

Proteome analysis provides insights into sex differences in *Holothuria Scabra*

Chuhang Cheng¹, ¶, FeiFei Wu⁴, ¶, Yizhi Xu⁵, ¶, Chunhua Ren³, Ting Chen³, Shella Li⁶, Peihong Shen^{2,*}, Fajun Jiang^{1,*}

1 Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, 4
China 5

2 College of Life Science and Technology of Guangxi University, Nanning, China 6

3 CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB) / Guangdong Provincial Key Laboratory of Applied Marine Biology 7
(LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China 8

4 School of Marine Sciences, Sun Yat-sen University, Zhuhai, China 9

5 School of Biological Sciences, University of Edinburgh, Edinburgh, England 10

6 BASIS international school, guangzhou, China 11

* Corresponding author 12

E-mail: hunanjfj@126.com, shenpeihong@gxu.edu.cn 13

¶ These authors contributed equally to this work 14

15

16

Abstract

Sex-determining mechanism is still ambiguous for sea cucumber *Holothuria scabra* which only manifests gonochorism in gonad. In this study, 18
proteomic analysis was employed to delineate sex-related proteins and genes in gonads of *H. scabra*, subsequently validated through Quantitative 19
real-time polymerase chain reaction (qRT-PCR). A total of 5,313 proteins were identified via proteome sequencing. Among these, 817 proteins 20
exhibited expression in both the ovary and testis, with 445 proteins displaying up-regulation and 372 proteins showing down-regulation. 21
Furthermore, 136 and 69 proteins were identified as ovary-specific and testis-specific Differentially Abundant Proteins (DAPs), respectively. For 22
the validation of 75 DAP coding genes, 9 genes were considered to be reliable. Notably, 25 ovary-bias proteins enriched in ribosome pathway 23
strongly indicated the crucial role of ribosome in ovary. And 5S/18S rRNA ratio in *H. Scabra* may have potential to establish a nondestructive 24
method to distinguish sexes unambiguously. This study serves to furnish novel evidence pertaining to sex differences in *H. scabra*. 25

Keywords: *Holothuria scabra*; proteome; gonads; DAPs; sex differences 26

1. Introduction

Holothuria scabra is one of the nocturnal benthic species that customarily fed on algae and plankton, and it is widely distributed 28
in the tropical waters (1). Sea cucumbers play significant roles in maintaining the pH balance and alkalinity of the seawater, 30
contributing to the health of coral reef ecosystem (2). They accelerate bioturbation by ingesting the organic matter in the sediment 31
and dissolve carbonate during feeding, thereby promoting the periodic cycle of calcium carbonate (3). *H. scabra* plays a critical role 32
in nutrient cycling, participating as sedimentary nutrients in the form of food chain (4, 5). 33

Sexual dimorphism is the defining characteristic of organisms in which male and female reproductive organs occur in different 34
individuals (6). The sex dimorphism phenotype is thought to be the result of differential gene expression profiles between genders, 35
most prominently in gonads and germ cells. The mechanisms of gender determination and differentiation vary significantly across 36

different metazoans due to repeated, independent lineage-specific evolution and rapid modification of potential molecular pathways 37
(7). This variation is related to endocrine, neural, environmental, social, and ecological factors, including temperature, season, 38
nutrition, and metabolic substances (8, 9). To expound upon the molecular mechanisms regulating sexual dimorphism, it is essential 39
to examine the expression patterns of all sex-specific genes, particularly those involved in sexual-biased tissues (10). 40

In vertebrates, reproduction is controlled by the brain-pituitary-gonadal (BPG) axis (11). The growth, differentiation and 41
maturation of follicular cells are induced by gonadal-expressed steroids and hormones (12, 13). Study on Half-smooth tongue sole 42
(*Cynoglossus semilaevis*) has identified several ovary-related genes, such as ZPC, survivin, aquaporin, CPEB, O15, RacGAP05, 43
and O18. Some of these genes exhibit sexual dimorphism in the kidney, spleen, and muscle (14). Similar findings were observed in 44
mice, where 27 genes displayed sexual dimorphism in the kidney (15). As for the invertebrate, numerous sex-related genes have 45
been identified from a genome-wide scale for the sex differentiation mechanism in insects. Cyclin-related genes and 46
serine/threonine-protein kinases (TSSKs) were suggested to be involved in spermatogenesis, while sex lethal (Sxl) and transformer-2 47
(tra) were proven to be associated with sex determination. The roles of ecdysone biosynthesis- and chorion-related genes in 48
oogenesis have been elucidated (16-19). For Crustacea, differentially expressed genes, such as vitellin, vasa-like and gonadotropin- 49
releasing hormone-like in *Litopenaeus vannamei* (20-22), cyclin A, cyclin B, transformer-2 (Tra-2) and cell division cycle 2 (Cdc2) 50
in *Penaeus monodon* were (23-25), double-sex and mab-3 related transcription factor (Dmrt) in *Eriocheir sinensis* (26), proliferating 51
cell nuclear antigen (PCNA) and heat shock protein 90 (Hsp90) in *Marsupenaeus japonicas* (27, 28), activated protein kinase C1 52
(RACK1) and cell apoptosis susceptibility (FcCAS) in *Fenneropenaeus chinensis* (29, 30) were found to be involved in sex 53
determination and differentiation. In shellfish, sex differentiation is affected by double-sex-, SoxE and mab-3-related transcription 54
factor (DMRT), β-catenin, forkhead box L2 (foxl2), and foxl2os (31). 55

Nevertheless, the lack of a high-quality genome severely hinders studies examining the sex determination mechanism of sea 56
cucumber. Proteomics presents a promising alternative for the discovery of candidate proteins that exhibit significant differences 57
between genders. Quantitative proteomics has been applied to aquatic animals to analyze crucial proteins and pathways involved in 58
oogenesis and sex reversal (32, 33). Through label-free quantitative proteomics (Labelfree) technology, this study examined the sex 59
differences between the ovary and testis of *H. scabra*. The goal is to contribute to a comprehensive understanding of the mechanisms 60
underlying sex determination and to acquire essential data on reproductive processes in *H. scabra*. 61

2. Materials and Methods 62

2.1. Samples collection 63

Wild adult *H. scabra* specimens used in the experiment were sampled in Xuwen, Zhanjiang, Guangdong province, China 64
(N20°42', E109°94'). The gonads of the adult sea cucumbers were promptly dissected and categorized into two groups. One third 65

of the specimen were preserved in Bouin fluid for sex conformation, the remaining were the frozen in liquid nitrogen and stored at 66
-80°C for further sequencing. 67

2.2. Histological examination 68

The gonads were fixed in Bouin's solution for 24 hours, gradually dehydrated using gradient ethanol, clarified with xylene and 69
embedded in paraffin, paraffin-embedded tissue was sectioned into approximate 0.5cm³ cubes and then cut into 5-μm slices by a 70
LEICARM2235 Slice Machine (Leica, Germany). The samples were stained with haematoxylin/eosin (H/E) and sealed with resin. 71
Microscopic observations were conducted on sliced tissues using a Motic BA410 microscope (Leica, Germany). 72

2.3. Total protein extraction and digestion, Liquid Chromatography-Mass Spectrometry/ 73 Mass Spectrometry (LC-MS/MS) 74

The tissue sample was pulverized under low temperature and mixed with protein lysis buffer. The resulting solution underwent 75
a series of processes including ultrasonic lysis, DDT red and IAM reaction, acetone precipitation, resuspension, rinsing, and drying. 76
Following this, protein dissolution buffer was added for dissolution, and protein quality tests were conducted using the Bradford 77
Protein Assay Kit. 78

A 120 μg portion was taken from each protein sample mixed with Protein dissolution buffer TEAB buffer under 37°C, followed 79
by enzymatic cutting and an overnight incubation. The solution was then treated with methanoic acid, centrifuged, and the 80
supernatant was filtered using a C18 desalination column. Rinsing was performed three times with 0.1% methanoic acid and 4% 81
acetonitrile, followed by elution twice with 0.1% methanoic acid and 4% acetonitrile. The eluates were merged, lyophilized, and 82
subjected to LC-MS/MS analysis using the Q Exactive TM HF-X mass spectrometer. Spectrum was searched using PD2.2, Thermo. 83
Inferential statistical analysis was carried out using Mann-Whitney Test for the results of protein assay, and the protein (p< 0.05) 84
with a significant difference in experiment groups and control group is defined as differentially expressed protein (DEP). Program 85
Interproscan-5 was used for gene ontology (GO) and InterPro (IPR) analysis of the Non-Redundant Protein Sequence Database 86
(including SMART, ProDOM, ProSiteProfiles, Pfam, Panther and PRINTS). At the same time, the co-ortholog group (COG) and 87
KEGG database were used to analyse the protein family and correspondent pathways. Through STRING-db server 88
(<http://string.embl.de/>), possible protein-protein interaction is also predicted. Pathway enrichment analysis of GO, KEGG and IPR 89
is then carried out. 90

2.4. Verification of sex differential genes 91

Total RNA of the whole transcriptome was extracted following the instructions provided in the TRIzol™ Reagent (Invitrogen) 92
manual. The process involved tissue homogenization, chloroform extraction of RNA, isopropyl alcohol precipitation, washing with 93
75% ethanol twice, RNA dissolution in RNase-free ddH2O after precipitation, and measuring RNA concentration and purity using 94

an Ultramicro spectrophotometer (Nanodrop 2000). Gel electrophoresis was then carried out for the detection of completeness of RNA samples. 95

For verification, 25 *H. scabra* specimens were collected from Dingda Seedling Farm, Wenchang, Hainan province, China (N19°45', E110°78') in July 2020. The gonads of these adult sea cucumbers were dissected, and sex determination was performed using the routine wax section method. The RNA extracted from the gonads underwent reverse transcription after concentration adjustment with the PrimeScript™ RT reagent Kit with gDNA Eraser (Perfect Real Time) (Takara, Japan). 98 99

From the proteome, 9 sex-specific genes were selected (primer is shown in table 3). Following the instructions from SYBP Premix Ex TaqTM II, a 25 μL Fluorescent-Quantitation PCR reaction system was employed (12.5 μL of SYBP Premix Ex Taq (2×), 1 μL of upstream primer, 1 μL of downstream primer, 2 μL cDNA and 8.5 μL RNase-free ddH2O). The cDNA templates originated from 4 female and 4 male *H. scabra*. Thermal Cycler Dice Real-Time System III was used for RT-qPCR with a two-step process. The reaction program included initial denaturation (95°C, 1 min), 40 cycles of 95°C for 5 seconds, and 60°C for 30 seconds, followed by signal collection under 72°C. There were 4 biological replicates and 3 technical replicates each for the genes and β-actin. The relative gene expression was normalized to β-actin by the comparative CT method. Pearson's r correlation coefficient was calculated to evaluate the correlation between the qRT-PCR and proteomic analysis data. 100 101 102 103 104 105 106 107 108

Table 1. RT-qPCR primers for genes with significant difference from Proteome 109

Gene name	Primer sequence (5' to 3')
XP_022091644.1	F:CCACCACTGGGACATACAGT R:ACCTCCTCTGCCTCTTGTTC
PIK57317.1	F:GAGGCACAGATGAGCCAAAG R:CCGTAATGCAGAGTGTGGTG
XP_011684159.1	F:GTTGAAGGGCAGTTGCTGA R:TGATGCTTCAGGCAACCCTA
XP_022080800.1	F:GCAAAGAAAGGTGGATGGCA R:TATCACATGAGCCACAGCCA
XP_011664118.1	F:TTCCGAAACTCGGTCTTCCT R:TTCGGCTGGTCCTACCAAAT
XP_022080772.1	F:TGTGAGTCAAGAACTGCCT R:GATGCAGCTAGGGAAGGGAT
AAT01142.1	F:ATTCTTGCCAGGATGGTCA R:TCGTCTGTTCCATACCCACA
XP_022089419.1	F:GCTTGAGCAGTGAGGTTAGC R:CTTGGAGAGTTGCAGATGGC
PIK42641.1	F:AGCCTCTTCTTGGCATCCT R:ATGCAGGTACAGTTGGAGA

3. Results 110

3.1. Histological Structure of the mature gonad in *H. scabra* 111

Total 30 *H. scabra* individuals were collected from Xuwen County, Zhanjiang City in September 2019 (Fig 1). HE staining was performed to characterize the structure of testis and ovary in mature males and females, respectively. In mature males, the 112 113 114

genital atrium was filled with motile sperms which developed from spermatocyte (Fig 2a). Mature ovaries exhibited visible oocytes, 115 forming an irregular polygonal shape due to the cells squeezing each other (Fig 2b). The total protein were extracted from six male 116 and six female *H. scabra* individuals. These extractions were then sent to Novogene™ for LC-MS/MS detection analysis (Fig 2c). 117

Fig 1. Location map of capture site for *H. scabra* 118

Fig 2. Gonad section of *H. scabra* and workflow 119

(a) Testis (b) Ovary (c) Diagram of workflow for comparative proteomics between two sexes of *H. scabra* 120

3.2. Proteomic analysis data 121

3.2.1. Statistics of Proteomic analysis data 122

Proteome sequencing yielded a total of 49,357 unique peptides, resulting in the identification of 5,313 proteins. The distribution 123 of peptide length, protein coverage, and protein mass (S1 Fig a,b and c) demonstrated the accuracy and high reliability of the 124 identification results. The results of Principal coordinates analysis (PCA) showed the significant separation between the proteins of 125 two sexes of *H. scabra* (S1 Fig d). 126

3.2.2 Functional annotation of all proteins 127

All the quantified proteins were functionally annotated using GO, KEGG, COG, InterPro (IPR), and subcellular localization 128 (Fig 3). The Venn diagram shows a total of 4400 proteins annotated, with proximately 91.1% of them annotated by more than two 129 databases. The GO enrichment analysis demonstrated that most proteins were enriched in molecular function, especially in the terms 130 of protein and ATP bindings (S2 Fig). Furthermore, the KEGG pathway annotation showed that proteins identified in the gonads of 131 *H. scabra* were mainly involved in metabolism, including carbohydrate, amino acid, lipid, nucleotide, and energy metabolism as 132 presented in S3 Fig. The COG analysis classified the proteins into 26 functional categories, especially in general function prediction, 133 translation, ribosomal structure, biogenesis, posttranslational modification, protein turnover, chaperones, and signal transduction 134 mechanisms (Fig 3b). IPR annotation analysis mainly identified protein kinase domain, RNA recognition motif domain, and WD40 135 repeat-containing proteins. Subcellular location analyses were performed that cytoplasmic proteins (24.38%) and nucleus proteins 136 (21.40%) comprised the largest proportion among the total proteins (Fig 3d). 137

Fig 3. Functional annotation analysis 138

(a) Wayne analysis of annotated proteins using different databases. (b) COG functional classification of all matched proteins. (c) IPR 139 annotation using different analysis of all samples. (d) The subcellular localization of all samples. GO gene ontology, COG: Cluster Cluster of 140 of Orthologous Groups, IPR: InterPro, KEGG: Kyoto Encyclopedia of Genes and Genomes. 141

3.2.3 Analysis of the DAPs associated with GO and KEGG Pathways 142

$|\log_2(\text{fold change})| > 3$ and $p\text{-value} < 0.05$ were set as a threshold to identify Differentially Abundant Proteins (DAPs). A total 143 of 817 DAPs including 136 ovary-specific proteins and 69 testicle-specific proteins were obtained in samples after 144

comparative analyses. Compared to the testis, there were 445 upregulated DAPs and 372 downregulated DAPs in the ovary (Fig 145
4a). Fig 4b shows significant difference between female and male gonads and the consistency of DAPs among every sample, which 146
demonstrated the reliability of the data. Furthermore, the top 11 up-, and downregulated DAPs coding genes between two sexes 147
were shown in Table 2 ($p < 0.001$). And Table 3 listed 25 genes associated with sex and gametogenesis including egg coat matrix 148
protein, egg bindin receptor protein 1 precursor, sperm flagellar protein and other sperm-associated proteins which were participated 149
in the structure of gametes. 150

Table 2. 22 of the corresponding genes for significantly difference proteins between ovaries and testis. 151

Gene	Description	log2FC	Trend	Pvalue
PIK49186.1	hypothetical protein BSL78_13967	10.00328	up	4.15E-06
BAJ41227.1	egg coat matrix protein	7.924463	up	9.99E-07
XP_013073410.1	EGF and pentraxin domain-containing protein 1-like	7.540273	up	1.55E-05
AAB92242.1	ovoperoxidase	7.52235	up	8.14E-05
XP_003726318.1	GDP-fucose protein O-fucosyltransferase 1 isoform X1	7.144135	up	5.05E-07
PIK39035.1	hypothetical protein BSL78_24131, partial	6.809735	up	5.25E-04
PIK39115.1	C-type lectin domain family 7 member A-like	6.804186	up	2.55E-06
PIK48450.1	heme-binding protein 2	6.547302	up	2.48E-04
PIK49839.1	folate receptor gamma	6.381332	up	1.56E-05
AAT01142.1	proteolaisin, partial	6.379633	up	1.09E-05
XP_011675803.1	ATP-dependent RNA helicase cgh-1	6.044833	up	1.97E-07
PIK49192.1	enkurin	-6.10117	down	1.89E-04
XP_022107427.1	radial spoke head 1 homolog	-6.24921	down	1.14E-04
PIK58530.1	EF-hand domain-containing family member C2	-6.29442	down	4.28E-04
PIK56687.1	egg permeability glycoprotein	-6.30547	down	7.44E-04
XP_011667426.1	tektin-4 isoform X3	-6.36452	down	3.53E-04
PIK38778.1	radial spoke head protein 4-like A-like	-6.41209	down	7.07E-05
PIK55121.1	radial spoke head protein 9-like	-6.85095	down	1.51E-06
XP_022081732.1	creatine kinase U-type, mitochondrial-like	-7.08851	down	3.30E-04

PIK61874.1	nucleoside diphosphate kinase-like 5	-7.29379	down	1.53E-05
PIK57258.1	creatine kinase, flagellar isoform X1	-7.32068	down	3.50E-04
PIK40833.1	ADP, ATP carrier protein	-8.85668	down	8.89E-04

Table 3. The list of sex and gametogenesis related DAPs between ovaries and testis.

152

Gene	Description	log2FC	Trend	Pvalue
BAJ41225.1	egg coat matrix protein	8.616619037	up	1.80E-06
BAJ41227.1	egg coat matrix protein	7.924463339	up	9.99E-07
BAJ41226.1	egg coat matrix protein	7.423074104	up	1.88E-06
AAP44488.1	egg bindin receptor protein 1 precursor	3.301188988	up	3.76E-07
PIK35444.1	sperm flagellar protein 1-like	-3.022187941	down	5.28E-04
XP_022090776.1	cilia- and flagella-associated protein 44-like isoform X3	-3.266191646	down	1.44E-04
XP_022105499.1	cilia- and flagella-associated protein 57-like	-3.362091033	down	1.72E-03
PIK57014.1	primary ciliary dyskinesia protein 1-like	-3.456240939	down	1.35E-03
PIK42503.1	cilia- and flagella-associated protein 70	-3.641234272	down	2.65E-04
XP_020604067.1	cilia- and flagella-associated protein 20	-3.892563548	down	2.65E-05
XP_022107058.1	cilia- and flagella-associated protein 157-like	-3.912204831	down	1.80E-03
XP_022104631.1	sperm-associated antigen 16 protein-like	-4.063316144	down	5.93E-04
PIK44114.1	testis-expressed sequence 43 protein-like	-4.072539088	down	7.95E-05
PIK59902.1	sperm-tail PG-rich repeat-containing protein 2	-4.259111937	down	7.12E-03
XP_022086482.1	cilia- and flagella-associated protein 58-like	-4.2825065	down	5.77E-04
PIK58729.1	cilia- and flagella-associated protein 53	-4.444913361	down	2.40E-03
PIK44983.1	sperm-associated antigen 6	4.739561975	down	3.51E-04
XP_022102412.1	dynein intermediate chain 3, ciliary	-4.947083538	down	1.80E-04
PIK34818.1	testis-expressed sequence 36 protein-like isoform X1	-5.533452907	down	1.94E-02
XP_022081058.1	sperm-tail PG-rich repeat-containing protein 2-like isoform X1	-5.845874193	down	4.22E-02

XP_022108113.1	testis, prostate and placenta-expressed protein-like	-6.612017698	down	8.66E-05
PIK36385.1	63 kDa sperm flagellar membrane protein	-8.346589397	down	2.65E-02
XP_787834.2	testis-specific serine..threonine-protein kinase 1-like	testis-specific	down	0.00E+00
XP_022091644.1	cilia- and flagella-associated protein 46-like isoform X7	testis-specific	down	0.00E+00
PIK57317.1	sperm-associated antigen 8-like	testis-specific	down	0.00E+00

Fig 4. Differential expression analysis of proteins between ovary and testis

(a) Volcano plot (b) Heatmap

153
154
155
156

Using gene ontology (GO), all DAPs were matched to 403 GO terms. The GO annotation chart showed the 29 enriched GO terms which categorized into three functional groups (S4 Fig). Fig 5 shows the top 10 ovary-bias and the top 10 testis-bias functional terms ($P<0.05$). Among them, Structural constituent of ribosome and Ribosome enriched 21 and 21 female-specific proteins respectively, which indicated strong ribosome-related activities in ovary. The GO terms related to membrane, membrane parts, and integral components of the membrane were enriched in many proteins upregulated in females. Most of upregulated proteins in testis were enriched under GO terms related to microtubule movement like microtubule-based process and microtubule-based movement. That is because the movement of sperms depends on the activities of flagella and the mature testicles are full of sperms. Ubiquinol-cytochrome-c reductase activity and ATPase activity, which involves in energy metabolism, were enriched many testis upregulated proteins.

158
159
160
161
162
163
164
165

Fig 5. Number of DAPs in the 20 enriched GO terms ($P<0.05$).

Red and blue color represents up-regulated and down-regulated proteins, respectively (Ov vs Te).

166
167
168

The KEGG analysis showed that differential proteins enriched the pathways associated with biochemical metabolic and signal transduction including sphingolipid metabolism, ABC transporters, phosphatidylinositol signaling system, amino sugar and nucleotide sugar metabolism, thiamine metabolism, beta-Alanine metabolism, and ribosome (Fig 6a). Notably, the ribosomal pathway enriched 24 up-regulated proteins (Fig 6b).

170
171
172

Fig 6. KEGG enrichment analysis

(a) The differentially abundant proteins between ovary and testis. (b) Ribosomal pathway diagram. Red color represents up-regulated proteins.

3.3. Validation of Gene Expression from proteome by qRT-PCR

173
174
175

Totally, 75 selected proteins from proteome were to analyze by RT-qPCR according to the GO, KEGG annotation and Ov/Te expression pattern (S1 Table). As the results shown in Fig 7a and Table 4, seven of the genes in ovaries were verified significantly upregulated, and 2 of the genes were significantly downregulated. A strong correlation of qRT-PCR and proteomic analysis data

177
178

was shown (Fig 7b), indicating the reliability of label-free quantitativeproteomics analysis to investigate the protein expression profiles of sex difference in *H. scabra*. 179
180

Table 4. List of 9 sex differential genes after qRT-PCR verification. 181

Gene	Description	Trend
XP_022091644.1	cilia- and flagella-associated protein 46-like isoform X7	down
PIK57317.1	sperm-associated antigen 8-like	down
AAT01142.1	proteolaisin	up
XP_022089419.1	laminin subunit alpha-like isoform X2	up
XP_011684159.1	hyalin	up
XP_022080800.1	phosphatidylinositol 4-kinase type 2-beta-like	up
XP_011664118.1	alpha-N-acetylgalactosaminidase isoform X2	up
XP_022080772.1	STE20-like serine..threonine-protein kinase isoform X1	up
PIK42641.1	double-stranded RNA-binding protein Staufen-like 1 isoform X2	up

Fig 7. Quantitative real-time PCR (qRT-PCR) results for 9 coding genes 182

(a) Relative expression levels of genes encoding DAPs. Y-axis denotes the fold change in gene expression of Ov/Te and all expression levels in \testis are set to 1. Blue represents Ovary, yellow represents Testis. (b) Pearson's correlation analysis of qRT-PCR and proteomic data for DAPs. 183
184

4. Discussion 185

The sea cucumber *Holothuria scabra* is an economically important species of echinoderm in Asian market because of its high nutritional, pharmaceutical and economic value (34). The aquaculture of *H. scabra* is also popular for meeting the increased demands of market consumption and natural stock restoration (35). During sea cucumber culturing, usage of clear sexes parents will be benefit for the process of breeding and reproduction. However, the sexes of *H. scabra* cannot distinguish from appearance which may hinder the aquaculture of this species. And the sex determination of holothurians is still ambiguous. Previously, we have investigated the metabolomics profiles and sex makers of two sexes(36, 37). In this study, to enrich our knowledge of sex difference of *H. scabra*, the comparative proteomics between ovary and testis was performed using label-free quantitative method. 190
191
192

From the proteome analysis, 75 differential expression genes are identified in gonads of *H. scabra*. Verification through RT-qPCR was carried out, and the result indicates that there were 9 genes with significant differences. Upregulated proteins in male's gonad, cilia- and flagella-associated protein, and sperm-associated antigen 8, play roles in spermatogenesis including sperm motility and microtubule formation(38, 39). Proteolaisin is a protein that participates the assembly process of fertilization envelope in sea 194
urchin(40). In echinoderms, proteolaisin interacts with another protein ovoperoxidase to form a 1:1 complex. This complex inserts 195
into the fertilization envelope to mediates hardening of the assembled envelope (41). In our result, ovoperoxidase and proteolaisin 196
197
198

were found significantly upregulated in ovary (showed in Table 1 and Table 3). That indicated the key components of formation of the fertilization envelope mainly exist in ovary and would interact after fertilization. Interestingly, hyalin, a large glycoprotein in the hyaline layer, was also detected high expression in female's gonad (Fig 7a and Table 4). The hyaline layer locates underneath the fertilization envelope in zygote and play a role in blocking against polyspermy (42). Hyalin is also involved in regulating adhesive relationships as a specific cell adhesion molecule in the developing sea urchin embryo (43). Laminin subunit alpha, upregulated in ovary, can assemble into various laminin isoforms and is crucial for protein correct localization in the development of *Caenorhabditis elegans* (44). Those evidence suggested that the eggs carry many important proteins as preparation for early embryonic development in *H. scabra*. 199
200
201
202
203
204
205
206

In Go annotation, there were most ovary-specific proteins were associated function of structural constituent of ribosome and ribosome terms like 40S ribosomal proteins and 60S ribosomal proteins such as L3-like, L8, S6 and RPL15. Similar results were also found in KEGG pathway analysis. As showed in Fig 6b, the pathway of ribosome was enriched 25 upregulated proteins of ovary without any testis-bias proteins. Eukaryotes 80S ribosomes consist of a small (40S, including an 18S RNA and 33 proteins) and large (60S, including 25/28S, 5.8S, 5S rRNA and 49 proteins) subunit (45). Interestingly, many rRNA and ribosomal proteins have been linked with the ovarian development of aquatic animals. Previous studies in fish and reptiles have found the overwhelming accumulation of 5S rRNA in ovaries which indicated that its crucial role in oocytes (46-48). And 5S/18S rRNA ratio can serve as markers to distinguish sexes in fish (49). Ribosome protein S24 has been demonstrated as a potential stimulator in promoting the development of ovaries in east Asian river prawn *Macrobrachium nipponense* (50). Moreover, during oogenesis in the sea urchin *Paracentrotus lividus*, the expression of ribosomal protein S24 (RPS24) is increased (51). In our study of gonads proteome, we also found many significantly upregulated ribosome proteins in ovary which indicated that the ribosome plays a crucial role in ovary. The oocytes accumulate reserve substances for proper development of the embryo and ribosome contribute considerably to the synthesis of proteins in this process. 207
208
209
210
211
212
213
214
215
216
217
218
219

Most testis-specific proteins were classified in nucleosome and assembly nucleosome (Fig 5). In mammals, successful production of mature sperm involves the process of chromatin organization which make itself become highly compacted in the sperm head (52). Chromatin remodeling of the male genome during spermiogenesis relies on nucleosome. A nucleosome consists of a section of DNA that is wrapped around a core of histone proteins which is the basic repeating subunit of chromatin. During spermiogenesis, nucleosome transfer from a histone-based structure to a mostly protamine-based configuration which lead the chromosomes to become compact and condensed (53, 54). We have identified several histones like histone H1, H3, H4-like and H5 which were significantly high expression in testis (S1 Table). That result demonstrated those proteins is crucial to generating a viable male gamete in *H. scabra*. Motility and morphology are also thought to be indispensable for the fertilizing ability of sperm. 220
221
222
223
224
225
226
227

Microtubule-based processes in spermatogenesis involve in sperm head shaping and sperm flagella development (55). Thus, it can 228
be understood that sex differential proteins related to microtubules are enriched in testis (Fig 5). 229

The utilization of label-free quantitative proteomics allowed us to conduct a comparative proteomics analysis between two 230
sexes of *H. Scabra* and to investigated protein candidates that might be involved in sex differences. In present study, we identified 231
and verified 2 downregulated and 7 upregulated genes which involve in sperm motility and assembly process of fertilization 232
envelope respectively. According to functional analysis, ribosomal proteins, membrane proteins, membrane part proteins and 233
integral component of membrane were upregulated in ovary proteome while nucleosome, assembly nucleosome, microtubule 234
movement, ubiquinol-cytochrome-c reductase activity and ATPase activity related proteins were high expression in testis. Notably, 235
ribosome pathway only enriched 25 ovary-bias proteins which strongly indicated the crucial role of ribosome in ovary. And 5S/18S 236
rRNA ratio in *H. Scabra* should be studied in the future to establish a nondestructive method to distinguish sexes unambiguously. 237
Overall, our proteome results provide a novel insight for the study of sex mechanism in *H. Scabra*. 238

Supporting information

S1 Fig. Statistics of the quantitative proteomics data of different samples. (a) The distribution of peptide lengths in all samples. (b) The distribution of peptide coverage in all samples. (c) Numbers of proteins with different masses in all samples. (d) Principal coordinates analysis of four types of individuals. PC: principal coordinate.	241
S2 Fig. GO enrichment analysis of labeled proteins	244
S3 Fig. KEGG enrichment analysis of labeled proteins	245
S4 Fig. GO enrichment analysis of abundant proteins in two comparison groups	246
S1 Table. Selected proteins list for qRT-PCR validation.	247

Acknowledgments

Thanks to CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB) / Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology for providing the experimental platform, reagent consumables, etc. We thank Shanghai NewCore Biotechnology Co., Ltd. (https://www.bioinformatics.com.cn , last accessed on 20 Feb 2024) for providing data analysis and visualization support.	249
	250
	251
	252

References

1. Liao Y. <i>Fauna sincipit: Phylum Echinodermata Class Holothuroidea</i> . Beijing: Science Press; 1997.	254
2. Schneider K, Silverman J, Woolsey E, Eriksson H, Byrne M, Caldeira K. Potential influence of sea cucumbers on coral reef CaCO ₃ budget: A case study at One Tree Reef. <i>Journal of Geophysical Research</i> . 2011;116.	255
3. Benavides-Serrato M, Borrero-Pérez GH, Cantera K JR, Cohen-Rengifo M, Neira R. Echinoderms of Colombia. In: Alvarado JJ, Solis-Marin FA, editors. <i>Echinoderm Research and Diversity in Latin America</i> . Berlin, Heidelberg: Springer Berlin Heidelberg; 2013. p. 145-82.	257
4. Jennings LB, Hunt HL. Settlement, recruitment and potential predators and competitors of juvenile echinoderms in the rocky subtidal zone. <i>Marine Biology</i> . 2010;157(2):307-16.	260
5. Birkeland C. The influence of echinoderms on coral-reef communities. <i>Echinoderm Studies</i> . 1989;3:1-79.	262
6. Chen J-e, Li J-y, You Z-y, Liu L-l, Liang J-s, Ma Y-y, et al. Proteome Analysis of Silkworm, <i>Bombyx mori</i> , Larval Gonads: Characterization of Proteins Involved in Sexual Dimorphism and Gametogenesis. <i>Journal of Proteome Research</i> . 2013;12(6):2422-38.	263
7. Biscotti MA, Adolfi MC, Barucca M, Forconi M, Pallavicini A, Gerdol M, et al. A Comparative View on Sex Differentiation and Gametogenesis Genes in Lungfish and Coelacanths. <i>Genome Biology and Evolution</i> . 2018;10(6):1430-44.	265
8. Penman DJ, Piferrer F. Fish Gonadogenesis. Part I: Genetic and Environmental Mechanisms of Sex Determination. <i>Reviews in Fisheries Science</i> . 2008;16:16 - 34.	267
9. Piferrer F, Guiguen Y. Fish Gonadogenesis. Part II: Molecular Biology and Genomics of Sex Differentiation. <i>Reviews in Fisheries Science</i> . 2008;16:35 - 55.	269
10. Whittle CA, Extavour CG. Selection shapes turnover and magnitude of sex-biased expression in <i>Drosophila</i> gonads. <i>BMC Evolutionary Biology</i> . 2019;19(1):60.	271
	272

11. Blázquez M, Bosma PT, Fraser EJ, Van Look KJW, Trudeau VL. Fish as models for the neuroendocrine regulation of 273 reproduction and growth. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology. 274 1998;119(3):345-64. 275

12. Erickson GF, Shimasaki S. The Role of the Oocyte in Folliculogenesis. Trends in Endocrinology & Metabolism. 2000;11(5):193-8. 276

13. Eppig JJ, Wigglesworth K, Pendola FL. The mammalian oocyte orchestrates the rate of ovarian follicular development. 277 Proceedings of the National Academy of Sciences. 2002;99(5):2890-4. 278

14. Sun Y, Zhang Q, Qi J, Chen Y, Zhong Q, Li C, et al. Identification of differential genes in the ovary relative to the testis and 279 their expression patterns in half-smooth tongue sole (*Cynoglossus semilaevis*). Journal of Genetics and Genomics. 2010;37(2):137-45. 280

15. Rinn JL, Rozowsky JS, Laurenzi IJ, Petersen PH, Zou K, Zhong W, et al. Major Molecular Differences between Mammalian 281 Sexes Are Involved in Drug Metabolism and Renal Function. Developmental Cell. 2004;6(6):791-800. 282

16. Peng L, Wang L, Yang Y-F, Zou M-M, He W-Y, Wang Y, et al. Transcriptome profiling of the *Plutella xylostella* (Lepidoptera: 283 *Plutellidae*) ovary reveals genes involved in oogenesis. Gene. 2017;637:90-9. 284

17. Groh KJ, Schönenberger R, Eggen RIL, Segner H, Suter MJF. Analysis of protein expression in zebrafish during gonad 285 differentiation by targeted proteomics. General and Comparative Endocrinology. 2013;193:210-20. 286

18. Chauhan P, Wellenreuther M, Hansson B. Transcriptome profiling in the damselfly *Ischnura elegans* identifies genes with sex- 287 biased expression. BMC Genomics. 2016;17(1):985. 288

19. Wei Dd, Li H, Yang W-J, Wei D, Dou W, Huang Y, et al. Transcriptome profiling of the testis reveals genes involved in 289 spermatogenesis and marker discovery in the oriental fruit fly, *Bactrocera dorsalis*. Insect Molecular Biology. 2015;24. 290

20. García-Orozco KD, Vargas-Albores F, Sotelo-Mundo RR, Yepiz-Plascencia G. Molecular characterization of vitellin from the 291 ovaries of the white shrimp *Penaeus (Litopenaeus) vannamei*. Comparative Biochemistry and Physiology Part B: Biochemistry and 292 Molecular Biology. 2002;133(3):361-9. 293

21. Aflalo E, Bakhrat A, Raviv S, Harari D, Sagi A, Abdu U. Characterization of a Vasa-like gene from the Pacific white shrimp 294 *Litopenaeus vannamei* and its expression during oogenesis. Molecular reproduction and development. 2007;74:172-7. 295

22. Tinikul Y, Poljaroen J, Nuurai P, Anuracpreeda P, Chotwiwatthanakun C, Phoungpetchara I, et al. Existence and distribution 296 of gonadotropin-releasing hormone-like peptides in the central nervous system and ovary of the Pacific white shrimp, *Litopenaeus* 297 *vannamei*. Cell and Tissue Research. 2011;343(3):579-93. 298

23. Leelatanawit R, Sittikankeaw K, Yocawibun P, Klinbunga S, Roytrakul S, Aoki T, et al. Identification, characterization and 299 expression of sex-related genes in testes of the giant tiger shrimp *Penaeus monodon*. Comparative Biochemistry and Physiology Part 300 A: Molecular & Integrative Physiology. 2009;152(1):66-76. 301

24. Visudtiphole V, Klinbunga S, Kirtikara K. Molecular characterization and expression profiles of cyclin A and cyclin B during 302 ovarian development of the giant tiger shrimp *Penaeus monodon*. Comparative Biochemistry and Physiology Part A: Molecular & 303 Integrative Physiology. 2009;152(4):535-43. 304

25. Phinyo M, Visudtiphole V, Roytrakul S, Phaonakrop N, Jarayabhand P, Klinbunga S. Characterization and expression of cell 305 division cycle 2 (Cdc2) mRNA and protein during ovarian development of the giant tiger shrimp *Penaeus monodon*. General and 306 Comparative Endocrinology. 2013;193:103-11. 307

26. Zhang E-F, Qiu G-F. A novel Dmrt gene is specifically expressed in the testis of Chinese mitten crab, *Eriocheir sinensis*. 308 Development Genes and Evolution. 2010;220(5):151-9. 309

27. Zhang Z, Shen B, Wang Y, Chen Y, Wang G, Lin P, et al. Molecular cloning of proliferating cell nuclear antigen and its 310 differential expression analysis in the developing ovary and testis of penaeid shrimp *Marsupenaeus japonicus*. DNA and cell biology. 311 2010;29 4:163-70. 312

28. Zhao W, Chen L, Qin J, Wu P, Zhang F, Li E, et al. MnHSP90 cDNA characterization and its expression during the ovary 312 development in oriental river prawn, *Macrobrachium nipponense*. Molecular Biology Reports. 2011;38(2):1399-406. 313

29. 314

29. Ren Q, Zhou J, Zhao X-F, Wang J-X. Molecular cloning and characterization of a receptor for activated protein kinase C1 (RACK1) from Chinese white shrimp; *Fenneropenaeus chinensis*. *Developmental & Comparative Immunology*. 2011;35(6):629-34. 315
316

30. Wen R, Li F, Xie Y, Li S, Xiang J. A Homolog of the Cell Apoptosis Susceptibility Gene Involved in Ovary Development of Chinese Shrimp <i>Fenneropenaeus chinensis</i>.</i> *Biology of Reproduction*. 2011;86(1). 317
318

31. Shi Y, Liu W, He M. Proteome and Transcriptome Analysis of Ovary, Intersex Gonads, and Testis Reveals Potential Key Sex Reversal/Differentiation Genes and Mechanism in Scallop *Chlamys nobilis*. *Marine Biotechnology*. 2018;20(2):220-45. 319
320

32. Feng Q-m, Liu M-m, Cheng Y-x, Wu X-g. Comparative proteomics elucidates the dynamics of ovarian development in the Chinese mitten crab *Eriocheir sinensis*. *Comparative Biochemistry and Physiology Part D: Genomics and Proteomics*. 2021;40:100878. 321
322

33. Zhou T, Chen G, Chen M, Wang Y, Zou G, Liang H. Tandem Mass Tag-Based Quantitative Proteomics Analysis of Gonads Reveals New Insight into Sexual Reversal Mechanism in Chinese Soft-Shelled Turtles. *Biology (Basel)*. 2022;11(7). 323
324

34. Purcell S, Samyn Y, Conand C. Commercially important sea cucumbers of the world2012. Rome, 6, p. 67. p. 325

35. Hair C, Militz TA, Daniels N, Southgate PC. Performance of a trial sea ranch for the commercial sea cucumber, *Holothuria scabra*, in Papua New Guinea. *Aquaculture*. 2022;547:737500. 326
327

36. Wu F, Cheng C, Chen T, Zhang X, Wu X, Jiang X, et al. Study on sex differential metabolites and metabolic pathway of parental tropical sea cucumbers *Holothuria scabra*. *Progress in Fishery Sciences*. 2021;42(3):55-67. 328
329

37. E Z, Cheng C, Wu F, Ren C, Chen R, Rao Y, et al. Nondestructive and rapid method for sex identification of the tropical sea cucumber *Holothuria scabra* by anal swab sampling. *Aquaculture*. 2023;562:738749. 330
331

38. Wu H, Chen Y, Miao S, Zhang C, Zong S, Koide SS, et al. Sperm associated antigen 8 (SPAG8), a novel regulator of activator of CREM in testis during spermatogenesis. *FEBS Letters*. 2010;584(13):2807-15. 332
333

39. Tai L, Yin G, Huang X, Sun F, Zhu Y. In-cell structural insight into the stability of sperm microtubule doublet. *Cell Discovery*. 2023;9(1):116. 334
335

40. Weidman PJ, Teller DC, Shapiro BM. Purification and characterization of proteolaisin, a coordinating protein in fertilization envelope assembly. *The Journal of biological chemistry*. 1987;262(31):15076-84. 336
337

41. Somers CE, Battaglia DE, Shapiro BM. Localization and developmental fate of ovoperoxidase and proteolaisin, two proteins involved in fertilization envelope assembly. *Dev Biol*. 1989;131(1):226-35. 338
339

42. Schuel H. The Prevention of Polyspermic Fertilization in Sea Urchins. *The Biological Bulletin*. 1984;167(2):271-309. 340

43. Carroll EJ, Jr., Hutchins-Carroll V, Coyle-Thompson C, Oppenheimer SB. Hyalin is a cell adhesion molecule involved in mediating archenteron-blastocoel roof attachment. *Acta Histochem*. 2008;110(4):265-75. 341
342

44. Huang C-c, Hall DH, Hedgecock EM, Kao G, Karantza V, Vogel BE, et al. Laminin α subunits and their role in *C. elegans* development. *Development*. 2003;130(14):3343-58. 343
344

45. Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M. The Structure of the Eukaryotic Ribosome at 3.0 Å Resolution. *Science*. 2011;334(6062):1524-9. 345
346

46. Kroupova H, Trubiroha A, Wuertz S, Kloas W. Stage-dependent differences in RNA composition and content affect the outcome of expression profiling in roach (*Rutilus rutilus*) ovary. *Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology*. 2011;159(2):141-9. 347
348

47. Rojo-Bartolomé I, Diaz de Cerio O, Diez G, Cancio I. Identification of Sex and Female's Reproductive Stage in Commercial Fish Species through the Quantification of Ribosomal Transcripts in Gonads. *PLOS ONE*. 2016;11(2):e0149711. 350
351

48. Diaz de Cerio O, Rojo-Bartolomé I, Bizarro C, Ortiz-Zarragoitia M, Cancio I. 5S rRNA and accompanying proteins in gonads: powerful markers to identify sex and reproductive endocrine disruption in fish. *Environ Sci Technol*. 2012;46(14):7763-71. 352
353

49. Shen Z, Yao H, Guo L, Li X, Wang H. Ribosome RNA Profiling to Quantify Ovarian Development and Identify Sex in Fish. *Sci Rep*. 2017;7(1):4196. 354
355

50. Jiang H, Li X, Li Y, Liu X, Zhang S, Li H, et al. Molecular and functional characterization of ribosome protein S24 in ovarian development of *Macrobrachium nipponense*. *Int J Biol Macromol*. 2024;254(Pt 2):127934. 356

357

51. Sgroi A, Colombo P, Duro G, Fried M, Izzo V, Giudice G. cDNA Sequence Analysis and Expression of the Ribosomal Protein S24 during Oogenesis and Embryonic Development of the Sea Urchin *Paracentrotus lividus*. *Biochemical and Biophysical Research Communications*. 1996;221(2):361-7. 358

359

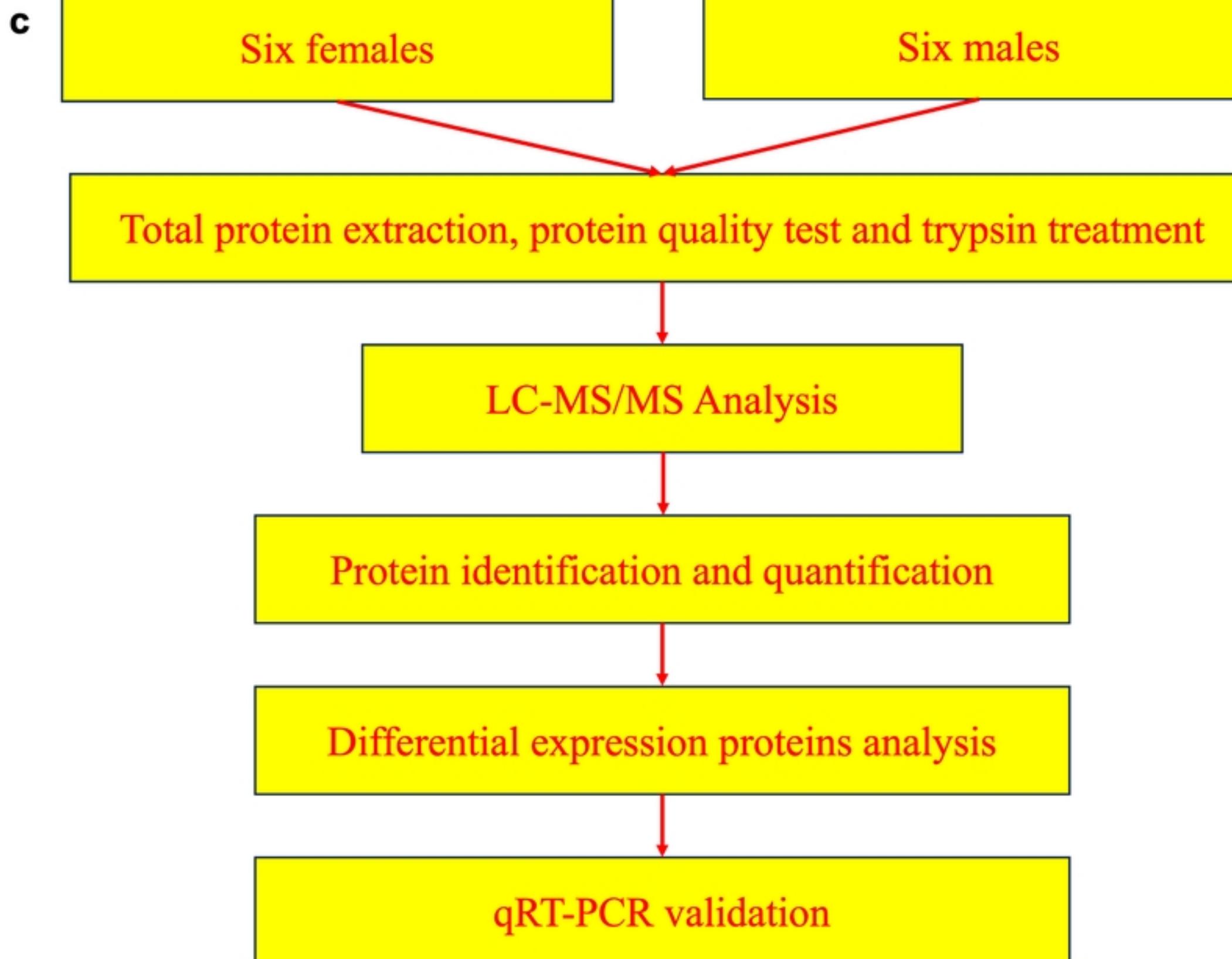
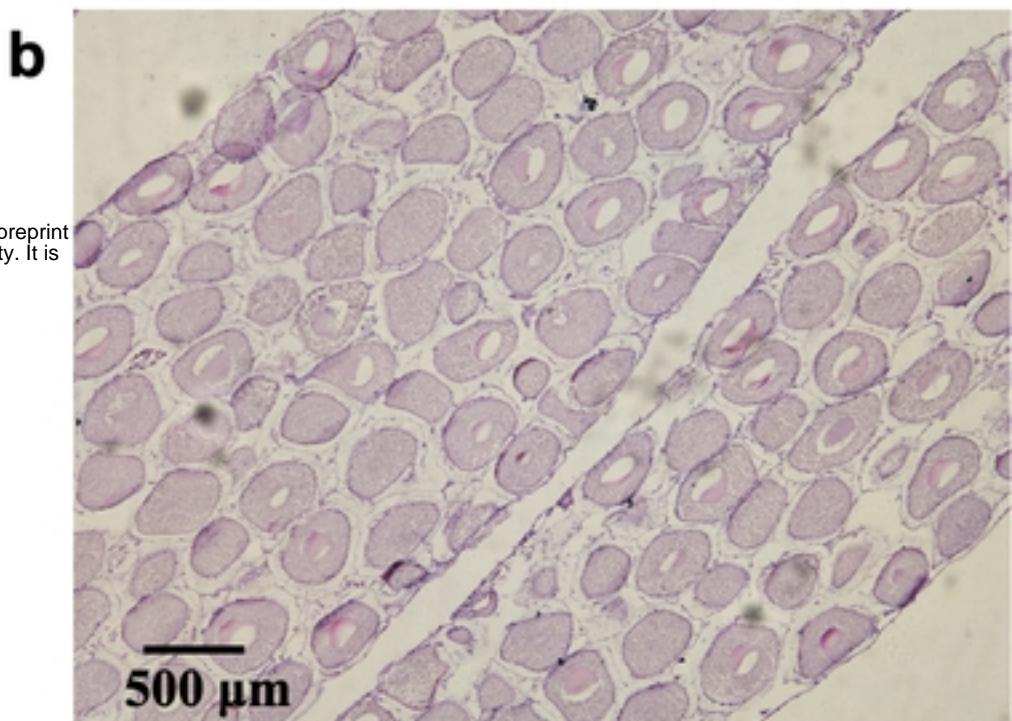
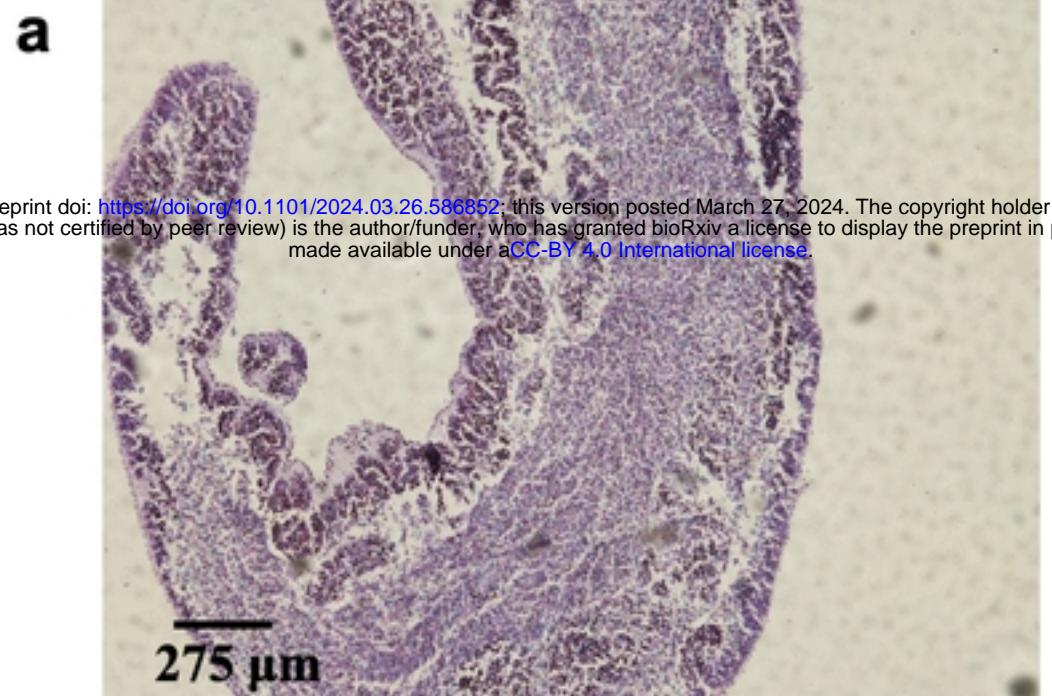
360

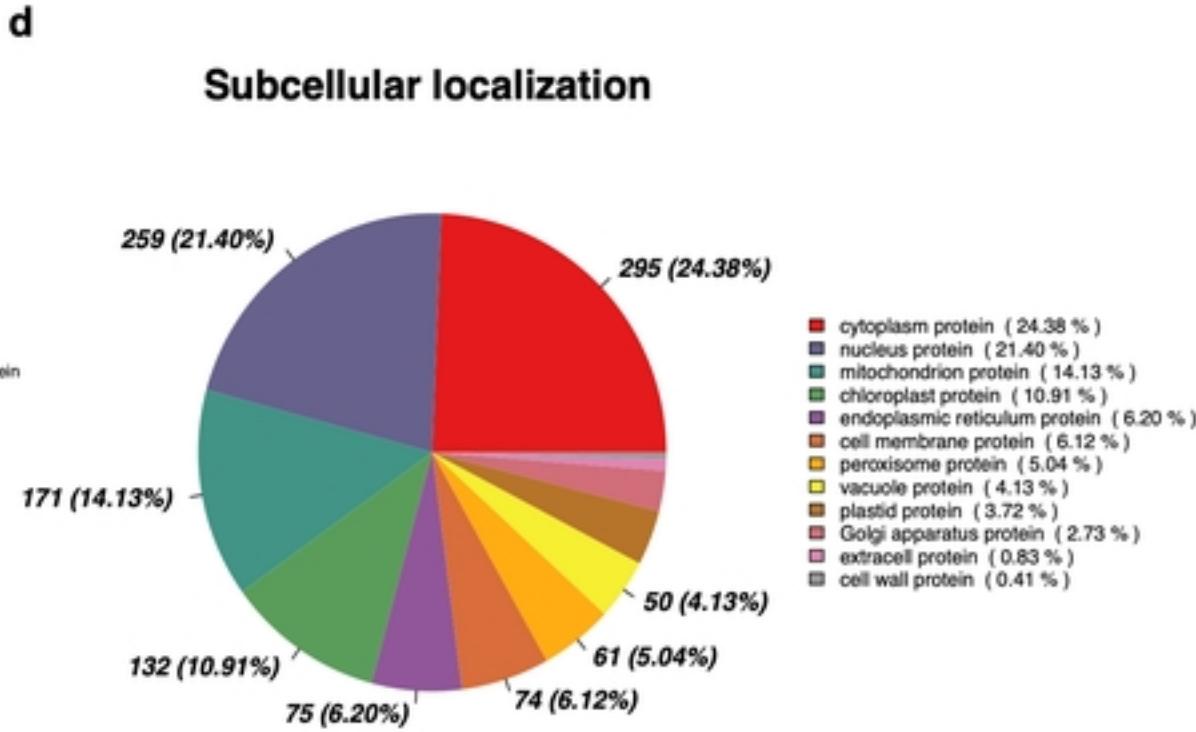
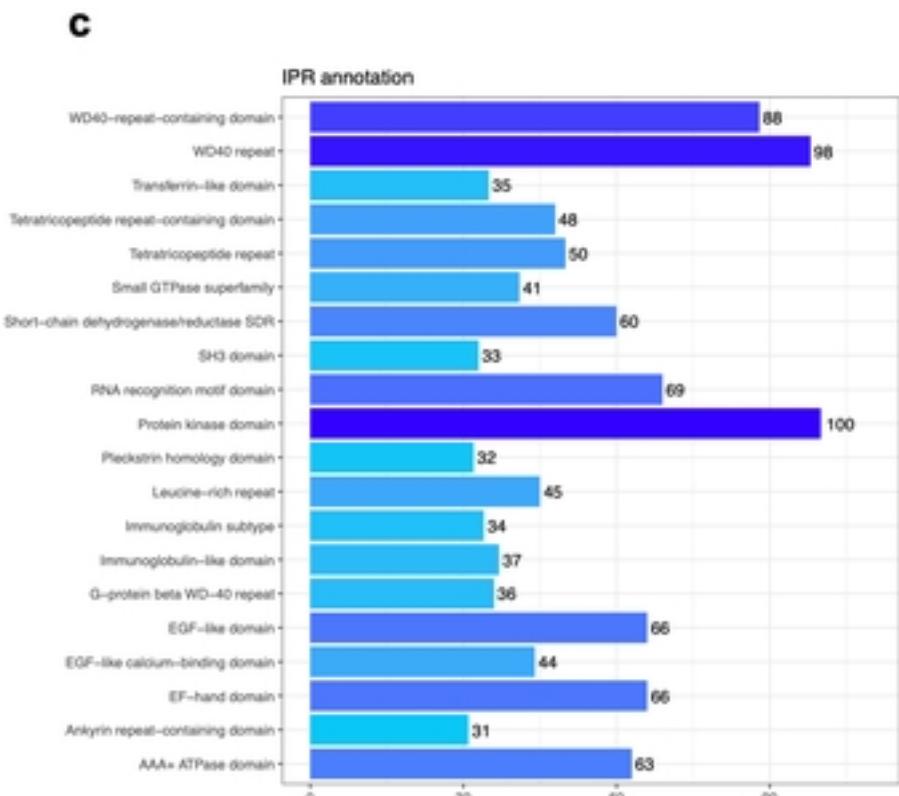
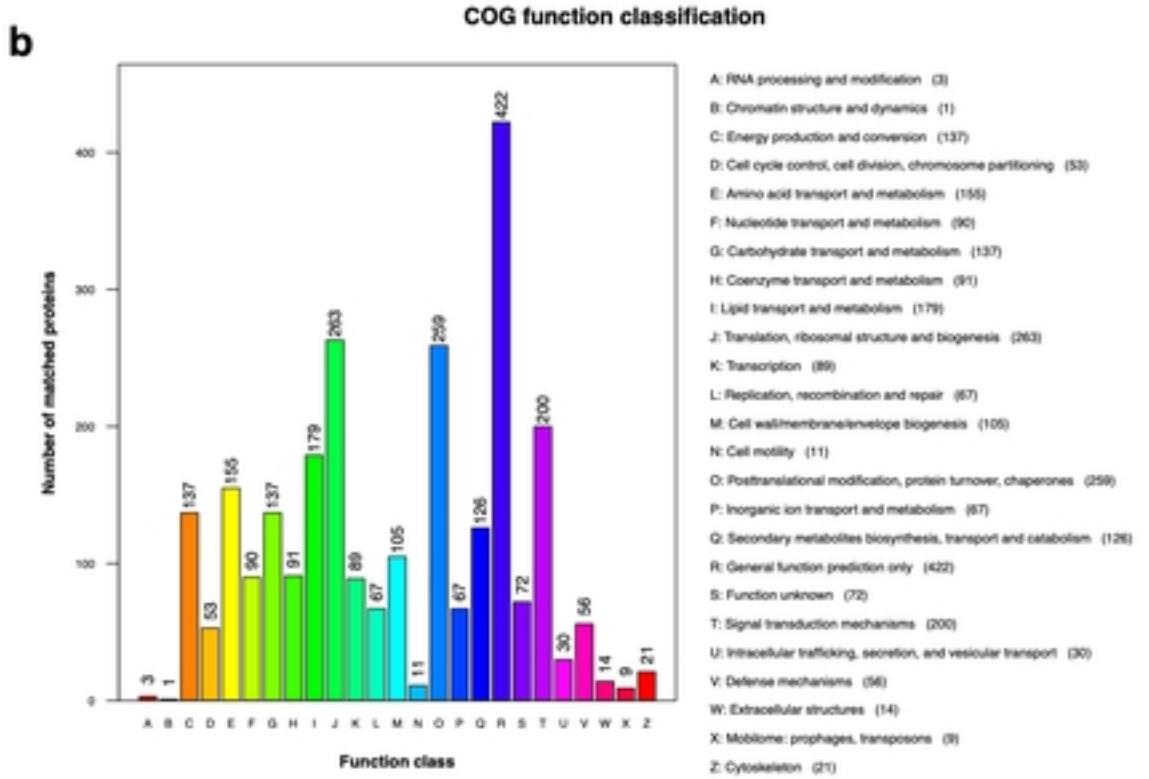
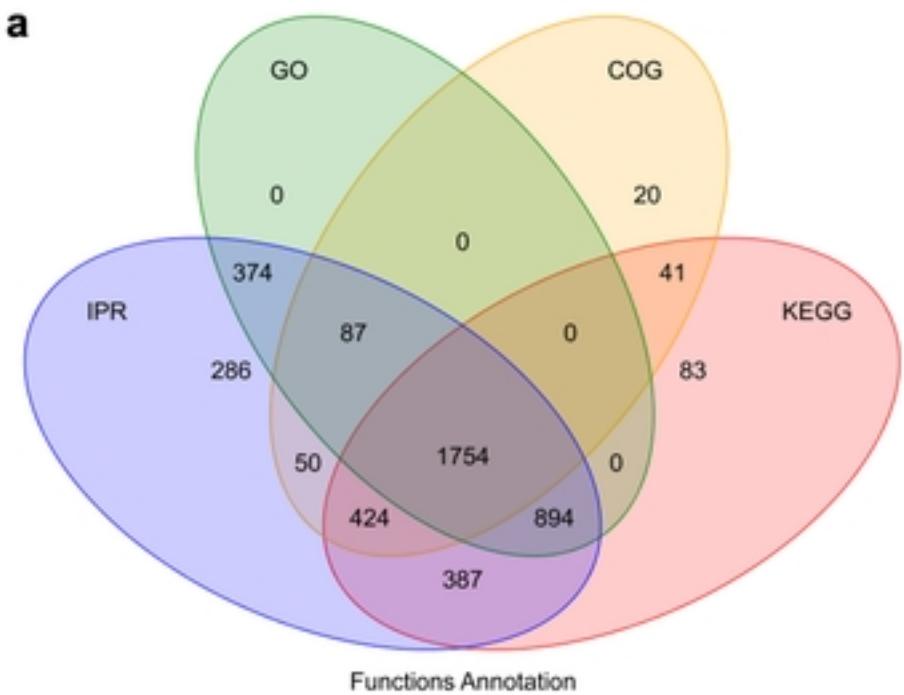
52. Moritz L, Hammoud SS. The Art of Packaging the Sperm Genome: Molecular and Structural Basis of the Histone-To-Protamine Exchange. *Front Endocrinol (Lausanne)*. 2022;13:895502. 361

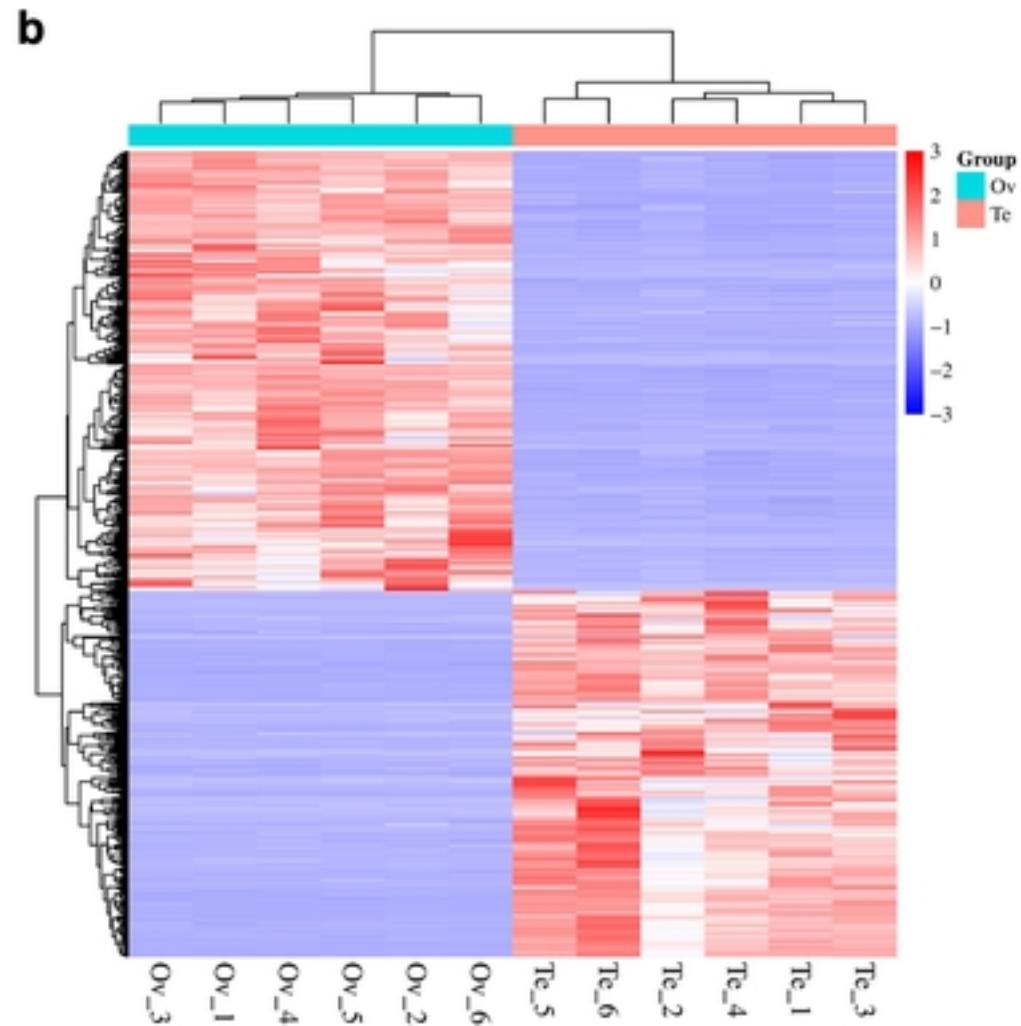
362

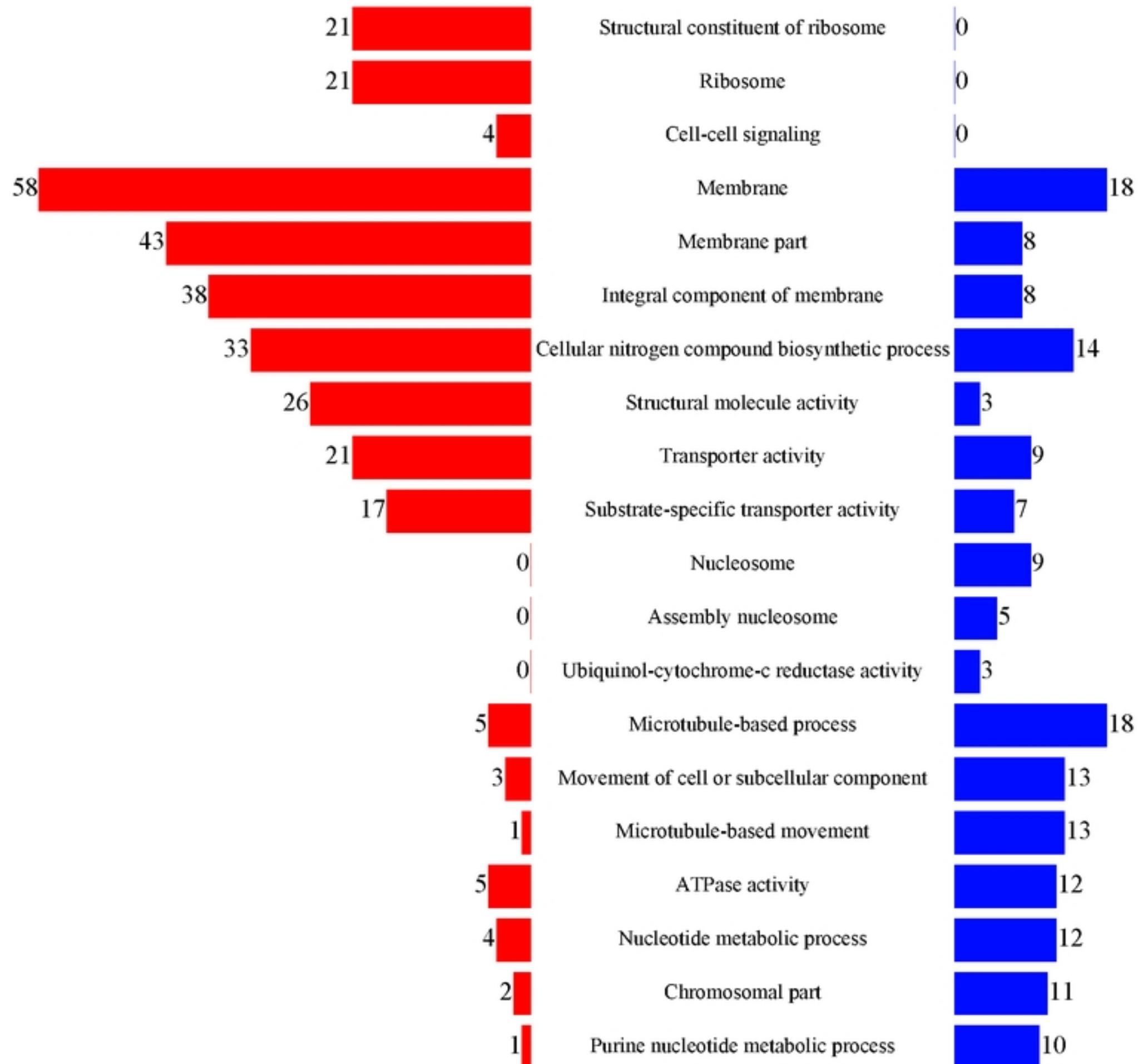
53. Hao S-L, Ni F-D, Yang W-X. The dynamics and regulation of chromatin remodeling during spermiogenesis. *Gene*. 2019;706:201-10. 363

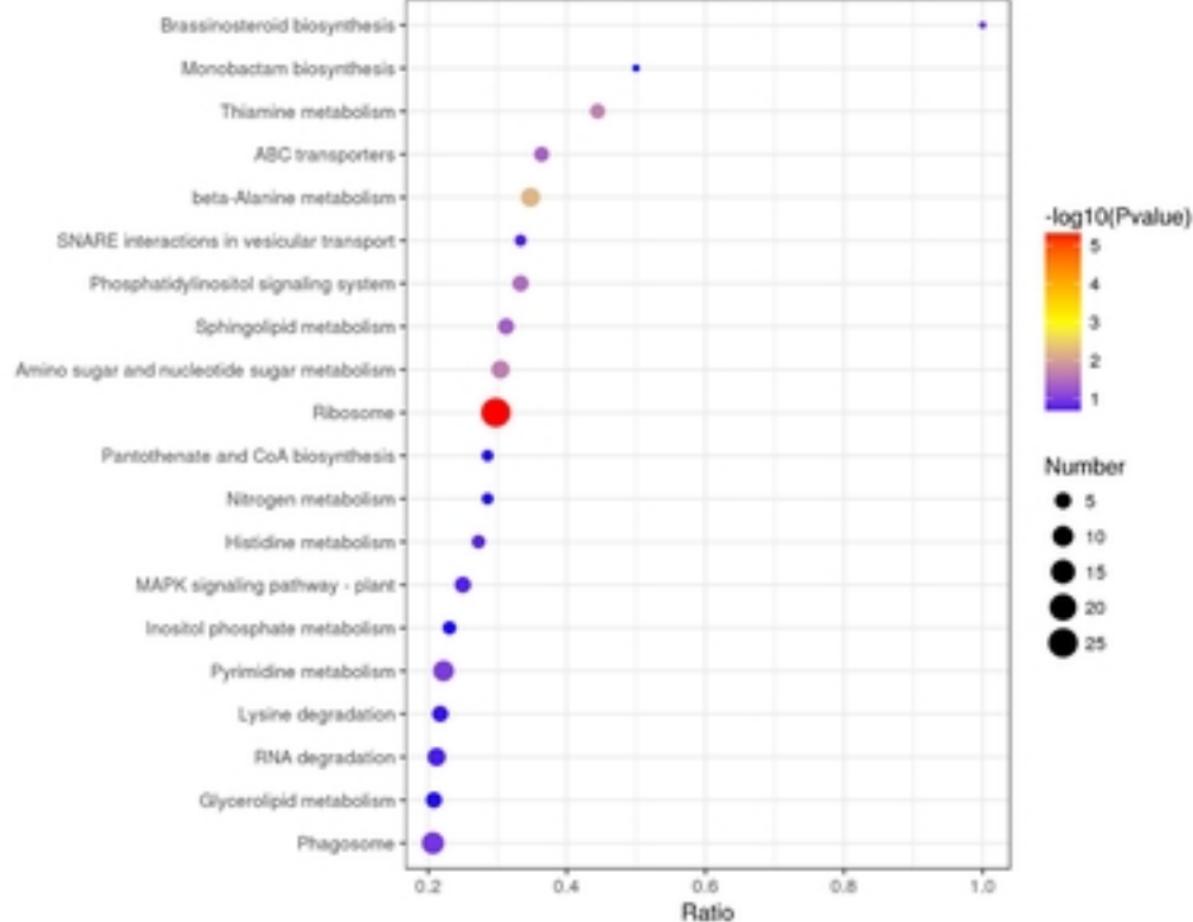
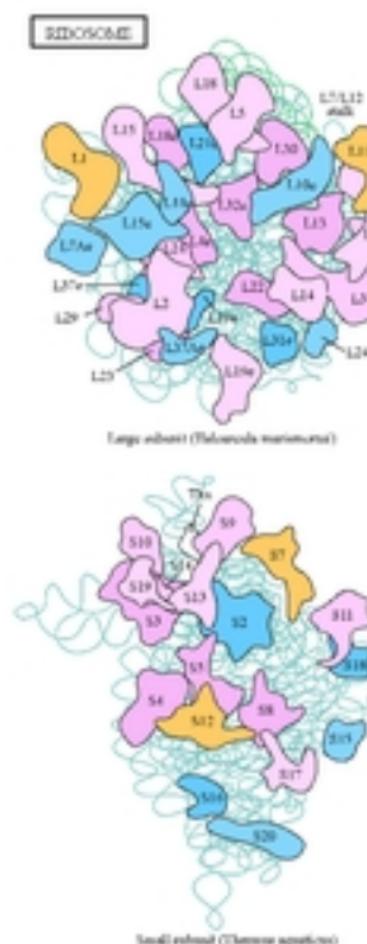
364




54. Luense LJ, Donahue G, Lin-Shiao E, Rangel R, Weller AH, Bartolomei MS, et al. Gcn5-Mediated Histone Acetylation Governs Nucleosome Dynamics in Spermiogenesis. *Dev Cell*. 2019;51(6):745-58.e6. 365





366


55. O'Donnell L, O'Bryan MK. Microtubules and spermatogenesis. *Seminars in Cell & Developmental Biology*. 2014;30:45-54. 367


368

a**Ov.vs.Te****b**

Ribosomal RNA

Bacterial / Archaeal	23S	16S	34S
Bacillus	23S	16S	34S

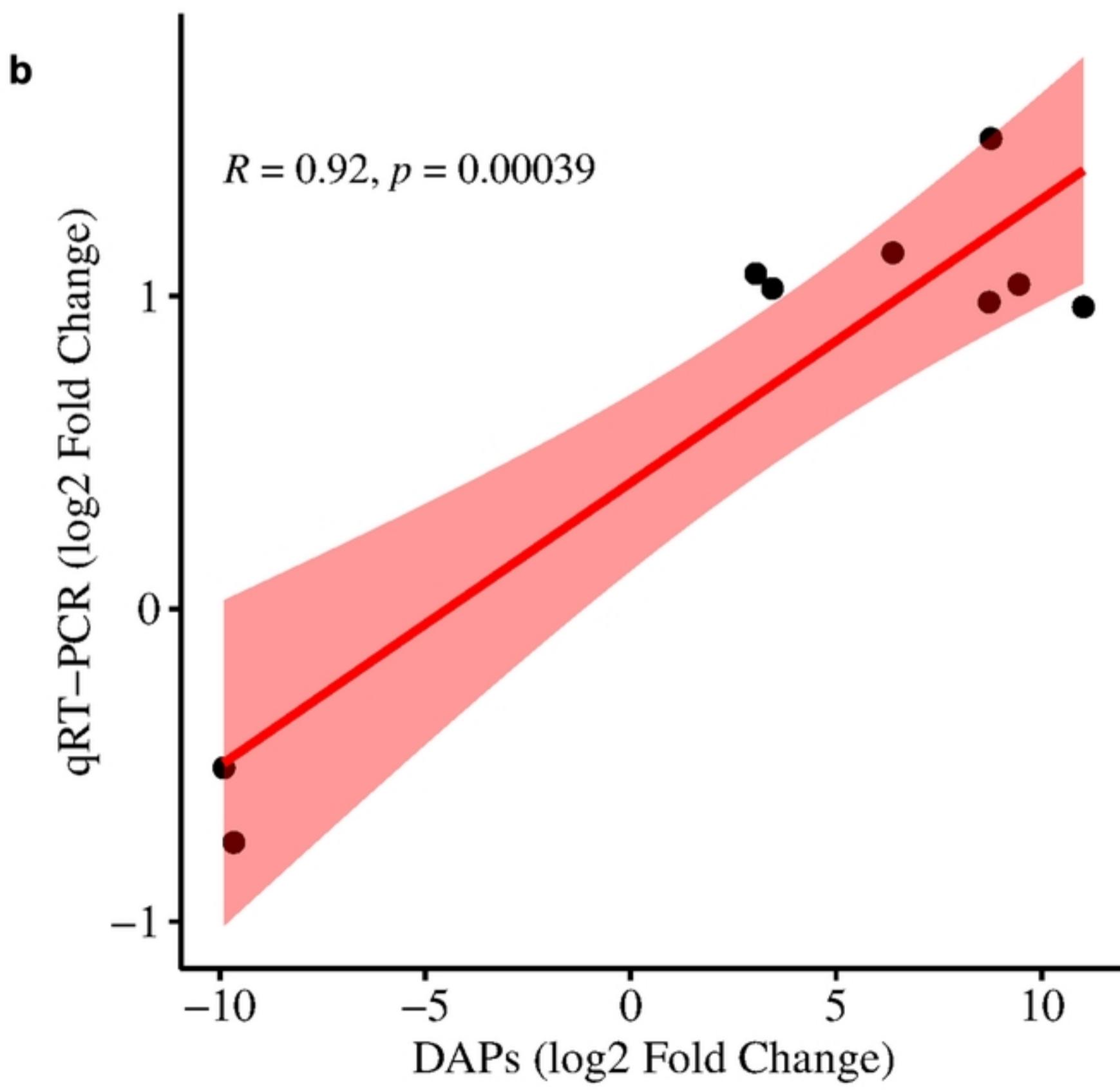
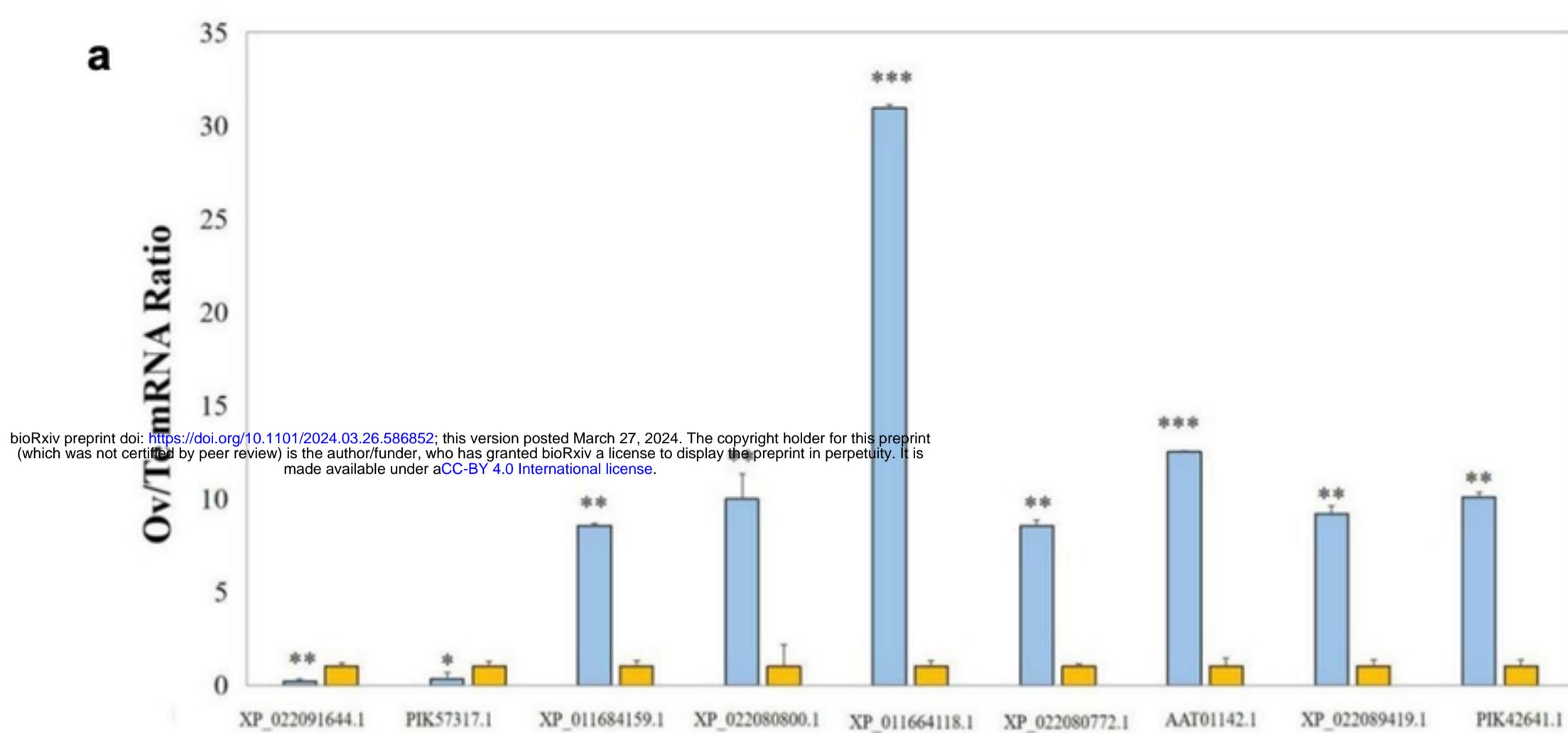
Ribosomal proteins

EF-Tu	S10	S15	S14	S21	S22	S19	S22	S5	S18	S20
Bacillus	S10e	S15e	S14e	S21e	S22e	S19e	S22e	S5e	S18e	S20e

S17	S14	S24	S15	S16	S18	S15	S16	S17	S18	S19	S20	S15	
Bacillus	S17e	S14e	S24e	S15e	S16e	S18e	S15e	S16e	S17e	S18e	S19e	S20e	S15e

EF-Tu/G	S10	S12	S15	S16	S18	S19	S20	S21	S22
Bacillus	S10e	S12e	S15e	S16e	S18e	S19e	S20e	S21e	S22e

EF-G	S2	S15	S16	S17	S18	S19	S20	S21	S22
Bacillus	S2e	S15e	S16e	S17e	S18e	S19e	S20e	S21e	S22e



EF-G/S	S2	S15	S16	S17	S18	S19	S20	S21	S22
Bacillus	S2e	S15e	S16e	S17e	S18e	S19e	S20e	S21e	S22e

EF-G/S/G	S2	S15	S16	S17	S18	S19	S20	S21	S22
Bacillus	S2e	S15e	S16e	S17e	S18e	S19e	S20e	S21e	S22e

EF-G/S/G/G	S2	S15	S16	S17	S18	S19	S20	S21	S22
Bacillus	S2e	S15e	S16e	S17e	S18e	S19e	S20e	S21e	S22e

EF-G/S/G/G/G	S2	S15	S16	S17	S18	S19	S20	S21	S22
Bacillus	S2e	S15e	S16e	S17e	S18e	S19e	S20e	S21e	S22e

EF-G/S/G/G/G/G	S2	S15	S16	S17	S18	S19	S20	S21	S22
Bacillus	S2e	S15e	S16e	S17e	S18e	S19e	S20e	S21e	S22e

