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 2

Abstract 28 

Mind-blanking (MB) is the inability to report mental events during unconstraint thinking. Previous 29 

work shows that MB is linked to decreased levels of cortical arousal, indicating dominance of cerebral 30 

mechanisms when reporting mental states. What remains inconclusive is whether MB can also ensue from 31 

autonomic arousal manipulations, pointing to the implication of peripheral physiology to mental events.  32 

Using experience-sampling, neural, and physiological measurements in 26 participants, we first show that 33 

MB was reported more frequently in low arousal conditions, elicited by sleep deprivation. Also, there was 34 

partial evidence for a higher number of MB reports in high arousal conditions, elicited by intense physical 35 

exercise. Transition probabilities revealed that, after sleep deprivation, mind-wandering was more likely 36 

to be followed by MB and less likely to be followed by more mind-wandering reports.  Using 37 

classification schemes, we show higher performance of a balanced random forest classifier trained on 38 

both neural and physiological markers in comparison to performance when solely neural or physiological 39 

were used. Collectively, we show that both cortical and autonomic arousal affect MB report occurrences. 40 

Our results establish that MB is supported by combined brain-body configurations, and, by linking mental 41 

and physiological states they pave the way for novel, embodied accounts of spontaneous thinking.    42 

Keywords: mind-blanking, experience-sampling, brain-body interactions, machine-learning, spontaneous 43 

thinking 44 
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 3

Introduction  51 

During ongoing mentation, our mind constantly shifts across different mental states. These mental 52 

states typically bear some content (“what we think about”) and indicate a relationship towards that 53 

content (i.e., perceiving, fearing, hoping, remembering) [1]. As we move through the environment, our 54 

thoughts fluctuate between the external and internal milieu [2, 3], resulting in a fluid stream of 55 

consciousness [4]. External content is tightly coupled to the processing of environmental stimuli and task-56 

demanding conditions. Internal content is more associated with self-referential processing and internal 57 

dialogue, widely known as  Mind-Wandering (MW) [4]. Inclusive as this external-internal dipole may 58 

seem, it does not capture the full scope of the “aboutness” of mental content. Recent work has highlighted 59 

another mental state, where people report that they are “thinking of nothing” or “their mind just went 60 

away”, a phenomenological experience termed mind-blanking (MB) [5]. As MB is relatively new in the 61 

landscape of ongoing cognition, the extent of MB episodes in daily and clinical settings remains widely 62 

uncharacterized. For example, a recent study found  that MB might be miscategorized as MW in ADHD 63 

symptom evaluation [6]. Therefore, the experience of MB occurrences poses a challenge to our everyday 64 

functioning and our understanding of the continuous nature of the stream of consciousness. 65 

Currently, there is no clear answer as to how MB reports are generated. So far, behavioral studies 66 

show that MB can arise after conscious mental effort to empty our mind [7, 8, 9], is usually unintentional 67 

[5, 10, 11] and gets reported less frequently during unconstrained thinking compared to MW and 68 

sensory/perceptual mental states [5, 11, 12, 13]. At the brain level, the inability to report mental events 69 

after the prompt to “empty the mind” has been associated with activation of the anterior cingulate/medial 70 

prefrontal cortex, and deactivation of inferior frontal gyrus/Broca's areas and the hippocampus, which the 71 

authors interpreted as the inability to verbalize internal mentation (inner speech) [8]. Recently, we found 72 

that the functional connectome of fMRI volumes around MB reports was similar to a unique brain pattern 73 

of overall positive inter-areal connectivity [12] which was also characterized by increased amplitude of 74 

fMRI global signal (i.e. averaged connectivity across all grey matter voxels), an implicit indicator of low 75 

arousal [14, 15, 16]. For example, the amplitude of the global signal correlated negatively with EEG 76 

vigilance markers (alpha, beta oscillations), while increases in EEG vigilance due to caffeine ingestion 77 
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were associated with reduced global signal amplitude [14]. Our findings corroborate recent EEG-related 78 

evidence supporting the possibility of “local sleeps” during MB reportability [10, 17]. “Local sleeps” 79 

refer to the scalp distribution of EEG potentials during wakefulness, in the form of high-intensity, slow 80 

oscillatory activity in the theta/delta band, which could differentiate between MB and MW, with more 81 

frontocentral potentials tied to MW and parietal to MB [10]. Together, the presence of slow waves 82 

preceding MB reports and the high fMRI global signal hint toward the role of arousal in mental content 83 

reportability. Starting from this line of evidence, we generally infer that arousal fluctuations drive MB 84 

reportability.  85 

Arousal is a multidimensional term generally referring to the behavioral state of being awake and 86 

alert, supporting wakefulness, responsiveness to environmental stimuli, and attentiveness [18, 19]. 87 

Anatomically, arousal is supported by the ascending arousal system, the autonomic nervous system, and 88 

the endocrine system [18]. Early on, Lacey viewed arousal in terms of behavioral arousal (indicated by a 89 

responding organism, like restlessness and crying), cortical arousal (evidenced by desynchronized fast 90 

oscillatory activity), and autonomic arousal (indicated by changes in bodily functions) [20]. Cortical 91 

arousal is self-generated through the reticulate formation and propagated through dorsal, thalamic, and 92 

ventral subthalamic pathways [21], and can be indexed by the alpha, theta, and delta EEG bands during 93 

wakefulness [22, 23]. Lower levels of cortical arousal in the form of slow waves have been associated 94 

with an increased number of missed stimuli in behavioral tasks [11, 23] and decreased thought intensity 95 

[24]. Also, lower levels of arousal indexed by pupil size have been correlated with a higher probability of 96 

MB reports in sustained attention tasks [11, 25, 26]. 97 

Much as it may have been done in terms of cortical arousal, the present study will focus on how 98 

autonomic arousal influences MB reportability, which is widely understudied. Our choice is justified by 99 

the theoretical assumption that mental function is tightly linked to peripheral body functions, explicitly 00 

expressed by the embodied cognition stance [27]. Briefly, embodiment holds that cognition is bound to a 01 

living body interacting with a dynamic environment and conceptualizes cognition as the result of brain-02 

body interactions during dynamic contexts. From that perspective, modifications in autonomic arousal are 03 

expected to lead to differential reportability of mental states. Autonomic arousal links the body and the 04 
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brain through spinal cord projections from peripheral organs to the brainstem and can be indexed by 05 

physiological signals reflecting sympathetic/parasympathetic balance, such as heart rate, galvanic skin 06 

response, and fluctuations in pupil size [28]. Converging evidence suggests that afferent physiological 07 

signals and biological rhythms, such as the cardiac or the respiratory phase, play a modulatory role in 08 

conscious perception [29, 30], metacognition [31], affective salience of information [32], and perceptual 09 

confidence of sensory sampling [33], both during task performance and in-silico simulations [34]. 10 

Alterations in autonomic arousal were also found to influence brain activity in that fMRI volumes 11 

characterized by lower arousal levels (indexed by decreased pupil size), showed reduced in-between 12 

network integration and inter-subject variability in comparison to scans characterized by high arousal 13 

levels (indexed by increased pupil size) [35]. 14 

Taken together, we here advocate for a direct link between autonomic arousal and content 15 

reportability. Firstly, we examined how MB report distribution shifted across different autonomic arousal 16 

conditions. To this end, we used experience-sampling under differently elicited arousal conditions. 17 

Experience-sampling is a though-sampling methodology, where people are probed to report their mental  18 

state at random intervals, probed by an external cue [4]. We employed this task at three distinct arousal 19 

conditions: Baseline, High (post-workout), and Low (post-sleep deprivation). Our operational hypothesis 20 

was that optimal levels of autonomic arousal (fixed variable) are necessary for optimal mental state 21 

reportability (dependent variable). We expected that deviations from optimal levels, such as after sleep 22 

deprivation or intense physical exercise, would alter our stream of thought, therefore promoting more 23 

frequent MB reports (Supplementary Table S1 for the full scope of our hypothesis). Secondly, we opted 24 

to identify specific brain-body interaction patterns that would promote MB reportability. To this end, we 25 

utilized multimodal neurophysiological recordings and a machine-learning approach to decode MB 26 

reports from arousal measurements.  27 

 28 

 29 

 30 

 31 
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Methods 32 

 33 

Ethics Information 34 

The experimental procedure has been approved by the CHU Liège local ethics committee and 35 

conforms with the Declaration of Helsinki and the European General Data Protection Regulation 36 

(GDPR). Before the onset of the protocol, participants provided informed consent for their participation 37 

in the study. Participants also received monetary compensation for their participation in the study. 38 

 39 

Design 40 

The study included healthy volunteers recruited after campus poster advertisements, intranet 41 

electronic invitations, and through the ULiège “petites annonces” e-campus platform. Inclusion criteria  42 

were:  a) right-handedness, b) age>18 years, c) minimal exercise background (<2h per week), d) good 43 

subjective sleep quality (Pittsburgh Sleep Quality Index [PSQI] ≤ 5 [36]), e) habitual sleep duration of 8 ± 44 

1 hours. Exclusion criteria  were: a) history of developmental, psychiatric, or neurological illness 45 

resulting in documented functional disability, b) severe anomalies in pupil shape or inability to open both 46 

eyes preventing pupil measurement [37], c) analgesic medication which may affect physiological arousal, 47 

d) history of psychiatric illness pertaining to anxiety disorders or scores < 9 in the General Anxiety 48 

Disorder-7 (GAD-7 scale) [38] as anxious participants experience biased perceptions of their bodily states 49 

[39], e) extreme chronotypes, f) shift work or traveling over time zones in the past 3 months. 50 

Experience-sampling was utilized in a within-participants repeated-measures design. During the 51 

experience-sampling session, participants laid restfully and were directed to let their minds wander, 52 

without any specific instructions towards internal (daydreaming, memories, prospective events) or 53 

external thoughts (body sensations, sensory stimuli in their immediate environment). Auditory probes 54 

(total n=40, 500Hz simple tones) invited participants to report what they were thinking at the moment just 55 

preceding the probe. The inter-probe interval was sampled from a uniform distribution between 110 and 56 

120 seconds. Report times were monitored online to examine if participants missed the probe or fell 57 

asleep due to our experimental manipulation. In case of a report time > 6s, participants were reminded to 58 
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report their mental state as soon as they heard the probe and indicate they were awake via button press. In 59 

case of unresponsiveness, the experimenters manually awakened the participant.  Depending on the 60 

probes’ trigger times and participants' reaction times, a recording lasted on average 70-90 minutes.  We 61 

chose to present 40 probes (overall length approximately 1h and 15min) to avoid fatigue/drowsiness and 62 

the possibility of participants returning to baseline arousal after the experimental manipulations. Also, the 63 

relatively large experience-sampling interval, compared to previous studies, was used to record enough 64 

samples to accurately estimate physiological markers from slow oscillatory signals, such as heart-rate 65 

variability. Upon the probe, participants had to choose among four distinct choices describing their 66 

mental state: mind-blanking (MB), mind-wandering (MW), perceptual sensations (SENS), or sleep 67 

(SLEEP). These response options were chosen to minimize assumptions about what the actual partitions 68 

of mental states might be. For example, debates about what can be classified as  MW [40] refer to 69 

whether  MW is a coherent cluster of events [1, 41] and how it is separated from awareness and 70 

processing of environmental stimuli [40, 42]. We believe that our divisions respect the literature on 71 

internal/external thinking networks [3, 43, 44] while introducing minimum assumptions as to the actual 72 

content of each state.  The introduction of the sleep option facilitated the identification of trials where 73 

participants fell asleep due to the experimental manipulation. Participants indicated their responses via 74 

button press from a response keyboard placed under their dominant hand. We repeated the experience-75 

sampling task on three distinct days, over the span of two weeks under three conditions: a) experience-76 

sampling under spontaneous thinking without arousal modulations (Baseline), b) experience-sampling 77 

elicited through short, high-intensity interval training (High Arousal), c) experience-sampling after total 78 

sleep deprivation (Low Arousal) (Fig. 1). The goal of both arousal manipulations was to promote distinct 79 

changes in physiological and cortical markers associated with arousal mechanisms (Supplementary Table 80 

S2). Monitoring of arousal changes was done with physiological and cortical measurements. In case when 81 

participants did not show distinct cortical and physiological changes after our arousal manipulations, they 82 

were excluded from further analysis. Effect monitoring was done by examining the heart rate in High 83 

Arousal as well as the EEG spectra in both  High and Low Arousal. 84 
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In High Arousal, participants first performed high-intensity interval activity in the form of cycling. 85 

They started with a warm-up training session of 3 minutes to avoid potential muscle trauma and then 86 

cycled for 45 seconds as fast as possible. A resting period of 15 seconds followed. A total number of 10 87 

workout cycles was administered. The choice of this timing protocol  rested on previous studies 88 

indicating that similar exercise routines produce distinct and sustained sympathetic activity [45, 46] and 89 

cortical excitation [46], which can last between 30-90 minutes after exercise cessation[47]. 90 

In Low Arousal, participants performed the experience-sampling task after one night of total sleep 91 

deprivation. Sleep deprivation leads to an arousal state that is behaviourally distinct from typical 92 

wakefulness [48, 49], promotes specific neuronal signatures ("local sleeps” in the delta band) [11], and 93 

has a distinct physiological expression. Critically, we do not wish to claim that sleep states are identical to 94 

“local sleeps”, nor do we suggest an overlap between low arousal due to sleep deprivation and 95 

unconsciousness during sleep. To acquire estimates of their mean sleep schedule, participants wore an 96 

actimeter for one week before the total sleep deprivation protocol (Supplementary Fig. S1; available for 97 

24/26 subjects due to data corruption). The total sleep deprivation protocol was as follows:  A week prior 98 

to sleep deprivation, participants were provided with an actimetry device to track wake-sleep schedule, 99 

and were instructed to follow a consistent 8-hour sleep schedule. On the deprivation day, participants 00 

arrived at the lab one hour before their normal sleep time to extract their actimetry baseline data, estimate 01 

the optimal sleep deprivation window, and to provide baseline vigilance, drowsiness, and sleepiness 02 

measurements. After a total sleep deprivation of 26h (16h of typical wakefulness, 8h of sleep deprivation, 03 

and a 2h post-sleep deprivation period) participants began the post-sleep deprivation, experience-04 

sampling session. As an example, a participant who typically slept at 12 am would arrive at the lab at 11 05 

am, start sleep deprivation at 12 am, finish sleep deprivation at 8 am, and perform the experience-06 

sampling task at 10 am. Should slow-wave activity during wakefulness follow the same circadian 07 

modulation it follows during sleep [50], a potential confound that could have lowered the power of our 08 

analysis is the time-window of the experience-sampling task. However, as suggested in [50], the relative 09 

time-window we have selected did not fall under a critical point of large reductions in the amplitude of 10 

the slow-waves.  The 2-hour, post-deprivation waiting window allowed us to match the time of the 11 
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experience-sampling across the 3 conditions, avoiding potential circadian confounds on experience-12 

sampling, as we could easier match sleep-wake cycles and the time of the experience-sampling within 13 

each participant. We have chosen this sleep manipulation as similar manipulations have been previously 14 

used to examine the effects of sleep pressure [51, 52], and have been shown to elicit distinct low-arousal 15 

cortical profiles [53, 54], as well as changes in the sympathetic/parasympathetic balance [55]. 16 

Sleep deprivation was controlled with regard to light influence (illuminance = 15 lux during 17 

wakefulness and 0 lux during sleep), caloric intake (standardized meals every 4 h), and body posture 18 

(semi-recumbent position during scheduled wakefulness) to minimize potential masking effects on the 19 

sleep-wake regulatory system. Participants were not allowed to stand up except for regularly scheduled 20 

bathroom visits and did not have any indications of the time of the day. The experimenters continually 21 

monitored participants to keep them awake. In case of a sleep event, the experimenters first tried to 22 

awaken the participant through an intercom, and in case of failure, they manually awakened the 23 

participant. We also monitored for sleep lapses through the experience-sampling tasks. In case 24 

participants closed their eyes for a time period of < 30 seconds, they were probed by a tone to wake up. If 25 

they did not, the experimenter in the room would awaken the participant. 26 

A one-week interval took place between sleep deprivation and further recordings in order to minimize 27 

potential carry-over effects of sleep deprivation on our follow-up conditions. In that way, the participants’ 28 

sleep schedules will also reset to their respective normal cycles. The order of the three arousal conditions 29 

was randomized. As a post-registration note, we randomized only the order of sleep deprivation and post-30 

exercise, to add a training session before the baseline that allowed participants to get acquainted with the 31 

protocol, without external task impositions that might confound protocol understanding. 32 

Sampling Plan 33 

We used a Neyman-Pearson frequentist approach to balance false-negative and false-positive rates by 34 

setting power to 95% and establishing a Type I error rate (alpha) of 5%. To estimate the desired sample 35 

size, a simulation approach was utilized: data were generated consistent with a latent binomial regression 36 

model, in which one categorical predictor with 3 levels (Base, High, Low) predicted a binary outcome Y 37 

(presence of MB or not). An original probability pMB  = 0.1 was specified as the underlying generative 38 
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 10

probability in the baseline model based on previous research [5, 11, 12]. We allowed the random 39 

intercepts and slopes to freely vary around a normal distribution with a standard deviation of s.d. = 0.1. 40 

Given that no previous study to our knowledge has provided evidence for the distribution of the effect 41 

sizes of arousal on mental reports, and to account for possible reverse effects (such as decreased MB 42 

report probability), we reasoned that a meaningful yet conservative effect for the Low Arousal condition 43 

would be an odds ratio of 1.6 and an odds ratio of 0.55 for the High Arousal condition. Since our initial 44 

hypothesized distribution is expected to yield ~3-5 MB reports per session [11, 12], this effectively 45 

translates to a small effect size of interest of at least 3 more reports across conditions.  46 

Considering these parameters, for each population sample, ranging from 5 to 50 participants, we 47 

sampled 500 datasets, and fit a binomial model with the participant ID as random factors, keeping the 48 

regression coefficients for the levels of the predictor constant. Based on the simulation analysis, using a 49 

false positive threshold of .05, we calculated a sample size of 26 participants to achieve a power of .95 50 

(Supplementary Fig. S2). 51 

 52 

Data Analysis  53 

Behavioral data 54 

Statistical analysis was performed using generalized linear mixed-effects models. To address whether 55 

arousal affects MB occurrence, we used a binomial, linear model with arousal as a categorical 56 

independent variable, and the proportion of mental reports across a sampling period (40 trials) as our 57 

dependent variable. Data were binary coded (presence or not of MB report) and fit into the model using a 58 

“logit” link. Given that the underlying distribution was unknown, a Bernoulli generative process 59 

minimized the assumptions about the model. In order to examine whether the multinomial distribution of 60 

mental reports itself changes across different arousal conditions, we used the generalized estimating 61 

equations (GEE) approach, an extension of generalized mixed-effects models that can account for 62 

correlated, repeated-measures count data from multinomial distributions [56, 57]. Mental reports were 63 

aggregated as counts across participants and conditions, and we examined shifts in report time 64 

distribution using the three experimental arousal conditions as predictors. We considered as report time 65 
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the interval between the response probe and the participant's report. To examine report times as a function 66 

of mental states, we specified a generalized linear mixed-effect model with mental reports and arousal 67 

conditions as categorical variables and used a gamma distribution with an “inverse” link function. As 68 

reaction times are usually an indicator of arousal effects on the task performance, an effect of arousal 69 

condition as a covariate might be informative about a potential shift of the overall slower mental report 70 

times distribution and about the arousal condition of the subject itself. The choice of the distribution and 71 

the link minimizes assumptions about the model, respects the positive, skewed distribution of reaction 72 

times, and was previously found to provide a better fit compared to other link functions [58]. To examine 73 

whether arousal shifts the dynamics of mental reports, i.e. one state might be more likely to be followed 74 

by MB in one of the arousal states compared to Baseline, we estimated dynamical transition probabilities 75 

across different mental states using Markov models. The transition probabilities for MB were then 76 

compared using a linear model with an identity link, with the transition probabilities as the dependent 77 

variable and the arousal condition as the categorical, independent variable. 78 

All specified models were compared against null models using likelihood ratio tests. We introduced 79 

the participant’s ID as a priori random factor, i.e., we allowed the model's intercept to vary. In case of 80 

multiple models compared, p-values were corrected using Bonferroni correction. In case of significance 81 

of a fixed predictor, we used corrected pairwise comparisons to examine the marginal means of the 82 

predictors.  83 

 84 

Brain-based measures 85 

Physiological and cortical timeseries were segmented based on the response probe time. We 86 

considered the 110-second period before the response probe as a meaningful analysis epoch, representing 87 

the neuronal and physiological dynamics that result in a specific mental state. This period was used in 88 

subsequent analyses.  89 

We recorded EEG with an EasyCap (64 active electrodes) connected to an actiCHamp system (Brain 90 

Products GmbH) using the 10-20 standard configuration. A ground electrode was placed frontally (Fpz in 91 

the 10–20 system). Online, we referenced the electrodes to a frontal electrode. Impedance was kept below 92 
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20 kΩ. As a post-registration note, we originally registered to keep impedance below 10 kΩ. However, 93 

we leveraged the strength of active electrodes and used the research standard of 20 kΩ. To minimize 94 

impedance, we used conductive gel. Data were sampled at a sampling frequency of 500 Hz. 95 

Preprocessing included band-pass filtering (0.1 Hz-45 Hz, FIR filter), notch filtering (50Hz), and epoch 96 

definition (t_start =  110s preceding the probe, t_max= probe). As a post-registration note, during EEG 97 

preprocessing, we observed low-frequency (<1 Hz) artifacts, such as sweat during the post-exercise 98 

session, that contaminated the quality of the signal. Therefore, we decided to reanalyze our data using a 1 99 

Hz high-pass filter to minimize the presence of those artifacts. By visual inspection, we checked and 00 

removed noisy electrodes and epochs. In case of discarding more than 50% of the total epochs for a single 01 

participant, that participant was discarded from future analysis. We then used ICA decomposition to 02 

remove non-neuronal components such as blinks, heartbeats, muscle artifacts, etc. Finally, channels 03 

removed due to rejection were interpolated using neighboring channels, and all channels were re-04 

referenced to the average. 05 

Based on EEG recordings, we estimated three classes of measures: 1) measures estimating spectral 06 

power - raw and normalized power spectra, Median Spectral Frequency (MSF), spectral edge 90 (SEF90), 07 

and spectral edge 95 (SEF95), 2) measures estimating information content – spectral entropy, 08 

Kolmogorov-Chaitin complexity (K) and Permutation Entropy, and 3) measures estimating functional 09 

connectivity – Symbolic Mutual Information and weighted Symbolic Mutual Information. Power 10 

spectrum density (PSD) was computed over the delta (1-4 Hz), theta (4-8 Hz) alpha (8-12 Hz), beta (12-11 

30 Hz), gamma (30-45 Hz) spectral bands, using the Welch spectrum approximation (segments = 512 ms, 12 

overlap = 400ms). Segment rejections were windowed using a Hanning window and zero-padded to 4096 13 

samples. Kolmogorov-Chaitin complexity was computed by compressing a discretization of the signal 14 

using a histogram approach with 32 bins. Permutation Entropy was obtained by computing the entropy of 15 

a symbolic transformation of the signals, within the alpha, delta, and theta bands. SMI and wSMI were 16 

then computed from the same symbolic transformation, but data was first filtered using Current Source 17 

Density estimates to diminish the volume conduction. SMI and wSMI  were computed in theta, delta, and 18 
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alpha bands [59]. From the available connectivity metrics, we chose to use only wSMI as it is the only 19 

one that can detect purely nonlinear interaction dynamics and can be computed for each epoch [60]. 20 

 21 

 22 

Physiological measures  23 

Electrocardiogram (ECG) data were acquired using the BIOPAC MP160 system (BIOPAC 24 

SYSTEMS Inc.), amplified through the BIOPAC ECG100C amplifier. The data were sampled at a 25 

sampling frequency of 2kHz and recorded using the AcqKnowledge v4.4 software. ECG disposable 26 

adhesive skin electrodes were used in a bipolar arrangement of two electrodes and ground. The positive 27 

electrode was at the non-dominant wrist of the participant and the negative was on the contralateral ankle. 28 

The ground electrode was placed on the ipsilateral ankle.  29 

ECG data were filtered with a notch filter (0.05 Hz) to remove baseline wander artifacts. A 30 

Butterworth high-pass filter was applied (0.5 Hz) to attenuate linear drifts and physiological artifacts. 31 

Powerline interference was attenuated with a notch filter (50 Hz). Finally, the data were smoothed with a 32 

3rd-order polynomial Savitzky-Golay filter. Peaks were detected using the native Neurokit2 algorithm. 33 

Finally, data were epoched based on the partition scheme in the EEG preprocessing section. 34 

ECG metrics were grouped into three domains: time, spectral power, and information content. Time-35 

domain metrics were a) the Heart Rate (HR), b) the standard deviation of the RR intervals (SDNN), and 36 

c) the Root Mean Square of Successive Differences (RMSSD). Spectral power features were a) the Low 37 

Frequency of the Heart Rate Variability (LF-HRV), b) the High Frequency of the Heart Rate Variability 38 

(HF-HRV), and c) the LF/HF HRV ratio. Information content metrics were a) Approximate Entropy 39 

(AE), b) Sample Entropy (SE), and c) Multiscale Entropy (MSE). Initially, the native Neurokit2 40 

algorithm to extract the peaks of the QRS complex. RR intervals were estimated as the sequential 41 

difference of the peak times. We estimated the time domain features based on the RR timeseries. For the 42 

spectral power metrics, the RR was evenly resampled at 4 Hz. Power spectra were computed over the LF-43 

HRV (0.04–0.15�Hz) and the HF-HRV (0.15-0.4) bands. The power spectrums were estimated using the 44 

Welch procedure. 45 
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 46 

Respiration. Respiratory data was acquired using a respiratory belt and amplified through the 47 

BIOPAC amplifier. Data were sampled at a sampling frequency of 2 kHz and recorded using the 48 

AcqKnowledge v4.4 software.  49 

Respiratory metrics were grouped in the time and information content domain. Time-domain metrics 50 

were a) respiration rate and b) respiration rate variability. Information content was estimated based on 51 

multiscale entropy. 52 

 53 

Pupillometry. Eye movements and pupil size in both eyes were recorded using oculometric glasses 54 

(Phasya recording system) with a sampling frequency of 120 Hz. The eye tracker was calibrated at the 55 

start of each recording. Data was epoched based on the epoching scheme in the EEG preprocessing 56 

section. We identified 100ms blink periods around blinks and removed the whole segment, as pre- and 57 

post-blink periods can introduce pupil dilation artifacts while the eye is recovering to its standard size. 58 

We interpolated segments using 3rd-degree cubic interpolation. Dilation speed outliers were calculated by 59 

estimating the median absolute deviation (MAD) of each value. Samples exceeding the deviation 60 

threshold were removed. Pupil dilation was smoothed using a moving average filter and baseline-61 

corrected with a 100ms period 2s after the probe. 62 

Pupil metrics were grouped in the same three domains: time, spectral power, and information content. 63 

Time-domain metrics were: 1) Blink rate, 2) Pupil size, and 3) Pupil size variability. Spectral power 64 

metrics were: 1) Low-Frequency Pupil Component (LFC), 2) High-Frequency Pupil Component (HFC). 65 

The information content metric is MSE. The power spectra were estimated using the Welch procedure. As 66 

a post-registration note, we encountered issues extracting pupil metrics at the Low Arousal condition, as 67 

participants tended to have their eyes closed or partially closed for most of the trials. As our device was 68 

not sensitive to capture dilation in this setting, we additionally estimated a) Blink Rate, b) Blink Duration, 69 

c) Blink Rate Variability, d) Mean Eye Openness, e) Eye Openness Variability, f) Percentage of 70% Eye 70 

Closure and g) Percentage of 80% Eye Closure. As stated below, our registered plan was to reliably 71 

estimate all time, frequency, and complexity metrics that can be of use to our classifiers. Therefore, while 72 
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we do not deviate from our original registered protocol, it is of note that these features could not be 73 

estimated reliably. 74 

 75 

Electrodermal activity (EDA) data was acquired through skin electrodes on the index and middle 76 

finger and amplified through the BIOPAC amplifier. Data was sampled at a sampling frequency of 2k Hz 77 

and recorded using the AcqKnowledge v4.4 software. All EDA metrics originated from the time domain: 78 

a) Galvanic Skin Response (GSR), b) tonic EDA, and c) phasic EDA. Extraction of the phasic and tonic 79 

components of the EDA was conducted with deconvolution of the EDA signal with a biologically 80 

plausible impulse response function with initially fixed parameters that are iteratively optimized per 81 

participant [61]. 82 

 83 

Pattern recognition 84 

To examine the physiological counterpart of the behavioral shifts in MB reports, we employed a 85 

supervised decoding approach. Using the multimodal neurophysiological measurements during the three 86 

experience-sampling sessions, we trained multiple classifiers to discriminate across MB, MW, and SENS 87 

reports, to identify whether MB is supported by a unique brain-body interaction pattern. This approach 88 

allowed us to extract meaningful brain-body interactions from the proposed arousal metrics without being 89 

conservative about the nature of the multiple comparisons between the various body metrics.  90 

As features, we opted to collect meaningful data in the time, frequency, information, and connectivity 91 

domain, unless such measurements could not be reliably estimated within our selected time window. The 92 

goal of the multiple selected metrics was to capture potential diverse spatiotemporal relationships (low-93 

high frequency interactions, phase-amplitude interactions) that might extend across different recording 94 

modalities. Overall, we computed 57 features. 95 

 As targets, we used the participants’ mental states (MB, MW, and SENS). Since this creates a 96 

multiclass classification problem, we will focus on the binary classification of MB vs other reports. We 97 

expect to acquire 40 samples per participant and condition (i.e. baseline and arousal states), giving a total 98 
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of 1040 (26*40) samples per condition. We expected that 5% of the samples correspond to the target 99 

report (MB), yielding an imbalanced problem with only 52 target samples per condition. 00 

As learning algorithms, we tested parametric and non-parametric models, such as Support Vector 01 

Machines, Random Forests, and Extremely Randomized Trees. Support vector machines are a 02 

classification technique that aims to separate labeled inputs by creating a hyperplane that maximizes the 03 

distance of their features. Given a set of n-labeled inputs, SVM provides a hyperplane in an n-04 

dimensional space that maximally separates the differently labeled groups. A random forest classifier is a 05 

meta-estimator. Various classifiers (“decision trees”) are trained in different parts of the input dataset, and 06 

each classifier uses only that part of the dataset to predict the label of the input. Then, the predictions of 07 

each classifier are pooled (“bagged”) together, and an optimal decision is chosen based on the label with 08 

the most predictions (“votes”). Finally, an extremely randomized tree classifier is a meta-estimator that 09 

employs a similar voting scheme. However, in the case of extremely randomized trees, trees are trained 10 

on all the features and the cutoff point of the trees (how the various metric nodes are arranged to reach a 11 

decision) is randomized. Since our problem is highly imbalanced, we also tested outlier detection 12 

algorithms (i.e. one-class classifiers), aiming to isolate MB from the other reports by considering MB as 13 

either an inlier or outlier. We then tested the one-class counterparts of the SVM (One-class SVM) and 14 

Random Forests (i.e. isolation forests) algorithms. 15 

 For model selection and performance estimation, we employed two different cross-validation 16 

approaches. First, we used a 5-fold stratified cross-validation scheme trained with all the samples. This 17 

provided us with performance estimates of classifiers aimed at obtaining patterns of brain and body 18 

function that can predict the report of MB in known participants. As a second approach, we used a 5-fold 19 

group stratified cross-validation scheme, using participants as groups. In this scenario, each participant 20 

was either on the train or on the test set. Thus, it aimed at learning general patterns of brain and body 21 

function that could predict the report of MB in unseen participants. In other terms, the first approach 22 

aimed at learning patterns that could discriminate MB from other reports while accounting for each 23 

participant’s variance, while the second strengthened the claim, aiming to learn general patterns that 24 

could be found in unseen participants. 25 
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 As performance metrics, we report a) recall, b) precision, c) F1-score, d) area under the ROC 26 

curve (AUC), and e) balanced accuracy. Recall is the ratio of how often an item was classified correctly 27 

as a positive (True Positive / True Positive + False Negative). Similarly, precision is the ratio of actual 28 

correct positive classifications among positive classifications (True Positive / True Positive + Positive). 29 

F1-score is the harmonic mean of precision and recall. The AUC curve is another evaluation metric that 30 

summarizes how well the classifier predicts a class based on different thresholds of true positive and false 31 

positive ratios. Finally, balanced accuracy is an evaluation metric suitable for imbalanced datasets, where 32 

one class appears at significantly different frequencies than the others. Balanced accuracy is useful 33 

because it is estimated as the average of specificity and sensitivity, simultaneously controlling for very 34 

high precision due to classifying nothing as the infrequent class and very high recall due to classifying 35 

everything as the infrequent class. 36 

We selected each model’s hyperparameters using nested cross-validation (same scheme as the outer 37 

cross-validation), using the F1-score as our optimization metric.  38 

To evaluate the variance in the classifier performance and compare it to chance level, we performed 39 

repeated cross-validation (10 times), while training also a “dummy” classifier to obtain the empirical 40 

chance level of the training samples distribution. This type of classifier generates predictions based on the 41 

distribution of training samples for each class without accounting for the features. 42 

The decoding analysis was implemented in Python using Julearn [62] and Scikit-Learn [63]. Metrics 43 

were estimated from existing Python libraries: MNE [64], NICE [65] ,  Neurokit [66], and custom in-lab 44 

Python functions. 45 

 46 

 47 

 48 

 49 

 50 

 51 

 52 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2024. ; https://doi.org/10.1101/2024.03.26.586648doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.26.586648
http://creativecommons.org/licenses/by/4.0/


 18

 53 

 54 

 55 

 56 

 57 

 58 

 59 

Results 60 

Participants 61 

To achieve a power of .95 at an alpha threshold of .05, we acquired 3 sessions of 40 trials per 62 

session from 26 participants (mean age = 26.38, std = 4.53, min=20, max=40; female=11). As a post-63 

registration note, in case participants could not adhere to the strict 3-week protocol (30% total sessions), 64 

they were rescheduled to a later date that respected their sleep schedules to avoid time windows with 65 

potential extreme slow-wave activity [50]. Due to data corruption, one participant had 30 trials in one of 66 

the three sessions, and one participant had 33 trials in one of the three sessions. The remaining two 67 

sessions were completed for both participants.  68 

 69 

Behavioral Data 70 

Occurrences of mental state reports alter across arousal conditions. 71 

We found a main effect for mental states, with MB being reported at significantly lower rates 72 

(Mean proportions ±SD: MW=.56, ±.21, SENS=.2±.14, MB=.12±.13; Kruskal H=124.07, p= 1.2e-27, 73 

eta2= .53) compared to MW (Dunn’s test=-10.75, pFDR = 1.8e-26) and to SENS (Dunn’s test=-2.85, pFDR= 74 

4.3e-03). Additionally, MW was reported significantly more frequently compared to SENS (Dunn’s 75 

test=7.9, pFDR= 4.3e-15; Fig. 2). As the study was focused on wakeful mental states, “SLEEP” reports 76 

were not included in the analysis (Mean proportions ±SD: Baseline = .03±.05, High Arousal = .05±.07, 77 

Low Arousal = .26±.21, Total = .1±.17). 78 
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We found that a model including all conditions outperformed a null model with only an intercept 79 

(FullLogLik = -1021, NullLogLik = -1046.83, χ2  = 51.57, df = 2, pBonf  = 6.1e-12): MB was reported 80 

significantly more frequently in  Low Arousal compared to Baseline (Marginal Mean= -.79, SE = .14, CL 81 

= [-1.16,-.43], pFDR = 1.8e-08) and to High Arousal (Marginal Mean = -.97, SE =.15, CL = [-1.35,-.59], 82 

pFDR = 7.9e-11) (Fig. 3a). However, MB reports during Baseline and High Arousal were comparable 83 

(Marginal Mean = .17, SE =.15, CL = [-.21,.56], pFDR = 2.4e-01). A visual inspection of the individual 84 

marginal means showed that this effect was consistent across participants and was not driven by extreme 85 

cases (Fig. 3b-d). 86 

Additionally, generalized estimating equations (GEE) showed a significant interaction for MW 87 

between Low Arousal - Baseline (beta = 6, SE = 1.5, CL = [ 3.06, 8.94], pFDR = 6.4e-05) and Low - High 88 

Arousal (beta = 8.23, SE =1.6, CL = [5.1, 11.36], pFDR = 2.6e-07). We also found significant interactions 89 

in SENS reports, such that SENS tended to be higher in Baseline compared to High (SENS Baseline - 90 

SENS High: beta = 2.54, SE = .81, CL = [ .96, 4.12], pFDR = 1.7e-3) and Low Arousal (SENS Baseline - 91 

SENS Low: beta = 2.46, SE = .77, CL = [.96, 3.97], pFDR = 1.3e-3). It is of note that this analysis yielded 92 

no significant results for MB, but the overall trend of the beta estimates was consistent with our positive 93 

results of the logit model above (Supplementary Fig. S3). 94 

 95 

MB was characterized by higher reaction times. 96 

There was a main effect of arousal conditions, with reports during Baseline being reported the 97 

fastest and during Low Arousal the slowest (Fig. 4a). Also, there was a main effect of mental states, with 98 

MW reports being reported the fastest and MB reports the slowest (Fig. 4b). A significant interaction 99 

between MW and arousal showed that MW was reported the slowest in Low Arousal (Fig. 4c).  A 00 

significant interaction between MB and arousal condition showed that MB was reported the slowest in 01 

High Arousal and Low Arousal (Fig. 4e). A model including both arousal and reaction times 02 

outperformed simplified models including only null or main effect terms (FullLogLik = 2889.76, χ2 = 47.1, 03 

df = 4, pBonf = 1.5e-09; Fig. 4c). For a detailed overview of main effects and interactions, see 04 

Supplementary Table S3.  05 
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 06 

Transition probabilities showed reduced probability to transition to MW in Low arousal. 07 

Markov transition probabilities indicated significant differences only between High and Low 08 

Arousal conditions (Fig. 5), such that MW was more likely to be followed by MB (t = 3.26, CI = 09 

[.03,.15], pFDR= 9.7e-03, Cohen’s D = .74). Also in Low Arousal, both MW (t = -3.79, CI = [ -.31, -.9], 10 

pFDR = 7.6e-03, Cohen’s D = -.86) and SENS (t = -3.43, CI = [ .37, -. 09], pFDR= 9.5e-03, Cohen’s D = -11 

.77) were less likely to be followed by MW (Fig. 5; Supplementary Fig. S4). 12 

Exploratory Analysis 1: MB frequency did not correlate with SLEEP frequency. 13 

As we wanted to avoid participants confounding MB and SLEEP reports, we opted for a paradigm 14 

that allowed participants to report both. Spearman correlations on each condition examined whether these 15 

two states were correlated.  Across all mental states were comparable (Baseline: r = .13, p = 5.3e-01, 16 

High Arousal: r = .31, p = 1.3e-01, Low Arousal: r =-.05, p = 8.2e-01) (Supplementary Fig. S5). To 17 

strengthen the claim that MB and SLEEP reports do not covary, we additionally ran separate equivalence 18 

tests on each correlation. No test was able to reject an equivalence claim (Baseline: z = -.34, p = 3.7e-01, 19 

High Arousal: z = .54, p = 7e-01, Low Arousal: z = .72, p = 2.3e-01). Therefore, these results remain 20 

indeterminate. 21 

 22 

Exploratory Analysis 2: High Arousal MB reports increased at the start, but not the end, of the 23 

experience-sampling session. 24 

While we found that MB reports were more frequent in Low Arousal, we did not find any 25 

significant effect of High Arousal. In our original hypothesis (Supplementary Table S1), we registered as 26 

a potential alternative explanation for the absence of an effect that high arousal, as elicited by high-27 

intensity exercise, might not last for the full session, and our session would represent a gradual return to 28 

Baseline Arousal. To test for potential effects of more frequent MB reports only at the start of the 29 

experience-sampling we split the High Arousal session in two parts and compared the count of MB 30 

reports across the start and the end of the experiment. Using a chi-squared test we found a significant 31 

effect, with MB reports being more frequent (divergence = 4.08, p = 3.2e-02) during the first half of the 32 
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High Arousal condition compared to the second half (MBstart = 93, MBend = 66). We additionally 33 

attempted to validate this hypothesis by splitting the session into 4 and 6 discrete segments of 10 and 7 34 

trials each and replicated the same analysis. However, this analysis did not reach significance. Finally, to 35 

provide further evidence for reduced occurrences of MB across time, we considered only the first and last 36 

10 trials. We found a significant effect of more frequent MB occurrences (divergence = 7.39, p = 6.6e-37 

03), with the first 10 trials of the High Arousal condition inducing more MB compared to the second half 38 

(MBstart = 51, MBend = 27). 39 

 40 

 41 

Classification of MB reports was outperformed by classification containing both BRAIN-BODY markers. 42 

We evaluated the capacity to classify MB reports from mental states with content (MW, SENS) 43 

based on 26 BRAIN (EEG) and 31 BODY features (12 ECG, 4 EDA, 8 RSP, 7 EYE), spanning time, 44 

frequency, information, and connectivity domains for each mental state report. In our original report, we 45 

registered that these features would be estimated across the 110s pre-probe window, with bad epochs 46 

being dropped. However, across an 110s epoch, even a nonlinearity of 1s would result in epoch removal, 47 

leaving a total clean sample of 25 / 78 sessions (29.4%), and a total of 1060/3120 (33.3%) clean epochs. 48 

Therefore, to preserve datapoints and data quality, and minimize data discarding due to brief non-49 

linearities, we opted for an extra step in bad epoch removal. After the initial epoch definition of 110s, we 50 

followed it up by partitioning that epoch into 5s sub-epochs, resulting in 22 sub-epochs per epoch. We 51 

then proceeded to do bad epoch removal and EEG marker estimation on those sub-epochs. If an epoch 52 

consisted of more than 50%  bad sub-epochs, it was discarded. Then, we averaged across within each 53 

epoch, resulting in no lost sessions, and a total of 2734 / 3120 (87.6%) total sample size. 54 

Having a final 2734 reports x 57 features matrix per report, we trained multiple classifiers on the 55 

total dataset, to examine whether a specific brain-body profile would outperform chance level 56 

classification of MB reports (Table 1). 57 

Due to the unbalanced nature of our dataset, we evaluated classifier performance based on 58 

balanced accuracy, as it avoids inflated performance on unbalanced datasets. Overall, we found that a 59 
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balanced random forest (a random forest that undersamples the majority class in each bootstrap to equate 60 

class count) has above-chance performance and outperforms all other examined classifiers (Fig. 6a). We 61 

additionally examined whether we could predict unknown subjects, by leaving a subset of subjects out on 62 

each iteration. Due to the high degree of per-fold variance, we do not consider any classifier as 63 

meaningfully performing above chance level (Fig. 6b).  Importantly, these results were replicated when 64 

we trained the classifiers in the 1-Hz filtered data (Supplementary Fig. S6a,b; Supplementary Table S4). 65 

Having established that MB reports can be predicted from known subjects, we then examined 66 

whether a brain-body data pattern would outperform classifiers trained solely on either BRAIN or BODY 67 

features. To this end, we fit and optimized a separate balanced random forest classifier on discrete feature 68 

combinations of our dataset.  For a full report of the performance on different features, see Table 2 and 69 

Supplementary Table S5. 70 

Overall, we found that a classifier trained on both BRAIN and BODY markers marginally 71 

outperformed classifiers trained solely on BRAIN or BODY features across all our performance metrics 72 

(Fig. 7a,c; Supplementary Fig. S7a,c; Table 2; Supplementary Table S5). To evaluate the impact of the 73 

number of features on the capacity of the learning algorithm to extract relevant information, we also 74 

trained the balanced random forest model using randomly shuffled bodily features. EEG features were not 75 

altered. The model with the shuffled values showed a decline in classification performance, providing 76 

evidence that, when classifying mental states, a model trained on both brain and body data learns unique 77 

information from both domains (Fig. 7d; Supplementary Fig. 7d). For feature importance, we calculated 78 

SHAP values for each feature in our dataset. SHAP values estimate the marginal contribution of each 79 

feature, averaged across every potential feature combination. In this manner, each value represents how 80 

much this feature contributes to the classification, after controlling for the impact of other features on this 81 

feature's importance. We found that the model relied mostly on EEG and EYE openness features to 82 

discriminate MB reports when pooling MB occurrences across all three conditions. (Fig. 7b; For an 83 

extensive list of all SHAP values, see Supplementary Fig. S8). Importantly, feature importance did not 84 

substantially change when filtering the data with a 1 Hz filter (Supplementary Fig. S7b; For an extensive 85 

list of all SHAP values, see Supplementary Fig. S9). Overall, the comparable performance of the models, 86 
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and the high degree of overlap in the ranking of the feature importance point to the robustness of the 87 

models. 88 

 89 

Exploratory analysis 3: Feature importance altered across arousal conditions.  90 

 The decoding analysis in known samples showed that we can predict MB instances from the 91 

combination of brain-body markers with adequate accuracy when MB instances were aggregated across 92 

different arousal conditions. We were further interested in whether this classification was achieved based 93 

on a universal mechanism, or whether we could detect arousal-dependent brain-body configurations that 94 

predict MB. To this end, we trained a balanced random forest classifier solely on data acquired from 95 

Baseline, from High, and from Low Arousal. We found that Baseline had the best performance (.67, [.65, 96 

.68]), followed by Low Arousal (.64, [.63, .65]), and finally High Arousal (.61, [.6, .63]). We retained 97 

comparable performance when examining the arousal partitions of the 1 Hz filtered dataset 98 

(Supplementary Table S6-7). Examining the SHAP values for each arousal state, we saw that the models 99 

relied on distinct feature domains. During Baseline, the model relied on markers from the frequency 00 

domain of EEG (Fig. 8a). During Low Arousal, MB classification was obtained using the delta band 01 

power, by far the most dominant marker (Fig. 8b). Finally, in High Arousal, the model did not rely on a 02 

single feature, rather in a combination of eye openness, GSR, and the frequency domain of EEG (Fig. 8c). 03 

Similar feature importances were observed in the 1Hz filtered dataset (Supplementary Fig. S10). 04 

However, in the 1 Hz filtered dataset, we observed that ECG features tended to rank higher 05 

(Supplementary Fig. S11-16). 06 

 07 

Exploratory analysis 4: Feature importance altered based on the pre-probe analysis window. 08 

 A potential caveat of utilizing the full pre-probe period of 110s before a report is that we might 09 

capture multiple mental states, and the actual statistical regularities might be weakened when averaged 10 

across. With this consideration, we examined whether we could improve classification performance when 11 

classifying MB from the last 10s before a report. We defined a secondary brain-body data matrix, with 12 

body features that could be estimated from 10s of body activity. Across both 0.1 and 1 Hz filters we 13 
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retained comparable performance in the classifiers trained on both EEG and bodily markers, as well as 14 

solely EEG or body markers (Supplementary Fig. S17-20; Supplementary Table S8-9). However, we 15 

observed decreased performance in the classifier trained solely in the eye openness data (Supplementary 16 

Table S8-9). An examination of feature importance showed that the beta, delta, and theta bands of the 17 

EEG frequency domains remained the most important EEG features, but there was a reduction in the 18 

importance of the EYE features and an increase in the importance of EDA (Supplementary Fig. 19 

S17b,18,19b,20). Importantly, our results were not affected by the choice of filtering parameters, 20 

indicating robustness of our results to preprocessing parameters.   21 

 22 

 23 

 24 

Discussion  25 

We used experience-sampling combined with EEG and peripheral physiological recordings under 26 

different autonomic arousal conditions to determine whether MB reports in neurotypical individuals were 27 

supported by distinct brain-body configurations compared to mental states with reportable content. 28 

Overall, our results show that MB is a mental state that becomes more prevalent in low and partially in 29 

high arousal states, and that MB is driven by both brain and body processes, providing evidence for an 30 

embodied account of MB. 31 

Behaviorally, we found that MB was reported at significantly lower rates compared to sensory 32 

experiences or MW, irrespective of the arousal condition. This finding is in line with past research 33 

showing that MB rates vary between 5-10% of total probe instances, across both uninterrupted thinking 34 

[12] and task engagement [11]. We also show that sleep deprivation significantly increases the frequency 35 

of MB occurrences. Sleep deprivation induces a low arousal state during which cognitive performance 36 

declines [67], metabolic and physiological processes change [68], and unique neuronal markers, such 37 

as slow-wave activity,  emerge [69]. After sleep deprivation, participants also tend to perform worse in 38 

sustained attention tasks [70], with results suggesting a true effect of sleep deprivation on more “misses” 39 

(no response when necessary) compared to “false alarms” (response when unnecessary) [71], a finding 40 
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that was recently shown as a behavioral correlate of MB [11]. Additionally, sleep deprivation and 41 

mounting sleep pressure were positively correlated with more MW instances [72, 73], suggesting an 42 

overall mode shift from task engagement to MW [74]. Our results challenge these past findings by 43 

showing that participants were more likely to blank than mind wander after sleep deprivation. We also 44 

show that MW was in fact more likely to decrease after sleep deprivation. This is further supported by the 45 

results of the transition matrix analysis, where MW reports were less likely to be followed by another 46 

MW report, and more likely to be followed by MB. Such discrepancies in the reportability of MW after 47 

sleep deprivation could be possibly explained by the explicit inclusion of MB as a reportable mental state 48 

in the experience-sampling that our design opted for. In other words, it might be that the observed MW 49 

occurrence increase after sleep deprivation could be accounted for by MB reports, once participants had 50 

the chance to opt between these two mental states in a more fine-grained way. 51 

In terms of high arousal induced by high-intensity exercise, our analysis did not reveal any 52 

significant effects on MB occurrences. As per the provided registered protocol alternative explanation 53 

(Supplementary Table 1), we hypothesized that this arousal manipulation might not have been overall 54 

effective as it could not produce effects that would last across the whole experience-sampling session. To 55 

test whether MB frequency reports would differ between the beginning and at the end of the session, we 56 

split the dataset into two parts. When split, we indeed found a significant difference between the 57 

frequency of MB reports. This result was replicated when considering only the first and last 10 trials per 58 

subject, which maximized the distance between initial and final physiological arousal within the session. 59 

However, we were not able to find any differences when the data were split into smaller bins. Together, 60 

we consider that these results provide partial evidence for our registered hypothesis, showing that residual 61 

high arousal effects after intense exercise can increase the frequency of MB reports.  62 

 In addition to the frequency of mental states across arousal conditions, we also examined whether 63 

report times differ across arousal conditions and mental states. In general, reports in low arousal tended to 64 

be the slowest, consistent with a wide range of attention tasks that show slower report times in sleep 65 

deprivation compared to baseline arousal [75]. We consider these findings as additional evidence that the 66 

arousal manipulation was effective in that it lowered overall vigilance levels. We also observed a main 67 
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effect of mental states, such that MB tended to be reported significantly slower compared to MW and 68 

SENS. Contrary to our current results, we recently found that MB was reported faster when compared to 69 

other mental states when content had to be evaluated [12]. This apparent mismatch in results can be 70 

explained when considering that MB can be a state devoid of content, and therefore, there is the binary 71 

consideration of “yes/no” when evaluating thought content, which might be a relatively fast decision. 72 

This can be different, for example, from the evaluation of content-full mental states, which demand a 73 

sequential evaluation of both content presence (“yes/no”) and content evaluation (“what is the content 74 

about?”). This way, the difference in results can be explained by the imposition of an additional cognitive 75 

evaluation. Overall, we suggest that these results might reflect a gradient of vigilance, with participants 76 

being the most alert at baseline arousal, and progressively declining during high and low arousal 77 

conditions, as well as more vigilant when reporting mental states with content compared to MB. Of note, 78 

we observed two interesting interactions between mental states and arousal conditions. MW tended to be 79 

reported slower in low arousal compared to baseline and high, which is consistent of our interpretation of 80 

reaction times as marking vigilant states. However, as we also observed that MB reports tended to be 81 

reported the slowest in both High and Low arousal conditions, we speculate that this might be preliminary 82 

evidence that arousal modulates how engaged participants are with their current mental states. In this 83 

sense, exercise fatigue can lead to an MB state that takes longer to recover from when probed for a report. 84 

A final explanatory analysis revolved around the relationship between sleep and MB. We recently 85 

posited that MB is a distinct mental state characterized by a unique phenomenological profile of no 86 

content [76], and unique neuronal markers, characterized by high cortical integration and low cortical 87 

segregation [12]. This neuronal configuration is atypical of wakefulness [77], and is more closely 88 

reminiscent of brain configurations during deep sleep [78]. In conjunction with the presence of slow wave 89 

intrusions during wakefulness as a marker of MB reports [11], a classic marker of NREM sleep, an 90 

emerging issue is whether MB is a misrepresented instance of sleep. This issue is further complicated by 91 

the postulation that in MB there is no content [76], and thus does not functionally represent a wakeful 92 

state where people can recover content. To avoid this pitfall, we introduced Sleep as a potential response 93 

during experience-sampling. We found that people discretely reported MB and sleep, providing evidence 94 
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that when provided with such options, people can differentiate between these two experiences. 95 

Additionally, we did not find that MB and sleep tended to covary. To strengthen this claim, we ran 96 

equivalence tests for each correlation across arousal conditions. However, no test showed a positive result 97 

for equivalence. Therefore, these results remain indeterminate, with a trend for no relationship between 98 

MB and sleep.  99 

Having established that MB occurrence varied across different physiological arousal conditions, we 00 

then examined whether MB could be decoded by brain and body markers. With the aim of showing single 01 

trial prediction, we trained different models on EEG and physiological signal markers from time, spectral, 02 

complexity, and connectivity domains. Overall, we were able to achieve above-chance-level 03 

classification, showing that there exist unique brain-body patterns that can discriminate MB reports from 04 

mental states with content. However, we were not able to show above-chance-level classification when 05 

training classifiers on unknown subjects. Therefore, our results are not generalizable to novel populations 06 

due to the high amount of variance between subjects. Of importance is the result that a combination of 07 

EEG and physiological markers marginally, but consistently outperformed both EEG and physiological 08 

markers. Overall, we observed an improvement of 2-5 % in classification performance in balanced 09 

accuracy. This improvement can be attributed to unique information inherent in body signals, as 10 

evidenced by the comparison of the classifier trained on both brain and body data compared to classifiers 11 

trained solely on brain data or brain and shuffled body data. The classifier trained on both brain and body 12 

data does not consider body features as noise or redundant. Overall, while our results suggest a high 13 

degree of overlap between brain and body information in MB, they indicate that information about MB 14 

extracted from the body is partially independent of the EEG features. Feature importance ranking derived 15 

from the decoding model indicates that the low and mid frequencies of the EEG power spectrum and 16 

metrics of eye openness are useful predictors of MB. This finding was consistent across analysis windows 17 

and preprocessing parameters. Importantly, all classifiers trained on body markers had above chance 18 

performance with variant degrees of variability, with the highest performing being the EYE (eye 19 

openness) and the ECG (heart-rate variability), providing evidence that MB can be decoded solely from 20 

bodily signals.  21 
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To further validate our protocol, we ran two exploratory analyses, with the aim to examine whether 22 

classification performance varies based on the analyzed pre-probe window and whether feature 23 

importance alters across arousal conditions (For a full Discussion, see Supplementary Discussion on 24 

Methodology). Overall, when examining a classifier trained on a brief 10s window before MB reports, we 25 

found comparable performance compared to the full 110s classifier. What was interesting was that while 26 

EEG performance remained the same, performance on classifiers trained solely on body features 27 

decreased. As brain-physiology coupling occurs at varying time delays across cardiac [79] and respiratory 28 

domains [80], we interpret these results as evidence that bodily contributions on MB are based on slow, 29 

oscillatory processes that might not be captured from examining short pre-probe periods. At the same 30 

time, our classification analysis on separate arousal conditions showed distinct brain-body configurations 31 

that can predict MB reports. As our decoding approach does not permit any inference of the directionality 32 

effect, or decomposing interactions within and across physiology modalities, at this stage we claim that 33 

our results point to discrete physiological pathways that elicit MB reports. Overall, we show that our 34 

enhanced classification is retained across different analysis windows and different arousal conditions. 35 

Similarly, enhanced classification when considering a brain-heart matrix compared to solely brain 36 

markers was also shown for patients with disorders of consciousness, where the inclusion of cardiac 37 

features outperformed classification based solely on EEG markers [81]. To our knowledge, our results are 38 

the first to extend multivariate decoding past the brain-heart axis and consider the inclusion of multiple 39 

unique bodily afferent sources in classifying mental states. The overall success of the brain-body 40 

decoding paradigm in classifying consciousness levels and mental states provides evidence that bodily 41 

information is not redundant and is not necessarily fully represented within brain dynamics. Instead, an 42 

embodied approach, stressing bidirectional information routes between brain and body can provide better 43 

predictive power and assist in more comprehensive generative, computational models of experience [34, 44 

82].  45 

A neurobiological explanation of our results comes from an integrative model about content, task 46 

engagement, and arousal which suggests that the relationship between thought and arousal can be 47 

conceptualized as an inverted u-curve. This means that an optimal arousal level modeled by LC-NE 48 
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firings is necessary to actively engage and control our thoughts, either during task engagement or MW 49 

[83]. This stance treats thought as an active task, where engagement is necessary for clear content and 50 

control of thought dynamics. As arousal tapers off to non-optimal levels of the inverted u-curve, we 51 

experience concurrent, opposing thoughts that serve exploratory purposes for optimal performance, such 52 

as exploring different strategies. This necessitates flexibility and malleability of content. We here suggest 53 

that our results supplement this model by providing an account of the extremities of the optimal u-curve. 54 

As the model suggests degradation of thought clarity when we move closer to arousal extremities, we 55 

consider MB reports as instances where no content can be clear or present, extending this unifying 56 

framework to the entire arousal u-curve. Neurophysiologically, this model has translated to investigations 57 

of pupil dilation, an index of LC-NE firing, as a function of mental state and task engagement with pupil 58 

size yielding both positive [26, 84] and null results [11] in discriminating on-task vs off-task mental 59 

states, as well as contrasting MB and MW. Part of the ascending arousal network, the LC modulates 60 

cardiac, galvanic, respiratory, and pupillary activity [28, 85]. In addition, the LC innervates projections 61 

responsible for eyelid openness [86]. The combinatorial high performance of different body markers in 62 

classifying MB reports, and the evidence that altered levels of arousal increase MB occurrences provide 63 

further support for the modulatory role of the ascending arousal system in mental states and thought 64 

reportability. 65 

 From a theoretic perspective, our study challenges the conception that brain information is 66 

uniquely suitable to understand thought reportability and provides support for an embodied account of the 67 

mind. Embodiment moves the seat of mental events away from the brain and reformulates cognition as 68 

resulting from brain-body interactions. An extensive literature has shown how cataloged cardiac, 69 

respiratory, gut, and pupillary effects on perception [30], action [87], metacognition [31] and 70 

consciousness [81], while the collective interplay of peripheral systems has discriminatory power for 71 

clinical [88] and consciousness classification [89]. We show here that within embodiment, the body is not 72 

only facilitatory but also might impede access to our mental lives. Under specific brain-body 73 

configurations, we are not able to clearly formulate mental content. 74 
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Some limitations pertain to our study. First, the nature of experience-sampling discretizes the 75 

continuous nature of ongoing thinking. As there is no consensus as to how long a mental state might last, 76 

or whether all mental states last the same length, results might average across different mental states. 77 

While we attempted to circumvent this problem by analyzing different pre-probe windows, it remains 78 

unclear whether all mental states last the same, and what is their actual duration. Secondly, the post-79 

exercise setup might be suboptimal in examining the effects of high arousal on ongoing cognition. 80 

Neuronal and electrophysiological recordings have shown that the duration of the effects of exercise on 81 

ongoing brain and physiological activity [45, 46, 47] is highly variant. In addition, it is unclear whether 82 

brain and body recover to baseline states at the same rates, potentially confounding the post-exercise 83 

importance of cortical and physiological markers in cognition. Experience-sampling with online probes 84 

during exercise could overcome this challenge.  85 

In conclusion, our study suggests that MB is an arousal-modulated mental state, with a unique 86 

cortical and physiological profile. We think that our results pave a new paradigm for an embodied 87 

account of mental states, where the phenomenology of our mental lives is expressed based on both our 88 

body and our brain state. At the same time, our results challenge the neurocentric approach to mental state 89 

research, putting emphasis on the constant brain-body interactions that shape our cognition. As MB 90 

research continues to evolve, we consider our findings elaborative for clinical and experimental accounts 91 

of the mind, where we move towards a complex and dynamic conception of our mind. 92 

 93 

Code Availability 94 

All codes to replicate the power analysis, the experience-sampling paradigm, and the present 95 

analysis can be found at https://gitlab.uliege.be/Paradeisios.Boulakis/mind_blanking_arousal. An 96 

archived version of the code at the time of submission can be found at 97 

https://doi.org/10.58119/ULG/174Q6G. 98 

 99 

Data Availability  00 
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The aggregated raw data in a BIDS format, the trained machine-learning models, experimental 01 

and analysis logs, and result dataframes can be found at  https://doi.org/10.58119/ULG/174Q6G. 02 

 03 

Protocol Registration 04 

The stage 1 accepted-in-principle protocol can be found at https://osf.io/sh2ye. The authors 05 

confirm that no data for the pre-registered study was collected prior to the date of AIP. 06 
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Figure 1. Experimental protocol. Top The experience-sampling task invited participants to sit idly and relax, letting their 

minds wander. Every 110-120s, a 500 Hz auditory cue probed participants to report what they were thinking at that moment.

Participants were able to choose from 4 presented responses: Mind-Blanking (MB), Mind-wandering (MW), Perceptual 

Sensations (SENS), and Sleep (SLEEP). Bottom Repeated-measures autonomic arousal recordings. To test how spontaneous

thoughts unfold over time across different arousal conditions, we first invited people for baseline assessments on Day 1 

(Baseline condition). On Day 2 participants underwent a 15-minute high-intensity exercise routine (High Arousal condition)

and on Day 3 they participated in a total sleep deprivation protocol (Low Arousal condition). The High and Low Arousal 

conditions were counter-balanced across participants. Multimodal physiological recordings were used to monitor arousal 

manipulations.  The dataset was constituted of EEG, pupillometry, ECG, EDA, and respiratory data; the arrows indicate the 

hypothesized directions of the derived metrics. 
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Figure 2. Mind-blanking (MB) was reported significantly less frequently compared to mind-wandering (MW) and Sensations

(SENS) across all arousal conditions, validating what is generally reported in the literature. Density kernels show overall data

dispersion and clustering trends. Point plots are individual subject estimates. Boxplots show medians and interquartile ranges

while whiskers indicate extreme values and diamonds indicate outliers. 

Figure 3. The frequency MB reports altered across the three arousal conditions. a) Mind-blanking (MB) report probability 

increased in Low Arousal (after sleep deprivation) compared to High Arousal (after intense exercise) and Baseline. Density 

kernels indicate overall data dispersion and clustering trends. Point plots represent participants’ MB report probabilities. 

Boxplots indicate medians and interquartile ranges, whiskers indicate extreme values, and diamonds indicate data outliers. b-d

Barplots denote single-subject marginal means, comparing MB reports across arousal conditions. Compared to Baseline, ther

was no significant change during High Arousal (b). However, there was a visible trend favoring an increased probability of 

MB reports in the Low Arousal condition compared to baseline and High Arousal, signifying that the effect was present in 

most participants (c-d). 
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Figure 4. Mental states had different report times depending on arousal conditions. a) Reaction times at Baseline arousal wer

reported the fastest, followed by High (after exercise) and Low Arousal (after sleep deprivation), collapsed across all mental

states. Pointplots show individual subject estimates. Boxplots show medians and interquartile ranges, while whiskers show 

extreme values. b) Mind-wandering (MW) was reported the fastest, followed by Sensations (SENS) and mind-blanking (MB)

collapsed across all arousal conditions. Pointplots show individual subject estimates. Boxplots show medians and interquartil

ranges, while whiskers show extreme values. c-e) Interaction between arousal condition and mental state report times: MW 

was reported the slowest in Low Arousal compared to Baseline and High Arousal, while MB was reported the slowest in the

Low Arousal and High Arousal conditions compared to Baseline. 
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Figure 5. After sleep deprivation (Low Arousal), participants were more likely to transition from mind-wandering (MW) to 

mind-blanking (MB) compared to the condition of physical exercise (High Arousal). Additionally, participants were less likel

to transition to MW. Arrows indicate the direction of the mental state transition. Bold font indicates statistical significance 

(FDR corrected). 

 

Figure 6. Classification performance was above chance level when mind-blanking (MB) reports were pooled across subjects

but not after training on a subset of participants and classifying the remaining subset. a) A balanced random forest classifier 

provided the highest classification performance across all examined classifiers including known subjects. b) An isolation fores

classifier provided the highest classification performance across all examined classifiers on unknown samples. However, due

to the high variance, we could not consider it meaningful. Individual points indicate performance on the folds of the repeated

cross-validation. Results are ordered based on descending order of performance. Chance level performance is indicated by the

Dummy classifier. RF = random forest; SVM = support vector machine; ET = extreme trees; IF = isolation forest; OC SVM =

one-class support vector machine. 
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Figure 7.  Classification of MB improves when considering both BRAIN and BODY.  A balanced random forest classifier 

trained on a combination of BRAIN and BODY features outperformed classifiers trained solely on BRAIN or BODY feature

when evaluated with balanced accuracy. Individual points indicate performance on the folds of the repeated cross-validation.

b) Subset of the 10 features with the highest mean of the absolute SHAP values obtained from the balanced random forest 

classifier. c) The per-fold differences between the classifier trained on both BRAIN and BODY features and the one trained 

only on BRAIN data suggest that incorporating both feature domains provides a slight performance improvement over using

BRAIN data alone. The shaded region indicates better performance for the classifier trained on both feature domains. The sta

indicates the mean difference. The solid, horizontal line represents the 95% highest-density intervals of the distribution. Red

dots indicate per-fold differences. d) The per-fold differences between the classifier trained on both BRAIN and BODY 

features and the one trained on BRAIN and shuffled BODY data suggest that the model with both BRAIN and BODY data 

does not consider the body markers as noise. 
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Figure 8. Ranking of features by mean absolute SHAP value extracted from the balanced random forest classifier varied acros

different arousal conditions. a) Magnitude of SHAP values for a balanced random forest classifier trained on MB reports 

collected during the Baseline Arousal condition. The model relied mostly on features from the EEG frequency domain. b) 

Magnitude for SHAP values for a classifier trained on MB reports collected during the Low Arousal condition (after sleep 

deprivation). The model mostly used spectral power in the EEG delta band. c) Magnitude for SHAP values for a classifier 

trained on MB reports collected during the High Arousal condition (after intense exercise). The model relied mostly on 

features from eye openness, EDA, and the EEG frequency domain. 
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Table 1. A balanced random forest classifier outperformed all classifiers when compared across balanced accuracy. 
Cells indicate mean and 95% CI. 

Examined Classifier Recall Precision F1 ROC AUC Balanced Accuracy 

Known Subjects Balanced RF .62, [.6, .64] .26, [.26, .27] .37, [.36, .37] .71, [.7, .72] .66, [.65, .67] 

 SVM .29, [.28, .31] .28, [.27, .29] .29, [.27, .3] .62, [.61, .63] .58, [.58, .59] 

 ET .16, [.15, .17] .61, [.58, .64] .25, [.23, .26] .73, [.72, .74] .57, [.56, .58] 

 RF .14, [.13, .15] .57, [.53, .6] .22, [.21, .23] .71, [.7, .72] .56, [.56, .56] 

 IF .14, [.13, .16] .2, [.19, .22] .17, [.15, .18] .52, [.52, .53] .52, [.52, .53] 

 OC SVM .89, [.86, .92] .15, [.14, .15] .25, [.25, .25] .51, [.5, .51] .51, [.5, .51] 

 DUMMY .14, [.13, .15] .14, [.13, .15] .14, [.13, .15] .5, [.49, .5] .5, [.49, .5] 

       

Unknown Subjects Balanced RF .46, [.41, .51] .18, [.16, .2] .25, [.23, .27] .55, [.53, .57] .54, [.53, .56] 

 IF .23, [.19, .27] .18, [.16, .2] .19, [.17, .22] .53, [.51, .54] .53, [.51, .54] 

 RF .05, [.04, .06] .36, [.29, .44] .08, [.06, .09] .54, [.52, .55] .51, [.51, .52] 

 OC SVM .87, [.82, .92] .14, [.13, .15] .24, [.22, .26] .51, [.5, .52] .51, [.5, .52] 

 ET .03, [.02, .03] .36, [.26, .45] .05, [.04, .06] .53, [.52, .55] .51, [.5, .51] 

 DUMMY .15, [.14, .16] .15, [.13, .17] .14, [.13, .16] .5, [.49, .51] .5, [.5, .51] 

 SVM .2, [.17, .22] .16, [.14, .17] .16, [.15, .17] .49, [.47, .5] .5, [.49, .51] 

RF = Random Forest; SVM = Support Vector Machine; ET = Extreme Trees; IF = Isolation Forest; OC SVM = One-Class Support Vector Machine 

Table 2. A classifier trained on a combination of BRAIN and BODY features outperformed classifiers trained solely on 
BRAIN or BODY features, when evaluated with balanced accuracy. Cells indicate mean and 95% CI. 

Classifier Recall Precision F1 ROC AUC Balanced Accuracy 

BRAIN + BODY .62, [.6, .64] .26, [.26, .27] .37, [.36, .37] .71, [.7, .72] .66, [.65, .67] 
BRAIN .61, [.59, .62] .24, [.24, .25] .35, [.34, .36] .7, [.69, .71] .65, [.64, .65] 
BODY .59, [.58, .6] .22, [.21, .22] .32, [.31, .32] .66, [.66, .67] .61, [.61, .62] 
EYE .57, [.55, .59] .21, [.21, .22] .31, [.3, .32] .64, [.63, .65] .61, [.6, .62] 
ECG .55, [.54, .57] .18, [.17, .18] .27, [.26, .27] .58, [.57, .59] .56, [.55, .57] 
EDA .6, [.57, .63] .17, [.17, .17] .26, [.26, .27] .57, [.56, .58] .55, [.54, .56] 
RSP .52, [.5, .54] .15, [.15, .16] .24, [.23, .24] .53, [.52, .54] .52, [.51, .53] 
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