/licenses/by-nc-nd/4.0/

 9

Find commands and metrics

The Find menu contains 24 entries for locating various components of a design. It includes a
comprehensive Sequence… dialog for specifying the type and composition of search probes,
entries for locating problematic regions of a design (e.g., strands that are too long or duplexes
that are too short), nucleotides with various properties (e.g., paired, unpaired, having wildcard
bases, bulge nucleotides, etc.), strands with various properties (e.g., circular strands, strands
marked as scaffolds) and other structural elements, such as duplexes and nicks. A list of
design level properties can be generated using the Design Metrics command and distances
between objects in any view can be displayed with the Measure tool.

Software architecture

The inSēquio architecture consists of a set of software components specifically designed to
efficiently capture, represent, and render DN designs, as detailed in Figure 5. The Object
Model captures the essential elements of a design, including nucleotides, strands, duplexes,
amino acids, peptides, modifications, linkers, and other molecules, along with their
corresponding topology. The Representation module maps topology to 2D and 3D geometry.
The Scene module manages the presentation of this representation to the user as a 2D or 3D
scene, incorporating aspects like material, lighting, and camera position. The Renderer then
converts these 3D scenes to 2D images for display on the user’s screen. The Internal inSēquio
API exposes operations for manipulating the Object Model, its Representation, and the Scene.
The Graphical User Interface (GUI) allows users to create, modify, view, and analyze designs,
with UI operations implemented via calls to the Internal inSēquio API and results rendered by
the Renderer.

Figure 5. Architectural diagram of inSēquio illustrating its key components and their interconnections.

A distinguishing characteristic of the inSēquio architecture is its support for both manual and
programmatic design: users can engage with the GUI for interactive editing and/or utilize the
intuitive and flexible inSēquio Python API (inSēquioPyAPI) for automated, script-driven design.
The implementation of the underlying Python API connects to the inSēquio application through a
localhost TCP/IP connection, exchanging JSON-encoded commands and responses. The

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.27.586810doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.27.586810
http://creativecommons.org/licenses/by-nc-nd/4.0/

 10

Scripting API Service, which listens to connections on a configurable port number, processes
these commands via the Internal inSēquio API and returns corresponding responses.

To maximize scalability and performance, the inSēquio Design Studio application was
implemented in C++ and OpenGL, which provides a standardized way to implement GPU-
accelerated graphics. Its graphics pipeline employs highly-optimized custom shaders and scene
caching to achieve a native refresh rate greater than 90Hz, which is essential for enabling
freeform design, editing, and visualization in extended reality (XR; virtual and augmented)
environments. These capabilities were implemented in inSēquio for Oculus Rift, as
demonstrated at MADNano 201926 and FNANO 202127, and we anticipate product extensions to
enable XR use of inSēquio in the future.

On contemporary laptop computers, this design enables construction of DN designs comprising
over two million nucleotides (Figure 6). Additionally, to support computationally intensive
operations like energy minimization and calculating oxDNA trajectories, we developed a
backend service infrastructure and a REST-based protocol for remote execution of
computational jobs initiated by inSēquio commands. This service architecture allows users to
perform analyses that may be too
demanding for local hardware. User
requests are managed by the Service
Job Manager (SJM), which
authenticates to inSēquio Services
using the user’s credentials to obtain an
authentication token for subsequent
interactions. All communications
between the application and inSēquio
Services are secured using Hypertext
Transfer Protocol Secure (HTTPS). The
SJM sends the user's request to
inSēquio Services, which then runs the
request asynchronously in a designated
Docker container. The SJM monitors the
job and notifies the user upon
completion. Users can then view the
results through the SJM interface.

Data Security and Privacy

The inSēquio Design Studio and inSēquio Services were designed to maintain the security and
privacy of user data. User data stays on the local machine, except when executing authorized
inSēquio Service operations, such as performing an energy minimization. Before transmission
to inSēquio Servers, these operations alert users of pending data transfers, offering an option to
cancel. During transit, data security and integrity are safeguarded using HTTPS.

On inSēquio Servers, several measures ensure data protection. Data at rest are secured on
encrypted drives. Processing occurs in isolated Docker containers to guarantee customer data
are not commingled. Access to inSēquio Services and Servers requires authentication, with

Figure 6. A cube containing >2 million nucleotides
(2500 staples).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.27.586810doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.27.586810
http://creativecommons.org/licenses/by-nc-nd/4.0/

 11

robust access controls in place to prevent unauthorized access. Parabon staff access to
inSēquio Servers is rare and only occurs under specific circumstances, such as to address
technical issues. Such access is governed by strict protocols, ensuring it is minimal and directly
related to problem resolution. Robust audit mechanisms are employed to enforce these
protocols and guarantee the integrity and confidentiality of user data. Finally, inSēquio Servers
persist user data only for the duration of an active job; upon a user's deletion of the job, all
associated data are immediately and completely erased.

Documentation and Technical Support

A key differentiator for inSēquio is its robust Help system, which includes a comprehensive set
of user support resources to assist designers in both learning and effectively utilizing the
software. The User Guide details every aspect of the interface, supplemented with Tutorial
videos and a “Cookbook” that elucidates complex operations. Keyboard shortcuts and mouse
and trackpad actions are also detailed within a Keyboard Shortcuts window. The Python API,
described in the next section, is equally well-documented.

A significant advantage of inSēquio’s commercial support is its team of dedicated developers
and staff who offer prompt and thorough technical assistance. This ensures designers receive
the help they need to fully utilize the software and accelerate their research. For those requiring
design assistance beyond standard technical support, consulting services are available.

The inSēquio Python API
While the inSēquio GUI offers an intuitive and robust platform for freeform DN design, its Python
API significantly enhances the software's capabilities. It allows for direct programmatic
construction and editing of DNs within the application’s 2D and 3D graphical editors, making
these structures immediately editable and interactively manageable, a novel capability in the
field. By enabling designers to blend script execution with GUI-based inspection and
manipulation, this integration of API and 3D CAD interface not only enhances control and
visibility within the design process but also overcomes the limitations of traditional manual
design tools and automated 'black box' design generators, marking a significant advance in DN
design capability. Having established the synergistic benefits of integrating API and CAD for DN
design, we now describe the specific molecular classes within inSēquio that facilitate this
advanced design approach.

Molecular classes

The primary Python classes in the inSēquio API represent molecular species and their
subcomponents. These classes, defined in the insequio.structure module, all inherit from the
abstract class Proxyable, which functions as a hidden proxy, discreetly facilitating
communication with the application’s Object Model. The class hierarchy deriving from
Proxyable (Supplemental Figure S1) includes abstractions for Strand, made up of
Residues connected by Bonds that, along with a Nucleotide subclass of Residue for
nucleic acids, and the AminoAcid subclass of Residue for amino acids, collectively support
concrete representations of DNA, RNA strands, and polypeptide chains. Nucleotide objects
can be paired to form Basepair objects that, when arrayed, comprise Duplex objects.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.27.586810doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.27.586810
http://creativecommons.org/licenses/by-nc-nd/4.0/

 12

Nucleotide bases and amino acid side chains can be variably specified using IUPAC characters;
for instance, nucleotides can have a base value of “N” (wildcard) or “R” (“puRine” – A or G) in
addition to “A”, “C”, “G” or “T.”

All derivatives of Proxyable can be named and colored. Residue and Basepair objects are
positioned in 3D, and optionally 2D, using Point3 and Point2 objects, respectively, which are
facades for NumPy points. While methods like dna_duplex_line generate objects with
plausible geometry, the system allows creation of implausible structures (e.g., overly distant
nucleotides connected by an unrealistically long bond). Rigid body constraints are not enforced,
permitting object intersections during construction. We have found this flexibility to be generally
useful, dampening the motivation to implement code to enforce physical constraints, especially
since the Energy Minimization command can be used post construction to eliminate such
occurrences.

API and object model interaction

API sessions begin with a call that establishes a TCP connection between the Python
interpreter and the inSēquio application. Once this connection is established, users can make
API calls to edit or access the application’s current design. Importantly, the API does not strive
to maintain a separate, synchronized version of a design in memory. Instead, Python objects
that represent design components merely act as references to the C++ object model. The code
in Figure 7 illustrates this point. It creates a linear DNA duplex 10 nm in length and renders it in
the inSēquio application before printing information to the developer’s console. When the
num_basepairs property of duplex is accessed, it retrieves the current value from inSēquio’s
object model each time it is called, rather than merely accessing an attribute of the Python
variable duplex. This deliberate separation of concerns between the API and design
representation reduces system complexity thereby improving the maintainability of both
application and API code bases. It also enables designers to seamlessly combine both manual
and programmatic editing within a single session. In fact, users can interact with the inSēquio
application, for instance rotating objects in the Design view, even while API code is actively
editing a design (e.g., during a long-running block of code).

Figure 7. A code snippet that creates a linear DNA duplex in the inSēquio Design view and then prints
the number of base pairs it contains to the developer console. The value for the num_basepairs
property is not stored with the Python object duplex, but is fetched from inSēquio’s C++ object model.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.27.586810doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.27.586810
http://creativecommons.org/licenses/by-nc-nd/4.0/

 13

Integration with the inSēquio UI

Python scripts, developed using the inSēquio API, can be launched from the inSēquio
Developer menu. This feature streamlines the creation of custom automation tools for a wide
array of design and analysis tasks. Such integration embeds the scripts into the inSēquio UI,
effectively making them built-in features.

These scripts are valuable due to their dual capacity for dialogue-based user interaction and
real-time interaction with the displayed design. The inSēquio API facilitates the inclusion of UI
controls, such as text and spin boxes, check and radio buttons, dropdown menus, file pickers,
and layout widgets within scripts. This empowers script developers to design dynamic user
interfaces that manage the collection and processing of analysis parameters, execution of
complex tasks, and visualization of outcomes.

Additionally, these scripts can interact with and modify the current design using inSēquio's
robust design interrogation and manipulation features, allowing them to query the state of the
current design (e.g., identifying selected design elements) and perform desired analyses and
transformations. Scripts may be compiled into bespoke libraries tailored to individual users or
domain requirements, optimizing inSēquio's utility for particular workflows and significantly
enhancing both productivity and design quality.

Code-centric design with inSēquio

Foundational concepts

The code-centric design (CCD) approach combines code-driven construction, analysis, and
optimization with interactive 3D visualization and evaluation, forming an iterative and cohesive
method for the efficient development of DNs. Design cycles typically follow four key stages:
establishing goals, prototyping the next development phase using GUI or code, conducting
visual inspections, and analyzing the results, with the insights gained informing the next cycle.
With inSēquio, CCD offers a precise yet flexible approach for constructing DNs that overcomes
the limitations of manual design, while still enabling direct GUI-based visualization, editing and
manipulation by designers. The advantages of CCD are multifaceted: it allows designers to
automate repetitive tasks and manage intricate design elements with high precision and
efficiency. This includes scalability for large-scale designs, parameterizability for the rapid
creation of design variants, and optimizability for algorithmically refining design choices. CCD
represents a paradigm shift in DN design, blending the rigor of computational logic with the
creativity of freeform design. In this way, CCD shares similarities with the design process in
computer-animated film creation, where programming and software tools play a central role in
bringing animated narratives to life.

Generally, CCD is an iterative process that involves incrementally developing and running code
snippets for each design step, followed by observing and evaluating the outcomes in the
graphical editors. Computational notebooks, with their interactive execution environment,
provide an ideal complementary platform for employing CCD with inSēquio, enabling users to
iteratively develop, visualize, and fine-tune designs in real-time. Each iteration typically begins
anew, progressing from a blank document to the most recently completed design stage. This

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.27.586810doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.27.586810
http://creativecommons.org/licenses/by-nc-nd/4.0/

 14

cyclical approach, coupled with the interactive investigation capabilities of the inSēquio
application, enables continuous improvement and fine-tuning at each design step, which is
essential for producing high quality DNs.

At any point, DN designs can be evaluated through inSēquio’s analysis tools or by observing
energy minimization results. Additionally, coarse-grained simulations of designs using oxDNA24
can be automatically generated using inSēquio Services via the Compute oxDNA Trajectory…
command. For in-depth analysis, designs can be exported to all-atom formats for molecular
dynamics simulation (although not yet as an inSēquio Service). These simulations are valuable
as they often reveal opportunities for design refinement, where the true efficiency of CCD
becomes evident. For critical design elements, such as an origami scaffold route, modifications
are more efficiently executed when these elements are initially created through code. This
efficiency proves particularly valuable in scenarios often encountered in practice, where
extensive modifications or a complete reevaluation of strategy are necessitated by the discovery
of design flaws. In such cases, straightforward code adjustments or parameter tweaks can
significantly improve the design, thereby saving substantial time compared to the effort required
for manual redesign.

Algorithmic design evaluation and decision-making

One of the most valuable features of inSēquio's API is its facilitation of computer-aided
engineering (CAE) methods, enabling the programmatic manipulation of 3D designs and the
analysis of resultant effects. This capability fosters the development of sophisticated algorithms
that can explore design space and evaluate alternative design decisions based on their varied
consequences, geometric, topological, or otherwise. Examples of these algorithmic applications
include identifying candidate crossover locations, selecting optimal crossover networks from
these candidates, determining the best relative rotations of neighboring helices, and choosing
nick locations for functionalizable overhangs. Notably, tasks like selecting among candidate
crossover and nick locations are computationally intensive, with both problems being NP-
complete. While we provide only simple search algorithms for these challenges in the notebook
presented below, the API has allowed us to create sophisticated algorithms for crossover and
nick selection that will soon be incorporated into both the inSēquio API and the application,
which will further enhance the tool’s utility for DN design.

Code-centric design of a barrel-shaped streptavidin cage

Here we present highlights from a Jupyter notebook, included with inSēquio, that provides users
with a richly documented, step-by-step illustration of how the inSēquio API can be used to
create a design from scratch, specifically a barrel-shaped streptavidin cage. To facilitate use of
the API, the inSēquio application includes a user-friendly setup wizard, Developer →
QuickStart, that creates a Python virtual environment, installs required Python modules and
walks users through a ‘Hello World’ script to ensure the Python environment is installed
correctly. It then presents the sample_SA_barrel.ipynb notebook. Automation of these steps
via QuickStart eliminates potentially troubling installation issues and thus allows even users
with no Python experience to quickly exercise the API.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.27.586810doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.27.586810
http://creativecommons.org/licenses/by-nc-nd/4.0/

 15

Using the CCD approach, the major steps for creating a DN, in their recommended order of
execution, are: drawing duplexes that form the desired DN shape with topological neighbors
close enough for crossovers (helical centers ~2.7 nm apart); identifying nucleotide quartets for
candidate crossovers; selecting a set of candidates that achieve desired crossover density with
a minimum spacing between them of ≥ 7 base pairs; making the crossovers at these selected
locations; identifying candidate staple nicking sites preferably ≥ 8 nucleotides from any
crossover; choosing a set of nick locations that result in staples of desired lengths, typically 17–
60 nucleotides; and finally nicking the staples.

The sample notebook provides code for executing each of these design steps. Users are
instructed to successively execute notebook cells and observe the results in the inSēquio
graphics editors. As in normal design practice, color is used extensively to illustrate the results
of various calculations. Figure 8 shows the barrel design at three stages of completion.

Figure 8. Sample barrel at various stages of design. (a) The initial prototype comprised entirely of
disconnected circular duplexes each drawn with API method dna_duplex_circle; (b) Closeup of two
quartets of nucleotides (magenta) that have been algorithmically identified as suitable sites for a double-
crossover junction; (c) The API call to create crossovers with such quartets (quads); (d) Resulting
double-crossovers; (e) Candidate nick location sites (green) that are sufficiently distant from any
crossover.

The notebook highlights a crucial aspect of API-driven design: edits that modify strand
definitions, such as nicking and splicing, invalidate previous strand references (e.g., if two
strands are spliced, neither of the original strand references exist afterward). Therefore, it is
highly recommended to complete all preliminary decisions for a given design step, such as
determining crossover locations, prior to executing these edits through the API. This approach
avoids the need to re-identify strand references before proceeding with further calculations or
edits.

The barrel notebook showcases a distinctive feature of inSēquio: the capability to concurrently
create 2D and 3D versions of a design that are synchronized (for instance, selecting an element
in one view automatically selects it in all synchronized views). This synchronization is achieved
by providing both 2D and 3D position arguments to drawing functions like
dna_duplex_circle. This dual-view approach proves to be particularly effective in identifying

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.27.586810doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.27.586810
http://creativecommons.org/licenses/by-nc-nd/4.0/

 16

design defects, as the 2D and 3D perspectives each reveal different aspects of a design
(Figure 9).

Figure 9. Simultaneous display of Schematic and Design views showing a staple strand that has been
selected in the Strand pane (lower right).

In addition to code for performing all major DN design steps, the notebook also offers detailed
guidance on navigating inSēquio’s GUI for repositioning the construction plane and performing
manual edits. The final steps for constructing the sample design include drawing a single-
stranded DNA tether, adding a biotin modification and placing a streptavidin molecule at the
barrel’s center (Figure 10).

Figure 10. Completed barrel
design shown in pipe mode
with streptavidin molecule
(maroon) atop biotin-tipped
single-stranded DNA tether
(a) with and (b) without
nucleotides displayed.

It should be noted that even for complex designs, many of the Python methods needed for DN
design require only straightforward geometrical or topological calculations, a domain where
large-language model (LLM) code generators now excel. For example, the
find_nearest_nucs function, a simple nearest neighbor search used throughout the
notebook, was written entirely by ChatGPT-4 (Figure S2). This underscores a significant point:
designers with minimal or no Python experience can nevertheless effectively engage in CCD
with inSēquio by utilizing sample codes and LLM assistance.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.27.586810doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.27.586810
http://creativecommons.org/licenses/by-nc-nd/4.0/

 17

A spheroid origami example

Using our CCD approach, we developed a prolate spheroid origami in inSēquio, which is
included among the product's sample designs (Figure 11a). It uses an M13mp18 (M13) plasmid
as the scaffold and is similar to that of Han et al.28 except our design deliberately avoids leaving
a scaffold overhang. Since inSēquio draws circular duplexes with an integral number of helical
turns, a simple binary search algorithm was used to maximize the number and size of circular
duplexes that would approximate a spherical shape and use fewer than M13’s 7249
nucleotides. To prevent strain at the poles, we limited the size of polar rings to a minimum of
128 base pairs, resulting in polar apertures with a radius of ~11.7 nm. We determined that 23
evenly spaced rings could form a sphere using 7153 scaffold nucleotides, leaving 96 unused.
To manage the excess, we incorporated 13 interior-facing scaffold loopouts of 7 nucleotides
each, and one of 5 nucleotides (Figure 11b). The remaining design steps were executed
entirely via Python scripts and the inSēquio API. The crossover and nick selection algorithms
used for this design will be integrated into inSēquio in a future release. During the design
process, we periodically used inSēquio’s Export command to generate oxDNA and all-atom
formats for simulation using oxDNA and NAMD, respectively (Figures 11c and 11d).

Figure 11. (a) A spheroid origami with M13 scaffold created via CCD and shown in inSēquio. (b) A view
from the interior showing one of the polar apertures and two 7mer loopouts (red). (c) Spheroid after
conversion to oxDNA format, relaxation, and 50 ns simulation in oxDNA. (d) Spheroid after conversion to
all-atom PDB format, heating, equilibration, and 5 ns of all-atom, implicit solvent, MD simulation in a
CHARMM force field using NAMD. (e) An AFM image of the spheroids after synthesis.

Future directions
Cloud-based service offerings. Upcoming releases will leverage the inSēquio Services
infrastructure to offer a range of cloud-based services. These services are designed to facilitate
compute-intensive tasks and will be available through a usage-based (“metered”) billing model,
supported by a commercial cloud provider, such as Amazon Web Services. First will be the

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.27.586810doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.27.586810
http://creativecommons.org/licenses/by-nc-nd/4.0/

 18

integration of all-atom molecular modeling services, which we routinely use in our internal
version of the software. Additionally, we have implemented sequence optimization algorithms
that minimize undesirable hybridizations (“mismatches”) for both origami (where the scaffold
sequence is rotated through all possible start locations) and less constrained designs and these,
too, will be offered as metered cloud services.

Integrated trajectory viewing. Currently, oxDNA22 simulations can be launched and executed via
inSēquio Services, however, after users download resulting trajectories, they must use another
tool, such as VMD29, to view them. In the future, when simulations complete, results will be
automatically downloaded after which users will be able to view them directly in inSēquio.
Likewise, in-app viewing of all-atom simulation results will also be supported.

Lattice view. Several generations of DN researchers have used cadnano7 as their primary
design software. For square and honeycomb lattice designs, its 2D user interface is elegant and
powerful. Because cadnano designs can be imported into inSēquio, we have not prioritized
creating such an interface, but we anticipate adding a Lattice view to natively support such
designs in the future.

Concurrent operation on multiple designs. Currently, the inSēquio UI and scripts are limited to
operating on a single design at a time. Ideally, designers using either the UI or the Python API
should be able to manipulate multiple designs at once. With this capability, designers using the
UI can have multiple designs open at once (e.g., a reference design in a second window) and
designers writing scripts can process and analyze multiple design candidates in parallel thereby
accelerating exploration of design space. This capability is on our development roadmap, but
will likely not appear until the v2.0 release.

Configurable duplex dimensions. Our algorithms for drawing duplexes in 3D are internally
parameterized by base pair rise, pitch, twist and other common NA geometric variables,
however, the interfaces for dynamically manipulating these parameters are limited or
nonexistent. Remedying this deficit is a near-term priority.

Support for helices. We define a duplex as a contiguous run of two or more base pairs between
contiguous subsections of two (generally reverse-complementary) nucleotide strands. Duplexes
may also be circular, with two circular nucleotide strands of equal length, joined by the same
number of contiguous base pairs. We reserve the term helix to refer to two or more abutting
duplexes, each abutting pair of which is roughly collinear and connected by one strand (not
necessarily the same strand for all duplexes in the helix) (see Figure 12). This distinction
between duplexes and helices is significant in the context of DN design. Duplexes, as more
primitive components, have clear definition and extent, and their local geometry is largely
independent of surrounding structures, barring any twist or strain from topological neighbors.
Helices, in contrast, embody design intent, yet their geometry is governed by surrounding
structure. We have developed algorithms to detect helices, and plan to integrate this
functionality into inSēquio soon. Currently, however, the application and its API support only
creation and identification of duplexes.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.27.586810doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.27.586810
http://creativecommons.org/licenses/by-nc-nd/4.0/

 19

Figure 12. A small patch of nanostructured DNA
from a spherical origami design that illustrates the
difference between a duplex and helix. A single
duplex bound by crossover junctions (orange) is
highlighted (yellow). It is part of a circular helix that
forms a ring around the sphere. Beneath it is a
portion of a similar circular helix with its
constituent duplexes alternately colored (blue and
red) to emphasize their boundaries formed by
crossover junctions or strand nicks.

API Enhancements. The Python API currently contains a subset of the functionality provided by
the UI. Conversely, there are designs that can only be fully realized through the use of the API
(e.g., simultaneous drawing of designs in both the Schematic (2D) and Design (3D) views).
More functions will be added to the API to allow programmatic manipulation of designs currently
not possible with scripting, including the Find commands, Construction Plane controls, and
drawing Molecules. Scene controls such as camera position, view direction and lighting will
allow software-driven design animation. Also, the UI will be enhanced to perform as many API-
enabled functions as possible. Finally, more complex design logic such as identification of
potential crossover sites, helices, and other structurally nontrivial elements, as well as sequence
and base pairing optimizations, will be incorporated in inSēquio along with associated API
functions to exercise these capabilities where appropriate.

Annotations, version control, and provenance. One of the biggest shortcomings of the current
version of inSēquio is its lack of support for design annotations. Objects can be named and
colored, but otherwise, there is no support for associating notes with a design or its
components. The straightforward remedy of providing a notes field for each object is
forthcoming, but additional documentation features are desirable, namely, version control and
provenance. Users can currently use external version control tools, such as Git or Subversion
(SVN), to manage their inSēquio design files, however, a more integrated version control
capability may be welcome, especially for users not familiar with software engineering. Our
longer-term goal of implementing a provenance system that logs a detailed trace of user
interactions will eventually enable several powerful design capabilities. Such traces not only
document design history, but they can be converted into scripts (“macros”) that can be saved,
optionally augmented with API calls, and executed later to streamline repetitive tasks and
improve design efficiency. Particularly useful macros codify desirable features that can be later
migrated directly into the product for community-wide efficiency improvements.

DISCUSSION
The general release of inSēquio, the first commercial fully programmable 3D CAD application
specifically created for designing DNs, represents a milestone in the field. It marks the
beginning of a transformation in user experience, shifting from the previous necessity of
navigating through an assortment of specialized tools to now engaging with a single,
comprehensive, and well-supported application – a shift with the potential to significantly
enhance productivity for DN designers of all skill levels.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.27.586810doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.27.586810
http://creativecommons.org/licenses/by-nc-nd/4.0/

 20

While we have long used prior versions of inSēquio in our research, evolving it into a
commercial-grade release demanded substantial effort to achieve the robustness and usability
needed for broad distribution. As well, the compilation of a comprehensive User’s Guide,
complete with step-by-step tutorials and structured API documentation, and development of the
QuickStart wizard each represented significant investments. However, these user support
resources, often limited or absent in non-commercial software, significantly enhance the
product’s accessibility, which holds the potential to expand the community of DN designers.

Code-centric design (CCD) itself is also becoming more accessible. The advent of large
language models (LLMs) capable of generating quality software from prose-based requirements
lowers the barrier to employing CCD, especially for designers with little coding experience.
When employed using an interactive 3D CAD environment like inSēquio, CCD offers notable
advantages over traditional DN design methods. First, it enhances precision and scalability,
which is crucial for managing large, complex DN designs. The reusability of code across
different projects provides efficiency gains that quickly outweigh any initial investment in design
time. Perhaps most significantly, CCD’s flexibility enables rapid design modifications to meet
evolving requirements through straightforward adjustments of parameters and code re-
execution.

Finally, the compatibility of CCD with molecular simulation tools like oxDNA and NAMD
completes a design cycle that facilitates in silico prediction and optimization of DN structures,
reducing time-consuming and costly trial-and-error in the laboratory. In conclusion, with its ease
of use, support for both freeform and programmatic design, and its ample user support
resources, inSēquio is poised to accelerate the use of DNA nanotechnology for a variety of
applications, positioning it as an indispensable tool in the field’s future growth and development.

DATA AVAILABILITY
The M13 sphere design is included with inSēquio. The Jupyter notebook with code for
generating the streptavidin barrel is also included.

ACKNOWLEDGEMENTS
The development of inSēquio would not have been possible without valuable input from the
Parabon laboratory team, notably Michael Norton, William Patterson, Michael Gorbet and Hong
Zhong. Former Parabon developer Michael Garrahan also made substantial software
contributions.

The authors gratefully acknowledge the use of Department of Defense (DoD) high-performance
computing resources for the all-atom simulation of the spheroid origami, which were made
available under a Small Business Innovation Research contract with the Defense Threat
Reduction Agency.

FUNDING
Development of inSēquio has been supported, in part, by SBIR and STTR research grants and
contracts from the National Science Foundation, U.S. Army Research Office, National Institutes
of Health (specifically, the National Cancer Institute, National Institute of Allergy and Infectious

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.27.586810doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.27.586810
http://creativecommons.org/licenses/by-nc-nd/4.0/

 21

Disease and the National Institute for General Medical Sciences), U.S. Army Chemical
Biological Center, Defense Threat Reduction Agency, and with funding from the Virginia
Innovation Partnership Corporation.

BIBLIOGRAPHY
1Seeman, N. C. De novo design of sequences for nucleic acid structural engineering. Journal of
Biomolecular Structure and Dynamics, 8(3), 573-581 (1990).
2Birac, J. J., et al. Architecture with GIDEON, a program for design in structural DNA
nanotechnology. Journal of Molecular Graphics and Modelling, 25(4), 470-480 (2006).
3Rothemund, P. W. (2006). Folding DNA to create nanoscale shapes and patterns. Nature,
440(7082), 297-302.
4Piskunen, P., et al. Increasing complexity in wireframe DNA nanostructures. Molecules, 25(8),
1823 (2020).
5Dey, S., Fan, C., Gothelf, K. V., Li, J., Lin, C., Liu, L., Liu, N., et al. DNA origami. Nature
Reviews Methods Primers, 1(1), 1–24 (2021).
6Glaser, M., et al. The art of designing DNA nanostructures with CAD software. Molecules,
26(8), 2287 (2021).
7Douglas, S. M., Marblestone, A. H., Teerapittayanon, S., Vazquez, A., Church, G. M., & Shih,
W. M. (2009). Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic acids
research, 37(15), 5001-5006.
8Williams, S., et al. Tiamat: a three-dimensional editing tool for complex DNA structures. In DNA
Computing: 14th International Meeting on DNA Computing, DNA 14, Prague, Czech Republic,
June 2-9, 2008. Revised Selected Papers 14. Springer Berlin Heidelberg (2009).
9Benson, E., et al. DNA rendering of polyhedral meshes at the nanoscale. Nature, 523, 441–444
(2015).
10Veneziano, R., et al. Designer nanoscale DNA assemblies programmed from the top down.
Science, 352(6293), 1534-1534 (2016).
11de Llano, E., et al. Adenita: interactive 3D modelling and visualization of DNA nanostructures.
Nucleic Acids Research, 48(15), 8269-8275 (2020).
12Jun, H., et al. Rapid prototyping of arbitrary 2D and 3D wireframe DNA origami. Nucleic Acids
Research, 49(18), 10265-10274 (2021).
13Poppleton, E., et al. Design, optimization and analysis of large DNA and RNA nanostructures
through interactive visualization, editing and molecular simulation. Nucleic Acids Research,
48(12), e72-e72 (2020).
14Bohlin, J., et al. Design and simulation of DNA, RNA and hybrid protein–nucleic acid
nanostructures with oxView. Nature Protocols, 17(8), 1762-1788 (2022).
15Levy, N., & Schabanel, N. ENSnano: a 3D modeling software for DNA nanostructures.
DNA27-27th International Conference on DNA Computing and Molecular Programming (2021).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.27.586810doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.27.586810
http://creativecommons.org/licenses/by-nc-nd/4.0/

 22

16Huang, C.-M., et al. Integrated computer-aided engineering and design for DNA assemblies.
Nature Materials, 20(9), 1264-1271 (2021).
17Pfeifer, W., et al. Versatile Computer Aided Design of Freeform DNA Nanostructures and
Assemblies. bioRxiv (2023), 2023-03.
18Kuťák, D., et al. CATANA: an online modelling environment for proteins and nucleic acid
nanostructures. Nucleic Acids Research, 50(W1), W152-W158 (2022).
19Smith, D., & Tikhomirov, G. small: A programmatic nanostructure design and modelling
environment. arXiv preprint arXiv:2111.15184 (2021).
20Fu, D., et al. Automated design of 3D DNA origami with non-rasterized 2D curvature. Science
Advances, 8(51), eade4455 (2022).
21Doty, D., Lee, B. L., & Stérin, T. scadnano: A browser-based, scriptable tool for designing
DNA nanostructures. In Geary, C. & Patitz, M. J. (Eds.), 26th International Conference on DNA
Computing and Molecular Programming (DNA 26), Leibniz International Proceedings in
Informatics (LIPIcs) (pp. 9:1–9:17), Dagstuhl, Germany (2020). Schloss Dagstuhl–Leibniz-
Zentrum für Informatik.
22Ouldridge, T. E., Louis, A. A., & Doye, J. P. K. DNA nanotweezers studied with a coarse-
grained model of DNA. Physical Review Letters, 104(17), 178101 (2010).
23Berman, H. M., et al. The protein data bank. Acta Crystallographica Section D: Biological
Crystallography, 58(6), 899-907 (2002).
24Poppleton, E., et al. oxDNA: coarse-grained simulations of nucleic acids made simple. Journal
of Open Source Software, 8(81), 4693 (2023).
25Suma, A., Poppleton, E., Matthies, M., Šulc, P., Romano, F., Louis, A. A., ... & Rovigatti, L.
Tacoxdna: A user-friendly web server for simulations of complex DNA structures, from single
strands to origami. Journal of Computational Chemistry, 40(29), 2586-2595 (2019).
26Sorensen, P., LaRock, C., O’Connor, J. Parabon inSēquio Demonstration. Mid-Atlantic DNA
Nanotechnology (MADNano) Conference 2019, Gaithersburg, Maryland, December 9, 2019.
27Sorensen, P., LaRock, C., O’Connor, J., et al. Toward a 3D Product Model for CAD and VR
Nanoengineering. Foundations of Nanoscience: Self-Assembled Architectures and Devices
(FNANO) Conference 2021, Snowbird, UT, April 15, 2021.
28Han, D., et al. DNA origami with complex curvatures in three-dimensional space. Science,
332(6027), 342-346 (2011).
29Humphrey, William, Andrew Dalke, and Klaus Schulten. "VMD: visual molecular
dynamics." Journal of molecular graphics 14.1 (1996): 33-38.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.27.586810doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.27.586810
http://creativecommons.org/licenses/by-nc-nd/4.0/

 23

SUPPLEMENTARY MATERIAL

Figure S1. Class hierarchy diagram for the inSēquio API module insequio.structure.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.27.586810doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.27.586810
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure S2. A simple nearest neighbor algorithm for identifying scaffold crossover locations used in the
barrel cage sample design.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.27.586810doi: bioRxiv preprint

https://doi.org/10.1101/2024.03.27.586810
http://creativecommons.org/licenses/by-nc-nd/4.0/

