

1 **The expression of integron arrays is shaped by the**
2 **translation rate of cassettes.**

3

4 André Carvalho^{1,2*}, Alberto Hipólito^{1,2}, Filipa Trigo da Roza^{1,2}, Lucía García-
5 Pastor^{1,2}, Ester Vergara^{1,2}, Aranzazu Buendía², Teresa García-Seco² and José
6 Antonio Escudero^{1,2*}

7 *Correspondence: jaescudero@ucm.es, apaulino@ucm.es

8 ¹ Molecular Basis of Adaptation. Departamento de Sanidad Animal. Universidad
9 Complutense de Madrid, Madrid, Spain.

10 ² VISAVET Health Surveillance Centre, Universidad Complutense de Madrid,
11 Madrid, Spain

12

13 ORCID:

14 André Carvalho: <https://orcid.org/0000-0002-0098-5140>

15 Alberto Hipólito: <http://orcid.org/0000-0002-6461-2650>

16 Filipa Trigo da Roza: <https://orcid.org/0000-0002-8345-0415>

17 Lucía García-Pastor: <https://orcid.org/0000-0001-7462-1860>

18 Ester Vergara: <https://orcid.org/0000-0003-1323-4749>

19 Aranzazu Buendía Andrés: <https://orcid.org/0000-0001-8380-7712>

20 Teresa García-Seco: <https://orcid.org/0000-0002-6162-1025>

21 José Antonio Escudero: <https://orcid.org/0000-0001-8552-2956>

22

23

24

25

26

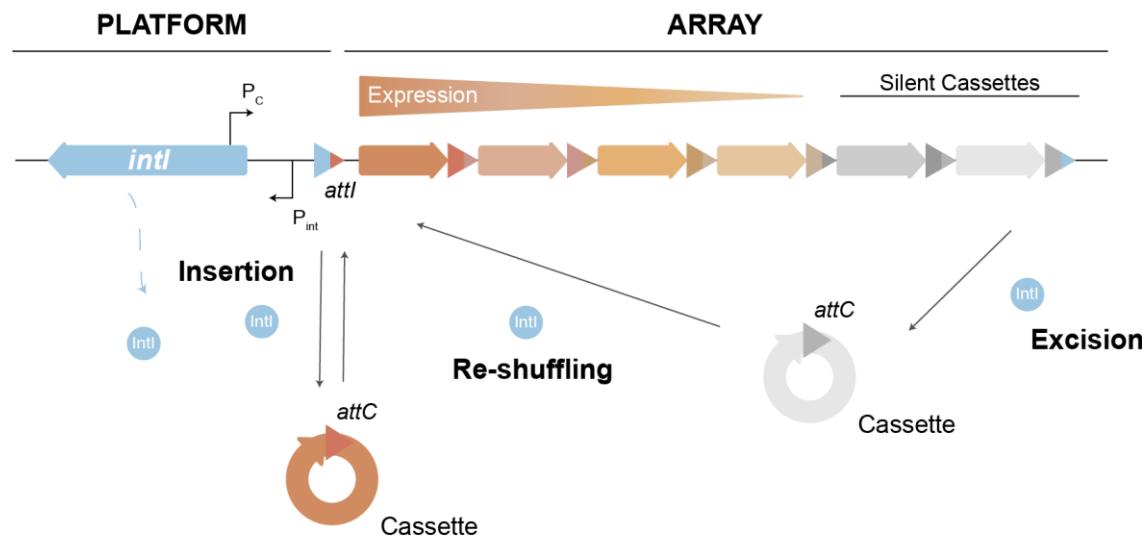
27 **ABSTRACT**

28 Integrons are key elements in the rise and spread of multidrug resistance in Gram-
29 negative bacteria. These genetic platforms capture cassettes containing
30 promoterless genes and stockpile them in arrays of variable length. In the current
31 integron model, expression of cassettes is granted by the *Pc* promoter in the platform
32 and is assumed to decrease as a function of its distance. Here we explored this
33 model using a large collection of 136 antibiotic resistance cassettes and show that
34 the effect of distance is in fact negligible. Instead, cassettes have a strong impact in
35 the expression of downstream genes because their translation rate affects the
36 stability of the whole polycistronic mRNA molecule. Hence, poorly translated
37 cassettes decrease the expression and resistance phenotype of cassettes
38 downstream. Our data puts forward a novel integron model in which expression is
39 contingent on the translation of cassettes upstream, rather than on the distance to
40 the *Pc*.

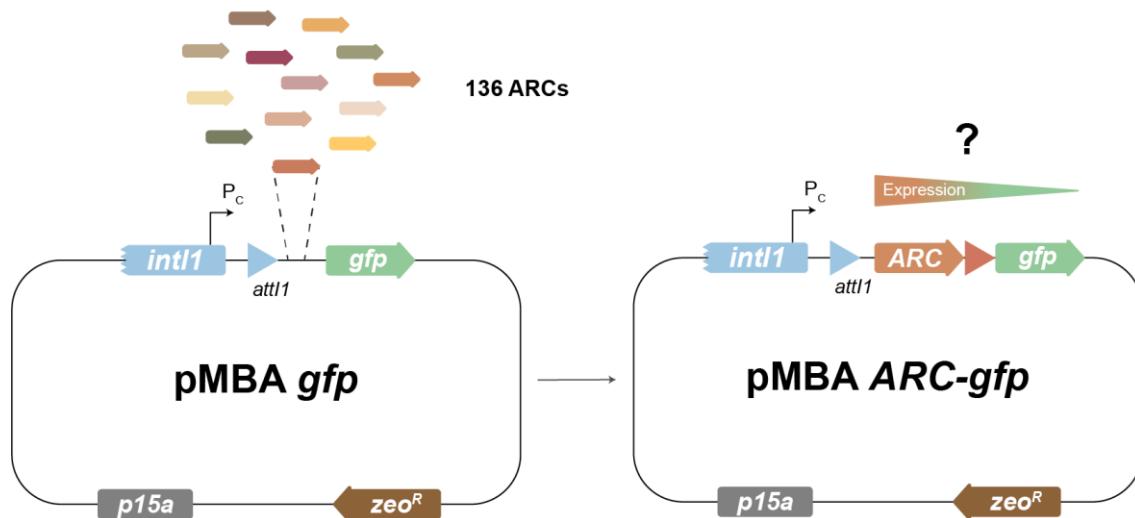
41

42 INTRODUCTION

43 Antimicrobial resistance (AMR) is one of the major threats for health globally¹.
44 The spread of resistance genes through Horizontal Gene Transfer (HGT) has
45 fostered the rise of AMR during the last decades. Mobile Integrons (MIs) have been
46 key players in this phenomenon through their association with mobile genetic
47 elements²⁻⁴. MIs are genetic platforms that capture and stockpile new genes through
48 site specific recombination. Indeed, 89% of cassettes in MIs encode antimicrobial
49 resistance genes against a variety of antibiotic families (IntegrAll database,⁵).


50 Structurally, integrons are genetic elements composed of a stable platform
51 and a variable array of genes embedded in discrete elements called integron
52 cassettes. The stable platform comprises an integrase-coding gene (*intI*), as well as
53 a recombination site (*attI*) for cassette integration. Cassettes are generally
54 composed of an open reading frame (ORF) and an *attC* recombination site. Arrays
55 in MIs can contain from one up to eleven cassettes. In class 1 integrons, the majority
56 (80%) of arrays contain 1 to 3 cassettes (IntegrAll database,⁵). Importantly cassettes
57 are generally promoterless, and their expression is fostered by the dedicated *Pc*
58 promoter, located within the platform, upstream of the *attI* site where cassettes are
59 inserted. This makes of integron arrays an operon-like structure, with a single
60 promoter governing the expression of several cassettes. As a consequence, it is
61 generally accepted that cassettes at first position in the array are more expressed
62 than those further downstream, simply as a function of the distance to the promoter.
63 Nevertheless, the order of cassettes is not static, since the integrase is able to re-
64 shuffle them, excising and integrating them in the first position of the array. Because
65 the integrase is under the control of the host's SOS response⁶, integrons represent
66 a low-cost memory of functions that provides adaptation on demand⁷⁻¹⁰ (Fig. 1A).

67 The effect of cassette position has been observed in several studies¹⁰⁻¹³ so
68 that the distance-to-*Pc* gradient of expression along the array is a paradigm that has
69 been central to the working model of integrons. Only some exceptions to this rule
70 have been documented, like the existence of cassettes that contain their own
71 promoters¹⁴⁻¹⁸ or the presence of small ORFs in *attC* sites that enhance translation


72 of downstream cassettes ¹³. However, most of these examples only cover a few
73 integron cassettes and seem to remain anecdotal. Recently, we have also shown
74 the existence of gene-less cassettes in chromosomal integrons that contain
75 promoters modulating the expression of the array ¹⁹. All these mechanisms suggest
76 that expression in integrons does not always fit the distance-to-Pc gradient. This
77 motivated us to revisit the expression model of the integron, and specifically, if and
78 how cassettes shape the expression of the array and influence the resistance
79 conferred by others antibiotic resistance cassettes (ARCs).

80 In this work, we study the effect of 136 ARCs on the expression of a
81 downstream *gfp* gene. We show that the impact of a cassette in downstream
82 expression is independent of and more important than the distance to the Pc. This
83 impact is strong enough to decrease resistance levels conferred by a second ARC
84 below clinical breakpoints. To determine the mechanism underlying this
85 phenomenon, we first assessed the influence of known exceptions to the rule of
86 distance, and found an occasional and generally modest contribution of additional
87 promoters or *attC* sites. Instead, the translation rate of the first ARC influences the
88 expression of the second cassette by altering the mRNA levels. This effect is strong
89 and is pervasive across the collection. Our findings change the working model of the
90 integron, to one where the expression gradient of the array becomes dependent on
91 the identity of the first cassette.

A

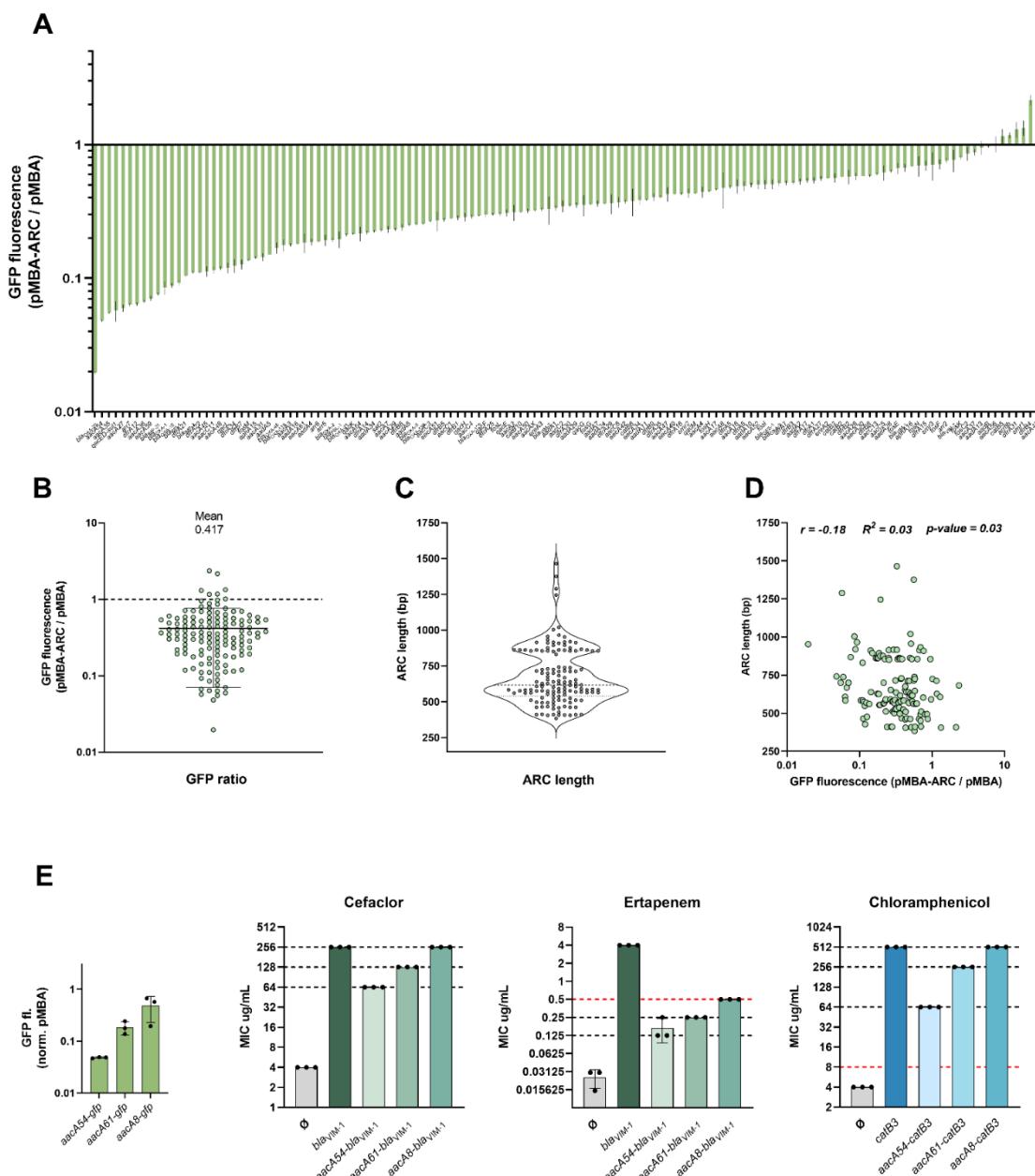
B

92

93

94 **Figure 1. (A)** Schematic representation of the current integron model. When expressed, the integrase (encoded
 95 by the *intI* gene) is able to integrate, excise and re-shuffle discrete elements called cassettes. These are
 96 composed of a gene and an *attC* recombination site, and are arranged in arrays that contain multiple cassettes.
 97 Cassettes are generally promoterless but can be expressed when integrated at the *attI* site, where their
 98 expression is controlled by the integron-borne P_c promoter. An expression gradient is then generated: the first
 99 cassette displays the highest expression while expression gradually decreases for cassettes further away in the
 100 array. **(B)** 136 different antibiotic resistance cassettes were individually cloned in first position in pMBA vector^{20,21},
 101 allowing to study how each ARC affects the expression gradient.

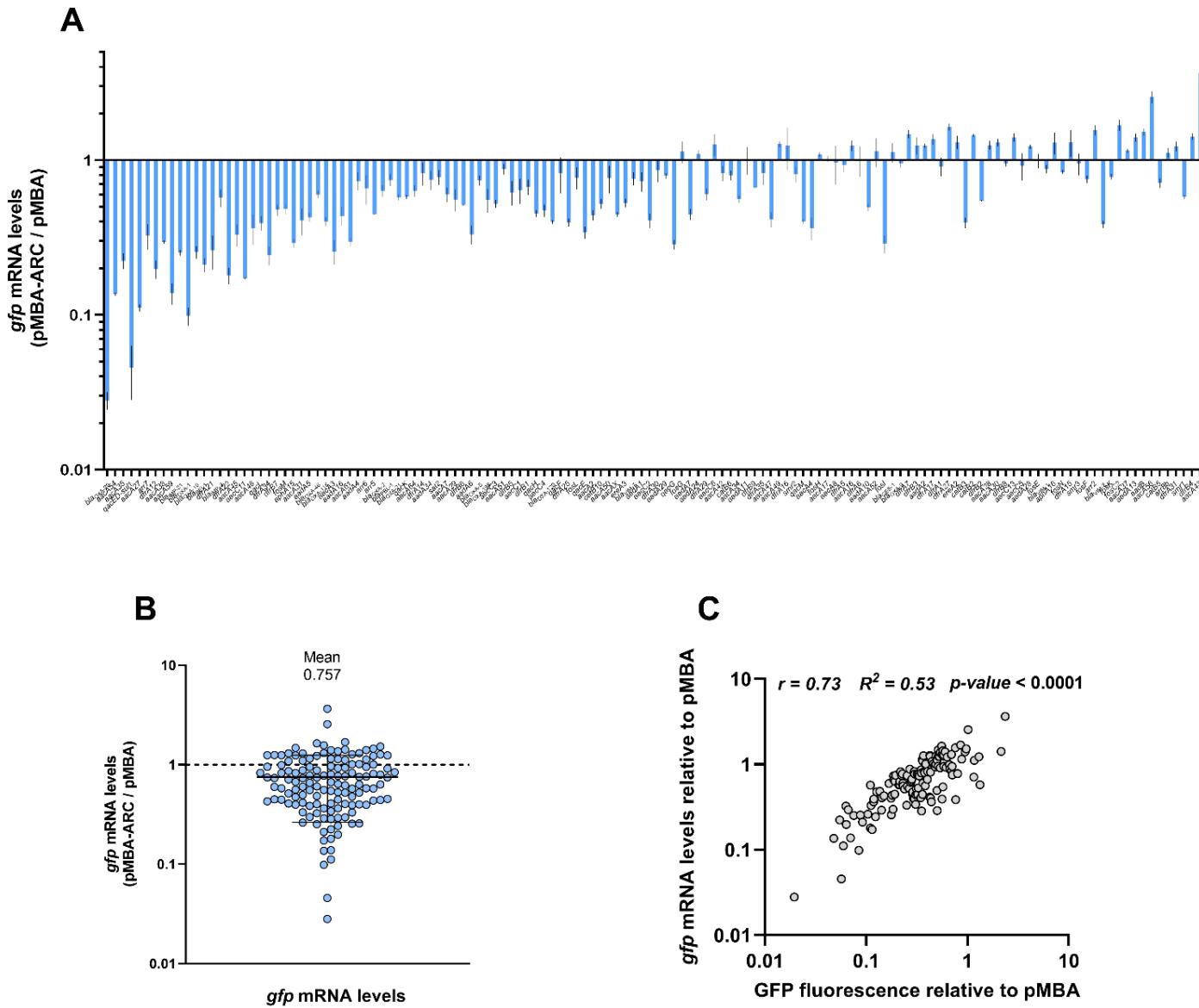
102 **RESULTS**


103 **Cassette identity modulates expression of the array downstream**

104 To assess if cassettes can modulate the expression of downstream genes in
105 the array (i.e.: if they have polar effects on the array) we took advantage of the
106 recently generated pMBA collection ^{20,21}. pMBA is a p15a replicon designed to
107 provide cassettes with an appropriate genetic context: it contains a class 1 integron
108 platform encoding the *Pc*, the *Pint*, and the *attl* site where cassettes are cloned in
109 first position mimicking an integrase mediated *attl* x *attC* reaction. The integrase
110 gene (*intI1*) is truncated to avoid its well-known deleterious effect ²². Immediately
111 downstream each cassette there is a *gfp* gene mimicking a second cassette (Fig.
112 1B) ²⁰. The collection is composed of 136 pMBA variants containing different ARCs
113 in *E. coli* MG1655. Transcription is driven by the strong variant of the *Pc* promoter
114 (*PcS*). Hence, the pMBA collection offers an isogenic setting to study the impact of
115 136 cassettes on the rest of the array (Fig. 1B). Hereafter, and for the sake of
116 simplicity, we will use the name of the resistance gene encoded in each cassette to
117 refer to the corresponding *E. coli*-pMBA-ARC variant.

118 We measured GFP fluorescence in all 136 *E. coli* strains in the collection
119 using flow cytometry. Data was then normalized to the fluorescence of the *E. coli*
120 strain containing pMBA \emptyset , which carries the *gfp* gene in the first position in the array.
121 Our results show a large variation in the expression of the second cassette across
122 the collection (Fig. 2A), with fluorescence levels scattered across the 120-fold range
123 between the most and the least repressive ones (*blaOXA-20* and *aacA43* respectively).
124 A similarly broad distribution of fluorescence values can be observed for each
125 different antibiotic family represented in the collection, ruling out the influence of the
126 function encoded (Supplementary figure 1). As expected, the vast majority of ARCs
127 decrease the expression of the second cassette, with a mean fluorescence ratio
128 (pMBA-ARC / pMBA \emptyset) of 0.417 for all ARCs (Fig. 2B). While this value can be
129 interpreted as the average repressive effect of cassettes on downstream genes, our
130 data shows a broad dispersion, with some cassettes even increasing fluorescence
131 mildly (up to 2-fold) (n=6, \approx 4%).

132 Our data highlights that cassettes can exert very different -even opposite-
133 effects on the expression of the array. This puts the model of expression of integrons
134 in question. Our experimental setup allows for the verification of the distance-to-Pc
135 model since the distance to the second cassette (the *gfp* gene) is the length of the
136 ARC in first position. ARC length varies substantially in the pMBA collection, with the
137 lower and upper limits being 384bp- (*dfrB2*) and 1464bp-long (*ereA3*) (Fig. 2C).
138 However, correlation between ARC length and GFP fluorescence ratios was
139 nonexistent ($r = -0.18$, $p = 0.03$) (Fig. 2D). We conclude that the effect of the distance
140 to the Pc is probably masked by other mechanisms, to the point of becoming
141 negligible. Instead, our data shows that the expression of the second cassette
142 depends on the identity of the first cassette.


143 To study how this could impact the resistance levels of downstream ARCs,
144 we specifically selected three aminoglycoside resistance cassettes (*aacA54*,
145 *aacA61*, and *aacA8*) displaying distinct levels of polar effects (Fig. 2E). We
146 substituted the *gfp* gene in these strains with *bla_{VIM-1}* cassette and examined their
147 resistance to β -lactams ertapenem and cefaclor (*aacA54*, *aacA61* or *aacA8* do not
148 show cross resistance to these antibiotics (Supplementary figure 2)). Notably,
149 *aacA54* and *aacA61* significantly reduced cefaclor resistance, while *aacA8* had no
150 effect (Fig. 2E). All three cassettes strongly reduced ertapenem resistance, with the
151 extent of reduction depending on cassette identity. Of note, *aacA54* and *aacA61* (but
152 not *aacA8*) lowered ertapenem resistance below the clinical breakpoint, highlighting
153 the clinical relevance of cassette identity. Moreover, this pattern persisted when we
154 replaced the *bla_{VIM-1}* cassette with *catB3* and measured chloramphenicol resistance.
155 Hence, polar effects in integrons arrays are contingent on cassette identity and are
156 clinically relevant.

157 **Figure 2. Cassette identity dictates expression and the resistance level of downstream ARCs** (A) GFP
158 fluorescence of all 136 pMBA-ARC strains measured by flow cytometry normalized to fluorescence of pMBA
159 control strain. Bars represent the mean and SD from three biological replicates. (B) Distribution of the GFP
160 fluorescence ratios (pMBA-ARC / pMBA) with indication of the mean value and SD. (C) Violin plot depicting
161 cassette length distribution of all 136 ARCs. Median and quartiles are represented. (D) Correlation between
162 relative GFP fluorescence levels and ARC length. r indicates Pearson's correlation coefficient. (E) Relative
163 fluorescence of *aacA54*, *aacA61* and *aacA8* cassettes. Resistance levels conferred by pMBA \emptyset or pMBA carrying
164 the indicated arrays to cefaclor, ertapenem and chloramphenicol. Bars depict the mean and SD of the MIC values
165 of three independent biological replicates. A red dotted line indicates the clinical breakpoint (EUCAST) for *E. coli*
166 against the respective antibiotic.

167 **Different ARCs modulate downstream array expression mostly by impacting**
168 **mRNA levels**

169 We next sought to investigate the underlying mechanisms modulating
170 cassette expression. An ARC can affect the expression of the second cassette by
171 changing its mRNA and/or protein levels. To assess to what extent each ARC
172 impacts *gfp* mRNA levels, we performed qRT-PCR of the *gfp* gene in all 136 pMBA-
173 ARC strains and calculated its fold change relative to pMBA \emptyset (Fig. 3A). Our results
174 indicate that most ARCs affect negatively the mRNA levels of the *gfp* gene (mean
175 mRNA fold change = 0.757) and that variation is similar to that observed for GFP
176 fluorescence (Fig. 3B). mRNA levels showed a strong positive correlation ($r = 0.73$,
177 $R^2 = 0.53$, $p < 0.001$) with fluorescence ratios (Fig. 3C). It is of note that the values
178 of *gfp* mRNA fold change rarely match those of GFP fluorescence ratios, which is
179 somewhat expected due to the intrinsic differences between the two methodologies.
180 However, we cannot rule out the existence of additional mechanisms affecting *gfp*
181 translation independently of mRNA levels. Indeed, exceptionally some ARCs do not
182 entail changes in *gfp* mRNA levels but decrease significantly GFP fluorescence.
183 Altogether, our results show that polar effects of cassettes are generally observed
184 at the mRNA level.

186 **Figure 3. *gfp* mRNA levels of all 136 ARCs.** (A) *gfp* mRNA levels of all 136 pMBA-ARC strains measured by
187 RT-qPCR normalized to the *gfp* mRNA levels of pMBA control strain (ARCs in the X-axis follow the same order
188 as in Fig. 2A). Bars represent the mean and SD from two to three biological replicates. (B) Distribution of the *gfp*
189 mRNA ratios (pMBA-ARC / pMBA) with indication of the mean value and SD. (C) Correlation between GFP
190 fluorescence and *gfp* mRNA ratios. r indicates the Spearman's correlation coefficient.

191

192

193

194 **Negligible role of secondary promoters and *attC* sites in polar effects**

195 The panoply of polar effects observed in this work could be the result of the
196 interplay between several known mechanisms. For instance, cassettes could all
197 have negative polar effects of similar intensity, but some might alleviate them
198 through additional promoters while others intensify them through the presence of
199 transcriptional terminators.

200 We asked whether additional transcriptional activity could in part explain the
201 high fluorescence levels of a subset of 12 ARCs showing the highest expression
202 levels of the second cassette. These include *qacE*, for which the existence of
203 additional promoters has already been documented^{18,23}; and *ereA2* and *ereA3* that
204 share respectively 94 and 87% identity with *ereA1*, which also contains its own
205 promoter¹⁴. We thus deleted the *Pc* promoter in these 12 variants of pMBA and
206 measured fluorescence to reveal any additional promoters (Fig. 4A). The deletion of
207 the *Pc* in pMBA \emptyset decreased fluorescence 400-fold, to levels similar to a strain
208 without pMBA. Deleting the *Pc* in this subset confirmed promoter activity in *qacE* and
209 *ereA3*. Other cassettes, like *dfrA1* and *dfrA15* also showed a minor (2-fold) but
210 significantly higher level of fluorescence compared to the pMBA $\emptyset\Delta P_c$ control.
211 Nevertheless, for most cassettes the deletion of the *Pc* led to a decrease in
212 fluorescence similar to the one observed for pMBA $\emptyset\Delta P_c$. We hence conclude that
213 while additional promoters within certain ARCs might influence the expression of
214 integron arrays, they only account for a limited portion of the overall variation
215 observed in our dataset.

216 *attC* recombination sites are sequences located at the 3' region of each
217 integron cassette. In their recombinogenic form, *attCs* adopt a hairpin structure
218 which is essential for the recognition by the integrase and its recombination. Due to
219 this inherent highly structured conformation, *attC* sites were initially proposed to
220 function as Rho-independent transcriptional terminators¹¹ but later work questioned
221 this view, arguing they rather affect translation of the cassette downstream¹³. We
222 sought to test if *attCs* play a role in the negative polar effects observed, using the
223 subset of 11 ARCs displaying the lowest GFP fluorescence levels. To rule out the

224 influence of plasmid loss in our observations, a phenomenon that could arise from
225 the fitness cost of ARCs, we measured plasmid copy number (PCN) in this subset
226 and pMBA \emptyset by qPCR (Supplementary Figure 3). Only pMBA carrying *bla*_{OXA-20}
227 showed a significant reduction in PCN and was thus excluded from further analysis.
228 Deleting *attC* sites in the remaining cassettes reveals no effect on fluorescence for
229 most cases, increasing only mildly the fluorescence in 3 cassettes (Fig. 4B).
230 However, for *aacA35* the deletion of the *attC* results in a large (5-fold) increase in
231 GFP fluorescence. Accordingly, mRNA levels were also higher in 3 out of 4 Δ *attC*
232 strains (Fig. 4B inset). Overall, *attC* removal impacted downstream expression only
233 in a minority of cases and generally in a subtle manner. This suggests that they are
234 not major determinants of polar effects.

235

236

237

238

239

240

241

242

243

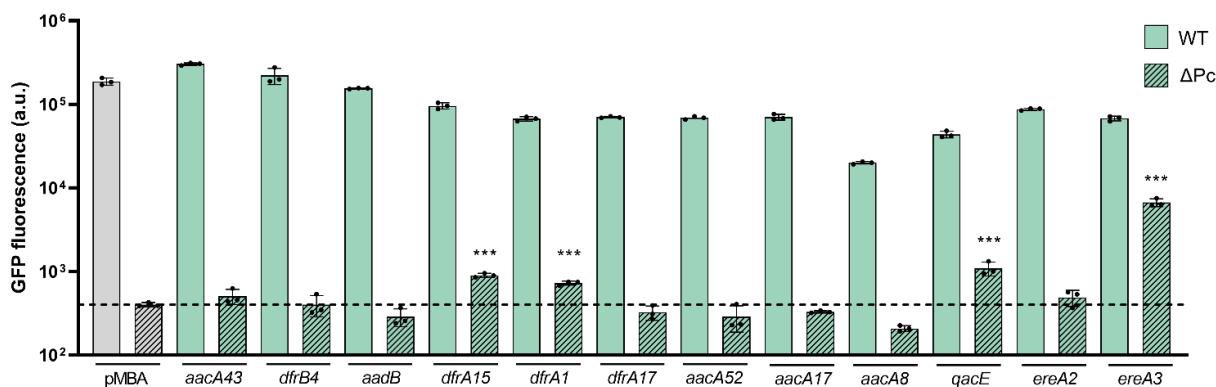
244

245

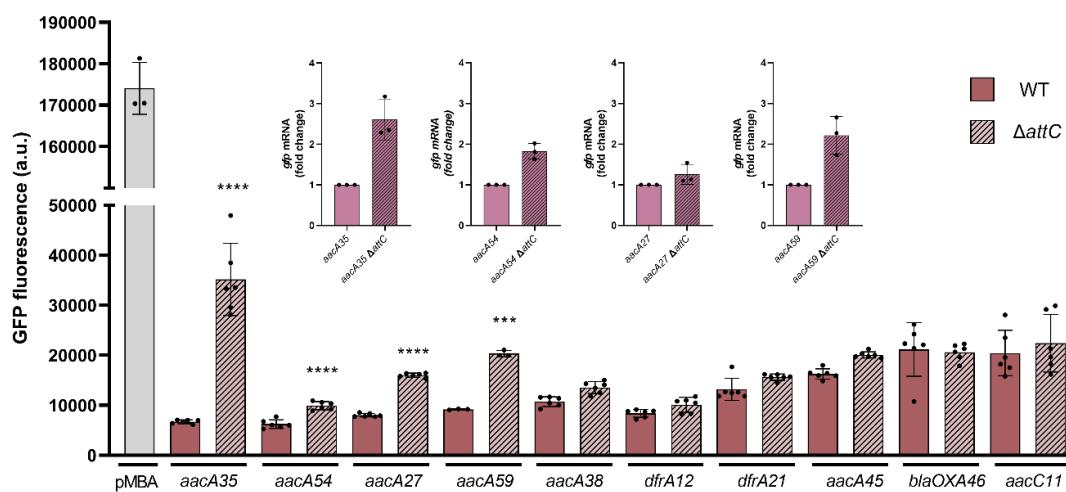
246

247

248


249

250


251

252

A

B

253

254

255 **Figure 4. Role of secondary promoters and *attC* sites in polar effects. (A)** Detection of *Pc*-independent
256 transcriptional activity in a subset of cassettes displaying high GFP expression. Bars depict the GFP fluorescence
257 (arbitrary units) of WT and Δ Pc mutants. Dotted line marks the mean value of the pMBA \emptyset Δ Pc control strain.
258 Statistically significant differences compared to pMBA Δ Pc control were determined using unpaired t-test, ***
259 $P < 0.001$. **(B)** Role of *attC* sites in a subset of cassettes displaying low GFP expression. Bars depict GFP
260 fluorescence (arbitrary units) of WT and Δ attC mutants. Statistically significant differences between Δ attC and
261 WT strains were determined using unpaired t-test, *** $P < 0.001$; **** $P < 0.0001$. Only statistically significant
262 comparisons are shown; (inset) *gfp* mRNA fold change of those Δ attC mutants displaying significantly different
263 GFP fluorescence levels.

264

265 **Cassette translation plays a key role on the polar effects in integron arrays**

266 The general absence of promoters within cassettes, together with the lack of
267 repressive effects of *attC* sites suggest that i) these elements only explain a small
268 fraction of polar effects and ii) the underlying mechanism(s) is novel in integrons. We
269 showed above that ARCs significantly affect the mRNA levels of the cassette
270 downstream. Given that the transcription initiation rate originated at the *Pc* is the
271 same across our collection, we hypothesized that elements within cassettes might
272 either promote transcriptional termination or negatively affect the stability of the
273 polycistronic mRNA²⁴. Considering the critical role of translation in mRNA stability -
274 where translating ribosomes can protect mRNA from degradation²⁵⁻²⁹ - we
275 examined the translation initiation (TI) rates of each ARC and their correlation with
276 downstream *gfp* mRNA levels (Fig. 5A). We predicted TI rates using the web
277 software RBS Calculator v2.1, which employs a highly accurate thermodynamic
278 model of ribosome-mRNA interactions to estimate the TI rates for a given mRNA
279 sequence³⁰. Our analysis revealed variable TI rates among ARCs and a significant
280 positive correlation between TI rates and *gfp* mRNA levels ($p = 0.39$, *p-value* <
281 0.0001) (Fig. 5A), highlighting cassette translation as a global determinant in
282 downstream gene expression. Contrarily, we did not observe similar correlations with
283 the codon adaptation index (CAI) of cassettes ($p = 0.10$), or with the overall
284 complexity of secondary structures in their mRNAs ($p = 0.15$), features that have
285 also been shown to be determinants of gene expression and mRNA stability in
286 bacteria^{25,26,31-35}. Interestingly, we observed a negative correlation between the GC
287 content of cassettes and both the TI rates ($p = -0.37$, *p-value* < 0.0001) and *gfp*
288 mRNA levels ($p = -0.32$, *p-value* = 0.001). A low GC content can play a role in gene
289 expression in different ways. When located near the 5' of ORFs, it can lead to a less
290 structured mRNA, favoring translation initiation^{32,34,36-38}, while along the coding
291 sequence, it may lead to spurious transcription due to AT-rich tracts³⁹. Notably, the
292 correlation between translation rates and the GC content in the 60bp around the start
293 codon was clearly higher than for the whole gene ($p = -0.49$ vs. -0.37 , *p-value* <
294 0.0001), suggesting that the impact that GC content has on the polar effects of an
295 ARC is due, at least partly, to its influence on translation initiation rates.

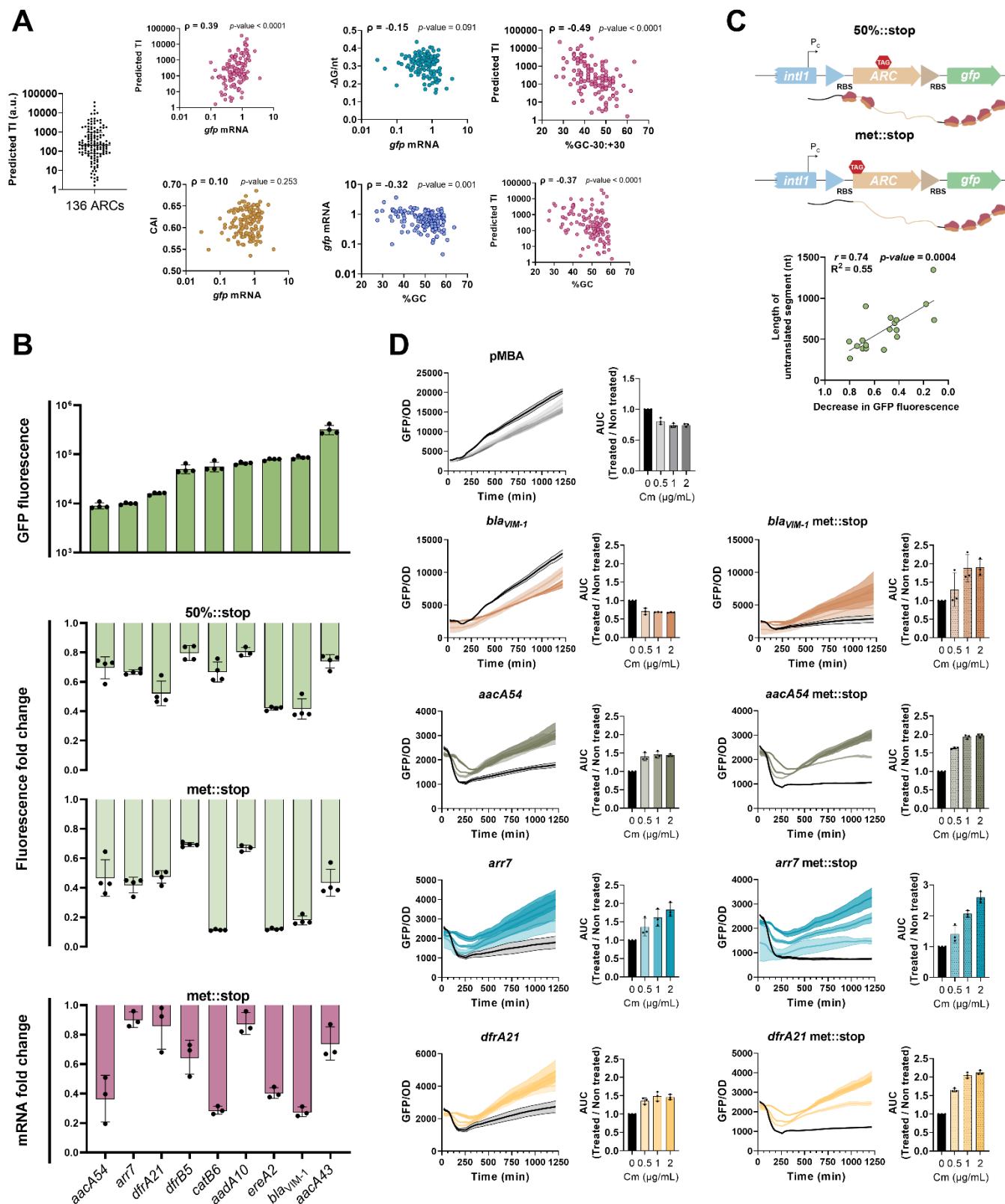
296 As our data points to the translation of the first cassette as a key driver of the
297 polar effects, we sought to prove it experimentally. We hypothesized that preventing
298 translation initiation of the first cassette, or stopping translation prematurely, should
299 result in a lower expression of the second cassette. To test this, we selected a subset
300 of ARCs from distinct antibiotic families, covering different levels of GFP expression.
301 We hindered translation in these cassettes by i) replacing the ATG initiation codon
302 by a TAG stop codon (met::stop) or ii) by introducing a TAG stop codon in the middle
303 of the CDS (50%::stop). As expected, we observed a general reduction in GFP
304 fluorescence in all untranslated mutants (Fig. 5B). Preventing translation initiation
305 (met::stop mutants) lead to a 2- to 10-fold reduction in downstream cassette
306 expression, while introducing a stop codon in the middle of the CDS (50%::stop) also
307 reduced downstream cassette expression but to a lower extent, suggesting that the
308 sooner translation is prevented, the higher the reduction in downstream expression.
309 Indeed, we find that the length of the untranslated segments in these mutants (i.e.,
310 the distance between each stop codon and the ATG of the *gfp* gene), correlates
311 positively with the decrease in fluorescence (Fig. 5C). Notably, in all cases, qRT-
312 PCR of the *gfp* gene shows that downstream cassette mRNA levels also decrease
313 with these mutations, in line with the view that translation interruption affects mRNA
314 levels (Fig. 5B).

315 To verify that mRNA stability is indeed affected by translation in integrons we
316 sought to prove that stabilization of mRNAs results in an increase in expression of
317 the 2nd cassette. Notably, it has been demonstrated that some translation inhibitors,
318 such as chloramphenicol (Cm), can stabilize bacterial mRNAs⁴⁰⁻⁴⁴. However,
319 because Cm has this dual activity, -inhibiting translation elongation and stabilizing
320 mRNAs-, we hypothesized that the later effect could only be observed in cassettes
321 with low translation levels and low mRNA stability. To test this we measured growth
322 and normalized fluorescence (fluorescence/OD) over time of cultures treated with
323 0.5, 1 and 2 µg/mL chloramphenicol, (12.5%, 25% and 50% of the MIC, respectively)
324²⁰ (Fig. 5D). The antibiotic effect of Cm was observed on the growth of all strains
325 (Supplementary figure 4) except on the one containing *catB6* which confers high-
326 level resistance to Cm²⁰. As expected, Cm decreased fluorescence in pMBA \emptyset , but

327 increased fluorescence of *aacA54*, *arr7* and *dfrA21* cassettes, which are those
328 displaying the lowest fluorescence. In the rest of ARCs, the effect of Cm on
329 fluorescence was intermediate and its sign depended on the initial GFP levels,
330 supporting that there is a balance between the inhibition of translation and the
331 stabilization of unstable mRNAs (Supplementary figure 5 and *blaVIM-1* in Fig. 5D).
332 Additionally, when we prevent translation initiation (met::stop), we observe that Cm
333 treatment results in a higher increase in fluorescence in all cassettes except one
334 (Fig. 5D and Supplementary figure 5). Altogether, these results show that, in general,
335 ARC translation strongly impacts integron array expression by impacting the mRNA
336 levels of downstream cassettes, which are likely influenced by the effect of
337 translation on the stability of the whole mRNA molecule.

338

339


340

341

342

343

344

346 **Figure 5. Impact of translation on downstream cassette expression** **(A)** Translation initiation rates of
347 cassettes were predicted using the web tool RBS Calculator 2.1. Correlations between *gfp* mRNA levels of all
348 ARCs and their translation initiation rates (TI); codon adaptation index (CAI) and minimum fold energy of mRNA.
349 Correlations between the GC content of all ARCs and their *gfp* mRNA levels and predicted TI. Spearman's rank
350 correlation coefficient (ρ) and p -values are indicated **(B)** GFP fluorescence and *gfp* mRNA levels (fold change)
351 of a subset of ARCs and their respective translation mutants. *met::stop* represents the indicated ARC with the
352 methionine initiation codon replaced by a stop codon. 50%::stop represents the indicated ARC with a stop codon
353 introduced at the 50% of the CDS. Bars represent the mean and SD from at least three biological replicates. **(C)**
354 Schematic representation of mutants used to study the impact of translation on polar effects in ARCs. Correlation
355 between the length of the untranslated segment and the respective decrease in GFP fluorescence. r indicates
356 the Spearman's correlation coefficient. **(D)** Effect of subinhibitory doses of chloramphenicol on downstream
357 cassette expression. For each indicated strain the left panels display the GFP/OD, with line and shading
358 representing the mean and SD of three biological replicates, respectively. The right panels display the area under
359 the curve (AUC) of the Cm-treated cultures over the non-treated control with bars representing the mean and
360 SD from three biological replicates.

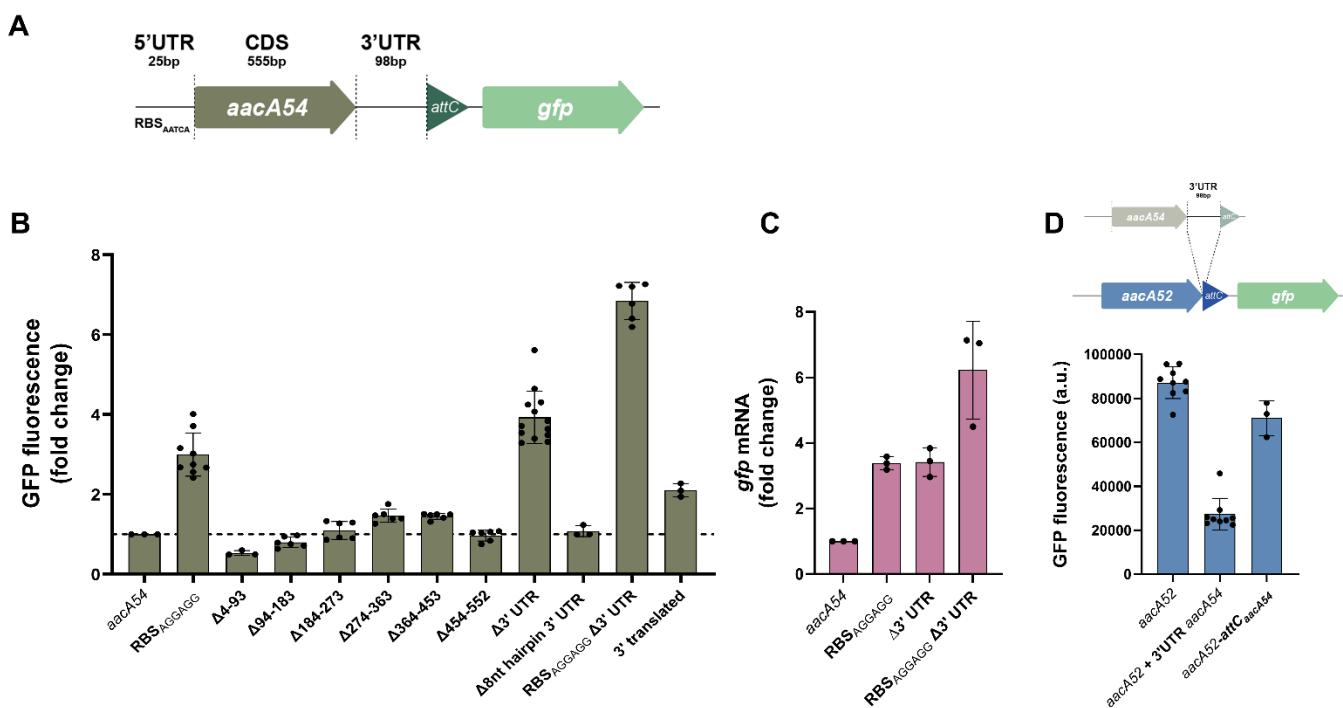
361

362 **Case-specific analysis of a highly repressive cassette confirms importance of 363 translation**

364 To confirm the importance of translation rates in polar effects, we sought to
365 investigate their role in an extreme case, where repression is maximal and additional
366 mechanisms can be involved. Such is the case of *aacA54*, the most repressive
367 cassette in our collection (it entails 50- and 10-fold decreases of fluorescence and
368 mRNA levels, respectively) (Fig. 2A and 3A). This cassette contains a 25bp 5' UTR
369 (untranslated region), a 555bp coding sequence, and is one of the very few to
370 contain a long 3' UTR (162 bp), encompassing the 70bp-long *attC* site (Fig. 6A). We
371 sought to determine the relative importance of translation rates in the polar effects
372 of this cassette, and the presence of other mechanisms.

373 The 5' UTR region of genes contains the Ribosome Binding Site (RBS) and
374 other signals (like mRNA structures or A-rich tracts) that collectively control their
375 translation initiation rate^{37,45–47}. In this sense, *aacA54* harbors a Shine-Dalgarno
376 (SD) motif, AATCAA, that is far from the canonical AGGAGG. To assess if this weak
377 RBS might result in a low translation rate for *aacA54* and a low stability of mRNA,
378 we modified the SD to the canonical AGGAGG. Notably, the resistance levels

379 against four different aminoglycosides increased 2- to 4-fold, confirming an
380 increased translation rate in this mutant (Supplementary figure 6). This change in
381 the RBS of the first cassette increased 3-fold the expression (Fig. 6B) and the mRNA
382 levels of the second cassette (the *gfp* gene) (Fig. 6C) which confirms the important
383 role of translation rates.


384 Additionally, we searched for elements within the CDS of *aacA54* that could
385 lower the expression of the second cassette, such as stretches of rare codons,
386 known to slow down translation^{25,32}. By performing serial 90bp deletions covering
387 the whole length of *aacA54*, preserving the start and stop codons as well as the
388 reading frame, we found no changes in fluorescence (Fig. 6B), indicating that the
389 CDS does not affect downstream expression.

390 As mentioned before, *aacA54* contains a 98bp long 3' UTR that separates the
391 stop codon from the *attC* site, contrarily to the majority of the other ARCs where the
392 *attC* overlaps with the stop codon of the CDS. We hypothesized that the presence
393 of this region could negatively affect the expression levels of the next cassette, either
394 due to the presence of transcriptional terminators⁴⁸ or an untranslated stretch of
395 mRNA. Indeed, the deletion of the UTR resulted in a 4-fold increase in fluorescence
396 and a similar increase in *gfp* mRNA levels (Fig. 6B and 6C). When combined with a
397 canonical RBS, the effect was additive both at the fluorescence and the mRNA levels
398 (Fig. 6B and 6C), suggesting that both elements act independently. Moreover, when
399 we introduced this 3' UTR between the stop codon and the *attC* site of *aacA52*, a
400 closely related cassette with high initial fluorescence levels, we observed a 4-fold
401 reduction in fluorescence (Fig. 6D). Instead, replacing only the *attC_{aacA52}* site with
402 *attC_{aacA54}* caused a minor reduction in fluorescence. We identified a small hairpin-
403 like structure that could be acting as an intrinsic transcriptional terminator
404 (Supplementary figure 7). However, removing 8 nucleotides essential for this
405 structure did not affect fluorescence levels, ruling out the role of this sequence as a
406 terminator (Fig. 6B). We then mutated the canonical stop codon in *aacA54* so that
407 translation is maintained in frame throughout all the 3' region until the *attC*, where it
408 terminates at a new stop codon. This led to a 2-fold increase in fluorescence, which

409 agrees, in part, with the view that lack of translation at the 3' UTR lowers downstream
410 expression (Fig. 6B).

411 In summary, translation rates are a key element in polar effects even in
412 extremely repressive cassettes.

413

414

415 **Figure 6. RBS and 3' UTR of aacA54 independently govern gfp expression.** (A) Representation of
416 aacA54 array with each analyzed segment depicted. (B) Bar graphics represent the fold change in GFP
417 fluorescence of each modified strain relative to the original aacA54 strain. (C) gfp mRNA fold change of the
418 indicated aacA54 mutants. Bars represent the mean and SD from at least three independent biological replicates.
419 (D) Representation of aacA52 modified strain now including the 98bp segment from aacA54. Bar graphics
420 represent GFP fluorescence levels (arbitrary units) of original or modified aacA52 strains.

421

422

423

424

425 **DISCUSSION**

426 The current working model of integrons puts forward that cassettes in an array
427 follow a passive gradient of expression that depends on their distance to the *Pc*.
428 Hence, for any given integron platform (i.e. assuming the same *Pc* variant), the effect
429 of cassette position is considered as the main determinant of cassette expression.
430 However, the potential impact of ARCs on the expression of cassettes downstream,
431 and consequently the resistance levels of integrons, has been largely overlooked in
432 the field. In this work, we have used the pMBA collection²⁰ to show that the
433 expression of a cassette is strongly determined by the identity of the cassette that
434 precedes it, to the point of masking the “distance-to-*Pc*” effect.

435 Our results show that translation of cassettes in first position is key in the
436 expression of second cassettes. While we clearly show this with experimental data
437 using cassettes from different antibiotic families, the translation initiation rates
438 predicted bioinformatically for all ARCs correlate only mildly with their polar effects.
439 We suspect that other factors not accounted for in these predictions may also be
440 affecting translation rates for certain cassettes. For example, some cassettes in our
441 collection are predicted to have a very low translation initiation rate, yet this does not
442 necessarily mean they are not translated. Indeed, it has been suggested that
443 cassettes without a proper translation initiation region may be translated due to
444 lateral diffusion of ribosomes from translating ORF-11 or ORF-17, which are small
445 ORFs encoded at the *attl* site^{49,50}. It is also possible that some cassettes in our
446 collection contain misannotated initiation codons that bias translation rates.

447 We propose that the link between ARC’s translation and polar effects lies in
448 the intimate association between translation and mRNA stability. Indeed, translation
449 may modulate the overall stability of the transcript generated at the *Pc*, by protecting
450 it against degradation by RNases. Thus, considering our results showing that
451 different ARCs have different translation rates, one can also assume they are likely
452 to display different transcript stabilities. The fact that chloramphenicol, as an RNA
453 stabilizing agent, increased expression downstream of poorly translated cassettes
454 further supports this view.

455 Nevertheless, translation is likely not the only factor producing polar effects in
456 integron arrays. Indeed, we have found some exceptions in our findings that support
457 the occurrence of other phenomena, such as cases of known and novel promoter
458 activity in *ereA3*, *dfrA15*, *dfrA1* and *qacE*; and the negative effect of the *attC* site of
459 *aacA35*. As for the mechanism through which some *attCs* lower downstream
460 expression, one can hypothesize that the highly structured form of *attCs* may be
461 facilitated by the lack of ribosome trafficking in cassettes with low translation rates,
462 which could potentially leave the 5' region of the *gfp* "cassette" temporarily more
463 exposed to ribonucleolytic attack.

464 Our finding that the identity of cassettes ultimately controls polar effects in
465 integrons may have important consequences in the clinical context. A limitation of
466 our study is that we used a multicopy vector, which likely results in higher absolute
467 MIC values than those in natural environments, as discussed in ²⁰. Nonetheless, we
468 believe the described polar effects should exist independently of copy number or *Pc*
469 variant in natural integrons. The fact that a given ARC may confer different levels of
470 resistance, depending on the preceding cassette has important consequences in co-
471 selection phenomena. Indeed, antibiotic combination therapies may select for arrays
472 whose cassette order allows for the expression of the entire array. Moreover,
473 considering the fitness costs entailed by the majority of antibiotic resistance genes,
474 and how it relates to the expression levels of the AR gene ^{51,52}, cassette order can
475 optimize the cost of the array. Interestingly, some resistance genes -such as
476 trimethoprim resistance *dfrs*- have an almost digital phenotype, conferring high
477 resistance even at very low expression levels. Hence, one could imagine a situation
478 in which a cassette represses the expression of the next ARC in the array,
479 decreasing its cost, but maintaining its resistance phenotype. In other words, in the
480 light of our findings, integrons can optimize the tradeoff between fitness cost and
481 function of antibiotic resistance genes.

482 This work changes the paradigm of expression in integrons, and -together
483 with other works showing the presence of promoters in cassettes- puts forward a
484 more complex scenario. In this new model, inferring the levels of expression of a

485 given cassette is extremely challenging and needs a case-by-case assessment,
486 especially if preceded by cassettes not found in our collection.

487

488

489

490

491 **MATERIAL AND METHODS**

492 **Bacterial strains, plasmids, and culture conditions**

493 *Escherichia coli* MG1655 strains and plasmids used in this study are based
494 on the previously published pMBA collection²⁰ and are listed in Supplementary
495 Table 1. All strains were cultured in liquid Müller Hinton (MH; Oxoid, UK) media, at
496 37°C with agitation at 200 rpm or solid lysogeny broth (LB) agar (1.5%) (BD, France).
497 Zeocin (Zeo) (Invitrogen, USA) was added at 100µg/mL for plasmid maintenance.
498 All pMBA collection-derived mutants were obtained by backbone amplification using
499 primers designed to achieve the desire modifications followed by Gibson assembly
500⁵³ (Supplementary Table 1).

501 **Flow cytometry analysis of fluorescence**

502 Strains containing pMBA ARC-gfp plasmids were previously streaked on LB-
503 solid medium with 100µg/mL Zeo. Three independent colonies were then inoculated
504 in 200µL MH liquid medium supplemented with 100µg/mL Zeocin and incubated at
505 37°C with agitation for 20h. The next day, cultures were diluted 1:100 in 200µL
506 MH+Zeo and incubated for 2h to reach exponential phase. At this point, cultures
507 were diluted 1:20 in filtered saline solution (NaCl 0.9%) and fluorescent intensity was
508 measured by flow cytometry using a CytoFLEX-S cytometer (Beckman Coulter,
509 USA). The measurement of each biological replicate is the result of the mean of the
510 fluorescence intensity of 30 000 events per sample. Data processing was performed
511 with Cytexpert software.

512 **Quantitative Reverse Transcription PCR of *gfp* gene**

513 For RNA extraction, overnight cultures of three biological replicates of each
514 strain were diluted 1:100 in MH medium supplemented with zeocin (100 µg/mL) and
515 grown in 96 well plates with agitation at 37°C for approximately 2 – 3 hours, until
516 reaching exponential phase. Total RNA was extracted using a KingFisher Flex
517 automated system with the MagMAX mirVana Total RNA Isolation Kit from Applied
518 Biosystems, according to manufacturer's instructions. The purity and concentration
519 of total RNA was determined by spectrophotometry (BioSpectrometer). For cDNA

520 synthesis, 200ng of RNA was used for reverse transcription using the QuantiTect
521 Reverse Transcription Kit (Qiagen) according to manufacturer's instructions. A
522 negative control without Reverse Transcriptase was included to exclude possible
523 gDNA carryover. cDNA was diluted 1:100 and 1 μ L of this dilution was used for
524 quantitative PCR (qPCR). qPCR was performed in QuantStudio 3 Real-Time PCR
525 system (Applied Biosystems) with the QuantiTect Multiplex PCR kit (Qiagen)
526 according to manufacturer's instructions. Primers and Probes used in the mix are
527 listed in SUP TABLE. PCR thermocycling conditions contained an initial stage of 2
528 min at 50°C and 15 min at 95°C followed by 42 cycles of amplification (1 min at 94°C
529 and 1 min at 60°C). Negative controls included both a reaction containing water
530 instead of template and a reverse transcriptase-free reaction. The relative
531 abundance of *gfp* transcripts was normalized to that of the housekeeping gene *rssA*
532 ⁵⁴ using the $2^{-\Delta\Delta Ct}$ method ⁵⁵.

533 **Plasmid copy number (PCN) assessment**

534 PCN was assessed as in ⁵⁶. Briefly, overnight cultures of three biological
535 replicates of each strain were diluted 1:100 in MH medium supplemented with zeocin
536 (100 μ g/mL) and grown in 96 well plates with agitation at 37°C for approximately 2
537 hours, until reaching exponential phase. 50 μ L were then collected and briefly
538 centrifuged for 2 minutes. The supernatant was then discarded, the pellet
539 resuspended in molecular biology grade water and then boiled at 98°C for 10
540 minutes. After a brief centrifugation, 30 μ L were collected and then diluted 1:10. 1 μ L
541 of this dilution was then used as template for the exact same qPCR reaction
542 described above.

543 **Growth curves and GFP measurement of chloramphenicol-treated cultures**

544 Three independent colonies of each strain were inoculated in MH+Zeo and
545 incubated at 37°C with agitation for 20h. Cultures were then diluted 1:1000 in fresh
546 MH+Zeo media containing or not subinhibitory concentrations of chloramphenicol
547 (0.5, 1 and 2 μ g/mL). Growth (OD₆₀₀) and GFP fluorescence (measured at 488nm
548 wavelength) were followed for 20h using a Biotek Synergy HTX plate reader.
549 Measures were taken every 20 minutes with prior shaking.

550 **Determination of minimum inhibitory concentrations (MIC)**

551 The MIC of ertapenem, cefaclor or chloramphenicol of strains containing
552 *bla_{VIM-1}* or *catB6* cassettes were determined as in ²⁰. Briefly, 10⁵ colony forming units
553 (CFUs) were inoculated in 200µL of fresh MH with doubling dilutions of each selected
554 antibiotic in 96-well plates and incubated overnight at 37°C in static conditions. After
555 24 hours plates were analyzed and MIC values were established as the lowest
556 concentration in which visible growth could not be observed.

557

558 **REFERENCES**

559

- 560 1. Murray, C. J. L. *et al.* Global burden of bacterial antimicrobial resistance in 2019: a systematic
561 analysis. *The Lancet* **399**, 629–655 (2022).
- 562 2. Gillings, M. *et al.* The evolution of class 1 integrons and the rise of antibiotic resistance. *J.*
563 *Bacteriol.* **190**, 5095–5100 (2008).
- 564 3. Gillings, M. R. Class 1 integrons as invasive species. *Curr. Opin. Microbiol.* **38**, 10–15 (2017).
- 565 4. Partridge, S. R., Tsafnat, G., Coiera, E. & Iredell, J. R. Gene cassettes and cassette arrays in
566 mobile resistance integrons. *FEMS Microbiol. Rev.* **33**, 757–784 (2009).
- 567 5. Moura, A. *et al.* INTEGRALL: a database and search engine for integrons, integrases and gene
568 cassettes. *Bioinformatics* **25**, 1096–1098 (2009).
- 569 6. Guerin, É. *et al.* The SOS Response Controls Integron Recombination. *Science* **324**, 1034–1034
570 (2009).
- 571 7. Barraud, O. & Ploy, M.-C. Diversity of Class 1 Integron Gene Cassette Rearrangements Selected
572 under Antibiotic Pressure. *J. Bacteriol.* **197**, 2171–2178 (2015).
- 573 8. Escudero, J. A., Loot, C., Nivina, A. & Mazel, D. The Integron: Adaptation On Demand.
574 *Microbiol. Spectr.* **3**, 10.1128/microbiolspec.mdna3-0019–2014 (2015).

- 575 9. Lacotte, Y., Ploy, M.-C. & Raherison, S. Class 1 integrons are low-cost structures in *Escherichia*
576 *coli*. *ISME J.* **11**, 1535–1544 (2017).
- 577 10. Souque, C., Escudero, J. A. & MacLean, R. C. Integron activity accelerates the evolution of
578 antibiotic resistance. *eLife* **10**, e62474 (2021).
- 579 11. Collis, C. M. & Hall, R. M. Expression of antibiotic resistance genes in the integrated cassettes
580 of integrons. *Antimicrob. Agents Chemother.* **39**, 155–162 (1995).
- 581 12. da Fonseca, E. L., Freitas, F. d. S. & Vicente, A. C. P. *Pc* promoter from class 2 integrons and the
582 cassette transcription pattern it evokes. *J. Antimicrob. Chemother.* **66**, 797–801 (2011).
- 583 13. Jacquier, H., Zaoui, C., Sanson-le Pors, M.-J., Mazel, D. & Berçot, B. Translation regulation of
584 integrons gene cassette expression by the *attC* sites. *Mol. Microbiol.* **72**, 1475–1486 (2009).
- 585 14. Biskri, L. & Mazel, D. Erythromycin esterase gene *ere(A)* is located in a functional gene
586 cassette in an unusual class 2 integron. *Antimicrob. Agents Chemother.* **47**, 3326–3331 (2003).
- 587 15. Bissonnette, L., Champetier, S., Buisson, J. P. & Roy, P. H. Characterization of the
588 nonenzymatic chloramphenicol resistance (*cmlA*) gene of the *In4* integron of *Tn1696*:
589 similarity of the product to transmembrane transport proteins. *J. Bacteriol.* **173**, 4493 (1991).
- 590 16. da Fonseca, É. L. & Vicente, A. C. P. Functional Characterization of a Cassette-Specific
591 Promoter in the Class 1 Integron-Associated *qnrVC1* Gene. *Antimicrob. Agents Chemother.* **56**,
592 3392–3394 (2012).
- 593 17. Guérout, A.-M. *et al.* Characterization of the *phd-doc* and *ccd* Toxin-Antitoxin Cassettes from
594 *Vibrio* Superintegrons. *J. Bacteriol.* **195**, 2270–2283 (2013).
- 595 18. Poirel, L. *et al.* Characterization of Class 1 Integrons from *Pseudomonas aeruginosa* That
596 Contain the *blaVIM-2* Carbapenem-Hydrolyzing β -Lactamase Gene and of Two Novel
597 Aminoglycoside Resistance Gene Cassettes. *Antimicrob. Agents Chemother.* **45**, 546–552
598 (2001).

- 599 19. Blanco, P. *et al.* Identification of promoter activity in gene-less cassettes from Vibrionaceae
600 superintegrons. *Nucleic Acids Res.* **gkad1252** (2024) doi:10.1093/nar/gkad1252.
- 601 20. Hipólito, A., García-Pastor, L., Vergara, E., Jové, T. & Escudero, J. A. Profile and resistance
602 levels of 136 integron resistance genes. *Npj Antimicrob. Resist.* **1**, 1–12 (2023).
- 603 21. Hipólito, A. *et al.* The expression of aminoglycoside resistance genes in integron cassettes is
604 not controlled by riboswitches. *Nucleic Acids Res.* **50**, 8566–8579 (2022).
- 605 22. Starikova, I. *et al.* A Trade-off between the Fitness Cost of Functional Integrases and Long-
606 term Stability of Integrons. *PLoS Pathog.* **8**, e1003043 (2012).
- 607 23. Naas, T., Mikami, Y., Imai, T., Poirel, L. & Nordmann, P. Characterization of In53, a Class 1
608 Plasmid- and Composite Transposon-Located Integron of *Escherichia coli* Which Carries an
609 Unusual Array of Gene Cassettes. *J. Bacteriol.* **183**, 235–249 (2001).
- 610 24. Güell, M., Yus, E., Lluch-Senar, M. & Serrano, L. Bacterial transcriptomics: what is beyond the
611 RNA horiz-ome? *Nat. Rev. Microbiol.* **9**, 658–669 (2011).
- 612 25. Boël, G. *et al.* Codon influence on protein expression in *E. coli* correlates with mRNA levels.
613 *Nature* **529**, 358–363 (2016).
- 614 26. Dar, D. & Sorek, R. Extensive reshaping of bacterial operons by programmed mRNA decay.
615 *PLOS Genet.* **14**, e1007354 (2018).
- 616 27. Deana, A. & Belasco, J. G. Lost in translation: the influence of ribosomes on bacterial mRNA
617 decay. *Genes Dev.* **19**, 2526–2533 (2005).
- 618 28. Duviau, M.-P. *et al.* When translation elongation is impaired, the mRNA is uniformly
619 destabilized by the RNA degradosome, while the concentration of mRNA is altered along the
620 molecule. *Nucleic Acids Res.* **51**, 2877–2890 (2023).

- 621 29. Viegas, S. C., Apura, P., Martínez-García, E., de Lorenzo, V. & Arraiano, C. M. Modulating
622 Heterologous Gene Expression with Portable mRNA-Stabilizing 5'-UTR Sequences. *ACS Synth.*
623 *Biol.* **7**, 2177–2188 (2018).
- 624 30. Reis, A. C. & Salis, H. M. An Automated Model Test System for Systematic Development and
625 Improvement of Gene Expression Models. *ACS Synth. Biol.* **9**, 3145–3156 (2020).
- 626 31. Burkhardt, D. H. *et al.* Operon mRNAs are organized into ORF-centric structures that predict
627 translation efficiency. *eLife* **6**, e22037 (2017).
- 628 32. Cambray, G., Guimaraes, J. C. & Arkin, A. P. Evaluation of 244,000 synthetic sequences reveals
629 design principles to optimize translation in *Escherichia coli*. *Nat. Biotechnol.* **36**, 1005–1015
630 (2018).
- 631 33. Cetnar, D. P. & Salis, H. M. Systematic Quantification of Sequence and Structural Determinants
632 Controlling mRNA stability in Bacterial Operons. *ACS Synth. Biol.* **10**, 318–332 (2021).
- 633 34. Gu, W., Zhou, T. & Wilke, C. O. A Universal Trend of Reduced mRNA Stability near the
634 Translation-Initiation Site in Prokaryotes and Eukaryotes. *PLOS Comput. Biol.* **6**, e1000664
635 (2010).
- 636 35. Kudla, G., Murray, A. W., Tollervey, D. & Plotkin, J. B. Coding-Sequence Determinants of Gene
637 Expression in *Escherichia coli*. *Science* **324**, 255–258 (2009).
- 638 36. Allert, M., Cox, J. C. & Hellinga, H. W. Multifactorial determinants of protein expression in
639 prokaryotic open reading frames. *J. Mol. Biol.* **402**, 905–918 (2010).
- 640 37. Komarova, A. V., Tchufistova, L. S., Dreyfus, M. & Boni, I. V. AU-Rich Sequences within 5'
641 Untranslated Leaders Enhance Translation and Stabilize mRNA in *Escherichia coli*. *J. Bacteriol.*
642 **187**, 1344–1349 (2005).
- 643 38. Lenz, G., Doron-Faigenboim, A., Ron, E. Z., Tuller, T. & Gophna, U. Sequence Features of *E. coli*
644 mRNAs Affect Their Degradation. *PLOS ONE* **6**, e28544 (2011).

- 645 39. Warman, E. A., Singh, S. S., Gubieda, A. G. & Grainger, D. C. A non-canonical promoter
646 element drives spurious transcription of horizontally acquired bacterial genes. *Nucleic Acids*
647 *Res.* **48**, 4891–4901 (2020).
- 648 40. Lopez, P. J., Marchand, I., Yarchuk, O. & Dreyfus, M. Translation inhibitors stabilize *Escherichia*
649 *coli* mRNAs independently of ribosome protection. *Proc. Natl. Acad. Sci.* **95**, 6067–6072
650 (1998).
- 651 41. Lundberg, U., Nilsson, G. & von Gabain, A. The differential stability of the *Escherichia coli*
652 *ompA* and *bla* mRNA at various growth rates is not correlated to the efficiency of translation.
653 *Gene* **72**, 141–149 (1988).
- 654 42. Pato, M. L., Bennett, P. M. & Von Meyenburg, K. Messenger Ribonucleic Acid Synthesis and
655 Degradation in *Escherichia coli* During Inhibition of Translation. *J. Bacteriol.* **116**, 710–718
656 (1973).
- 657 43. Richards, J., Luciano, D. J. & Belasco, J. G. Influence of translation on RppH-dependent mRNA
658 degradation in *Escherichia coli*. *Mol. Microbiol.* **86**, 1063–1072 (2012).
- 659 44. Vargas-Blanco, D. A. & Shell, S. S. Regulation of mRNA Stability During Bacterial Stress
660 Responses. *Front. Microbiol.* **11**, (2020).
- 661 45. Chen, F., Cocaign-Bousquet, M., Girbal, L. & Nouaille, S. 5'UTR sequences influence protein
662 levels in *Escherichia coli* by regulating translation initiation and mRNA stability. *Front.*
663 *Microbiol.* **13**, (2022).
- 664 46. Duan, Y. *et al.* Deciphering the Rules of Ribosome Binding Site Differentiation in Context
665 Dependence. *ACS Synth. Biol.* **11**, 2726–2740 (2022).
- 666 47. Ma, J., Campbell, A. & Karlin, S. Correlations between Shine-Dalgarno Sequences and Gene
667 Features Such as Predicted Expression Levels and Operon Structures. *J. Bacteriol.* **184**, 5733–
668 5745 (2002).

- 669 48. Menendez-Gil, P. & Toledo-Arana, A. Bacterial 3'UTRs: A Useful Resource in Post-
670 transcriptional Regulation. *Front. Mol. Biosci.* **7**, 617633 (2021).
- 671 49. Hanau-Berçot, B., Podglajen, I., Casin, I. & Collatz, E. An intrinsic control element for
672 translational initiation in class 1 integrons. *Mol. Microbiol.* **44**, 119–130 (2002).
- 673 50. Papagiannitsis, C. C., Tzouvelekis, L. S., Tzelepi, E. & Miriagou, V. attI1-Located Small Open
674 Reading Frames ORF-17 and ORF-11 in a Class 1 Integron Affect Expression of a Gene Cassette
675 Possessing a Canonical Shine-Dalgarno Sequence. *Antimicrob. Agents Chemother.* **61**,
676 10.1128/aac.02070-16 (2017).
- 677 51. Vogwill, T. & MacLean, R. C. The genetic basis of the fitness costs of antimicrobial resistance: a
678 meta-analysis approach. *Evol. Appl.* **8**, 284–295 (2015).
- 679 52. Rajer, F. & Sandegren, L. The Role of Antibiotic Resistance Genes in the Fitness Cost of
680 Multiresistance Plasmids. *mBio* **13**, e03552-21 (2022).
- 681 53. Gibson, D. G. *et al.* Enzymatic assembly of DNA molecules up to several hundred kilobases.
682 *Nat. Methods* **6**, 343–345 (2009).
- 683 54. Peng, S., Stephan, R., Hummerjohann, J. & Tasara, T. Evaluation of three reference genes of
684 Escherichia coli for mRNA expression level normalization in view of salt and organic acid stress
685 exposure in food. *FEMS Microbiol. Lett.* **355**, 78–82 (2014).
- 686 55. Livak, K. J. & Schmittgen, T. D. Analysis of Relative Gene Expression Data Using Real-Time
687 Quantitative PCR and the 2- $\Delta\Delta CT$ Method. *Methods* **25**, 402–408 (2001).
- 688 56. Rodriguez-Beltran, J. *et al.* Multicopy plasmids allow bacteria to escape from fitness trade-offs
689 during evolutionary innovation. *Nat. Ecol. Evol.* **2**, 873 (2018).
- 690
- 691
- 692

693 **ACKNOWLEDGEMENTS**

694 We would like to thank José R. Penadés for helpful discussions and for the critical
695 reading of the manuscript. We are grateful to all the members of the MBA lab for
696 helpful discussion.

697 **FUNDING**

698 The work in the MBA laboratory is supported by the European Research Council
699 (ERC) through a Starting Grant [ERC grant no. 803375-KRYPTONINT] and the
700 Ministerio de Ciencia e Innovación [PID2020-117499RB-100 and CNS2022-
701 135857]; J.A.E. has been supported by the Atracción de Talento Program of the
702 Comunidad de Madrid [2016-T1/BIO-1105 and 2020-5A/BIO19726]; A.H. is
703 supported by the PhD program at UCM; F.T.R. is supported by the Portuguese
704 Fundação para Ciência e a Tecnologia [SFRH/BD/144108/2019];

705

706

707 **AUTHOR CONTRIBUTIONS**

708 AC: conceptualization, methodology, formal analysis, validation, and writing-original
709 draft. AH: conceptualization, methodology, formal analysis, validation. FTR:
710 methodology, formal analysis, validation. LGP, methodology, formal analysis,
711 validation; EV, methodology, formal analysis. AB, methodology; TGS methodology.
712 JAE conceptualization, formal analysis, validation, and writing the final manuscript.
713 All authors read amended and approved the final version of the manuscript.

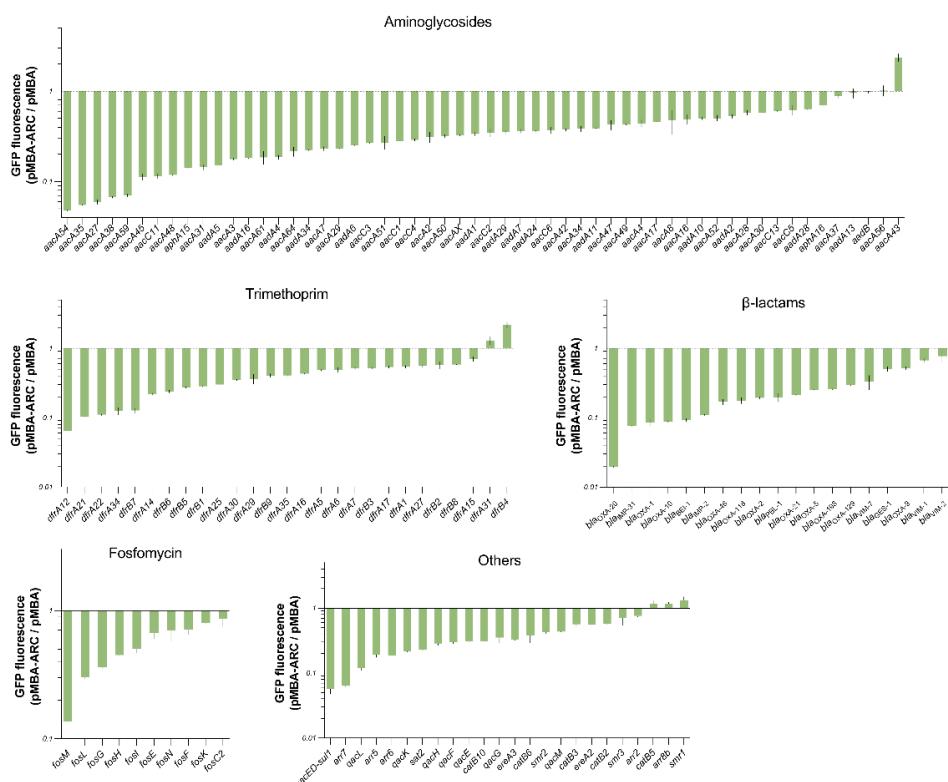
714

715 **COMPETING INTERESTS**

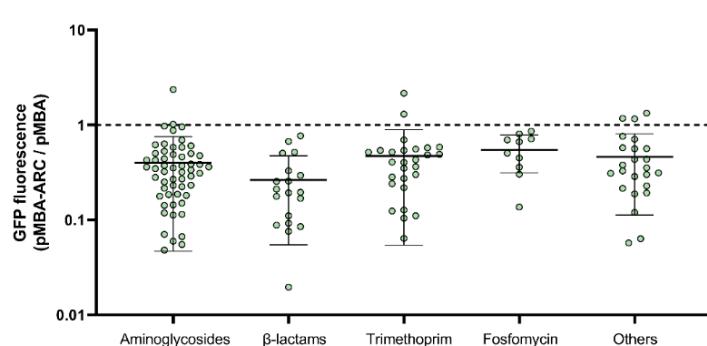
716 The authors declare no competing interests.

717

718


719 SUPPLEMENTARY INFORMATION

720

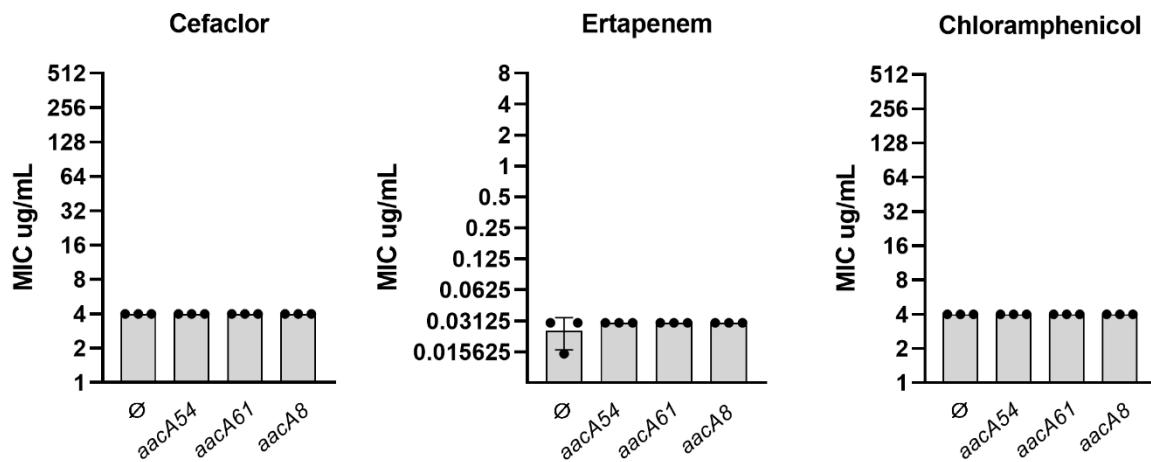

721 **Table S1:** Bacterial strains, Plasmids and Primers used in this study.

722

723 **Supplementary figure 1**

724

726


727 **Supplementary figure 1. Polar effects by antibiotic families.** GFP fluorescence of all 136 pMBA-ARC strains
728 measured by flow cytometry normalized to fluorescence of pMBA control strain. Bars represent the mean and
729 SD from three independent biological replicates. Distribution of the GFP fluorescence ratios (pMBA-ARC / pMBA)
730 with indication of the mean value and SD.

731

732

733 **Supplementary figure 2**

734

735 **Supplementary figure 2.** Resistance levels conferred by pMBA \emptyset or pMBA carrying aacA54, aacA61 or aacA8
736 to cefaclor, ertapenem and chloramphenicol. Bars depict the mean and SD of the MIC values of three
737 independent biological replicates.

738

739

740

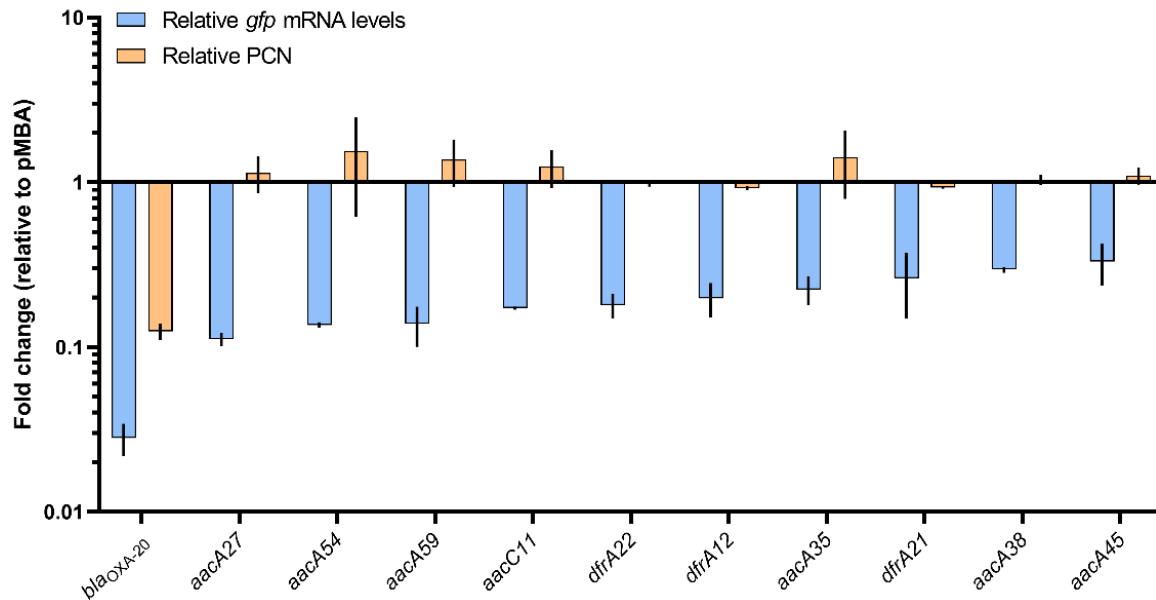
741

742

743

744

745


746

747

748

749 **Supplementary figure 3**

750

751

752

753 **Supplementary figure 3.** Relative plasmid copy number (PCN) and relative *gfp* mRNA levels of low *gfp* strains.

754 PCN was determined by qPCR using total lysate DNA (see Material and Methods). Bars represent the mean
755 and SD from two to three independent biological replicates.

756

757

758

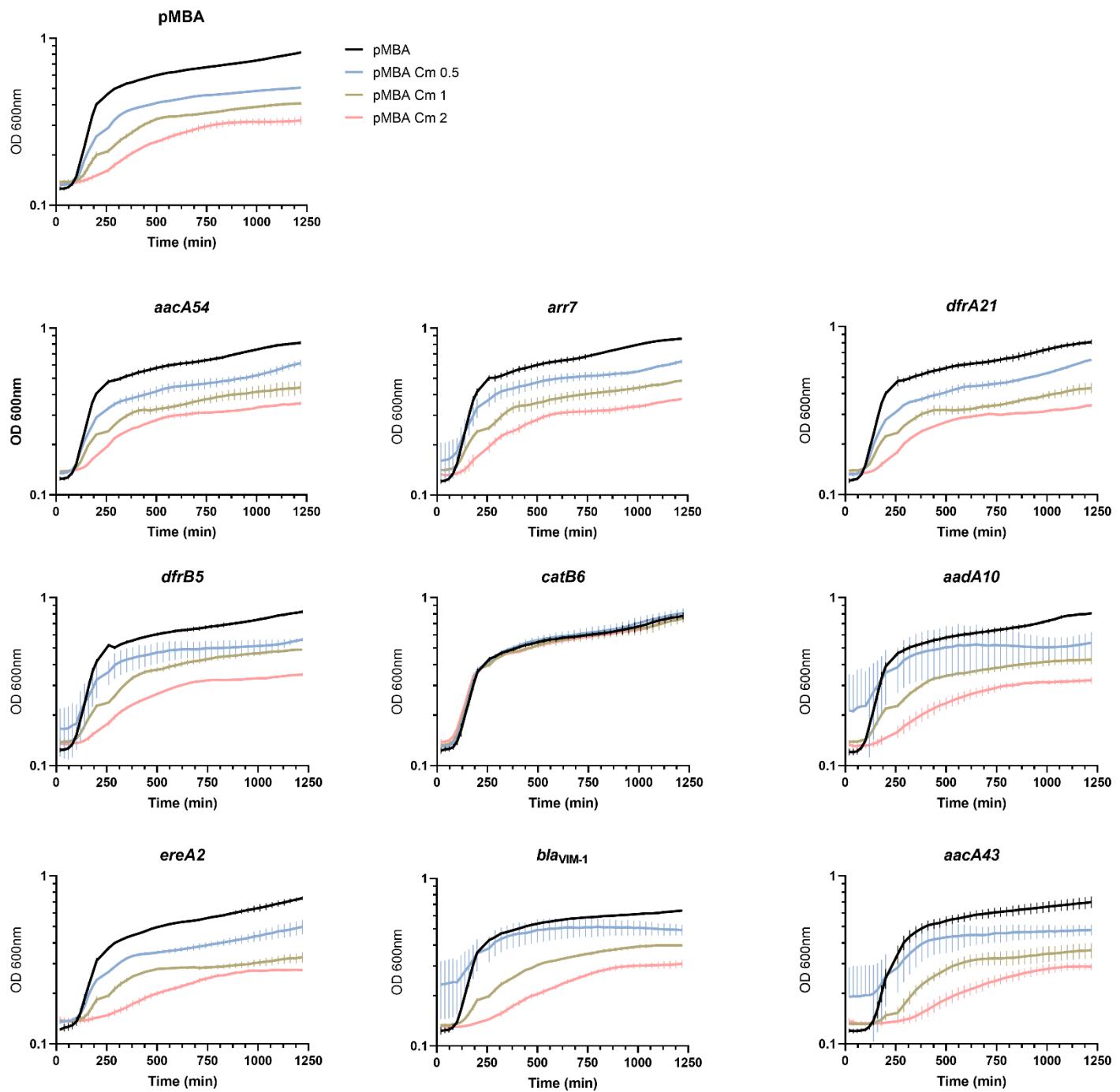
759

760

761

762

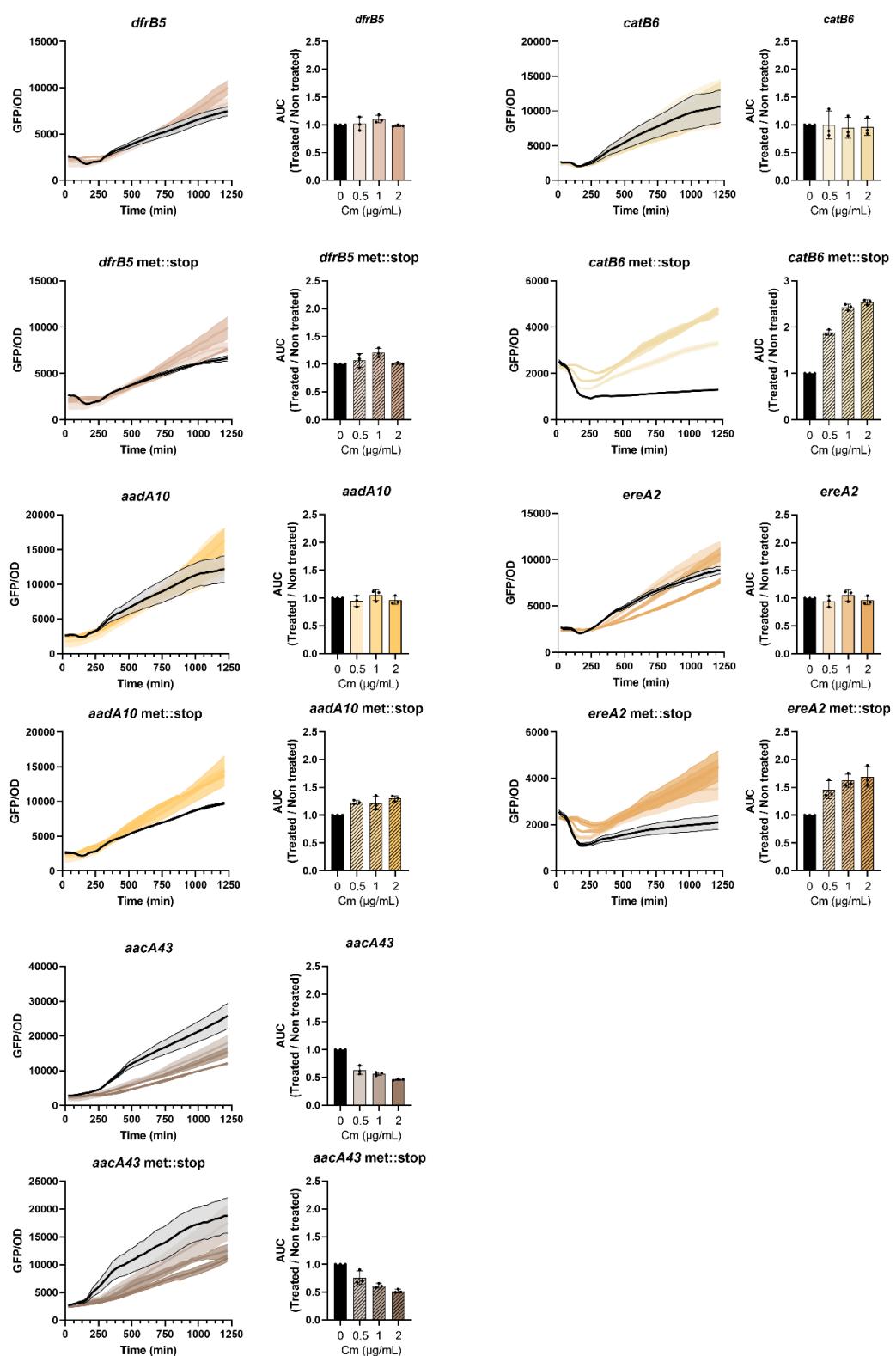
763


764

765

766

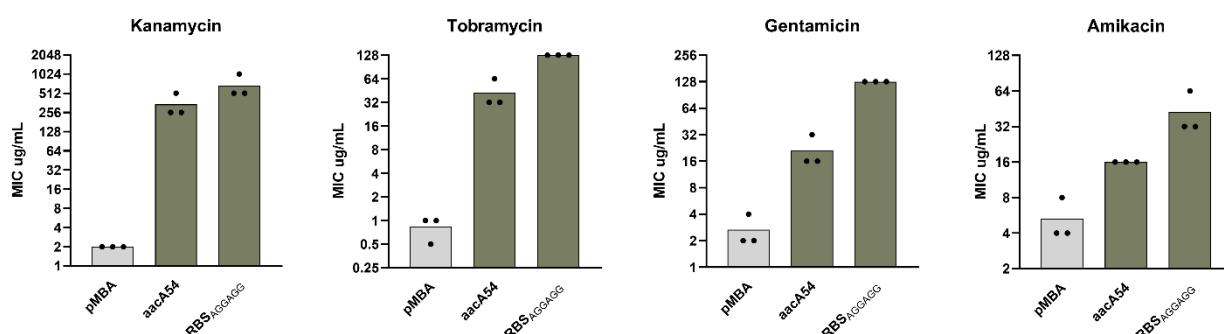
767


768 **Supplementary figure 4**

769

770 **Supplementary figure 4.** Growth (OD₆₀₀) of the indicated strains in absence or presence of 0.5, 1, and 2 µg/mL
771 chloramphenicol. Lines indicate the mean value and error bars represent the SD of three biological replicates.

772 **Supplementary figure 5**

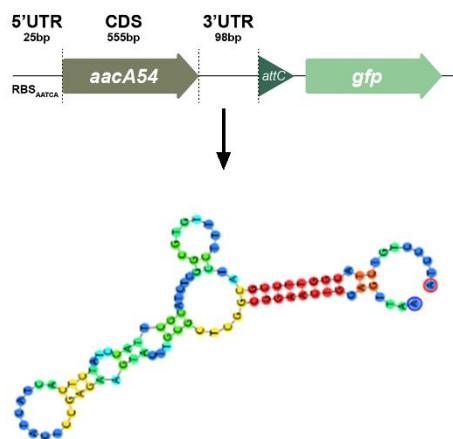


773 **Supplementary figure 5.** Effect of subinhibitory doses of chloramphenicol on downstream cassette expression.
774 For each indicated strain the left panels display the GFP/OD, with line and shading representing the mean and
775 SD of three biological replicates, respectively. The right panels display the area under the curve (AUC) of the
776 Cm-treated cultures over the non-treated control with bars representing the mean and SD from three independent
777 biological replicates.

778

779 **Supplementary figure 6**

780



781

782 **Supplementary figure 6.** Resistance levels conferred by pMBA \emptyset or pMBA carrying the indicated arrays to the
783 four aminoglycosides. Bars depict the mean and SD of the MIC values of three independent biological replicates.

784

785 **Supplementary figure 7**

786

787

788 **Supplementary figure 7.** Representation of the putative hairpin-like structure of 3' UTR in aacA54.