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Abstract

Microbes tune their metabolism to environmental challenges by changing protein expression levels, metabolite concentrations,
and reaction rates simultaneously. Here, we establish an analytical model for microbial resource allocation that integrates
enzyme biochemistry and the global architecture of metabolic networks. We describe the production of protein biomass from
external nutrients in pathways of Michaelis-Menten enzymes and compute the resource allocation that maximizes growth
under constraints of mass conservation and metabolite dilution by cell growth. This model predicts generic patterns of
growth-dependent microbial resource allocation to proteome and metabolome. In a nutrient-rich medium, optimal protein
expression depends primarily on the biochemistry of individual synthesis steps, while metabolite concentrations and fluxes
decrease along successive reactions in a metabolic pathway. Under nutrient limitation, individual protein expression levels
change linearly with growth rate, the direction of change depending again on the enzyme’s biochemistry. Metabolite levels
and fluxes show a stronger, nonlinear decline with growth rate. We identify a simple, metabolite-based regulatory logic
by which cells can be tuned to near-optimal growth. Finally, our model predicts evolutionary stable states of metabolic
networks, including local biochemical parameters and the global metabolite mass fraction, in tune with empirical data.

Introduction

Bacteria exhibit remarkable plasticity when reacting to changes in their environment (1, 2). Understanding and harvesting
this plasticity promises advances in medicine, synthetic biology, and biotechnology (3–6). Recent improvements in systems-
wide metabolic models progress towards this goal (7–10). However, the complexity of metabolic networks and the vast amount
of potential model parameters limit a predictive understanding of microbial physiology on the whole-genome level (11–13).

At the same time, simpler empirical patterns emerge from this complexity. Metabolic flux-balance analysis (14), bacterial
growth laws governing proteome resource allocation (15), and enzyme-substrate scaling relationships (16) isolate sets of
metabolic variables that can be explained without detailed knowledge of the others. Such emergent principles have been
used successfully to model the dose-response to ribosome-targeting antimicrobials in diverse environments (17) and to predict
dosage-dependent resistance evolution (18). However, dose-response modeling for target enzymes embedded more deeply in
the metabolic network than the ribosome (19, 20) remains di�cult in general.

In this paper, we integrate enzyme biochemistry and the topology of metabolic pathways into an analytically solvable
model of networks with biochemically heterogeneous constituents. The model predicts resource allocation at a multi-omics
level including fluxes, the metabolome, and the proteome, as shown schematically in Fig. 1 for a simple chain topology.
We consider multi-component metabolic pathways that produce and consume intermediate metabolites, and we compute the
state of the cell generating maximal growth under the constraint of mass conservation in a population of replicating cells. This
is a step towards an analytical solution of optimal states in large metabolic networks, including realistic non-linear kinetics,
which has so far remained elusive (21, 22). The model predicts broad patterns describing how fluxes, protein expression,
and steady-state metabolite concentrations depend on an enzyme’s position in the network and on the nutrient environment.
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Figure 1: Biochemical model of cell metabolism. A set of reaction pathways processes external nutrients into protein production, leading to
cell growth. A simple network is a metabolic chain of ` enzymes (boxes) and ` metabolites (diamonds), shown here for ` = 10. Each reaction step is
characterized by Michaelis-Menten kinetics with catalytic capacity max

i (box height) and substrate binding a�nity K�1
i (box width) (i = 1, . . . , `).

The first metabolite is an external nutrient of mass density ⇢1, the output of the network is protein production at rate �. The model developed in
this paper predicts growth-optimal, balanced growth states in nutrient-rich environments and under nutrient limitation. Such states are characterized by
steady-state metabolite concentrations, ⇢i, and protein expression levels, �i (color shading). The network produces a decreasing sequence of mass fluxes,
ji (black arrows), with loss of metabolites by growth (gray arrows).

A key network parameter, called the metabolite cost, summarizes the e↵ects of nutrient level and upstream metabolism
on a given metabolite-enzyme pair. This constraint combines with local metabolic reaction kinetics to set the resource
allocation to individual metabolites and enzymes. Under nutrient restriction, an enzyme is linearly up- or down-regulated
with decreasing growth rate. The direction of change depends on a local biochemical parameter negatively correlated with
the enzyme’s target a�nity and positively correlated with its catalytic rate. This pattern explains the heterogeneity of
single-enzyme growth responses found in proteomics studies of microbial growth (23–25).

An integrative metabolic model of enzymes and metabolites is key to understand how regulation and evolution shape
systems metabolism. Here we introduce a simple regulatory scheme that suggests how cells can be tuned to near-optimal
growth by using metabolites as transcriptional signals for protein expression. On longer time scales, evolution alters network
biochemistry. Specifically, we show that physiological values of enzyme kinetics emerge from an evolutionary equilibrium.
This, in turn, sets the global mass ratio of metabolome and proteome in the cell.

The text is organized as follows. We first introduce the model framework and derive local optimality conditions that
determine cellular resource allocation to a given metabolite-enzyme pair. We then solve these equations, first in a nutrient-
rich environment, and discuss the resulting system-wide patterns of metabolite levels and protein expression. Next, we
analyze the metabolic response to nutrient limitation, explore more complex metabolic networks, and compare our findings
to published experimental data (16, 24). Finally, we discuss the implications of the model for regulation and evolution of
metabolic networks.

Metabolic model

Networks of metabolites and enzymes. We consider a metabolic network of ` enzymes. Each enzyme catalyzes a reaction
according to Michaelis-Menten kinetics: in a cell of volume V , the enzyme species present at mass Mi acts on a metabolite
present at mass concentration ⇢i with catalytic rate 

max
i and substrate binding a�nity K

�1
i , generating a mass flux

Ji =

max
i Mi

1 + Ki
⇢i

. (1)

The metabolite mass flux per unit of protein mass, i = 
max
i /(1 +Ki/⇢i) is the product of max

i and the saturation level of
the enzyme with its substrate. In line with empirical observations (1, 26–28), we assume that the total intracellular protein

concentration is constant (15); the cell volume is therefore proportional to the total protein biomass MP =
P`

i=1 Mi. Accord-
ingly, we write concentrations as mass fractions, ⇢i = Ri/MP , �i = Mi/MP , and we use mass-normalized fluxes, ji = Ji/MP ,
and dimensionless a�nities, K�1

i (i = 1, . . . , `). Details are given in Supporting Information (SI). These a�nities set the
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ratio of intracellular metabolite biomass to protein biomass, MR/MP =
P`

i=2 ⇢i, a fundamental global observable of cell
metabolism. The metabolic state of the system, denoted by the shorthand S ⌘ (⇢,�), changes in response to the envi-
ronment. The set of kinetic constants, (max

,K), is fixed for a given organism but changes by evolution on longer time
scales.

We start with the simplest case of a metabolic network, which consists of a single linear pathway where the metabolite
produced by one enzyme is the substrate of the next (Fig. 1). Overall, the network converts a single environmental nutrient,
present at concentration ⇢1, into protein biomass with a rate

� ⌘
J`

MP
. (2)

This defines the growth rate of the cell population. In the case of a single pathway, mass conservation on all intracellular
metabolites takes the form

d⇢i

dt
=

Ji�1 � Ji

MP
� �⇢i (i = 2, . . . , `). (3)

We consider balanced exponential growth states (29) (⇢i = const. for i = 2, . . . , `) in a time-independent environment ⇢1.
Importantly, these states maintain a flux mismatch �⇢i between metabolite in- and outflux at each metabolic step, reflecting
the dilution of metabolites by growth (8, 22, 30–33). With the boundary condition j` = �, we obtain a decreasing cascade
of steady-state mass fluxes,

ji = �

✓
1 +

X̀

k=i+1

⇢k

◆
. (4)

Optimal balanced growth states. In the following, we consider metabolic states that maximize growth rate under given
nutrient conditions, S? = (⇢?,�?) = argmax(�(S))|⇢1 . Under laboratory conditions, growth rate is often closely related to
fitness (34), and bacteria allocate their resources close to the growth-optimal allocation (35). This motivates our assumptions
on stationarity and growth-maximization as a reasonable approximation of more complex growth cycles and evolutionary
objectives (5).

Finding optimal balanced growth states analytically is challenging because the kinetic rate law is nonlinear and there
is a global feedback loop imposed by growth dilution: the dilution rate in each step is set by growth rate, which itself
depends on the output of the pathway. Environmental conditions and cell growth thus impose constraints from opposite
ends of the metabolic cascade. Partially numerical solutions (30), specific properties of optimal solutions (8, 22), as well
as an analytical solution of a pathway with two enzymes (33) were studied previously. Here, starting from the two-enzyme
system, we iteratively construct optimal balanced growth states of longer pathways by adding a substrate-enzyme pair to
the front end (SI, Fig. S1).

By equation [2], maximal growth is achieved if the protein mass necessary to produce a given protein production flux J`

is minimal (36). We use the Michaelis-Menten relation [1] and the continuity equation [4] for each reaction to express the
enzyme masses Mk in an arbitrary stationary state in terms of the nutrient level ⇢1, the current vector J = (J1, . . . , J`),
and the set of kinetic constants (max

,K). Thus, we can formulate the maximum-growth condition in di↵erential form,

@
P`

k=1 Mk(⇢1, J,max
,K)

@Ji

����
J?,⇢1

= 0 (i = 1, . . . , `� 1). (5)

When a single flux Ji is varied, only the metabolite concentrations ⇢i, ⇢i+1 and the enzyme masses Mi, Mi+1 change
(Fig. S1C). Inserting the Michaelis-Menten relationship [1] for Mi and Mi+1, as well as equation [4] for ⇢i and ⇢i+1, then
yields a recursive relation for growth-optimal fluxes,

0 =
1

max
i

✓
1 +

KiJ
?
`

�J?
i

◆
+

J
?
i

max
i

KiJ
?
`

(�J?
i )

2
�

J
?
i+1

max
i+1

Ki+1J
?
`

(�J?
i+1)

2
, (6)

where �J
?
i ⌘ J

?
i�1 � J

?
i (i = 2, . . . , `� 1). The initial condition (J?

`�1, J
?
` ) parameterizes the growth rate � and the (a

priori unknown) protein mass MP . Solving this recursion produces the chain of metabolic fluxes, J?; by equations [1]–[4],
we then obtain MP and the mass-normalized metabolic state S

? = (⇢?,�?). To study environmental perturbations, we can
alternatively express S

? as a function of the nutrient level ⇢1 or the growth rate � as the independent control parameter.
Details of the solution procedure are given in SI.
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Results

Local optimality and metabolite cost. We now study local properties of optimal balanced growth states in more detail.
To this end, we consider a variation around the growth-optimal state that alters a single metabolite concentration ⇢i, whereas
all other metabolite concentrations and the protein production flux J` = �MP remain constant (Fig. S1D). The optimality
criterion (5) takes the form

⇣ i�1X

k=1

@Mk(Jk, ⇢k,max
,K)

@Jk

@Jk

@⇢i
+

@Mi(Ji, ⇢i,max
,K)

@⇢i

⌘���
J`,⇢?

(7)

= 0, (8)

where @Mk/@Jk = 1/k by the Michaelis-Menten relation [1] and @Jk/@⇢i = �MP by mass conservation [4]. Thus, a small
increase in concentration of the focal metabolite, �⇢i > 0, is generated by an expression decrease of its cognate enzyme,
�Mi < 0, and an increase of all upstream enzymes, �Mk > 0 for k < i. All metabolic currents Ji, Ji+1, . . . , J` and all
masses Mi+1, . . . , M` remain constant to first order. We can rewrite this relation for intensive variables,

⇢
?
i = argmin

⇢i

(�?
i ⇢i + �i(⇢i, j

?
i ,

max
i ,Ki))

��
j?i ,�

?
i
, (9)

where the metabolite cost parameter �i =
P

k<i �
?
/

?
k accounts for the upstream proteome resources required to sustain

an increased focal metabolite concentration against metabolite dilution in nutrient-rich medium. A more general form
of this relation applies when the external nutrient becomes growth-limiting (⇢1 . K1) and the nutrient uptake enzyme
is constrained (�1 < �

max
1 ). This constraint, the biological rationale of which is discussed below, curbs all downstream

metabolite concentrations, ⇢2, . . . , ⇢`. It can be described by an additional metabolite cost �0(⇢1,�max
1 ) that becomes

relevant under nutrient restriction and is negligible in the nutrient-rich regime (SI). Together, we obtain the total metabolite
cost

�
?
i ⌘ �

?
0(⇢1,�1) +

X

k<i

�
?

?
k

. (10)

This cost summarizes the influence of the global metabolic network and the nutrient environment on the local balance of
substrate and enzyme masses.

Metabolite-enzyme relations. Combining the optimality condition [9, 10] with the kinetic rate law [1], we obtain remark-
ably simple constitutive relations for cellular resource allocation,

⇢
?
i =

s
Ki

max
i

s
j?i

�?
i

, (11)

�
?
i = �

?
i ⇢

?
i

✓
1 +

⇢
?
i

Ki

◆
(i = 2, . . . , `). (12)

The first relation determines ⇢i as a function of the local kinetic parameters Ki, max
i and the network-dependent variables

ji, �i. The second relation links enzyme and metabolite mass fractions. Fig. 2 summarizes the central results of this model;
derivations and more detailed analysis will be given in the remainder of this section. In maximum-growth states (⇢?,�?),
resource allocation to individual metabolite-enzyme pairs depends on three main factors: network position, nutrient level,
and the biochemistry of local metabolic steps (arrows in Fig. 2). This pattern is organized by two key parameters: the
metabolite cost �i and the growth response parameter qi ⇠ (max

i Ki)1/2, a summary variable of local reaction kinetics (grid
lines in Fig. 2). The cost parameter �i encodes information on network position and on the environment. Increasing cost
generates reduced metabolite levels ⇢i and a weaker, inhomogeneous response of enzymes: high-q proteins increase and low-q
proteins decrease in their expression level �i. Variation of the growth response parameter q induces a crossover from a linear
enzyme-metabolite relation at low saturation (�i ⇠ ⇢i for ⇢i/Ki . 1) to a quadratic relation at high saturation (�i ⇠ ⇢

2
i

for ⇢i/Ki & 1), as given by equation [12]. A similar scaling relation has been derived by Dourado et al. (16) from a mass
minimization condition for an individual metabolite-enzyme pair. The network relation [12] di↵ers in two aspects: the
metabolite density is independently set by equation [11] and is weighed by the cost parameter �i.
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Figure 2: Resource allocation to metabolites and
enzymes in metabolic networks. Points show
a�nity-scaled mass fractions of individual metabolite-
enzyme pairs, (⇢?i /Ki,�?

i /Ki), in optimal balanced states
of metabolic networks at high nutrient supply (green,
�?
0 = 0) and under nutrient limitation (orange, �?

0 = 40).
These levels are determined by two key parameters (solid
lines): the metabolite cost �i and the growth response
parameter qi ⇠ (max

i Ki)1/2, which depends on the ki-
netic coe�cients of the metabolite-enzyme pair (see text
for precise definitions). At high nutrient supply, the cost
depends on the network position i, causing higher lev-
els of upstream metabolites (darker green shading), while
protein expression depends predominantly on local bio-
chemistry; see also Fig. 3A, B. Nutrient limitation in-
duces a global increase of metabolic costs, generating a
strong decrease of metabolite levels and a weaker, inho-
mogeneous response of protein expression: high-q pro-
teins are up-regulated, low-q proteins are down-regulated
with decreasing nutrient supply; see also Fig. 4. Model
parameters: chain length ` = 20; kinetic parameters
are log-normal random variables, max

ave = 101.6±0.4 h�1,
Kave = 10�4.2±1.1, resulting in networks with dilution
strength ✏ = 0.06±0.04, , as given by equation [17]. Grid
lines and nutrient limitation (orange points) are shown for
specific realizations with ✏ = 0.05 and �max

1 ⌧ 1. In
these networks, �?

0 = 40 corresponds to a growth reduc-
tion by 50%.

Resource allocation at high nutrient supply. We now show that the constitutive relations [12] and [11], together with
the continuity relation [4] and the cost function [10], determine cellular states of maximum growth. We start with cells
in a nutrient-rich environment, which grow at a rate close to their physiological bound. In this growth regime, we find a
self-consistent solution

⇢
?
i ' ✏

sip
�?
i

, (13)

�
?
i '

�
?

max
i

⇣
1 + 2✏(1�

p
�?
i )
⌘
+ ✏si

p
�?
i , (14)

�
?
i '

i� 1

`
, (15)

�
?

' �
max

✓
1�

4

3
✏

◆ ⇣
⇢1

K1
& 1

⌘
, (16)

where �
max = (

P
k>1(1/

max
k ))�1 is the maximum growth rate in the absence of metabolite dilution,

si = (Ki/
max
i )1/2/

P
k>1(Kk/

max
k )1/2 depends on the enzyme specificity 

max
i /Ki, and

✏ =
X̀

k=2

⇣
Kk�

max

max
k

⌘1/2
(17)

is a dimensionless biochemical summary variable, which we term dilution strength. To derive these relations, consider first
the case ✏ = 0, which reproduces the result of standard flux balance analysis: fluxes are conserved throughout the network
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Figure 3: Metabolite e↵ects at high nutrient supply. (A) Specificity-scaled metabolite and enzyme catalytic rate-scaled protein levels, ⇢i/si
and �i/ri, as functions of relative network position, i/` (with ri = 1/

P
k(

max
i /max

k )). Points are individual enzyme-substrate pairs in physiologically
parameterized cell models in a nutrient-rich environment. Lines are analytical predictions of equations [13 – 17]. (B) Position- and catalytic rate-
scaled metabolite and protein levels, ⇢i(�i/ri)1/2 and �i/ri, as functions of inverse substrate a�nity, Ki. (C) Growth rate degradation, �/�max, and
metabolome-proteome mass ratio, MR/MP , as functions of the dilution strength ✏. Points are complete, physiologically parameterized cell models in a
nutrient-rich environment. Stochastic parameters as in Fig. 2.

(ji = �), all enzymes run at full saturation with rates 
max
i and optimal expression levels proportional to (1/max

i ), and
metabolites are neglected (⇢i = 0). The e↵ects of metabolite dilution can be included by a power series expansion in the
parameter ✏. Equations [13, 14] reproduce the constitutive relations [11, 12] to first order in ✏. In the following steps, we use
a mean-field approximation, replacing the heterogeneous kinetic coe�cients max

i , Ki by position-independent values max
ave ,

Kave. To evaluate the metabolite cost, we approximate [10] as �i '
P

k>i(�
max

/
max
ave ) +O(✏), which leads to equation [15].

In the same way, we approximate the continuity equation [4] to evaluate the e↵ect of flux degradation on protein expression,

ji = �(1 + ✏
P

k>i �
�1/2
i /`), which enters equation [14]. Finally, the first-order correction to the growth rate, equation [16],

is obtained from the normalization condition
P

k �k = 1. This relation predicts the degradation of growth by metabolite
dilution in typical metabolic networks.

Physiological values of the parameter ✏ can be inferred from empirical data. Metabolic networks have typical catalytic
rates 

max
⇡ 101.6±0.4 h�1 and Michaelis constants K ⇡ 10�4.2±1.1 in dimensionless units of mass fractions (37). Typical

pathways of protein biosynthesis from glucose via a representative amino acid have length ` ⇡ 20 (SI). In mean-field
approximation, equation [17] then yields typical values ✏ ⇠ 0.05 of the dilution strength, justifying the first-order calculus in
equations [13] – [16]. We can also use these physiological network data to test the accuracy of the mean-field approximation.
We construct a set of metabolic chains with kinetic parameters 

max
i , Ki (i = 1, . . . , 20) independently drawn from log-

normal distributions centered at the corresponding physiological average values (SI). Consistently, these chains have growth
rates of order 1 h�1, and match other physiological cell properties (Fig. S2). For each chain, we evaluate maximum-growth
metabolic state S

? = (⇢?,�?) by numerical solution of equation [6] and compare with equations [13 – 16]. Remarkably, the
analytical form reproduces individual metabolite and enzyme levels of heterogeneous chains, as well as chain-specific growth
rates, in good approximation (Fig. 3, Fig. S2E).

Together, our model predicts a consistent pattern of metabolic resource allocation in nutrient-rich media. Metabolite
levels strongly depend on network position and on enzyme specificity, max

i /Ki: metabolites in upstream or less specific
reactions have systematically higher concentrations than those in downstream or more specific reactions (Fig. 3A, B).
Enzymes show a weaker dependence on these parameters; their expression levels are predominantly determined by the
catalytic rate, �i ' �/

max
i +O(✏). The corresponding a�nity-scaled levels are predominantly in the high-saturation regime,

⇢i/Ki,�i/Ki & 1 (Fig. 2), consistent with empirical data (16, 38).

Metabolome-proteome mass ratio. Our model predicts the relative abundance of metabolites and proteins in a metabolic
network as a function of its reaction kinetics. We sum up the metabolite densities ⇢i, using equation [13] in mean-field
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approximation (⇢i ' �
�1/2
i ), to obtain the metabolome-proteome mass ratio in typical metabolic networks at high nutrient

supply,

MR

MP
' 2✏; (18)

with correction terms of order O(✏2, ✏/`) (SI). The resulting numerical value, MR/MP ⇠ 10�1, is in line with empirical
data (38, 39), providing a further consistency check for the model. Equations [16, 17] measure the growth cost of metabolites
at high nutrient supply; this cost is caused by dilution and increases with the network size `. Below, we show that physiological
values of MR/MP are set by the global evolution of network biochemistry.

Nutrient limitation. Cells respond to a reduced density of external nutrients by up-regulation of the cognate uptake
machinery. In our simple metabolic chain, we model this response as a nutrient-dependent expression of the first enzyme,
�1(⇢1) = �

0
1 + (�max

1 � �
0
1)/(1 + ⇢1/K

reg), which varies between a basal level �
0
1 at high nutrient concentration ⇢1 and

a maximal level �max
1 at low concentration (Fig. S3A). The upper bound �

max
1 can be generated by di↵erent biological

mechanisms, including spatial constraints on the cell membrane, di↵usive limits on nutrient uptake at low supply (40), and a
maximum fold change achievable by regulation. Such limited overexpression of the uptake machinery has been observed for
glucose limitation in chemostat experiments (41). In turn, this generates a constrained optimal metabolic state, S?(⇢1,�max

1 ).
In this state, the growth rate is limited by the uptake step, �?(⇢1,�max

1 ) ' 
max
1 �1(⇢1)/(1 + K1/⇢1). Nutrient limitation

significantly a↵ects growth in the regime ⇢1/K1 . 1, corresponding to �/�
max . 1� ✏��

max
1 (SI, Fig. S2F). In the following,

we use � as an independent control parameter. Under strong nutrient limitation, the constitutive relations [11, 12] take the
form,

⇢
?
i (�) '

�

Z

s
Ki

max
i

, (19)

�
?
i (�) ' Z

s
Ki

max
i

+
�

max
i

⇣
⇢1

K1
. 1

⌘
(20)

for i = 2, . . . , `, where the normalization factor

Z(�) ⌘
1� �

?
1(�)�

P`
k=2(�/

max
k )

P`
k=2

p
Kk/

max
k

(21)

is given by the condition
P

k �k = 1. Here we have omitted the flux degradation by metabolite dilution (ji ' �), which
becomes small at low growth rates. As shown by comparison of equations [19, 20] and [10 – 12], nutrient limitation generates
an overall metabolite cost �0 = Z

2
/�. This cost is numerically larger than the network-dependent terms �

?
/

?
k, which are

therefore neglected (�i ' �0). For simplicity, we also assume that the uptake proteins remain a small fraction of the total
proteome (�max

1 ⌧ 1), which simplifies equation [21] to Z(�) ' (�max
� �)/(

p
�max✏).

The solution [19 – 21] shows two salient features of metabolic response to nutrient limitation. Given that Z is a linear
function of �, metabolite levels increase in a strongly nonlinear way with growth rate,

⇢
?
i (�) '

✏
2
�

(�max � �)
si, (22)

with si =
p
Ki/

max
k /

P
k

p
Kk/

max
k . This equation is correct up to position-dependent pre-factors of order 1 relevant at

high growth, and di↵erences in �1 (Fig. 4B). The global metabolome-proteome mass ratio, MR/MP , depends on growth in
the same way. In contrast, protein expression levels show a linear response pattern,

�
?
i (�) '

✓
1�

�

�max

◆
si +

�

�max
ri, (23)

with ri = 1/
P

k(
max
i /

max
k ), which is found by re-arranging terms in [20, 21]. Hence, the expression of a given enzyme is

inversely proportional to its square root specificity at low growth and to its catalytic rate 
max
i at high growth. Defining
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Figure 4: Metabolic response to nutrient limitation. (A - C) Metabolic chain. (A) Reduction of protein expression levels, �?
i /�i(�hi), as

functions of the growth rate, for two enzyme classes: rate-optimized (q > 1) and specificity-optimized (q < 1). Here �hi is the maximum physiological
growth rate at high nutrient supply, as given by equation [16]. Lines represent randomly drawn enzymes from the ensemble of physiologically parametrized
networks (see text; nutrient uptake enzymes were excluded from the analysis). (B) Reduction of metabolite levels, ⇢?i , as functions of the growth rate. (C)
Ensemble averages of global response of proteome and metabolome. The metabolite mass fraction is shown in units of the proteome mass in orange. (D
- F ) Three-sector system. (D) Growth-dependent protein levels, �?

i /�i(�hi), by growth response class and by sector. (E) Growth-dependent metabolite
levels, ⇢?i /(si✏

2), by sector. (F ) Global response of proteome and metabolome. Chain length: ` = 20, `A = `C = `N = 10. Model parameters as in
Fig. 2 for chains with �max

1 ⌧ 1.

the ratio qi = si/ri ⇠
p
Ki

max
i , metabolic growth response distinguishes two classes of enzymes: rate-optimized enzymes

(qi > 1) are up-regulated, specificity-optimized enzymes (qi < 1) are down-regulated upon nutrient limitation (Fig. 2,
Fig. 4A). In networks with a sizeable proteome fraction �

max
1 , there is a small but systematic shift of the growth reponse

pattern (SI).
The corresponding global resource allocation pattern is shown in Fig. 4C: a depletion of metabolites comes together

with an expression shift from specificity-optimized to rate-optimized enzymes. These analytical predictions capture specific
networks with physiological reaction parameters, not just ensemble averages (Fig. S4).

Growth-dependent patterns in genome-wide protein expression data. A comprehensive test of our model requires
system-wide kinetic data, (Ki,

max
i ), of metabolic reactions, which are currently not available. However, statistical evidence

can be obtained from whole-genome proteomics data. Here we use a recent dataset of protein expression for 1743 genes
in E. coli growing under di↵erent levels of glucose uptake limitation (24). For each gene, we plot the expression level at
high nutrient supply, �hi

i , against the relative change upon nutrient limitation, ⇠i = �
lo
i /�

hi
i (Fig. 5). We find a negative

correlation, log ⇠i = �0.11 log �hi
i + const., that is statistically significant (p < 0.03 under a null distribution with scrambled

growth rates). This type of correlation can be explained by our model: high values of �hi
i are correlated with low values

of max
i , signalling predominantly specificity-optimized proteins (qi < 1) that are down-regulated upon nutrient limitation

(assuming no overriding correlation between 
max and K). The signal identified in the proteomics data is likely to be diluted

by several factors of network heterogeneity not included in the minimal model. Typical growth responses under nutrient
limitation a↵ect predominantly specific functional sectors and exclude others, such as metabolically inactive proteins (24, 42)
(see also below). Specific functional groups involved in a common reaction, such as the ribosomal genes, are consistent with
the model on average but do not show a within-group anti-correlation of ⇠ and �

hi
i (Fig. 5). Other groups, including the

pathways of tetrahydrofolate synthesis or glycolysis, involve reaction chains and show the predicted anti-correlation with
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Figure 5: Protein expression changes under nu-
trient limitation. Expression fold change upon glu-
cose uptake limitation, �lo

i /�hi
i plotted against expression

in a nutrient-rich environment, �hi
i , for 1743 proteins of

E. coli ; data from (24). These data show a negative
correlation (solid black line) that is statistically signifi-
cant (p < 0.03; the shaded region shows the range of
slopes expected from data with randomized growth rates).
The biochemical network model explains this correlation
by the growth-dependent expression shift from specificity-
optimized to rate-optimized enzymes (see text). Individ-
ual single-reaction pathways are consistent with the model
in their average expression (orange: ribosomal proteins),
multi-step pathways (blue: glycolysis, red: tetrahydrofo-
late synthesis (43)) show intra-group anti-correlations with
pathway-dependent o↵sets.

pathway-specific o↵sets.

Growth response of functional sectors. How does the pattern of growth response generalize to more complex metabolic
networks? Here we consider a network with two uptake pathways, C and N, processing distinct nutrients both necessary
for growth; their outputs feed into a single downstream pathway, A (Fig. 4D-F). This is one of the simplest networks with
di↵erentiation into functional sectors. In previous work, such sectors have been identified as coherent units of proteome
resource allocation (44, 45). We study the three-sector network under limitation of nutrient C, assuming again an expression
constraint �max

1,C of the cognate uptake machinery. To obtain the growth-optimal resource allocation pattern shown in Fig. 4D-
F, we employ Eq. [6] in each pathway, and numerically solve for optimal resource allocation at their junction. Sectors C and
A show a common growth response similar to the single-chain system [22, 23]: metabolites are depleted, proteins experience
an expression shift from specificity-optimized to rate-optimized enzymes. In sector N, metabolites are not depleted and
enzymes are uniformly down-regulated, inducing a net resource shift from N to C and A (Fig. 4F).

Together, individual metabolite and enzyme levels depend on their functional sector and on the biochemistry of the
local reaction step. Thus, our model produces growth response patterns with coherent shifts between sectors, as well as
heterogeneous changes within sectors. This heterogeneity is consistent with available experimental data: multiple groups of
proteins characterized by distinct regulatory responses to external perturbations are enriched in the same functional Gene
Ontology-terms (24). Local biochemistry can also contribute to coherent shifts if kinetic parameters are broadly correlated
with sectors, as suggested by recent empirical observations (46). A specific case in point are ribosomes, which have a small
catalytic rate per unit of mass, max

⇡ 10�1

max
ave (1) and a small binding constant K < 10�2

Kave (47, 48), generating a
sub-average growth response parameter q < 1 (SI). Hence, by local biochemistry, ribosomes are highly expressed in nutrient-
rich media and down-regulated with decreasing growth; a similar example may be methionine synthase (MetE) (Fig. 5).
Such low-q anabolic enzymes with large proteome fractions may contribute to the generic down-regulation of the A sector
experimentally observed under multiple growth-limiting conditions (24, 42).

Metabolic response by regulation. Can a metabolic system come close to an optimal growth state by local regulation of its
enzymes (49)? Specifically, we consider the response of a metabolic chain to nutrient limitation. This process requires growth-
dependent shifts in metabolite and enzyme levels, ⇢?i (�) and �

?
i (�), as given by equations [22, 23]. Protein concentrations

change by synthesis with rate bi and by dilution, �̇i = bi � ��i. In the simplest case of transcriptional regulation, the
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Figure 6: Metabolite-mediated regulation. (A) Logic of regulation: metabolites act as transcription factors for their cognate enzymes, inducing
repression for rate-optimized enzymes (qi > 1) and activation for specificity-optimized enzymes (qi < 1). (B) Time-dependent metabolite levels, ⇢i(t)
(gray) nutrient concentration (dashed), and regulated protein concentrations �i(t) (dark blue: specificity-optimized enzymes, q < 1; light blue: rate-
optimized enzymes, q > 1, dashed: uptake enzyme) under time-dependent nutrient limitation, ⇢1(t) (top, dashed). (C) Regulated late-time stationary
levels, ⇢̄i and �̄i, plotted against growth-optimal levels, ⇢?i and �?

i .

stationary level

�̄i =
bi

�
= �

0
i +

ai

1 +K
reg
i /⇢

, (24)

depends on the equilibrium binding of a transcription factor present at density ⇢ (SI and Fig. 6A). This regulation function
has three parameters: the basal level �0

i , the regulatory amplitude ai, and the regulatory binding constant K
reg
i . Here we

assume a simple logic: at each metabolic step, the substrate regulates the transcription of its cognate enzyme (Fig. 6A). In
this network, growth optimization by regulation depends on a remarkable property: with regulatory parameters depending
only on local biochemistry, �0

i = si, ai = ri � si = ri(1 � qi), and K
reg
i = si✏

2, the stationary expression level [24] follows
the optimal growth response, �̄i(⇢?i (�)) = �

?
i (�), up to terms of order ✏. This identity follows by inspection of equations [22

– 24]; see SI for details. As required for optimal growth response, rate-optimized enzymes (qi > 1) are repressed, specificity-
optimized enzymes (qi < 1) are activated by their cognate metabolite. The adaptive dynamics of the metabolic state,
S(t) = (⇢,�)(t), consists of regulated changes of protein levels and correlated changes of metabolite levels given by mass
conservation, equation [3]. Here we use metabolite-mediated regulation specified by the set of parameters Rm = (�0

, a,K
reg)

for the entire network. Fig. 6B shows these dynamics under time-dependent nutrient limitation, ⇢1(t), switching between
subsequent stationary levels. Rate-optimized and specificity-optimized enzymes change in opposite directions and settle to
a stable stationary state S̄(⇢1) with growth rate �̄(⇢1) that matches the growth-optimal state in very good approximation,
�̄ & 0.98�?, �̄i = �

?
i (1± 0.05), and ⇢̄i = ⇢

?
i (1± 0.5) (Fig. 6C).

More broadly, our analysis suggests that metabolite-induced regulation of enzymes can generate partial optimization of
metabolic states under diverse conditions. In more complex networks, local regulation of each enzyme is not a plausible
scenario. However, few, broad-acting transcription factors can generate coarse-grained optimization of the average expression
for co-regulated target genes in pathways or functional sectors.

Network evolution. On large time scales, metabolic networks change by protein evolution. Molecular changes a↵ect
local reaction parameters (max

i ,Ki), inducing changes in pathway usage and, ultimately, in network topology. Consider an
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enzyme mutation changing the a�nity to its cognate metabolite, Ki ! Ki(1+�Ki). Its e↵ect on growth is partially bu↵ered
by the physiological response of the network, which regulates the protein expression �i and changes the metabolite density
⇢i. Our model predicts the strength of selection on network-bu↵ered binding a�nity changes, �i = �(Ki/�̄)(@�̄/@Ki), where
we assume a regulation function R reproducing near-optimal stationary states, (⇢̄, �̄) ⇡ (⇢?,�?), in the wild-type system
(max

,K). We obtain bu↵ered selection coe�cients,
�i ⇠ ci⇢

?
i , (25)

where ci are growth-dependent factors of order 1 (SI). Two important consequences follow. First, given ⇢i ⇠ (Ki/
max
i )1/2,

selection acts on enzyme specificities. In other words, the selection pressure to increase the a�nity K
�1
i is higher for enzyme-

metabolite pairs with low catalytic rate max
i , predicting a negative correlation between a�nity and rate in evolved networks.

Second, we can estimate the order of magnitude of selection by evaluating ⇢i, as given by equation [22] at intermediate growth
rates. In the mean-field approximation introduced above, we find �i ⇠ ✏

2
/` ⇠ 10�4 at physiological network parameters

Kave ⇠ 10�4 and ` ⇠ 20. Importantly, the bu↵ered �i is at least two orders of magnitude lower than the growth e↵ect of an
a�nity change for a single Michaelis-Menten pair, �0 = (K/J)(@J/@K) = (1 + ⇢/K)�1 at constant ⇢ [1].

The evolution of enzyme-metabolite binding is a mutation-selection-drift process (50) on a biophysical fitness land-
scape (51–58), here of the form f(�Gi) ⇠ �Ci exp[�Gi/2]), where �Gi = log(Ki/K0) is the binding free energy and Ci is
a constant. In such landscapes, mutation-selection equilibrium emerges at typical selection coe�cients �i ⇠ 1/Ne, where Ne

is the e↵ective population size (58–60). Hence, the strength of selection on Ki is consistent with evolutionary equilibrium
at Ne ⇠ 104, in tune with the e↵ective population sizes obtained for microbial systems evolving under clonal interference of
protein phenotypes (in such systems, 1/2Ne is the average number of generations between subsequent selective sweeps) (58).
In turn, this implies that physiological values of the metabolome-proteome mass ratio, MR/MP , are set by an evolutionary
equilibrium where the selective cost of metabolite dilution balances with mutations degrading enzyme-metabolite binding.

Discussion

Here we have developed a model for resource allocation in metabolic networks that integrates the kinetics of local reaction
steps, the global structure of the network, and external nutrient constraints to predict enzyme and metabolite levels in
growth-optimal network states (Fig. 2). Protein expression levels are set predominantly by local biochemistry: levels at high
growth rates are set by catalytic rates, �i ⇠ 1/max

i ; the response to growth limitation is linear with a slope depending on the
response parameter qi = (Ki

max
i )1/2. This pattern is in broad agreement with empirical observations in metabolic networks.

First, the model explains the heterogeneous growth response of enzymes with similar functions (24). Second, it predicts finite
protein expression levels in the limit of low growth rates, specifically for the ribosome; di↵erent mechanisms for this residual
expression have been discussed in the recent literature (34, 42, 61, 62). Third, the linear growth response of protein levels
derived here reproduces the linear pattern found in previous work at the level of functional protein sectors (15, 44, 62).
However, the coherent growth response of broad sectors (related, e.g., to limitation of a particular nutrient influx), is
not a generic outcome for growth-optimized networks. Our analysis suggests two possible mechanisms generating sector
responses: broad correlations of biochemical parameters and network position (46) or deviations from fine-grained optimality
by pleiotropic, rather than gene-specific, regulation.

Metabolites are predicted to show a nonlinear, position-dependent depletion of steady-state levels in response to growth
limitation. Moreover, we show that metabolite levels depend on a local cost parameter �i that summarizes constraints
a↵ecting the upstream metabolic chain (here, nutrient limitation). Such growth laws for metabolites have not yet been
tested systematically by experiment; available data suggest that some but not all metabolites are depleted by growth
limitation (25, 63, 64). Deviations from model predictions may signal toxicity or enhanced e✏ux of specific metabolites.
They may also reflect an increase in �i caused by bottlenecks in upstream reactions or nutrient conditions, in tune with an
observed decrease in metabolite concentrations on poor carbon sources (16). More broadly, our model can serve as a starting
point to describe the quantitative organization of the metabolome, which has remained elusive so far (39).

A mechanistic model of metabolic networks including enzymes and metabolites is also a prerequisite for predicting network
dynamics by regulation and, on longer time scales, by evolution of reaction rates and binding constants. Here we have shown
that a simple regulatory scheme based on feed-forward regulation – each metabolite regulates the enzyme of the next reaction
step – can closely approximate optimal resource allocation under nutrient limitation (Fig. 6). Thus, our model highlights the
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role of metabolites as regulatory signals and paves the way to design regulated synthetic networks that maintain optimality
under variable input (49, 65).

Evolution acts on network states bu↵ered by regulated physiological response. The resulting selection coe�cients for
local changes in network biochemistry, which become computable from our model, are lower than in the absence of network
bu↵ering. Specifically, we have shown that metabolite dilution induces system-wide selection pressure on enzyme-metabolite
binding. Individual enzymes evolve on approximately independent fitness landscapes depending on their target a�nity.
Evolutionary equilibria on these landscapes can explain the order of magnitude of physiological enzyme-target a�nities,
which are well below the biophysical bound set by substrate di↵usion (37), as well as the global mass ratio of metabolome
and proteome. In contrast, interventions like antibiotics can impair specific enzymes in a stronger way, often beyond the limits
of regulatory bu↵ering (66), generating stronger selection pressure on evolutionary network changes (18, 19). Understanding
this interplay of regulation and evolution is crucial for the design of e�cient antibiotic interventions into microbial metabolism.
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Supporting Information

Maximization of balanced growth rate by resource allocation

Scaling of variables. Bacteria reallocate metabolic resources under environmental challenges. We explore growth-optimal
resource allocation in a structured network of biochemically heterogeneous enzymes (Fig. 1) in variable environments. In
contrast to previous proteome sector models (44), our model concurrently accounts for both metabolites and enzymes. As
a result, our model introduces second-order rate constants that describe reactions with multiple reaction partners, such as
enzyme-substrate interactions. The rates and concentrations in our model exhibit a di↵erent scaling with the reaction volume
when enzyme and substrate amounts are held constant. To include this scale in our model, we introduce the parameter

⌫ ⌘
V

MP
. (26)

Here, V is the total intracellular volume, and MP is the total mass of protein. Empirical observations suggest that this
fraction remains approximately constant throughout the cell cycle and across di↵erent environments (15). The parameter ⌫
enables converting mass concentrations m/V into dimensionless mass fractions m/MP . A metabolite mass fraction ⇢ is
defined as ⇢ = MS⌫c, with the classical concentration c, in units of mol L�1, and the molar mass of the metabolite MS .
For simplicity, we apply identical unit conversions to the extracellular nutrient concentration ⇢1. Similarly, a protein mass
fraction � corresponds to � = ME⌫cE with the classical concentration cE (in units of mol L�1) and the molar mass of the
protein ME . In this unit system protein mass fractions in a cell of ` proteins must sum up to 1,

X̀

i=1

�i = 1. (27)

Flux units are accordingly chosen to directly express the time derivatives of mass fractions as flux summations,
d⇢/dt = jproduction � jconsumption � jdilution. The conversion also extends to kinetic rate constants. For instance, a Michaelis-
Menten reaction depicts an enzyme with a mass fraction � consuming a metabolite ⇢ at a rate j = 

max
�/(1+K/⇢). Here K

is a dimensionless Michaelis constant, linked to the classical Michaelis constant K̃M (in units of mol L�1) via K = MS⌫K̃M .

max is the enzyme’s turnover number in this unit system and relates to the classical turnover number kcat via 

max =
(MS/ME) · kcat. This unit conversion allows us to write a compact and (apart from time) dimensionless derivation in the
following. In this unit system, the growth rate is compactly represented as the mass-normalized flux through the protein
biosynthesis reaction, which we take as the last reaction of the metabolic cascade, j`,

� ⌘
1

MP

dMP

dt
= j`. (28)

Furthermore, we define the following extensive variables to simplify notation throughout: Ri ⌘ ⇢iMP , Mi ⌘ �iMP and Ji ⌘

jiMP .

Independent variables: metabolite fluxes and nutrient concentration. We restrict our analysis to balanced growth
states. This is exponentially growing, metabolic steady-states that obey metabolite mass conservation in each metabolic
reaction. In balanced exponential growth (averaging over cell-cycle dependent and stochastic variation), no intracellular
metabolite concentration may change over time (Eq. [3] must be zero for ⇢k�2). Furthermore, all ` reactions must fulfill
the kinetic rate law [1]. As a result, only a specific subset of all possible metabolic states, denoted by S, is viable during
balanced growth. We demonstrate that, given a chain of enzymes with kinetic parameters max and K, any metabolic state
during balanced growth is fully determined by its metabolite fluxes J , and a nutrient environment ⇢1: inserting Eq. [2] into
the balanced growth condition (Eq. [3] being zero) and solving for ⇢i yields all but the first metabolite concentration as a
function of the fluxes (and vice versa [4]),

⇢i(J) =
Ji�1 � Ji

J`
(i = 2, . . . , `). (29)

The environmental nutrient concentration ⇢1 is not constrained by balanced growth but by the experimental setting.
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We next compute each individual protein mass according to the kinetic rate laws,

Mi(J, ⇢1,K,
max) =

Ji

max
i

✓
1 +

Ki

⇢i(J, ⇢1)

◆
. (30)

By summation, the total protein mass can easily be computed, and subsequently R from ⇢, �i from Mi, j from J , as well as
the growth rate of the metabolic state in balanced growth. Taken together, growth rate can be expressed as a function of
all metabolic fluxes, the nutrient environment, and the kinetic constants.

�(J, ⇢1,K,
max) =

J`P`
i=1 Mi(J, ⇢1,K,max)

. (31)

Optimality of metabolic states. Akin to flux balance analysis (14), we employ constraints to identify physiological solu-
tions. A key constraint is the constant intracellular protein density ⌫

�1, which is well established empirically (1, 15, 26–28).
Due to this constraint, we can identify a metabolic state S

? that optimizes growth rate �: if an enzyme’s concentration is
too low, it limits growth through a metabolic bottleneck. If its concentration is too high, it demands a reduction of other
enzyme’s concentrations, which also impairs growth.

We focus only on the regulatory problem of finding optimal metabolic states S
? for a given set of kinetic constants

(max, K). We assume that kinetic constants evolve on a slower timescale, in contrast to simultaneous evolutionary opti-
mization of kinetic constants and expression levels. To shorten the notation, we drop the kinetic constants from all arguments
below. Optimal balance growth states are defined as

S
?
⌘ argmax(�(S))

����
⇢1,

d⇢
dt =0

. (32)

As shown in the preceding paragraph, metabolic states that fulfill balanced growth and the kinetic rate laws are fully
determined by their fluxes J and a nutrient environment ⇢1 [31]. We thus rewrite the previous equation,

J
?(⇢1) ⌘ argmax(�(J, ⇢1))

����
⇢1

. (33)

By construction, this optimal state can grow exponentially with time-independent metabolite concentrations. For any system
size MP , at least one optimal state exists. We here set the system size implicitly by choosing a certain J`. Maximal growth
rate is achieved if the protein mass necessary to produce this biomass production flux J` is minimal; see Eq. [2]. Thus, we
can simplify the optimality condition further and obtain Eq. [5] - optimality is achieved only if

@
P`

k=1 Mk(J, ⇢1)

@Ji

����
J?,⇢1

= 0 (i = 1, . . . , `� 1). (34)

This principle resembles Enzyme Cost Minimization (36), which has been used to numerically find growth rate maximizing
resource allocation in Flux-Balance-Analysis when considering reversible kinetic rate laws but no dilution of metabolites. Here
we instead focus on growth maximization in a model that explicitly takes metabolite dilution into account, but no reversibility.
We proceed analytically. A restricted analysis of this kind was previously pursued by Ehrenberg and Kurland (30). Beyond
their analysis, we quantify the relative influences of enzyme biochemistry and network properties on resource allocation to
individual enzymes and metabolites and analyze how these influences change under environmental challenges.

Iterative construction of the optimal metabolic states in longer chains

Optimal resource allocation in coarse-grained metabolic models. A cell model consisting of just two proteome sectors
(` = 2) - with catabolic enzymes M1 and anabolic enzymes M2 - has been employed successfully to infer proteome resource
reallocation in response to changes in the nutrient environment ⇢1 and the catalytic rate of the anabolic sector 

max
2 (15).

For such a short chain, the optimality condition [33] has also been solved analytically, including both the proteome and the
metabolome (33).
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Producing the first substrate of the chain from a new environmental precursor. Longer chains feature many non-
linearities and feedback loops, and can not easily be solved analytically anymore. To find the optimal metabolic states
S
?(J`, ⇢1) for longer chains, we identify an iterative scheme for constructing optimal metabolic states of a chain with ` + 1

enzymes from the optimal metabolic states of a chain with ` enzymes. Suppose the optimal metabolic state S
?
` (J`, ⇢1) is

known for a given chain defined by its 2` kinetic constants in an environment ⇢1. We extend the given chain by a single
enzyme with its kinetic constants, a protein mass M 0

0, catalyzed flux J
0
0 and a new environmental precursor concentration ⇢

0
0

instead of ⇢1. The new enzyme produces the first substrate of the shorter chain (Fig. S1). We indicate variables of the
extended chain by a dash ·

0, and drop the superscript ·? to simplify the notation in this section. Below, all state variables
denote their growth-optimal values.

Recursion relations for state variables. An extension that adds one additional flux J
0
0 but conserves all fluxes of the

shorter chain J
0
i�1 = Ji, also conserves all downstream concentrations ⇢

0
i�2 = ⇢i�2 and thus all downstream protein

masses M
0
i�2 = Mi�2, according to Eqs. [29] and [30]. An extension of the chain by a single enzyme with arbitrary flux

therefore only changes ⇢1 to a new ⇢
0
1 for which mass conservation now applies, correspondingly M1 to a new M

0
1, and

adds ⇢00, M
0
0 and J

0
0.

These five new or modified state variables are linked by five equations: two kinetic rate laws (Eq. [1] for i = 0 and i = 1), a
mass conservation constraint (Eq. [29] for i = 1), and two conditions on optimality (Eq. [34] for k = 0 and k = 1). These
five equations can be solved for the five state variables. The solution is jointly given by

⇢
0
0 =

max
1

max
0

K0⇢1

✓
2J1
J`
(K1 �

max
1

max
0

⇢1) +K1(⇢1 +
q

4⇢1
J1
J`

+ ⇢21)

◆

2J1
J`

�
K1 �

max
1

max
0

⇢1

�2
� 2max

1
max
0

K1⇢
2
1

,

J
0
0 = J1

✓
1 +

s
J`

J1

max
0

max
1

K1

(1 + K0
⇢0
0
)

◆
,

⇢
0
1 =

J
0
0 � J1

J`
,

M
0
0 =

J
0
0

max
0

(1 +
K0

⇢00
),

M
0
1 =

J1

max
1

(1 +
K1

⇢01
).

(35)

A single step of this iteration is illustrated in Fig. S1. All other conditions on optimality (Eq. [34] for k � 2) are fulfilled by
the extended chain if they were fulfilled by the shorter chain because the protein masses M 0

0 and M
0
1 do not depend on down-

stream fluxes J 0
k�2 in a system of irreversible enzymes (@M 0

0/@J
0
k�2 = 0, @M 0

1/@J
0
k�2 = 0), while the required protein mass

downstream
P`

i=2 Mi only depends on downstream fluxes in a manner independent of the extension (@
P`

i=2 Mi/@J
0
0 = 0).

Precisely this property of the model cell allows for a local construction of a new chain start that again yields an optimal
chain, rather than requiring a full adjustment of the whole chain.

Direct iteration of fluxes. Computationally, it is practical to calculate the concentration of an external nutrient just
once. Instead of iteratively determining the five modified state variables in each step, fluxes alone can be iterated ac-
cording to the optimality criterion of Eq. [34]. To derive an explicit formula, we consider a variation of a single flux
Ji + �Ji (with i = 2, . . . , ` � 1), while keeping all other fluxes constant, as required by the optimality criterion. Among
all mass conservation criteria [29], only those for ⇢i and ⇢i+1 depend on Ji. We find ⇢i + �⇢i = (Ji�1 � (Ji + �Ji))/J`
and ⇢i+1 + �⇢i+1 = (Ji + �Ji � Ji+1)/J`. Together, these changes in metabolite concentrations and the change in flux a↵ect
enzyme masses according to the Michaelis-Menten relation [1]. Inserting the changes derived above yields mass changes
under variation of a single flux around the optimal state,

�Mi =
�Ji

max
i

✓
1 +

Ki

⇢i

◆
+

Ji

max
i

Ki

⇢2i

�Ji

J`
, and �Mi+1 = �

Ji

max
i

Ki

⇢2i

�Ji

J`
. (36)
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To summarize, for i � 2, only ⇢i and ⇢i+1 (see Eq. [29]) depend on Ji. Only Mi and Mi+1 depend on either Ji, ⇢i

or ⇢i+1. The respective changes are illustrated in Fig. S1C. The optimality criterion [34] can now be drastically simpli-
fied to (@(Mi(J, ⇢1) +Mi+1(J, ⇢1))/@Ji|J?,⇢1 = 0 for i = 2, . . . , `� 1. By inserting the derivatives [36], and expressing
metabolite concentrations through fluxes [29], we find Eq. [6], which can be solved for Ji�1,

Ji�1(Ji, Ji+1, J`) = Ji +
J`Ki

max
i+1 +

q
J`Ki

max
i+1 (

4JiJ`Ji+1max
i Ki+1

(Ji�Ji+1)2
+ (J`Ki � 4Ji)max

i+1 )

2J`Ji+1max
i Ki+1

(Ji�Ji+1)2
� 2max

i+1

. (37)

The result only depends on downstream fluxes Jq�i and kinetic constants. From a starting condition J` and J`�1 all fluxes
in the chain can be determined iteratively. Only in the last iteration step, a matching nutrient concentration is computed.
It is given analogously to Eq. [35] by

⇢1(J) =

max
2

max
1

K1
J1�J2

J`

✓
2J2
J`
(K2 �

max
2

max
1

J1�J2
J`

) +K2(
J1�J2

J`
+
q
4J1�J2

J`

J2
J`

+ (J1�J2
J`

)2)

◆

2J2
J`

�
K2 �

max
2

max
1

J1�J2
J`

�2
� 2max

2
max
1

K2(
J1�J2

J`
)2

. (38)

At this point, Eqs. [29] and [30] can again be used to compute all other metabolic state variables of S?.

Matching the environmental nutrient concentration. Starting from a minimal chain that consists of only two enzymes,
and all its possible optimal metabolic states S?

2 (⇢1, J2) we can construct optimal metabolic states of a three-enzyme-chain.
By shifting indices, we can iteratively determine optimal metabolic states S?

` (⇢1, J`) for any longer chain.
In many biologically relevant scenarios, a boundary condition to be fulfilled is the environmental precursor concentra-

tion ⇢1. However, we here construct a suitable environmental nutrient concentration ⇢1 iteratively from the environmental
nutrient concentration of the initial two-enzyme chain. It can easily be seen from Eq. [35] that if any positive ⇢1 was possible
for the shorter chain, any positive ⇢00 can be constructed for the elongated chain. Thus, the iterative method we present here
can construct an optimal resource allocation for any environmental nutrient concentration. Unfortunately, it is not clear from
the outset of the iteration, which environmental precursor concentration of the two-enzyme chain yields the environmental
precursor concentration for the `-enzyme-chain set by the biological scenario of interest. We solve this question numerically,
whenever a defined nutrient environment is required.

Uniqueness of optimal resource allocation. Any local extremum of growth rate found in this manner is a global optimum
because the solution of the chain of two enzymes contains all optima of the chain of two enzymes. In each step, only one
physically meaningful solution (with all metabolic state variables larger than zero) of the set of five equations solved for the
extension of the chain exists. Thus, the optimal states J? determined here are indeed the only sets of fluxes that fulfill Eq. [5].
No physiological growth maxima exist at extremal values of any Ji. Consequently, the optimal metabolic state S

?
` (⇢1, J`) is

unique and all optimal metabolic states of linear pathways can be constructed by the iterative method.

Local properties of optimal resource allocation

Metabolite costs increase along the metabolic chain. We next show how optimal resource allocation in a network relates
to the individual enzyme-substrate pair. To this end, we switch from a variation of a single flux Ji, which we used to construct
growth-optimal balanced growth states above, to a variation of a single metabolite concentration ⇢i + �⇢i. We again derive
the mass changes under such a variation. Eq. [4] connects metabolite concentrations and fluxes in balanced growth states.
It indicates that a variation of a single flux can be constructed if all fluxes upstream of reaction i are increased by a small
�J . We insert all changes in fluxes into the Michaelis-Menten relationship to obtain changes in enzyme masses,

�Jk<i = J`�⇢i, and �Mk<i =
J`Mk�⇢i

Jk
. (39)

This variation is illustrated in Fig. S1D. Here we implicitly assumed that the environmental nutrient concentration ⇢1 does
not depend on the uptake flux J1. This may in general not be true under nutrient limitation - for example in a chemostat
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setting, in which increased nutrient uptake reduces the steady-state nutrient concentration - and should only be understood
as a limiting case in the nutrient-rich regime. We discuss the e↵ect of nutrient limitation in more detail below. The focal
reaction is also a↵ected by the variation in ⇢i - not by a change in flux, but by the change in substrate concentration. We
will investigate �Mi in more detail below. For a constant protein production flux J` and nutrient environment ⇢1, the total
protein mass in the cell must also be minimal under variation of a single metabolite concentration (that is under a linear
combination of changes in fluxes [39]). We simplify based on the changes in masses derived above to obtain Eq. [8],

✓ i�1X

k=1

Mk

Jk
J` +

@Mi(Ji, ⇢i,max
,K)

@⇢i

◆����
J`,⇢?

= 0 (40)

In the optimal state, M?
P must be a constant to first-order approximation in any of the variations discussed here. We can

therefore equivalently write

@

@⇢i

✓
�
?
i ⇢i + �i(ji, ⇢i,

max
,K)

◆����
j?i

= 0, with �
?
i =

i�1X

k=1

��
?
k

j?k

,

✓
⇢1

K1
& 1

◆
. (41a, b)

Eq. [41a] corresponds to Eq. [9]. The constant [41b] (which we define explicitly as independent of the variation in ⇢i)
corresponds to the second term of Eq. [10]. The full form of Eq. [10] will be derived below. We obtain a result similar to
the minimization of the joint mass concentration of an enzyme and its substrate at constant flux proposed by Dourado et al.
(16),

�
@
@⇢

�
J
(⇢+�) = 0, which explains experimentally observed relations between enzyme and substrate mass concentrations.

In contrast to Dourado et al. we here minimize the total protein mass at a fixed protein production flux. Our optimization
directly follows from growth-optimality: In balanced exponential growth, each constituent of the cell must double at the
same rate. Applied to protein, this means that growth rate is given by the protein production flux J` divided by the total
protein mass MP of the cell. At fixed J`, MP must be minimal to achieve optimality. From the outset, it is not clear how
such a minimization of the protein mass relates to the metabolite level. We here show that a joint minimization of protein
and weighted metabolite mass follows from the optimization of growth rate. The weight �

?
i must be derived for a given

metabolic network, and is generally di↵erent from 1. We retrace the derivation of the scaling law discovered by Dourado et
al. (16) with the additional cost �?

i . Eq. [30] can be rewritten intensively as �i = (ji/max
i ) · (1 +Ki/⇢i), and inserted into

Eq. [41a]. Evaluating the derivative and rearranging yields Eq. [12], and by re-inserting into Eq. [30], we find Eq. [11].

Physiological model parameters

Growth costs of metabolites and dilution strength ✏. Eqs. [11] and [12] must ensure that all proteome mass fractions sum
to one. This property can be used to establish a parameter scale, which distinguishes between physiological parameterizations
that approximately obey a production-consumption balance in each reaction and non-physiological parameterizations that
are dominated by dilution. We insert Eq. [11] into [12] and solve for �?

i ,

�
?
i =

j
?
i

max
i

+ �
?
i ⇢

?
i . (42)

Summing over all proteome mass fractions [27], and inserting mass conservation [4], we derive

1 =
X̀

i=1

�
?
i =

X̀

i=1

�
?(1 +

P`
k=i+1 ⇢

?
k)

max
i

+
X̀

i=2

�
?
i ⇢

?
i . (43)

We insert the definition of metabolite costs [41b] (again in the nutrient-rich regime) to deriveP`
i=2 �

?
i ⇢

?
i >

P`
i=1

�?

max
i

P`
k=i+1 ⇢

?
k, and establish two bounds on growth rate,

1 >

X̀

i=1

�
?

max
i

> 1� 2
X̀

i=2

�
?
i ⇢

?
i . (44)
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K̃M
⇤

kcat
⇤

K = MS⌫K̃M 
max = MS

ME
kcat

All enzymes 102.0±1.2 µM 101.1±1.4 s�1 - -
E. coli 102.0±1.1 µM 101.1±1.3 s�1 10�4.2±1.1 102.1±1.3 h�1

Model cell - - 10�4.2±1.1 101.6±0.4 h�1 ⇤⇤

Table 1: Distributions of enzyme kinetic parameters

To convert to the described unit system, we estimate MS ⇡ 102 gmol�1, ⌫ ⇡ 6mLg�1 and ME ⇡ 3.6 · 104 gmol�1.
⇤: based on data from Bar-Even et al. (37).
⇤⇤: reduced mean and variance to account for the reduced number of enzymes in the model, see below.

Growth rate must be smaller than the inverse of the sum of all inverse e�ciencies, termed �
max, which would be the growth

rate if all enzymes could work at maximal saturation without dilution losses. At the same time, scaled growth rate is reduced
by less than 2

P`
i=2 �

?
i ⇢

?
i . By employing again the definition of metabolite costs [10], and 1�

P`
i=2 �

?
i ⇢

?
i >

P`
i=1

�?

max
i

[43],

we find that ✏ ⌘
P`

i=2

p
Ki�

max/max
i is an upper bound for

P`
i=2 �i⇢i. Below, we show that physiologically parameterized

cells exhibit a small value of ✏ ⇡ 10�1.3. Thus, their growth rate in nutrient-rich environments is predominantly determined
by enzyme e�ciencies.

Physiological kinetic parameters of enzymes. To estimate the value of ✏ we use available data for kinetic rate constants.
Bar-Even et al. (37) found that enzyme kinetic parameters across numerous species tend to follow a log-normal distribution.
Restricting their analysis to E. coli enzymes yields distributions of similar mean and variance (see tab. 1). We leverage
their results to approximate K and 

max distributions for model parameterization. To convert units as described above, we
estimate the average molecular weight of substrates MS based on the molecular weight of glucose and amino acids (BNID:
104877); the volume per mass ratio ⌫ [26] as the inverse of the protein mass per volume density in E. coli computed from
the product of the dry mass protein fraction of E. coli (BNID: 101955) and its dry mass density (BNID: 109049); and the
average protein mass ME using the average protein length (BNID: 108986) and the average molecular weight of amino acids
in E. coli (BNID: 104877). We disregarded any molar mass variability for substrates and enzymes on the grounds they are
minor relative to the intrinsic variation of the kinetic parameters K̃M and kcat and potentially correlated with one another
and/or kinetic parameters.

Variability in max
and central metabolism dynamics. In comparison to a real cell, our model incorporates a reduced

spectrum of enzyme types, namely those of a single pathway converting environmental nutrients to new protein biomass. In
a real cell, enzymes unaccounted here convert metabolites through parallel, interconnected pathways and generate a variety
of intermediary metabolites. In addition to a larger variety in protein precursors, these pathways also synthesize other
cellular biomass components such as nucleic acids and lipids. Given the large spectrum of enzymes, the average proteome
mass fraction of an individual enzyme type remains small. No singular enzyme mass fraction takes over the entire proteome,
despite significant variability in catalytic rates.

To achieve physiological growth rates and prevent a singular enzyme from completely dominating mass allocation in our
model, we use a distribution of enzyme e�ciencies 

max with lower mean and variance in comparison to the values found
by Bar-Even et al. This choice addresses the reduced spectrum of enzyme types and is further motivated by evolutionary
arguments: here we study central metabolism, which covers the conversion of environmental nutrients into new protein
biomass. Central metabolism enzymes likely undergo more stringent selection than enzymes in secondary metabolism,
resulting in decreased variance in their e�ciencies. In contrast, we maintained the natural variance in substrate a�nities
and thereby maintained a near-physiological variance in enzyme qualities.
To estimate the chain length of the metabolic network in a living cell, we focus on the conversion of an environmental carbon
source into new protein biomass. This pathway likely contributes most to the overall protein biomass production of the cell.
Environmental carbon sources are converted into di↵erent amino acids via di↵erent pathways. To estimate the physiological
pathway length, we use the production of glutamine from glucose, which consists of 17 enzymatic steps connecting the
following metabolites:
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Glucose ! Glucose-6-phosphate ! Fructose-6-phosphate ! Fructose-1,6-biphosphate ! GADP/DHAP
! 1,3-Biphosphoglycerate ! 3-Phosphoglycerate ! 2-Phosphoglycerate ! Phosphoenolpyruvate ! Pyruvate
! Oxalacetate/Acetyl-CoA ! Citrate ! Isocitrate ! 2-Oxo-glutarate ! Glutamate
! Glutamine ! Glutamineacyl-tRNA ! Protein biomass

Other amino acid biosynthesis pathways include fewer (e.g. Serine), equally many (e.g. Threonine), or more enzymatic steps
(e.g. Arginine). Alternative carbon sources may require a di↵erent number of enzymatic steps to produce pyruvate. Some
enzymes may require additional modifications after protein synthesis. We here use ` ⇡ 20 as an order of magnitude estimate
for growth in amino-acid-free growth media.

Stochastic model parametrization. While kinetic properties of individual enzymes become increasingly available, only
a minority has been measured to date. Additionally, enzymes with multiple substrates or otherwise complicated reaction
kinetics may not exhibit a clearly defined substrate a�nity. For these reasons, we do not parameterize our model based on
available data for the specific enzymes. Instead, we parameterize our model stochastically, drawing both substrate a�nities
and kinetic constants independently from the log-normal distributions given in table 1. We thereby also disregard any bias
in biochemical qualities along the metabolic cascade in our model. We note, however, that ribosomes exhibit a particularly
high molecular mass but only an average catalytic constant kcat ⇡ 20 aa s�1 (1). Together with the average molecular
weight of amino acids, these properties yield a distinctly low catalytic rate of max = 100.9 s�1. Furthermore, they operate
very close to their maximal speed in the nutrient-rich regime (47, 48) despite typical aminoacyl-tRNA concentrations in
the µM-concentration regime (BNID: 105275). We therefore estimate a strong ribosomal substrate a�nity K

�1
> 106.

Both properties are the sign of a specificity-optimized protein. As outlined further in the main text, we hypothesize that
the ribosome is part of a coherently regulated group of specificity-optimized enzymes that lie downstream of most nutrient
limitations.

Environmental nutrient concentrations. Amino-acid-free laboratory media for bacterial growth such as M9 typically
contain between 0.1 gL�1 and 1 gL�1 glucose. The glucose concentration K̃Monod at which the growth rate of E. coli is
half-maximal is on the order of 1mgL�1 (BNID: 111048). We here assume - and later show that this assumption is in
line with our model’s predictions - that the environmental nutrient concentration at which growth is half-maximal is on the
order of the substrate a�nity of the nutrient uptake enzyme, K̃Monod ⇡ K̃1. This suggests that nutrient uptake enzymes are
typically highly saturated in nutrient-rich laboratory media. Based on these typical values, we specifically use ⇢1 = 1000K1

to describe nutrient-rich media. This value reflects all properties of the limit ⇢1 ! 1 well but is numerically more easily
accessible than the limit itself.

Global properties of optimal resource allocation

Physiological enzyme saturation. We compute the inactive proteome fraction �inactive (i.e. enzymes not currently engaged

in catalysis due to a lack of substrates) as �inactive ⌘
P`

i=1 �
?
i (1� 

?
i /

max
i ). Inserting the definition of i and Eq. [12], this

yields

�inactive =
X̀

i=2

�
?
i ⇢

?
i < ✏

⇣
⇢1

K1
& 1

⌘
. (45)

Enzymes of physiologically parameterized cells in nutrient-rich environments are typically highly saturated - on average to
a level larger than 1 � ✏. Our model thus explains solely from the physiological distribution of enzyme kinetic parameters,
why enzymes are typically well-saturated in nutrient-rich environments (38).

The cellular metabolite mass fraction in the homogeneous chain. Consider a homogeneous chain (which consists of
enzymes with equal kinetic constants max and K only) in the nutrient-rich regime. In the physiological parameter regime,
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such a chain fulfills ✏ 
p
(`� 1)K ⌧ 1. In the limit of small dilution strength ✏, Eqs. [1], [10], [11], [12] and [29], are then

jointly solved by

⇢
?
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s
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+O(✏2),
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`
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4

3
+O(✏2)),

✏ ⇡

p
(`� 1)K.

(46)

We here use
P`

k=i+1(k � 1)�1/2
⇡ 2(

p
`� 1 �

p
i� 1) and

P`
i=1

p
i� 1 ⇡ 2`

p
`� 1/3, which are motivated by the corre-

sponding integrals. With these approximations, Eqs. [46] form a consistent solution of microbial resource allocation to first
order in ✏, and the limit of vanishing ✏ constitutes the limit of vanishing dilution fluxes. In such a homogeneous chain, we
can then compute the cellular mass fraction as MR/MP = (j1 � j`)/j` ⇡ 2✏ [18], which is itself on the order of ✏. At the
same time, the growth e↵ect of metabolite dilution is estimated [46] to be on the order of 4✏/3, which stems approximately
equally from proteome resources required for unsaturated enzymes and proteome resources required to balance metabolite
dilution fluxes [44].

Resource allocation in heterogeneous chains. To extend our analysis to heterogeneous chains, we replace position by the
continuous variable �, and sums over position by integrals over `d�. For a compact notation we define the relative specificity
s� ,

s� ⌘

q
K�

max
�

R 1
0

r
K�0

max
�0

d�0
. (47)

The central equations for ⇢, j and � then yield a self-consistent solution even in heterogeneous chains (under the additional
assumptions that � is not correlated with other variables and fluctuations in other variables average out e�ciently even
across small intervals in � - i.e. any integral

R
L s�d� ⇡ L):

⇢
?
i '

✏

`
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p
�i
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�i, (48)
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⌘�1
(1�
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3
✏)

⇣
⇢1

K1
& 1

⌘
.

For su�ciently small variations of e�ciencies and a�nities around their respective mean, this derivation - together with the
mean-field approximation for �i [46] - provides a reasonable mean-field approximation of heterogeneous chains (Fig. S4).
Systematic deviations introduced by physiological enzyme heterogeneity are small, as well as typical stochastic deviations.
We note however, that this is not true for all heterogeneous parameterizations in the case of the cellular metabolite mass
fraction. In heterogeneous chains, no upper limit on the metabolite mass fraction can be established: if the nutrient uptake
enzyme has an exceptionally high catalytic rate, its proteome fraction nearly vanishes. Then, metabolite cost �

?
2 nearly

vanishes, and ⇢
?
2 can reach arbitrary values, which on their own may exceed 2✏ drastically.
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Comparison to experimental data. We compute several observables regarding the whole cell under the assumption of
optimal resource allocation in our model. For physiological kinetic parameter distributions, they are in good agreement
with those observed empirically (Fig. S2), apart from a slight overestimation of the cellular metabolite mass fraction. The
metabolic resource allocation patterns identified here are generic and independent of the mean of max. They are also largely
independent of the variance in 

max, as long as individual enzymes do not dominate the proteome. Overall higher e�ciencies
solely lead to higher growth rates and fluxes. Higher values of K, on the other hand, lead to higher dilution relative to
growth, creating more significant flux gradients. This would also result in stronger position-dependent gradients in optimal
metabolite saturation.

Optimal balanced growth states under nutrient limitation

We consider an additional constraint on the nutrient uptake flux from the environment (which was left unconstrained in
the nutrient-rich regime, and jointly optimized with the rest of the metabolic state of the cell), next to the constraint on
the cellular protein concentration. We then identify the metabolic state, which maximizes growth rate at the given nutrient
uptake flux. In the absence of such a constraint on nutrient uptake flux at low nutrient concentrations, the complete
calculus presented above would remain valid at low nutrient concentrations. Metabolite production costs for all intracellular
metabolites would remain on the order of 1, and all �i�2 would converge to zero with decreasing flux j1 according to
Eqs. [12], [11] and ji < j1. This implies that the uptake protein would become a macroscopic fraction of the total proteome,
and eventually the whole proteome. Instead, for the reasons outlined in the main text, we specifically assume that uptake
protein expression is constrained, and thereby limits the nutrient uptake flux. Consider any constraint on �1(⇢1). To find
optimal resource allocation under the constraint, we use the method of Lagrange multipliers,

L(J, ⇢1, µ) ⌘ MP (J, ⇢1) + µ

✓
M1(J, ⇢1)

MP (J, ⇢1)
� �1(⇢1)

◆
, (49)

with a Lagrange multiplier µ. The optimal resource allocation must now fulfill @L/@Ji|J?,⇢1 = 0 for i = 1, . . . , ` � 1, in
analogy to Eq. [34], and additionally @L/@µ = 0. For i � 2 the uptake mass M1 does not depend on Ji, and the partial
derivatives are

@L

@Ji
= (1� �1

µ

MP
)
@MP

@Ji
(i = 2, . . . , `� 1). (50)

They are zero in the optimal state if Eq. [5] is fulfilled. Thus the iterative computation of optimal fluxes [37] is still valid.
J
? and all M?

i for i in (2, . . . , `) follow from the iterative computation of optimal fluxes. A di↵erent boundary condition ⇢1

now matches a certain starting condition of the iteration (J?
` , J

?
`�1) in comparison to unconstrained optimality. For a given

constraint �1(⇢1), this boundary condition can be found by solving

J
?
1 =

1

1� �1(⇢1)

X̀

k=2

M
?
k

max
1 �1(⇢1)

1 + K1
⇢1

(51)

for ⇢1, which corresponds to solving @L/@µ = 0. The last remaining condition on optimality is @L/@J1|J?,⇢1 = 0, which
could be solved for the remaining undetermined variable µ. However, µ is not required for describing the optimal state,
and equations given above [37, 51] fully su�ce to compute optimal balanced growth states under nutrient limitation. The
iterative construction of optimal balanced growth states is applicable under nutrient uptake constraints.

Metabolite costs under nutrient limitation. To put this result into the context of metabolite costs, we again consider the
variation of a single metabolite concentration (and drop the superscripts ·? below). Based on Eq. [4], we derive

ji = j1
1 +

P`
k=i+1 ⇢k

1 +
P`

k=2 ⇢k

. (52)
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This means that under a constraint on nutrient uptake, which defines a fixed flux j1(⇢1) in a given nutrient environment,
variation of a single metabolite concentration violates growth optimality, @j`/@⇢k 6= 0. A variation of a single metabolite
concentration that maintains all other metabolite concentrations is ill-defined. Instead, we reformulate the optimality con-
dition. We observe that in an optimal balanced growth state under a nutrient uptake constraint, the sum of metabolite
concentrations must be minimal to maximize growth [52]. This criterion can be reformulated further: all variations of any

single metabolite concentration must have the same e↵ect on the sum of proteome mass fractions
P`

k=2 �k,

@
P`

k=2 �k

@⇢i
=

@
P`

k=2 �k

@⇢i0
(i, i0 = 2, . . . , `). (53)

To verify, suppose that this statement was incorrect in a growth-optimal state. A joint variation of ⇢i and ⇢i0 by the same
�⇢ in opposite directions could reduce the required sum of proteome fractions. Adding the freed proteome fraction to any
reaction would reduce dilution fluxes and thereby improve growth rate.
We insert the kinetic growth law �k(jk, ⇢k,max

k ,Kk), and find

@
P`

k=2 �k

@⇢i
=

@�i

@⇢i

����
ji

+
X̀

k=2

✓
�k

jk

@jk

@⇢i

◆
. (54)

We insert [52] and subtract Eq. [53] for i0 = 2,

0 =
@�i

@⇢i

����
ji

� �
?
0 +

i�1X

k=1

��k

jk
with �

?
0 ⌘ �

@�2

@⇢2

����
j2

�
��1

j1
. (55)

A single summand is added in comparison to the unconstrained optimality condition [40]. This additional cost associated
with nutrient uptake a↵ects all metabolite production costs equally as an additive constant. We obtain the functional
form �

?
i = �

?
0(⇢1) +

Pi�1
k=1 �

?
�
?
k/j

?
k , which is Eq. [10].

Again, local metabolite production costs are not suitable for determining optimal resource allocation, as they depend on
the optimal resource allocation towards other reactions. Instead, we use them to interpret patterns in optimal resource
allocation. We therefore do not solve for �?

0 analytically, but simply identify the additional summand as an arbitrary o↵set,
which depends on the nutrient environment and the nutrient uptake constraint. Under variation of ⇢1 we biologically expect
to find a one-parametric family of optimal states that fulfill the constraint.
Instead of characterizing optimal states by their nutrient concentration ⇢1, we choose to characterize them by their growth
rate �

?. �
?
0 is an arbitrary function of �? in this scenario. We can analogously to the case of unconstrained optimality

derive ⇢
?
i = argmin((�rich

i + �
?
0(�

?))⇢i + �(⇢i, Ji))|Ji,�rich
i ,�?

0
. Here, �rich

i denotes the expression found for �?
i in the nutrient-

rich regime (�rich
i ⌘

Pi�1
k=1((�

?
�
?
k)/j

?
k)). The shape of the equation, including an additive �

?
0 is independent of the exact

nature of the constraint limiting nutrient uptake, as long as it only a↵ects the flux j1. Notably, a di↵usive constraint on
nutrient uptake leads to the same result: in this case, the mass required for increasing the nutrient uptake flux j1 would
be larger than �j1/1, because the local nutrient concentration at the cell surface would decrease. This also yields an
additional cost �

?
0 , which a↵ects all reactions equally. Based on this argument, we here assume that the additional cost

�
?
0 vanishes in a nutrient-rich environment. In a nutrient-rich environment, the balance between di↵usion and uptake has

a vanishingly small e↵ect on the metabolite concentration at the cell surface. Additionally, uptake protein expression was
observed to increase under nutrient limitation, making it unlikely that the uptake protein expression is constrained below its
unconstrained-optimal value in nutrient-rich environments. The e↵ect of a regulatory nutrient uptake constraint on uptake
expression, growth and metabolite cost is illustrated in Fig. S3.

The limit of vanishing nutrient uptake. Above, we derived that a nutrient uptake limitation a↵ects all reactions equally
by an additive cost component �

?
0 . Solving for �

?
0(⇢1) for a given uptake constraint �1(⇢1) is challenging due to the same

feedback loops concerning optimal balanced growth states discussed earlier. However its form as an additive constant allows
for a simplified computation based on the summation constraint on proteome fractions,

1 =
X̀

i=1

�
?
i = �1(⇢1) +

X̀

i=2

✓
j
?
i

max
i

+ (�rich
i + �

?
0)⇢

?
i

◆
. (56)
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In the limit of strong nutrient limitation j1 ! 0, this constraint can be solved directly for �?
0(j1): By Eq. [4], all fluxes fulfill

ji < j1 and vanish in the limit. Thus, each �i is well approximated by the linear term ((�rich
i +�

?
0)⇢

?
i ) of Eq. [12]. We denote

limj1!0 �1 with �
max
1 . By inserting Eqs. [11] and [10], we find

1� �
max
1 = lim

j1!0

✓X̀

i=2

s
Ki

max
i

vuutj?i (�
?
0 +

i�1X

k=1

�?

?
k

)

◆
. (57)

For the reasons outlined in the main text, we assume that the uptake enzyme never constitutes the whole biosynthetic
proteome, even in the limit of vanishing j1, and �

max
1 < 1. Thus, the right-hand-side must also remain finite in the limit. For

a given j1, growth is maximized if the metabolite mass fraction MR/MP is minimal [52]. We show below by construction,
that MR/MP ! 0 in the limit of j1 ! 0. We expand in small j1 and drop all terms of order j1. We specifically use
ji = j1 +O(j21), and that all terms �rich

i =
P

�
?
/

?
k <

P
�
?
k  1 remain finite in the limit,

1� �
max
1 = lim

j1!0

✓X̀

i=2

s
Ki

max
i

p
j1�

?
0

◆
. (58)

Under a strong constraint on nutrient uptake,
p
j1�

?
0 must therefore converge to a suitable normalization constant Z, and

�
?
0 must diverge as Z2

· j
�1
1 . This means that resource allocation in the limit of vanishing nutrient uptake is given by

lim
j1!0

�
?
i =

s
Ki

max
i

Z,

⇢
?
i ⇡

j1

Z

s
Ki

max
i

(1 +O(j1)), (59)

j
?
i ⇡ j1(1 +O(j1)) with Z =

(1� �
max
1 )

P`
i=2

q
Ki

max
i

for (i = 2, . . . , `).

As assumed above, metabolite concentrations vanish in the limit of vanishing nutrient uptake. In this limit, optimal proteome
fractions are not anymore set by enzyme e�ciencies, but by their specificities.

Expansion to small nutrient uptake flux. An optimal balanced growth state in the limit of vanishing nutrient uptake is
experimentally unattainable. For this reason, we compute optimal balanced growth states at small but finite growth rates
by a first-order expansion of Eq. [56] in small j1 = �

?(1 +O(✏)),

1� �1(�
?)�

X̀

i=2

�
?

max
i

(1 +O(✏)) =
X̀

i=2

s
Ki

max
i

p
�?�?

0(1 +O(✏))(1 +
�
rich
i

2�?
0

). (60)

As long as �rich
i ⌧ �

?
0 , we obtain

p
�?
0 ⇡

1� �1(⇢1)�
P`

i=2
�?

max
i

(1 +O(✏))
P`

i=2

q
�?Ki
max
i

(1 +O(✏))
. (61)

We specifically find for ⇢i by Eq. [11], and for �i by Eq. [56],

⇢
?
i ⇡ �

?

s
Ki

max
i

P`
i=2

q
Ki

max
i

(1 +O(✏))

1� �1(⇢1)�
P`

i=2
�?

max
i

(1 +O(✏))
, (62)

�
?
i ⇡

�
?

max
i

(1 +O(✏)) +

q
Ki

max
i

⇣
1� �1(⇢1)�

P`
i=2

�?

max
i

(1 +O(✏))
⌘

P`
k=2

q
Kk
max
k

(1 +O(✏))
. (63)
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Proteome mass fractions are approximately linear in growth rate in the limit of strong nutrient limitation (apart from non-
linearities introduced by �1(⇢1), and metabolite dilution terms of order ✏) and converge to well-defined values as derived
above. Correction terms are of order O(✏) in Eqs. [62] and [63]. For physiological parameter values, they can thus be
neglected even at higher growth rates, and the approximation above remains valid as long as �

?
i ⇡ �

?
0 . For this, �?

0 must

be larger than all �rich
i . We estimate based on Eq. [61], and the definition of ✏,

p
�?
0 � (1� �1(⇢1)�

P`
i=2 �

?
/

max
i )/✏.

Position-dependent metabolite production costs �
rich
i do not exceed 1. If the constraint on �1 is stringent enough to

ensure �1 < 1�
P`

i=2
�

max
i

� ✏, the added cost exceeds 1. Thus, proteome fractions are approximately linear in growth

rate at growth rates

�
?
< �

max(1� �
max
1 � ✏). (64)

This constitutes the boundary between the nutrient-rich and the nutrient-poor regime. The boundary translates approxi-
mately into ⇢1/K1 ' 1: Above the boundary, the catalyzed flux through the first reaction is largely una↵ected by reductions
of ⇢1, and growth rate is approximately �

max. Below ⇢1/K1 ' �
1
1 /�

max
1 , �1 is not up-regulated meaningfully further, a

property discussed in more detail in the SI section on regulatory constraints. Then, any further reduction in ⇢1 will lead to a
near-proportional reduction in �, and �0 quickly exceeds one. The approximate equivalence of � ' �

max(1� �
max
1 � ✏) with

⇢1/K1 ' 1 was further verified numerically (Fig. S2F).

Linearity of expression level changes. Under physiological conditions, both �
max
1 and ✏ are typically small. Neglecting

both, an even stronger approximation can be made to simplify proteome fractions as a function of growth rate [63],

�
?
i ⇡

�

max
i

+

✓
1�

�

�max

◆
q

Ki
max
i

P`
i=2

q
Ki

max
i

, (65)

which is a linear function in growth rate for each enzyme. We normalize by the expression level in the nutrient-rich
regime �i ⇡ �

max
/

max
i +O(✏). Inserting the definition of q and the approximate maximal growth rate for negligible �1

and ✏, �max
⇡ (

P`
k=2 1/

max
i )�1, we find that an enzyme’s biochemical quality directly determines the optimal expression

fold-change between a nutrient-rich environment and the limit of vanishing nutrient availability,

�
?
i (�)

�?
i (�

max)
⇡ qi + (1� qi)

�

�max
. (66)

In a chain of irreversible Michaelis-Menten reactions with physiological parameters, any constraint that restricts the uptake
proteome fraction from becoming a macroscopic fraction of the proteome under nutrient limitation leads to an optimal
resource allocation pattern approximately linear in growth rate for all enzymes except the uptake enzyme. Enzymes with
q < 1 are down-regulated upon nutrient limitation, enzymes with q > 1 are up-regulated. If a finite �1 is to be taken
into account, the critical value of q that di↵erentiates between up- and down-regulation shifts to qC ⇡ 1 + �

max
1 . Further

non-linear corrections arise at high growth rates due to finite ✏ and, in particular at very high q, due to the lowered substrate
saturation in the nutrient-rich regime (Fig. 2). However, these corrections are typically small in the physiological parameter
regime (Fig. 4).

Model evaluation against physiological cell characteristics

Applicability to individual cascades. Our calculations indicate that the discovered two-dimensional maps, flux- and
saturation gradients as well as linear expression level changes upon nutrient limitation are not just properties of averages,
but can be recovered for individual cascades. We illustrate this result in Fig. S4. Quantitatively, position and biochemical
quality account for about 98% of the variances in scaled metabolite concentrations and expression levels respectively in
the nutrient-rich regime, as well as about 80% of the corresponding variances under nutrient limitation in our ensemble of
optimal resource allocation in physiologically parameterized cascades. These fractions denotes percent reductions in squared
residuals before and after applying the re-scaling derived through our analytical calculations (see Fig. S4). We thus expect
our results to be applicable to a single physiological parameterization, as would be encountered in a given experiment.
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Predicted correlations in proteomics and metabolomics datasets. Our model predicts a correlation of protein expression
fold-changes and protein expression levels, as both depend on biochemistry. For physiologically small dilution strength, most
enzymes are well-saturated, and the quadratic term dominates Eq. [12],

�i

Ki
⇡ �i

⇣
⇢
?
i

Ki

⌘2
for

✓
⇢1

K1
& 1

◆
. (67)

We insert Eq. [11] and ji ⇡ �+O(✏), to find �i/Ki ⇠ 1/q2i . Together with Eq. [66], this defines the correlation

log
⇣
�
lo
i

�hi
i

⌘
⇡ �

1

2
log(�hi

i ) +
1

2
log(Ki) + const. (68)

We predict an anti-correlation with log-log-slope of �1/2 between expression levels in the nutrient-rich regime and expression
fold-changes in the limit of vanishing growth. We note that the a�nity-dependent term log(Ki)/2 may introduce considerable
noise. If no a�nities are known, averaging over a large number of enzymes may be required to identify the anti-correlation.
We here test whether an anti-correlation is present when taking the entire proteome into account (Fig. 5). We note that this
approach is biased for several reasons: the proteome contains not only enzymes involved in the conversion of environmental
nutrients into new cell biomass, but for example also structural proteins and stress-response proteins. Our model does not
account for such other proteome constituents, and does not predict their growth responses. At the same time, our model
suggests that protein complexes should be treated as a joint proteome fraction. Still, we observe an anti-correlation stronger
than expected from regression to the mean, both in the entire proteome, and when restricting our analysis to individual
metabolic pathways, which consist solely of proteins involved in biomass synthesis.
Our analysis of the proteome could be improved by including additional kinetic or metabolomic data. Unfortunately, accurate
metabolomic and kinetic data is not available for many reactions. A small number of reactions was recently analyzed by
Dourado et al. (16). In this dataset, quantitative deviations from the original enzyme-substrate relationship appear too small
for the considered enzymes for meaningful analysis. We expect that ongoing e↵orts to expand the availability and accuracy
of kinetic data (11) will allow for a direct test of our predictions. Under nutrient limitation, we predict that the added
cost of metabolite production should shift the optimal enzyme-substrate relationship to lowered metabolite concentrations.
Interestingly, a qualitatively similar deviation from the un-shifted enzyme-substrate relation was observed experimentally
when reducing growth rate by switching the carbon source of a growth medium (16).

Extension to more complex network topologies

Metabolic networks typically exhibit a complex topology. Capturing the full complexity of a real cell lies beyond the scope
of this paper, as it would impede analytical solvability, vastly increase the degrees of freedom in the parameterization,
and impede the identification of simple patterns. However, we use an exemplary network with more complex topology to
illustrate that our framework applies to more complex topologies and that its key predictions are still valid. We focus on one
particularly interesting use case that can be directly linked to existing proteomics studies: the consumption of two di↵erent,
non-interchangeable environmental nutrients by the cell, such as a carbon and a nitrogen source. We specifically model this
system as two convergent pathways with two di↵erent environmental nutrients (Fig. 6E). To ease the notation, we call one
pathway the N-branch and the other the C-branch. At the convergence point, both metabolite types (C-type and N-type
derived from the two nutrients) are required for a single reaction. The product of this reaction is further converted by a
third pathway, the stem of the metabolic network.
We assume that the enzyme at the convergence point exhibits Michaelis-Menten-kinetics in both of its substrates - i.e. both
substrates are needed for the reaction to proceed,

J =

max

M

1 + KN

⇢N
+ KC

⇢C
+ KCN

⇢N⇢C

. (69)

This rate law features a kinetic constant KCN (with units of concentration squared), for which no physiological parameter
regime is known. We here assume that K

CN = K
N
K

C . We further extend the framework of mass conservation to the
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convergence point: we assume that the two metabolite types are used with a fixed mass stoichiometry. The C-branch
contributes a mass flux fraction �C to the downstream mass flux, the N-branch �N = 1� �C , with 0 < �C < 1.
Enzymes along the C-branch and the stem form a chain of ` enzymes. Its enzymes are numbered as before. On the other
hand, enzymes in the N-branch are numbered by their position in the branch. To di↵erentiate, we denote indices in the
N-branch by a tilde ·̃. The N-branch has length ˜̀. Let y be the index of the enzyme with two substrates, so that ⇢C ⌘ ⇢y.
Mass conservation demands

JC ⌘ Jy�1 = �Jy + J`⇢C , and JN ⌘ J˜̀= (1� �)Jy + J`⇢N . (70)

We can now express My as a function of only fluxes and kinetic constants,

My =
Jy

max
CN

✓
1 +

K
N
J`

JN � (1� �)Jy
+

K
C
J`

JC � �Jy
+

K
CN (J`)2

(JN � (1� �)Jy)(JC � �Jy)

◆
. (71)

All other enzyme masses are still given by Eq. [30]. Thus, all fluxes from J
?
` to J

?
y can still be constructed iteratively

according to Eq. [37] from a starting condition of the iteration J
?
`�1 (and J

?
` , which sets system size). Analogously, we can

pick another starting condition J
?
N ⌘ J

?
˜̀ for the N-branch of the cell. This starting condition reflects an additional degree

of freedom in space of growth-maximizing metabolic states solution: next to system size (associated with J`) and nutrient
environment (associated with J`�1), which were both also present in the linear chain, an optimal state is now also dependent
on a second nutrient concentration in the environment (associated with JN ). For any JN , one can solve @MP /@Jy = 0 for JC
analytically by a suitable computer algebra system.
For all other criteria on optimality, Eq. [71] behaves like a regular Michaelis-Menten kinetic rate law with


max
y ⌘


max
CN

1 + KNJ`
JN�(1��)Jy

, and Ky ⌘

max
y

max
CN

(KC +
K

CN
J`

JN � (1� �)Jy
). (72)

Thus, the iterative construction of the optimal metabolic state can proceed until J?
1 , where a matching environmental nutrient

concentration must be determined. In comparison to the solution of a linear chain with ` enzymes, all fluxes Ji<y are scaled
by �. Analogously, all fluxes in the N-branch can be constructed, once J

?
C is known by viewing the N-branch and the stem

together as a linear chain. In this manner, a consistent solution is always found, because the same equation @MP /@Jy = 0
is used to determine first JC from a given JN and then JN again from the determined JC . Due to the irreversible nature
of reactions considered, matching environmental nutrient concentrations ⇢1 and ⇢1̃ can be determined (even for constrained
expression levels �1 and/or �1̃), analogously to the linear chain. To parameterize the branched network, we assume that the
substrate mass MS on each branch is given by � times the substrate mass present in the stem of the network. While ME , ⌫,
and the distributions of kcat and K̃ are the same as in the stem, thus both K and 

max are on average reduced by a factor
of � in comparison to their values in the stem.
In the nutrient-rich regime, optimal resource allocation in two convergent pathways qualitatively resembles optimal resource
allocation in a single chain. Scaled metabolite concentration gradients in each separate pathway are qualitatively una↵ected
by the altered topology. They exhibit a strong decrease over the first few reactions after nutrient uptake and a weaker decline
after. At the convergence enzyme itself, the cost of metabolite production suddenly increases - requiring only one production
pathway beforehand, but both in the shared stem. Thus, saturation drops at the convergence.
If one of the two nutrients is available at a growth-limiting concentration, the proteome reallocation within the branch
with limited nutrient influx and in the stem resembles the proteome reallocation in a single chain: high-q enzymes are
up-regulated while low-q enzymes are down-regulated (Fig. 4D, F). On the other hand, proteome fractions in the una↵ected
branch are reduced with decreasing growth rate, leading to an overall resource reallocation from the una↵ected branch and
low-q enzymes in the a↵ected branch and stem to high-q enzymes in the a↵ected branch and stem.

Regulatory constraints

Regulation of the uptake enzyme. In a simple regulatory model, a metabolite can directly act as a transcription factor
to influence protein expression. Here we assume that such a regulatory framework leads to a Hill-function governing an
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enzyme’s expression level as a function of its substrate’s concentration, with a basal expression level �0 and an expression
level �1 at full promoter saturation with the metabolite. At a concentration K

reg, the promoter is half-saturated,

�̄i(⇢i) = �
0 +

ai

1 +K
reg
i /⇢i

, with ai = �
1
i � �

0
i . (73)

In this model, the metabolite can either induce protein production (�0
< �

1), or inhibit protein production (�0
> �

1).
We focus first on the nutrient uptake reaction (i = 1). Consider a cell that e�ciently converts environmental nutrients into
new protein biomass (J1 ⇡ J`(1 + O(✏))) and that exhibits a small uptake protein mass fraction �1 ⌧ 1 in a nutrient-rich
environment. The flux that can be e�ciently handled by downstream metabolism (i = 2, . . . , `) is proportional to 1� �1.
For su�ciently small �1 and only moderate reductions in nutrient availability, keeping the nutrient uptake rate approximately
constant therefore recapitulates the unconstrained optimal resource allocation strategy,

�
?
1(⇢1) ⇡ (1 +

K1

⇢1
)�1

1 , with �
1
1 ⌘ lim

⇢1!1
�
?
1 for

✓
⇢1

K1
> 1

◆
. (74)

In the case of the nutrient uptake reaction, we thus expect that the proteome fraction of the uptake enzyme should increase
with decreasing nutrient availability (Fig. S3A). For the reasons outlined in the main text, we assume that the approximate
form [74] is only valid at high growth rates. Instead, expression levels o↵ to �

0 = �
max
1 well before the uptake protein becomes

the dominant proteome mass fraction in the cell. To achieve qualitatively comparable up-regulation of all parameterizations in
the ensemble despite di↵erent optimal expression levels in a nutrient-rich environment, we use �0 = �

max
1 ⌘ n�

1
1 /(1 + n�

1
1 ),

where n determines the fold-change of �1 under nutrient limitation. In this manner, �1 can be up-regulated n-fold for
parameterizations with small �1 but does not exceed 1 for larger �1. In all simulations, we use n = 5. To mimic optimal
resource allocation [74], Kreg must then beKreg = K1�

1
1 /�

max
1 . This regulatory scheme approximates unconstrained optimal

resource allocation to the uptake protein at high nutrient concentrations ⇢1/K1 � 1, and smoothly interpolates to a cellular
state with a constrained nutrient uptake flux at lower nutrient concentrations (Fig. S3).

Approximating optimal resource allocation by regulation. We define an extended regulatory scheme for system-wide
metabolism. Transcription takes place with enzyme-specific rates

b
t
i(⇢) = b

t
0

✓
�
0 +

ai

1 +K
reg
i /⇢i

◆
, (i = 2, . . . , `), (75)

where b
t
0 is a basal transcription rate. We use metabolite-mediated regulation as introduced in the main text, which is

specified by the set of parameters Rm(max
,K) = (�0, a,K

reg)(max
,K) with

�
0
i =

Ki
max
iq

Ki
max
i

P`
i=2

q
Ki

max
i

, ai =

1
max
iP`

i=2
1

max
i

� �
0
i , K

reg
i =

q
Ki

max
i

P`
i=2

q
Ki

max
iP`

i=2
1

max
i

. (76)

As a second step, we use a minimal model of translation that specifies protein synthesis rates proportional to the corresponding
transcription rates,

bi(⇢,�) =
� b

t
i(⇢)P`

k=1 b
t
k(⇢)

. (77)

This form sets the overall normalization of protein synthesis,
P

k bi(⇢,�) = �, as required in a steady state with dilution
at rate �, and leads to stationary expression levels �̄i(⇢) given by equation [24]. The relation between transcription and
translation rates reflects competition for a growth-dependent global resource, e.g., RNA polymerases, translating ribosomes,
or energy.
The steady-state protein expression levels given by the metabolite-mediated regulatory scheme [75 – 77] reproduce growth-
optimal metabolic states in very good approximation. First, we obtain the consistency relation

�̄i(⇢
?
i (�),Rm) ⇡ �

?
i (�) (i = 2, . . . , `), (78)
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where ⇢
?
i (�) and �

?
i (�) are given by equations [19 – 21]. Second, we numerically study time-dependent metabolic states

S(t) = (⇢(t),�(t)) given by the dynamical equations

d⇢i(t)

dt
=


max
i�1 �i�1(t)

1 + Ki�1

⇢i�1(t)

�

max
i �i(t)

1 + Ki
⇢i(t)

� �(t)⇢i(t), (i = 2, . . . , `), (79)

d�i(t)

dt
= bi(⇢i(t),�(t))� �(t)�i(t) (i = 1, . . . , `) (80)

with �(t) = 
max
` �`(t)/(1 + K`/⇢`(t)) and a time-dependent input signal ⇢1(t) (Fig. 6). We find stable stationary states

S̄(⇢1,Rm) with

⇢̄i(⇢1,Rm) = ⇢
?
i (⇢1)(1± 0.5),

�̄i(⇢1,Rm) = �
?
i (⇢1)(1± 0.05),

�̄(⇢1,Rm) = �
?(⇢1)(0.98± 0.02). (81)

We note that no flux-sensing or growth-sensing mechanism is required to robustly implement growth-dependent gene expres-
sion.

Network evolution

In this subsection*, we estimate selection on enzyme-metabolite binding in networks with a regulated physiological response
specified by a regulation function depending on the reaction parameters, R(max

,K). We evaluate the selection coe�cients, or
relative growth e↵ects in the stationary state, of amino acid changes that a↵ect the metabolite binding a�nity, Ki ! Ki+�Ki

(i 6= 1),

�i(⇢1,R,
max

,K) ⌘
��̄(⇢1,R,

max
,K)

�̄(⇢1,R,max,K)

=
Ki

�̄(⇢1,R,max,K)

@�̄(⇢1,R,
max

,K)

@Ki
��Gi, (82)

where ��Gi = �Ki/Ki is the corresponding change in reduced free energy of binding. We assume uniform e↵ects |��Gi| =
1, in line with typical amplitudes of mutations a↵ecting protein evolution. In equation [82], we compute only the direct
e↵ect of the mutation on binding, while keeping the regulation function R(max

,K) at the wild-type parameters. We assume
that regulation tunes the wild-type metabolic state S̄(⇢1,R,

max
,K) to near-optimal growth,

�̄(⇢1,R,
max

,K) ⇡ �
⇤(⇢1,

max
,K); (83)

an example of such regulation functions is the metabolite-mediated scheme Rm discussed above. This assumption is self-
consistent if the evolution of protein binding a�nities is followed by compensatory evolution of regulation, R(max

,K) !
R(max

,K +�K). However, details of the regulation function and its evolution are not relevant for our current purpose, to
obtain an order-of-magnitude estimate of selection on protein binding a�nities.
First, we compute an upper bound for the selection coe�cients �i(⇢1,R,

max
,K) from a hypothetical system where the

mutant is constrained to the same protein expression levels as the wild-type. For this system, we obtain

�
(1)
i (⇢1,

max
,K) = �

Ki

�⇤(⇢1,max,K)

@�
⇤(⇢1,max

,K)

@Ki

����
�

= �
Ki

ji(max
i ,Ki)

@ji(max
i ,Ki)

@Ki

����
ji�1,�i

= ⇢i(⇢1,
max

,K) [1 +O(✏)] (84)
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which follows from the Michaelis-Menten relation [1], the flux continuity relation [3] and ⇢
2
i /Ki . 1 [11]. We have used

��Gi = �1 for an a�nity-increasing mutation and the relation [83] for the wild-type. We can compare this strength of
selection with the case of a single enzyme at constant metabolite density,

�0(⇢,
max

,K) =
K

j(⇢,max,K)

@j(⇢,max
,K)

@K

=
1

1 + ⇢/K
. (85)

This shows that in a network, moderate a�nity changes of bulk enzymes are largely bu↵ered by compensatory changes of
the cognate metabolite, �⇢i/⇢i ⇡ ��Ki/Ki, leaving a residual e↵ect on growth by metabolite dilution. Furthermore, the
e↵ects on downstream metabolites, which are omitted in [84], are of order ✏2.
Second, we compute a lower bound on �i(⇢1,R,

max
,K) from the variation of optimal growth rates. This approximation

couples local enzyme changes Ki ! Ki+�Ki and compensatory changes of regulation, R(max
i ,Ki) ! R(max

,Ki+�Ki),
assuming a hypothetical simultaneous evolution of an enzyme’s protein and cis-regulatory sequence, which overestimates the
mutant fitness. We obtain selection coe�cients

�
(2)
i (⇢1,

max
,K) = �

Ki

�⇤(⇢1,max,K)

@�
⇤(⇢1,max

,K)

@Ki
(86)

⇡ Ki

1
2

q
ji

Kimax
i �i

1 +
P`

k=2

q
Kkjk

max
k �k

(87)

=
1

2
⇢i(⇢1,

max
,K) [1 +O(✏)]. (88)

Here we have used that j1 is independent of Ki (which is justified under nutrient limitation, see equation [73], and correct to
order ✏ otherwise), and neglected position-dependent inhomogeneities and changes of the cost factors (i.e., �i ⇡ �0 ⇡ const.,
equation [21]), as appropriate under nutrient limitation. In the same rationale, variation of the growth-optimal metabolic
state S

⇤(⇢1,max
,K) provides estimates of the bu↵ering in regulated networks,

�⇢i

⇢i
⇡

1

2

�Ki

Ki
, (89)

��i

�i
⇡

1

2

✓
1�

�

�max

�
max
i

�i

◆
�Ki

Ki
, (90)

with �
max
i = �

max
/

max
i , which are obtained from equations [19] and [20].

The approximations [84] and [88] of the selection coe�cients �i(⇢1,R,
max

,K) are of the same form and magnitude, which
establishes equation [25] and the resulting mean field-estimates of �i derived in the main text. Furthermore, inserting the
metabolite densities given by equation [13] or [19] shows that individual enzymes evolve target binding on exponential fitness
landscapes,

f(�Gi) ⇠ �Ci exp

✓
�Gi

2

◆
, (91)

where �Gi = log(Ki/K0) is the reduced free energy of binding, f(�Gi) = �(�G) � �(�Gi,min) is the growth di↵erence to
the protein state of strongest binding, and Ci is a constant. This form is similar to the biophysical fitness landscapes of
viable proteins discussed in ref. (58).

Numerical simulations

Numerical computations were performed using Python. Equations [6], [3] and [1] were used to construct optimal balanced
growth states of stochastically parameterized metabolic models from iteration starting conditions (J`�1, J`). Iteration start-
ing conditions were varied numerically using the Broyden–Fletcher–Goldfarb–Shanno algorithm to match a nutrient-rich
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environment (Fig. 1 – 4, S2 – S4), or match an otherwise defined environmental nutrient concentration (Fig. 3, orange
points). Subsequently, the ratio J`�1/J` was reduced to construct optimal balanced growth states under nutrient limitation.
In case of the branched metabolic network, also the metabolite concentration ⇢N was varied numerically for each ratio
J`�1/J` using the same algorithm to ensure a constant environmental nutrient concentration ⇢

N
1 under nutrient limitation of

the C branch. Time evolutions of the feed-forward regulated metabolic cascades (Fig. 6, Eqs. [79] and [80]) were computed
by means of Euler’s method. The code required to construct optimal balanced growth states and all figures displayed in the
manuscript is available online in the following repository: https://github.com/laseeg/ResourceAllocation.

Cytoplasmic density a↵ects optimal resource allocation

Throughout the whole paper, we assume that the protein mass density of the cell is approximately 400 gL�1, independent of
environmental conditions. This assumption is in line with experimental observations (1, 26–28), which indicate an approx-
imately constant cellular dry mass density under nutrient limitation. However, literature estimates of the cellular protein
mass density vary, and we can not exclude that the composition of the cell varies under nutrient limitation which may lead
to a modified biosynthetic protein density at constant dry mass density, or exclude that cellular dry mass density changes
within the margins of experimental accuracy. A recent study has proposed potential underlying mechanisms to a constant
intracellular protein density based on a model of cellular self-replication similar to the one we present here (67). Simultaneous
optimization of protein density and proteome allocation under a nutrient limitation may be feasible but lies beyond the scope
of this paper.
Generally, we predict that cells exhibit higher optimal metabolite mass fractions and lowered mean enzyme saturation at
lowered protein mass density in the nutrient-rich regime. The metabolite mass fraction changes in proportion to the square-
root fold change in protein mass density. The same behavior is expected under a nutrient uptake constraint, which concerns
�1. Thus, changes in resource allocation induced by changes in protein mass density are likely negligible in comparison to
the predicted changes due to di↵erences in biochemical quality q at constant protein mass density. Only a constraint on j1

(but unconstrained �1 relative to all other metabolic proteins in the cell) qualitatively yields a di↵erent behavior. In this
case, both the cellular metabolite mass fraction and mean enzyme saturation would increase in the nutrient-poor regime
with decreasing biosynthetic protein mass density.
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Figure S1: Optimal metabolic states can be constructed iteratively.

(A) For a two-enzyme chain, the optimal metabolic state in a given nutrient environment ⇢1 can be determined analytically (33). Here we construct
optimal metabolic states of longer chains, by iteratively adding an enzyme to the chain that produces the previous environmental nutrient.
Suppose all growth-optimal fluxes J of a chain of length ` are known. We show (SI) that a new growth-optimal set of fluxes can be constructed by
adding a single new flux J 0

0 to the chain and finding a suitable concentration of the new environmental nutrient ⇢00. Such an extension of the chain
defines a protein mass of the newly added enzyme M 0

1, and a↵ects the metabolite mass concentration of the previous environmental nutrient ⇢01, as well
as the required mass of the consuming enzyme M 0

1, but does not a↵ect further downstream metabolite mass concentrations or enzyme masses, making
the problem analytically tractable.
(B) The optimal metabolic state of an exemplary short chain (left, black) and the optimal state of the corresponding elongated chain (right, shaded) are
shown next to each other for comparison. For simplicity, we illustrate a cascade with equal substrate a�nities Ki = 0.1 and e�ciencies max

i = 1 h�1 for
all enzymes. A system of five equations can be solved for the five modified or new state variables J 0

0, M
0
0, ⇢

0
0, M

0
1 and ⇢01. All other fluxes, saturations,

and masses are conserved under this elongation. Instead of enzyme masses Mi, dimensionless enzyme mass fractions Mi/MP are shown. Light gray bars
represent unchanged enzyme masses before rescaling due to the change of MP ! M 0

P , caused by the added mass M 0
0 + M 0

1 � M1. Arrows indicate
changes in the metabolite mass concentration ⇢01 and enzyme mass M 0

1 caused by adding a metabolite-producing reaction with index i = 0. The resulting
patterns in fluxes, saturation, and expression can be understood through the cost of metabolite production �i. The cost reflects how many proteome
resources are needed to produce a given metabolite.
For physiological chain parameters, the cost of metabolite production is well approximated by the proteome fraction upstream of the reaction of interest.
It increases as a function of position. Thus, the optimal metabolite concentration decreases with position. The resulting gradient is well-approximated
by (Ki)�1/2 (curved dashed line). At the same time, dilution of these metabolites induces gradients in mass fluxes. Both gradients in flux and enzyme
saturation together result in a very weak gradient in enzyme mass fractions along the metabolic chain. Equal allocation to all five enzymes is shown as a
horizontal dashed line for comparison.
(C), (D) Changes in metabolic state variables for the perturbation of a growth-optimal state in a single flux or metabolite concentration, as discussed in
the main text. (C) Upon a variation that increases flux J2 in comparison to the growth-optimal state, the metabolite concentration ⇢3 increases, whereas
⇢2 decreases. At the same time, the enzyme masses required for these fluxes and metabolite concentrations in steady state, change for enzymes 2 and
3. In the optimal state, the total proteome mass must remain unchanged for a small variation in any single flux. (D) A concerted variation of all fluxes
upstream of metabolite 3 leads to an isolated change in ⇢3. All enzyme masses upstream increase, whereas the mass M3 is reduced. In the optimal state,
the total proteome mass must remain unchanged for a small variation in a single metabolite concentration. In all panels, increases are shown in bright
red, whereas decreases are shown in dark red.
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Figure S2: Model cells exhibit physiological properties.

An ensemble of 5000 linear chains of enzymes was parameterized by drawing individual enzyme a�nities and e�ciencies from log-normal distributions with
physiological mean and variance informed by measurements of Bar-Even et al. (37). The environmental nutrient concentration was set to ⇢1 = 1000K1

to reflect a nutrient-rich environment.
(A) Cells parameterized in this manner exhibit physiological growth rates between 0.5 h�1 and 5 h�1.
(B) The geometric mean of scaled intracellular metabolite concentrations (⇢i/Ki for i = 2, . . . , `) in physiologically parameterized model cells matches
physiological estimates: enzymes are typically operating above their K, but not at exceedingly high substrate concentrations. Thus, values between 1
and 100 are deemed physiological.
(C) Cumulative metabolite mass fraction of all metabolite species in a cell. Typically, metabolites contribute on the order of 10% of the proteome mass
to the total dry mass in a cell (from BNID: 101436). A small fraction of physiologically parameterized cascades exhibit unphysiologically large metabolite
mass fractions, exceeding the single percent range. We hypothesize that this result - as well as a relatively high average saturation of enzymes in our
model - may stem from neglecting additional growth costs associated with metabolites in a real cell.
(D) In a typical bacterial cell, the largest single proteome fraction is given by the ribosome and constitutes about 30% of the cellular proteome. A small
fraction of physiologically parameterized cascades exhibit unphysiologically large largest proteome mass fractions.
(E) Inactive proteome fraction predicted from the simplified resource allocation pattern [45] and obtained from optimal balanced growth states in
physiologically parameterized cascades in the nutrient-rich regime.
(F ) Predicted, representative nutrient dose-response functions for physiologically parameterized chains with a regulatory constraint on nutrient uptake
limiting uptake overexpression to 5-fold (colored thin lines), are well approximated by a Monod-function with KMonod = K1/10 (black solid line). The
nutrient-rich regime is separated from the nutrient-poor regime by a growth reduction of �max

1 + ✏ (on average at the black dashed line), which typically
corresponds to ⇢1 ⇡ K1.
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Figure S3: A nutrient uptake constraint increases the costs of metabolite production.

(A) Unconstrained optimal resource allocation leads to non-physiological overexpression of uptake proteins under nutrient limitation (black, dashed).
This ultimately leads to a cell consisting solely of nutrient-uptake enzyme. In contrast, we constrain uptake protein expression (blue) at low nutrient
concentrations. The constraint was chosen such that it mimics unconstrained optimal resource allocation at high growth rates and exhibits the same
Hill-like shape (SI).
(B) Growth is reduced in a Monod-like fashion in response to nutrient limitation for both unconstrained (black) and constrained (blue) overexpression of
the uptake protein, with a Monod-constant on the order of the nutrient a�nity of the uptake protein. The Monod-like growth response results mainly
from the Michaelis-Menten kinetics of the nutrient uptake reaction but is modulated by the uptake expression change, as well as the increasing overall
e�ciency of nutrient conversion under nutrient limitation.
(C) When uptake expression is not constrained, the cost of metabolite production �?

i increases several-fold along the metabolic chain (dark blue). It is
closely approximated by the cumulative upstream proteome fraction. When the nutrient uptake is reduced below its optimal level, all costs increase (cyan
dots). The additional cost is the same for all enzymes (�?

0 ). While the cost of metabolite production still increases monotonously, relative changes are
reduced. When accounting for di↵erences in q, this monotonous increase in cost along the chain leads to a monotonous gradient in metabolite saturations
along the chain. As relative gradients in cost flatten upon nutrient limitation, concentration gradients flatten. This leads to a position-dependent fold
change in metabolite concentration upon nutrient limitation.
All panels illustrate a single, representative, physiological parameterization of a heterogeneous chain of length ` = 20.
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Figure S4: Position and biochemical quality-based predictions are accurate for individual enzymes.

(A), (B) Analytical maps of optimal scaled metabolite concentrations and expression levels. (C), (D) Corresponding maps of optimal scaled metabolite
concentrations and expression levels for three individual model parameterizations. (E), (F ) To quantify the residual variability, unexplained by position and
quality, we rescale growth-optimal concentrations and expression levels according to our theory by q. The normalization of q ensures that the mean value
of all qi is one - this enables a direct comparison of unscaled patterns (green) and scaled patterns (black). Both are shown for a single parameterization of
the model cell (shown in the third line of C, D, lines). Distributions of scaled metabolite concentrations and expression levels before and after rescaling by
q and ✏ in nutrient-rich and poor environments from the ensemble of physiologically parameterized chains are shown as violins. To conserve the mean of
each distribution and allow for a direct comparison of both scaled and un-scaled variables ✏̂ ⌘ ✏/h✏i was used for rescaling. Our theory reduces the squared
residuals per enzyme of the log concentrations in the nutrient-rich regime by a factor 40, in the nutrient-poor regime by a factor of 6, and the squared
residuals of the log expression levels by 50- and 5-fold respectively. (G) Distributions of metabolite production costs in an ensemble of physiologically
parameterized chains as a function of enzyme position. The solid line corresponds to the estimate of �?

i = (i� 1)/`. Black dots denote the means of the
shown distributions. (H) Correlation between enzyme quality and expression fold change upon severe nutrient limitation for all individual enzymes of the
ensemble (excluding nutrient uptake enzymes).
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