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Abstract

Mind-blanking (MB) is the inability to report mental events during unconstraint thinking. Previous
work shows that MB is linked to decreased levels of cortical arousal, indicating dominance of cerebral
mechanisms when reporting mental states. What remains inconclusive is whether MB can also ensue from
autonomic arousal manipulations, pointing to the implication of peripheral physiology to mental events.
Using experience-sampling, neural, and physiological measurements in 26 participants, we first show that
MB was reported more frequently in low arousal conditions, elicited by sleep deprivation. Also, there was
partial evidence for a higher number of MB reports in high arousal conditions, elicited by intense physical
exercise. Transition probabilities revealed that, after sleep deprivation, mind-wandering was more likely
to be followed by MB and less likely to be followed by more mind-wandering reports. Using
classification schemes, we show higher performance of a balanced random forest classifier trained on
both neural and physiological markers in comparison to performance when solely neural or physiological
were used. Collectively, we show that both cortical and autonomic arousal affect MB report occurrences.
Our results establish that MB is supported by combined brain-body configurations, and, by linking mental

and physiological states they pave the way for novel, embodied accounts of spontaneous thinking.

Keywords: mind-blanking, experience-sampling, brain-body interactions, machine-learning, spontaneous

thinking
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I ntroduction

During ongoing mentation, our mind constantly shifts across different mental states. These mental
states typically bear some content (“what we think about”) and indicate a relationship towards that
content (i.e., perceiving, fearing, hoping, remembering) [1]. As we move through the environment, our
thoughts fluctuate between the external and internal milieu [2, 3], resulting in a fluid stream of
consciousness [4]. External content is tightly coupled to the processing of environmental stimuli and task-
demanding conditions. Internal content is more associated with self-referential processing and internal
dialogue, widely known as Mind-Wandering (MW) [4]. Inclusive as this external-internal dipole may
seem, it does not capture the full scope of the “aboutness” of mental content. Recent work has highlighted
another mental state, where people report that they are “thinking of nothing” or “their mind just went
away”, a phenomenological experience termed mind-blanking (MB) [5]. As MB is relatively new in the
landscape of ongoing cognition, the extent of MB episodes in daily and clinical settings remains widely
uncharacterized. For example, a recent study found that MB might be miscategorized as MW in ADHD
symptom evaluation [6]. Therefore, the experience of MB occurrences poses a challenge to our everyday
functioning and our understanding of the continuous nature of the stream of consciousness.

Currently, there is no clear answer as to how MB reports are generated. So far, behavioral studies
show that MB can arise after conscious mental effort to empty our mind [7, 8, 9], is usually unintentional
[5, 10, 11] and gets reported less frequently during unconstrained thinking compared to MW and
sensory/perceptual mental states [5, 11, 12, 13]. At the brain level, the inability to report mental events
after the prompt to “empty the mind” has been associated with activation of the anterior cingulate/medial
prefrontal cortex, and deactivation of inferior frontal gyrus/Broca's areas and the hippocampus, which the
authors interpreted as the inability to verbalize internal mentation (inner speech) [8]. Recently, we found
that the functional connectome of fMRI volumes around MB reports was similar to a unique brain pattern
of overall positive inter-areal connectivity [12] which was also characterized by increased amplitude of
fMRI global signal (i.e. averaged connectivity across all grey matter voxels), an implicit indicator of low
arousal [14, 15, 16]. For example, the amplitude of the global signal correlated negatively with EEG

vigilance markers (alpha, beta oscillations), while increases in EEG vigilance due to caffeine ingestion


https://doi.org/10.1101/2024.03.26.586648
http://creativecommons.org/licenses/by/4.0/

78

79

30

31

32

33

34

35

36

37

38

39

30

1

32

33

24

35

26

37

38

29

)0

)1

)2

)3

)4

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.26.586648; this version posted October 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

were associated with reduced global signal amplitude [14]. Our findings corroborate recent EEG-related
evidence supporting the possibility of “local sleeps” during MB reportability [10, 17]. “Local sleeps”
refer to the scalp distribution of EEG potentials during wakefulness, in the form of high-intensity, slow
oscillatory activity in the theta/delta band, which could differentiate between MB and MW, with more
frontocentral potentials tied to MW and parietal to MB [10]. Together, the presence of slow waves
preceding MB reports and the high fMRI global signal hint toward the role of arousal in mental content
reportability. Starting from this line of evidence, we generally infer that arousal fluctuations drive MB
reportability.

Arousal is a multidimensional term generally referring to the behavioral state of being awake and
alert, supporting wakefulness, responsiveness to environmental stimuli, and attentiveness [18, 19].
Anatomically, arousal is supported by the ascending arousal system, the autonomic nervous system, and
the endocrine system [18]. Early on, Lacey viewed arousal in terms of behavioral arousal (indicated by a
responding organism, like restlessness and crying), cortical arousal (evidenced by desynchronized fast
oscillatory activity), and autonomic arousal (indicated by changes in bodily functions) [20]. Cortical
arousal is self-generated through the reticulate formation and propagated through dorsal, thalamic, and
ventral subthalamic pathways [21], and can be indexed by the alpha, theta, and delta EEG bands during
wakefulness [22, 23]. Lower levels of cortical arousal in the form of slow waves have been associated
with an increased number of missed stimuli in behavioral tasks [11, 23] and decreased thought intensity
[24]. Also, lower levels of arousal indexed by pupil size have been correlated with a higher probability of
MB reports in sustained attention tasks [11, 25, 26].

Much as it may have been done in terms of cortical arousal, the present study will focus on how
autonomic arousal influences MB reportability, which is widely understudied. Our choice is justified by
the theoretical assumption that mental function is tightly linked to peripheral body functions, explicitly
expressed by the embodied cognition stance [27]. Briefly, embodiment holds that cognition is bound to a
living body interacting with a dynamic environment and conceptualizes cognition as the result of brain-
body interactions during dynamic contexts. From that perspective, modifications in autonomic arousal are

expected to lead to differential reportability of mental states. Autonomic arousal links the body and the
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brain through spinal cord projections from peripheral organs to the brainstem and can be indexed by
physiological signals reflecting sympathetic/parasympathetic balance, such as heart rate, galvanic skin
response, and fluctuations in pupil size [28]. Converging evidence suggests that afferent physiological
signals and biological rhythms, such as the cardiac or the respiratory phase, play a modulatory role in
conscious perception [29, 30], metacognition [31], affective salience of information [32], and perceptual
confidence of sensory sampling [33], both during task performance and in-silico simulations [34].
Alterations in autonomic arousal were also found to influence brain activity in that fMRI volumes
characterized by lower arousal levels (indexed by decreased pupil size), showed reduced in-between
network integration and inter-subject variability in comparison to scans characterized by high arousal
levels (indexed by increased pupil size) [35].

Taken together, we here advocate for a direct link between autonomic arousal and content
reportability. Firstly, we examined how MB report distribution shifted across different autonomic arousal
conditions. To this end, we used experience-sampling under differently elicited arousal conditions.
Experience-sampling is a though-sampling methodology, where people are probed to report their mental
state at random intervals, probed by an external cue [4]. We employed this task at three distinct arousal
conditions: Baseline, High (post-workout), and Low (post-sleep deprivation). Our operational hypothesis
was that optimal levels of autonomic arousal (fixed variable) are necessary for optimal mental state
reportability (dependent variable). We expected that deviations from optimal levels, such as after sleep
deprivation or intense physical exercise, would alter our stream of thought, therefore promoting more
frequent MB reports (Supplementary Table S1 for the full scope of our hypothesis). Secondly, we opted
to identify specific brain-body interaction patterns that would promote MB reportability. To this end, we
utilized multimodal neurophysiological recordings and a machine-learning approach to decode MB

reports from arousal measurements.


https://doi.org/10.1101/2024.03.26.586648
http://creativecommons.org/licenses/by/4.0/

32

33

34

35

36

37

38

39

10

11

12

13

14

15

16

17

18

19

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.26.586648; this version posted October 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Methods

Ethics Information

The experimental procedure has been approved by the CHU Liege local ethics committee and
conforms with the Declaration of Helsinki and the European General Data Protection Regulation
(GDPR). Before the onset of the protocol, participants provided informed consent for their participation

in the study. Participants also received monetary compensation for their participation in the study.

Design

The study included healthy volunteers recruited after campus poster advertisements, intranet
electronic invitations, and through the ULiége “petites annonces” e-campus platform. Inclusion criteria
were: a) right-handedness, b) age>18 years, ¢) minimal exercise background (<2h per week), d) good
subjective sleep quality (Pittsburgh Sleep Quality Index [PSQI] <5 [36]), e) habitual sleep duration of 8 +
1 hours. Exclusion criteria were: a) history of developmental, psychiatric, or neurological illness
resulting in documented functional disability, b) severe anomalies in pupil shape or inability to open both
eyes preventing pupil measurement [37], c) analgesic medication which may affect physiological arousal,
d) history of psychiatric illness pertaining to anxiety disorders or scores < 9 in the General Anxiety
Disorder-7 (GAD-7 scale) [38] as anxious participants experience biased perceptions of their bodily states
[39], e) extreme chronotypes, f) shift work or traveling over time zones in the past 3 months.

Experience-sampling was utilized in a within-participants repeated-measures design. During the
experience-sampling session, participants laid restfully and were directed to let their minds wander,
without any specific instructions towards internal (daydreaming, memories, prospective events) or
external thoughts (body sensations, sensory stimuli in their immediate environment). Auditory probes
(total n=40, 500Hz simple tones) invited participants to report what they were thinking at the moment just
preceding the probe. The inter-probe interval was sampled from a uniform distribution between 110 and
120 seconds. Report times were monitored online to examine if participants missed the probe or fell

asleep due to our experimental manipulation. In case of a report time > 6s, participants were reminded to
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report their mental state as soon as they heard the probe and indicate they were awake via button press. In
case of unresponsiveness, the experimenters manually awakened the participant. Depending on the
probes’ trigger times and participants' reaction times, a recording lasted on average 70-90 minutes. We
chose to present 40 probes (overall length approximately 1h and 15min) to avoid fatigue/drowsiness and
the possibility of participants returning to baseline arousal after the experimental manipulations. Also, the
relatively large experience-sampling interval, compared to previous studies, was used to record enough
samples to accurately estimate physiological markers from slow oscillatory signals, such as heart-rate
variability. Upon the probe, participants had to choose among four distinct choices describing their
mental state: mind-blanking (MB), mind-wandering (MW), perceptual sensations (SENS), or sleep
(SLEEP). These response options were chosen to minimize assumptions about what the actual partitions
of mental states might be. For example, debates about what can be classified as MW [40] refer to
whether MW is a coherent cluster of events [1, 41] and how it is separated from awareness and
processing of environmental stimuli [40, 42]. We believe that our divisions respect the literature on
internal/external thinking networks [3, 43, 44] while introducing minimum assumptions as to the actual
content of each state. The introduction of the sleep option facilitated the identification of trials where
participants fell asleep due to the experimental manipulation. Participants indicated their responses via
button press from a response keyboard placed under their dominant hand. We repeated the experience-
sampling task on three distinct days, over the span of two weeks under three conditions: a) experience-
sampling under spontaneous thinking without arousal modulations (Baseline), b) experience-sampling
elicited through short, high-intensity interval training (High Arousal), ¢) experience-sampling after total
sleep deprivation (Low Arousal) (Fig. 1). The goal of both arousal manipulations was to promote distinct
changes in physiological and cortical markers associated with arousal mechanisms (Supplementary Table
S2). Monitoring of arousal changes was done with physiological and cortical measurements. In case when
participants did not show distinct cortical and physiological changes after our arousal manipulations, they
were excluded from further analysis. Effect monitoring was done by examining the heart rate in High

Arousal as well as the EEG spectra in both High and Low Arousal.
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In High Arousal, participants first performed high-intensity interval activity in the form of cycling.
They started with a warm-up training session of 3 minutes to avoid potential muscle trauma and then
cycled for 45 seconds as fast as possible. A resting period of 15 seconds followed. A total number of 10
workout cycles was administered. The choice of this timing protocol rested on previous studies
indicating that similar exercise routines produce distinct and sustained sympathetic activity [45, 46] and
cortical excitation [46], which can last between 30-90 minutes after exercise cessation[47].

In Low Arousal, participants performed the experience-sampling task after one night of total sleep
deprivation. Sleep deprivation leads to an arousal state that is behaviourally distinct from typical
wakefulness [48, 49], promotes specific neuronal signatures (“local sleeps” in the delta band) [11], and
has a distinct physiological expression. Critically, we do not wish to claim that sleep states are identical to
“local sleeps”, nor do we suggest an overlap between low arousal due to sleep deprivation and
unconsciousness during sleep. To acquire estimates of their mean sleep schedule, participants wore an
actimeter for one week before the total sleep deprivation protocol (Supplementary Fig. S1; available for
24/26 subjects due to data corruption). The total sleep deprivation protocol was as follows: A week prior
to sleep deprivation, participants were provided with an actimetry device to track wake-sleep schedule,
and were instructed to follow a consistent 8-hour sleep schedule. On the deprivation day, participants
arrived at the lab one hour before their normal sleep time to extract their actimetry baseline data, estimate
the optimal sleep deprivation window, and to provide baseline vigilance, drowsiness, and sleepiness
measurements. After a total sleep deprivation of 26h (16h of typical wakefulness, 8h of sleep deprivation,
and a 2h post-sleep deprivation period) participants began the post-sleep deprivation, experience-
sampling session. As an example, a participant who typically slept at 12 am would arrive at the lab at 11
am, start sleep deprivation at 12 am, finish sleep deprivation at 8 am, and perform the experience-
sampling task at 10 am. Should slow-wave activity during wakefulness follow the same circadian
modulation it follows during sleep [50], a potential confound that could have lowered the power of our
analysis is the time-window of the experience-sampling task. However, as suggested in [50], the relative
time-window we have selected did not fall under a critical point of large reductions in the amplitude of

the slow-waves. The 2-hour, post-deprivation waiting window allowed us to match the time of the
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experience-sampling across the 3 conditions, avoiding potential circadian confounds on experience-
sampling, as we could easier match sleep-wake cycles and the time of the experience-sampling within
each participant. We have chosen this sleep manipulation as similar manipulations have been previously
used to examine the effects of sleep pressure [51, 52], and have been shown to elicit distinct low-arousal
cortical profiles [53, 54], as well as changes in the sympathetic/parasympathetic balance [55].

Sleep deprivation was controlled with regard to light influence (illuminance = 15 lux during
wakefulness and 0 lux during sleep), caloric intake (standardized meals every 4 h), and body posture
(semi-recumbent position during scheduled wakefulness) to minimize potential masking effects on the
sleep-wake regulatory system. Participants were not allowed to stand up except for regularly scheduled
bathroom visits and did not have any indications of the time of the day. The experimenters continually
monitored participants to keep them awake. In case of a sleep event, the experimenters first tried to
awaken the participant through an intercom, and in case of failure, they manually awakened the
participant. We also monitored for sleep lapses through the experience-sampling tasks. In case
participants closed their eyes for a time period of < 30 seconds, they were probed by a tone to wake up. If
they did not, the experimenter in the room would awaken the participant.

A one-week interval took place between sleep deprivation and further recordings in order to minimize
potential carry-over effects of sleep deprivation on our follow-up conditions. In that way, the participants’
sleep schedules will also reset to their respective normal cycles. The order of the three arousal conditions
was randomized. As a post-registration note, we randomized only the order of sleep deprivation and post-
exercise, to add a training session before the baseline that allowed participants to get acquainted with the
protocol, without external task impositions that might confound protocol understanding.

Sampling Plan

We used a Neyman-Pearson frequentist approach to balance false-negative and false-positive rates by
setting power to 95% and establishing a Type | error rate (alpha) of 5%. To estimate the desired sample
size, a simulation approach was utilized: data were generated consistent with a latent binomial regression
model, in which one categorical predictor with 3 levels (Base, High, Low) predicted a binary outcome Y

(presence of MB or not). An original probability pms = 0.1 was specified as the underlying generative
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probability in the baseline model based on previous research [5, 11, 12]. We allowed the random
intercepts and slopes to freely vary around a normal distribution with a standard deviation of s.d. = 0.1.
Given that no previous study to our knowledge has provided evidence for the distribution of the effect
sizes of arousal on mental reports, and to account for possible reverse effects (such as decreased MB
report probability), we reasoned that a meaningful yet conservative effect for the Low Arousal condition
would be an odds ratio of 1.6 and an odds ratio of 0.55 for the High Arousal condition. Since our initial
hypothesized distribution is expected to yield ~3-5 MB reports per session [11, 12], this effectively
translates to a small effect size of interest of at least 3 more reports across conditions.

Considering these parameters, for each population sample, ranging from 5 to 50 participants, we
sampled 500 datasets, and fit a binomial model with the participant ID as random factors, keeping the
regression coefficients for the levels of the predictor constant. Based on the simulation analysis, using a
false positive threshold of .05, we calculated a sample size of 26 participants to achieve a power of .95

(Supplementary Fig. S2).

Data Analysis
Behavioral data

Statistical analysis was performed using generalized linear mixed-effects models. To address whether
arousal affects MB occurrence, we used a binomial, linear model with arousal as a categorical
independent variable, and the proportion of mental reports across a sampling period (40 trials) as our
dependent variable. Data were binary coded (presence or not of MB report) and fit into the model using a
“logit” link. Given that the underlying distribution was unknown, a Bernoulli generative process
minimized the assumptions about the model. In order to examine whether the multinomial distribution of
mental reports itself changes across different arousal conditions, we used the generalized estimating
equations (GEE) approach, an extension of generalized mixed-effects models that can account for
correlated, repeated-measures count data from multinomial distributions [56, 57]. Mental reports were
aggregated as counts across participants and conditions, and we examined shifts in report time

distribution using the three experimental arousal conditions as predictors. We considered as report time

10
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the interval between the response probe and the participant's report. To examine report times as a function
of mental states, we specified a generalized linear mixed-effect model with mental reports and arousal
conditions as categorical variables and used a gamma distribution with an “inverse” link function. As
reaction times are usually an indicator of arousal effects on the task performance, an effect of arousal
condition as a covariate might be informative about a potential shift of the overall slower mental report
times distribution and about the arousal condition of the subject itself. The choice of the distribution and
the link minimizes assumptions about the model, respects the positive, skewed distribution of reaction
times, and was previously found to provide a better fit compared to other link functions [58]. To examine
whether arousal shifts the dynamics of mental reports, i.e. one state might be more likely to be followed
by MB in one of the arousal states compared to Baseline, we estimated dynamical transition probabilities
across different mental states using Markov models. The transition probabilities for MB were then
compared using a linear model with an identity link, with the transition probabilities as the dependent
variable and the arousal condition as the categorical, independent variable.

All specified models were compared against null models using likelihood ratio tests. We introduced
the participant’s ID as a priori random factor, i.e., we allowed the model's intercept to vary. In case of
multiple models compared, p-values were corrected using Bonferroni correction. In case of significance
of a fixed predictor, we used corrected pairwise comparisons to examine the marginal means of the

predictors.

Brain-based measures

Physiological and cortical timeseries were segmented based on the response probe time. We
considered the 110-second period before the response probe as a meaningful analysis epoch, representing
the neuronal and physiological dynamics that result in a specific mental state. This period was used in
subsequent analyses.

We recorded EEG with an EasyCap (64 active electrodes) connected to an actiCHamp system (Brain
Products GmbH) using the 10-20 standard configuration. A ground electrode was placed frontally (Fpz in

the 10-20 system). Online, we referenced the electrodes to a frontal electrode. Impedance was kept below
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20 kQ. As a post-registration note, we originally registered to keep impedance below 10 kQ. However,
we leveraged the strength of active electrodes and used the research standard of 20 kQ. To minimize
impedance, we used conductive gel. Data were sampled at a sampling frequency of 500 Hz.
Preprocessing included band-pass filtering (0.1 Hz-45 Hz, FIR filter), notch filtering (50Hz), and epoch
definition (t_start = 110s preceding the probe, t max= probe). As a post-registration note, during EEG
preprocessing, we observed low-frequency (<1 Hz) artifacts, such as sweat during the post-exercise
session, that contaminated the quality of the signal. Therefore, we decided to reanalyze our data using a 1
Hz high-pass filter to minimize the presence of those artifacts. By visual inspection, we checked and
removed noisy electrodes and epochs. In case of discarding more than 50% of the total epochs for a single
participant, that participant was discarded from future analysis. We then used ICA decomposition to
remove non-neuronal components such as blinks, heartbeats, muscle artifacts, etc. Finally, channels
removed due to rejection were interpolated using neighboring channels, and all channels were re-
referenced to the average.

Based on EEG recordings, we estimated three classes of measures: 1) measures estimating spectral
power - raw and normalized power spectra, Median Spectral Frequency (MSF), spectral edge 90 (SEF90),
and spectral edge 95 (SEF95), 2) measures estimating information content — spectral entropy,
Kolmogorov-Chaitin complexity (K) and Permutation Entropy, and 3) measures estimating functional
connectivity — Symbolic Mutual Information and weighted Symbolic Mutual Information. Power
spectrum density (PSD) was computed over the delta (1-4 Hz), theta (4-8 Hz) alpha (8-12 Hz), beta (12-
30 Hz), gamma (30-45 Hz) spectral bands, using the Welch spectrum approximation (segments = 512 ms,
overlap = 400ms). Segment rejections were windowed using a Hanning window and zero-padded to 4096
samples. Kolmogorov-Chaitin complexity was computed by compressing a discretization of the signal
using a histogram approach with 32 bins. Permutation Entropy was obtained by computing the entropy of
a symbolic transformation of the signals, within the alpha, delta, and theta bands. SMI and wSMI were
then computed from the same symbolic transformation, but data was first filtered using Current Source

Density estimates to diminish the volume conduction. SMI and wSMI were computed in theta, delta, and
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alpha bands [59]. From the available connectivity metrics, we chose to use only wSMI as it is the only

one that can detect purely nonlinear interaction dynamics and can be computed for each epoch [60].

Physiological measures

Electrocardiogram (ECG) data were acquired using the BIOPAC MP160 system (BIOPAC

SYSTEMS Inc.), amplified through the BIOPAC ECG100C amplifier. The data were sampled at a
sampling frequency of 2kHz and recorded using the AcgKnowledge v4.4 software. ECG disposable
adhesive skin electrodes were used in a bipolar arrangement of two electrodes and ground. The positive
electrode was at the non-dominant wrist of the participant and the negative was on the contralateral ankle.
The ground electrode was placed on the ipsilateral ankle.

ECG data were filtered with a notch filter (0.05 Hz) to remove baseline wander artifacts. A
Butterworth high-pass filter was applied (0.5 Hz) to attenuate linear drifts and physiological artifacts.
Powerline interference was attenuated with a notch filter (50 Hz). Finally, the data were smoothed with a
3"-order polynomial Savitzky-Golay filter. Peaks were detected using the native Neurokit2 algorithm.
Finally, data were epoched based on the partition scheme in the EEG preprocessing section.

ECG metrics were grouped into three domains: time, spectral power, and information content. Time-
domain metrics were a) the Heart Rate (HR), b) the standard deviation of the RR intervals (SDNN), and
c) the Root Mean Square of Successive Differences (RMSSD). Spectral power features were a) the Low
Frequency of the Heart Rate Variability (LF-HRV), b) the High Frequency of the Heart Rate Variability
(HF-HRV), and c) the LF/HF HRV ratio. Information content metrics were a) Approximate Entropy
(AE), b) Sample Entropy (SE), and c) Multiscale Entropy (MSE). Initially, the native Neurokit2
algorithm to extract the peaks of the QRS complex. RR intervals were estimated as the sequential
difference of the peak times. We estimated the time domain features based on the RR timeseries. For the
spectral power metrics, the RR was evenly resampled at 4 Hz. Power spectra were computed over the LF-
HRV (0.04-0.1571Hz) and the HF-HRV (0.15-0.4) bands. The power spectrums were estimated using the

Welch procedure.
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Respiration. Respiratory data was acquired using a respiratory belt and amplified through the
BIOPAC amplifier. Data were sampled at a sampling frequency of 2 kHz and recorded using the
AcgKnowledge v4.4 software.

Respiratory metrics were grouped in the time and information content domain. Time-domain metrics
were a) respiration rate and b) respiration rate variability. Information content was estimated based on

multiscale entropy.

Pupillometry. Eye movements and pupil size in both eyes were recorded using oculometric glasses
(Phasya recording system) with a sampling frequency of 120 Hz. The eye tracker was calibrated at the
start of each recording. Data was epoched based on the epoching scheme in the EEG preprocessing
section. We identified 100ms blink periods around blinks and removed the whole segment, as pre- and
post-blink periods can introduce pupil dilation artifacts while the eye is recovering to its standard size.
We interpolated segments using 3"-degree cubic interpolation. Dilation speed outliers were calculated by
estimating the median absolute deviation (MAD) of each value. Samples exceeding the deviation
threshold were removed. Pupil dilation was smoothed using a moving average filter and baseline-
corrected with a 100ms period 2s after the probe.

Pupil metrics were grouped in the same three domains: time, spectral power, and information content.
Time-domain metrics were: 1) Blink rate, 2) Pupil size, and 3) Pupil size variability. Spectral power
metrics were: 1) Low-Frequency Pupil Component (LFC), 2) High-Frequency Pupil Component (HFC).
The information content metric is MSE. The power spectra were estimated using the Welch procedure. As
a post-registration note, we encountered issues extracting pupil metrics at the Low Arousal condition, as
participants tended to have their eyes closed or partially closed for most of the trials. As our device was
not sensitive to capture dilation in this setting, we additionally estimated a) Blink Rate, b) Blink Duration,
¢) Blink Rate Variability, d) Mean Eye Openness, e) Eye Openness Variability, f) Percentage of 70% Eye
Closure and g) Percentage of 80% Eye Closure. As stated below, our registered plan was to reliably

estimate all time, frequency, and complexity metrics that can be of use to our classifiers. Therefore, while
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we do not deviate from our original registered protocol, it is of note that these features could not be

estimated reliably.

Electrodermal activity (EDA) data was acquired through skin electrodes on the index and middle

finger and amplified through the BIOPAC amplifier. Data was sampled at a sampling frequency of 2k Hz
and recorded using the AcqKnowledge v4.4 software. All EDA metrics originated from the time domain:
a) Galvanic Skin Response (GSR), b) tonic EDA, and c) phasic EDA. Extraction of the phasic and tonic
components of the EDA was conducted with deconvolution of the EDA signal with a biologically
plausible impulse response function with initially fixed parameters that are iteratively optimized per

participant [61].

Pattern recognition

To examine the physiological counterpart of the behavioral shifts in MB reports, we employed a
supervised decoding approach. Using the multimodal neurophysiological measurements during the three
experience-sampling sessions, we trained multiple classifiers to discriminate across MB, MW, and SENS
reports, to identify whether MB is supported by a unique brain-body interaction pattern. This approach
allowed us to extract meaningful brain-body interactions from the proposed arousal metrics without being
conservative about the nature of the multiple comparisons between the various body metrics.

As features, we opted to collect meaningful data in the time, frequency, information, and connectivity
domain, unless such measurements could not be reliably estimated within our selected time window. The
goal of the multiple selected metrics was to capture potential diverse spatiotemporal relationships (low-
high frequency interactions, phase-amplitude interactions) that might extend across different recording
modalities. Overall, we computed 57 features.

As targets, we used the participants’ mental states (MB, MW, and SENS). Since this creates a
multiclass classification problem, we will focus on the binary classification of MB vs other reports. We

expect to acquire 40 samples per participant and condition (i.e. baseline and arousal states), giving a total
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of 1040 (26*40) samples per condition. We expected that 5% of the samples correspond to the target
report (MB), yielding an imbalanced problem with only 52 target samples per condition.

As learning algorithms, we tested parametric and non-parametric models, such as Support Vector
Machines, Random Forests, and Extremely Randomized Trees. Support vector machines are a
classification technique that aims to separate labeled inputs by creating a hyperplane that maximizes the
distance of their features. Given a set of n-labeled inputs, SVM provides a hyperplane in an n-
dimensional space that maximally separates the differently labeled groups. A random forest classifier is a
meta-estimator. Various classifiers (“decision trees”) are trained in different parts of the input dataset, and
each classifier uses only that part of the dataset to predict the label of the input. Then, the predictions of
each classifier are pooled (“bagged”) together, and an optimal decision is chosen based on the label with
the most predictions (“votes™). Finally, an extremely randomized tree classifier is a meta-estimator that
employs a similar voting scheme. However, in the case of extremely randomized trees, trees are trained
on all the features and the cutoff point of the trees (how the various metric nodes are arranged to reach a
decision) is randomized. Since our problem is highly imbalanced, we also tested outlier detection
algorithms (i.e. one-class classifiers), aiming to isolate MB from the other reports by considering MB as
either an inlier or outlier. We then tested the one-class counterparts of the SVM (One-class SVM) and
Random Forests (i.e. isolation forests) algorithms.

For model selection and performance estimation, we employed two different cross-validation
approaches. First, we used a 5-fold stratified cross-validation scheme trained with all the samples. This
provided us with performance estimates of classifiers aimed at obtaining patterns of brain and body
function that can predict the report of MB in known participants. As a second approach, we used a 5-fold
group stratified cross-validation scheme, using participants as groups. In this scenario, each participant
was either on the train or on the test set. Thus, it aimed at learning general patterns of brain and body
function that could predict the report of MB in unseen participants. In other terms, the first approach
aimed at learning patterns that could discriminate MB from other reports while accounting for each
participant’s variance, while the second strengthened the claim, aiming to learn general patterns that

could be found in unseen participants.
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As performance metrics, we report a) recall, b) precision, ¢) Fl-score, d) area under the ROC
curve (AUC), and e) balanced accuracy. Recall is the ratio of how often an item was classified correctly
as a positive (True Positive / True Positive + False Negative). Similarly, precision is the ratio of actual
correct positive classifications among positive classifications (True Positive / True Positive + Positive).
F1-score is the harmonic mean of precision and recall. The AUC curve is another evaluation metric that
summarizes how well the classifier predicts a class based on different thresholds of true positive and false
positive ratios. Finally, balanced accuracy is an evaluation metric suitable for imbalanced datasets, where
one class appears at significantly different frequencies than the others. Balanced accuracy is useful
because it is estimated as the average of specificity and sensitivity, simultaneously controlling for very
high precision due to classifying nothing as the infrequent class and very high recall due to classifying
everything as the infrequent class.

We selected each model’s hyperparameters using nested cross-validation (same scheme as the outer
cross-validation), using the F1-score as our optimization metric.

To evaluate the variance in the classifier performance and compare it to chance level, we performed
repeated cross-validation (10 times), while training also a “dummy” classifier to obtain the empirical
chance level of the training samples distribution. This type of classifier generates predictions based on the
distribution of training samples for each class without accounting for the features.

The decoding analysis was implemented in Python using Julearn [62] and Scikit-Learn [63]. Metrics
were estimated from existing Python libraries: MNE [64], NICE [65] , Neurokit [66], and custom in-lab

Python functions.
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Results
Participants

To achieve a power of .95 at an alpha threshold of .05, we acquired 3 sessions of 40 trials per
session from 26 participants (mean age = 26.38, std = 4.53, min=20, max=40; female=11). As a post-
registration note, in case participants could not adhere to the strict 3-week protocol (30% total sessions),
they were rescheduled to a later date that respected their sleep schedules to avoid time windows with
potential extreme slow-wave activity [50]. Due to data corruption, one participant had 30 trials in one of
the three sessions, and one participant had 33 trials in one of the three sessions. The remaining two

sessions were completed for both participants.

Behavioral Data

Occurrences of mental state reports alter across arousal conditions.

We found a main effect for mental states, with MB being reported at significantly lower rates
(Mean proportions £SD: MW=.56, +.21, SENS=.2+.14, MB=.12+.13; Kruskal H=124.07, p= 1.2e-27,
eta’= .53) compared to MW (Dunn’s test=-10.75, pror = 1.8e-26) and to SENS (Dunn’s test=-2.85, pror=
4.3e-03). Additionally, MW was reported significantly more frequently compared to SENS (Dunn’s
test=7.9, pror= 4.3e-15; Fig. 2). As the study was focused on wakeful mental states, “SLEEP” reports
were not included in the analysis (Mean proportions £SD: Baseline = .03+.05, High Arousal = .05%.07,

Low Arousal = .26+.21, Total =.1+.17).
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We found that a model including all conditions outperformed a null model with only an intercept
(Full ogLik = -1021, NullLogiik = -1046.83, y* = 5157, df = 2, peor = 6.1e-12): MB was reported
significantly more frequently in Low Arousal compared to Baseline (Marginal Mean= -.79, SE = .14, CL
= [-1.16,-.43], pror = 1.8e-08) and to High Arousal (Marginal Mean = -.97, SE =.15, CL = [-1.35,-.59],
Pror = 7.9e-11) (Fig. 3a). However, MB reports during Baseline and High Arousal were comparable
(Marginal Mean = .17, SE =.15, CL = [-.21,.56], pror = 2.4e-01). A visual inspection of the individual
marginal means showed that this effect was consistent across participants and was not driven by extreme
cases (Fig. 3b-d).

Additionally, generalized estimating equations (GEE) showed a significant interaction for MW
between Low Arousal - Baseline (beta = 6, SE = 1.5, CL = [ 3.06, 8.94], pror = 6.4e-05) and Low - High
Arousal (beta = 8.23, SE =1.6, CL = [5.1, 11.36], pror = 2.6e-07). We also found significant interactions
in SENS reports, such that SENS tended to be higher in Baseline compared to High (SENS Baseline -
SENS High: beta = 2.54, SE = .81, CL =[ .96, 4.12], pror = 1.7e-3) and Low Arousal (SENS Baseline -
SENS Low: beta = 2.46, SE = .77, CL = [.96, 3.97], pror = 1.3e-3). It is of note that this analysis yielded
no significant results for MB, but the overall trend of the beta estimates was consistent with our positive

results of the logit model above (Supplementary Fig. S3).

MB was characterized by higher reaction times.

There was a main effect of arousal conditions, with reports during Baseline being reported the
fastest and during Low Arousal the slowest (Fig. 4a). Also, there was a main effect of mental states, with
MW reports being reported the fastest and MB reports the slowest (Fig. 4b). A significant interaction
between MW and arousal showed that MW was reported the slowest in Low Arousal (Fig. 4c). A
significant interaction between MB and arousal condition showed that MB was reported the slowest in
High Arousal and Low Arousal (Fig. 4e). A model including both arousal and reaction times
outperformed simplified models including only null or main effect terms (Full_ogLik = 2889.76, ¥ = 47.1,
df = 4, peons = 1.5e-09; Fig. 4c). For a detailed overview of main effects and interactions, see

Supplementary Table S3.
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Transition probabilities showed reduced probability to transition to MW in Low arousal.

Markov transition probabilities indicated significant differences only between High and Low
Arousal conditions (Fig. 5), such that MW was more likely to be followed by MB (t = 3.26, Cl =
[.03,.15], pror= 9.7e-03, Cohen’s D = .74). Also in Low Arousal, both MW (t = -3.79, CI = [ -.31, -.9],
Pror = 7.6e-03, Cohen’s D = -.86) and SENS (t = -3.43, Cl = [ .37, -. 09], pror= 9.5€-03, Cohen’s D = -
.77) were less likely to be followed by MW (Fig. 5; Supplementary Fig. S4).

Exploratory Analysis 1: MB frequency did not correlate with SLEEP frequency.

As we wanted to avoid participants confounding MB and SLEEP reports, we opted for a paradigm
that allowed participants to report both. Spearman correlations on each condition examined whether these
two states were correlated. Across all mental states were comparable (Baseline: r = .13, p = 5.3e-01,
High Arousal: r = .31, p = 1.3e-01, Low Arousal: r =-.05, p = 8.2e-01) (Supplementary Fig. S5). To
strengthen the claim that MB and SLEEP reports do not covary, we additionally ran separate equivalence
tests on each correlation. No test was able to reject an equivalence claim (Baseline: z = -.34, p = 3.7e-01,
High Arousal: z = .54, p = 7e-01, Low Arousal: z = .72, p = 2.3e-01). Therefore, these results remain

indeterminate.

Exploratory Analysis 2: High Arousal MB reports increased at the start, but not the end, of the
experience-sampling session.

While we found that MB reports were more frequent in Low Arousal, we did not find any
significant effect of High Arousal. In our original hypothesis (Supplementary Table S1), we registered as
a potential alternative explanation for the absence of an effect that high arousal, as elicited by high-
intensity exercise, might not last for the full session, and our session would represent a gradual return to
Baseline Arousal. To test for potential effects of more frequent MB reports only at the start of the
experience-sampling we split the High Arousal session in two parts and compared the count of MB
reports across the start and the end of the experiment. Using a chi-squared test we found a significant

effect, with MB reports being more frequent (divergence = 4.08, p = 3.2e-02) during the first half of the
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High Arousal condition compared to the second half (MBsut = 93, MBeg = 66). We additionally
attempted to validate this hypothesis by splitting the session into 4 and 6 discrete segments of 10 and 7
trials each and replicated the same analysis. However, this analysis did not reach significance. Finally, to
provide further evidence for reduced occurrences of MB across time, we considered only the first and last
10 trials. We found a significant effect of more frequent MB occurrences (divergence = 7.39, p = 6.6e-
03), with the first 10 trials of the High Arousal condition inducing more MB compared to the second half

(MBstart: 51, MBend: 27)

Classification of MB reports was outper for med by classification containing both BRAIN-BODY markers.

We evaluated the capacity to classify MB reports from mental states with content (MW, SENS)
based on 26 BRAIN (EEG) and 31 BODY features (12 ECG, 4 EDA, 8 RSP, 7 EYE), spanning time,
frequency, information, and connectivity domains for each mental state report. In our original report, we
registered that these features would be estimated across the 110s pre-probe window, with bad epochs
being dropped. However, across an 110s epoch, even a nonlinearity of 1s would result in epoch removal,
leaving a total clean sample of 25 / 78 sessions (29.4%), and a total of 1060/3120 (33.3%) clean epochs.
Therefore, to preserve datapoints and data quality, and minimize data discarding due to brief non-
linearities, we opted for an extra step in bad epoch removal. After the initial epoch definition of 110s, we
followed it up by partitioning that epoch into 5s sub-epochs, resulting in 22 sub-epochs per epoch. We
then proceeded to do bad epoch removal and EEG marker estimation on those sub-epochs. If an epoch
consisted of more than 50% bad sub-epochs, it was discarded. Then, we averaged across within each
epoch, resulting in no lost sessions, and a total of 2734 / 3120 (87.6%) total sample size.

Having a final 2734 reports x 57 features matrix per report, we trained multiple classifiers on the
total dataset, to examine whether a specific brain-body profile would outperform chance level
classification of MB reports (Table 1).

Due to the unbalanced nature of our dataset, we evaluated classifier performance based on

balanced accuracy, as it avoids inflated performance on unbalanced datasets. Overall, we found that a
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balanced random forest (a random forest that undersamples the majority class in each bootstrap to equate
class count) has above-chance performance and outperforms all other examined classifiers (Fig. 6a). We
additionally examined whether we could predict unknown subjects, by leaving a subset of subjects out on
each iteration. Due to the high degree of per-fold variance, we do not consider any classifier as
meaningfully performing above chance level (Fig. 6b). Importantly, these results were replicated when
we trained the classifiers in the 1-Hz filtered data (Supplementary Fig. S6a,b; Supplementary Table S4).

Having established that MB reports can be predicted from known subjects, we then examined
whether a brain-body data pattern would outperform classifiers trained solely on either BRAIN or BODY
features. To this end, we fit and optimized a separate balanced random forest classifier on discrete feature
combinations of our dataset. For a full report of the performance on different features, see Table 2 and
Supplementary Table S5.

Overall, we found that a classifier trained on both BRAIN and BODY markers marginally
outperformed classifiers trained solely on BRAIN or BODY features across all our performance metrics
(Fig. 7a,c; Supplementary Fig. S7a,c; Table 2; Supplementary Table S5). To evaluate the impact of the
number of features on the capacity of the learning algorithm to extract relevant information, we also
trained the balanced random forest model using randomly shuffled bodily features. EEG features were not
altered. The model with the shuffled values showed a decline in classification performance, providing
evidence that, when classifying mental states, a model trained on both brain and body data learns unique
information from both domains (Fig. 7d; Supplementary Fig. 7d). For feature importance, we calculated
SHAP values for each feature in our dataset. SHAP values estimate the marginal contribution of each
feature, averaged across every potential feature combination. In this manner, each value represents how
much this feature contributes to the classification, after controlling for the impact of other features on this
feature's importance. We found that the model relied mostly on EEG and EYE openness features to
discriminate MB reports when pooling MB occurrences across all three conditions. (Fig. 7b; For an
extensive list of all SHAP values, see Supplementary Fig. S8). Importantly, feature importance did not
substantially change when filtering the data with a 1 Hz filter (Supplementary Fig. S7b; For an extensive

list of all SHAP values, see Supplementary Fig. S9). Overall, the comparable performance of the models,
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and the high degree of overlap in the ranking of the feature importance point to the robustness of the

models.

Exploratory analysis 3: Feature importance altered across arousal conditions.

The decoding analysis in known samples showed that we can predict MB instances from the
combination of brain-body markers with adequate accuracy when MB instances were aggregated across
different arousal conditions. We were further interested in whether this classification was achieved based
on a universal mechanism, or whether we could detect arousal-dependent brain-body configurations that
predict MB. To this end, we trained a balanced random forest classifier solely on data acquired from
Baseline, from High, and from Low Arousal. We found that Baseline had the best performance (.67, [.65,
.68]), followed by Low Arousal (.64, [.63, .65]), and finally High Arousal (.61, [.6, .63]). We retained
comparable performance when examining the arousal partitions of thel Hz filtered dataset
(Supplementary Table S6-7). Examining the SHAP values for each arousal state, we saw that the models
relied on distinct feature domains. During Baseline, the model relied on markers from the frequency
domain of EEG (Fig. 8a). During Low Arousal, MB classification was obtained using the delta band
power, by far the most dominant marker (Fig. 8b). Finally, in High Arousal, the model did not rely on a
single feature, rather in a combination of eye openness, GSR, and the frequency domain of EEG (Fig. 8c).
Similar feature importances were observed in the 1Hz filtered dataset (Supplementary Fig. S10).
However, in the 1 Hz filtered dataset, we observed that ECG features tended to rank higher

(Supplementary Fig. S11-16).

Exploratory analysis 4. Feature importance altered based on the pre-probe analysis window.

A potential caveat of utilizing the full pre-probe period of 110s before a report is that we might
capture multiple mental states, and the actual statistical regularities might be weakened when averaged
across. With this consideration, we examined whether we could improve classification performance when
classifying MB from the last 10s before a report. We defined a secondary brain-body data matrix, with

body features that could be estimated from 10s of body activity. Across both 0.1 and 1 Hz filters we
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retained comparable performance in the classifiers trained on both EEG and bodily markers, as well as
solely EEG or body markers (Supplementary Fig. S17-20; Supplementary Table S8-9). However, we
observed decreased performance in the classifier trained solely in the eye openness data (Supplementary
Table S8-9). An examination of feature importance showed that the beta, delta, and theta bands of the
EEG frequency domains remained the most important EEG features, but there was a reduction in the
importance of the EYE features and an increase in the importance of EDA (Supplementary Fig.
S17b,18,19b,20). Importantly, our results were not affected by the choice of filtering parameters,

indicating robustness of our results to preprocessing parameters.

Discussion

We used experience-sampling combined with EEG and peripheral physiological recordings under
different autonomic arousal conditions to determine whether MB reports in neurotypical individuals were
supported by distinct brain-body configurations compared to mental states with reportable content.
Overall, our results show that MB is a mental state that becomes more prevalent in low and partially in
high arousal states, and that MB is driven by both brain and body processes, providing evidence for an
embodied account of MB.

Behaviorally, we found that MB was reported at significantly lower rates compared to sensory
experiences or MW, irrespective of the arousal condition. This finding is in line with past research
showing that MB rates vary between 5-10% of total probe instances, across both uninterrupted thinking
[12] and task engagement [11]. We also show that sleep deprivation significantly increases the frequency
of MB occurrences. Sleep deprivation induces a low arousal state during which cognitive performance
declines [67], metabolic and physiological processes change [68], and unique neuronal markers, such
as slow-wave activity, emerge [69]. After sleep deprivation, participants also tend to perform worse in
sustained attention tasks [70], with results suggesting a true effect of sleep deprivation on more “misses”

(no response when necessary) compared to “false alarms” (response when unnecessary) [71], a finding
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that was recently shown as a behavioral correlate of MB [11]. Additionally, sleep deprivation and
mounting sleep pressure were positively correlated with more MW instances [72, 73], suggesting an
overall mode shift from task engagement to MW [74]. Our results challenge these past findings by
showing that participants were more likely to blank than mind wander after sleep deprivation. We also
show that MW was in fact more likely to decrease after sleep deprivation. This is further supported by the
results of the transition matrix analysis, where MW reports were less likely to be followed by another
MW report, and more likely to be followed by MB. Such discrepancies in the reportability of MW after
sleep deprivation could be possibly explained by the explicit inclusion of MB as a reportable mental state
in the experience-sampling that our design opted for. In other words, it might be that the observed MW
occurrence increase after sleep deprivation could be accounted for by MB reports, once participants had
the chance to opt between these two mental states in a more fine-grained way.

In terms of high arousal induced by high-intensity exercise, our analysis did not reveal any
significant effects on MB occurrences. As per the provided registered protocol alternative explanation
(Supplementary Table 1), we hypothesized that this arousal manipulation might not have been overall
effective as it could not produce effects that would last across the whole experience-sampling session. To
test whether MB frequency reports would differ between the beginning and at the end of the session, we
split the dataset into two parts. When split, we indeed found a significant difference between the
frequency of MB reports. This result was replicated when considering only the first and last 10 trials per
subject, which maximized the distance between initial and final physiological arousal within the session.
However, we were not able to find any differences when the data were split into smaller bins. Together,
we consider that these results provide partial evidence for our registered hypothesis, showing that residual
high arousal effects after intense exercise can increase the frequency of MB reports.

In addition to the frequency of mental states across arousal conditions, we also examined whether
report times differ across arousal conditions and mental states. In general, reports in low arousal tended to
be the slowest, consistent with a wide range of attention tasks that show slower report times in sleep
deprivation compared to baseline arousal [75]. We consider these findings as additional evidence that the

arousal manipulation was effective in that it lowered overall vigilance levels. We also observed a main
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effect of mental states, such that MB tended to be reported significantly slower compared to MW and
SENS. Contrary to our current results, we recently found that MB was reported faster when compared to
other mental states when content had to be evaluated [12]. This apparent mismatch in results can be
explained when considering that MB can be a state devoid of content, and therefore, there is the binary
consideration of “yes/no” when evaluating thought content, which might be a relatively fast decision.
This can be different, for example, from the evaluation of content-full mental states, which demand a
sequential evaluation of both content presence (“yes/no”) and content evaluation (“what is the content
about?”). This way, the difference in results can be explained by the imposition of an additional cognitive
evaluation. Overall, we suggest that these results might reflect a gradient of vigilance, with participants
being the most alert at baseline arousal, and progressively declining during high and low arousal
conditions, as well as more vigilant when reporting mental states with content compared to MB. Of note,
we observed two interesting interactions between mental states and arousal conditions. MW tended to be
reported slower in low arousal compared to baseline and high, which is consistent of our interpretation of
reaction times as marking vigilant states. However, as we also observed that MB reports tended to be
reported the slowest in both High and Low arousal conditions, we speculate that this might be preliminary
evidence that arousal modulates how engaged participants are with their current mental states. In this
sense, exercise fatigue can lead to an MB state that takes longer to recover from when probed for a report.

A final explanatory analysis revolved around the relationship between sleep and MB. We recently
posited that MB is a distinct mental state characterized by a unique phenomenological profile of no
content [76], and unique neuronal markers, characterized by high cortical integration and low cortical
segregation [12]. This neuronal configuration is atypical of wakefulness [77], and is more closely
reminiscent of brain configurations during deep sleep [78]. In conjunction with the presence of slow wave
intrusions during wakefulness as a marker of MB reports [11], a classic marker of NREM sleep, an
emerging issue is whether MB is a misrepresented instance of sleep. This issue is further complicated by
the postulation that in MB there is no content [76], and thus does not functionally represent a wakeful
state where people can recover content. To avoid this pitfall, we introduced Seep as a potential response

during experience-sampling. We found that people discretely reported MB and sleep, providing evidence
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that when provided with such options, people can differentiate between these two experiences.
Additionally, we did not find that MB and sleep tended to covary. To strengthen this claim, we ran
equivalence tests for each correlation across arousal conditions. However, no test showed a positive result
for equivalence. Therefore, these results remain indeterminate, with a trend for no relationship between
MB and sleep.

Having established that MB occurrence varied across different physiological arousal conditions, we
then examined whether MB could be decoded by brain and body markers. With the aim of showing single
trial prediction, we trained different models on EEG and physiological signal markers from time, spectral,
complexity, and connectivity domains. Overall, we were able to achieve above-chance-level
classification, showing that there exist unique brain-body patterns that can discriminate MB reports from
mental states with content. However, we were not able to show above-chance-level classification when
training classifiers on unknown subjects. Therefore, our results are not generalizable to novel populations
due to the high amount of variance between subjects. Of importance is the result that a combination of
EEG and physiological markers marginally, but consistently outperformed both EEG and physiological
markers. Overall, we observed an improvement of 2-5 % in classification performance in balanced
accuracy. This improvement can be attributed to unique information inherent in body signals, as
evidenced by the comparison of the classifier trained on both brain and body data compared to classifiers
trained solely on brain data or brain and shuffled body data. The classifier trained on both brain and body
data does not consider body features as noise or redundant. Overall, while our results suggest a high
degree of overlap between brain and body information in MB, they indicate that information about MB
extracted from the body is partially independent of the EEG features. Feature importance ranking derived
from the decoding model indicates that the low and mid frequencies of the EEG power spectrum and
metrics of eye openness are useful predictors of MB. This finding was consistent across analysis windows
and preprocessing parameters. Importantly, all classifiers trained on body markers had above chance
performance with variant degrees of variability, with the highest performing being the EYE (eye
openness) and the ECG (heart-rate variability), providing evidence that MB can be decoded solely from

bodily signals.
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To further validate our protocol, we ran two exploratory analyses, with the aim to examine whether
classification performance varies based on the analyzed pre-probe window and whether feature
importance alters across arousal conditions (For a full Discussion, see Supplementary Discussion on
Methodology). Overall, when examining a classifier trained on a brief 10s window before MB reports, we
found comparable performance compared to the full 110s classifier. What was interesting was that while
EEG performance remained the same, performance on classifiers trained solely on body features
decreased. As brain-physiology coupling occurs at varying time delays across cardiac [79] and respiratory
domains [80], we interpret these results as evidence that bodily contributions on MB are based on slow,
oscillatory processes that might not be captured from examining short pre-probe periods. At the same
time, our classification analysis on separate arousal conditions showed distinct brain-body configurations
that can predict MB reports. As our decoding approach does not permit any inference of the directionality
effect, or decomposing interactions within and across physiology modalities, at this stage we claim that
our results point to discrete physiological pathways that elicit MB reports. Overall, we show that our
enhanced classification is retained across different analysis windows and different arousal conditions.

Similarly, enhanced classification when considering a brain-heart matrix compared to solely brain
markers was also shown for patients with disorders of consciousness, where the inclusion of cardiac
features outperformed classification based solely on EEG markers [81]. To our knowledge, our results are
the first to extend multivariate decoding past the brain-heart axis and consider the inclusion of multiple
unique bodily afferent sources in classifying mental states. The overall success of the brain-body
decoding paradigm in classifying consciousness levels and mental states provides evidence that bodily
information is not redundant and is not necessarily fully represented within brain dynamics. Instead, an
embodied approach, stressing bidirectional information routes between brain and body can provide better
predictive power and assist in more comprehensive generative, computational models of experience [34,
82].

A neurobiological explanation of our results comes from an integrative model about content, task
engagement, and arousal which suggests that the relationship between thought and arousal can be

conceptualized as an inverted u-curve. This means that an optimal arousal level modeled by LC-NE

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

28


https://doi.org/10.1101/2024.03.26.586648
http://creativecommons.org/licenses/by/4.0/

70

71

72

73

74

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.26.586648; this version posted October 14, 2024. The copyright holder for this preprint

available under aCC-BY 4.0 International license.

firings is necessary to actively engage and control our thoughts, either during task engagement or MW
[83]. This stance treats thought as an active task, where engagement is necessary for clear content and
control of thought dynamics. As arousal tapers off to non-optimal levels of the inverted u-curve, we
experience concurrent, opposing thoughts that serve exploratory purposes for optimal performance, such
as exploring different strategies. This necessitates flexibility and malleability of content. We here suggest
that our results supplement this model by providing an account of the extremities of the optimal u-curve.
As the model suggests degradation of thought clarity when we move closer to arousal extremities, we
consider MB reports as instances where no content can be clear or present, extending this unifying
framework to the entire arousal u-curve. Neurophysiologically, this model has translated to investigations
of pupil dilation, an index of LC-NE firing, as a function of mental state and task engagement with pupil
size yielding both positive [26, 84] and null results [11] in discriminating on-task vs off-task mental
states, as well as contrasting MB and MW. Part of the ascending arousal network, the LC modulates
cardiac, galvanic, respiratory, and pupillary activity [28, 85]. In addition, the LC innervates projections
responsible for eyelid openness [86]. The combinatorial high performance of different body markers in
classifying MB reports, and the evidence that altered levels of arousal increase MB occurrences provide
further support for the modulatory role of the ascending arousal system in mental states and thought
reportability.

From a theoretic perspective, our study challenges the conception that brain information is
uniquely suitable to understand thought reportability and provides support for an embodied account of the
mind. Embodiment moves the seat of mental events away from the brain and reformulates cognition as
resulting from brain-body interactions. An extensive literature has shown how cataloged cardiac,
respiratory, gut, and pupillary effects on perception [30], action [87], metacognition [31] and
consciousness [81], while the collective interplay of peripheral systems has discriminatory power for
clinical [88] and consciousness classification [89]. We show here that within embodiment, the body is not
only facilitatory but also might impede access to our mental lives. Under specific brain-body

configurations, we are not able to clearly formulate mental content.
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Some limitations pertain to our study. First, the nature of experience-sampling discretizes the
continuous nature of ongoing thinking. As there is no consensus as to how long a mental state might last,
or whether all mental states last the same length, results might average across different mental states.
While we attempted to circumvent this problem by analyzing different pre-probe windows, it remains
unclear whether all mental states last the same, and what is their actual duration. Secondly, the post-
exercise setup might be suboptimal in examining the effects of high arousal on ongoing cognition.
Neuronal and electrophysiological recordings have shown that the duration of the effects of exercise on
ongoing brain and physiological activity [45, 46, 47] is highly variant. In addition, it is unclear whether
brain and body recover to baseline states at the same rates, potentially confounding the post-exercise
importance of cortical and physiological markers in cognition. Experience-sampling with online probes
during exercise could overcome this challenge.

In conclusion, our study suggests that MB is an arousal-modulated mental state, with a unique
cortical and physiological profile. We think that our results pave a new paradigm for an embodied
account of mental states, where the phenomenology of our mental lives is expressed based on both our
body and our brain state. At the same time, our results challenge the neurocentric approach to mental state
research, putting emphasis on the constant brain-body interactions that shape our cognition. As MB
research continues to evolve, we consider our findings elaborative for clinical and experimental accounts

of the mind, where we move towards a complex and dynamic conception of our mind.

Code Availability
All codes to replicate the power analysis, the experience-sampling paradigm, and the present

analysis can be found at https:/gitlab.uliege.be/Paradeisios.Boulakis/mind_blanking_arousal. An

archived wversion of the <code at the time of submission can be found at

https://doi.org/10.58119/ULG/174Q6G.
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The aggregated raw data in a BIDS format, the trained machine-learning models, experimental

and analysis logs, and result dataframes can be found at https://doi.org/10.58119/ULG/174Q6G.

Protocol Registration

The stage 1 accepted-in-principle protocol can be found at https://osf.io/sh2ye. The authors

confirm that no data for the pre-registered study was collected prior to the date of AIP.
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Figure 1. Experimental protocol. Top The experience-sampling task invited participants to sit idly and relax, letting their
minds wander. Every 110-120s, a 500 Hz auditory cue probed participants to report what they were thinking at that moment.
Participants were able to choose from 4 presented responses: Mind-Blanking (MB), Mind-wandering (MW), Perceptual
Sensations (SENS), and Sleep (SLEEP). Bottom Repeated-measures autonomic arousal recordings. To test how spontaneous
thoughts unfold over time across different arousal conditions, we first invited people for baseline assessments on Day 1
(Basdline condition). On Day 2 participants underwent a 15-minute high-intensity exercise routine (High Arousal condition)
and on Day 3 they participated in a total sleep deprivation protocol (Low Arousal condition). The High and Low Arousal
conditions were counter-balanced across participants. Multimodal physiological recordings were used to monitor arousal
manipulations. The dataset was constituted of EEG, pupillometry, ECG, EDA, and respiratory data; the arrows indicate the

hypothesized directions of the derived metrics.
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Figure 2. Mind-blanking (MB) was reported significantly less frequently compared to mind-wandering (MW) and Sensations
(SENS) across all arousal conditions, validating what is generally reported in the literature. Density kernels show overall data
dispersion and clustering trends. Point plots are individual subject estimates. Boxplots show medians and interquartile ranges,

while whiskers indicate extreme values and diamonds indicate outliers.
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Figure 3. The frequency MB reports altered across the three arousal conditions. a) Mind-blanking (MB) report probability
increased in Low Arousal (after sleep deprivation) compared to High Arousal (after intense exercise) and Baseline. Density
kernels indicate overall data dispersion and clustering trends. Point plots represent participants” MB report probabilities.
Boxplots indicate medians and interquartile ranges, whiskers indicate extreme values, and diamonds indicate data outliers. b-d)
Barplots denote single-subject marginal means, comparing MB reports across arousal conditions. Compared to Baseline, there
was no significant change during High Arousal (b). However, there was a visible trend favoring an increased probability of
MB reports in the Low Arousal condition compared to baseline and High Arousal, signifying that the effect was present in

most participants (c-d).
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Figure 4. Mental states had different report times depending on arousal conditions. a) Reaction times at Baseline arousal were
reported the fastest, followed by High (after exercise) and Low Arousal (after sleep deprivation), collapsed across all mental
states. Pointplots show individual subject estimates. Boxplots show medians and interquartile ranges, while whiskers show

extreme values. b) Mind-wandering (MW) was reported the fastest, followed by Sensations (SENS) and mind-blanking (MB),

collapsed across all arousal conditions. Pointplots show individual subject estimates. Boxplots show medians and interquartile
ranges, while whiskers show extreme values. c-€) Interaction between arousal condition and mental state report times: MW
was reported the slowest in Low Arousal compared to Baseline and High Arousal, while MB was reported the slowest in the

Low Arousal and High Arousal conditions compared to Baseline.
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Figure 5. After sleep deprivation (Low Arousal), participants were more likely to transition from mind-wandering (MW) to

G

.05

mind-blanking (MB) compared to the condition of physical exercise (High Arousal). Additionally, participants were less likely

to transition to MW. Arrows indicate the direction of the mental state transition. Bold font indicates statistical significance

(FDR corrected).
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Figure 6. Classification performance was above chance level when mind-blanking (MB) reports were pooled across subjects,

but not after training on a subset of participants and classifying the remaining subset. a) A balanced random forest classifier

provided the highest classification performance across all examined classifiers including known subjects. b) An isolation forest

classifier provided the highest classification performance across all examined classifiers on unknown samples. However, due

to the high variance, we could not consider it meaningful. Individual points indicate performance on the folds of the repeated

cross-validation. Results are ordered based on descending order of performance. Chance level performance is indicated by the

Dummy classifier. RF = random forest; SVM = support vector machine; ET = extreme trees; IF = isolation forest; OC SVM =

ane-class siinnort vector machine
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Figure7. Classification of MB improves when considering both BRAIN and BODY. A balanced random forest classifier

trained on a combination of BRAIN and BODY features outperformed classifiers trained solely on BRAIN or BODY features

when evaluated with balanced accuracy. Individual points indicate performance on the folds of the repeated cross-validation.

b) Subset of the 10 features with the highest mean of the absolute SHAP values obtained from the balanced random forest

classifier. c) The per-fold differences between the classifier trained on both BRAIN and BODY features and the one trained

only on BRAIN data suggest that incorporating both feature domains provides a slight performance improvement over using

BRAIN data alone. The shaded region indicates better performance for the classifier trained on both feature domains. The star

indicates the mean difference. The solid, horizontal line represents the 95% highest-density intervals of the distribution. Red

dots indicate per-fold differences. d) The per-fold differences between the classifier trained on both BRAIN and BODY

features and the one trained on BRAIN and shuffled BODY data suggest that the model with both BRAIN and BODY data

does not consider the body markers as noise.
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Figure 8. Ranking of features by mean absolute SHAP value extracted from the balanced random forest classifier varied across
different arousal conditions. a) Magnitude of SHAP values for a balanced random forest classifier trained on MB reports
collected during the Baseline Arousal condition. The model relied mostly on features from the EEG frequency domain. b)
Magnitude for SHAP values for a classifier trained on MB reports collected during the Low Arousal condition (after sleep
deprivation). The model mostly used spectral power in the EEG delta band. c) Magnitude for SHAP values for a classifier

trained on MB reports collected during the High Arousal condition (after intense exercise). The model relied mostly on

features from eye openness, EDA, and the EEG frequency domain.
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Table 1. A balanced random forest classifier outperformed all classifiers when compared across balanced accuracy.
Cells indicate mean and 95% CI.

Examined Classifier Recall Precison F1 ROC AUC  Balanced Accuracy
Known Subjects  Balanced RF .62, [.6, .64] .26, [.26,.27]  .37,[.36, .37] 1, [7,.72] .66, [.65, .67]
SVM .29, [.28, .31] .28, [.27, .29] 29,[.27,.3] .62,[.61,.63] .58, [.58, .59]
ET 16, [.15, .17] 61,[58, .64] .25 [.23,.26] .73,[.72,.74] 57,56, 58]
RF 14, [13, .15] 57,[53,.6] .22,[21,.23] .71,[7,.72] 56, [.56, .56]
IF 14, [.13, .16] .2,[.19, .22] 17,[.15,.18] .52, [.52, .53] 52, [.52, .53]
OC svM .89, [.86, .92] 15, [14, .15] .25, [.25, .25] .51, [.5, .51] 51, [.5, .51]
DUMMY 14, [.13, .15] 14,[.13,.15]  .14,[13,.15]  .5,[.49, 5] 5, [.49, .5]
Unknown Subjects Balanced RF 46, [41, 51] A8, [.16,.2]  .25,[.23,.27] .55, [.53, .57] .54, [.53, .56]
IF .23, [.19, .27] 18, [.16,.2] .19,[.17,.22] .53, [.51, .54] 53, [.51, .54]
RF .05, [.04, .06] .36, [.29, .44] .08, [.06,.09] .54, [.52,.55] 51, [51, .52]
OC SsVM .87, [.82,.92] J14,1.13,.15] .24,[.22,.26] .51, [.5,.52] .51, [.5, .52]
ET .03, [.02, .03] .36, [.26, .45] .05, [.04,.06] .53, [.52,.55] .51, [.5, .51]
DUMMY .15, [.14, .16] 15, [.13,.17]  .14,[.13,.16]  .5,[.49, .51] 5, [.5, .51]
SVM 2, [.17, .22] 16, [.14,.17] .16, [.15,.17] .49, [.47, .5] .5, [49, 51]

RF = Random Forest; SVM = Support Vector Machine; ET = Extreme Trees; IF = Isolation Forest; OC SVM = One-Class Support Vector Machine

Table 2. A classifier trained on a combination of BRAIN and BODY features outperformed classifiers trained solely on
BRAIN or BODY features, when evaluated with balanced accuracy. Cells indicate mean and 95% CI.

Classifier Recall Precision F1 ROC AUC Balanced Accuracy

BRAIN + BODY 62, 1.6, 64] 26, .26, .27] 37,136, .37] 71,17, .72] 66, [.65, .67]
BRAIN 61, 59, .62] 24, .24, 25] 35, .34, .36] 7,169, .71] .65, .64, .65]
BODY 59, [.58, 6] 22,[21, 22] 32,[31,32] 66, .66, .67] 61, [61, 62]
EYE .57, [.55, .59] 21, [21, 22] 31,3, .32] 64, [.63, 65] 61, [6, .62]

ECG 55, [.54, .57] 18, [.17, 18] 27,126,.27] .58, [57, .59] .56, [.55, .57]

EDA 6, [.57, 63] 17,117, 171 26,[26, 27] 57,156, .58] 55, [.54, 56]

RSP 52, .5, .54] 15, [15, .16] 24,123,241 53,152, .54] 52,51, 53]
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