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Abstract 

Whole-genome sequencing has revealed that TP53, NOTCH1, ATM, SF3B1, BIRC3, ABL, NXF1, BCR, ZAP70 
are often mutated in CLL, but not consistently across all CLL patients. This paper employs a statistical thermo-
dynamics approach in combination with the systems biology of the CLL protein-protein interaction networks to 
identify the most significant participant proteins in the cancerous transformation. Betti number (a topology of 
complexity) estimates highlight a protein hierarchy, primarily in the Wnt pathway known for aberrant CLL acti-
vation. These individually identified proteins suggest a network-targeted strategy over single-target drug devel-
opment. The findings advocate for a multi-target inhibition approach, limited to several key proteins to minimize 
side effects, thereby providing a foundation for designing therapies. This study emphasizes a shift towards a 
comprehensive, multi-scale analysis to enhance personalized treatment strategies for CLL, which could be ex-
perimentally validated using siRNA or small molecule inhibitors. The result is not just the identification of these 
proteins but their rank-order, offering a potent signal amplification in the context of the 20,000 proteins produced 
by the human body, thus providing a strategic basis for therapeutic intervention in CLL, underscoring the neces-
sity for a more holistic, cellular, chromosomal, and genome-wide study to develop tailored treatments for CLL 
patients. 
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Author Summary 

Chronic Lymphocytic Leukemia (CLL) is a unique and slowly progressing cancer affecting white blood 
cells, and research on CLL has highlighted the inconsistency of gene mutations across patients. Using 
a novel approach that merges statistical thermodynamics and systems biology, this research examines 
the CLL protein-protein interaction networks to pinpoint proteins integral to the onset of the disease. 
Betti number (a topology of complexity) estimates, which measure the importance of individual proteins 
when removed from the network, helped identify numerous potential therapeutic targets, notably 
within the Wnt signaling pathway, a pathway implicated in various cellular processes and known for 
its defective expression in CLL. The finding advocates for a multi-target inhibition approach, focusing 
on several key proteins to minimize side effects, thereby laying a foundation for designing more 
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effective therapies for CLL. This paper emphasizes the potential benefits of a comprehensive study, 
spanning cellular to genome-wide scales, to design personalized treatments for CLL patients. 

Introduction 
Chronic lymphocytic leukemia (CLL) is a type of cancer that affects white blood cells and tends to progress 

slowly over many years. It is a chronic lymphoproliferative disorder characterized by increased production of 
morphologically mature but immunologically dysfunctional B lymphocytes. As a result, these cells are unable to 
fight infections as well as normal white blood cells do [1]. 

The disease starts developing in the bone marrow, since here leukemia cells survive longer and eventually 
outnumber normal cells. Then, cells further grow and may spread to other parts of the body including the spleen, 
the lymph nodes and the liver [1]. Since the growth of leukemia cells is slow, CLL may remain latent for many 
years before it causes symptoms, and it is usually harder to cure than acute leukemias [1]. 

From the genetic perspective, CLL is a unique disease with multiple gene signatures. One cohort of patients 
can exhibit a different gene-signature set than another cohort. Whole-genome sequencing has revealed that TP53, 
NOTCH1, ATM, SF3B1, BIRC3, ABL, NXF1, BCR, ZAP70 are often mutated in CLL; but, not consistently 
across all CLL patients [2]–[4]. For example, NOTCH1 is mutated in about 10% of newly diagnosed patients, 
and in about 15% to 20% of progressive ones. Similarly, SF3B1 is mutated in about 10% of newly diagnosed 
CLL patients, and about 17% in late-stage disease [2]. Just because a gene is mutated does not mean it will be 
strongly expressed. One of the goals of our study is to show a molecular thermodynamics approach to determine 
the most energetically significant pathways supporting a given patient’s CLL initiation and progression. This 
new molecular systems approach may shed light on optimal treatment for each patient – essentially personalized 
therapy. Before we present this new methodology, we provide an overview of the known biomarkers for CLL 
and then a survey of the current treatment options as well as experimental drugs in development. 

It is of fundamental importance to obtain information about the patient’s status and prognosis to define 
therapeutic strategy. There exist several laboratory-based prognostic markers, such as high levels of serum beta-
2 microglobulin (B2M) and the absolute lymphocyte count (ALC). However, chromosomal aberrations detected 
using Fluorescent In Situ Hybridization (FISH) serve as the main prognostic tools. The most common aberrations 
detected in CLL patients are [5]: 

• Deletions on the long arm of chromosome 13 (del(13q)): in patients with this aberration the disease 
progresses slowly. 

• Deletions on the long arm of chromosome 11 (del(11q)): this usually occurs among young males and 
tends to manifest with bulky lymph nodes. It is associated with rapid disease progression and short 
survival. 11q chromosome contains Ataxia-Telangiectasia mutated gene (ATM) and ATM kinase is 
responsible for inhibited cell cycle progression in case of DNA damage. Furthermore, ATM kinase 
acts on p53 by phosphorylating it in order to induce apoptosis. Therefore, when 11q is deleted, this 
phosphorylation does not occur, and the cell damage cannot be repaired [6]. 

• Deletion on the short arm of chromosome 17 (del(17p)): results in the loss of TP53 which is the most 
important prognostic marker in CLL. It is associated with rapid disease progression and resistance to 
fludarabine chemoimmunotherapy. In addition to the role of TP53 as a prognostic marker in CLL, it 
is also fundamentally a predictive marker for chemo-immunotherapy, guiding treatment decisions and 
potentially influencing the response to specific therapies such as fludarabine chemoimmunotherapy 
[7]. 

• Immunoglobulin heavy-chain variable region gene (IGHV) mutational status. For prognosis and ther-
apy choice it is important to detect IGHV mutational status since the unmutated state is correlated with 
low survival. 

• Other markers, which are present in a low percentage of newly diagnosed CLL patients, but whose 
incidence increases in patients who are refractory to fludarabine chemotherapy, are mutations of 
NOTCH1, SF3B1 and BIRC3. Finally, combining genetics, clinical parameters and biochemistry, the 
CLL International Prognostic Index (CLL-IPI) is a tool to predict the status of the disease [8]. 

 
Wnt signaling is a network of interacting protein pathways which control processes such as cell differenti-

ation, cell cycle regulation, proliferation, apoptosis, cytoskeletal rearrangement, cell polarity, adhesion, motility, 
migration and invasion and the interaction with the microenvironment [9]. Wnt signaling is correlated with haem-
atopoiesis and is linked with leukaemogenesis of cancers such as CLL [9]. Two Wnt signaling pathways are 
associated with CLL, namely the Wnt/β-catenin dependent and independent pathways. The Wnt/β-catenin is 
associated with cell proliferation, homeostasis, cell cycle regulation and thus its malfunction indicated a hallmark 
of many cancers. Regarding the Wnt/β-catenin independent pathway, the Wnt/PCP (Planar Cell Polarity) is the 
most important one and it takes place in regulation of cell polarity, migration and invasion. Wnt pathways play a 
role in CLL pathogenesis and response to treatment. Moreover, the expression of Wnt signaling molecules from 
Wnt/β-catenin and Wnt/PCP pathways is defective in CLL. For example, ROR1 (receptor tyrosine kinase-like 
orphan receptor), a Wnt-5 (a Wnt protein) dedicated receptor in the Wnt/PCP pathway, is expressed on the surface 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 28, 2024. ; https://doi.org/10.1101/2024.03.26.586690doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.26.586690
http://creativecommons.org/licenses/by/4.0/


 

 
 
 

3 

of CLL cells and not on the healthy B-cells. Therefore, ROR1 is a sensitive marker of a possible relapse of 
patients with a more aggressive form of the disease. 

The scope of this study extends beyond the traditional single-target silver bullet approach in drug develop-
ment, acknowledging the intricate network of proteins that drive the pathological transformation of CLL. A sys-
tems biology perspective indicates that targeting a manageable group of 5-6 network nodes could be more effec-
tive for combination therapy design, considering the potential for serious side effects due to overlapping off-
target interactions. The statistical thermodynamics method applied here aims to identify and hierarchize such 
targets, which could be inhibited by existing approved or investigational drugs, setting the stage for a more nu-
anced and personalized treatment approach in CLL. 

 

Current Treatment Options and Experimental Drug Candidates 
Unfortunately, currently available treatments may relieve CLL patients from their symptoms and extend 

their survival, but still CLL remains incurable [6]. For patients without “active disease” who are asymptomatic 
or those with early-stage disease, the treatment consists of just a simple observation during which blood counts 
are performed every three months [6]. For patients with “active disease”, before choosing therapy, the clinical 
status must be evaluated in terms of general health, characteristics such as TP53 abnormalities or adverse cyto-
genetics or relapsed disease [6]. Standard treatment has been chemoimmunotherapy with fludarabine, cyclophos-
phamide and rituximab (FCR). However, it has demonstrated lack of efficacy and it leads to numerous side ef-
fects, especially in patients with TP53 or NOTCH1 mutations, unmutated IGHV, deletion of 17p or 11q [8]. 

Target agents are small molecules that have greater efficacy in patients harboring TP53 mutation or del(17p) 
whose examples include [6]:  

• Bruton tyrosine kinase inhibitors (ibrutinib, acalabrutinib),  
• BCL-2 inhibitor (venetoclax), 
• Purine analogs (fludarabine, pentostatin),  
• Alkylating agents (cyclophosphamide, chlorambucil, bendamustine),  
• Monoclonal antibodies (rituximab, ofatumumab, obinutuzumab), 
• PI3K inhibitor (idelalisib). 
The most common chemotherapy medications used are listed below, together with their main mode of 

action: 
• Fludarabine: a purine analogue and an antineoplastic agent. 
• Cyclophosphamide: an alkylating agent. 
• Rituximab: a monoclonal antibody which targets the B-lymphocyte antigen CD20 expressed on the sur-

face of B cells. 
These three together (FCR) constitute a chemoimmunotherapy treatment:  
• Bendamustine: an alkylating agent used along with Rituximab (BR) to form another combination 

chemoimmunotherapy treatment. 
• Chlorambucil: an alkylating agent.  
• Ibrutinib is a Bruton tyrosine kinase (BTK) inhibitor. BTK, an enzyme which works for B cell survival 

and growth, helps delay the progression of cancer. It inhibits CLL cell migration, proliferation and sur-
vival [10]. Unfortunately, it presents some side effects such as pneumonia, upper respiratory tract infec-
tion, atrial fibrillation, sinusitis, headaches, nausea and many more [10]. 

• Acalabrutinib is a more selective irreversible BTK inhibitor since it acts just like ibrutinib, but without 
the side effects involving other kinases [10]. Its most common side effects are headaches, tiredness, low 
red blood cells, low platelets and low white blood cells [10]. 

• PI3K (Phosphatidylinositol-3-kinase) inhibitors such as Idelalisib [11], which was FDA approved in 
2014 for use in combination with rituximab for treating relapsed CLL [12]. However, Idelalisib is also 
toxic with nearly 40% of patients having had to interrupt the therapy due to rash or 3-4 grade transami-
nitis, and pulmonary infections. A PI3Kδ inhibitor called TGR 1202 has better selectivity compared to 
Idealisib. It was approved for medical use in the USA in February 2021. TGR 1202 reduces the phos-
phorylation of AKT in lymphoma and leukemia cells. 

• Venetoclax binds and inhibits the antiapoptotic protein B-cell lymphoma 2 (BCL-2) [9]. In CLL, inhi-
bition of this pathway has been considered an optimal therapeutic strategy [13]. Use of Venetoclax was 
approve by FDA in 2016 [13]. Its side effects usually include low levels of white and red blood cells, 
respiratory infections, diarrhea, nausea, tiredness and tumor lysis syndrome (TLS).  

• Sotorasib (AMG510) is a highly selective and irreversible inhibitor which binds at an allosteric pocket 
leading to the trapping of KRAS (Kirsten rat sarcoma virus) in inactive GDP bound state. Note that 
KRAS transmits signals for growth, division and differentiation to the nucleus of the cell form the out-
side. KRAS mutations are among the most oncogenic events in carcinomas, including CLL, and the 
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majority of them consist of missense mutation of the 12th codon (glycine). It was approved by FDA in 
May, 2021. Some of its side effects are diarrhea, nausea and muscles or bone pain [14].  

• Adagrasib (MRTX849) is an irreversible covalent inhibitor of G12C KRAS mutation that makes a co-
valent bond to cysteine and binds in the switch-II pocket of KRAS in its inactive GDP state. It demon-
strated improved antitumor activity when in combination with vistusertib (an mTOR inhibitor). In clin-
ical trials some patients experienced pneumonitis and heart failure, which led to the interruption of the 
treatment. Others experienced nausea, fatigue and anemia. This inhibitor is still in clinical trials together 
with numerous other experimental drugs under development [14]. 

• Experimental drug candidates also include AKT pathway allosteric inhibitors: ARQ092/miransertib; 
BAY1125976; MK2206, TAS-117 [15]. 

• ATP-competitive AKT inhibitors: capivasertib and ipatasertib showed a favorable safety profile along 
with signs of activity in phase I monotherapy trials [14]. Other AKT inhibitors include the following 
compounds: Afuresertib (GSK2110183), Uprosertib (GSK2141795, GSK795) and Ordidonin (NSC-
250682) [16]. 

Additionally, various drug candidates are in development with MYC pathway inhibition profiles [17]: 
• Compound 361 (MYCi361, NUCC-0196361) [18]. 
• Compound 975 (MICi975, NUCC-0200975) [19].  
• MYCMI-6 [20]. 
• KSI-3716 and MYRA-A [20]. 
• KI-MS2-008 [20]. 
• L755507 [17]. 

Systems Biology Background 
The conceptual framework for understanding the thermodynamics and energetics of the molecular biology 

of human diseases from a network biology perspective has been developed over the past decade. Various studies 
were undertaken to quantify different signaling and metabolic pathways in various cancer types and other diseases 
using metrics such as network entropy and the Gibbs free energy applied to each specific case [21]–[26]. Here, 
we will give only a brief summary of this approach. The transcriptome and other -omic (e.g., proteomic, genomic, 
etc.) measures can represent the energetic state of a cell. Using the word “energetic”, we mean from a thermody-
namics perspective. There is a chemical potential between interacting molecules in a cell, and the chemical po-
tential of all the proteins that interact with each other can be imagined forming a rugged landscape, not dissimilar 
to Waddington’s epigenetic landscape [27], [28].  

The method we propose uses mRNA transcriptome data or RNA-seq data as a surrogate for protein concen-
tration. This assumption is largely valid. Kim et al. [29] and Wihelm et al. [30] have shown an 83% correlation 
between mass spectrometry-generated proteomic information and transcriptomic information for multiple tissue 
types. Further, Guo et al. [31] found a Spearman correlation of 0.8 in comparing RNAseq and mRNA transcrip-
tome from TCGA human cancer data [32].  

Given a set of transcriptome data, a representative of protein concentration, we overlay that on the human 
protein-protein interaction network from BioGrid [33]. This means we assign to each protein on the network, the 
scaled (between 0 and 1), transcriptome value (or RNAseq value). From that we can compute the Gibbs free 
energy of each protein-protein interaction using the mapping relation:  

                       [1] 

where ci is the “concentration” of the protein i, normalized, or rescaled, to be between 0 and 1. The sum in the 
denominator is taken over all protein neighbors of i, and including i. Therefore, the denominator can be consid-
ered a degree-entropy. Carrying out this mathematical operation essentially transforms the “concentration” value 
assigned to each protein to a Gibbs free energy. Thus, we replace the scalar value of transcriptome to a scalar 
function – the Gibbs free energy.  

The above equation is derived from a well-known concept in chemical thermodynamics [34]. A biological 
cell, or a group of cells (a tumor) exist in a complex chemical balance produced by a network of interacting 
molecular species ranging from small molecules to some very large molecules on the order of hundreds to thou-
sands of Daltons. The molecular concentration-balance in this network is the Gibbs free energy G. This thermo-
dynamic quantity is typically expressed in the context of systems kept at a constant temperature and pressure, 
where the system can exchange molecules with the environment. For an arbitrary molecular system, the Gibbs 
function is given as a molar difference [35] in Equation [2]: 

 

!!
Gi = ci ln

ci
c jj∑
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δG = µδn.		                  [2] 

 
where µ symbolizes the chemical potential, δG	is the Gibbs energy and δn is the molar difference (essentially 
concentration difference). Typically, one writes the chemical potential as: 

 

µ! = )"#
"$!
*
%,',(,),*+,.

																					[3] 

   
The Equation [3] above assumes that the molar concentrations of other molecular components (other than 

i) are held constant along with constant temperature and pressure. Using equation [1] and given a network of 
interacting chemical species, or proteins, and given their concentration, we can compute the Gibbs free energy 
for a single protein in the PPI. 

The Gibbs free energy is a negative number, so associated with each protein on the network is a negative 
energy well. This results in a rugged energy landscape represented schematically in Figure 1. If we use what is 
referred to as a topological filtration on this landscape, we essentially move a filtration plane up from the deepest 
energy well. As the filtration plane is moved up, larger-and-larger energetic subnetworks are captured. For con-
venience we stop the filtration at energy threshold 32 – meaning 32 nodes in the energetic subnetwork.  We call 
these subnetworks Gibbs-homology networks.  

 

 
Figure 1: As the “filtration plane” moves up from the bottom, more-and-more nodes are captured in larger-and-larger energetic 
subnetworks for protein-protein interaction set. 

We now compute the Betti centrality, a topological measure, on the 32-node energetic networks as described 
in Benzekry et al. [23]. The concept is easily described. In networks, there are holes, or rings, of various sizes. In 
these energetic pathways, protein-protein interaction networks, the proteins form interaction rings. In densely 
connected, but not fully connected, networks the rings, or holes, may consist of triangles and larger rings of 
interaction. To find the Betti centrality we ask ourselves: Which protein when removed from the network will 
change the overall total number of rings the most? The total number of rings is called the Betti number. Given a 
network G consisting of edges e and vertices v, the Betti centrality is given by Equation [4]: 

               [4] 

Hence, the difference from the total Betti number B(G) and the Betti number of the network after removing node 
i, gives the Betti centrality for node i. We compute this for all nodes in the threshold-32 energetic network. Often, 
there will be two or more proteins in the network that have equivalent Betti centrality.  

!!B(vi )= B(G)−B(G− {vi })
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Methodology and Datasets 
We report on a meta-analysis of 1001 samples from CLL patients and cancer cell lines. This study used 

online data from GEO [36]: GSE10139, GSE28654, GSE31048, GSE39671, GSE49896, GSE50006, and 
GSE69034. The data were mRNA expression numbers, all collected using Affymetrix Human Genome Array, 
HG-U133_2. We also used the human protein-protein interaction network from Biogrid [33]. In particular, we 
used the dataset downloaded from the BIOGRID-ORGANISM: homo_sapiens-3.5.172.2. 

Reiterating the method, we collected the GSE expression datasets, and then the expression value for each 
gene was overlaid on the human protein-protein interaction network for each protein or node in the network. For 
each node in the network, we then applied Equation [1] which resulted in the Gibbs energy for that node. This 
resulted in a rugged landscape similar to Figure 1. Then, the procedure consisted in doing a filtration and com-
puting the Betti number for zero nodes removed and then removing a node and recomputing the Betti number 
and replacing the node. This removal-computation-replacement procedure resulted in a list of nodes that had the 
largest impact on complexity of the Gibbs homology network. We finally ranked significant nodes in a Pareto 
chart for each patient. Pareto charts were prepared at several filtration thresholds, 32, 48, 64, 96. 

Results 
Our discussion of the results is presented below, and it follows an analysis of the individual datasets and the 

research publication associated with it (if present) prior to presenting the meta-analysis Pareto chart and the net-
work graphs. 

 
1. [37] (GSE10137) “A genomic approach to improve prognosis and predict therapeutic response in chronic 

lymphocytic leukemia”, by Friedman et al. 2009. This was one of the papers with a large table in the Sup-
plementary section. The table consisted of upregulated and downregulated probes indicative of progressive 
disease; upregulated and downregulated probes indicating chlorambucil resistance; upregulated and down-
regulated probes indicative of Pentostatin, Cyclophosphamide, and Rituximab signature. An important 
quote from the paper states that: “Others have previously noted the prognostic significance of cytoskeletal 
genes and the tumor necrosis factor in CLL. Notably, probes for ZAP-70 did not constitute this genomic 
signature, although mean expression for ZAP-70 probes in samples from patients with progressive disease 
was higher than those from patients with stable disease.” The table of genes was parsed from the PDF 
document and used in our subsequent analysis (discussed below). 

2. [3] (GSE28654) “Gene expression profiling identifies ARSD as a new marker of disease progression and 
sphingolipid metabolism as a potential novel metabolism in chronic lymphocytic leukemia” Trojani, et al. 
2012 [3]. A table in the manuscript lists about 65 genes that were selected as being differentially expressed 
in two cohorts of CLL patients. Of those genes the authors selected 19 genes for PCR analysis because of 
their significance. Those genes are: ZAP70, ARSD, LPL, ADAM29, AGPAT2, CRY1, MBOAT1, YPEL1, 
NRIP1, RIMKLB, P2RX1, EGR3, TGFBR3, APP, DCLK2, FGL2, ZNF667, CHPT1, FUT8. An important 
quote from the paper states that: “In the literature, lists of differentially expressed genes obtained using 
high-throughput microarray by different laboratories and research centers have often limited overlap [[38], 
[39]. These differences are matters of important scientific discussions and are imputed, among other causes, 
to dataset dimensions: small number of subjects (some tens) with respect to the number of variables (tens 
of thousands of genomic probes in human). … Notably and reassuringly the gene set list (65 genes) emerged 
from this study showed a substantial (but not quantitated) overlap with results from previously published 
microarray studies [40]–[43].” The list of 65 genes was incorporated in our subsequent analysis. 

3. [40] (GSE31048) “Somatic mutation as a mechanism of Wnt/𝛽-Catenin pathway activation in CLL” [40]. 
In the Supplement to this paper were two large tables listing genes. One table listed from their own study 
(Wnt pathway) and the other table listed Wnt genes from literature and Websites. Both tables were combined 
for the study. A quote from the paper: “… our data demonstrate that altered gene expression is indistin-
guishable between samples with and without mutations.”  

4. [41] (GSE39671) “Subnetwork-based analysis of chronic lymphocytic leukemia identifies pathways that 
associate with disease progression” Chuang et al. 2012 [41]. The Supplemental data only included figures 
and graphs. No table of gene list. Of note is the quote: “Furthermore, the marker sets identified by different 
research groups often share few genes in common. Two landmark studies, Rosenwald and colleagues [42] 
and Klein and colleagues [43] each identify approximately 100 genes that were expressed differentially by 
CLL cells that use mutated versus unmutated IGHV genes. However, only 4 marker genes were identified 
in common between these studies.”  
[44] (GSE49896) “miR-150 influences B-cell receptor signaling in chronic lymphocytic leukemia by regu-
lating expression of GAB1 and FOXP1”, Mraz, et al. 2014 [44]. The following is quoted from their paper: 
“We identified miR-150 as being the most abundantly expressed miRNA in CLL. However, we observed 
significant heterogeneity in the expression levels of this miRNA among CLL cells of different patients. 
Low-level expression of miR-150 associated with unfavorable clinicobiological and prognostic markers, 
such as expression of ZAP-70 or use of unmutated IGHV (P < .005). Additionally, our data suggest that the 
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levels of methylation of the upstream region of 1000 nt proximal to miR-150 associate with its expression. 
We demonstrated that GAB1 and FOXP1 genes represent newly defined direct targets of miR-150 in CLL 
cells. We also showed that high-level expression of GAB1 and FOXP1 associates with relatively high sen-
sitivity of CLL cells to surface immunoglobulin ligation. High levels of GAB1/FOXP1 and low levels of 
miR-150 associate with a greater responsiveness to BCR ligation in CLL cells and more adverse clinical 
prognosis.” 

5. GSE50006 – no manuscript. 
6. GSE69034 – no manuscript. 

 
We created a master list of all genes cited and/or given in the tables associated with the above manuscripts. 

This list is in the Appendix 2. There were 515 genes total. The list of genes is inputted into the DAVID platform 
for functional annotation analysis [45], and only 208 genes are found, which indicates that DAVID's database 
has annotations for only 208 of those genes. The missing genes might be due to them being less well-character-
ized, newer discoveries not yet integrated into DAVID's database, or they might be represented differently in the 
user's list compared to DAVID's nomenclature. To identify genes relevant for a generic condition like "leukemia", 
the KEGG [46] and OMIM [47] databases are used to filter and analyze the results such that both are integrated 
into DAVID. These databases contain curated information about genes related to specific pathways or diseases. 
By cross-referencing the 208 identified genes with "leukemia" in both KEGG and OMIM, genes whose expres-
sion or mutation is linked with the onset, progression, or other aspects of leukemia are pinpointed, aiming in 
narrowing down potential targets for research, therapeutic development, or further molecular study. Searching 
that file resulted in the following list AKT1, CTBP1, CTBP2, CTBPA, SMAD4, HDAC1, LEF1, RARA, TCF3, 
TCF7, TCF7L1, TCF7L2, MYC.  

Comparing the PublishedGeneList with our CLLnet96 list, only four were found: MYC, HDAC1, CTNNB1, 
APP. Two of those, MYC and HDAC1 are known to participate in leukemia. The CLLnet96 list is assembled 
from all 1001 patients at Gibbs threshold 96. To reiterate the concept of threshold. For any given patient the 
deepest well in the landscape is, usually the same for all thresholds; but there may be differences based on the 
expression, and this gives rise to differences in the Gibbs homology network. An energy threshold of, say 32, 
will result in a network of 32 nodes that are the largest negative energy values. This is called a topological filtra-
tion. Using this technique, we can produce one of these 32 threshold networks for each patient. If we do that, and 
then concatenate the entire list of nodes for each of the patients at this threshold, followed by sorting and discard-
ing redundant nodes in the list, the result will be what we call, CLLnet32 list. By the nature of the filtration, 
CLLnet32 Ì CLLnet48 Ì CLLnet64 Ì CLLnet96. In words, CLLnet32 is a proper subset of CLLnet48, etc. So, 
taking the list CLLnet96 will by definition incorporate all others. Comparing our CLLnet96 with the superset of 
published genes (i.e. PublishedGeneList in the Appendix 2), we find only four that were both lists, MYC, 
HDAC1, CTNNB1, and APP. 

After comparing the PublishedGeneList and the CLLnet96 superset, we then used DAVID, an online bio-
informatics resource that allows one to submit a list of genes (or other biological components, e.g. proteins) and 
it returns important information such as KEGG pathway or OMIM associated with that gene. There are 98 genes 
in the superlist of CLL96net list. From that analysis we find the following genes to be associated with leukemia 
(various types): KRAS, GRB2, HDAC1, NPM1, TP53, MYC. While in that superlist, CUL1, TP53, and 
CTNNB1 is associated with the Wnt signaling pathway.  

The published gene lists consisted of two parts. Keeping in mind that although the papers cited above in-
cluded GSE expression data, most of them did not include tables of genes they identified from their analysis as 
being important. Instead, they were looking for prognostic markers for disease progression. So, Part 1 of the 
published gene list consisted of selections identified by the authors from, GSE10137, GSE28654. The combined 
list consisted of 320 genes. Of those 320 genes, 22 were found in DAVID. Only CEBPA and MYC were found 
to be associated with any form of leukemia. And CSNK2A1 and MYC were found to be associated with Wnt 
signaling pathway. When we expand the published list to include GSE321048, which was a focused study on the 
Wnt pathway and CLL [40], the list expands to 515. Naturally, a huge number of genes were flagged by DAVID 
as being in the Wnt pathway (78 total). And a smaller subset was found to be associated with some form of 
leukemia: AKT1, CTBP1, CTBP2, CEBPA, SMAD4, HDAC1, LEF1, RARA, TCF3, TCF7, TCF7L1, TCFL2, 
MYC. Looking for common genes between the expanded published and our larger list of 96 threshold, we find 
KRAS, GRB2, HDAC1, NPM1, TP53, MYC, APP, CTNNB1. 

At threshold 32, CTNNB1 is best Betti target once out of 1001 patients, but it is present in the threshold 32 
networks 326 times. Keep in mind anything found in the 32 threshold is energetically important. So, we find it 
in 32.5% of the population as a potentially good target for CLL (at 48 threshold 37.9%; at 64 threshold 44.1%; 
at 96 threshold 58.9%). CTNNB1 is an important gene involved in CLL. It is also an important node in the Wnt 
pathway [48]. 
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Figure2. Wnt signaling pathway from KEGG https://www.genome.jp/pathway/hsa04310 [46]. 

Results and discussion: Wnt pathway 
It is interesting that so many of the authors of the papers cited above did not find overlap among their gene 

list and other investigators. There was little overlap between those author’s lists until we included the dataset 
from GSE321048, the Wnt pathway. We speculate that the reason our Gibbs analysis of expression data did not 
overlap well with other expression data, is that the Gibbs function includes a measure of network entropy (de-
nominator in Equation [1]). Further, many of the genes that are highly expressed, as reported in the literature, are 
not necessarily mutated based on whole genome sequencing. 

Figure 2, shows the Wnt pathway from KEGG. After using the online R-script KEGGraph at Bioconductor 
it was converted to an edge-list of relevant protein-protein interactions [49]. 

The resulting edge-list was plotted using Cytoscape 3.7 [50]. The PPI network is shown in Figure 3. Two 
nodes are highlighted. MYC is highlighted and connected to: LEF1, TCF7, TCF7L1 TCF7L2. MYC, as we will 
see is an important player in Wnt pathway. Also, CTNNB1 has 24 neighboring interactions and has a betweenness 
of 0.3155, the highest in this network. It also is an important player in the Wnt pathway. 
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Figure 3. The PPI of Wnt pathway. 

As described above, we computed the Betti centrality for the Gibbs homology networks. Figure 4 shows a 
Pareto chart for the Betti centrality nodes at threshold-48. In our analysis of the 1001 expression samples, 
CTNNB1 was present as a key Betti centrality node in three samples. Whereas MYC was not present as a key 
Betti centrality node at threshold-48, but at threshold-32 MYC was present 24 times; 12 times (50%) it was found 
in dataset GSE30671 which is associated the manuscript by Chuang et al. [41]. This again shows the incon-
sistency in gene expression values from samples of CLL patients. Of key importance is the fact that RPS15 is a 
Betti centrality node in 3 patients and RPS15A is a Betti centrality node in 5 patients at threshold-48. This is 
shown in Figure 4. 

  
Figure 4. Pareto chart for Betti centrality at Gibbs-homology threshold-48, showing only those with nine or more occurrences. 

 
As shown Figure 3, MYC is an important node in the Wnt pathway. It is directly connected to LEF1, TCF7, 

TCF7L1, and TCF7L2. Except for LEF1, which is a lymphoid enhancer binding factor, the others are transcrip-
tion factors. Figure 5 shows a Gibbs homology network at threshold-48 for patient (GSM787065 part of 
GSE31048 [40]) in which RPS15 is the Betti centrality node. In the network diagram the nodes are in a degree 
sorted order starting at the bottom with MYC as the highest degree (48) and going around counterclockwise. 
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RPS15 and MYC have been pulled out of the network for easy locating, and MYC with all its first connections 
have been highlighted in yellow. 

 
Figure 5. The Gibbs homology network for a patient in which RPS15 has the highest Betti centrality. RPS15 and MYC have 
been pulled out for easy location. MYC and all its first neighbors are highlighted in yellow. 

As we pointed out above, a gene can be mutated, and yet not over-expressed or under-expressed relative to 
normal. This is likely the main cause for differences in reported transcriptome data from various investigators. 
What is clear from the literature (e.g. Wang et al.) [40] is that the Wnt pathway is highly important and over-
expressed genes in that pathway is often indicative of cancer. MYC is a regulator of ribosome protein synthesis 
[51] and has been shown to be a key regulator in supporting and maintaining tumorigenesis [52]. For example, 
Wu, et al. [52] found that inactivation of MYC resulted in some tumors undergoing regression, and mutated 
RPS15 were identified in almost 20% of CLL patients who relapsed after FCR treatment. These mutations are 
associated with clinical aggressiveness in CLL along with the mutant RPS15 displaying defective regulation of 
endogenous p53, which indicates a novel molecular mechanism underlying CLL pathobiology [52]. RPS15 and 
RPS15A are often overexpressed in CLL [53] and our results confirm this with all (1001 patients) Gibbs-homol-
ogy subnetworks at threshold-96 showing RPS15 or RPS15A as being an energetically important node. 

Conclusions 
We have shown in this study that the genes, BTK, NFkB, JAK/STAT, NOTCH1, BCL2, EEF2, among 

others play a significant role in the support of CLL. Yet some of them are only rarely studied in the literature 
because they are not strongly expressed; our research confirms this. Just because a gene or two is mutated does 
not mean it will be strongly expressed. For example, consider the trisomy of chromosome 7 in colorectal cancers 
[54]. Using genome-wide chromosome conformation capture (Hi-C), RNA sequencing and protein profiling, 
along with FISH the authors show that indeed chromosome 7 shows a fair number of upregulated genes relative 
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to healthy cells. However, more strongly they found that chromosome 9 had regions that were very strongly 
expressed. So, trisomy 7 results in global gene expression changes for colorectal cancer. Might we have some-
thing similar going on with CLL patients?  

Hi-C analysis is a technique that explores the functional organization of the human nucleome – the folding 
and unfolding of the chromosomes as the cell goes through its normal processes, including mitosis [55]. Gene 
topology or arrangement in 3D space affects gene expression, and the 3D topology affects where mutation will 
occur [56] – [58]. The mathematical technique of processing the Hi-C data involves finding the Laplacian of the 
“contact matrix” followed by the calculation of the Fiedler vector [59]. The Fiedler vector parses the chromosome 
into two components: A, the active component, and B, the inactive component. From this it is possible to state, 
in a high-level way, something about the structure of the chromosome and its function [60]. Since copy number 
variation closely follows the expression, the function can be deduced from RNA sequencing or transcriptome 
mapping [61]–[62].  

As pointed out above, gene expression found inconsistent sets of genes that were highly expressed and that 
had high Gibbs-energy. We find the same inconsistent results when we were looking at Hi-C results for CLL 
patients. Speedy et al. [64] found that BCL2 was strongly implicated in the disease. They also found a disruption 
at the NFkB-binding site; but, other genes, such as, JAK/STAT, BTK, EEF2 were not mentioned in their manu-
script. Beekman et al. [65] found only NOTCH1; Puiggros, et al. [66] found only NOTCH1 and SF3B1 as can-
didates for high risk of mutation; and Kiefer et al. [67] found NOTCH1 for trisomy 12. 

Though the actual causal agent of CLL is not well known, we can speculate that if there is some molecular 
agent (e.g. herbicide) or an energetic EM signal (e.g. X-ray) it will typically impact the cell only during a specific 
phase of cell cycle [68]. There are regions of the genome that are more sensitive to alterations due to some specific 
energy level in the overall molecular network, we call a cell. These mutations are driven by the relevant chemical 
potential, stereochemistry and Gibbs free energy. We argue that the locations of the relevant genes in the chro-
mosome and the 4D dynamics of the nucleome may suggest a more holistic molecular and cellular approach to 
understanding CLL and therefore new therapeutic strategies [69]. Building on this notion, the insights from the 
4D Nucleome Network [69] elucidate the intricacies of genome organization in space and time. The project un-
derlines the critical role of the genome's three-dimensional organization in gene regulation. In the context of CLL, 
the spatial dynamics of chromatin can have a profound impact on gene expression patterns, emphasizing the 
importance of the genome's spatial and temporal dynamics in understanding and potentially treating the disease 
[70]. Elucidating this idea further, the work conducted by Sawh et al. in 2022 reveals that the eukaryotic genome 
is a multilayered entity, exhibiting intricate organization levels that range from nucleosomes to larger chromoso-
mal scales [71]. These layers undergo significant remodeling across different tissues and developmental stages 
in C. elegans. It's noteworthy that advancements in C. elegans research, both imaging-based and sequencing-
based, have unveiled the influence of histone modifications, regulatory elements, and broader chromosome con-
figurations in this 4D organization. Specific revelations, such as the physiological implications of topologically 
associating domains and compartment variability during initial developmental phases, underscore the depth of 
genome dynamics. These insights provide compelling evidence that understanding such 4D genome organization 
nuances is crucial for decoding complex diseases like CLL. Interestingly enough, NONE of the genes described 
in Appendix 1 are in chromosome 13 which often has deletions in about 50% of CLL patients [72]. In Appendix 
1 we support our argument for a larger view that CLL genes are widely spread throughout the whole genome and 
different chromosomes.  

In conclusion, our study challenges the conventional single-target paradigm in CLL therapy, advocating for 
a higher-level, network-oriented strategy. The identification and hierarchical ranking of 20-30 significant pro-
teins, amidst the roughly 20,000 synthesized by the human organism, represent a leap in signal detection and 
amplification [73]. This nuanced profiling, achieved via a statistical thermodynamics approach, underscores the 
potential of targeting a selective array of 5-6 network nodes. This selectivity is crucial to mitigate the risk of 
adverse effects caused by overlapping off-target interactions commonly seen with broader therapeutic targets. 
The proteins highlighted in our research, notably within the Wnt signaling pathway, are not merely isolated en-
tities but components of a complex network that drives the CLL pathology. Therefore, our proposed method does 
not end at the identification of these proteins but extends to rank-ordering them in terms of therapeutic relevance. 
The next step for validating the findings involves experimental assays using siRNA [74] or small molecule in-
hibitors, which will provide the empirical backbone for our theoretical model. Such an approach may revolution-
ize the current treatment regimens by transitioning from a one-size-fits-all model to a more customized, patient-
specific strategy. This could be especially beneficial given the genetic variability among CLL patients, as indi-
cated by the inconsistent mutation patterns observed in whole-genome sequencing. By incorporating the princi-
ples of systems biology and acknowledging the network dynamics of protein interactions, we can begin to envi-
sion a more effective, personalized therapeutic landscape for CLL. This, in turn, may pave the way for similar 
strategies in other cancers, marking a paradigm shift in oncological treatment towards precision medicine. 
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Appendix 1  
Notes on the genomic location of key genes “involved” in CLL (from GeneCards.org) 

BTK is found in the X chromosome. 
Genomic Locations for BTK Gene 

chrX:101,349,447-101,390,796 
(GRCh38/hg38) 
Size: 
41,350 bases 
Orientation: 
Minus strand 
 
chrX:100,604,435-100,641,212 
(GRCh37/hg19) 
Size: 
36,778 bases 
Orientation: 
Minus strand 

Genomic View for BTK Gene 
Genes around BTK on UCSC Golden Path with GeneCards custom track 
 
Cytogenetic band: 
Xq22.1 by HGNC 
Xq22.1 by Entrez Gene  
Xq22.1 by Ensembl BTK Gene in genomic location: bands according to Ensembl, locations according to 

GeneLoc (and/or Entrez Gene and/or Ensembl if different) 

 

  

 

NFKB1 is in chromosome 4 
Genomic Locations for NFKB1 Gene 

chr4:102,501,329-102,617,302 
(GRCh38/hg38) 
Size: 
115,974 bases 
Orientation: 
Plus strand 

 
chr4:103,422,486-103,538,459 
(GRCh37/hg19) 
Size: 
115,974 bases 
Orientation: 
Plus strand 

Genomic View for NFKB1 Gene 
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NFKB2 is on chromosome 10 
Genomic Locations for NFKB2 Gene 

chr10:102,394,110-102,402,529 
(GRCh38/hg38) 
Size: 
8,420 bases 
Orientation: 
Plus strand 
chr10:104,153,867-104,162,281 
(GRCh37/hg19) 
Size: 
8,415 bases 
Orientation: 
Plus strand 
 

Genomic View for NFKB2 Gene 
Genes around NFKB2 on UCSC Golden Path with GeneCards custom track 

 

  

 

JAK1 is on chromosome 1 
Genomic Locations for JAK1 Gene 

chr1:64,833,223-65,067,754 
(GRCh38/hg38) 
Size: 
234,532 bases 
Orientation: 
Minus strand 
 
chr1:65,298,906-65,432,187 
(GRCh37/hg19) 
Size: 
133,282 bases 
Orientation: 
Minus strand 
 

Genomic View for JAK1 Gene 
Genes around JAK1 on UCSC Golden Path with GeneCards custom track 
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JAK2 is on chromosome 9 
Genomic Locations for JAK2 Gene 

chr9:4,984,390-5,128,183 
(GRCh38/hg38) 
Size: 
143,794 bases 
Orientation: 
Plus strand 
 
chr9:4,985,033-5,128,183 
(GRCh37/hg19) 
Size: 
143,151 bases 
Orientation: 
Plus strand 
 

Genomic View for JAK2 Gene 
Genes around JAK2 on UCSC Golden Path with GeneCards custom track 

 

  

 

JAK3 is on chromosome 19 
Genomic Locations for JAK3 Gene 

Genomic Locations for JAK3 Gene 
chr19:17,824,780-17,848,071 
(GRCh38/hg38) 
Size: 
23,292 bases 
Orientation: 
Minus strand 
 
chr19:17,935,589-17,958,880 
(GRCh37/hg19) 
Size: 
23,292 bases 
Orientation: 
Minus strand 
 

Genomic View for JAK3 Gene 
Genes around JAK3 on UCSC Golden Path with GeneCards custom track 
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STAT1 is on chromosome 2 
Genomic Locations for STAT1 Gene 

Genomic Locations for STAT1 Gene 
chr2:190,964,358-191,020,960 
(GRCh38/hg38) 
Size: 
56,603 bases 
Orientation: 
Minus strand 
 
chr2:191,829,084-191,885,686 
(GRCh37/hg19) 
Size: 
56,603 bases 
Orientation: 
Minus strand 
 

Genomic View for STAT1 Gene 
Genes around STAT1 on UCSC Golden Path with GeneCards custom track 
 

  
 

STAT2 is on chromosome 12 
Genomic Locations for STAT2 Gene 

Genomic Locations for STAT2 Gene 
chr12:56,341,597-56,360,253 
(GRCh38/hg38) 
Size: 
18,657 bases 
Orientation: 
Minus strand 
 
chr12:56,735,381-56,754,037 
(GRCh37/hg19) 
Size: 
18,657 bases 
Orientation: 
Minus strand 
 

Genomic View for STAT2 Gene 
Genes around STAT2 on UCSC Golden Path with GeneCards custom track 
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STAT3 is on chromosome 17 
Genomic Locations for STAT3 Gene 

Genomic Locations for STAT3 Gene 
chr17:42,313,324-42,388,568 
(GRCh38/hg38) 
Size: 
75,245 bases 
Orientation: 
Minus strand 
 
chr17:40,465,342-40,540,586 
(GRCh37/hg19) 
Size: 
75,245 bases 
Orientation: 
Minus strand 
 

Genomic View for STAT3 Gene 
Genes around STAT3 on UCSC Golden Path with GeneCards custom track 

 

  
 

NOTCH1 is on chromosome 9 
Genomic Locations for NOTCH1 Gene 

Genomic Locations for NOTCH1 Gene 
chr9:136,494,433-136,546,048 
(GRCh38/hg38) 
Size: 
51,616 bases 
Orientation: 
Minus strand 
 
chr9:139,388,896-139,440,314 
(GRCh37/hg19) 
Size: 
51,419 bases 
Orientation: 
Minus strand 
 

Genomic View for NOTCH1 Gene 
Genes around NOTCH1 on UCSC Golden Path with GeneCards custom track 
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BCL2 is on chromosome 18 
Genomic Locations for BCL2 Gene 

Genomic Locations for BCL2 Gene 
chr18:63,123,346-63,320,128 
(GRCh38/hg38) 
Size: 
196,783 bases 
Orientation: 
Minus strand 
 
chr18:60,790,579-60,987,361 
(GRCh37/hg19) 
Size: 
196,783 bases 
Orientation: 
Minus strand 
 

Genomic View for BCL2 Gene 
Genes around BCL2 on UCSC Golden Path with GeneCards custom track 
 

  
 

EEF2 is on chromosome 19 
Genomic Locations for EEF2 Gene 

Genomic Locations for EEF2 Gene 
chr19:3,976,056-3,985,463 
(GRCh38/hg38) 
Size: 
9,408 bases 
Orientation: 
Minus strand 
 
chr19:3,976,054-3,985,467 
(GRCh37/hg19) 
Size: 
9,414 bases 
Orientation: 
Minus strand 
 

Genomic View for EEF2 Gene 
Genes around EEF2 on UCSC Golden Path with GeneCards custom track 
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ABL1 is in chromosome 9 
Genomic Locations for ABL1 Gene 

Genomic Locations for ABL1 Gene 
chr9:130,713,016-130,887,675 
(GRCh38/hg38) 
Size: 
174,660 bases 
Orientation: 
Plus strand 
 
chr9:133,589,268-133,763,062 
(GRCh37/hg19) 
Size: 
173,795 bases 
Orientation: 
Plus strand 
 

Genomic View for ABL1 Gene 
Genes around ABL1 on UCSC Golden Path with GeneCards custom track 
 

  
 

BCR3 (BCRP3) is in chromosome 22 
Genomic Locations for BCRP3 Gene 

Genomic Locations for BCRP3 Gene 
chr22:24,632,915-24,653,360 
(GRCh38/hg38) 
Size: 
20,446 bases 
Orientation: 
Plus strand 
 
chr22:25,028,882-25,049,327 
(GRCh37/hg19) 
Size: 
20,446 bases 
Orientation: 
Plus strand 
 

Genomic View for BCRP3 Gene 
Genes around BCRP3 on UCSC Golden Path with GeneCards custom track 
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SF3B1 is in chromosome 2 
Genomic Locations for SF3B1 Gene 

Genomic Locations for SF3B1 Gene 
chr2:197,388,515-197,435,091 
(GRCh38/hg38) 
Size: 
46,577 bases 
Orientation: 
Minus strand 
 
chr2:198,254,508-198,299,815 
(GRCh37/hg19) 
Size: 
45,308 bases 
Orientation: 
Minus strand 
 

Genomic View for SF3B1 Gene 
Genes around SF3B1 on UCSC Golden Path with GeneCards custom track 
 

  
 

ZAP70 is on chromosome 2 
Genomic Locations for ZAP70 Gene 

Genomic Locations for ZAP70 Gene 
chr2:97,713,560-97,744,327 
(GRCh38/hg38) 
Size: 
30,768 bases 
Orientation: 
Plus strand 
 
chr2:98,330,023-98,356,325 
(GRCh37/hg19) 
Size: 
26,303 bases 
Orientation: 
Plus strand 
 

Genomic View for ZAP70 Gene 
Genes around ZAP70 on UCSC Golden Path with GeneCards custom track 
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MYC is on chromosome 8 
Genomic Locations for MYC Gene 

Genomic Locations for MYC Gene 
chr8:127,735,434-127,742,951 
(GRCh38/hg38) 
Size: 
7,518 bases 
Orientation: 
Plus strand 
 
chr8:128,747,680-128,753,680 
(GRCh37/hg19) 
Size: 
6,001 bases 
Orientation: 
Plus strand 
 

Genomic View for MYC Gene 
Genes around MYC on UCSC Golden Path with GeneCards custom track 
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Appendix 2. Union of the Published Gene List Reviewed in this Study 
 

ABCA2 CDC26 FAM174B KCNK1 NPAS1 REPS1 TCF3 

ABCA7 CDS1 FAM24A KIAA0984 NPR1 RFC5 TCF4 

ABCE1 CDT1 FARP1 KIAA1009 NR2C2 RHOD TCF7 

ABI3 CEBP8 FBN1 KIAA1529 NR3C2 RHOQ TCF7L1 

ABRA CEBPA FBXW11 KIAA1545 NRIP1 RHOU TCF7L2 

ACVR1 CEP68 FBXW2 KLF6 NSD1 RIMKLB TGFB1I1 

ADAM17 CER1 FBXW4 KLHL23 NUDT1 RIPK5 TGFBR3 

ADAM19 CHAF1A FGF4 KREMEN1 NUP107 RNFT2 TLE1 

ADAM29 CHD8 FGL2 KREMEN2 NUP210 ROR1 TLE2 

ADAMTS7 CHPT1 FKBP4 KRT18 NUP62CL ROR2 TLE2 

AES CLDN3 FLJ10357 KRT7 ONECUT1 RPP25 TLE3 

AGPAT2 CLDN7 FLJ20125 KRT8 OR2F1 RPRC1 TMC5 

AGPAT4 CLEC2B FLJ20160 L3MBTL4 OR7E19P RRAGC TMEM126B 

AKR1C2 CNBD1 FLJ20489 LAMA5 P2RX1 RSPO4 TMEM132A 

AKT1 CNOT1 FLJ20674 LDOC1 PAICS RUVBL1 TNFRSF7 

ALDH1A2 COL7A1 FLJ23556 LEF1 PCDHGA1 RUVBL2 TNFSF11 

ALLC CPM FLJ40759 LILRB3 PCDHGA11 RYK TNFSF13 

ANAPC5 CPNE7 FRAT1 LLGL2 PCDHGA3 SAP30 TNS3 

ANKRD57 CPT1A FRAT2 LPL PCDHGC3 SEC11A TP73L 

ANXA2 CPZ FRMD4A LRCH4 PCP4 SEL1L TPCN1 

ANXA3 CREB3 FRMPD1 LRP12 PDE11A SEMA4B TPST2 

APC CREBBP FRZB LRP5 PDE4DIP SEMA4D TRAK2 

APC2 CRHR1 FSCB LRP5L PEA15 SEMA5A TRAPPC6A 

APOB CRY1 FUT8 LRP6 PEX5 SENP2 TRERF1 

APP CRYBB2P1 FZD1 LRRFIP2 PFTK1 SEP10 TRIM2 

APRT CSF1 FZD2 LSM4 PGLS SEPP1 TRIM43 

ARHGAP8 CSNK1A1 FZD3 LTK PHEX SERPINB2 TRIM9 
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ARHGEF17 CSNK1D FZD4 LUM PIGC SERPINF1 TRSPAP1 

ARSD CSNK1E FZD5 MAGED2 PIGF SEZ6L UCHL1 

ASPA CSNK1G1 FZD6 MAK PIN1 SFN UGCG 

ASPSCR1 CSNK2A FZD7 MAN2B1 PITX2 SFRP1 UHRF1 

ATOX1 CSNK2A1 FZD8 MANEA PKP2 SFRP2 UNC93B1 

ATP10B CSPG6 FZD9 MAP3K5 PKP3 SFRP4 USP7 

ATP13A1 CTAG2 GALNT2 MAP3K7IP1 PLAA SFRP5 VAMP5 

ATP2A3 CTBP1 GAST MAP4K1 PLCXD2 SIGLEC8 VASH1 

ATP6V0E CTBP2 GBF1 MAP7 PLD1 SIRPG VASP 

AVP CTCF GEMIN4 MARCKS PLEKHG4 SIX6 VPS37B 

AXIN1 CTNNB1 GGTLA4 MBOAT1 PNCK SKP2 WDFY4 

AXIN2 CTNNBIP1 GHRHR MCM2 POLE2 SLA2 WDR62 

B3GNT4 CXXC4 GINS2 MCM3AP POLR2G SLC12A9 WIF1 

B4GALT2 CYB5R1 GJB3 MCOLN3 PORCN SLC25A20 WIPI1 

B4GALT6 DAAM1 GNG8 MCP PPL SLC25A23 WISP1 

BANF2 DCI GNGT2 MDFIC PPM1A SLC27A2 WNT1 

BCAT1 DCLK2 GNPTAB ME2 PPM1L SLC9A3R1 WNT10A 

BCL9 DDX23 GOT2 MED9 PPP2CA SMAD2 WNT11 

BRD7 DEGS1 GPLD1 MGC9913 PPP2R1A SMAD3 WNT16 

BTN3A3 DENND1C GPR177 MICAL1 PPP2R3A SMAD4 WNT2 

BTRC DIP2C GSK3A MINK1 PPP2R5B SMARCA4 WNT2B 

C10orf75 DIXDC1 GSK3B MKLN1 PPP4R2 SMPD1 WNT3 

C10orf86 DKK1 Gene MMP14 PRELP SNAI2 WNT4 

C12orf10 DKK2 HBP1 MMP2 PRICKLE1 SOSTDC1 WNT5A 

C16orf24 DKK3 HDAC1 MRPL41 PRKCA SOX17 WNT5B 

C16orf33 DKK4 HEG1 MRPS33 PRKCB SOX4 WNT6 

C16orf45 DLEC1 HGF MTM1 PRKRIR SPARC WNT7A 

C19orf21 DMD HIST1H1C MUC5B PRPF40B SPATA1 WNT7B 
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C1orf77 DOCK9 HLA-
DQA1 MYC PRR4 SPG20 WNT8A 

C20orf42 DSC1 HNF1A MYO15B PSD3 SPHK1 WNT9A 

C20orf67 DSP HNRPLL MYO5C PSEN1 SPINT2 WSB2 

C20orf74 DUS2L HOM-
TES-103 MZF1 PSMD8 SRPK2 YOEL1 

CAL-
COCO1 DVL1 HOMER3 NAPB PTCH1 SRPX ZAP70 

CALD1 DVL2 HOXD3 NAV3 PTGER3 ST5 ZBTB33 

CALU DVL3 HSP90B1 NBEAL2 PTGES3 SUPT3H ZCCHC11 

CAPG6 DYNLL1 ICA1L NBPF8 PTPLAD2 SUSD3 ZFHX1B 

CARS2 EDG5 IGF1R NDP PTPN6 SYCP1 ZFP64 

CASKIN2 EGR3 IGF2R NDUFC2 PTPRG SYDE1 ZNF135 

CBWD2 EHMT1 IL13RA2 NDUFV1 PYGO1 SYNC1 ZNF451 

CBY1 ELF1 INVS NEBL PYGO2 SYT5 ZNF578 

CCDC24 ENG IRAK2 NIP-
SNAP3B RAB26 TACSTD1 ZNF667 

CCNB2 EP300 JAG2 NKD1 RAB7L1 TBC1D1 ZNF787 

CCT4 EPHA3 JTV1 NKD2 RARA TBC1D22A  

CCT7 EPS15L1 JUP NLK RBM35B TBC1D2B  

CCT8 EXOSC1 KALRN NLRC3 RCC1 TBP  

CD58 EXPH5 KCNJ16 NOP17 RCN1 TCEB3  
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Appendix 3. Integrative Analysis of CLL by t-SNE Visualization 

 
t-Distributed Stochastic Neighbor Embedding (t-SNE) Analysis of CLL Samples and Subgroups. The visu-
alization displays a non-linear dimensionality reduction of the complex gene expression data, with each point 
representing individual samples. The layout highlights the nuanced relationships and 10 clusters labeled from A 
to J within the CLL dataset consisted of the 1001 patients, uncovering uncaptured subtleties through the network 
analysis. Samples included in the dataset are either diagnosed CLL patients (sick) or wild-type patients (normal) 
without CLL. 

• Cluster A encapsulates a significant cohort focusing on the Wnt signaling pathway, a key player in CLL 
pathogenesis, with a total of 179 patients. Within this cluster, 21 are wild type, while 158 are CLL patient 
samples, all derived from the GSE31048 dataset. This dataset offers a unique look at both normal and CLL-
affected B cells, allowing for a direct comparison of Wnt pathway gene expression and Wnt-regulated gene 
expression. The marked difference in numbers between the normal (12 and 9, respectively) and sick (149 
and 9, respectively) groups underscores the aberrant expression within CLL-affected B cells, highlighting 
the pathway's prominence in these cellular states. The study's in-depth focus on the Wnt pathway is well-
founded, as it is pivotal in cellular processes that are often disrupted in CLL, thus potentially illuminating 
new therapeutic avenues. 

• Cluster B includes a smaller, yet focused subset of 42 patients, of which 12 are wild type and 30 are CLL 
patients. This cluster continues the examination of the Wnt pathway's role in CLL as part of the GSE31048 
study, indicative of a unique or divergent role of Wnt signaling in this subset. It is particularly noteworthy 
that this dataset includes expression data from CLL B cells with and without Wnt3a treatment, providing 
insights into the pathway's functionality and potential for targeted therapies. The comparative analysis of 
Wnt gene expression between the normal and CLL B cells offers additional evidence for the pathway's 
critical role in the disease process. 
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• Cluster C, with 136 patients, 24 normal and 112 sick, merges data from two distinct studies, GSE10139 
and GSE50006, providing a broader scope by incorporating a genomic approach from GSE10139 to im-
prove prognosis and therapeutic response predictions, and juxtaposes this with expression data from CLL 
tumors and healthy donor B cells from GSE50006. The inclusion of CLL-blood samples enriches the da-
taset, illustrating the heterogeneity within CLL and potentially reflecting different disease phases or sub-
types. The blend of these datasets furnishes a more comprehensive understanding of the disease, highlight-
ing the heterogeneity of CLL and reinforcing the necessity of personalized medicine approaches. 

• Cluster D presents a cohort of 152 patients, predominantly sick (144) with a small representation of normal 
B cells (8), combining data from GSE10139 and GSE50006. This distribution, primarily composed of CLL 
and CLL-blood samples, continues to emphasize the genetic and expression-level diversity found in CLL, 
supporting the need for in-depth analysis to discern the nuances of the disease’s progression and the po-
tential response to treatments. 

• Cluster E is a homogeneous group consisting entirely of 100 sick patients from the GSE49896 dataset. 
This study spotlights the microRNA-150's influence on B-Cell Receptor signaling by modulating GAB1 
and FOXP1 gene expressions, which are implicated in CLL. MicroRNAs are crucial post-transcriptional 
regulators, and their role in CLL adds an additional layer to understanding the disease's complexity and 
potential intervention points. 

• In Cluster F, 130 CLL patients from the GSE39671 dataset are studied, all of whom have undergone treat-
ment. The data represent a temporal progression, with sampling times to first treatment recorded, allowing 
for an exploration of the disease's evolution over time. The dataset's analysis provides prognostic subnet-
works which can help predict disease progression and highlight the converging pathways in CLL, opening 
new avenues for tailored treatments. 

• Cluster G, comprising 75 CLL patients from the GSE69034 study, delves into the gene expression profiles 
linked with the MYD88 L265P mutations in conjunction with IGHV mutation status. The presence of the 
MYD88 L265P mutation, a notable variant found within the MYD88 gene that encodes a key adaptor 
protein in the Toll-like receptor and IL-1 receptor pathways, has been tied to specific prognostic outcomes 
in CLL. This mutation is known to activate downstream signaling pathways aberrantly, which can contrib-
ute to the uncontrolled proliferation of B cells characteristic of CLL. The dataset's inclusion in the study 
facilitates a detailed investigation into the mutation's role and its pathway associations in CLL, offering a 
potential explanation for the varying responses to treatment observed in patient populations. By analyzing 
the gene expression patterns influenced by the MYD88 L265P mutation alongside the IGHV mutation 
status, a well-established prognostic marker in CLL, it unravels the complex interplay between genetic 
aberrations and their impact on the disease's clinical course. The correlation between MYD88 L265P mu-
tations and factors such as treatment resistance, disease progression, and overall survival can be assessed. 
This is particularly crucial, as the mutation's impact on signaling pathways may suggest new therapeutic 
targets or strategies for intervention. Groundbreaking biomarkers are likely to be identified for early de-
tection and prognosis by understanding the biological context in which these mutations operate, while also 
highlighting the therapeutic relevance of targeting the MYD88 pathway in certain subsets of CLL patients, 
which implies the importance of precision medicine in the management of CLL. Based on the insights into 
the specific mutations driving the disease in individual patients, therapies can be customized to target these 
genetic abnormalities more effectively. In the case of MYD88 L265P, its presence could signify a need for 
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targeted inhibitors that can mitigate its downstream effects, thereby introducing a new dimension to per-
sonalized CLL treatment paradigms. 

• Cluster H is a cohort of 84 CLL patients from GSE28654, all carrying the IgVHMT mutation and exhibit-
ing negative ZAP-70 expression. The absence of ZAP-70 expression, a kinase linked to CLL, together with 
the mutational profile, provides a critical connection for investigation. This relationship implicates the 
substantial impact of the mutation on CLL's clinical progression and pinpoints the need for detailed genetic 
analysis in crafting specialized treatments. 

• In Cluster I, 28 sick patients from GSE28654 are categorized by the presence of the IgVHUM mutation 
and positive ZAP-70 expression, helping to understand the disease's heterogeneity since ZAP-70 positivity 
is often linked with a more aggressive CLL form. The combination of mutational status and ZAP-70 ex-
pression levels provides valuable prognostic information. 
o The expression of ZAP-70 in CLL and its relevance as a molecular marker is particularly illuminating. 

For Cluster H, the collective profile of CLL patients characterized by the IgVHMT mutation yet dis-
playing an absence of ZAP-70 expression represents a subset where traditional prognostic markers 
may predict a more favorable clinical course. In the broader landscape of our findings, this cluster 
could suggest that ZAP-70's negativity may reflect a less aggressive form of CLL, where the malignant 
B cells might not engage in the same signaling pathways that are characteristic of more virulent vari-
ants. Consequently, these insights bolster the argument for personalized therapeutic approaches, ena-
bling clinicians to tailor treatments to the specific molecular makeup presented by individual CLL 
cases. Conversely, patients in Cluster I, characterized by the IgVHUM mutation concomitant with 
positive ZAP-70 expression, suggest a more aggressive manifestation of the disease. This association 
aligns with the understanding that ZAP-70 positivity mirrors the behavior of unmutated IgVH status, 
commonly linked to a robust disease progression and a less favorable response to conventional thera-
pies. Here, ZAP-70 serves not just as a prognostic marker but potentially as a therapeutic target, 
whereby modulation of its expression or function could impact CLL cell survival. This reiterates the 
substantial role that ZAP-70 plays in CLL. It acts as a bifurcation point in the disease's prognostic 
roadmap, where its expression could either denote a need for more aggressive treatment or suggest a 
less intensive therapeutic course. The interplay of ZAP-70 with IgVH mutation status, as demonstrated 
in our clusters, provides a clearer understanding of disease heterogeneity and patient stratification. 
The overall results of the study thus advocate for the integration of ZAP-70 status into prognostic 
models and therapeutic decision-making algorithms, emphasizing its contribution not only to prog-
nostication but potentially to the development of targeted CLL therapies. 

• Cluster J, mirroring Cluster G, includes another set of 75 CLL patients from the GSE69034 dataset, indi-
cating the significant role of MYD88 L265P mutations in CLL, providing a robust dataset for the explora-
tion of mutation-associated gene expression patterns and their prognostic significance. 

The heterogeneity of gene mutations across CLL patients underscores the intricate complexity of this malignancy, 
accentuating the necessity for individualized therapeutic strategies. The disparities unearthed by t-SNE analysis 
manifest in the distinct molecular signatures differentiating normal B cells from CLL-B cells, which reflect diver-
gent evolutionary trajectories within the disease's progression. Notably, the aberrant expression of Wnt pathway 
genes in CLL cells, as revealed by our cluster analysis, pinpoints this pathway's pivotal role in CLL pathobiology. 
The presence of specific gene expressions within clusters, particularly those highlighted by the t-SNE method 
(clusters A and B), points to the pathway's disrupted regulation, which is suggestive of patient-specific disease 
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mechanisms that contribute to CLL's heterogeneity. Simultaneously, the funding emphasizes that alterations in 
the Wnt signaling pathway are not universally present but vary among patients, reinforcing the pathway's contri-
bution to the disease complexity. The therapeutic potential of targeting Wnt pathway proteins is corroborated by 
their identified roles in vital cellular functions, with their significance accentuated by Betti number estimates, 
which propose these proteins as central players in CLL's pathogenesis rather than inconsequential elements. Such 
insights solidify the imperative for a more comprehensive, multi-scalar study from cellular to genomic dimensions 
to forge ahead with personalized treatments for CLL. 
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