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Abstract

The retina’s role in visual processing has been viewed as two extremes: an effi-
cient compressor of incoming visual stimuli akin to a camera, or as a predictor
of future stimuli. Addressing this dichotomy, we developed a biologically-detailed
spiking retinal model trained on natural movies under metabolic-like constraints
to either encode the present or to predict future scenes. Our findings reveal that
when optimized for efficient prediction ~100 ms into the future, the model not
only captures retina-like receptive fields and their mosaic-like organizations, but
also exhibits complex retinal processes such as latency coding, motion anticipa-
tion, differential tuning, and stimulus-omission responses. Notably, the predictive
model also more accurately predicts the way retinal ganglion cells respond across
different animal species to natural images and movies. Our findings demon-
strate that the retina is not merely a compressor of visual input, but rather is
fundamentally organized to provide the brain with foresight into the visual world.
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Introduction

Retinal ganglion cells (RGCs) respond to different patterns of light [1, 2] and send a
representation of the visual world to the brain [3], spatially downsampled by about
100 times from the photoreceptors. It remains a open question what information this
pattern of activity represents. One hypothesis posits that the retina efficiently com-
presses incoming light into a downsampled neural code [4-10] - like a camera capturing
incoming light. Another hypothesis is that the retina efficiently signals features within
sensory input that are predictive of the future [11-15] - like a crystal ball foretelling
the future. The concept of prediction is thought to be fundamental to many aspects
of sensory processing, where the predominant focus has been on the role of cortical
circuits in predicting sensory inputs [16, 17].

Normative modeling is a commonly used approach for exploring such coding ques-
tions [18, 19]. This involves optimizing a model (in our case of the retina) for a
particular goal, for example efficient compression or prediction, and comparing the
resulting phenomena within the model to the biology. Previous normative models of
the retina have mostly explored the efficient compression of natural images by employ-
ing model units that output firing rates [4-8]. These models have successfully captured
the different types of retina-like spatial receptive fields (RFs) and their mosaic-like
organizations. However, they lack particular biological features, such as the spiking
responses of RGCs and their recurrent interactions [20]. Modeling spikes is important
since RGCs may encode visual stimuli using the relative timing of spikes, which there-
fore play an important role in sensory transmission [21]. Furthermore, these models
have not been shown to capture more complex retinal processes, such as stimulus-
omission [22, 23] and motion-anticipation [24] responses or differential motion tuning
[25]. Most importantly, and pivotal to the compression versus prediction dichotomy,
it remains unclear to what extent a spiking model optimized for prediction compares
to the retina.

To address these shortcomings, we developed a spiking retinal model, trained on
natural movies under metabolic-like constraints, to either encode the present or to
predict the future, from recent spike activity. Like prior non-spiking normative inves-
tigations [4-8, 15], we found that our spiking model optimized for prediction was able
to capture retina-like RFs and their spatial organizations. Extending beyond these
results, we found that our model also exhibited retina-like latency coding [21] and
spike statistics in response to natural images and movies. Furthermore, the predic-
tive model captured complex retinal processes of motion tuning and sensitivity to the
unexpected absence of a stimulus (stimulus-omission responses) [22, 23]. In contrast,
the model optimized for efficient compression did not account for complex retinal pro-
cesses, like stimulus-omission responses. Notably, we found the model optimized for
prediction ~100 ms into the future to more accurately predict RGC responses across
different animal species to both natural images and movies. Our findings therefore
suggest that the retina in mammals and amphibians has evolved to supply the brain
with temporally-predictive features about the visual world.
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Fig. 1: The spiking retinal model. a. Schematic of the retinal circuit with its dif-
ferent cell types (P=Photoreceptor, H=Horizontal cell, B=Bipolar cell, A=Amacrine
cell, G=Ganglion cell) and respective connections, with the arrow heads indicating
the flow of visual information. b. Schematic of the retinal model. The model takes a
sequence of movie frames as input and linearly transforms them into an input cur-
rent that is fed into a single hidden layer of recurrently-connected spiking LIF units.
Photoreceptor-like noise was added to the input image and ganglion-cell-like noise was
added to the input current. The spike output of these units was used to linearly con-
struct a projection, either of the present or the future, of the input stimulus. The linear
transformation approximates the transformation of the pre-ganglionic cells in the top
gray box in a., and the recurrently-connected spiking units model the ganglion cells,
and their interactions with the amacrine cells, in the bottom gray box. c. Example
activity traces of one of the LIF units over time: input current I charges the mem-
brane potential V' and elicits a spike if the firing threshold (dotted line) is crossed.

Results
The spiking retinal model

The retina consists of three cellular layers: the photoreceptors (which transduce light),
the bipolar cells (an intermediate cell layer), and the RGCs (the spiking output layer),
interspersed by the horizontal and amacrine cell inhibitory interneurons [20] (Fig. 1a).
We modelled this circuit using a single hidden layer of recurrently-connected spik-
ing units (Fig. 1b), where the spiking units are equivalent to the RGCs. All spiking
units were modelled using the leaky integrate-and-fire model [26], which captures the
key biophysical nature of real neurons: integrate incoming current, and fire a spike
when the firing threshold is reached (Fig. 1c). Pre-ganglionic cells (the photorecep-
tors, horizontal and bipolar cells) appear to mostly respond to incoming light in a
linear fashion [27]. We thus opted to model their transformation using a linear map-
ping, whose output was fed as input current to the RGC-like spiking units. Similar to
prior modelling work [28], we included recurrent connectivity to capture the interac-
tions between RGC types, arising from electrical synapses between RGCs [29, 30] and
electrical and chemical synaptic connections between RGCs via amacrine cells [20, 29].

We also noise-perturbed the input stimulus and each unit’s membrane potential
with Gaussian noise, to capture the noise characteristics of the photoreceptors and
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RGCs [31, 32]. We chose these noise sources so that the model’s spike train variability
matched that of the RGCs across repeated stimulus presentations. As in the retina, the
model’s spike trains were almost identical in response to uniform full-field illumination
with randomly varying intensity over multiple repeats [3, 33], and the model’s response
variability was sub-Poisson with Fano factors mostly below unity [33-35] (Extended
Data Fig. 1).

The model was trained on diverse natural movies, with the objective of estimating a
spatial frame T,g ms into the future, or at the present, using a linear readout from past
spike activity. We explored different prediction offset values Tog to examine whether
an encoding (Tog = 0 ms) or predictive (Tog > 0 ms) objective better captures the
sensory processing of the retina. Lastly, we regularized the model’s connectivity during
training using a metabolic-like cost function, which penalized individual synaptic-
like connections by their cost in energy, approximated as the absolute value of a
connection weighted by its incoming activity over time (see Methods). Unless otherwise
mentioned, we report our results using the model optimized for prediction of Tog =
128ms into the future.

Retina-like spike statistics to natural images and movies

First, we checked that our model could produce retina-like spike trains. We compared
the spiking activity of the model units to RGC activity across different animal species
in response to natural images and movies. Here, we used publicly available recordings
from the retina in macaque, marmoset, mouse and salamander [35-37]. We found
our model to exhibit similar spike activity to the RGCs across each of these species.
The retina qualitatively exhibits more sparse and regular firing activity in response
to natural images [35] (Fig. 2a) compared to natural movies [37] (Fig. 2b). We found
that our model exhibits similar firing patterns for the different types of input.

We quantified the sparsity and variability in the spike responses to the natural
images and movies across the different animal species and the model. We measured the
spike response sparsity and variability by respectively calculating the mean firing rate
and the mean coefficient of variation of the interspike interval CV(ISI). The CV/(ISI)
measures the variability in a spike train, where CV (ISI) < 1 corresponds to a more
regular firing pattern than a Poission process and CV (IST) > 1 a less regular one [26]
(see Methods). Both the mean firing rate and CV(ISI) are lower across the animal
species in response to the natural images (Fig. 2c) than to the natural movies (Fig.
2d). Similarly, we found the model units to exhibit a lower firing rate (images 8.27Hz
vs movies 17.27Hz; p = 6.01 x 1071*, one-sided Mann-Whitney U test) and CV(ISI)
(images 0.38 vs movies 1.91; p = 1.87x 107166, one-sided Mann-Whitney U test) to the
images compared to the movies. We used the same image dataset from the salamander
recordings [35] to quantify the model’s response statistics to natural images, and used
our held-out movie test set to calculate the model’s response statistics to natural
movies.
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Fig. 2: Spike responses to natural images and movies. a. Raster plot from
the salamander retina (top) and the model (bottom) showing responses to the same
natural images (left). b. Raster plot from the mouse retina (top) and the model
(bottom) to the same natural movies (left). c. Left: Mean firing rate of RGCs from
different species (blue) and model units (orange) evoked by natural images. Right:
Corresponding mean coefficient of variation of the interspike intervals CV(ISI) of the
neurons and model units to the natural images. d. Same as c. but with the statistics
instead calculated using the responses to natural movies. The salamander data were
obtained from [35]; the macaque image and movie data were obtained from [36], and
the marmoset and mouse movie data were obtained from [37]. The number of model
units was randomly sampled for plots a. and b. to match the number of neurons. All
bars plot the mean and s.e.m.

Emergence of major retina-like cells

We analyzed the functional type of each model unit, as one would categorize the
functional types of RGCs [35], by mapping the spatiotemporal receptive fields (RFs)
of the model units using a spike-triggered average to white-noise. We fitted a 2D
Gaussian function to each unit’s spatial RF and projected the spatial RF size and
dimensionality-reduced RF temporal profile onto a 2D scatter plot. We then separated
the units into functional groups using k-means clustering (see Methods).

We found the model units to separate into four functional classes (Fig. 3a), each
resembling one of the major cell types found in the primate retina, which together
constitute over 95% of the RGCs in the central retina [38]: ON parasol and midget
cells and their OFF type counterparts [38, 39] (Fig. 3b). Just like the real retina, the
parasol-like units had a larger spatial structure and a more biphasic temporal profile
than the midget-like units [40, 41]. We also found the model parasol- and midget-like
units to behave similarly to their biological counterparts in response to flashes of light
(Fig. 3c): the ON and OFF parasol-like units responded with a transient burst of spikes
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Fig. 3: Retina-like RFs and their mosaic organization. a. Scatter plot of model
unit RF diameter (obtained from a 2D Gaussian fit) vs the first principal compo-
nent of the dimensionality-reduced RF temporal profile, with the spatiotemporal RF's
obtained from a spike-triggered average to white-noise. Separate colors and shapes
denote distinct functional groups (obtained using k-means clustering), with red and
blue crosses denoting ON-type and OFF-type parasol-like units respectively and yel-
low and green dots denoting ON-type and OFF-type midget-like units respectively.
Example 2D spatiotemporal RFs from each group are plotted below: left are ON-type
units, right are OFF-type units, top are parasol-like units and bottom are midget-like
units. b. Example spatial RFs, with corresponding temporal profile plotted below,
from the macaque retina [4] (left) and the model (right), where red and blue colors
denote high and low power respectively. c. Light-flash responses of the model units
depicted in b. (yellow rectangle denotes the duration of the flash of light). d. RF
mosaics of the different model unit types (top) with the corresponding RF mosaics of
the different marmoset RGC types [37] (bottom). e. Left: number of model units that
are parasol- and midget-like. Right: number of units which are ON- and OFF-type. f.
Membrane time constant distribution over all model units.
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to changes in light intensity, and the ON and OFF midget-like units responded with
a sustained train of spikes (with the ON-type cells responding to the light onset, and
the OFF-type cells responding to the light offset) [42, 43]. As reported in the retina
across different species [44-46], the RFs of the different unit types in the model tiled
visual space, forming mosaic-like organizations (Fig. 3d). We also found fewer parasol-
than midget-like units, and fewer ON- than OFF-type units within the model (Fig.
3e). This aligns with experimental reports of midget cells being more plentiful than
parasol cells [38, 47], and OFF-type cells occurring more frequently than ON-type
cells [41, 48]. Lastly, the model units exhibit a heterogeneous membrane time constant
distribution on the scale of tens of milliseconds, which has similarly been reported for
cat RGCs [49] (Fig. 3f).

Texture, differential and anticipatory motion selectivity

We quantified the tuning characteristics of the model units and found that they
exhibited several well-known motion-tuning characteristics of RGCs. Some RGCs in
different species have been reported to be selectively tuned to the orientation and
direction of moving objects, with a preference for motion along the cardinal axes
[50-57]. Similar to the biology, we found some units to be selective for orientation
(16.37% of units with OSI > 0.5) and some selective for direction (3.48% of units
with DSI > 0.5), with a preference for motion along the horizontal and vertical axes
(Fig. 4a). A well-known class of RGCs, known as Y-type cells (~ 3% of ganglion cells
in cats [58]), are tuned to the general motion of textures of high spatial frequency, but
not their static presentation [20, 59-61]. Similar to these neurons, we found units in
the model (7.66% of units) that did not respond to a stationary grating of high spatial
frequency (for each unit’s preferred orientation), yet fired as soon as the grating moved
(Fig. 4b). Some RGCs, known as object-motion-sensitive (OMS) cells, exhibit differ-
ential motion selectivity, where a neuron remains silent when an image (or grating)
moves across the retina, yet fires if the motion in the RF center differs from that in
the wider surround (e.g. by masking out the wider surround) [25, 52, 62, 63]. We also
found such OMS tuning in some of the model units (Fig. 4¢). Certain RGCs have an
anticipation-like response to moving objects (like a bar moving left or right), where the
neuron fires even before the object crosses the neuron’s RF, whereas there is a delayed
response to simply flashing the bar onto the RF [24]. Similarly, we found certain units
in our model to also have an anticipation-like response to a moving bar (Fig. 4d).

Emergence of a relative spike latency code and stimulus
omission responses

A contentious and open question in neuroscience is how neurons transmit information
using their spikes [64]. This has historically been cast as a code of two extremes,
where neurons either communicate using the number of spikes evoked (i.e. a rate code)
or the timing of spikes (i.e. a temporal code). These strategies are not necessarily
mutually exclusive [65], and different neurons likely employ different coding strategies
depending on their location within the nervous system. In the retina, there is strong
evidence that certain RGCs employ a temporal-like code, encoding the onset of a
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Fig. 4: Motion tuning. a. Top left: model unit orientation- and direction-selectivity
distributions (values closer to unity denote stronger tuning). Bottom left: distribution
of orientation tuning for the model units. Right: sample tuning curves of an orientation-
selective and direction-selective unit. b. Spike raster of a model motion-sensitive unit,
with no response to a stationary grating of high spatial frequency (top), and a response
to the grating moving upwards (bottom). c. Spike raster of an object-motion-sensitive
model unit, with no clear response to the grating moving over the entire visual space
(top), and a stronger response to the same spatially localized grating moving within
the model unit’s RF (bottom). d. Top: responses of a single model unit, and a single
salamander and rabbit retinal ganglion cell to a briefly flashed bar (~ 15 ms) within
their RFs. Bottom: Anticipation-like responses in the same model unit and RGCs to
a rightward moving bar (~ 0.44 mm s~! - see Methods) before the bar crosses the
RF's. The bars were aligned at time zero and error bars denote the s.e. over repeated
stimulus presentations, with the salamander and rabbit data adapted from [24].

new visual scene using the relative timing of the first spikes. Reconstructing natural
images from such a differential spike latency of fast OFF RGCs, rather than their
spike counts, qualitatively results in a clearer image reconstruction [21]. We examined
these coding strategies in our model and similarly found a rate-based reconstruction to
qualitatively be more blurry, noisy and with erroneously overemphasized edges than a
latency-based reconstruction (Fig. 5a). A differential spike latency code can transmit
new visual information using very few spikes, which is both energy efficient and fast.
This is particularly important, as our gaze only remains fixed for a fraction of a second,
before rapid saccadic eye movements induce a new visual scene onto the retina [66, 67].
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Fig. 5: Latency and stimulus-omission responses. a. Reconstruction of an input
image using the relative spike latencies and the spike counts from a single OFF-type
neuron from the salamander retina [21] and from a single OFF-type model unit. b. Top:
mean decoding accuracy (Pearson correlation coefficient) in reconstructing natural
images from noise-corrupted inputs using a linear transformation of the population
model activity with a latency code (blue line) and a rate code (orange line) (the shaded
area is s.e.). Bottom: illustration of noise-corrupting the input images. c. Example
image reconstructions from b., I: target image, II: latency-decoding, III: rate-decoding,
IV: noised-image. d. Firing rate of a single salamander RGC [22] (top) and of two
example model units (bottom) during a sequence of 16 40ms-flashes presented at
12Hz. The dashed line marks the time when the flash sequence was halted, with the
arrow indicating the omitted-stimulus response. Omission stimulus responses were also
present at different flash rates, as well as when flashes were omitted in the middle of
the sequence (Extended Data Fig. 2).

Most of our understanding of the retina’s neural code is at a single-cell level based
on responses to artificial stimuli, like drifting gratings [20, 68]. It is less well understood
how natural stimuli are encoded by the population activity. Additionally, it remains
to be understood how the different coding strategies compare to each other in the
presence of varying levels of noise. This is important, as the retina likely employs a
noise-robust coding strategy, given the ubiquity of noise in the retina and the visual
environment [69]. To explore this, we tested how well we could reconstruct natural
images, by inputting their noise-corrupted counterparts into the model and linearly
decoding the images from the resulting rate and latency codes of the population model
spike activity. We found that the latency-decoding strategy more robustly decoded the
noise-corrupted natural images than the rate-decoding strategy (Fig. 5b), qualitatively

producing clearer image reconstructions, even under high levels of noise corruption
(Fig. 5¢).
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Certain RGCs in the salamander and mouse retina have been reported to produce
an omitted-stimulus response (OSR), generally thought to encode prediction or pre-
diction errors [70]. RGCs exhibiting OSRs fire strongly to a violation in a periodic
temporal pattern, such as an omitted flash within a steady dark flashing sequence
[22]. Such neurons either respond weakly (20% of neurons) or not at all (22% of neu-
rons) during the flash sequence, as reported in the salamander retina [23]. We found
that some of the model units (7.66%) produced an OSR to a violation in a periodic
sequence flashing at a rate of 12 Hz (see Methods). These units’ responses were sus-
tained throughout the flash sequence, and greatly increased at the end of the sequence,
around the expected time of the response to the omitted flash (Fig. 5d). We also
found OSRs to be present for slower (8 Hz) and faster (16 Hz) flash sequences, as well
as when flashes were omitted in the middle of the sequence (Extended Data Fig. 2).
Interestingly, OSR responses were only present in the model optimized for temporal
prediction and not in the model optimized for compression.

A predictive retinal model captures neural responses across
animal species

We assessed whether optimizing the retinal model to encode the present or the future
better predicts the activity of RGCs across different animal species in response to
natural images and movies. We used five publicly available datasets of RGC recordings
in macaque, marmoset, mouse, and salamander [35-37]. For every dataset and retinal
model, we fitted a linear-nonlinear readout from the retinal model to predict the neural
responses [71] and quantified the performance of each neuron’s fit as the normalized
correlation coefficient (C'Corm) between the predicted and the target neuron response
on a held-out validation set [72]. As commonly done [73], we performed the fits from
a dimensionality-reduced latent representation of the model’s hidden-unit activity in
response to the different dataset inputs (Fig. 6a; see Methods).

Across all animal species and stimulus types, we found the retinal model optimized
for prediction to more accurately predict the neural responses. The predictive model
appeared to qualitatively match the neural responses, particularly at the peak firing
rates (Fig. 6b). Notably, the mean CCorm steadily increased across all datasets for
increasing model prediction offset (i.e. the further the retinal model predicted into the
future, the better the neural fits), up until a maximum score was reached, after which
prediction performance declined (Fig. 6¢). Across the datasets, the maximum CC,ppm
was obtained using the retinal model optimized to predict 56 — 128ms into the future.
Lastly, the higher C'C, o, for prediction was driven by the majority of neurons - and
not some small subset (Fig. 6d).

Discussion

We set out to uncover the principles underlying the sensory transformation performed
by the retina, from the incoming light to the outgoing spikes conducted by the optic
nerve. Does the retina efficiently compress incoming input [4-8] or efficiently extract
sensory features predictive of the future [11-15]7 To examine this, we implemented
a biologically-detailed spiking model of the retina, which we separately optimized for
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Fig. 6: Predicting RGC responses to natural images and movies using the
spiking models. a. Each retinal model (trained to encode the present or predict
different offsets into the future) was fitted to predict the neural responses across mul-
tiple natural stimuli in different retinal datasets. Model unit activity was obtained for
each stimulus set used in these studies and downsampled into a latent activity space
using principal component analyses, from which the neural responses were predicted
using a regularized linear-nonlinear readout (see Methods). All results report the nor-
malized correlation coefficient between the predicted and the target neural responses,
computed on a held-out validation set. b. Sample neural response (black line) of a sin-
gle neuron in the marmoset retina (top) and mouse retina (bottom) to natural movie
stimuli. Predicted responses of the predictive model (blue line) and encoding model
(orange line) are superimposed. c. Neural prediction scores across the different reti-
nal datasets and retinal models, as a function of the prediction offset (graphs plot the
mean and s.e. over neurons). d. Neuron prediction scores of the best predictive model
(y-axis, optimal offset) against the encoding model (x-axis, 0 ms offset) across the dif-
ferent datasets (with the red dot plotting the centroid).

efficient compression or efficient prediction using natural movie stimuli. We found the
model optimized for prediction to exhibit various retina-like phenomena, not all of
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which were captured by the model optimized for efficient compression. Notably, the
predictive model more accurately predicted RGC responses to both natural images
and movies across different animal species. These findings suggest an evolutionary
conserved role of the retina in informing the brain about temporally-predictive features
in the visual world.

Normative approaches enable the underlying principles behind the sensory trans-
formations of a biological circuit to be identified [18, 19]. Normative models of the
retina have been constructed and optimized for goals such as compression or predic-
tion. Prior studies developed models of the retina using non-spiking units optimized
for efficient coding, by maximizing the mutual information between the sensory input
and model unit firing rates [5-8]. These models have accounted for the retina’s spatial
RFs [4-8], their temporal profiles [4, 6], and their mosaic-like organization [5-8].

We asked whether normative principles such as compression or prediction explain
retinal properties when spikes are used for communication. To this end we developed
a retinal model with units that output individual spikes, providing greater biological
realism than prior work that used firing rate outputs [4-8]. This is particularly impor-
tant, as the retina more likely encodes sensory input using spike times than firing rates
[21]. Our model also includes recurrent connectivity to capture the interplay known to
exist between ganglion cells, whereas other models omit recurrence [4-8]. Like prior
studies [5-8], our model incorporates input and output noise to model the noisy pho-
totransduction and the noisy spike generation of RGCs. We trained our model on
natural movie recordings, whereas previous work has omitted temporal dynamics by
training on natural images [5, 7, 8] (although see [6]). Our model was also trained to
minimize a detailed metabolic-like loss, approximating synaptic energy requirements,
unlike previous studies, which have simply constrained model firing rates [4-8].

We explored the longstanding hypothesis of the retina performing prediction, in
contrast to studies focusing exclusively on the retina encoding the present visual scene
[5—8]. Like prior work, our model captures the spatial RFs, their temporal dynamics,
and mosaic-like spatial organization. Unique to our work, we contrasted the spiking
dynamics of our model to the spiking dynamics of RGCs. We found our model to
exhibit retina-like spike statistics to natural images and movies, as quantified using
firing rates and measures of spike variability. Notably, our model more accurately
encoded sensory input using the relative spike latencies rather than firing rates, as has
also been reported in the retina [21].

Our model exhibited several retinal phenomena unaccounted for by other norma-
tive studies of the retina. This includes finding certain units tuned to the direction and
orientation of moving gratings, as has similarly been reported in the retina [74]; units
that exclusively fire to high-spatial-frequency gratings only if they move, like Y-type
cells in the retina [20]; units tuned for the differential motion of objects versus their
background [25]; units tuned for the anticipation of moving objects [24]; and units
tuned for stimulus omission within a temporal sequence of flashing lights [22, 23]. Cer-
tain complex retinal phenomena (like omission and anticipation responses) have been
shown to emerge in non-spiking encoding models of the retina [75, 76]. These phe-
nomena emerge as a consequence of fitting models to retinal responses, whereas our
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normative approach rather examines whether these phenomena can be explained as a
consequence of underlying principles like compression or prediction.

Salisbury and Palmer [12] hypothesized that certain nonlinear retinal processes
may be connected to prediction. Supporting this view, we found the stimulus-omission
responses to emerge only when our model was optimized for efficient prediction and not
for efficient compression of the present. Lastly, we addressed the challenging problem of
predicting RGC responses to natural images and movies across different animal species.
We found that the model optimized for efficient sensory prediction more accurately
predicted neural responses than the model optimized for efficient sensory encoding
of the present. Interestingly, the best performing model was trained to predict on
a timescale of ~ 50 — 100ms, similar to the latency of the photoreceptor responses
[77, 78]. Furthermore, this duration also corresponds to the duration at which retinal
spikes contain the most information about the sensory future, as estimated in a prior
study [11].

While the use of spikes and recurrent connections in our model increased realism
over prior models, there remains scope to incorporate more of the retina’s biological
complexities and processes. RGCs are known to adapt to stimulus contrast [27, 79, 80],
which could potentially be modelled using adaptive leaky integrate-and-fire neurons
[26, 81]. We could also include constraints on the recurrent connectivity, such as imple-
menting the inhibitory recurrent connections via explicitly modeled amacrine cells
[20, 29] and other recurrency via gap-junctions between the spiking units to better
emulate the electrical coupling between the RGCs [29, 30]. Furthermore, we modeled
the photoreceptors and bipolar cells as a linear transformation, given reports of their
near linear integration properties [27]. However, bipolar cells can exhibit some non-
linear integration [82], thus modeling them with an additional hidden layer of graded
units could be considered.

We trained our model on randomly sampled gray-scale normalized movie patches.
We could instead train our model using positive-only pixel values to capture the
positive-only nature of light intensity, or with color movies, to examine the retina’s
processing of color [83]. Future extensions could also develop and train the model on
the entire visual scene rather than patches. This could be a convolutional model [84],
or better yet, a model composed of overlapping unique patches, each operating at a
different spatial location within the visual frame. This patch model may capture how
the tuning properties of RGCs differ across spatial positions, such in their direction-
selectivity [85]. However, training such large spiking models remains a challenging
problem due to speed and memory constraints (although see [81, 86]).

We could also explore the effect of noise in the model. The RFs in our model lack a
clear surround, whereas the RFs of RGCs have typically been characterized as center-
surround [20]. Perhaps learning the noise sources in the model, instead of hardcoding
them, would result in RFs with surrounds [7]. However, it remains unclear to what
degree RGCs exhibit RF surrounds, as several studies report RFs with little to no
surrounds [41, 87]. It is possible that these differences result from the way the RFs
are mapped, where spike-triggered averages - as employed in our study - have been
shown to result in RFs with less defined surrounds [88].
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Our model might have clinical implications in the development of retinal prosthet-
ics. Current prosthetics use standard computer vision algorithms to translate camera
signals into a stimulatory code [89, 90], which fall short of delivering a normal visual
experience [91]. We anticipate that the sensory transformation implemented in our
model could aid in delivering a more RGC-like stimulatory signal.

In conclusion, consistent with the capacity of temporal prediction models to explain
phenomena in visual [15, 92] and auditory cortex [92], this study adds to the evidence
that sensory systems are geared towards prediction of future input. Optimization of
sensory systems for temporal prediction enables estimation of the world in the future
when action will occur, compensating for transduction, processing and motor delays,
while also eliminating irrelevant information and extracting underlying variables [17,
92]. Thus, temporal prediction may be a governing principle of sensory systems.

Methods

Spiking retinal model
Training data

We recorded a natural visual stimulus dataset for model training. Various types of
scenes were obtained, categorized as flow (camera moving through space), pan (camera
panning through space), still (fixed camera recording a still scene), and still moving
(fixed camera recording an active scene). A total of 39 clips of 9.6 second duration were
recorded at a frame rate of 120Hz and a spatial extent of 720 x 1280px. The dataset
was divided into a training and test set, both containing a balanced number of the
different recording types (training set: 12 flow, 8 pan, 3 still and 8 still moving clips;
test set: 3 flow, 2 pan, 1 still and 2 still moving clips). All clips were pre-processed
by converting the RGB channels to grayscale (using a weighted average of the color
channels of R:G:B = 30:59:11 [35]). They were then bilinearly downsampled to spatial
dimensions of 144 x 256 and centrally cropped to 140 x 240. The clips were then
normalized by subtracting the mean and dividing by the standard deviation of the
training set pixels. Finally, the temporal resolution was artificially increased to 240Hz
by duplicating every frame. The model was trained on randomly sampled 20 x 20
pixel spatial patches of temporally non-overlapping subsamples of 320ms in duration
(i.e. 77 frames). We artificially doubled the training data using data augmentation,
by flipping each clip around the vertical axis [93].

Spiking neurons

We modelled the RGCs in the retina using a single hidden layer of N = 400 recurrently-
connected spiking units, comprised of a series of computational steps:

Step 1, photoreceptor noise: to emulate the noisiness of the photoreceptors [31],
we added Gaussian-sampled noise €, ~ N(0,0.01) to every pixel within the input
movie stimulus z € RTXH*XW (for T = 77 simulation time steps of H = 20 pixels
and W = 20 pixels of spatial height and width, respectively), to produce noisy input
movie stimulus z.
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Step 2, input current: the input current I;[t] € R to unit 4 at time ¢ is obtained from
the noisy-input movie stimulus & € RT>*#*W "the model output spikes S[t — 1] € RV
and a bias term b; € R.

T H W N
LI =0+ 3 3N Winwinalt —t +1+ Y WEeS;[t—1 (1)
t’'=1h=1w=1 j=1,j#i
Feedforward current Recurrent current

The feedforward connectivity W € RN*TeXHXW Jinearly maps the noisy-input
movie stimulus to a feedforward current contribution and captures the transformation
of the pre-RGC cells. We set the span of latencies to Tr = 30 time steps (125ms) in
the feedforward connectivity, consistent with the potentially wide integration times of
the photoreceptors [78]. The recurrent connectivity W € R¥*¥ (autapse connec-
tions were excluded) maps the output spikes into a recurrent current contribution to
capture the ganglion-to-ganglion cell and ganglion-to-amacrine-to-ganglion cell inter-
actions. Most of the connections between the amacrine cells and RGCs are synaptic
[20], with the majority of the amacrine cells using spikes, rather than graded potentials
for communication [94, 95], hence the modelling decision to construct the recurrent
connectivity from the spiking unit output, rather than the membrane potential via
gap-like junctions.

Step 3, RGC noise: to emulate RGC noise [32], we multiplicatively perturbed the
input current I;[t] of unit ¢ at every time step t using Gaussian-sampled noise €, ~
N(0,0.6). We chose this noise source (as well as the photoreceptor noise) such that
the model’s spike train variability matched that of the RGCs across repeated stimulus
presentations (Extended Data Fig. 1).

Lt] = L[t](1 +€4) (2)

Step 4, RGC transformation: we modelled all RGC spiking units using the nor-
malized and discretized leaky integrate-and-fire model [81]. This evolves the model
membrane potential V;[t] € R of unit 7 at time ¢ using the difference equation:

Vilt = (BiVilt = 1] + (1 = B)L[H)) (1 - Sift) 3)

The membrane potential decays by a learnt factor §; at every simulation step and
resets to zero if a spike occurred in the previous simulation step. A spike is emitted if
the membrane potential reaches the firing threshold (equal to one).

Si[t]:{1 if Vift] > 1 @

0 otherwise

Step 5, stimulus estimation: finally, at every simulation step ¢, a span of Tp = 2
steps of proceeding spike activity, plus a bias bP™ € R, was linearly mapped using
projection weights P € RN*XToxHXW t generate an estimation of the stimulus movie
frame £[t] € RE*W (either of the present or the future, with Z5,[t] € R denoting
the projected pixel value). This linear mapping is not envisaged as a part of the
retinal network, rather it approximates a posited evolutionarily-enforced constraint
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that causes the network to use representations that can be linearly decoded to provide
an estimate of the present or future input [92].

N Tp

Enolt] = PN+ 3N P Silt —t +1] (5)

i=1 /=1
Bounding membrane time constants

We bound the §; value of every spiking unit to an appropriate range to ensure that
the network employed biologically-realistic membrane potentials [96].

(6)

g — 0.001 if 8; < 0.001
" 10.999 if B; > 0.999

Weight initialization

The initial feedforward W, recurrent W' and projection P weights were all sampled

. . . . . _ 1 __ 0.1 _ 1
from a uniform distribution U(—k, k), with k = TToEW k= Vi and k = TNTS for

the feedforward, recurrent and projection weights, respectively. All initial membrane
time constants were set to 20ms (i.e. §; ~ 0.81). All initial bias terms were set to zero.

Loss function

The model was trained, by minimizing loss Liota1, to generate a single-frame pro-
jection of the natural movie stimulus at every simulation step t (corresponding to
loss Lprojection) under a metabolic-like constraint (corresponding to loss Lmetabolic),
weighted by hyperparameter A = 1072° (which by qualitative inspection we
determined to produce the most retina-like receptive fields across all models).

[’total = Eprojection + A ('Y‘cgraded + (1 - 'Y)L"spiking) (7)

Metabolic loss Letabolic

The projection loss Lprojection 1S the mean squared error (MSE) between every pixel
in the generated single-frame projection [t] € R¥*W and the corresponding natural
stimulus target frame 2[t+7T54"°] € R¥*W where T5HP® specifies by deviation in time-
steps if the frame is of the present (i.e. T4 = 0) or of the future (i.e. T > > 0).
This was computed as the average over all batch samples B (which we omit from the
notation for brevity), simulation steps T' (starting from time step t; onwards to allow
the unit membrane potentials to sufficiently depolarize, i.e., to permit the network to
warm up), and spatial height dimension H and width dimension W, both cropped by
¢ = 3 pixels on all sides.

H—cW-—c
Loprojection = ! > ) Zﬂ (Fhwlt] — Thwlt + T2 (8)
' (T —to)(H — c)(W —¢) Pyt
Avg. over time and space MSE
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The metabolic-like loss Linetabolic 1S an approximation of the biological energy
use of the network. We took this to be a proxy of the energy expenditure at every
synapse, calculated as the absolute input value to a synaptic weight, multiplied by its
respective absolute value. We weighted the metabolic loss of the graded pre-RGC-like
units Lgraded and the spiking RGC-like units Lgpiking separately using hyperparameter
~v = 0.3, as spiking neurons consume more energy than graded neurons [97, 98].

1 T Ty H W
['graded = NT E E (|bz| + |Wit’h’w”$hw [t -t + 1”) (9)
i=1 t=1 t'=1h=1w=1
Avg. over units and time Pre-ganglionic synaptic cost
1 N T N
Espiking = NT E E ( - E . -|Wirjec |Sj [t - 1]) (10)
i=1 t=1 j=1,5%#1
N————’
Avg. over units and time Recurrent synaptic cost

T H W N Tp

+ THl’W ZZ Z (ZZ | Pyt haw| Silt — ' + 1])

t=1 h=1w=1 i=1t'=1

Avg. over time and space Post-ganglionic synaptic cost

Surrogate gradient descent

All spiking retinal models were optimized using a modification of the backpropagation
algorithm [99], called surrogate gradient descent [100]. To permit the flow of gradient,
the gradient of the non-differentiable Heaviside step function was replaced with a well-
behaved function. We adopted the fast sigmoid function, which has been shown to
work well in practice [101, 102].

95;t]

vl

All training was performed using the Adam optimizer [103] (with default parame-

ters) over 100 epochs, with an initial learning rate of 10™* (decayed to 1075 after 50

epochs) and batch size of 1024. Model weights were saved during training whenever a
new minimum training loss was obtained.

= (10 [V;[t]| + 1) (11)

Spike analysis
Filtering for active units

For all reported results we only included units that were active and responded to our
held-out test set of natural clips. This resulted in 113/400 units being dropped from
the analysis. All results that report a population percentage are with respect to the
number of active units (287).
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Firing rate

We calculated the firing rate of a neuron (and model unit), by counting the number of
spikes over a given stimulus presentation and dividing this by the stimulus duration,
to obtain a firing rate.

Coefficient of variation

We computed the coefficient of variation of the interspike interval CV(ISI), to quantify
the variability of the timing of spikes for a given neuron (and model unit). This
is defined as the ratio between the standard deviation and mean of the interspike
intervals [26], where a CV(IST) < 1 corresponds to a regular firing pattern and a
CV(ISI) > 1 corresponds to an irregular firing pattern. We excluded CV(ISI) values
from the analysis if there were less than three spikes for a given stimulus presentation
[104].

Fano factor

We reported the Fano factor for each neuron (and model unit) over each stimulus
presentation, to estimate the spike count variability over the stimulus-repeat trials.
The Fano factor is defined as the variance of the spike count divided by the mean
spike count over stimulus-repeat trials.

Image decoding from single cell responses

We adopted the experimental paradigm of [21], and obtained the activity of an OFF-
type model unit in response to a 150ms-flash of a gray-scale image of a swimming
salamander larva. Similar to the experimental paradigm, we convolved the model unit
along the x- and y-direction (using a stride of 2 pixels) to obtain the model unit spike
activity at different spatial locations. The image was then reconstructed - with every
pixel denoting a unique spatial location - using either the number of spikes or the
relative timing of the first spikes.

Image decoding from population responses to noise-corrupted
inputs

We performed all analyses using a selected set of 300 natural photographs from
the McGill Calibrated Color Image Database [105]. These images were converted to
grayscale as for the model training data, and normalized by subtracting the mean.
The spatial dimensions were rescaled to 64 x 64 pixels using bicubic interpolation,
with 240 images used for training and cross-validation and the remaining 60 images
used for testing. For every experiment, we appended different sampled Gaussian noise
e ~ N (0,05) to every image pixel, and varied the distribution standard deviation, oy,
from 0 to 2.0 in 0.25 increments between the different experiments. We passed the set
of noise-corrupted images into the model (by convolving along the x- and y-direction
using a stride of 4 pixels) and transformed the resulting spike outputs into a rate code
(i.e. the number of spikes of a unit) and a relative spike latency code (i.e. the time of
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spikes minus the mean spike time across all units to an image). We then fitted a sep-
arate linear readout model from each of these respective spike codes, to reconstruct
the original images. We penalized the readout weights using an L1 penalty, with the
optimal penalty weighting found using five-fold cross-validation. Lastly, we fitted each
model using its optimal regularization penalty on all of the training data and reported
the mean pixel correlation coefficient of the reconstructed images on the held-out test
set.

Classifying units with an omitted-stimulus response

RGCs exhibit OSRs at the end of a flash sequence around the expected time of the next
flash. These OSRs have been characterized to be stronger than the responses during
the flash sequence [22]. Prior studies classified OSRs via qualitative inspection [22, 23].
We developed a set of conditions based on previous descriptions of OSRs and classified
units as exhibiting OSRs if they satisfied these conditions. For each unit, we measured
the maximum response Roj)s during the 80ms duration following the termination of
the flash sequence; the maximum response Rpj; during the flash sequence; and the
baseline response Rp4 which we took to be the maximum value during the constant
150ms light flash preceding the flash sequence. The unit was taken to exhibit OSRs if
the following conditions were all met: the response directly following the flash sequence
was 5% larger than the responses during the flash sequence (Royr/Rrr > 1.05);
the response directly following the flash sequence was 20% larger than the maximum
response to the non-flashing sequence (Ronr/Rpa > 1.20); and the response directly
following the flash sequence was substantial (Roas > 48 spike/s, threshold chosen via
qualitative inspection).

Receptive field analysis

Spike-triggered average

We estimated the spatiotemporal receptive field of every unit using a spike-triggered
average, using responses to 200 white-noise input clips of 100-frame duration. Clips
were generated by sampling each pixel from a Gaussian distribution with a standard
deviation of ¢ = 10. We estimated the RF temporal profile by averaging over the
spatial pixel values for every frame in time [106].

Fitting 2D Gaussians

We fitted a two-dimensional Gaussian function [35, 41] to the spatial RF using gradient
descent, with the function defined as:

G(‘T7y) =

27rUX0yA 1- 2 exp (- 2(1ip2)((xg)fx)2 (12)

() () ()
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with (z,y) denoting the spatial position in pixel space; A the amplitude; (ux, py)
the RF centre position; ox and oy the standard deviation along the x- and y-axis,
respectively, and p the RF orientation. For each RF, the parameters of the two-
dimensional Gaussian were fitted by minimizing the mean squared error between the
two-dimensional Gaussian and the RF. For the RF analyses, we only included units
(173/287) that had a good fit (those with a correlation coefficient > 0.7 and those
with standard deviation ox and oy > 0.5 pixels [92]).

Classifying unit types

Similarly to classifying the different retinal cell types [35], we classified the functional
type of every model unit that had a valid 2D Gaussian fit. For every unit with a
sufficient fit, we obtained the spatial RF with the largest power in time, and projected
its RF diameter (calculated as /oxoy) against the first principal component of its
temporal profile. We classified the different functional unit types, by grouping the
units into four distinct groups using k-means clustering with four fixed centroids.

Motion tuning
Virtual physiology

We measured the model unit response properties to full-field sinusoidal gratings (of
amplitude one) of varying orientation (0° to 360° in 5° increments), spatial frequency
(10 evenly spaced values between 0.01 to 0.2 cycles per pixel) and temporal frequency
(1,2,4 and 8Hz). We presented each grating to each unit for 3s and computed the
resulting PSTH by averaging over 8 repeats and convolving with a Gaussian kernel
(0 = 37ms). Next, we computed the mean firing rate over time (ignoring the first
41ms for network warmup, as done in training), resulting in a 3D mean-firing tuning
space for each unit (with the preferred stimulus eliciting the highest mean response).

Orientation and direction selectivity

We measured the orientation selectivity index (OSI) and direction selectivity index
(DSI) for each unit, which respectively quantify the tuning preference for motion across
a particular orientation and direction:

Rorient _ Rorient

f orth
OS[ = 2ot (13)
orient orient
Rpref + Rorth
Rdir _ Rdir
_ “'pref non-pref
DSI = Rdir + Rdir (14)
pref non-pref
with R;ﬁ;‘}“t = Rgiref being a unit’s response to a stimulus moving in the preferred
direction, and Rgﬁehnt and Rﬂgn_pref being the responses to the orthogonal orientation

and opposite direction, respectively (all using a unit’s preferred spatial and temporal
frequency). For both metrics, a value close to zero corresponds to weaker tuning, and
a value close to unity corresponds to stronger tuning.
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Counting Y-type-like units

We presented full-field sinusoidal gratings with a spatial frequency of 0.3 cycles per
pixel, at each unit’s preferred orientation. We then measured each unit’s firing rate for
the stationary grating Rgg and the grating moving at each unit’s preferred temporal
frequency Rp;g. We considered a unit to be Y-type-like if the following constraints
were satisfied: the moving grating response was larger than the stationary grating
response (Ryg > Rse); and the stationary and moving grating responses were respec-
tively below (Rsg < 24 spikes/s) and above (Ryq > 24 spikes/s) a firing threshold
(chosen via qualitative inspection) to potentially avoid counting units as Y-type-like
due to noise fluctuations.

Anticipation code

We implemented the experimental protocol of [24] as closely as possible, where the
authors projected a dark bar on a white background moving 6.7um across the retina
every 15bms, or where they flashed the bar directly over a unit’s RF for 15ms. We
replicated this experiment for the model by projecting a dark bar (pixel value of —1)
on a white background (pixel value of 1), moving one pixel every 150ms (36 frames).
We calculated this to match the movement speed of the bar in the experiment of [24],
assuming an RGC RF diameter of 300um [107] and a model unit RF diameter of 5
pixels, which corresponds to moving the bar by & 0.11 pixel every 4 frames (16.66ms)
(or one pixel every 36 frames).

Predicting neural responses from model activity

We used publicly available and spike-sorted recordings of RGCs of different animal
species in response to natural images and movies. For all datasets, we used 80% of
the data for training and the remaining 20% for testing (with splits separated by
unique clips or images). As the datasets were recorded at different sampling rates,
we resampled all data to be 240Hz (the same sampling rate of the natural movie
stimulus with which the spiking retinal model was trained) by repeating frames at
particular points in time. We also normalized all natural stimuli (clips and images), by
subtracting the mean and dividing by the standard deviation of the training set. We
averaged the recorded spike responses over trials and convolved the resulting PSTH
with a Gaussian kernel (using o = 38ms, 9 time-steps) to obtain a smoothed spike
firing probability for every neuron [37].

Macaque image and movie dataset

We used recordings from ON- and OFF-parasol cells in the peripheral retina of
macaque monkeys in response to natural images and movies (made available by [36]).
This consisted of 16 cells recorded in response to 48 250ms-flashed natural images over
5 trials, and 24 cells recorded in response to 7 6s-long natural movies over 4 trials,
with the movies consisting of the natural images spatially shifted in time using eye
movement trajectories of human observers [108]. All stimuli were projected at a frame
rate of 60Hz onto the receptive field center of each neuron using a circular aperture.
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Marmoset movie dataset

We used recordings from ON- and OFF-midget and ON- and OFF-parasol cells in
the retina of marmoset monkeys in response to natural movies (made available by
[37]). This includes 423 cells recorded in response to 22 1s-long natural movies over
30 trials, with the movies consisting of the natural images spatially shifted in time
using eye movement trajectories of awake, head-fixed marmoset monkeys. All stimuli
were projected at a frame rate of 85Hz. To keep the fitting procedure computationally
manageable, we only fitted a subset of the most responsive neurons, as measured by
the maximum correlation coefficient (see Section 3), resulting in 164 neurons (using
CCax > 0.93).

Mouse movie dataset

We used recordings from ON- and OFF-midget and ON- and OFF-parasol cells in
the mouse retina in response to natural movies (made available by [37]). These 1791
cells were recorded in response to 22 1s-long natural movies over 30 trials, with the
movies consisting of the natural images spatially shifted in time using the horizontal
gaze component of freely-moving mice. All stimuli were projected at a frame rate of
75Hz. Again, to keep the fitting procedure computationally manageable, we only fitted
a subset of the most responsive neurons, as measured by the maximum correlation
coefficient (see Section 3), resulting in 351 neurons (using C'Cax > 0.93).

Salamander image

We used recordings of various ON- and OFF-type cells in the salamander retina in
response to natural images (made available by [35]). This includes 215 cells recorded
in response to 300 natural images flashed for 200ms each over 12 trials. There was
an 800ms inter-stimulus interval between image presentations, with spike responses to
each image recorded between image onset and 100ms after image offset. The images
came from the Van Hateren database [109] over 12 trials. All stimuli were projected
at a frame rate of 30Hz.

Obtaining latent model activity

We trained a set of 14 retinal models, one for every temporal offset T,g into the future
(Tog € {0, 8,16, 24,32, 40,48, 56,64, 72, 80, 96, 112, 128} ms, where Tog = 0 corresponds
to the present). We convolved each retinal model (using a stride of 4 pixels) over the
spatial dimensions of each dataset, to obtain the unit spike activity D € RT>*#xW
(where the number of simulation steps T, and spatial height H and width W dimen-
sions varied between the different datasets). This was repeated 8 times, and averaged
over repeats, to obtain a new activity dataset DP*P € RT*H*W containing the spike
probability of every unit over space and time. We further compressed this dataset to
a latent activity dataset D'atent ¢ RTx500 yging the first Npc = 500 principal com-
ponents over space. This technique is routinely used [73], as it reduces overfitting [73]

and keeps the fitting procedure computationally tractable [110].
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Fitting procedure

For every retinal model, we fitted a linear-nonlinear readout, to predict the response
7 € RT of every neuron i in every dataset from the latent model activity. During
project development, using only the training set, we explored various hyperparameters
relating to the readout model and fitting procedure for each dataset and employed
those hyperparameters that we found to work the best.

Tr Npc
[t] = exp (bread + Z Z Wread v+ 1]Dlatent [t —t 4+ 1]) (15)

t'=1 j=1
with readout weights Wread ¢ RNeexTr yging a T = 5 temporal frame span
equivalent to ~ 21ms (except for the mouse movie dataset where we used a span of
46ms). Each readout was jointly fitted across all N neurons of a dataset, by minimizing
the negative Poisson log-likelihood of the readout predictions #;[t] and the neuron’s
responses 7;[t], and an L1 penalty on the readout weights (weighted by hyperparameter

Aread) £ avoid overfitting.

N T

ZZ(r | n(7:[1] )+fi[t])+xead<i||wgeﬂd\1> (16)
=1 t=1 =1

We trained each readout using the Adam optimizer (with default parameters) using
a learning rate of 10~ over 2000 epochs with a batch size of 8 subsamples of at most
600ms duration (except the salamander dataset where we used a batch size of 32). We
found the optimal regularization hyperparameter A\**d using five-fold cross-validation
on the training dataset (over a set of five different log-spaced values, which we varied
between the different datasets). Lastly, we also explored different spatial scales of the
input stimuli, to account for differences in spatial scale between the model units and
neurons [71, 111]. To determine the optimal scale for each dataset, we ran all fits using
three different spatial scales (x0.66, x1, and x1.5) using the retinal model optimized
for efficient compression of the present (Extended Data Table. 1). We then chose the
spatial scale which performed the best on each test dataset to fit the remaining models.

Normalized and maximum correlation coefficient

We used the normalized correlation coefficient CC, o to quantify the neural fits,
expressed as the Pearson correlation coefficient CC between the model’s prediction and
target neural response, normalized by dividing by the maximum obtainable correlation
coefficient CC,,,q4, to take into account neural noise [72, 112]. A value of zero indicates
no correlation between the predicted and target neural response, whereas a value of
one indicates the best possible score.

Acknowledgments. Luke Taylor was supported by the Clarendon Fund of the
University of Oxford. Andrew King and Nicol Harper were supported by the Well-
come Trust (WT108369/Z/2015/Z). Friedemann Zenke was supported by Swiss
National Science Foundation (grant no. PCEFP3_202981) and the Novartis Research
Foundation.

23


https://doi.org/10.1101/2024.03.26.586771
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.26.586771; this version posted March 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Data availability

The natural movie training data can be downloaded from https://figshare.com/
articles/dataset /Natural_movies/24265498. Pre-trained spiking models can be found
at https://github.com/webstorms/RetinalModel. We did not perform any of the reti-
nal recordings. Inspect the data availability sections in the relevant papers cited in
this manuscript to access the retinal data. Experimental data in Fig. 4d was extracted
using an online tool available at https://apps.automeris.io/wpd/.

Code availability

The code of the spiking retinal model and the code for reproducing the results can be
found at https://github.com/webstorms/RetinalModel.

Extended data

Dataset Scale CCrorm

Macaque movie x 0.66 0.40
x 1.0 0.42
x 1.5 0.39
Macaque image x 0.66 0.60
x 1.0 0.70

x 1.5 0.52
Marmoset movie X 0.66 0.24
x 1.0 0.26

x 1.5 0.27
Salamander image X 0.66 0.48
x 1.0 0.52

x 1.5 0.52
Mouse movie x 0.66 0.13
x 1.0 0.16

x 1.5 0.17
Extended Data Table. 1: Predic-
tion accuracy across different
scalings. Prediction score using the
encoding retinal model across the
different datasets at different spatial
scales. Bold values indicate the best
performing scale, which was chosen
to fit the remaining predictive retinal
models in each respective dataset.
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Extended Data Fig. 1: Model response variability. a. Histogram of Fano factors
in the salamander retina (left) (data from [35]) and the model (right) in response to
the same natural images. b. Spike raster over 60 trials in response to a uniform full-
field illumination of randomly-varying intensity in the salamander retina [3] (left) and
the model (right).
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Extended Data Fig. 2: Omission stimulus responses. a. Example model unit
responses to a sequence flashing at 8 Hz. b. Example model unit responses to a
sequence flashing at 16 Hz with a flash omission in the middle of the sequence. The
dashed line marks the time when the flash sequence was omitted, with the arrow indi-
cating the omitted-stimulus response.
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