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Abstract 

Molecular control of recovery after exercise in muscle is temporally dynamic. A time course of biopsies around 

resistance exercise (RE) combined with -omics is necessary to better comprehend the molecular contributions 

of skeletal muscle adaptation in humans. Vastus lateralis biopsies before and 30 minutes, 3-, 8-, and 24-hours 

after acute RE were collected. A time-point matched biopsy-only group was also included. RNA-sequencing 

defined the transcriptome while DNA methylomics and computational approaches complemented these data. 

The post-RE time course revealed: 1) DNA methylome responses at 30 minutes corresponded to upregulated 

genes at 3 hours, 2) a burst of translation- and transcription-initiation factor-coding transcripts occurred 

between 3 and 8 hours, 3) global gene expression peaked at 8 hours, 4) ribosome-related genes dominated 

the mRNA landscape between 8 and 24 hours, 5) methylation-regulated MYC was a highly influential 

transcription factor throughout the 24-hour recovery and played a primary role in ribosome-related mRNA 

levels between 8 and 24 hours. The influence of MYC in human muscle adaptation was strengthened by 

transcriptome information from acute MYC overexpression in mouse muscle. To test whether MYC was 

sufficient for hypertrophy, we generated a muscle fiber-specific doxycycline inducible model of pulsatile MYC 

induction. Periodic 48-hour pulses of MYC over 4 weeks resulted in higher muscle mass and fiber size in the 

soleus of adult female mice. Collectively, we present a temporally resolved resource for understanding 

molecular adaptations to RE in muscle and reveal MYC as a regulator of RE-induced mRNA levels and 

hypertrophy. 
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Introduction 

Molecular alterations after a bout of exercise in skeletal muscle precede adaptation and ultimately contribute to 

a change in phenotype 1-7. Initial time course work in humans that utilized ≥3 post-exercise muscle biopsies 

established that the 2–4 hour recovery time point is ideal for studying targeted changes in mRNA levels after a 

bout of exercise 8-11. Others that leveraged more comprehensive temporal profiling of global gene expression 

12-14 demonstrated that many genes have delayed and/or biphasic responses to exercise in muscle that extend 

well beyond 4 hours. Recent work in skeletal muscle further emphasizes that gene expression data from a 

single time point after exercise is limiting when trying to capture the complex and dynamic nature of the 

adaptive response, and could even lead to inaccurate or misleading conclusions 15. It is also important to 

consider the effects of the muscle biopsy 11 and circadian rhythm 14 in human exercise studies; these are 

typically unaccounted for. There is a critical need for temporally resolved and biopsy-only controlled 

investigations to explore and understand the molecular responses to resistance exercise since muscle mass 

and/or function is strongly associated with all-cause mortality 16-19. A detailed understanding of the most 

influential molecular factors during the post-resistance exercise recovery period will help focus efforts at 

developing targeted therapies against muscle mass loss and/or enhancing hypertrophic responsiveness to 

exercise.  

 

Several seminal 20-22 and recent studies 23,24 suggest that the transcription factor c-Myc (referred to as Myc or 

MYC for mouse and human genes, respectively) is a key component of skeletal muscle hypertrophic 

adaptation to loading in animals. Our work using human skeletal muscle biopsies after a bout of resistance 

exercise (RE) 25, as well as meta-analytical information that combines numerous human muscle gene 

expression datasets during the recovery period after exercise 26, indicates that MYC is highly responsive to 

hypertrophic loading 27. MYC protein accumulates in human muscle following a bout of RE 28-31 as well as in 

response to chronic training 32. Its expression may also differentiate between low and high hypertrophic 

responders 32. Myc is induced cell-autonomously in myotubes by electrical stimulation in vitro 33 and is strongly 

upregulated in murine myonuclei during mechanical overload 24. MYC protein localizes to myonuclei during 

loading-induced hypertrophy 20,21, is considered pro-anabolic 34-36, and can drive muscle protein synthesis and 

ribosome biogenesis in skeletal muscle 31,37-39. Loss of MYC results in lower muscle mass in preclinical models 

40,41. It is also estimated to target ~15% of the genome in multiple species 42. Still, the magnitude of its 

contribution to the exercise response in humans is not well-understood 43, nor its sufficiency for muscle 

hypertrophy. 

 

The current investigation details the global gene expression response to a bout of RE after 30 minutes, 3-, 8-, 

and 24-hours using RNA-sequencing (RNA-seq) in human skeletal muscle biopsy samples. We reveal the 

effect of the muscle biopsy and inherent circadian rhythmicity using a biopsy-only timepoint and feeding-

matched control group. We then analyzed the human muscle methylome at 30 minutes after RE and combined 
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these data with the transcriptome response to RE using a novel -omics integration approach. Integration of 

methylomics and transcriptomics sheds light on the molecular regulation of gene expression during recovery 

from exercise. With our transcriptome data, we infer the major transcriptional regulators of the exercise 

response using in silico ChIP-seq 44 that we have previously validated in skeletal muscle with a genetically 

modified mouse 24,27. Our molecular and computational analyses identified MYC as one of the most influential 

transcription factors on the exercise transcriptome throughout the time course of recovery from RE. Muscle-

specific Myc overexpression data from the plantaris 24 and soleus 27 of mice was used to reinforced the human 

exercise data. We employed a genetically modified mouse model to induce MYC in a pulsatile fashion 

specifically in skeletal muscle over four weeks to determine if MYC is sufficient for hypertrophy. Our genetically 

driven pulsatile approach avoids potential negative effects of chronically overexpressing a hypertrophic 

regulator 45,46 and more closely mimics the transient molecular effects of exercise in skeletal muscle 5-7,47. This 

work collectively illustrates the molecular landscape with temporal resolution after a bout of RE and places 

MYC at the center of the skeletal muscle RE response in mice and humans. 
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Results 

Biopsy time course at rest and the transcriptional regulation of circadian genes in human skeletal 

muscle 

For the analysis of RNA-seq data, we focused on protein-coding genes. The number of protein-coding 

differentially expressed genes (DEGs, adj. p<0.05) during the time course of recovery (Figure 1A) in the 

repeated biopsies control group (CON, n=5) relative to the Pre time point (morning biopsy; Figure 1A) was: 30 

minutes - 0 upregulated, 1 downregulated; 3 hours - 12 upregulated, 30 downregulated; 8 hours - 55 

upregulated, 75 downregulated; and 24 hours - 0 upregulated, 1 downregulated (Figures 1B & D). The biopsy 

timepoints, and their naming are chosen to precisely correspond to the post RE timepoints for the RE group 

(Figure 2A). The Pre muscle biopsies were taken 15 minutes prior to the 45-minute control protocol (equivalent 

to the 45 min of resistance exercise in RE group). Thus, in practice, the biopsy named 30 minutes post is taken 

90 minutes after the Pre biopsy (15 min plus, 45 min, plus 30 min), the biopsy named 3 hours is taken 4 hours 

after the Pre biopsy, and so on. Previous work involving human skeletal muscle biopsies revealed the 

regulation of circadian genes over 24 hours 48. We found that NR1D1 (REVERB𝛼) (adj. p=0.01x10-5), PER1 

(adj. p=0.0008), and PER2 (adj. p=0.07x10-7) were lower at the 3-hour timepoint (Figure 1C). At 8 hours, 

NR1D2 (REVERBβ) (adj. p=0.005), PER1 (adj. p=0.03x10-6), PER2 (adj. p=0.007x10-10), and PER3 (adj. 

p=0.007x10-3) were lower (Figure 1C). KLF15, a circadian-regulated mediator of lipid metabolism 48, was lower 

at the 3-hour (adj. p=0.0001) and 8-hour timepoints (adj. p=0.03x10-12) in the CON group (Figure 1C). 

PPARGC1β, another circadian-controlled gene 49, was upregulated at 3 hours (adj. p=0.048) and 8 hours (adj. 

p=0.01; Figure 1C). Also worth mentioning is that FOXO3, a central regulator of autophagy and mass in 

skeletal muscle 50-52, was lower at 3 hours (adj. p=0.0004) and 8 hours (adj. p=0.007x10-3, Figure 1C). SESN1, 

which also regulates muscle mass 53, was lower at 3 hours (adj. p=0.003) and 8 hours (adj. p=0.008x10-3) 

(Figure 1C).  

 

To more broadly investigate what specific functions were being regulated as a consequence of our CON 

intervention, we ran background corrected pathway enrichment analysis using Enrichr with the 2023 gene 

ontology (GO) database as our cross reference (GO: biological process & molecular function) 54-58. Collectively, 

no significantly upregulated pathways were detected (Figure 1E). A few negatively regulated pathways were 

detected, indicating a reduced insulin stimulus and reduced transcriptional speed (Figure 1F-G). Although 

significantly enriched, only 2-15 genes were coding for each pathway, suggesting the effect was small. 

Nevertheless, it should be noted that the significantly downregulated pathways are almost exclusively driven by 

DEGs expressed at 3 and 8 hours. In addition to circadian regulation, DEGs across time points in CON could 

be related to feeding since the Pre, 30 minutes, and 24 hours biopsies were taken 1, 2 and 2 hours after 

feeding, respectively, while the biopsies at 3 and 8 hours were both taken approximately 5 hours after food 

intake (Figure 1A). Thus, our finding of slightly downregulated insulin stimulation and transcription at 3 and 8 

hours seems intuitive. 
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Differentially expressed genes (DEGs) peaked 8 hours after resistance exercise (RE) relative to Pre 

Following an acute bout of resistance exercise (RE, n=8, Figure 2A), the number of DEGs relative to the Pre 

time point (adj. p<0.05) was: 30 minutes - 64 upregulated, 5 downregulated; 3 hours - 1281 upregulated, 1298 

downregulated; 8 hours - 1764 upregulated, 1253 downregulated; and 24 hours - 751 upregulated, 445 

downregulated (Figure 2B). As anticipated, we noted substantial expression changes in genes previously 

recognized as responsive to RE and/or important for muscle remodeling (Figure 2C) 25,26,59,60. Of all 

upregulated genes across the 24-hour recovery period in the RE group, 46% were differentially expressed at 

two or more time points while the proportion was 34% for downregulated genes. In total, 2399 upregulated and 

2126 downregulated unique DEGs were identified throughout the 24-hour recovery period (Figure 2D).  

 

The integrated 24-hour transcriptome time course of recovery after acute RE 

Using the two lists of all DEGs from across the entire 24-hour recovery period after RE (up- or down-regulated) 

relative to Pre generated in Figure 2D, we ran background corrected pathway analysis as described above 54-

58. For the 2399 up-regulated DEGs, 44 biological processes (adj. p<0.05) were identified, with a large portion 

of the pathways in the 24-hour post-RE window relating to transcription, translation, and the synthesis of new 

ribosomes. After exclusion of pathways with large overlaps in underlying DEGs, the top (adj. p-value ranked) 

processes were ribosome biogenesis (GO:0042254), activation of protein localization to telomere 

(GO:1904816), inhibition of apoptosis (GO:0043066), activation of transcription by RNA polymerase II 

(GO:0045944), activation of intracellular signal transduction (GO:1902533), and response to unfolded protein 

(GO:00066986) (Figure 3A). Fourteen molecular function pathways were also identified (adj. p<0.05). Of the 

molecular functions identified, RNA binding (GO:0003723), cadherin binding (GO:0045296), ubiquitin protein 

ligase binding (GO:0031625), purine ribonucleoside triphosphate binding (GO:0035639), protein phosphatase 

2A binding (GO:0051721), and MAP kinase tyrosine/serine/threonine phosphatase activity (GO:0033550) were 

the top pathways, again excluding pathways with large overlap (Figure 3B).  

 

Next, we identified at which timepoint all DEGs within each specific pathway were differentially regulated 

relative to Pre. The number of DEGs at each timepoint was then expressed as a percentage of the entire 

pathway response (e.g. 61 DEGs in our dataset were found to regulate ribosome biogenesis, and of these 61 

genes, 57 – or 93% - were expressed following 8 hours of recovery). Plotting these values for all time points 

relative to Pre thus reveals a 24-hour temporal pattern of each pathway following acute RE (Figure 3D & E). 

None of the most highly enriched pathways within our analysis peaked at 30 minutes post-exercise. However, 

following a targeted analysis of enriched pathways with peak expression at 30 minutes, we observe that growth 

factor- and glucocorticoid responses are strongest at 30 minutes post-RE, as well as stress response signaling 

and mRNA catabolism (Supplemental Figure 1A). The peak in transcripts coding for mRNA catabolism 30 

minutes after RE (BTG2; adj. p=0.005, ZC3H12A; adj. p= 0.003, ZFP36L1; adj. p= 0.01, and TOB1; adj. p= 
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0.0005) precedes any marked downregulation of DEGs, suggesting major catabolism of mRNA occurs in 

muscle following upregulation of anti-proliferative- and mRNA-decaying enzymes.  

 

At 3 hours post RE relative to Pre, we observed two major upregulated pathways peaking: response to 

unfolded proteins (20/44 genes; Figure 3A & D) and MAP kinase phosphatase activity (6/8 genes; Figure 3B & 

E). The former of the two is primarily driven by genes coding the heat shock protein family, such as DNAJA1 

(adj. p= 8.5x10-7 at 3 hours) and HSPA1A (adj. p= 8.5x10-5 at 3 hours). The latter, MAP kinase phosphatase 

activity, is driven by genes encoding the dual specificity phosphatase protein family (DUSP), responsible for 

dephosphorylation of tyrosine/serine/threonine sites (DUSP2, 4, 5, 8, 10 & 16, adj. p=0.05 at 3 hours). DEGs 

within this pathway peak at the 3-hour timepoint, with only two remaining elevated at 8 hours. This pattern was 

also reflected when mapping the fold change of DEGs within each pathway, rather than the number of DEGs, 

across the 24-hour recovery (Figure 3G-H). A clear peak in genes encoding phosphatase activity directed 

towards the MAP kinase superfamily early during RE recovery may be a response triggered by the rapid 

severalfold increase in protein phosphorylation of mTOR-targets such as S6K1 and 4EBP1 occurring at around 

60-90 minutes post RE 61,62. According to this previous work, the rapid rise in anabolic signaling via protein 

phosphorylation at this time point is then followed by a swift decrease, with some signaling proteins showing 

close to baseline phosphorylation levels at 3 hours of recovery.  

 

Several upregulated pathways are overrepresented to a similar degree at 3 and 8 hours of recovery such as 

ubiquitin protein ligase binding (70/259 genes; GO:0031625; Figure 3B, E & H), activation of transcription by 

RNA polymerase II (171/745 genes; GO:0045944; Figure 3A, D & G), and activation of intracellular signal 

transduction (111/446 genes; GO:1902533; Figure 3A, D & G), pointing to increased protein turnover. At the 

same time, inhibition of apoptosis (104/385 genes; GO: 0043066; Figure 3A, D & G) was also upregulated, 

which may be a direct response to the increased transcriptional emphasis on the ubiquitin system. The post-

translational modifications mediated by ubiquitination of pro-apoptotic Bcl-2 and BH3-only proteins have been 

proposed to be crucial for cell survival 63. For instance, the transcript RNF144B coding for the E3 ubiquitin 

ligase IBRDC2, which targets the Bcl-2 ‘executioner’ Bax for ubiquitination 64, is significantly upregulated at 3 

hours only (adj. p=2.8x10-7).  

 

Following the burst of transcription- and translation initiation-coding transcripts at 3 and 8 hours, the mRNA 

landscape shifted toward the ribosome. At 8 and 24 hours of recovery, regulation of ribosome biogenesis 

(61/151 genes; GO:0042254; Figure 3A, D & G) and RNA binding (340/1289 genes; GO:0003723; Figure 3B, 

E & H) appear to be the dominant pathways. Within the RNA binding pathway, genes supporting ribosome 

assembly, posttranslational control of RNA, splicing via RNA-binding protein family (e.g. RBMX, RBM15, 

RBM39), heterogeneous nuclear ribonucleoproteins (e.g. HNRNPU, HNRNPR, HNRNPC) and zinc fingers 

(e.g. ZNF326, ZNF579, ZNF697) were differentially expressed. Moreover, several transcripts coding ribosome 
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biogenesis factors (e.g. BMS1 and LTV1) as well as ribosomal assembly and transport proteins (e.g. NIP7, 

NOP14, RPF2) composed the highly enriched ribosome biogenesis pathway (GO:0042254).  

 

Pathways enriched within the 2126 down-regulated DEGs were considerably fewer compared to the up-

regulated genes (Figure 3C, F & I). Here, five biological processes and 13 molecular functions were down-

regulated (adj. p<0.05). Out of the five significant biological processes, four were related to transcription. The 

majority of DEGs within these transcription-related pathways were classified as inhibitors of transcription, 

meaning RE likely acts on transcription by up-regulating activation (Figure 3A) and by repressing its 

suppressor genes (Figure 3C) to a similar extent. In addition to transcription, histone H3 methyltransferase 

activity was one of the pathways found to be significantly downregulated at 3 and 8 hours following RE using a 

targeted analysis of these specific time points (Supplemental Figure 1B). 

 

Specifically focusing on genes that were upregulated early after RE and downregulated later relative to Pre 

(Cluster 4; Figure 2D), we found that some of the negative regulators of RNA Pol II transcription (GO:0045892, 

GO:0000122) followed this pattern - upregulated 30 minutes and/or 3 hours while downregulated later at 8 and 

24 hours (Supplemental Figure 1C). Nuclear receptor subfamily 4 group A genes NR4A1 and NR4A2 were 

among the 10 transcripts in the sequence-specific DNA binding pathway (GO: 0043565) that most clearly 

followed a biphasic expression pattern (up early, down late; Supplemental Figure 1D). Related to NR4A1 and 

NR4A2, NR4A3 showed similar biphasic tendencies, being upregulated at 3 hours (4.93 logFC, adj. p<0.05) 

and numerically downregulated at 24 hours relative to Pre (-0.78 logFC, adj. p>0.05; Supplemental Figure 1D). 

This finding is in agreement with previous reports suggesting NR4A family transcripts are highly responsive 

early during exercise recovery 26,65. Others have also shown that NR4A3 is upregulated by seemingly opposing 

stimuli – following both acute exercise as well as long term inactivity 26,65. As many acute exercise interventions 

only sample muscle for 3-5 hours during recovery, a delayed depression of the NR4A3 gene (at 24 hours into 

recovery) due to the biphasic nature of the NR4A gene family (Supplemental Figure 1D) may be 

underappreciated. An interpretation could be that exercise ubiquitously drives NR4A expression, while in fact, 

the post-exercise induction and repression could be balanced, and this pattern may have a specific biological 

function pertaining to exercise adaptation. Regardless, the existence of biphasic genes within 24 hours of RE 

recovery highlights the importance of considering muscle biopsy sampling time points when interpreting data.  

 

Changes to the muscle DNA methylome at 30 minutes of recovery after RE associates with mRNA 

responses at 3 hours 

Binding and expression target analysis (BETA) is a multi-omics integration method for understanding 

transcriptional regulation 66. We recently adapted this method for combining reduced representation bisulfite 

sequencing (RRBS) data with RNA-sequencing data to understand how DNA methylation regulates the 

transcriptome during an acute loading stimulus in mice 67. Briefly, BETA considers relative methylation status 
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(both hypo- and hyper-methylation) in relation to transcription start sites using weighted scores to infer 

transcriptional regulation, which is then combined with transcriptomic data for validation. In our recent work, 

myonuclear DNA methylation status coincided with changes in myonuclear gene expression as well as the 

acute metabolic responses that occurred during rapid muscle growth, giving us confidence in the validity of 

BETA 67. We leveraged RRBS and RNA-sequencing data in the current study to provide a deeper 

understanding of transcriptional regulation in response to acute RE.  

 

We first used BETA to compare the methylome and transcriptome responses to RE at 30 minutes of recovery 

versus Pre. Combining datasets at this time point revealed <10 genes were likely being regulated at the level 

of methylation. This result seems intuitive since changes in DNA methylation typically precede changes in 

gene expression 68. As such, we combined the 30 minutes methylome data with the transcriptome response to 

RE. Changes to the methylome 30 minutes after RE were strongly predictive of the changes observed in gene 

expression at 3 hours after RE versus Pre (Figure 4A). This analysis inferred significant methylation control of 

936 upregulated genes (p=0.000007). Of upregulated genes with a coordinated methylome and transcriptome 

response, TNFRSF12A (FN14) was the most significant (p=0.000035; Figure 4B). Upregulation of the TWEAK 

receptor Fn14 occurs during the muscle hypertrophic response to exercise specifically in fast-twitch type 2 

fibers of humans 69,70. This role for FN14 induction during muscle adaptation could be related to non-canonical 

NF-𝜅B pathway activation 71. Furthermore, inhibition of Fn14 in human myotubes increases C/EPβ and MuRF 

72. Alternatively, mechanistic work in rodents suggests Fn14 knockout in muscle fibers improves endurance 

exercise capacity and inhibits neurogenic muscle atrophy 73, but ablation in satellite cells attenuates muscle 

regeneration 74. More gain and loss of function studies are needed to clarify the role of Fn14 in hypertrophic 

muscle adaptation 75,76. Other notable genes with a coordinated upregulated response to RE include: RUNX1 

(Figure 4B), which regulates muscle mass 77 and is enriched in myonuclei during rapid load-induced 

hypertrophy 24; RBM10 (Figure 4B), an RNA splicing factor that we previously showed is altered at the 

methylation level in muscle with late-life hypertrophic exercise in mice 76,78; and NR4A3 (Figure 4B), among the 

most exercise-responsive genes in skeletal muscle that controls metabolism 26. We previously reported that 

promoter region DNA hypomethylation of Myc in myonuclei 79 coincided with strong upregulation of myonuclear 

and tissue Myc levels during acute mechanical overload in mice 24,79. BETA also suggested coordinated 

methylation and transcriptional regulation of MYC by RE in human muscle here (Figure 4B). Evidence in 

cancer cells indeed suggests that MYC transcription is regulated by DNA methylation status 80-84, in addition to 

regulation by other epigenetic layers 85,86 and G-quadruplexes 87. Of the 936 methylation-controlled 

upregulated genes predicted by BETA, 155 were coding for five biological processes as suggested by pathway 

enrichment analysis (Figure 4C).   

 

BETA integration of 30-minute methylome responses with 3-hour transcriptome responses to RE was not 

significant overall for downregulated genes. However, gene-by-gene analysis revealed methylation control of 
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widespread downregulation of HOX genes - HOXA2, HOXA3, HOXA5, HOXA9, HOXA11, HOXA13, HOXB3, 

HOXB4, and HOXD8 (Figure 4D). In muscle, HOX genes are highly regulated by DNA methylation 88, which 

serves as methylation hotspots during aging, and are affected at the methylation and mRNA levels by physical 

activity in humans 89,90. We previously reported methylation changes around HOX genes in myonuclei during 

hypertrophy 91 and with exercise during aging in muscle 78. HOX genes control muscle development 92,93, but 

little is known about their role in RE adaptation in adult skeletal muscle.  

 

MYC governs the late stage RE response via several processes 

Due to the overall dominance of upregulated genes coding for ribosomal biogenesis and RNA-binding (Figure 

3A & B), we asked which transcription factors may be steering transcription toward these pathways. To answer 

this, we first ran an epigenetic Landscape In Silico deletion Analysis (LISA) 44 on all upregulated genes across 

the 24 hour time course. We previously validated the accuracy of this computational approach for Myc in 

skeletal muscle 24,27. The five top transcription factors influencing the totality of the 24-hour recovery period 

were NEFLA, BCL3, FOS, MYC, and ATF3, respectively (Figure 5A). Since ribosome-related gene expression 

primarily dominated the late-stage recovery at 8 and 24 hours (Figure 3D, E, G & H), we modeled which 

transcription factors were controlling transcription for DEGs upregulated at the later time points of recovery. 

The influence of MYC on transcription coincided with the transcriptome shift towards the ribosome (Figure 3A, 

B & Figure 5B, H). MYC was the number one transcription factor for genes expressed in the later stages of 

recovery - genes exclusively expressed at 8 and 24 hours relative to Pre (Figure 5B).  

 

Next, we compared the human 24-hour post-exercise transcriptional landscape to our previously published 

data sets on MYC-overexpressing mice 24,27. Briefly, for these experiments, we generated a doxycycline-

inducible muscle-specific model of pulsed MYC overexpression, called HSA-MYC (human skeletal actin 

reverse tetracycline transactivator tetracycline response element “tet-on” MYC) 24,27. Twelve hours of 

doxycycline in drinking water, followed by 12 hours of non-supplemented water, causes upregulation of MYC 

protein in skeletal muscle 27. MYC returns to baseline levels after 24 hours of drinking un-supplemented water 

(Supplemental Figure 2). Thus, we profiled the transcriptome in the plantaris and soleus muscles 12 hours 

after doxycycline administration 24,27. Of the 2399 up-regulated DEGs induced by RE over 24 hours, 316 

upregulated genes overlapped the response elicited in the mouse soleus muscle by a single MYC pulse 

(Figure 5; Jones et al.27). Removing the overlapping genes from the human RE response subsequently steered 

the transcriptional landscape away from the ribosome, as indicated by pathway enrichment analysis (GO: 

biological processes) on the remaining 2083 DEGs (Figure 5D). Consequently, using the same pathway 

enrichment analysis on the 316 genes overlapping the human RE response and soleus transcriptome from the 

MYC overexpression data generated pathways largely related to the ribosome (Figure 5F). By contrast, the 

672 DEGs exclusive to the MYC induction mouse mainly regulated pathways associated with acute changes to 

transcriptional and translational speed (Figure 5E). Regulation of similar genes was also evident, albeit to a 
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lesser extent, when overlapping the human RE response to the smaller MYC-mediated transcriptional 

response in the plantaris muscle (Supplemental Figure 3; Murach et al. 2022 24).  

 

Beyond regulation of the ribosome, other genes up-regulated by both MYC and RE included those involved in 

actin folding by CCT/TriC (CCT3, CCT7, CCT4, CCT6A, CCT8, CCT5, CCT2, TCP1), a chaperonin complex 

that controls sarcomere assembly and organization in striated muscle 94,95. Metabolism of nucleotides (AMPD2, 

AK6, GART, IMPDH1, IMPDH2, NME1, NME2, PPAT, UCK2) and autophagy genes (ATG3, HSF1, HSPA8, 

HSP90AA1, PGAM5, TOMM5, TOMM22, TOMM40) were also up-regulated. Down-regulated genes shared by 

RE and MYC induction included DNMT3A, a regulator of DNA methylation in skeletal muscle96,97, and genes 

involved in ErbB signaling (CAMK2G, CDKN1B, ERBB3, GAB1). Taken together, these data suggest that MYC 

induction induced by acute RE in untrained humans may influence the muscle transcriptome in part by 

directing transcriptional machinery toward the formation of new ribosomes and/or ribosome specialization via 

variation in ribosomal proteins. The latter is an emerging but under-studied area of muscle hypertrophic 

regulation that deserves further consideration 98. MYC may also regulate several other processes involved in 

skeletal muscle exercise adaptation including proper actin folding, autophagy, and DNA methylation. 

 

Pulsed muscle fiber-specific MYC induction in mice is sufficient for soleus muscle hypertrophy 

Our data so far suggests that MYC is a major transcriptional regulator during the acute recovery from RE in 

human skeletal muscle. An association between skeletal muscle hypertrophy and MYC-controlled exercise 

responses such as enhanced ribosome biogenesis is well-established 25,32,39,99,100, and inhibiting MYC in 

myotubes blunts ribosome biogenesis and protein synthesis 39. Still, it is unclear whether repeated MYC stimuli 

alone are sufficient to induce hypertrophy. To address this, we utilized our murine doxycycline-inducible 

muscle-specific model of pulsatile MYC overexpression: HSA-MYC 24,27.  

 

We provided doxycycline-supplemented drinking water to 4-month-old female HSA-MYC mice for 48 hours, 

followed by five days of un-supplemented water for four weeks (five total MYC treatments in n=9 animals). 

Doxycycline-treated littermate HSA mice were controls (n=7 animals) (Figure 6A). The doxycycline treatment 

strategy is similar to the approach from the Belmonte laboratory for overexpressing Yamanaka factors 

specifically in muscle fibers 101. Furthermore, ~48 hours of MYC induction in muscle approximates MYC 

induction in response to several exercise sessions per week.  

 

Pulsed MYC induction resulted in a larger absolute mass (+12.5%, p=0.002; Figure 6B) and normalized mass 

(+20.7%, p=0.025; Figure 6C) of the soleus muscle relative to controls. The murine soleus muscle contains a 

myosin heavy chain (MyHC) fiber type distribution similar to the human vastus lateralis muscle (~50% MyHC I 

and ~50% MyHC IIa) 27,102,103, which is the muscle from which biopsies were obtained for the current study. The 

weight of other predominantly fast-twitch (2A, 2B, and 2X predominant) mouse hindlimb muscles was not 
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different with MYC induction versus controls (p>0.05) (Figure 6D). Likewise, the body weight of the mice was 

not different between groups (p=0.49, Figure 6E) nor was food intake in a subset of mice (data not shown). 

These data collectively suggest a muscle and/or fiber-type dependent effect of MYC for inducing muscle 

hypertrophy. To further interrogate this growth, we performed immunohistochemistry on soleus muscle (Figure 

6F). We observed no changes in the total amount of fibers within the soleus (Figure 6G), nor did we detect 

major shifts in muscle fiber type distribution (Figure 6H). However, overall (+15.1%, p=0.069) and MyHC I fiber 

cross sectional area (+16.1%, p=0.043) was larger with pulsatile MYC induction relative to controls (Figure 6I). 

A rightward shift in fiber size was also observed (Figure 6J). Fibers expressing MyHC II had a lesser response 

to pulsatile MYC induction, showing +11.6% difference (p=0.22; Figure 6I & K). Our prior work shows that the 

global transcriptional response to a single pulse of MYC is most pronounced in the soleus (~1400 DEGs) 

relative to the plantaris (~500 DEGs) and the quadriceps (<50 DEGs) 24,27, which likely contributes to soleus-

specific mass gains. Future investigations will delve deeper into MYC dynamics across muscles and the 

specific mechanisms by which MYC mediates growth of the soleus. Nevertheless, we provide the first evidence 

that MYC is sufficient for muscle hypertrophy in the myosin fiber types expressed in human skeletal muscle. 
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Discussion 

The 24-hour time course of molecular responses to RE in human skeletal muscle revealed several 

fundamental aspects of exercise adaptation: 1) the DNA methylome response to RE at 30 minutes strongly 

influences global gene expression at 3 hours, 2) a burst of translation and transcription initiation coding 

transcripts occurs between 3 and 8 hours, 3) global gene expression peaks at 8 hours after an RE bout, 4) 

ribosomal-related gene expression dominates the mRNA landscape between 8 and 24 hours during recovery 

after RE, 5) MYC is predicted as a highly influential transcription factor throughout the 24 hour recovery period 

and plays a primary role in ribosomal-related transcription between 8 and 24 hours, and 6) periodic pulses of 

MYC are sufficient to drive muscle growth in the mixed fiber type soleus muscle of female mice.  

 

Two to four hours after RE is typically considered the ideal time to detect changes in gene expression in 

skeletal muscle 8,9,70,104,105. By contrast, our data show that the largest number of DEGs is detected 8 hours into 

recovery. These new findings may influence the design of future RE studies that aim to evaluate gene 

expression and inform when single time-point biopsies should be taken to interrogate specific recovery 

processes (e.g. ribosome biogenesis versus MAPK gene expression versus ubiquitin and apoptotic gene 

expression). Using the same human muscle samples from this study, we previously reported that ribosome 

biogenesis peaks at 3 hours after RE, recovers at 8 hours, then rises again at 24 hours 25. The induction of 

ribosomal-related mRNAs between 8 and 24 hours likely relates to the biphasic increase in rRNA that may 

support translational capacity for muscle growth38,106. To this point, our data reveal unique and sometimes 

multimodal or divergent patterns of gene expression across gene categories over the 24-hour time course of 

recovery from RE. These patterns lend perspective to instances where opposite results in specific gene 

responses at different post-exercise time points are reported.  

 

Previous studies report mixed findings regarding the agreement between methylation and gene expression in 

skeletal muscle with exercise training in humans; the relationship may be weak 107 or relatively strong 108,109. 

With acute exercise, however, it is shown that the acute methylation response may predict mRNA levels when 

specifically evaluating the promoter of exercise-responsive genes 68,110. Using a time course approach with 

high temporal resolution and a novel and holistic -omic integration technique, we show a strong relationship 

between the 30-minute post-exercise global methylome response and the 3-hour post-exercise transcriptome 

of upregulated genes in skeletal muscle from recreationally trained individuals. This relationship may change 

with more structured training, however. For instance, the Myc response to repeated bouts of RE tends to 

become blunted over time 23; this may contribute to hypertrophic response heterogeneity between individuals 

32,43,111,112. BETA analysis predicted MYC transcription to be regulated at the epigenetic level, consistent with 

work in cancer cells 80-84. Our current and previous findings suggest that Myc is regulated by DNA methylation 

status in muscle fibers during hypertrophy79. More work is needed to determine whether epigenetic changes 

underpin lower transcriptional sensitivity of Myc to repeated bouts 22, as well as reduced training 
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responsiveness between individuals 32. Another possibility is that the timing of transcriptional responses to 

acute exercise in the trained state experiences a “phase shift” relative to untrained muscle, and that this is 

related to “priming” by altered DNA methylation. Such a phenomenon was recently described in mouse muscle 

with endurance exercise training 113. There is a need for time course studies in humans evaluating the 

molecular responses to RE in the trained versus untrained state so that correct interpretations can be made 

regarding differential expression of genes (such as MYC) versus differential timing. Regardless, our current 

findings reinforce the evidence for acute exercise responses operating under the control of early methylation 

events 68,114 and support data suggesting that methylation changes are central to exercise training adaptations 

in humans 7,110,115,116. 

 

Our work points to MYC as a key player in controlling hypertrophic adaptation to exercise in skeletal muscle. In 

mice, Myc is actively transcribed and enriched in myonuclei during mechanical overload 24. A single pulse of 

Myc in skeletal muscle markedly alters the transcriptome (soleus>plantaris>quadriceps) 24,27 and shifts the 

DNA methylation landscape 27. In humans, MYC may also act directly on rDNA after RE to influence ribosome 

biogenesis 25, consistent with MYC’s occupation of the rDNA promoter during load-induced muscle hypertrophy 

in mice 100. MYC controls ribosome biogenesis as well as skeletal muscle protein synthesis independent from 

mTORC1 activation 39,117, but its ability to drive muscle growth has been unclear 43,117. It is likely that chronic 

induction of MYC in muscle is detrimental to mass and function, similar to what occurs with prolonged chronic 

mTORC1 activation 45,46. By using a doxycycline-inducible and pulsatile model of MYC induction in skeletal 

muscle, we show for the first time that MYC can promote growth of skeletal muscle mass in the soleus of 

female mice. Our prior and current work suggests this hypertrophy could be due to ribosomal regulation – 

biogenesis and/or specialization 24,27. This larger muscle size may also be attributable to several other 

processes such as actin folding and autophagy. Transcriptome data from MYC induction in the soleus muscle 

indicates that a variety of other processes contribute to hypertrophy since >1300 genes are altered by a single 

MYC pulse 27. Our findings will lead to further detailed investigation on how MYC supports long-term muscle 

anabolism at the molecular, signaling, and cellular level across muscle types, fiber types, sexes, and age. 

 

Collectively, the time course of -omics responses to RE in healthy untrained humans, alongside the repeated 

biopsy control group, is a valuable resource to the skeletal muscle field. Our results define the molecular 

landscape after exercise at high temporal resolution and will help inform the design of future human exercise 

studies. We detail the interplay between the methylome and transcriptome, identify MYC as a key component 

of the RE response, and show that MYC is sufficient for muscle growth. This study complements previous and 

ongoing efforts at defining the acute muscle -omics responses to RE in humans 26,65,118 to uncover novel 

molecular regulators of hypertrophic physical activity. We lay the groundwork for future investigations that will 

further expand on how transcriptional regulators such as MYC control muscle mass and adaptation in skeletal 

muscle.  
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Methods 

Ethical approval 

The regional Ethical Review Board in Linköping (2017/183-31) approved the study protocol for the human 

intervention. The volunteers received oral and written information about the study, and subsequently provided 

their informed consent prior to study enrollment. The study protocol conformed with the Declaration of Helsinki. 

IACUCs at the University of Arkansas (UA, AUP 21038) approved all animal procedures. Mice were housed in 

a temperature and humidity-controlled room, maintained on a 12:12 hour light:dark cycles, and food and water 

were provided ad libitum throughout experimentation. All animals were sacrificed via cervical dislocation under 

deep anesthesia with inhaled isoflurane. 

 

Volunteers 

A subset of thirteen volunteers was chosen for analysis from previously published studies 25,119. Eight 

recreationally active volunteers were analyzed from the RE group, and five from the CON group. The 

volunteers in the RE group had a mean age of 32  5 years, height of 181  9 cm, weight of 83  8 kg, and 

body mass index (BMI) of 25.3  2.0. The corresponding values for the CON group were an age of 30  4 

years, height of 177  5 cm, weight of 85  12 kg, and a BMI of 27.3  3.6. 

 

Experimental protocol  

The experimental protocol has been described elsewhere 25,119. In short, volunteers were instructed to not 

partake in any strenuous physical activity for the legs for three days prior to the intervention. Following an 

overnight fast, subjects consumed a breakfast consisting of a standardized amount of liquid formula supplying 

1.05 / 0.28 / 0.25 grams of carbohydrates / protein / fat per kg of body weight (Resource Komplett Näring, 

Nestlé Health Science, Stockholm, Sweden). Skeletal muscle biopsies were collected from the vastus lateralis, 

using a Bergström needle with manually applied suction 120. Ninety minutes after breakfast, volunteers started 

a 45-minute standardized RE session. The RE session consisted of a short warm-up on a cycle ergometer, 

followed by four sets at 7RM load with two min of rest using both leg press and leg extension machines. 

Muscle biopsies were collected one hour after breakfast (Pre), as well as 30 minutes and three hours after RE 

completion. Immediately following the three-hour biopsy, another portion of the standardized liquid formula was 

administered for lunch to the volunteers (2.1 / 0.56 / 0.5 grams of carbohydrates / protein / fat per kg of body 

weight). Eight hours after RE ended, another muscle biopsy was collected, whereby the volunteers were sent 

home overnight. At home, volunteers were instructed to eat a standard dinner (a balanced meal of 

approximately 25% of a protein source and equal distribution of carbohydrate sources and greens) in the 

evening. Another administered standardized liquid formula breakfast was ingested the following morning 90 

minutes prior to reporting to the laboratory for the final muscle biopsy sampling 24 hours after RE completion 

(breakfast ingested 2 hours prior to biopsy sampling). The experimental protocol is depicted in Figure 1A 

(CON) and Figure 2A (RE). The sampling timepoints for the CON group was matched to the exercise group.  
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RNA extraction, sequencing, and analysis 

Approximately 25 mg of muscle tissue was homogenized in TRI Reagent (Sigma-Aldrich, St Louis, MO, USA) 

using a Bullet Blender Tissue Homogenizer (Next Advance, Troy, NY, USA). An RNA supernatant phase was 

then isolated using bromochloropropane and centrifugation. Next, the RNA phase was processed using Direct-

zol filter columns (Zymo Research, Irvine, CA, USA). Finally, the RNA was treated with DNAse and eluted in 

DEPC-treated water prior to storage at -80C. Concentration and purity of the RNA was determined using a 

BioTek PowerWave XS microplate reader (BioTek Instruments Inc., Winooski, VT, USA). Library preparation of 

mRNA was done using Poly A enrichment, followed by RNA sequencing by an Illumina NovaSeq 6000 (150 bp 

paired-end sequencing; Novogene Corp. Inc., Sacramento, CA, USA).  

 

Quality control of raw sequencing reads was performed by removing adaptors and low-quality reads. 

Subsequently, the reads were aligned to the human reference genome (GRCh38.p12) using HISAT2 (2.0.5) 

121, and the quantification of reads mapped to each gene was conducted using featureCounts (1.5.0-p3) 122. 

Raw counts were used as inputs for the downstream analysis in R platform (Version: 4.1.0). After filtering out 

genes with low expression, DESeq2 (1.42.0) was used for the normalization and differential analyses in the 

comparison between different timepoint groups 123. Genes with a false discovery rate (Benjamini-Hochberg 

method) adjusted p-value < 0.05 were identified as differentially expressed genes (DEGs). We have 

used org.Hs.eg.db (3.13.0) as reference for the annotation of human genes (org.Hs.eg.db: Genome wide 

annotation for Human. R package version 3.8.2.) 124. To determine gene expression patterns among the DEGs, 

we computed z-score per gene along different timepoints for each group separately and employed the 

Euclidean hierarchical clustering method to identify clustered genes. The total number of clusters was 

determined empirically. Raw and processed files have been deposited in the GEO database (GSE252357). 

 

DNA methylation data processing and statistical analysis 

We previously published reduced representation bisulfite sequencing (RRBS) for ribosomal DNA (rDNA) 25. 

Here, we used this RRBS dataset for global DNA methylation analysis125. Quality control and adapter 

sequence trimming were performed using FastQC and Cutadapt, respectively as parts of the Trim Galore 

wrapper. Low quality base calls (Phred score <20) were removed prior to trimming adapter sequences. 

Bismark aligner was used to align the sequence reads to the bisulfite-converted GRCh38 genome prior to data 

processing. Coverage (.cov) files produced from Bismark aligner were used for data analysis in the methylKit R 

package126. MethylKit was used to pool samples into their respective groups to maximize read coverage across 

the genome using a minimum read cutoff of 10 reads per base, and minimum base coverage of 1 sample per 

group. Differentially methylated regions (DMRs) were determined by genomic ranges for every gene promoter 

as defined by the hg38.bed file obtained from NCBI. Fisher’s exact test with sliding linear model (SLIM) 

correction for false discovery127 was used to qualify both differentially methylated sites and differentially 
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methylated promoters within the dataset. Percent methylation and percent differential methylation were then 

obtained from methylKit following analysis. 

 

Sequencing, transcriptional regulator, and BETA analysis 

The up- and down-regulated DEG (adj. p<0.05) were initially separated. All DEGs from 30 minutes, 3-, 8-, and 

24 hours post-exercise biopsies were collapsed into one DEG list across the 24-hour recovery period for up- 

and down-regulated genes, respectively. Gene pathway enrichment analyses were conducted on the collapsed 

gene lists using Enrichr (https://maayanlab.cloud/Enrichr/ 2023-Aug-16) with the 2023 gene ontology (GO) 

database as our cross reference 55-58. Analyses were run using the list of sequenced genes as background 

correction according to Stokes et al. 54. The number of genes and adjusted p-values of selected enriched 

pathways are presented in Figure 2. The time course analysis for each pathway is based on the proportion of 

DEGs within each pathway in the current data set expressed at each biopsy time point relative to Pre. Thus, 

the number of DEGs within a specific pathway per timepoint is divided by the number of DEGs within the same 

pathway from the pooled 24-hour DEG list, described above.  

 

Landscape In Silico deletion Analysis (LISA) was run according to the recommended procedures as reported 

by Qin et al. 44, consistent with our previous work 24,27. In brief, DEG lists (adj. p<0.05) were run using software 

on http://lisa.cistrome.org (2023-Aug-20). If the number of DEGs was above 500, the analysis was run locally 

using the command line. Lisa analysis was performed on the collapsed upregulated 24-hour gene list, and on 

up-regulated genes expressed at different timepoints. The Cauchy combination p-value test was used to 

determine the overall influence of MYC. Overlapping DEGs between the human RE response and the MYC 

mouse was analyzed using Venny2.1 (https://bioinfogp.cnb.csic.es/tools/venny/index.html 2023-Aug-23).  

 

We presented the incorporation of RRBS and RNA-seq data using BETA in a previous publication 67. BETA is 

a software that provides an integrated analysis of transcription factor binding to genomic DNA and transcript 

abundance using chromatin immunoprecipitation sequencing (ChIP-seq) and transcriptomics (RNA-seq) 

datasets128. BETA takes into consideration the distance of the regulatory element relative to the transcription 

start site (TSS) by modeling the effect of regulation using a natural log function termed the regulatory potential 

(Eq. 1), as described previously by Tang and colleagues129. CpG islands were converted into “methylation 

peaks” similar to transcription factor binding peaks, which is built using the GRCm39 CpG island bedfile 

downloaded from the UCSC genome browser. Only genes differentially expressed with adjusted p < 0.05 from 

RNA sequencing analysis were included as input for gene expression. The BETA basic command was run with 

the following parameters “-c 0.05 --df 0.05 --da 500”. 

 

𝑠𝑔 =∑ 𝑒−(0.5+4∆𝑖)
𝑘

𝑖=1
    (Equation 1) 
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In the current study, a CpG island (𝑘) within 100 kb of TSS of gene (𝑔) is included in the calculation for the 

regulatory potential score (𝑠). The distance between the CpG island and the TSS is expressed as a ratio 

relative to 100 kb (∆). The scoring is weighted based on the distance from the TSS (higher for smaller 

distances, lower for larger distances).  

 

BETA integration pathway analysis 

Pathway analysis was performed using the enrichR R package. Up- and down-target genes resulting from 

BETA integration of DNA methylation and RNA-sequencing datasets were included in independent up and 

down gene sets. The 2023 Gene Ontology database Biological Processes was used to annotate up and down 

gene sets and determine enriched ontologies for each gene set. GOplot R package was used to combine log2 

fold change for each gene with their respective enriched pathways. 

 

Generation of HSA-MYC mice and in vivo pulsatile overexpression experiments 

Human skeletal actin reverse tetracycline transactivator tetracycline response element “tet-on” MYC (HSA-

MYC) mice were generated as previously described 24,27. A subset of mice (n=6) was crossed with tet-on green 

fluorescent protein mice for myonuclear isolation experiments not presented here. For all MYC experiments, 

littermate mice (HSA or HSA-GFP) were controls; all mice were heterozygous for each transgene. At four 

months of age, control (n=7) and MYC overexpressing female mice (n=9) were given doxycycline in drinking 

water with sucrose (0.5 mg mL–1 with 2% sucrose) for 48 hours. All mice were then given un-supplemented 

drinking water for the remaining 5 days of the week. This dosing strategy was repeated 5 total times. All mice 

were euthanized 24 hours following the final doxycycline treatment. Some mice were used for analyses not 

described here, so the histology results are from n=4 control and n=6 MYC induction mice. Mice were 

euthanized in the morning (before 10:00 AM) and all tissues were harvested, weighed, and frozen in liquid 

nitrogen-cooled isopentane using optimal cutting temperature compound. The average mass of both muscles 

for every mouse is presented. 

 

Immunohistochemistry 

Fiber cross sectional area and fiber type analyses on the soleus muscles were performed as previously 

described 76,103. Briefly, 8 µm sections were cut using a cryostat and air dried for ≥1 hour. Primary antibodies 

for dystrophin (1:100, ab15277, Abcam, St. Louis, MO, USA) and MyHC 1 (BA-D5, Developmental Studies 

Hybridoma Bank, Iowa City, IA, USA) were applied for ≥4 hours in a PBS cocktail. After several PBS washes, 

isotype-specific secondary antibodies were applied for 1 hour. Following several PBS washes, 4′,6-diamidino-

2-phenylindole (DAPI) was applied, and the slides were mounted with cover slips using a 50/50 solution of 

PBS and glycerol. Muscle cross sections were imaged using a Zeiss AxioImager M2. Fiber cross sectional 

area, fiber number, and fiber type distribution was analyzed using MyoVision 130,131, as we have previously 

described. 
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Statistical considerations 

Figures were generated using GraphPad Prism version 7.00 for Mac OS X (GraphPad Software, La Jolla, CA), 

Rstudio, BioRender, and Affinity Designer 2.3. Data presented as mean ± standard deviation of mean unless 

otherwise stated. Average muscle weights for each animal (mean of both muscles) and histology data were 

analyzed using two-tailed dependent t-tests with p<0.05. For all -omics analyses, Benjamini-Hochberg 

adjusted p values (adj. p<0.05) were utilized. 
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Figure Legends 

Figure 1. Gene expression patterns for circadian control. (A) Schematic overview for the control arm of the 

human intervention, n=5. (B) MA plots showing differentially expressed genes (DEG) vs pre-values, time 

matched to 30 minutes, 3, 8, & 24 hours of recovery in the resistance exercise trial (see Figure 2A). Purple and 

green dots indicate up- or down-regulated regulated genes (adj. p<0.05), respectively. Top genes for adj. p-

value are highlighted in plots. (C) Fold-change for targeted DEGs in the control group. * = adj. p<0.05. (D) 

Heatmap showing z-scores for 60 up-, and 90 down-regulated DEGs across all time points and volunteers in 

the control trial. (E-F) Gene ontology (GO) pathway enrichment analysis on DEGs across the entire 24 h 

control period. Numbers within the bars indicate the proportion of DEGs in our data set corresponding to the 

specific pathway. Rank values indicate the specific pathways adj. p-value rank. E) Up-regulated Biological 

Processes and Molecular Functions, F) Down-regulated Biological Functions, G) Down-regulated Molecular 

Functions. Con = Control situation, ns= not significant, Neg. = Negative, Reg. = Regulation.  

 

Figure 2. Gene expression patterns during 24 hours of recovery from resistance exercise. (A) Schematic 

overview of resistance exercise (RE) intervention, n=8. (B) MA plots showing differentially expressed genes 

(DEG) vs resting pre-values, following 30 minutes, 3, 8, & 24 hours of recovery from RE. Red and blue dots 

indicate up- or down-regulated regulated genes (adj. p<0.05), respectively. Top 10 genes for adj. p-value are 

highlighted in plots. (C) Normalized counts for targeted genes across the 24-hour intervention. Red dots = RE 

trial, grey dots = Control trial. (D) Heatmap showing z-scores for 2399 up-, and 2126 down-regulated DEGs 

across all recovery time points and volunteers in the RE trial. Genes are clustered according to their 

expression pattern across timepoints within the 24-hour recovery period.  

 

Figure 3. Pathway enrichment time course across 24 hours of recovery from resistance exercise. (A-C) 

Gene ontology (GO) pathway enrichment analysis on DEGs across the entire 24-hour recovery period. 

Numbers within the bars indicate the proportion of DEGs in our data set corresponding to the specific pathway. 

Rank values indicate the specific pathways adj. p-value rank. The corresponding timeline shows the proportion 

of DEGs with the specific pathways across the 24-hour recovery period. A) Upregulated Biological Processes, 

B) Up-regulated Molecular function, and C) Down-regulated Biological Processes and Molecular function. (D-F) 

Timelines of the top (GO) pathways from A-C expressed as a percentage of the number of DEGs within that 

pathway. D) Upregulated Biological Processes, E) Up-regulated Molecular function, and F) Down-regulated 

Biological Processes and Molecular function. (G-I) Average fold-change (vs Pre) for highlighted pathways 

(thick red lines) along individual DEGs within the specific pathway (lighter red lines). The average fold-change 

for the same genes in the control situation is presented in grey. G) Up-regulated Biological Processes, H) Up-

regulated Molecular function, I) Down-regulated Biological Processes and Molecular Function.  
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Figure 4. Immediate DNA-methylome changes predict transcriptional regulation. (A) Binding and 

expression target analysis (BETA) combining the DNA methylome at 30 minutes to differentially expressed 

genes (DEGs) at 3 hours post resistance exercise (RE). BETA integration analysis of up- and downregulated 

genes to RRBS methylation performed relative to background with predictive interaction significance 

represented by p-values in parenthesis. (B) Selection of up-regulated differentially expressed genes (DEGs) at 

3 hours post-RE significantly predicted by the methylome at 30 minutes. (C) Chord plot illustrating the top five 

biological processes (gene ontology) regulated at 3 hours post exercise by genes predicted by the methylome 

at 30 minutes post exercise. Pathway-associated genes are ordered according to their p-values. (D) Selection 

of downregulated DEGs at 3 hours post RE suggested to be affected by methylation changes at 30 minutes 

post RE. 

 

Figure 5. Transcription factor MYC dominates late-stage acute recovery from RE by regulating 

ribosome biogenesis. (A) Transcription factors predicted to be active during the 24-hour recovery period from 

resistance exercise (RE) sorted by p-value. (B) Transcription factors predicted to regulate the genes expressed 

exclusively at the later stages of acute recovery. (C) Comparison of up-regulated DEGs across 24 hours of RE 

recovery in humans (n=8) vs soleus muscle from MYC-overexpressing mice from Jones et al (2023). (D-F) Top 

five pathways (GO: Biological Processes) based on DEGs in D) the human exclusive gene list, E) MYC mouse 

exclusive gene list, and F) overlapping gene list, respectively. Pathways are ranked according to their adj. p-

values. (G) Heatmap showing DEG pattern for ribosome-related genes overlapping human RE response to a 

MYC response in mouse soleus muscle. Genes retrieved from all five pathways presented in 3F. (H) Time 

courses for MYC’s transcriptional influence (Red solid line), as well as three MYC-regulated gene pathways 

(dashed lines).  

 

Figure 6. Four weeks of pulsed MYC overexpression is sufficient to cause muscle fiber type specific 

hypertrophy. (A) Graphical representation of the experimental design, (B) Soleus muscle weight of HSA 

Control and HSA MYC mice after 5 bolus exposures over 4 weeks (C) Soleus muscle wet weight normalized to 

body weight. (D) Hindlimb muscle weight of plantaris, gastrocnemius (gastroc.), extensor digitorum longus 

(EDL), tibialis anterior (TA) and quadriceps (Quad.) normalized to body weight. (E) Bodyweight of mice (F) 

Representative images of MyHC I (purple) and MyHC II (black) muscle fiber size in HSA Control (left) and 

HAS-MYC (right) mice. Dystrophin is outlining fiber borders (red). Scale bar is 100 m. (G) Total number of 

fibers per soleus muscle. (H) Distribution of MyHC I and MyHC II fibers expressed as a percentage. (I) Cross 

sectional area MyHC I and MyHC II fibers, and their average. (J-K) Frequency distribution plot for fiber type 

size of MyHC I (J) and MyHC II (K) fibers. MyHC= Myosin Heavy Chain, CSA= Cross sectional area. (B-E) N= 

7 HSA Control, 9 HSA MYC. (F-K) N= 4 HSA Control, 6 HSA-MYC. White dots are individual values. * = 

p<0.05. 
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Supplemental Figure 1. Targeted pathway enrichment analysis. Pooled gene ontology (GO) biological 

processes and molecular function pathways. (A) Targeted analysis of pathways peaking at 30 minutes post 

resistance exercise (RE). (B) Targeted analysis of pathways significantly enriched in genes downregulated 3-8 

hours post RE. (C) Targeted analysis of biphasic DEGs composing cluster 4, as presented in figure 2D. (D) 

Gene expression of selected genes with a biphasic gene expression pattern, up early/down late. * = p<0.05 vs 

Pre values. Neg. = Negative, Reg. = Regulation.  

 

Supplemental Figure 2. Levels of MYC protein return to baseline after 24 hours cessation 

supplemented water administration. HSA-MYC and HSA littermate control mice were treated with 

doxycycline in drinking water for 12 hours, followed by a 24-hour treatment with un-supplemented drinking 

water. Quadriceps muscle was harvested in the morning and western blots for MYC were carried out as 

described in our previous publication 27. Lanes 1-3 show one doxycycline-treated HSA and two HSA-MYC mice 

following 12 hours of doxycycline and 24 hours of un-supplemented water. MYC is not expressed in HSA mice 

and levels return to baseline levels by 24 hours in HSA-MYC mice (no MYC protein detectable). Lanes 4 & 8 

show quadriceps muscle expression in HSA-MYC mice after 12 hours of treatment with doxycycline followed 

by a 12-hour chase (positive control, see Jones III et al. 2022). Lanes 5 & 9 show the HSA control mice after 

the same 12-hour chase (negative control). Lanes 6 & 10 and 7 & 11 show MYC expression in liver of 

corresponding animals (another negative control).  

 

Supplemental Figure 3. Transcriptional similarities between human RE recovery and MYC 

overexpression in mouse plantaris muscle. (A) Comparison of up-regulated DEGs across 24 hour of RE 

recovery in humans (n=8) vs plantaris muscle from MYC-overexpressing mice from Murach et al (2022). (B-D) 

Top pathways (GO: Biological processes) based on DEGs in B) the human exclusive gene list, C) MYC mouse 

exclusive gene list, and D) overlapping gene list, respectively. Pathways are ranked according to their adj. p-

values. (G) Heatmap showing DEG pattern for ribosome-related genes overlapping human RE response to a 

MYC response in mouse plantaris muscle. Genes retrieved from all five pathways presented in S3D. 
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