

1 **The Evolutionary Origins and Ancestral Features of Septins**

2 **Samed Delic^{1†}, Brent Shuman^{2†}, Shoken Lee³, Shirin Bahmanyar³, Michelle Momany², and**
3 **Masayuki Onishi^{1*}**

4 ¹ Department of Biology, Duke University, Durham, North Carolina, USA

5 ² Fungal Biology Group and Plant Biology Department, University of Georgia, Athens, Georgia,
6 USA

7 ³ Department of Molecular Cellular and Developmental Biology, Yale University, New Haven,
8 Connecticut, USA

9 [†] These authors contributed equally to this work and share the first authorship

10 *** Correspondence:**

11 Corresponding Author

12 masayuki.onishi@duke.edu

13 **Keywords: GTPase, amphipathic helix, coiled-coil, transmembrane, opisthokonts, algae,**
14 **ciliates, arginine finger. (Min.5-Max. 8)**

15 **ABSTRACT**

16 Septins are a family of membrane-associated cytoskeletal GTPases that play crucial roles in
17 various cellular processes, such as cell division, phagocytosis, and organelle fission. Despite
18 their importance, the evolutionary origins and ancestral function of septins remain unclear. In
19 opisthokonts, septins form five distinct groups of orthologs, with subunits from multiple groups
20 assembling into heteropolymers, thus supporting their diverse molecular functions. Recent
21 studies have revealed that septins are also conserved in algae and protists, indicating an ancient
22 origin from the last eukaryotic common ancestor. However, the phylogenetic relationships
23 among septins across eukaryotes remained unclear. Here, we expanded the list of non-
24 opisthokont septins, including previously unrecognized septins from rhodophyte red algae and
25 glaucophyte algae. Constructing a rooted phylogenetic tree of 254 total septins, we observed a
26 bifurcation between the major non-opisthokont and opisthokont septin clades. Within the non-
27 opisthokont septins, we identified three major subclades: Group 6 representing chlorophyte green
28 algae (6A mostly for species with single septins, 6B for species with multiple septins), Group 7
29 representing algae in chlorophytes, heterokonts, haptophytes, chrysophytes, and rhodophytes,

30 and Group 8 representing ciliates. Glaucophyte and some ciliate septins formed orphan lineages
31 in-between all other septins and the outgroup. Combining ancestral-sequence reconstruction and
32 AlphaFold predictions, we tracked the structural evolution of septins across eukaryotes. In the
33 GTPase domain, we identified a conserved GAP-like arginine finger within the G-interface of at
34 least one septin in most algal and ciliate species. This residue is required for homodimerization
35 of the single *Chlamydomonas* septin, and its loss coincided with septin duplication events in
36 various lineages. The loss of the arginine finger is often accompanied by the emergence of the
37 α 0 helix, a known NC-interface interaction motif, potentially signifying the diversification of
38 septin-septin interaction mechanisms from homo-dimerization to hetero-oligomerization. Lastly,
39 we found amphipathic helices in all septin groups, suggesting that curvature-sensing is an
40 ancestral trait of septin proteins. Coiled-coil domains were also broadly distributed, while
41 transmembrane domains were found in some septins in Group 6A and 7. In summary, this study
42 advances our understanding of septin distribution and phylogenetic groupings, shedding light on
43 their ancestral features, potential function, and early evolution.

44 INTRODUCTION

45 Septins are a family of paralogous cytoskeletal GTPases that associate with one another in
46 defined stoichiometries to create nonpolar filaments. The first four septin genes (*CDC3*, *CDC10*,
47 *CDC11*, and *CDC12*) were identified in a cell-cycle defective screen in *Saccharomyces*
48 *cerevisiae* (Hartwell, 1971; Hartwell et al., 1974). Detailed molecular characterization of these
49 septins showed that each gene encodes a distinct septin subunit that associates with other septin
50 subunits to create filaments and other higher-order structures such as rings on the plasma
51 membrane (Byers and Goetsch, 1976; Field et al., 1996; Longtine et al., 1996; McMurray and
52 Thorner, 2008). It was later shown that septin assembly and filamentation are influenced by lipid
53 composition of membranes (Bertin et al., 2010).

54 A septin subunit is comprised of a core GTPase domain and variable N- and C-terminal
55 extensions (NTE and CTE). The GTPase domain is responsible for binding and hydrolyzing
56 GTP, as well as mediating septin-septin interactions and polymerization (Sirajuddin et al., 2007;
57 Hussain et al., 2023). The N-terminal domain of septins often contains a polybasic domain (PB1)
58 directly upstream of the start of the GTPase domain, which plays critical roles in lipid
59 recognition and septin polymerization (Omrane et al., 2019; Cavini et al., 2021). Depending on

60 the septin subunit, the C-terminal domain can contain a coiled-coil domain which has been
61 proposed to mediate lateral pairing of septin filaments (Leonardo et al., 2021). Additionally,
62 some subunits also possess an amphipathic helix (AH) which has been shown to allow septins to
63 recognize micron-scale curvature (Bridges et al., 2016; Cannon et al., 2019). The structure of
64 septin protomers has been described using the human SEPT2/6/7 heterohexameric complex,
65 which unequivocally identified two binding interfaces for septin subunits (Sirajuddin et al.,
66 2007): The G-interface is defined as the face of the subunit with the GTP-binding pocket, where
67 *trans* interactions with an opposing subunit stimulates GTP hydrolysis, whereas the NC-interface
68 is the opposite face of the subunit. Both interfaces can be involved in homomeric and
69 heteromeric dimerization events.

70 Previous phylogenetic analyses of opisthokont septins identified conserved residues within the
71 G- and NC-interfaces (Pan et al., 2007; Auxier et al., 2019; Shuman and Momany, 2021).
72 Additionally, these analyses provided an evolutionary basis for the modularity of septin paralogs
73 in support of Kinoshita's rule, which states that septins belonging to the same phylogenetic
74 group can replace one another within the canonical protomer (Kinoshita, 2003b; Pan et al., 2007)
75 For example, human SEPT3, 9, and 12 all belong to Group 1A and can replace one another
76 within a protomer. Thus, these phylogenetic analyses can provide structural and biochemical
77 insights into the assembly of septins.

78 Most of the cellular, biochemical, and phylogenetic characterizations of septin proteins have
79 been from the opisthokont (animal & fungal) lineage. The presence of septins outside of
80 opisthokonts was initially noted by Verelle & Thorner, who mentioned the presence of bona fide
81 septins in *Chlamydomonas reinhardtii* & *Nannochloris* spp. (Verelle and Thorner, 2005).
82 Subsequent studies in the green algae *Nannochloris bacillaris* and *Marvania geminata* and the
83 ciliate *Tetrahymena thermophilus* characterized the localization of septins outside of the
84 opisthokont paradigm. In the former, immunofluorescence studies using an antibody against the
85 single septin in *N. bacillaris* showed its localization at the division site of both algae (Yamazaki
86 et al., 2013). In the latter, septins were reported to localize to the mitochondria scission sites and
87 proposed to regulate mitochondrial stability via autophagy pathways (Wloga et al., 2008).
88 Additional septins have since been identified in some other algae and protists (Nishihama et al.,
89 2011; Yamazaki et al., 2013; Onishi and Pringle, 2016); however, the phylogenetic relationship
90 of these non-opisthokont septins remained unclear.

91 In this work, we provide an update to the distribution of septins across the eukaryotic tree of life
92 and a rigorous phylogenetic analysis to compare their relationship to previously identified septin
93 groups. We trace the evolution of structural motifs within the septin GTPase domains by
94 combining ancestral sequence reconstruction and machine-learning 3D structural prediction.
95 Lastly, we trace the gains and losses of septin-associated features in the NTE and CTE, such as
96 the polybasic domain, coiled-coil, AH, and putative transmembrane domains to assess their
97 evolutionary origins.

98 MATERIALS AND METHODS

99 Identification of New Septin Sequences

100 To identify new non-opisthokont septin sequences, we utilized both the Joint Genome Institute
101 Phycocosm webpage (<https://phycocosm.jgi.doe.gov/>) and the NCBI Genome database
102 (<https://blast.ncbi.nlm.nih.gov/>). We used the initial set of queries consisting of *Chlamydomonas*,
103 *Symbiodinium*, and *Paramecium* septins. These searches identified several septins in the phyla in
104 which they have not been reported. To enhance the chance of finding new sequences in these and
105 other divergent branches, we added *Porphyra*, *Ectocarpus*, and *Cyanophora* to the list of queries
106 and performed additional searches (Table 1; Supplementary File 1). BLASTP searches were
107 performed on November 14, 2021 using a BLOSUM62 matrix, E-value cutoff of 1×10^{-5} , word
108 size of 3, and filtered low complexity regions. The JGI database searches used proteomes from
109 Excavata, Archeaplastida, Rhizaria, Heterokonta, and Alveolata (Supplementary File 2). Due to
110 the limited availability of information for ciliate species on JGI, additional searches were
111 performed using the NCBI database, specifically focusing on Alveolata (taxid:33630)
112 (Supplementary File 2). Identified sequences were further examined manually for the presence of
113 G-motifs (G1, G3, and G4) and S-motifs (S1-S4) to confirm that they are bona fide septins.
114 Opisthokont septins were selected from (Auxier et al., 2019).

115 Phylogenetic Analysis and Ancestral Sequence Reconstruction

116 Phylogenetic trees were constructed following the methodology described by (Auxier et al.,
117 2019). A total of 131 opisthokont and 123 non-opisthokont septins were used; as an outgroup,
118 several prokaryotic YihA proteins were also included (Supplementary File 3). Sequences were
119 first aligned using the constraint-based alignment tool (COBALT) (Papadopoulos and Agarwala,
120 2007), which incorporates information about protein domains in a progressive multiple

121 alignment. This tool biases the alignment within the septin GTPase domain. To remove regions
122 of randomly similar sequences from the alignment, we employed ALISCORE and ALICUT
123 (Misof and Misof, 2009; Kück et al., 2010; Kueck, 2017). ALISCORE identifies regions of
124 ambiguous alignment, which were subsequently removed using ALICUT. This process resulted
125 in a reduced MSA file containing highly conserved regions within the GTPase domain
126 (Supplementary File 4), which was then used to generate the phylogenetic tree.

127 Tree generation was performed using the CIPRES gateway (Miller et al., 2010),
128 employing RAxML-HPC v.8 on XSEDE with the PROTCAT substitution model and the LG
129 protein matrix and a rapid 1000 bootstrap analysis. The generated trees were visualized using the
130 Rstudio package "ggtree." Bootstrap values displayed on the trees have been limited to values
131 greater than 25.

132 For ancestral sequence reconstruction (ASR), we utilized the FASTML server for maximum-
133 likelihood computing of the ancestral states (Ashkenazy et al., 2012). Due to limitations with the
134 FASTML server, we reduced our list of septin sequences from 254 to 200 by removing some
135 sequences from some fungal species and all sequences from the genus *Paramecium* except for
136 the species *tetraurelia*. The resulting 200 sequences (Supplementary File 5) were aligned using
137 COBALT alignment. As ASR provides meaningful interpretation when the entire protein
138 sequence is provided, we did not utilize ALISCORE and ALICUT processing. To generate a new
139 phylogenetic tree, we used the IQTree webserver (<http://iqtree.cibiv.univie.ac.at/>) with an
140 automatic amino acid replacement matrix, 1000 ultrafast bootstraps, and all other default
141 parameters (Trifinopoulos et al., 2016; Minh et al., 2020). This tree reproduced the same
142 phylogenetic groupings and general branching patterns as our more rigorous ALISCORE and
143 ALICUT processed tree. Nodes of interest, including parental nodes for the septin phylogenetic
144 groups, opisthokont and protist divide, and the last eukaryotic common ancestor (LECA) node,
145 were defined based on the joint reconstruction output file and labeled in Supplementary File 5.
146 The protein sequences at these nodes were extracted and referred to as the ancestral septins.

147 **AlphaFold Predictions and Search for Polybasic Domains in N-terminal Extension**

148 AlphaFold predictions were executed using the Colabfold Google notebook v1.3.0. The specific
149 parameters can be found within the "config.json" file in each respective folder. Due to
150 computational limitations of AlphaFold with extremely long sequences, some sequences required

151 trimming. The objective of trimming was to preserve the entire GTPase domain and the CTE
152 while reducing the sequence length to a manageable size (approximately 800 amino acids).
153 Generally, the protein sequence was truncated from the N-terminal end. Predictions primarily
154 used an MMseqs2 MSA. Five models with three recycles each were generated and the highest-
155 ranking model was selected (Supplementary File 6). The resulting 3D structures were visualized
156 using ChimeraX. Topology diagrams were drawn in Adobe Illustrator, following the convention
157 used in (Cavini et al., 2021). For AlphaFold predictions of *K. flaccidum* and *I. multifiliis* septins,
158 we used version 1.5.2 of the ColabFold notebook. The structures were visualized using
159 ChimeraX and colored according to AlphaFold confidence.

160 To search for potential polybasic domains in the NTE of our reconstructed ancestral sequences,
161 we developed a Python script that uses a sliding 10-amino-acid window to calculate the local
162 average isoelectric point and plots this value against the first amino acid position across the
163 entire protein length. To focus solely on the NTE, which is where PB1 in extant septins is
164 primarily located, we aligned the ancestral septins to the GTPase domain of *S. cerevisiae* Cdc3
165 using CLUSTALω. Only residues before the start of the GTPase domain were plotted. To
166 visualize the multiple sequence alignment (MSA) of the ancestral septins, a CLUSTALω
167 alignment was performed without the Cdc3 GTPase domain to compare the amino acid
168 composition between GTPase domain-adjacent polybasic domains. The MSA was visualized
169 using the R package “ggmsa,” and the amino acids were colored according to their properties.

170 **Identification of amphipathic helices in extant septin sequences**

171 For high-throughput prediction of amphipathic helices, we developed a Python script that
172 consists of two steps of analysis: (1) secondary structure prediction by s4pred (Moffat and Jones,
173 2021) followed by (2) amphipathicity assessment of α -helices. In (1), secondary structure
174 prediction was performed for the amino acid sequence of a given septin protein using the
175 run_model.py script provided in <https://github.com/psipred/s4pred>. In (2), either a “fully-helical”
176 or “partially-helical” segment of an amino-acid sequence was extracted by a sliding 18 amino-
177 acid window. In a “partially-helical” segment, at least 6 amino acids at both ends of the 18 amino
178 acid window must be fully helical. For example, while a segment with a prediction
179 “HHHHHHCCCCCCHHHHHH” (6x H – 6x C – 6x H) was permitted, those with
180 “HHHHHHCCCCCCHHHHHHH” (5x H – 6x C – 7x H) were not. We included “partially-

181 “helical” segments for further assessment because some membrane-bound Ahs could be predicted
182 as “partially helical,” where two helices are broken apart by non-helical sequence (e.g., Sun2
183 AH: Lee et al., 2023). For each helical segment, the amphipathicity was calculated and assessed
184 similarly to HeliQuest software (Gautier et al., 2008), but with modifications. First, the mean
185 hydrophobic moment value $\langle \mu H \rangle$ was calculated as previously described (Eisenberg et al.,
186 1982) using the hydrophobicity scale values (Fauchere and Pliska, 1983) based on an assumption
187 that all helices rotate with a 100 degree step. Then, the discriminant factor $D = 0.944 \times \langle \mu H \rangle +$
188 $0.33 \times z$ (where z is the net charge) was calculated accordingly to HeliQuest. Finally, the helical
189 segment was considered amphipathic if all of the criteria below were satisfied: i) $D > 0.68$ OR
190 ($\langle \mu H \rangle > 0.4$ AND $z = 0$); ii) The hydrophobic face contains at least 3 consecutive bulky
191 hydrophobic residues (L, V, F, I, W, M, Y) (e.g. a hydrophobic face “SYALLVT” is
192 satisfactory); iii) “Core” of the hydrophobic face does NOT contain any charged residue (“core”:
193 the area of 90° centered around the pole). This search resulted in the identification of 4809
194 possible AH domains, with the vast majority showing overlap with one another (Supplementary
195 File 7).

196 We then filtered the data to exclude AHs that are positioned inside of an septin GTPase
197 domain. The GTPase domain of Cdc3 from *S. cerevisiae* was used as a reference to define the
198 start and end residues for the GTPase domain of the other 254 extant sequences. The list of
199 possible AHs of 18 amino acids in length was then screened by excluding those that overlapped
200 with the GTPase domain. Sequences satisfying these criteria were considered to possess an AH
201 (Supplementary File 8) and were highlighted in a cladogram generated using the R package
202 “ggtree.” To generate helical wheel diagrams, individual AH sequences from the dataset were
203 used as input to run the HeliQuest program (Gautier et al., 2008).

204 **Search for coiled-coil and putative transmembrane domains in extant septin sequences**

205 To identify septins with coiled-coil domain and/or putative transmembrane domains in the set of
206 254 extant septins, we used the existing annotations on the UniProt database (The UniProt
207 Consortium, 2023) release 2023_04. A BLASTP search using our list of 254 septins as query
208 against the UniprotKB database retrieved 206 hits, for which “Coiled coil” and
209 “Transmembrane” annotations were downloaded from the database. According to the UniProt
210 documentation, these annotations are based on the COILS program (Lupas et al., 1991) with a
211 minimum size of 28 amino acids for coiled-coil domains, and TMHMM and Phobius predictions

212 (Krogh et al., 2001; Käll et al., 2004) for transmembrane domains. For the remaining 48
213 sequences, manual searches for coiled-coil and transmembrane domains were performed using
214 Cocopred (Feng et al., 2022) and Phobius. These predictions are conservative and unlikely to
215 identify all possible coiled-coil and transmembrane domains; for example, the present analysis
216 identified fewer coiled-coil-containing septins than Auxier et al. (2019), which used the hidden-
217 Markov-model-based Marcoil program. Results of these searches are summarized in
218 Supplementary File 8.

219 **RESULTS**

220 **Identification of new septin sequences**

221 To search for septin sequences outside of opisthokonts, we compiled a small query list of
222 previously identified septin sequences from algal and protist species (Table 1). These sequences
223 were selected based on their evolutionary diversity, aiming to enhance the chance of identifying
224 septins from various taxa. We conducted BLASTP searches using the BLOSUM62 matrix and an
225 E-value cutoff of 1×10^{-5} , utilizing the protein databases available on the Joint Genome Institute's
226 (JGI) Phycocosm webpage and the Alveolata database on the NCBI BLAST website (see
227 Materials and Methods). These searches revealed previously unreported sequences in multiple
228 taxa under the supergroups Archaeplastida and Chromista, including two species of rhodophyte
229 red algae (*Porphyra umbilicalis* and *Pyropia yezeensis*) and one species of glaucophyte algae
230 (*Cyanophora paradoxa*) (Figure 1). Our searches also reproduced a previous failure to identify
231 any septin sequences in the entire supergroups of Amoebozoa and Excavata (Fig. 1; Onishi &
232 Pringle, 2016). At lower phylogenetic levels, septins were also not detected in Viridiplantae
233 (land plants) (Fig. 1).

234 **Table 1: Query sequences used in BLASTP searches**

Phylum	Species	Identifier
Chlorophyta (green algae)	<i>Chlamydomonas</i> <i>reinhardtii</i>	Cre12.g556250

Glauco phyta	<i>Cyanophora</i>	13652g13185t1
	<i>paradoxa</i>	
Rhodophyta (red algae)	<i>Porphyra</i> <i>umbilicalis</i>	6951
Phaeophyceae (brown algae)	<i>Ectocarpus</i> <i>siliculosus</i>	CBN74010
Ciliophora (ciliates)	<i>Paramecium</i> <i>tetraurelia</i>	CAI38984
Dinoflagellates	<i>Symbiodinium</i> <i>minutum</i>	symbB1.v1.2.007989.t1 ^a

235 ^a This transcript encodes a very long 4484-aa predicted protein. See Onishi & Pringle (2016) for
236 details. The 560-aa amino-terminal sequence containing the septin GTPase domain was used as
237 query.

238 **New septin phylogenetic groups**

239 The discovery of new septin sequences in distant branches of eukaryotes raised questions about
240 their phylogenetic relationship with other septins. Previous studies have classified septins into
241 five groups, but these groupings were defined predominantly based on septin sequences within
242 the opisthokont lineage. We thus combined these new non-opisthokont septin sequences with a
243 preexisting list of opisthokont septins (Auxier et al., 2019) and used the resulting 254 sequences
244 to generate a consensus RAxML tree (Fig. S1) and a simplified cladogram (Fig. 2A). Briefly, the
245 254 sequences and four prokaryotic YihA NTPases (used here as an outgroup; (Weirich et al.,
246 2008)) were aligned using NCBI's COBALT alignment tool and processed using ALISCORE
247 and ALICUT to remove ambiguous regions of alignment.

248 Consistent with results from previous reports (Momany et al., 2001; Kinoshita, 2003a; Pan et al.,
249 2007; Shuman and Momany, 2021), our phylogenetic analysis grouped the opisthokont septins
250 into five distinct clades (Fig. 2A; Fig. S1): Groups 1 and 2 include septins from both animals and
251 fungi, while Groups 3, 4, and 5 represent fungi-specific clades. Although limited sampling of
252 non-opisthokont septins has previously placed some of them in Group 5 (Onishi and Pringle,

253 2016; Shuman and Momany, 2021), it is now clear that Group 5 septins are distinct from non-
254 opisthokont septins, consistent with the proposal by Yamazaki et al. (2013).

255 The non-opisthokont septins themselves form three new groups (Groups 6-8) (Fig. 2B; Fig. S2).
256 Group 6 is a monophyletic group of green algal species divided into two subgroups: Group 6A
257 includes some septins that are encoded as a single gene in the genome, in species such as *C.*
258 *reinhardtii* and *N. bacillaris* (Versele and Thorner, 2005; Yamazaki et al., 2013). Group 6B, in
259 contrast, exclusively represents septins that appear to have emerged through gene duplication.
260 For example, of five septins in the green alga *Gonium pectorale*, only one belongs to Group 6A
261 while the remaining four belong to Group 6B (Fig. 2B; Fig. S2). The genes for these four septins
262 form a cluster in the assembled *G. pectorale* genome. (Scaffold_65:140824 - 165695),
263 suggesting a very recent gene duplication event. Similarly, of the seven septins in *Desmodesmus*
264 *armatus*, five belong to Group 6B (Fig. 2B; Fig. S2). Group 7 is a paraphyletic group composed
265 of septins from various groups of algae, such as additional green algae (e.g., *Symbiochloris*
266 *reticulata*), heterokonts (*Ectocarpus siliculosus*), haptophytes (*Chrysochromulina tobinii*),
267 cryptophytes (*Cryptophyceae sp. CCMP2293*), chlorarachniophytes (*Bigelowiella natans*), and
268 rhodophytes (*P. umbilicalis*) (Fig. 2B; Fig. S2). Finally, Group 8 is a monophyletic group
269 comprised exclusively of septins from ciliates, except for one highly divergent sequence from the
270 unicellular opisthokont *Capsaspora owczarzaki*. Within Group 8, septins from *Paramecium* and
271 *Stentor coeruleus* formed genus-specific clades, suggesting recent expansion events of septin
272 genes within their lineages (Fig. 2B; Fig. S2).

273 Several non-opisthokont sequences are currently not classified in Groups 6-8 because their
274 phylogenetic positioning was sensitive to the programs and parameters used (Fig. 2A; Fig. S1).
275 These include sequences from glaucophytes (*C. paradoxa*), dinoflagellates (*S. minutum*,
276 *Pseudonitzschia multisstrata*), and coccolithophores and related haptophytes (*Emiliania huxleyi*,
277 *Phaeocystis globosa*, *C. tobinii*, *Diacronema lutheri*). Curiously, a septin from *Fonticula alba*,
278 an opisthokont cellular slime mold, also belonged to this orphan group. Additional sampling of
279 sequences from these and related species will likely help improve the confidence in their
280 phylogenetic positioning.

281 **Conservation of G-interface residues in non-opisthokont septins**

282 In previous studies, septins from Groups 1-5 were found to have several highly conserved
283 regions in their GTPase domains (Fig. 3A) that participate in inter-subunit contacts across the G-
284 and NC-interfaces (Fig. 3BC; Pan et al., 2007; Auxier et al., 2019; Shuman and Momany, 2021;
285 Castro et al., 2023). To gain insights into the evolution of these interfaces in septins across the
286 eukaryotic tree, we expanded the alignment to all 254 septins and generated a Weblogo
287 representation for each septin group (Fig. 3D). In general, the GTPase-specific motifs (G1, G3,
288 G4), septin-specific motifs (S2, S3, S4) except for the S1 motif (Pan et al., 2007; Auxier et al.,
289 2019; Nishihama et al., 2011; Onishi & Pringle, 2016), and some key residues in the septin-
290 unique element are all well conserved. More specifically, most of the key residues in the five G-
291 interfaces (Gig1-Gig5) are all conserved, except for Gig2 which appears to be variable in Group
292 8 (Fig. 3D). In contrast, key residues in the four NC-interfaces (NCig1-4) are poorly conserved
293 in Groups 6b, 7, and 8. These results suggest that non-opisthokont septins may primarily form
294 homo- or hetero-dimers through the G-interface, and further addition of subunits through NC-
295 interfaces may be limited to Group 6a. In support of this speculation, we found a unique arginine
296 residue that is highly conserved in many Group 6-8 septins but not in Groups 1-5 (Fig. 3D);
297 similar “arginine (R-) fingers” are found in other GTPases that form G-dimers (Koenig et al.,
298 2008; Schwefel et al., 2013; see below).

299 **Reconstituted ancestral septins suggest that the arginine finger in the G-interface is an
300 ancestral feature**

301 To delve deeper into the evolution of the structural motifs within the septin GTPase domain, we
302 used ancestral sequence reconstruction (ASR) (Ashkenazy et al., 2012) to resurrect ancestral
303 septins. Due to the limitations of the program used, we reconstructed an IQTree of 200 of the
304 254 septins (Fig. 4A; Fig. S3). The grouping of septin clades and the overall topology of the tree
305 were largely consistent with the RAxML tree (Fig. 2). Using this IQTree, ASR prediction was
306 made for several key nodes representing Groups 1-8 and their parental nodes, and then
307 AlphaFold2 (Jumper et al., 2021) was used to predict their 3D structures for the GTPase domain
308 and the C-terminal extension (see Materials and Methods). Perhaps unsurprisingly given the
309 conservation of the extant sequences (Fig. 3D), the tertiary structures of the ancestral sequences
310 all appeared similar among themselves and with experimentally determined septin structures
311 (Fig. S4).

312 To highlight gains and losses of sub-domain motifs during the evolution of ancestral septins,
313 interpretive topology diagrams of the GTPase domains were generated based on the AlphaFold
314 predictions (Fig. 4BC). This analysis revealed a largely consistent core structure of the GTPase
315 domains consisting of six α -helices ($\alpha 1$ - $\alpha 6$) and nine β -sheets ($\beta 1$ - $\beta 6$ and βa - βc), as well as a few
316 variable α -helices that emerged or were lost at specific ancestral nodes (see below). In addition
317 to the helices and sheets, we identified an arginine residue positioned in the S3 motif of
318 AncGroup 6-8 and LECA septins (Figs. 3BD and 4C). Although this residue is not found in the
319 reconstructed in AncGroup 1-5 septins (Fig. 4C), some extant Group 5 septins, such as *A.*
320 *nidulans* AspE, appear to have it (see below). Thus, this “R-finger” arginine is an ancestral
321 feature of septin family proteins that has been lost in most opisthokonts. Intriguingly, it has been
322 reported that this R-finger in the single septin of *C. reinhardtii* is required for its homo-
323 dimerization across the G-interface (Pinto et al., 2017), where it reaches into the GTP-binding
324 pocket of the opposite subunit to accelerate GTP hydrolysis (see Fig. 3C, G-interface). Thus, we
325 suspected that the R-finger would invariably be conserved in single septins found in other
326 species. This prediction was partially confirmed: 20 of the 23 single septins that were included in
327 our analysis have an R-finger at the expected position (Fig. 5A), suggesting that the dimerization
328 mechanism observed in *C. reinhardtii* may be ancestral and conserved in many algae and
329 protists. Of the other three that lacked an R-finger, the sequence from the dinoflagellate *S.*
330 *minutum* is an extremely large 4484-aa protein, with a septin-like domain near the N-terminus
331 and some additional domains (e.g., SMC domain, HSP70) that are not found in other septins.
332 The other two (from the ciliates *Halteria grandinella* and *Stylonychia lemnae*) have the arginine
333 replaced by a histidine residue. It is unknown whether these single septins still form a G-dimer
334 without an R-finger or have taken unique evolutionary paths to function without dimerizing
335 through the G-interface.

336 Interestingly, in many algae and protists with multiple septin genes, a loss of the R-finger is
337 observed in some of the duplicated genes (Fig. 5A). For example, the ciliate
338 *Ichthyophthirius multifiliis* possesses two septins: XP004037107 with an R-finger and
339 XP004027529 without (Fig. 5B). Similarly, the filamentous charophyte green alga
340 *Klebsormidium flaccidum* has two proteins with and without an R-finger (GAQ92127 and
341 GAQ78635, respectively; Fig. 5B). Given the apparent selective pressure against the loss of R-
342 finger in single septins as well as the loss of R-finger in most opisthokont septins that are

343 invariably encoded as multiple copies in a genome (see below), it is tempting to speculate that
344 these septins may have lost their R-finger because of evolution to form hetero-oligomers.
345 Biochemical characterization of these septins is needed to address this possibility.
346 Unlike the non-opisthokont counterparts, the vast majority of opisthokont septins do not possess
347 an R-finger between the S2-S3 motifs (Figs. 3D and 4C). In Group 1-4 septins, the arginine
348 residue is replaced by small uncharged amino acids such as serine, glycine, or alanine. Although
349 there is an invariant histidine residue in the adjacent position (Fig. 3D) that could potentially be
350 involved in GTP hydrolysis (Weirich et al., 2008), a mutation to this amino acid in human
351 SEPT2 did not affect its GTPase activity (Sirajuddin et al., 2009). Thus, it is unlikely that the
352 Group 1-4 opisthokont septins employ an R-finger-like molecular mechanism to interact through
353 their G-interfaces. The R-finger is also absent in most filamentous-fungus-specific Group 5
354 septins (Figs. 3D and 4C), consistent with the previous observation that the S1-S4 motifs in
355 septins in these groups are highly variable (Shuman and Momany, 2021). However, some
356 septins, such as *Aspergillus nidulans* AspE (Fig. 5A), have an arginine residue located between
357 the divergent S2-S3 motifs. Available data suggest that AspE is not incorporated into canonical
358 septin complexes, although it interacts with them in a developmental-stage-specific manner
359 (Hernandez-Rodriguez et al., 2014). It is interesting to speculate that AspE-type Group 5 septins
360 have retained the ancestral trait to form a homomeric G-dimer using their R-fingers.

361 **Conservation of α 0 and α 5' helices in opisthokont septins**

362 In addition to the core helices and sheets, AncGroup 1-5 (opisthokont) septins displayed two
363 additional invariant α -helices, both positioned in the NC-interface: α 0 at the junction between the
364 N-terminal extension and the GTPase domain, and α 5' that is positioned in-between α 4 and β 6
365 (Fig. 4C). Interestingly, however, these helices are not well conserved in Group 6-8 septins (Fig.
366 4C). In the human SEPT2/6/7 complex (and plausibly in many other opisthokont septins
367 complexes), the α 0 helix is an integral part of the NC interface where it forms an electrostatic
368 inter-subunit interaction (Cavini et al., 2021). In addition, the α 5'-helix contains a polyacidic
369 region that is known to interact with the polybasic region 1 (PB1) within the α 0 helix of a
370 neighboring subunit across the NC interface (Fig. 3C; Cavini et al., 2021). Thus, it is
371 conceivable that the α 0 and α 5' helices evolved together in the opisthokont lineage as the
372 positioning of PB1 was fixed in the former (see below).

373 The PB1 domain in $\alpha 0$ helix binds to phospholipids such as phosphatidylinositol 4-phosphate,
374 4,5-bisphosphate, and 3,4,5-triphosphate (Zhang et al., 1999; Casamayor and Snyder, 2003;
375 Bertin et al., 2010; Onishi et al., 2010; Krokowski et al., 2018). The PB1 domain has been
376 observed in some septins in non-opisthokont species such as in *C. reinhardtii* (Wloga et al.,
377 2008; Nishihama et al., 2011; Pinto et al., 2017) despite the lack of $\alpha 0$ in the same proteins (Figs.
378 3D and 4B), raising the possibility that the emergence of PB1 precedes that of $\alpha 0$. To test this,
379 we examined the NTEs of the reconstructed ASR sequences for the presence of PB1 by
380 developing a Python script that calculates the isoelectric point of a 10 amino-acid window
381 moving along protein sequences. We observed a basic region proximal to the beginning of the
382 GTPase domain in AncGroup 1-5 septins (including in the very short NTE of AncGroup3 septin)
383 (Fig. 6AB), consistent with the presence of PB1 in the majority of extant opisthokont septins
384 (Nishihama et al., 2011; Shuman et al., 2021). Similarly, the regions immediately upstream of
385 the G1 motif in AncGroup 6 and 6/7 septins are also highly basic (Fig. 6A). In contrast, the NTE
386 of AncGroup8 is overall acidic (Fig. 6A), and a few basic residues found in this region are
387 interdigitated by acidic residues (Fig. 6B), consistent with the reported ambiguity about the
388 presence of polybasic regions in septins in *T. thermophila* and *P. tetraurelia* (Wloga et al., 2008).
389 Interestingly, CLUSTAL ω alignment identified additional polybasic domains in AncGroup 6B
390 and 6/7 septins at positions 339 and 214 aa upstream of the G1 motif, respectively, which
391 exhibited higher homology to the proximal PB1 observed in AncGroup 1-5 septins (Fig. 6B), and
392 the G1-proximal sequences (PB1') are non-opisthokont-specific (Fig. 6B). Given the low overall
393 sequence conservation of these regions in AncGroup 8 (Fig. 6B), it is not clear whether PB1' is
394 an ancestral feature that has been lost in opisthokont septins, or it was newly inserted adjacent to
395 the G1 motif in the lineage leading to Group 6 and 7 septins. Overall, however, the presence of a
396 polybasic region in the NTE appears to be an ancestral feature that predates the emergence of
397 opisthokont-specific $\alpha 0$.

398 **Amphipathic helices are an ancestral feature of septins**

399 Some opisthokont septins have the remarkable ability to recognize micron-scale membrane
400 curvature through an amphipathic helix (AH) (Bridges et al., 2016; Cannon et al., 2019).
401 Perturbation of these AHs can lead to abnormal subcellular localization of septin proteins
402 (Cannon et al., 2019). To ask if AHs are found outside of opisthokonts and therefore can be an
403 ancestral feature of septins, we developed a high-throughput pipeline to identify AH domains in

404 a large number of polypeptide sequences by predicting alpha helices and then calculating their
405 amphipathicity (see Materials & Methods), and applied it to the NTE and C-terminal extension
406 (CTE) of our eukaryotic septin collection. This pipeline precisely identified previously reported
407 AH domains in fungal and animal septins (Cannon et al., 2019; Lobato-Márquez et al., 2021;
408 Woods et al., 2021), such as Cdc12 and Shs1 in *S. cerevisiae* and *Ashbya gossypii*, human
409 SEPT6, *Caenorhabditis elegans* UNC-61, and *Drosophila melanogaster* Sep1 (Fig. S5). In
410 addition, our analysis revealed the presence of predicted AHs in septin sequences spanning all
411 Groups (Fig. 7A; Table 2) with varying levels of conservation. In opisthokonts, for instance,
412 predicted AHs were detected in 68% of Group 2 and Group 4 sequences, while only 13% of
413 Group 3 sequences exhibited AHs. In Group 1, there is a striking difference between the two
414 subclades: a predicted AH is completely absent in 1A (animals and fungi), while it is found in
415 75% of septins in 1B (animal-specific). This unexpected dichotomy suggests a potential
416 connection between the evolution of AHs and the positioning of subunits within a canonical
417 octameric protomer, in which 1A subunits occupy the central dimer. Like Group 3, only a small
418 fraction of Group 5 septins (22%) have predicted AHs; unlike Group 1, there is no specific
419 subgroup in which AHs are conserved, suggesting sporadic loss/gain of the domain within this
420 group (Fig. 7A; Table 2). Notably, *A. nidulans* AspE has an unequivocal predicted AH with a
421 large hydrophobic moment (Fig. 7E; Fig. S5), which may contribute to the highly cortical
422 localization of this septin (Hernández-Rodríguez et al., 2014). In general, the AHs in Groups 1-5
423 displayed features consistent with stereotypical amphipathicity, with a large hydrophobic
424 window and a hydrophilic face composed of both positively and negatively charged residues
425 (Fig. S5).

426 The wide distribution of AHs is also observed in all non-opisthokont groups (Fig. 7A; Table 2).
427 Group 6A, consisting largely of single septins, has the highest rate of AH domains at 68%. In
428 Group 6B, septins with predicted AHs were found in most subclades, with a total preservation
429 rate of 50%. In Groups 7 and 8, septins with predicted AHs were found in at 38% and 19%,
430 respectively. In the Heliquest visualization, both AHs present in Group 6B and Group 7
431 exhibited hydrophilic faces primarily composed of positively charged residues interspersed with
432 small polar residues such as serines and threonines (Fig. S5). In some instances, weaker
433 amphipathic helices were observed, as exemplified by *P. umbilicalis* 6581, which lacked a
434 strongly pronounced hydrophilic face but still fulfilled the criteria of our search because of their

435 high net charges that raised the *D*-factor (Fig. 7E; Fig. S5). Some Group 6A and Group 8 septins
436 have predicted AHs similar to those observed in Groups 1-5 with a large hydrophobic window
437 opposite the cluster of both positively and negatively charged residues.

438 **Selective distribution of coiled-coil and transmembrane domains in specific septin groups**

439 Many animal and fungal septins contain a coiled-coil (CC) motif in the CTE which is thought to
440 be involved in polymer stabilization and the formation of bundles and filament pairs (Sirajuddin
441 et al., 2007; Bertin et al., 2010; Cavini et al., 2021). We utilized the existing annotation of coiled-
442 coil domains in the Uniprot database to identify them in our list of 254 extant septins.

443 Interestingly, we observed the presence of CCs in Groups 1B, 3, 4, and 6B (Fig 7B; Table 2).
444 The majority of these sequences were also positive for AH domains (Fig. 7D), with AH domains
445 residing within CC domains in many cases, such as in *S. cerevisiae* Cdc12 (Fig 7E; Cannon et
446 al., 2019). Interestingly, CC domains were almost entirely excluded from non-opisthokont
447 Groups 6A, 7, and 8 (Fig. 7B; Table 2), suggesting that the CC domains observed in Group 6B
448 were a result of convergent molecular evolution. It is interesting to speculate that septin gene
449 duplication in some green algae (Fig. 5A) and the formation of heterooligomeric complexes may
450 have led to the emergence of lateral pairing between septin subunits.

451 Lastly, it has previously been reported that some non-opisthokont septins possess putative
452 transmembrane (TM) domains or short hydrophobic patches (Wloga et al., 2008; Nishihama et
453 al., 2011). Thus, we searched for the presence of potential TM domains in our list of 254 extant
454 septin sequences. Except for one sequence from the parasitic fungus *Catenaria anguillulae*
455 (A0A1Y2I4M7, Group 2A, 46% identical to *S. cerevisiae* Cdc3) that has a unique N-terminal
456 TM domain, all septins with a TM domain were found in the non-opisthokont lineages, with
457 notable enrichment in Groups 6A and 7 (Fig. 7CE; Table 2). This distribution of TM domains in
458 our dataset seems to suggest that they emerged early in the non-opisthokont branch after its split
459 with opisthokonts and were subsequently lost in many species in Group 6B and 8. [See, however,
460 Discussion for another possibility given a recent report by (Perry et al., 2023).] It is interesting to
461 note that there is little overlap between the distributions of CC and TM domains in Group 6
462 septins (Fig. 7D), perhaps suggesting that the evolution of septin-septin interactions through CC
463 domains necessitated a concomitant loss of TM that would otherwise restrict the accessibility of
464 CTE.

465 In summary, our searches for α -helix-based structures that are often associated with septin CTE
466 suggest that the AH and TM domains may have ancient origins in septin evolution, while the CC
467 domain may have evolved independently in multiple lineages.

468

469 **Table 2. Conservation of various features in septin groups.**

Group	Phylum	R-finger (%)	α 0 ^a	PB1 ^a	PB1' ^a	AH (%) ^b	CC (%) ^b	TM (%) ^b
1	Animals/fungi	0	Strong	Yes	No	27 ^c	18	0
2	Animals/fungi	0	Strong	Yes	No	68	6.5	3.2
3	Fungi	0	Strong	Yes	No	13	33	0
4	Fungi	0	Strong	Yes	No	68	46	0
5	Filamentous fungi	5.6	Strong	Yes	No	22	17	0
6A	Green algae	100	None	No	Yes	68	16	44
6B	Green algae	80	None	Yes	Yes	50	87	6.7
7	Various algae	91	Weak	Yes?	Yes? ^d	38	9.5	43
^d								
8	Ciliates	60	Weak	No	No	18.9	2.7	11

470 ^aBased on AlphaFold predictions of ancestral protein structures.

471 ^bBased on analyses of extant sequences. Values greater than 30 are bold-faced. See
472 Supplementary File 8 for details.

473 ^c0% in 1A, 75% in 1B.

474 ^dBecause Group 7 is paraphyletic, we could not confidently infer the conservation of PB
475 domains based on AngGroup6/7.

476

477 DISCUSSION

478 Septins have been reported in a variety of eukaryotic lineages outside of opisthokonts (Verelle
479 and Thorner, 2005; Wloga et al., 2008; Nishihama et al., 2011; Yamazaki et al., 2013; Onishi
480 and Pringle, 2016; Shuman and Momany, 2021), although their phylogenetic relationships have
481 not been fully explored. Here, we performed an updated search for septins in non-opisthokont
482 lineages and found that septins are widely spread in two distinct non-opisthokont eukaryotic

483 supergroups: Archaeplastida and Chromista. Because these two supergroups and opisthokonts
484 share the ancestry only at the LECA level, our results strongly support the idea that the first
485 septin appeared in an early eukaryotic ancestor. We inferred structural features related to septin-
486 septin interactions, membrane binding, and curvature sensing across eukaryotic evolution, and
487 hypothesized functions related to ancestral septins.

488 Septins in Archaeplastida and Chromista form new phylogenetic clades outside of the previously
489 defined Groups 1-5, herein named Groups 6A, 6B, 7, and 8. Group 6A and 6B are composed
490 exclusively of septins from various green algae, while septins in Groups 7 and 8 belong to other
491 various algae (some other green algae, red algae, heterokonts, haptophytes, cryptophytes,
492 chlorarachniophytes) and ciliates, respectively. It is peculiar that these septins in algae from
493 diverse groups formed a single clade separate from the ciliate septins, which is inconsistent with
494 the general taxonomical classification of these species (compare Fig. 1 and Fig. 2A). It is
495 tempting to speculate that these algal septins may have spread through horizontal transfer of
496 nuclear genes, when ancestral red and green algae were taken up by other eukaryotes to form
497 secondary and tertiary endosymbiosis (Keeling and Palmer, 2008; Archibald, 2012).

498 In this study, we found that the majority (but not all) of non-opisthokont septins have a
499 conserved arginine residue within the G-interface. This arginine is predicted to act similarly to
500 other R-fingers in GTPase-activating proteins (GAPs). Because R-fingers are also found in other
501 “paraseptin” GTPases such as TOC34/TOC159 and AIG1/GIMAP (Leipe et al., 2002; Weirich et
502 al., 2008), it is likely an ancestral feature that has been lost in some lineages. Biochemical and
503 structural studies on the single Group 6A septin from *C. reinhardtii* have shown that this arginine
504 is critical for the very high GTPase activity of this septin (40 times higher than human SEPT9,
505 the most active septin GTPase in opisthokonts) and its homo-dimerization through the G-
506 interface (Pinto et al., 2017). Interestingly, while Group 6A septins invariably have an R-finger,
507 some Group 6B septins have lost this residue. It appears that the loss of R-finger is a crucial
508 evolutionary step associated with septin gene duplication in many eukaryotic lineages, including
509 Group 6 (green algae), Group 8 (ciliates), and the transition from ancestral septin to
510 opisthokonts.

511 Suppose we imagine an ancestral septin dimer with subunits possessing two potential interaction
512 interfaces (G and NC). In that case, we predict that the presence of an R-finger strongly biases

513 the interaction to the G-interface, suggesting that most ancestral septins formed a dimer across
514 their G-interface. Upon gene duplication, some septins lost the R-finger and gained the NC-
515 interface interaction motif, $\alpha 0$. These evolutionary events then would shift the equilibrium to
516 favor the NC-interface, allowing for the formation of septin heterocomplex protomers. In some
517 cases, evolution of non-opisthokont septin complexes may have involved further mutations in the
518 GTP-binding pocket and the G-interface, causing some septins to be locked in apo-nucleotide or
519 GTP-bound state, as seen in some opisthokont septins (Hussain et al., 2023).

520 When hypothesizing about the potential ancestral functions of septins, we sought to identify
521 motifs that are crucial for septin function. We observe the presence of a polybasic domain
522 immediately preceding the GTPase domain in all septins except for Group 8. Previous studies
523 have implicated this domain to be important for membrane recognition, as well as stabilizing an
524 NC-interaction interface (Bertin et al., 2010; Cavini et al., 2021). The wide distribution of the
525 polybasic domain, but not an $\alpha 0$ helix in which it is found in opisthokonts, suggests that the role
526 of ancestral septins involved their binding to lipid bilayers. In support of this, we found that AH
527 domains were also present across many of the septin phylogenetic groups, suggesting that they
528 are also an ancestral septin feature. By comparing helical wheel diagrams of these AH domains
529 across species, we begin to see some level of heterogeneity in the amino acid composition.
530 Models to distinguish curvature sensing peptides highlight the importance of specific amino acid
531 composition in either being a membrane sensor versus a membrane binder (van Hilten et al.,
532 2023). It could be that the variation in amino acid composition confers distinct membrane
533 binding properties, such as curvature sensing or subcellular localization. Within Groups 1-5, AH
534 domains often had large hydrophobic faces and a large hydrophobic moment due to the presence
535 of acidic and basic residues along the hydrophilic face. In contrast, in some lineages, particularly
536 in group 6B and group 7, we observe the reduction of charged residues and often find threonine
537 and serine residues. These residues may act as potential phosphorylation sites to adaptively
538 regulate the functional properties of these helices (Byeon et al., 2022). Future biochemical
539 studies of the AH domains of diverse septins would provide additional context to the ancestral
540 role of this domain.

541 We identified the presence of CC and putative TM domains in the CTE of septins across various
542 phylogenetic groups. In non-opisthokonts, we observed an almost exclusive and ubiquitous

543 conservation of CC domains in Group 6B, while TM domains are highly enriched in Group 6A.
544 Considering that Group 6B is composed of septins that have undergone recent gene duplication,
545 it raises an interesting possibility that septins utilize CC to form interactions between subunits
546 and filaments only after the emergence of heterocomplexes. In this scenario, gene duplication
547 and subsequent diversification would be a prerequisite for this specialization of function among
548 subunits. It is important to note that our classification of septin groups was based solely on the
549 sequences of the GTPase domain, independently of the CTE sequence. Therefore, the strong
550 correlation between Group 6A/TM and Group6B/CC suggests a co-evolution between the
551 GTPase and CTE.

552 In addition to Group 6, TM domains were found sporadically in the CTE of some Group 7 and 8
553 septins but largely missing from the opisthokont sequences we used in our analysis. We initially
554 interpreted this as evidence that the TM domain emerged after the opisthokont/non-opisthokont
555 split and was subsequently lost in some lineages. However, a recent study by Perry et al. (2023)
556 reported the presence of TM domains in a transcript isoform of *C. elegans UNC-61* (Group 1) as
557 well as many other opisthokont proteins currently annotated as septins on the Uniprot database
558 (but were not included in our list of 254 septins). Interestingly, many of these TM domains are
559 found in the NTE, as seen in *C. anguillulae* A0A1Y2I4M7 (Fig. 7E). Thus, we provide two
560 possible interpretations: The N- and C-terminal TM domains evolved independently in
561 opisthokonts and non-opisthokonts, respectively. Alternatively, the LECA septin possessed a TM
562 in the C-terminus, which was inherited by some progeny in all septin groups; in opisthokonts,
563 domain movement within a gene (Furuta et al., 2011) shifted the position of TM from C- to N-
564 terminus.

565 For future studies of septin evolution and general principles of evolutionary constraints, two
566 approaches appear particularly appealing. First, a comparative approach using green algae with
567 single vs. multiple septins seems to provide a unique opportunity to understand the evolution of
568 septin duplication and the formation of heterocomplexes. For example, while *C. reinhardtii*
569 possesses a single Group 6A septin with R-finger, PB1/PB1', AH, and possible TM ((Wloga et
570 al., 2008; Nishihama et al., 2011); though it is not currently annotated as such on Uniprot), a
571 related green alga in the same Chlamydomonadales order, *G. pectorale*, has a total of five septins
572 (one Group 6A and four 6B) with various combinations of septin features (Supplementary File
573 8). The Kinoshita rule (Kinoshita, 2003a) of opisthokont septins highlights the modularity and

574 redundancy of opisthokont septin subunits at each position of a canonical protomer, where a
575 septin from the same group can replace one another. Biochemical and cell biological experiments
576 of Group 6A and Group 6B septins can shed light on whether this rule also applies to non-
577 opisthokont septins.

578 Second, to understand how – parsimoniously – a single septin with R-finger evolved into a
579 highly variable family of five septin groups in opisthokonts, some filamentous fungi possessing
580 Group 5 with putative R-fingers seem to be an ideal model. One such protein, AspE in *A.*
581 *nidulans*, has been shown to be excluded from the heterooligomeric complex formed by other
582 subunits (Hernández-Rodríguez et al., 2014). Perhaps this septin has an extremely high GTPase
583 activity, forms a G-dimer, and works independently of canonical filaments or binds to filaments
584 in a substoichiometric fashion.

585 Finally, although our study provided a general overview of septin evolution, it is important to
586 consider these evolutionary events in the context of the cellular processes the ancestral septins
587 were involved in. Given the near-universal role of animal and fungal septins in cytokinesis, it is
588 tempting to speculate that ancestral septins had similar roles. In support of this, the single septin
589 in the green alga *N. bacillaris* showed its localization at the division site (Yamazaki et al., 2013).
590 However, the two and only other reports on non-opisthokont septins did not show division-site
591 localization: in another green alga *C. reinhardtii*, a septin was found at the flagella-base region,
592 and in the ciliate *T. thermophila*, septins were found associated with mitochondria (Wloga et al.,
593 2008; Pinto et al., 2017). Further functional studies of septins in non-opisthokonts are necessary
594 to reveal the ancestral and fundamental functions of septins.

595

596 **ACKNOWLEDGMENTS**

597 We thank Jenna Perry and Amy Maddox for sharing unpublished information. This work was
598 supported by National Institutes of Health Grant R01 GM131004 (to S.B.), National Science
599 Foundation Grant MCB 1818383 (to M.O. and John R. Pringle), Duke University Department of
600 Biology, and The Franklin College of Arts and Sciences at the University of Georgia.

601

602

603 **REFERENCES**

- 604 Archibald, J. M. (2012). "Chapter Three - The Evolution of Algae by Secondary and Tertiary
605 Endosymbiosis," in *Advances in Botanical Research*, ed. G. Piganeau (Academic Press),
606 87–118. doi: 10.1016/B978-0-12-391499-6.00003-7
- 607 Ashkenazy, H., Penn, O., Doron-Faigenboim, A., Cohen, O., Cannarozzi, G., Zomer, O., et al.
608 (2012). FastML: a web server for probabilistic reconstruction of ancestral sequences.
609 *Nucleic Acids Research* 40, W580–W584. doi: 10.1093/nar/gks498
- 610 Auxier, B., Dee, J., Berbee, M. L., and Momany, M. (2019). Diversity of opisthokont septin
611 proteins reveals structural constraints and conserved motifs. *BMC Evol Biol* 19, 4. doi:
612 10.1186/s12862-018-1297-8
- 613 Bertin, A., McMurray, M. A., Thai, L., Garcia, G., Votin, V., Grob, P., et al. (2010).
614 Phosphatidylinositol-4,5-bisphosphate Promotes Budding Yeast Septin Filament
615 Assembly and Organization. *Journal of Molecular Biology* 404, 711–731. doi:
616 10.1016/j.jmb.2010.10.002
- 617 Bridges, A. A., Jentzsch, M. S., Oakes, P. W., Occhipinti, P., and Gladfelter, A. S. (2016). Micron-
618 scale plasma membrane curvature is recognized by the septin cytoskeleton. *J Cell Biol*
619 213, 23–32. doi: 10.1083/jcb.201512029
- 620 Byeon, S., Werner, B., Falter, R., Davidsen, K., Snyder, C., Ong, S.-E., et al. (2022). Proteomic
621 Identification of Phosphorylation-Dependent Septin 7 Interactors that Drive
622 Dendritic Spine Formation. *Frontiers in Cell and Developmental Biology* 10. Available
623 at: <https://www.frontiersin.org/articles/10.3389/fcell.2022.836746> (Accessed
624 December 28, 2023).
- 625 Byers, B., and Goetsch, L. (1976). A highly ordered ring of membrane-associated filaments in
626 budding yeast. *Journal of Cell Biology* 69, 717–721. doi: 10.1083/jcb.69.3.717
- 627 Cannon, K. S., Woods, B. L., Crutchley, J. M., and Gladfelter, A. S. (2019). An amphipathic helix
628 enables septins to sense micrometer-scale membrane curvature. *Journal of Cell
629 Biology* 218, 1128–1137. doi: 10.1083/jcb.201807211
- 630 Casamayor, A., and Snyder, M. (2003). Molecular dissection of a yeast septin: distinct domains
631 are required for septin interaction, localization, and function. *Mol Cell Biol* 23, 2762–
632 2777. doi: 10.1128/MCB.23.8.2762-2777.2003
- 633 Castro, D. K. S. V., Rosa, H. V. D., Mendonça, D. C., Cavini, I. A., Araujo, A. P. U., and Garratt, R. C.
634 (2023). Dissecting the Binding Interface of the Septin Polymerization Enhancer Borg
635 BD3. *Journal of Molecular Biology* 435, 168132. doi: 10.1016/j.jmb.2023.168132
- 636 Cavalier-Smith, T. (2018). Kingdom Chromista and its eight phyla: a new synthesis
637 emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and
638 ancient divergences. *Protoplasma* 255, 297–357. doi: 10.1007/s00709-017-1147-3

- 639 Cavini, I. A., Leonardo, D. A., Rosa, H. V. D., Castro, D. K. S. V., D'Muniz Pereira, H., Valadares, N.
640 F., et al. (2021). The Structural Biology of Septins and Their Filaments: An Update.
641 *Frontiers in Cell and Developmental Biology* 9. Available at:
642 <https://www.frontiersin.org/articles/10.3389/fcell.2021.765085> (Accessed May 29,
643 2023).
- 644 Eisenberg, D., Weiss, R. M., and Terwilliger, T. C. (1982). The helical hydrophobic moment: a
645 measure of the amphiphilicity of a helix. *Nature* 299, 371–374. doi:
646 [10.1038/299371a0](https://doi.org/10.1038/299371a0)
- 647 Fauchere, J., and Pliska, V. (1983). Hydrophobic parameters II of amino acid side-chains from
648 the partitioning of N-acetyl-amino acid amides. *Eur. J. Med. Chem.* 18.
- 649 Feng, S.-H., Xia, C.-Q., and Shen, H.-B. (2022). CoCoPRED: coiled-coil protein structural feature
650 prediction from amino acid sequence using deep neural networks. *Bioinformatics* 38,
651 720–729. doi: [10.1093/bioinformatics/btab744](https://doi.org/10.1093/bioinformatics/btab744)
- 652 Field, C. M., al-Awar, O., Rosenblatt, J., Wong, M. L., Alberts, B., and Mitchison, T. J. (1996). A
653 purified Drosophila septin complex forms filaments and exhibits GTPase activity. *The
654 Journal of cell biology* 133, 605–616. doi: [10.1083/jcb.133.3.605](https://doi.org/10.1083/jcb.133.3.605)
- 655 Furuta, Y., Kawai, M., Uchiyama, I., and Kobayashi, I. (2011). Domain movement within a gene:
656 a novel evolutionary mechanism for protein diversification. *PLoS One* 6, e18819. doi:
657 [10.1371/journal.pone.0018819](https://doi.org/10.1371/journal.pone.0018819)
- 658 Gautier, R., Douguet, D., Antonny, B., and Drin, G. (2008). HELIQUEST: a web server to screen
659 sequences with specific alpha-helical properties. *Bioinformatics* 24, 2101–2102. doi:
660 [10.1093/bioinformatics/btn392](https://doi.org/10.1093/bioinformatics/btn392)
- 661 Grupp, B., and Gronemeyer, T. (2023). A biochemical view on the septins, a less known
662 component of the cytoskeleton. *Biological Chemistry* 404, 1–13. doi: [10.1515/hsz-2022-0263](https://doi.org/10.1515/hsz-2022-0263)
- 664 Hartwell, L. H. (1971). Genetic control of the cell division cycle in yeast: IV. Genes controlling
665 bud emergence and cytokinesis. *Experimental Cell Research* 69, 265–276. doi:
666 [10.1016/0014-4827\(71\)90223-0](https://doi.org/10.1016/0014-4827(71)90223-0)
- 667 Hartwell, L. H., Culotti, J., Pringle, J. R., and Reid, B. J. (1974). Genetic Control of the Cell
668 Division Cycle in Yeast. *Science* 183, 46–51. doi: [10.1126/science.183.4120.46](https://doi.org/10.1126/science.183.4120.46)
- 669 Hernández-Rodríguez, Y., Masuo, S., Johnson, D., Orlando, R., Smith, A., Couto-Rodriguez, M.,
670 et al. (2014). Distinct Septin Heteropolymers Co-Exist during Multicellular
671 Development in the Filamentous Fungus *Aspergillus nidulans*. *PLOS ONE* 9, e92819.
672 doi: [10.1371/journal.pone.0092819](https://doi.org/10.1371/journal.pone.0092819)

- 673 Hussain, A., Nguyen, V. T., Reigan, P., and McMurray, M. (2023). Evolutionary degeneration of
674 septins into pseudoGTPases: impacts on a hetero-oligomeric assembly interface.
675 *Front Cell Dev Biol* 11, 1296657. doi: 10.3389/fcell.2023.1296657
- 676 Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., et al. (2021). Highly
677 accurate protein structure prediction with AlphaFold. *Nature* 596, 583–589. doi:
678 10.1038/s41586-021-03819-2
- 679 Käll, L., Krogh, A., and Sonnhammer, E. L. L. (2004). A combined transmembrane topology
680 and signal peptide prediction method. *J Mol Biol* 338, 1027–1036. doi:
681 10.1016/j.jmb.2004.03.016
- 682 Keeling, P. J., and Palmer, J. D. (2008). Horizontal gene transfer in eukaryotic evolution. *Nat Rev Genet* 9, 605–618. doi: 10.1038/nrg2386
- 684 Kinoshita, M. (2003a). Assembly of mammalian septins. *J Biochem* 134, 491–496. doi:
685 10.1093/jb/mvg182
- 686 Kinoshita, M. (2003b). The septins. *Genome Biol* 4, 1–9. doi: 10.1186/gb-2003-4-11-236
- 687 Koenig, P., Oreb, M., Rippe, K., Muhle-Goll, C., Sinning, I., Schleiff, E., et al. (2008). On the
688 Significance of Toc-GTPase Homodimers *. *Journal of Biological Chemistry* 283,
689 23104–23112. doi: 10.1074/jbc.M710576200
- 690 Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E. L. (2001). Predicting
691 transmembrane protein topology with a hidden Markov model: application to
692 complete genomes. *J Mol Biol* 305, 567–580. doi: 10.1006/jmbi.2000.4315
- 693 Krokowski, S., Lobato-Márquez, D., Chastanet, A., Pereira, P. M., Angelis, D., Galea, D., et al.
694 (2018). Septins Recognize and Entrap Dividing Bacterial Cells for Delivery to
695 Lysosomes. *Cell Host & Microbe* 24, 866-874.e4. doi: 10.1016/j.chom.2018.11.005
- 696 Kück, P., Meusemann, K., Dambach, J., Thormann, B., von Reumont, B. M., Wägele, J. W., et al.
697 (2010). Parametric and non-parametric masking of randomness in sequence
698 alignments can be improved and leads to better resolved trees. *Frontiers in Zoology* 7,
699 10. doi: 10.1186/1742-9994-7-10
- 700 Kueck, P. (2017). ALICUT: a Perlscript which cuts ALISCORE identified RSS. Available at:
701 https://github.com/PatrickKueck/AliCUT/blob/master/ALICUT_V2.31.pl
- 702 Lee, S., Carrasquillo Rodri Guez, J. W., Merta, H., and Bahmanyar, S. (2023). A membrane-
703 sensing mechanism links lipid metabolism to protein degradation at the nuclear
704 envelope. *J Cell Biol* 222, e202304026. doi: 10.1083/jcb.202304026
- 705 Leipe, D. D., Wolf, Y. I., Koonin, E. V., and Aravind, L. (2002). Classification and evolution of P-
706 loop GTPases and related ATPases11Edited by J. Thornton. *Journal of Molecular
707 Biology* 317, 41–72. doi: 10.1006/jmbi.2001.5378

- 708 Leonardo, D. A., Cavini, I. A., Sala, F. A., Mendonça, D. C., Rosa, H. V. D., Kumagai, P. S., et al.
709 (2021). Orientational Ambiguity in Septin Coiled Coils and its Structural Basis. *Journal*
710 *of Molecular Biology* 433, 166889. doi: 10.1016/j.jmb.2021.166889
- 711 Lobato-Márquez, D., Xu, J., Güler, G. Ö., Ojiakor, A., Pilhofer, M., and Mostowy, S. (2021).
712 Mechanistic insight into bacterial entrapment by septin cage reconstitution. *Nat*
713 *Commun* 12, 4511. doi: 10.1038/s41467-021-24721-5
- 714 Longtine, M. S., DeMarini, D. J., Valencik, M. L., Al-Awar, O. S., Fares, H., De Virgilio, C., et al.
715 (1996). The septins: roles in cytokinesis and other processes. *Current Opinion in Cell*
716 *Biology* 8, 106–119. doi: 10.1016/S0955-0674(96)80054-8
- 717 Lupas, A., Van Dyke, M., and Stock, J. (1991). Predicting Coiled Coils from Protein Sequences.
718 *Science* 252, 1162–1164. doi: 10.1126/science.252.5009.1162
- 719 Marques da Silva, R., Christe dos Reis Saladino, G., Antonio Leonardo, D., D'Muniz Pereira, H.,
720 Andréa Sculaccio, S., Paula Ulian Araujo, A., et al. (2023). A key piece of the puzzle: The
721 central tetramer of the *Saccharomyces cerevisiae* septin protofilament and its
722 implications for self-assembly. *Journal of Structural Biology* 215, 107983. doi:
723 10.1016/j.jsb.2023.107983
- 724 McMurray, M. A., and Thorner, J. (2008). “Biochemical Properties and Supramolecular
725 Architecture of Septin Hetero-Oligomers and Septin Filaments,” in *The Septins*, (John
726 Wiley & Sons, Ltd), 47–100. doi: 10.1002/9780470779705.ch3
- 727 Mendonça, D. C., Guimarães, S. L., Pereira, H. D., Pinto, A. A., de Farias, M. A., de Godoy, A. S., et
728 al. (2021). An atomic model for the human septin hexamer by cryo-EM. *Journal of*
729 *Molecular Biology* 433, 167096. doi: 10.1016/j.jmb.2021.167096
- 730 Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway for
731 inference of large phylogenetic trees., in *2010 Gateway Computing Environments*
732 *Workshop (GCE)*, 1–8. doi: 10.1109/GCE.2010.5676129
- 733 Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., von Haeseler, A., et
734 al. (2020). IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference
735 in the Genomic Era. *Molecular Biology and Evolution* 37, 1530–1534. doi:
736 10.1093/molbev/msaa015
- 737 Misof, B., and Misof, K. (2009). A Monte Carlo Approach Successfully Identifies Randomness
738 in Multiple Sequence Alignments : A More Objective Means of Data Exclusion.
739 *Systematic Biology* 58, 21–34. doi: 10.1093/sysbio/syp006
- 740 Moffat, L., and Jones, D. T. (2021). Increasing the accuracy of single sequence prediction
741 methods using a deep semi-supervised learning framework. *Bioinformatics* 37, 3744–
742 3751. doi: 10.1093/bioinformatics/btab491

- 743 Momany, M., Zhao, J., Lindsey, R., and Westfall, P. J. (2001). Characterization of the *Aspergillus*
744 *nidulans* septin (asp) gene family. *Genetics* 157, 969–977. doi:
745 10.1093/genetics/157.3.969
- 746 Nishihama, R., Onishi, M., and Pringle, J. R. (2011). New insights into the phylogenetic
747 distribution and evolutionary origins of the septins. *Biol Chem* 392, 681–687. doi:
748 10.1515/BC.2011.086
- 749 Omrane, M., Camara, A. S., Taveneau, C., Benzoubir, N., Tubiana, T., Yu, J., et al. (2019). Septin
750 9 has Two Polybasic Domains Critical to Septin Filament Assembly and Golgi Integrity.
751 *iScience* 13, 138–153. doi: 10.1016/j.isci.2019.02.015
- 752 Onishi, M., Koga, T., Hirata, A., Nakamura, T., Asakawa, H., Shimoda, C., et al. (2010). Role of
753 septins in the orientation of forespore membrane extension during sporulation in
754 fission yeast. *Mol Cell Biol* 30, 2057–2074. doi: 10.1128/MCB.01529-09
- 755 Onishi, M., and Pringle, J. R. (2016). The nonopisthokont septins: How many there are, how
756 little we know about them, and how we might learn more. *Methods Cell Biol* 136, 1–
757 19. doi: 10.1016/bs.mcb.2016.04.003
- 758 Pan, F., Malmberg, R. L., and Momany, M. (2007). Analysis of septins across kingdoms reveals
759 orthology and new motifs. *BMC Evol Biol* 7, 103. doi: 10.1186/1471-2148-7-103
- 760 Papadopoulos, J. S., and Agarwala, R. (2007). COBALT: constraint-based alignment tool for
761 multiple protein sequences. *Bioinformatics* 23, 1073–1079. doi:
762 10.1093/bioinformatics/btm076
- 763 Perry, J. A., Werner, M. E., Heck, B. W., Maddox, P. S., and Maddox, A. S. (2023). Septins
764 throughout phylogeny are predicted to have a transmembrane domain, which in
765 *Caenorhabditis elegans* is functionally important. 2023.11.20.567915. doi:
766 10.1101/2023.11.20.567915
- 767 Pinto, A. P. A., Pereira, H. M., Zeraik, A. E., Ciol, H., Ferreira, F. M., Brandão-Neto, J., et al. (2017).
768 Filaments and fingers: Novel structural aspects of the single septin from
769 *Chlamydomonas reinhardtii*. *J Biol Chem* 292, 10899–10911. doi:
770 10.1074/jbc.M116.762229
- 771 Schwefel, D., Arasu, B. S., Marino, S. F., Lamprecht, B., Köchert, K., Rosenbaum, E., et al. (2013).
772 Structural Insights into the Mechanism of GTPase Activation in the GIMAP Family.
773 *Structure* 21, 550–559. doi: 10.1016/j.str.2013.01.014
- 774 Shuman, B., and Momany, M. (2021). Septins From Protists to People. *Front Cell Dev Biol* 9,
775 824850. doi: 10.3389/fcell.2021.824850
- 776 Sirajuddin, M., Farkasovsky, M., Hauer, F., Kühlmann, D., Macara, I. G., Weyand, M., et al. (2007).
777 Structural insight into filament formation by mammalian septins. *Nature* 449, 311–
778 315. doi: 10.1038/nature06052

- 779 The UniProt Consortium (2023). UniProt: the Universal Protein Knowledgebase in 2023.
780 *Nucleic Acids Research* 51, D523–D531. doi: 10.1093/nar/gkac1052
- 781 Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A., and Minh, B. Q. (2016). W-IQ-TREE: a fast
782 online phylogenetic tool for maximum likelihood analysis. *Nucleic Acids Res* 44,
783 W232–W235. doi: 10.1093/nar/gkw256
- 784 van Hilten, N., Methorst, J., Verwei, N., and Risselada, H. J. (2023). Physics-based generative
785 model of curvature sensing peptides; distinguishing sensors from binders. *Science
786 Advances* 9, eade8839. doi: 10.1126/sciadv.ade8839
- 787 Versele, M., and Thorner, J. (2005). Some assembly required: yeast septins provide the
788 instruction manual. *Trends Cell Biol* 15, 414–424. doi:
789 10.1016/j.tcb.2005.06.007
- 790 Weirich, C. S., Erzberger, J. P., and Barral, Y. (2008). The septin family of GTPases: architecture
791 and dynamics. *Nat Rev Mol Cell Biol* 9, 478–489. doi: 10.1038/nrm2407
- 792 Włoga, D., Strzyzewska-Jówko, I., Gaertig, J., and Jerka-Dziadosz, M. (2008). Septins stabilize
793 mitochondria in Tetrahymena thermophila. *Eukaryot Cell* 7, 1373–1386. doi:
794 10.1128/EC.00085-08
- 795 Woods, B. L., Cannon, K. S., Vogt, E. J. D., Crutchley, J. M., and Gladfelter, A. S. (2021). Interplay
796 of septin amphipathic helices in sensing membrane-curvature and filament bundling.
797 *Mol Biol Cell* 32, br5. doi: 10.1091/mbc.E20-05-0303
- 798 Yamazaki, T., Owari, S., Ota, S., Sumiya, N., Yamamoto, M., Watanabe, K., et al. (2013).
799 Localization and evolution of septins in algae. *The Plant Journal* 74, 605–614. doi:
800 10.1111/tpj.12147
- 801 Zhang, J., Kong, C., Xie, H., McPherson, P. S., Grinstein, S., and Trimble, W. S. (1999).
802 Phosphatidylinositol polyphosphate binding to the mammalian septin H5 is
803 modulated by GTP. *Current Biology* 9, 1458–1467. doi: 10.1016/S0960-
804 9822(00)80115-3
- 805
- 806

807 **FIGURE LEGENDS**

808 **Figure 1. Distribution of septins in non-opisthokont phyla.** (A) Unrooted taxonomic tree of
809 eukaryotes (based on (Cavalier-Smith, 2018). Gray and dotted branches indicate lineages in
810 which no septin sequence was identified, while black and colored branches represent lineages
811 with identified septins. Representative species are shown and color-matched to their respective
812 lineages, and the total numbers of septin paralogs identified in their genomes are indicated.

813 *Possible septins were identified in *Planoprotostelium fungivorum*; because this is the only
814 example of species with septins within Amoboezoa and Sulcozoa, we could not determine
815 whether they are a result of unique gene retention, horizontal gene transfer, or contamination.

816 **Figure 2. Identification of new septin groups in non-opisthokonts.** (A) A simplified
817 cladogram representation of a RAxML tree (Fig. S1) of 254 extant septin sequences across
818 eukaryotic lineages. Individual septin phylogenetic clades are color-coded and labeled. The tree
819 is rooted using four prokaryotic YihA proteins as an outgroup. (B) Magnified views of the four
820 new phylogenetic clades. See Fig. S2 for the original RAxML trees. Bootstrap values greater
821 than 25 are displayed at nodes.

822 **Figure 3. Patterns of conservation and diversity of interface motifs across septin Groups.** (A)
823 Topology diagram of the GTPase domain secondary structures from N to C-terminus. Conserved
824 GTPase motifs and septin motifs are noted above by black lines (based on Grupp and
825 Gronemeyer 2023) and the NC and G-interacting group regions are noted below by dashed lines
826 (based on Auxier et al 2019). The typical position of the R-finger (when present) is indicated by
827 the pink star. (B) A folded septin monomer. This aggregate depiction includes all predicted
828 domains across eukaryote septins. Relative positions of secondary structures are based on PDB
829 structures 7M6J and 8FWP (Mendonça et al., 2021; Grupp and Gronemeyer, 2023; Marques da
830 Silva et al., 2023). (C) A septin trimer approximating interactions through their G- and NC-
831 interfaces, based on PDB structure 7M6J. Grey stars with pink outline indicate the predicted
832 positions of R-fingers if they are present in the subunits forming an interface. (D) Weblogo
833 representation of select septin motifs, interacting groups, and structural elements across the
834 eukaryotic septin groups. GTPase motifs and septin motifs are depicted above in black, and NC
835 and G-interacting group regions are depicted below in grey. *Note, the location of S1 in groups
836 6a-8 was determined by relative position in the alignment to the beginning of S2. This loop

837 region which resides between α 2 and β 4 has considerable sequence length variability and also
838 includes a region where the α 3' helix is predicted.

839 **Figure 4.** Ancestral sequence reconstruction of key evolutionary nodes throughout septin
840 evolution. **(A)** Simplified tree diagram displaying the shape of the IQTree (Fig. S3) used in
841 ancestral sequence reconstruction. Squares and triangle, key nodes with ancestral septins
842 corresponding to interpretive diagrams shown in panel C. **(B)** Representative topology diagram
843 of septin GTPase domain indicating both the G-interface and NC-interface. N and C represent
844 the N-terminal and C-terminal end of the protein. α helices and β sheets are each numbered
845 sequentially from the N- to C-termini, except for those in the SUE (β a- β c). **(C)** Interpretive
846 topology diagrams of the reconstructed ancestral septins at the nodes labeled in panel A. Novel
847 structural motifs found in this study are highlighted in magenta. Secondary structures outlined in
848 bold solid lines and dotted lines represent motifs with higher (pLDDT >70) and lower (pLDDT
849 <70) AlphaFold confidence scores, respectively. R, arginine finger.

850 **Figure 5.** GAP-like R-finger is widely conserved in single septins. **(A)** Numbers of septins with
851 and without R-finger in 68 species representing the three septin-harboring eukaryotic
852 supergroups. **(B)** AlphaFold predictions of septins with and without R-finger in the species *I.*
853 *multifiliis* (top row) and *K. flaccidum* (bottom row). N- and C-, amino-terminus and carbonyl-
854 terminus, respectively. Magenta arrowheads indicate the positions with the presence or absence
855 of R-finger. Structures are colored according to the AlphaFold pLDDT confidence scores.

856 **Figure 6.** N-terminal polybasic domains across septins. **(A)** Calculation of isoelectric point
857 windows across the NTE of reconstructed ancestral sequences. The average isoelectric point of a
858 sliding 10 amino acid window is calculated across the NTE of reconstructed ancestral sequences.
859 X=0 represents the start of the GTPase domain. **(B)** CLUSTALw multiple sequence alignment of
860 reconstructed ancestral sequences displaying two polybasic domains in non-opisthokont lineages.
861 Numbers indicate the amino acid positions from the start of the GTPase domain.

862 **Figure 7.** Distribution of AH, coiled-coil, and transmembrane domains across septin groups. **(A-C)**
863 Simplified cladograms of the RAxML tree of 254 septins (see Fig. 2A), with individual
864 sequences with AH (A, magenta), coiled-coil (B, blue), and transmembrane (C, green) domains
865 highlighted. **(D)** Venn diagram showing the numbers of septins with AH, coiled-coil, and/or
866 transmembrane domains. **(E)** Protein domain diagrams of septins with AH, coiled-coil, and/or

867 transmembrane domains. Grey box, septin GTPase domain; magenta box, AH domain; blue box,
868 coiled-coil domain; green box, transmembrane domain.

869 **Supplementary Figure 1.** RAxML tree of all eukaryotic septins with 1000 bootstraps and YihA
870 family as outgroup. Bootstrap values <25 are not shown. Defined phylogenetic groups are
871 colored and displayed adjacent to tree tips.

872 **Supplementary Figure 2.** Magnified views of septin groups 6-8.

873 **Supplementary Figure 3.** IQTree tree 200 septin sequences used in ancestral sequence
874 reconstitution. Groups as defined in Figure 2 are redefined adjacent to branch tips. Colored
875 nodes represent select ancestral sequences used for AlphaFold prediction.

876 **Supplementary Figure 4.** AlphaFold-predicted 3D structures of ancestral septins. Structures in
877 grey are experimentally determined Protein Data Bank (PDB) files of septin GTPase domains,
878 included here as references. Structures are orientated such that the NC-interface is towards the
879 left of the monomer and the G-interface is towards the right.

880 **Supplementary Figure 5.** Representative helical wheel diagrams of predicted AHs across septin
881 phylogenetic groups. Arrow represents the hydrophobic moment vector. Amino acids are
882 colored according to their chemistry: yellow, hydrophobic; purple, Ser/Thr residues; grey,
883 Gly/Ala residues; blue, basic residues; red, acidic residues; pink, Asp; green, Pro.

884
885 **Supplementary File/Data**

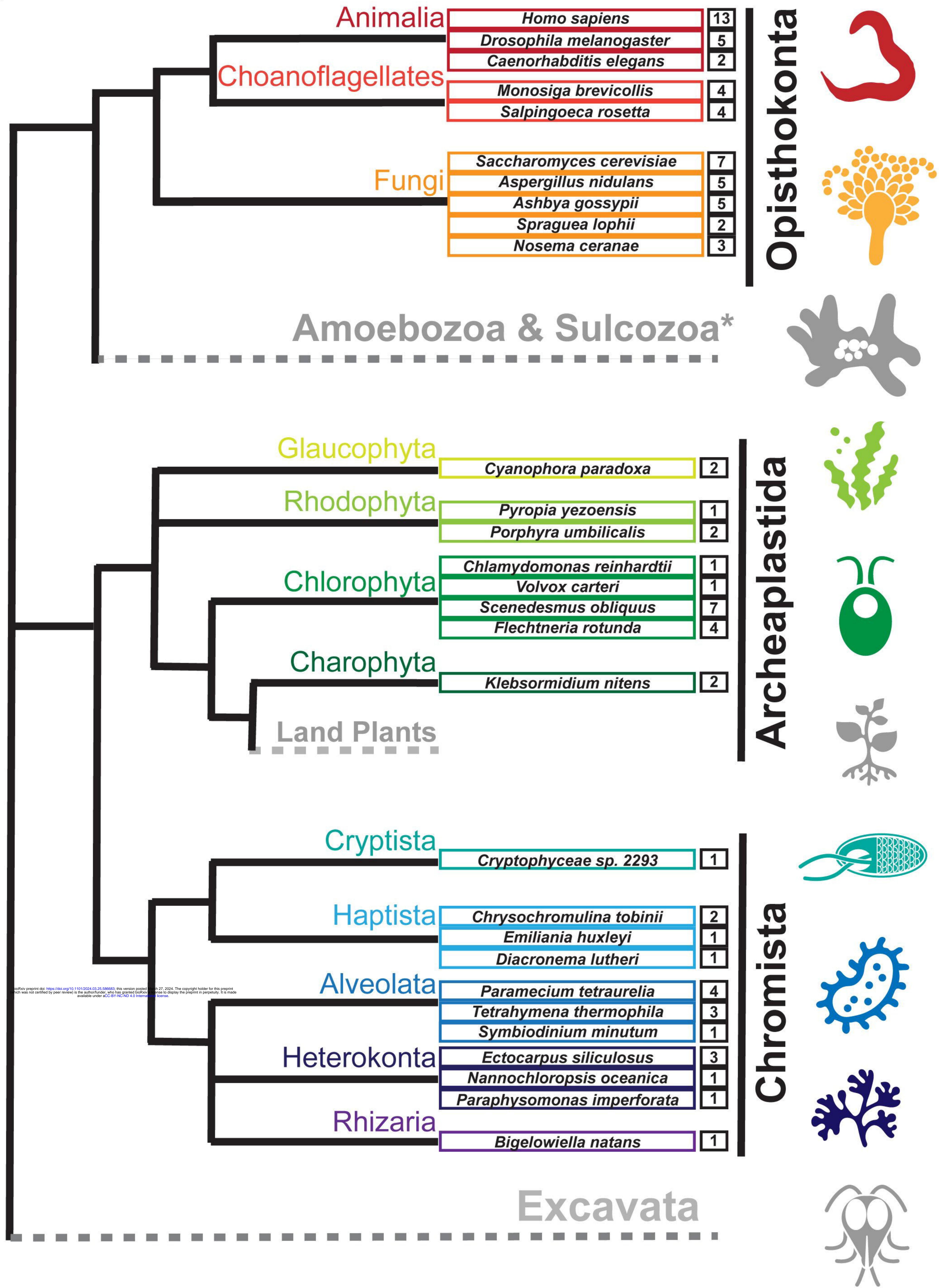
886 **Supplementary File 1.** Query Septin FASTA sequences used in this study.

887 **Supplementary File 2.** List of Searched JGI Genomes + NCBI Taxa.

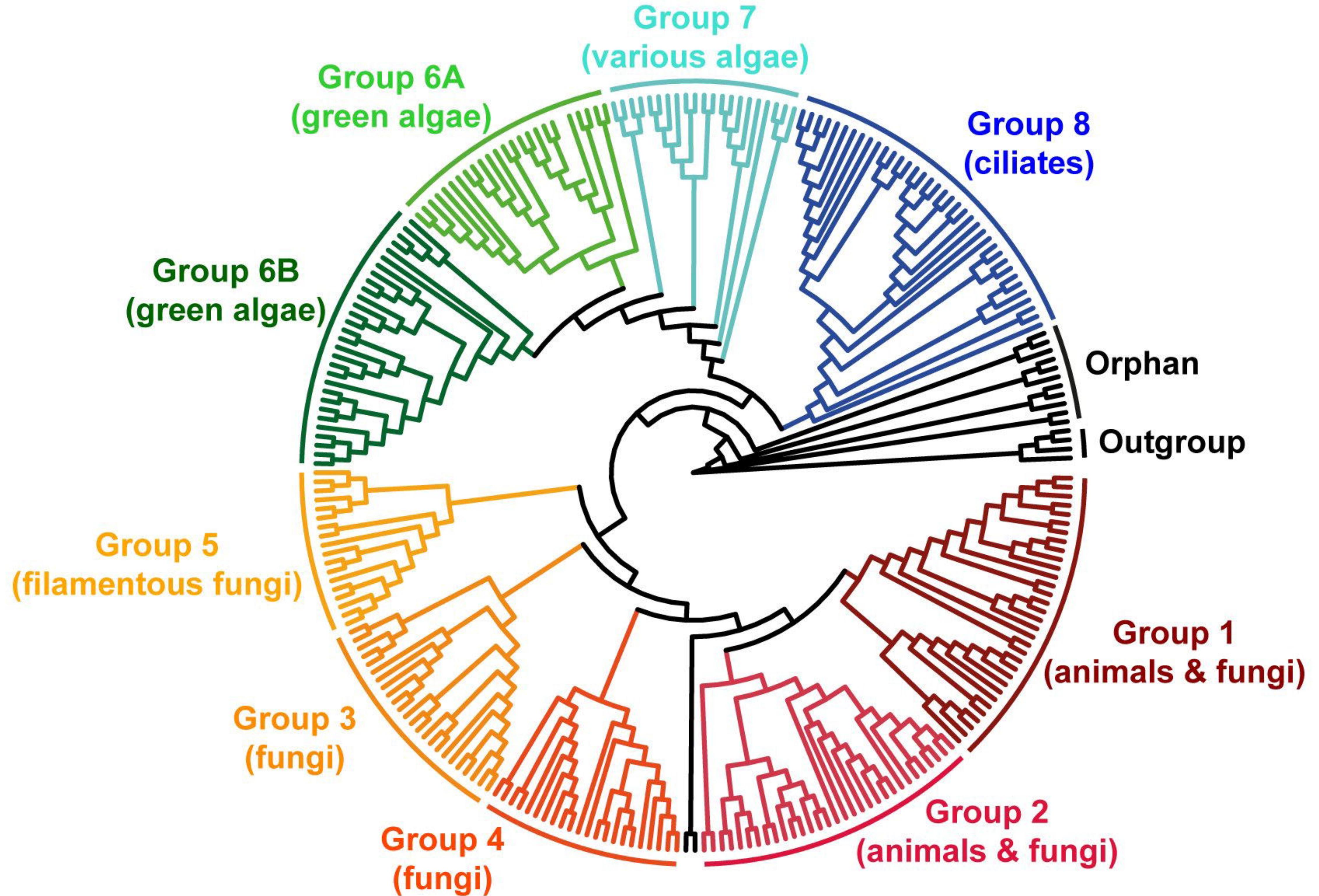
888 **Supplementary File 3.** Septin + YihA Fasta File.

889 **Supplementary File 4.** ALISCORE & ALICUT Processed File.

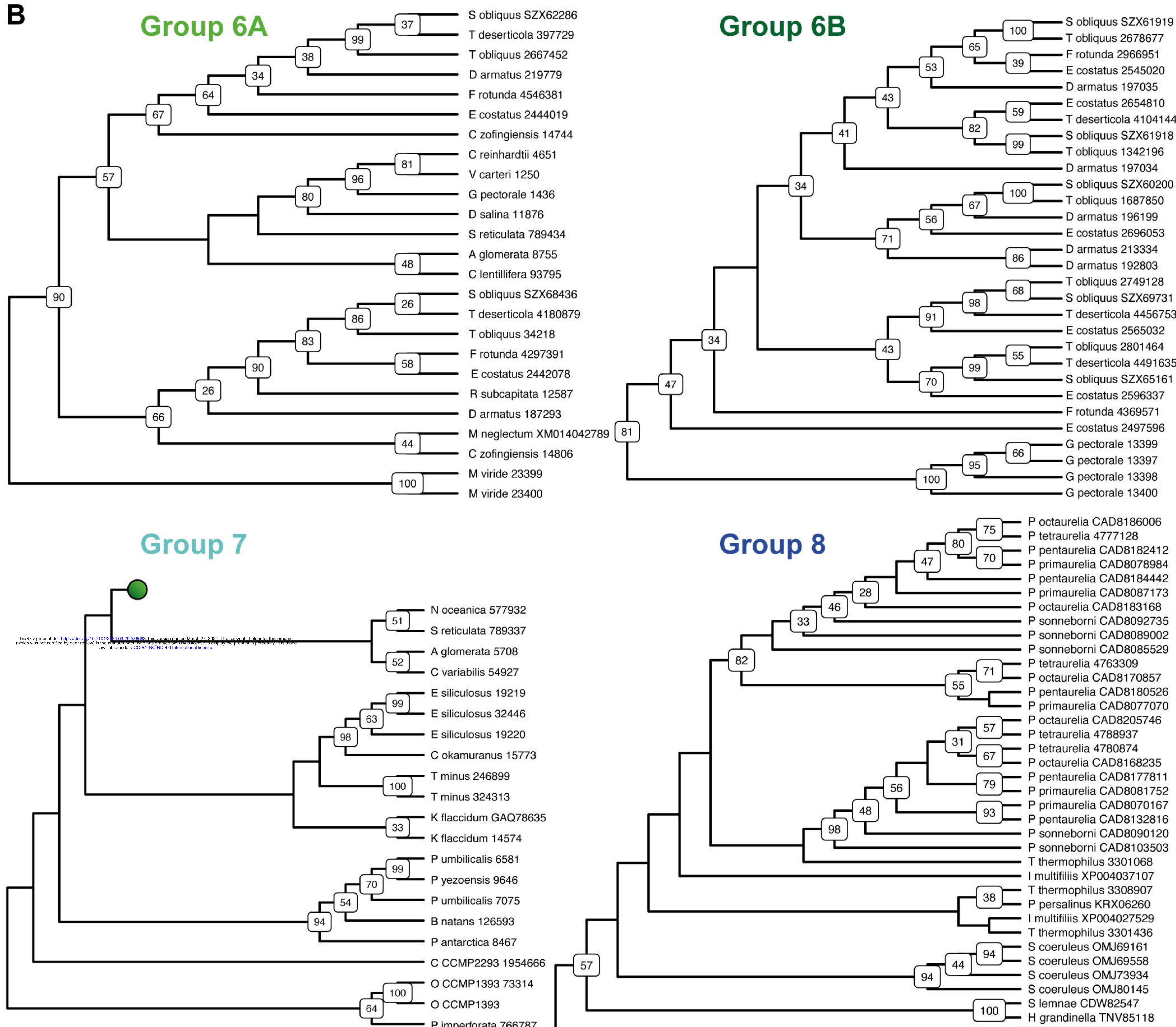
890 **Supplementary File 5.** IQTREE Input and Output files.

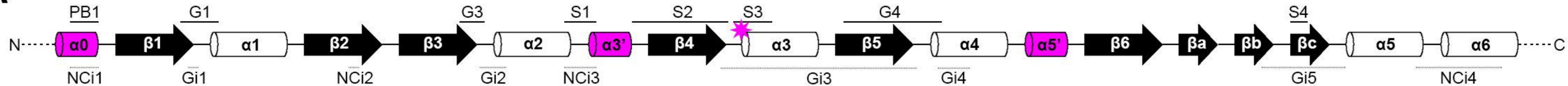
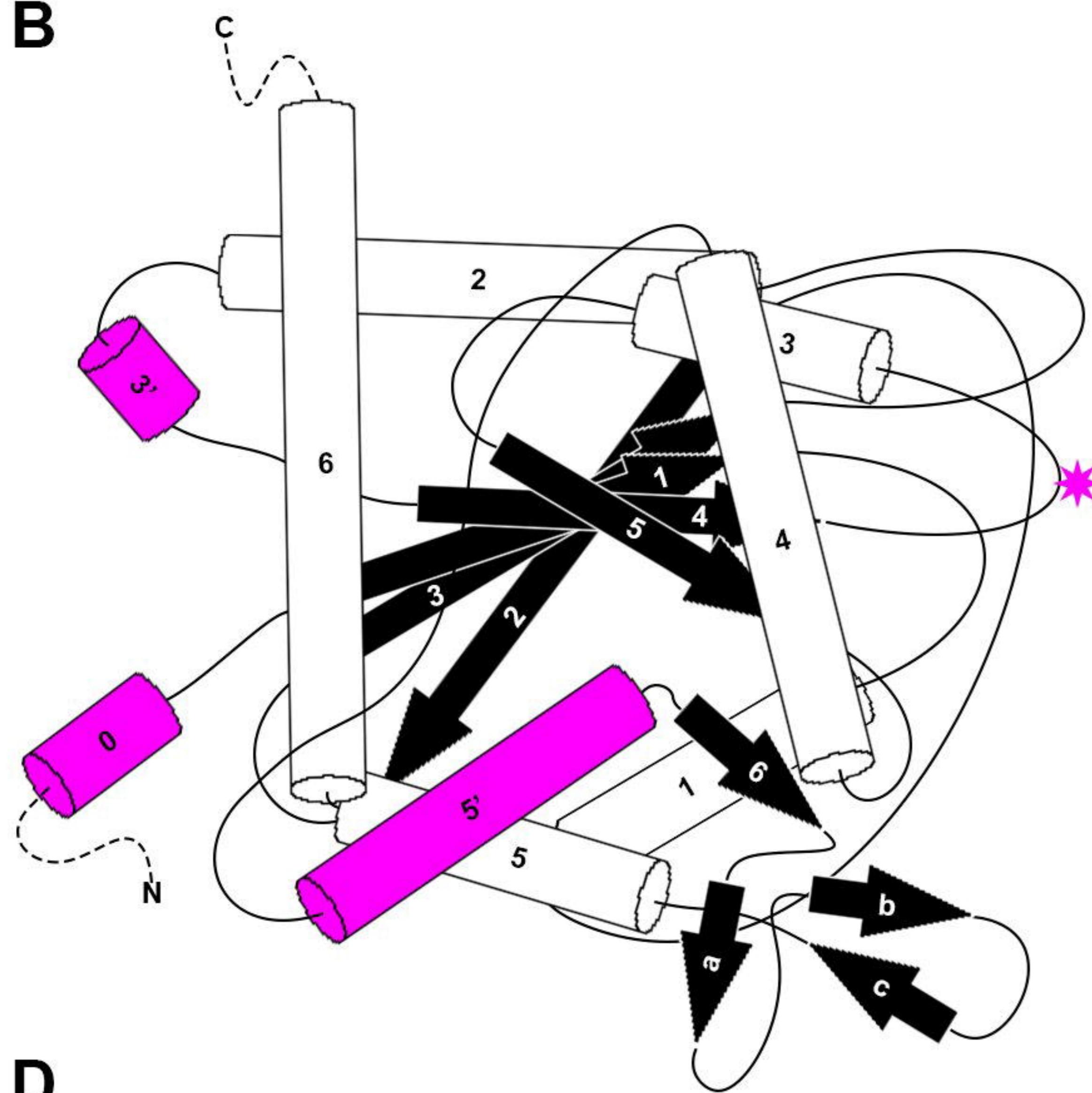
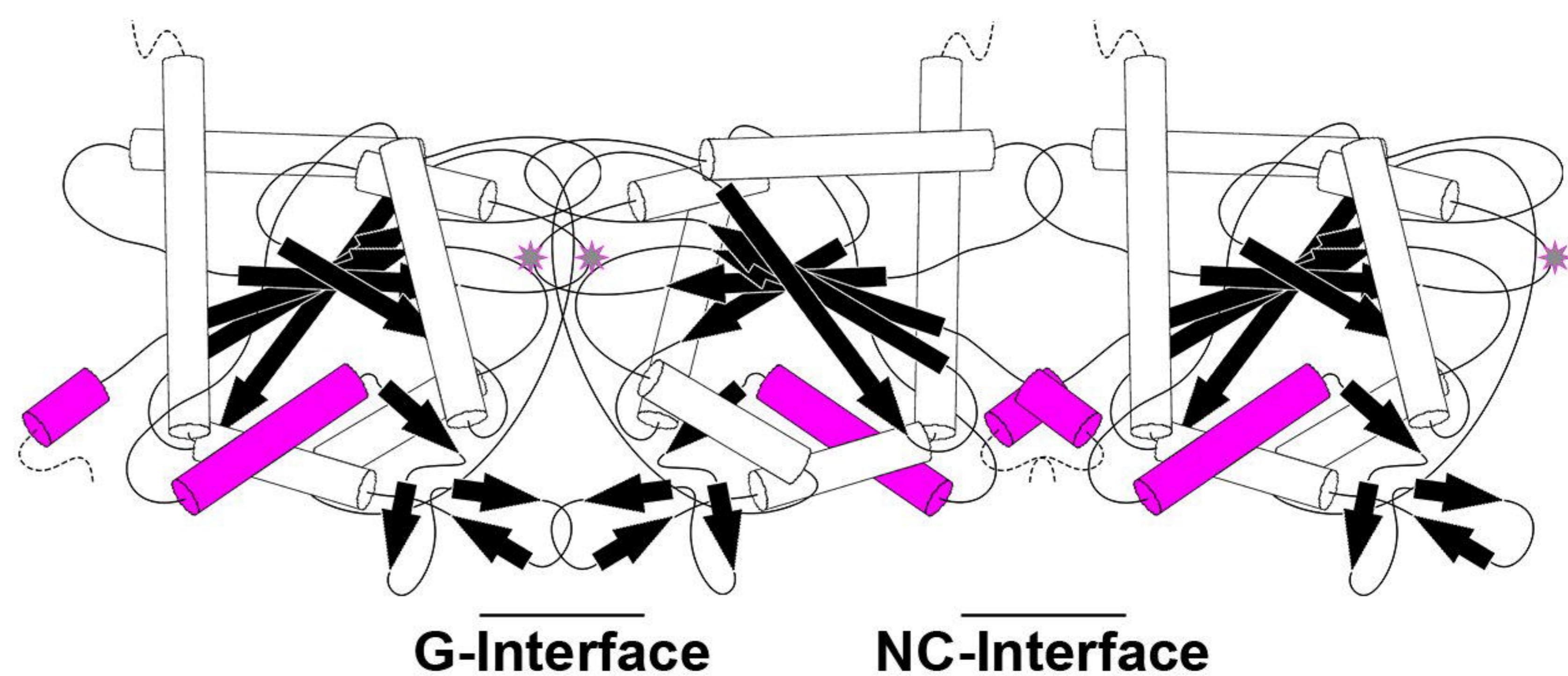
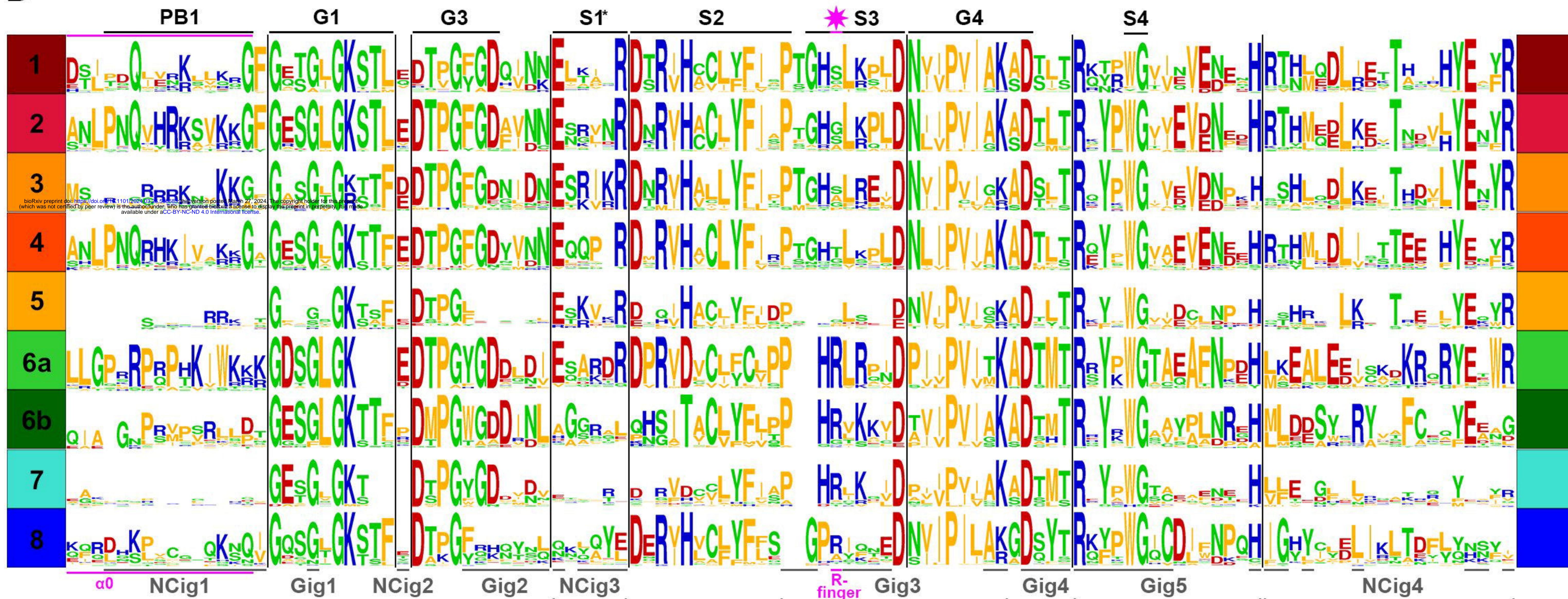

891 **Supplementary File 6.** AlphaFold Prediction Files.

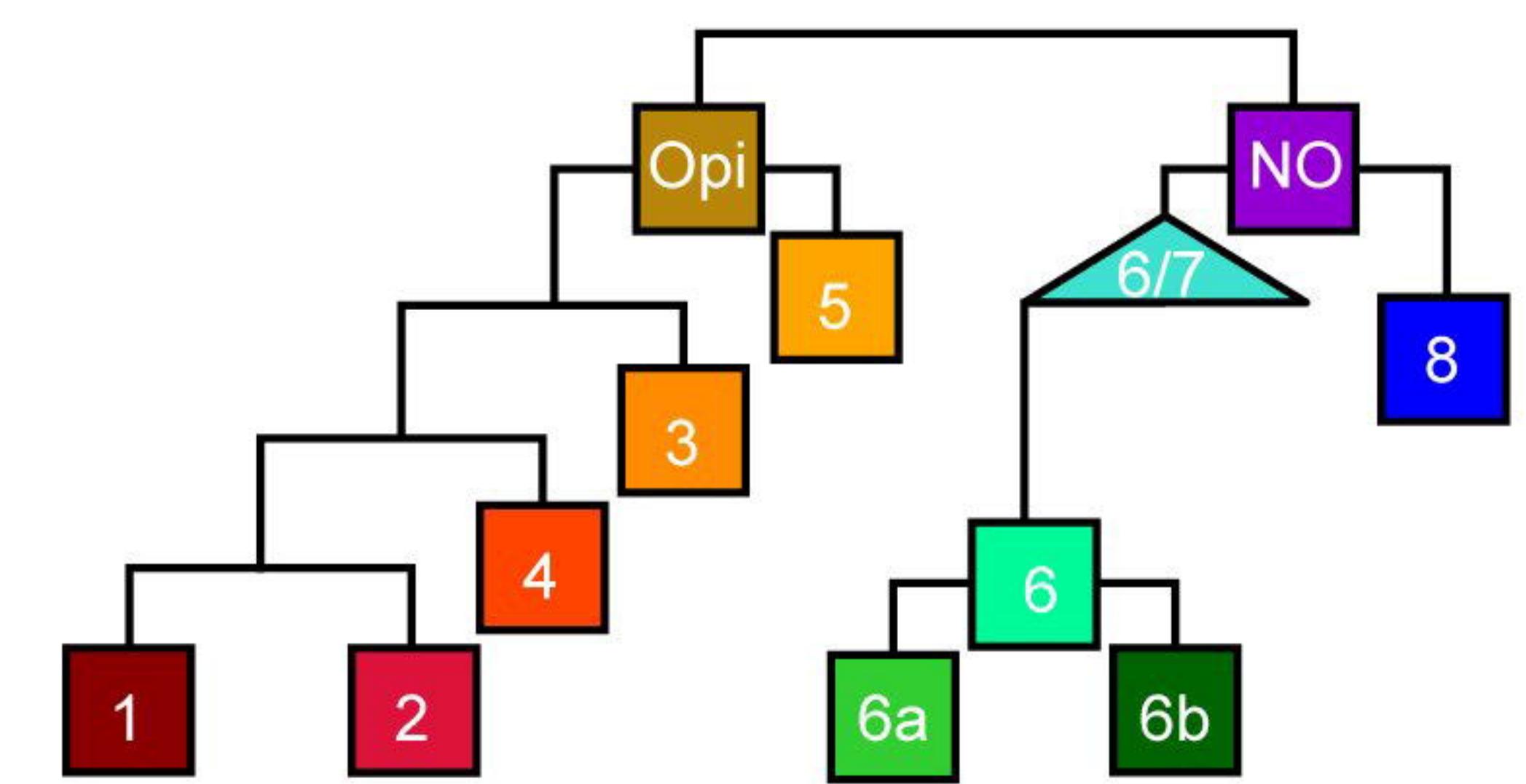
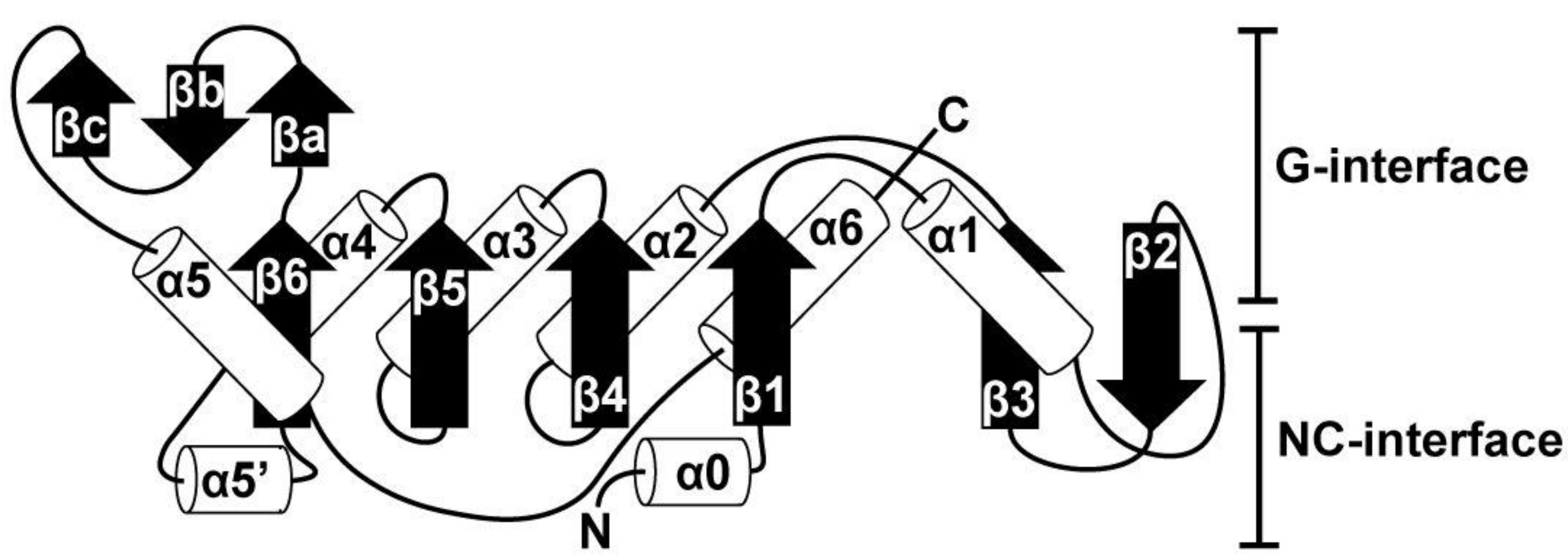
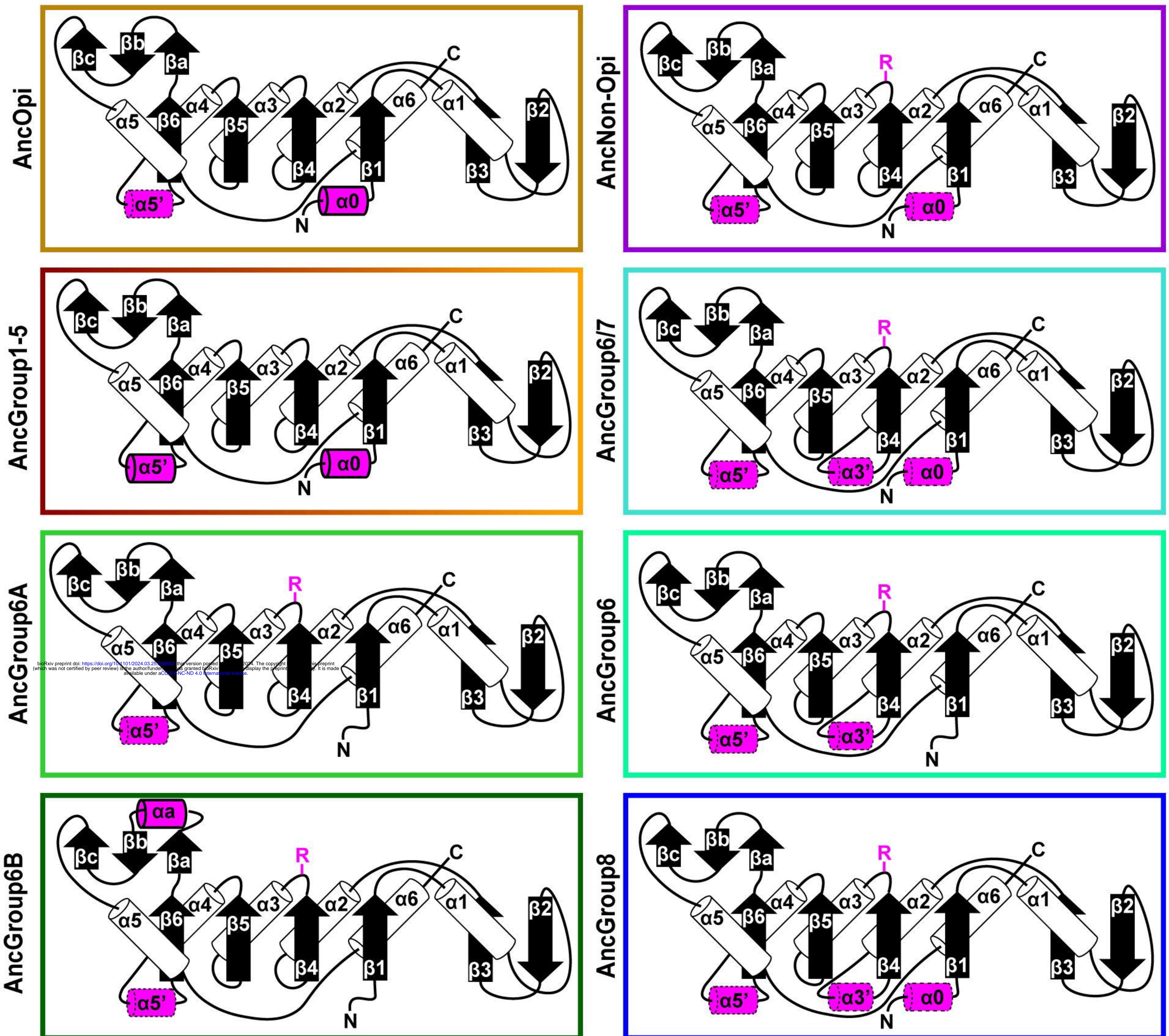
892 **Supplementary File 7.** AH 18-aa Raw Output.

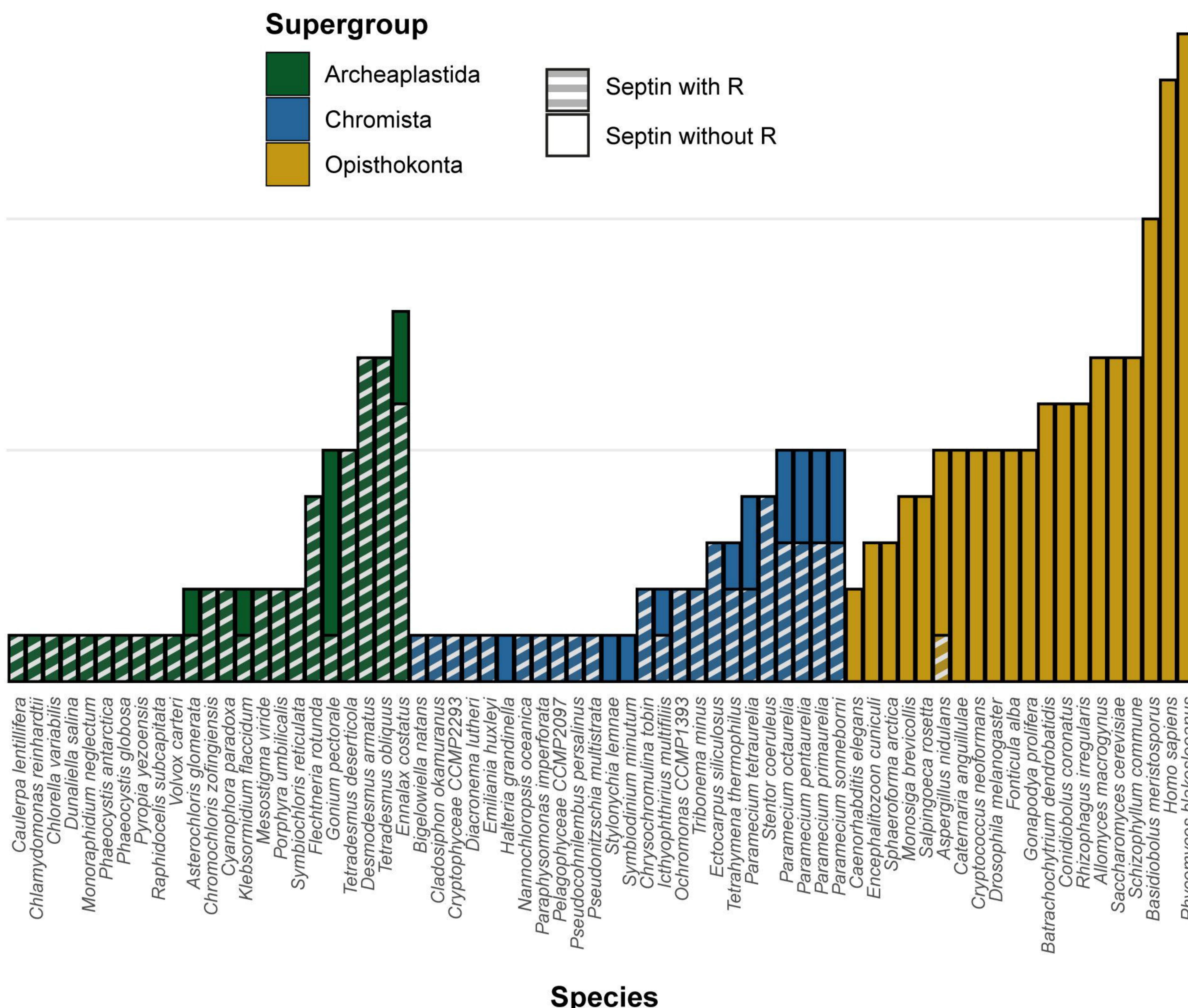

893 **Supplementary File 8.** Table summarizing properties of septins used in this study

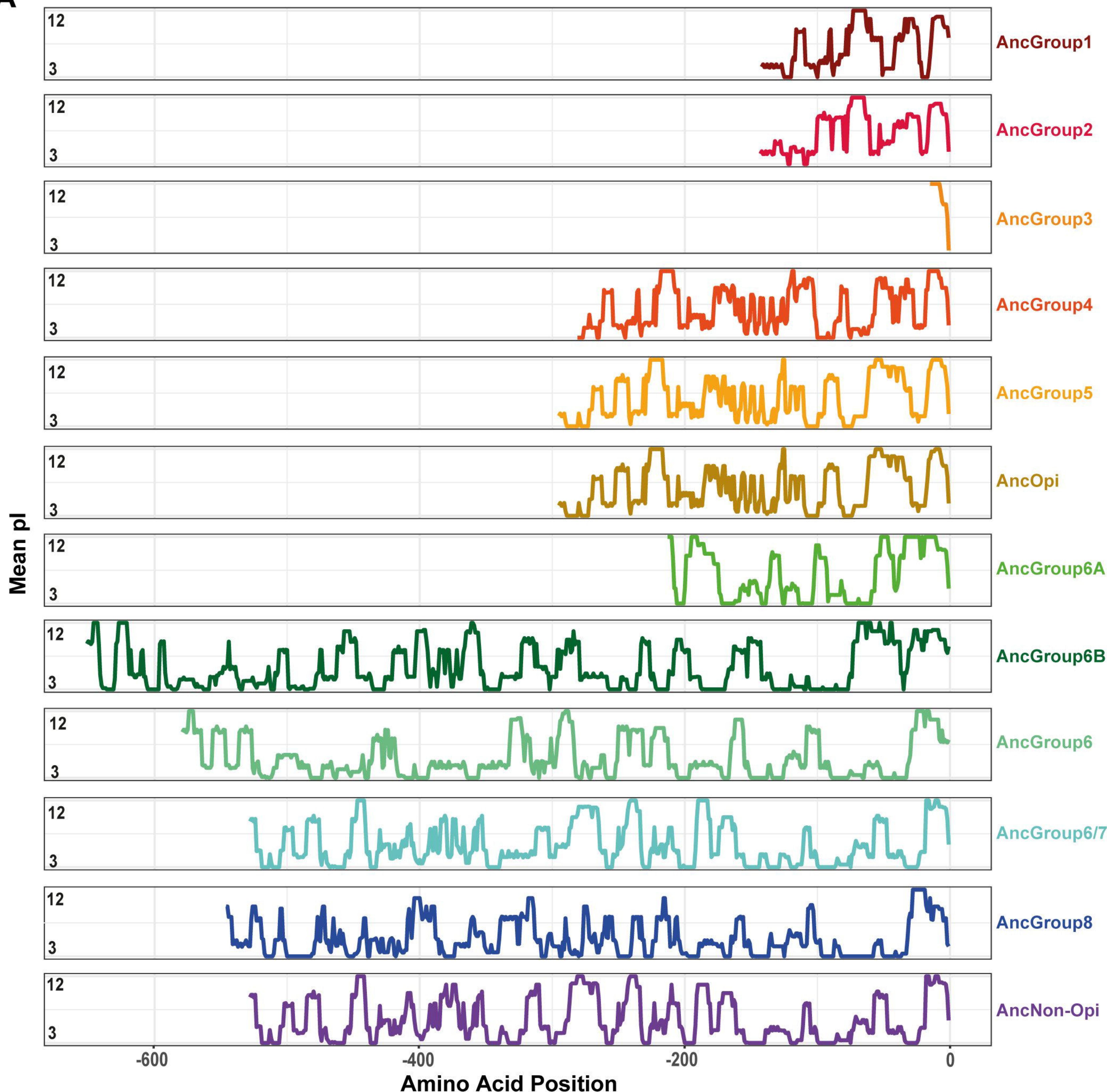
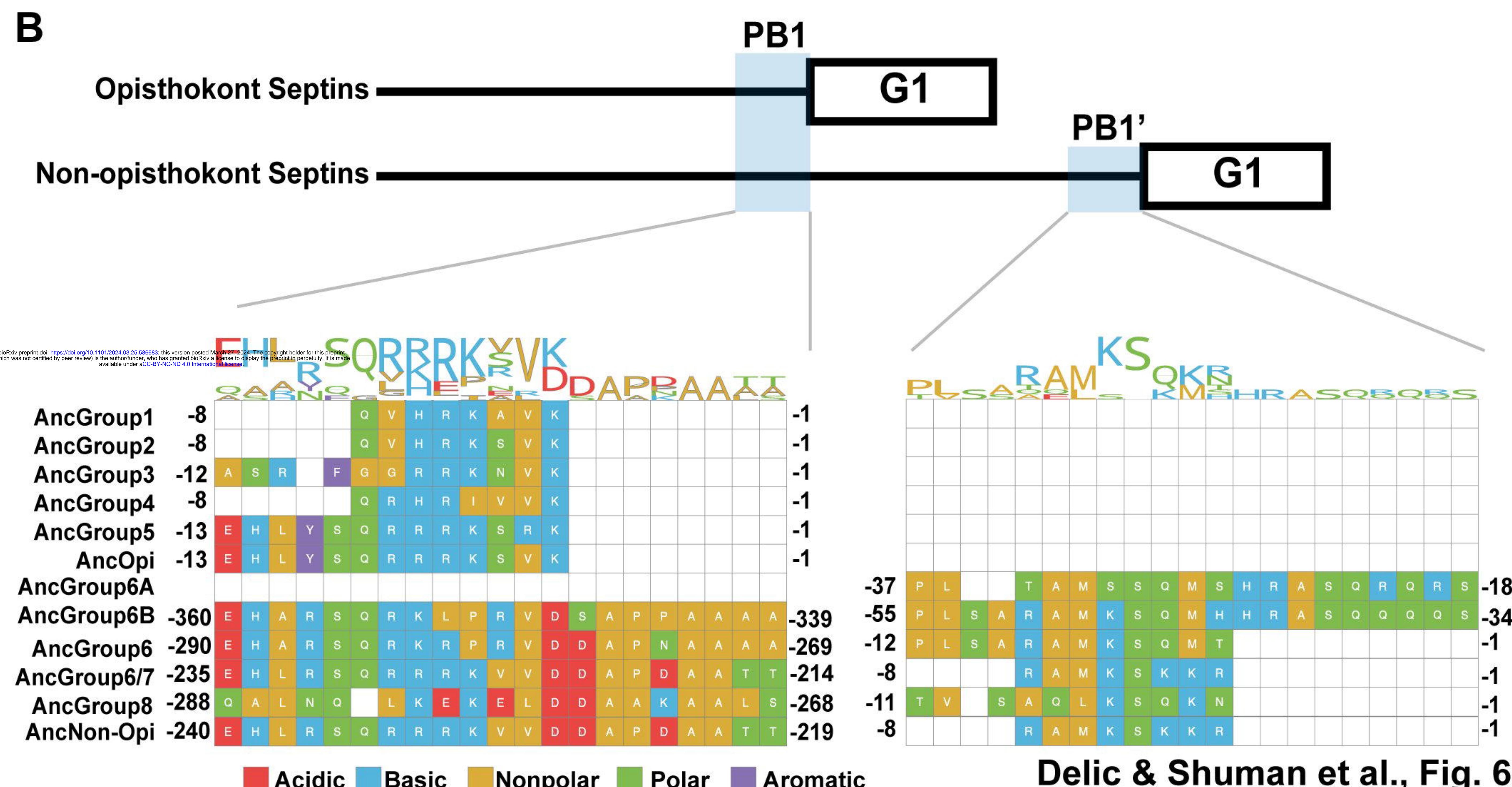
894 (Phylogenetic group, R-finger, AH, CC, TM).

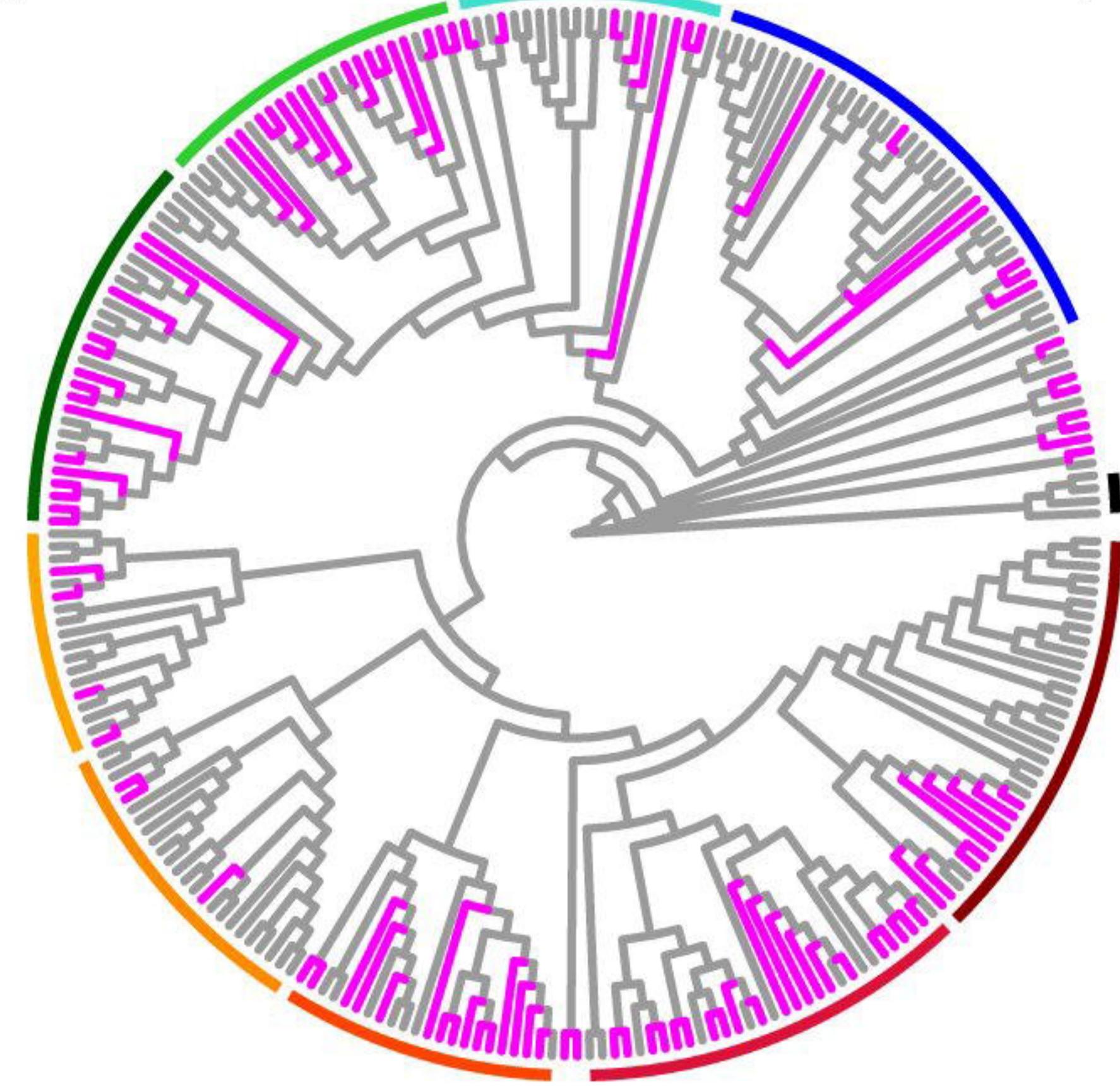

A

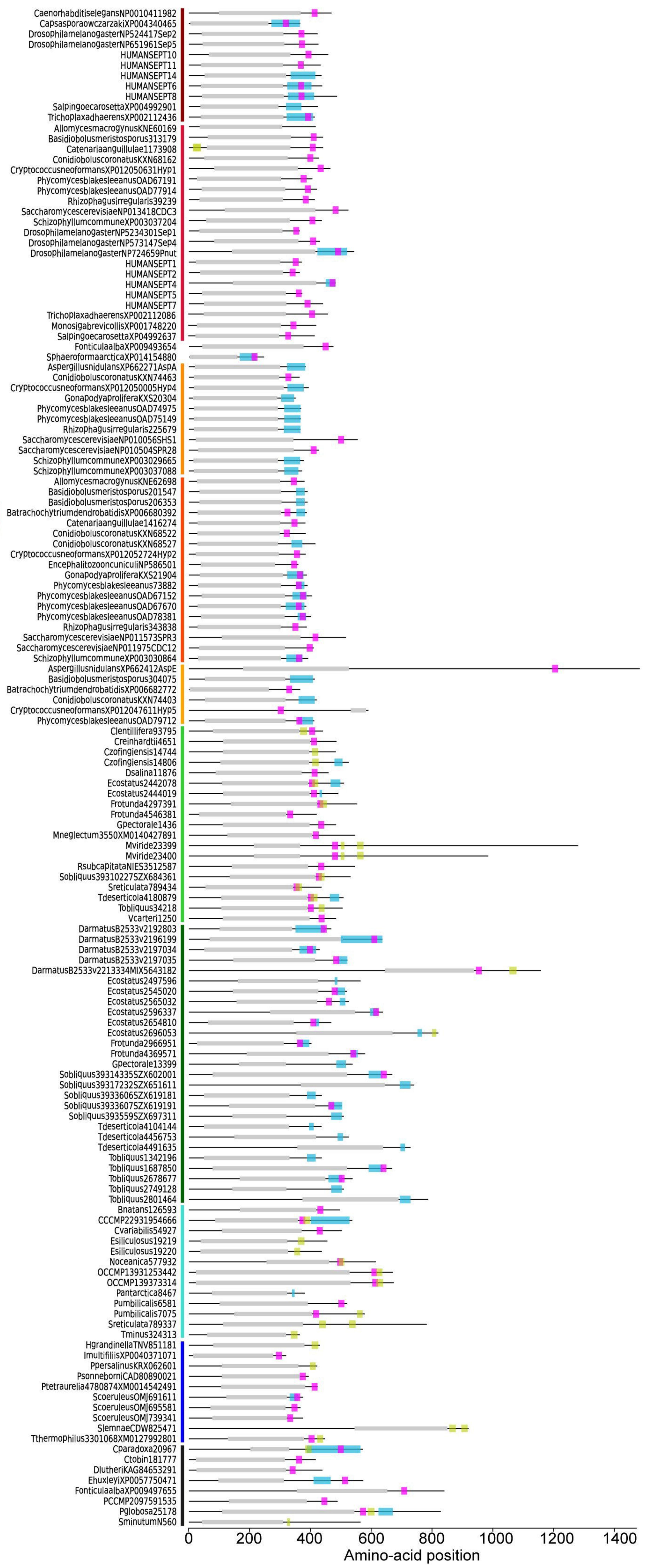



A



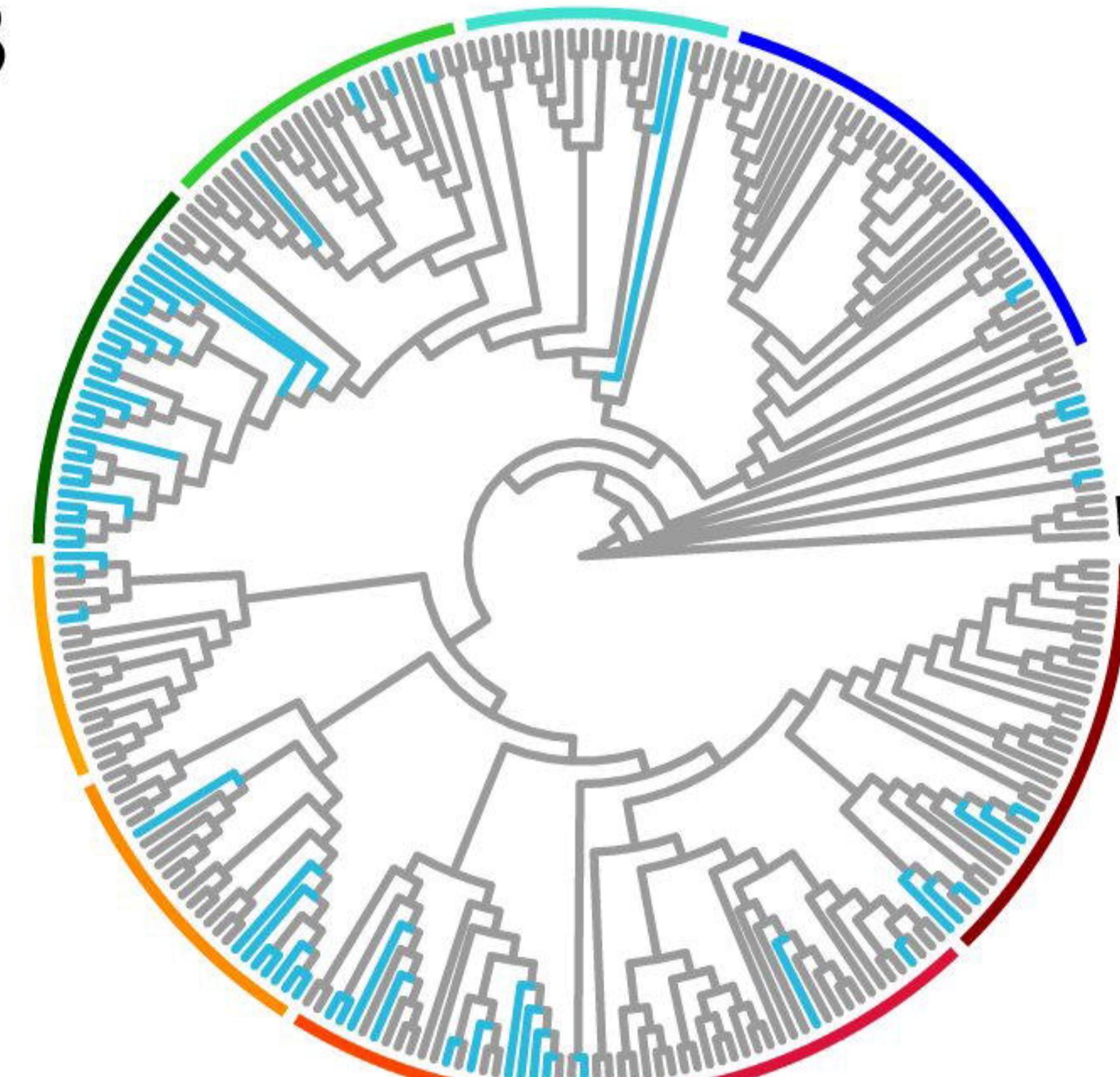


B

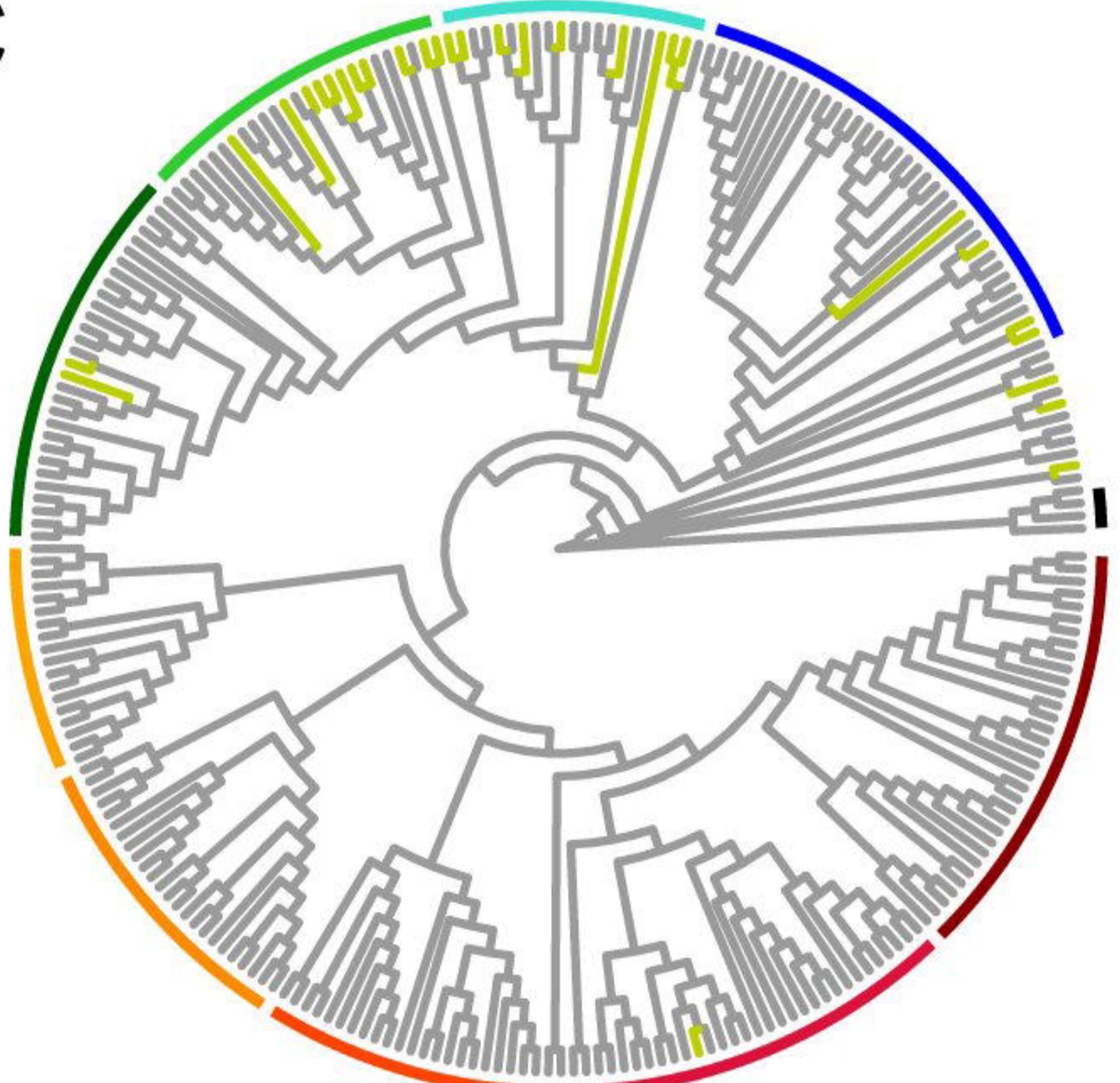

A**B****C****D**

A**B****C**

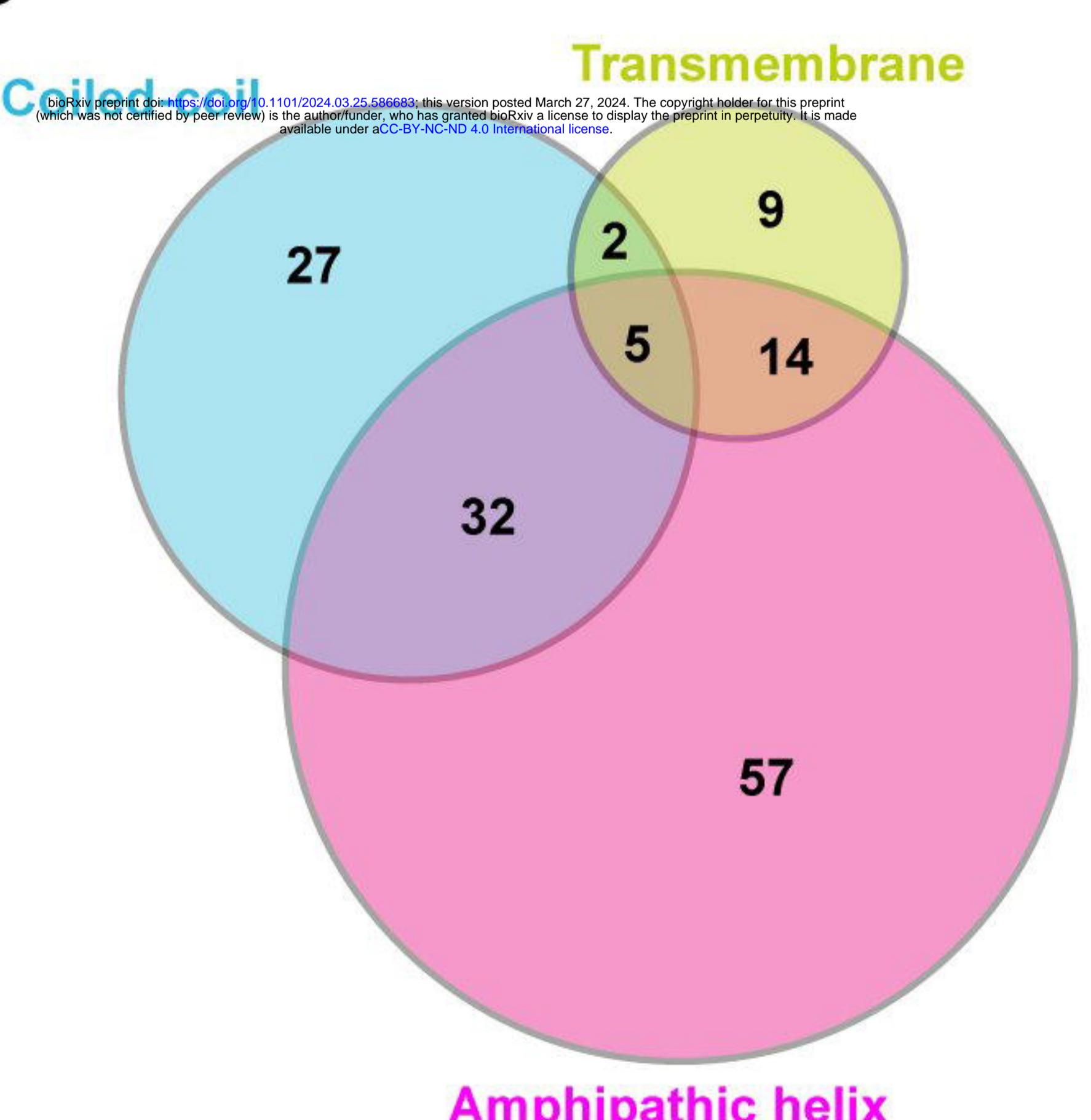

A

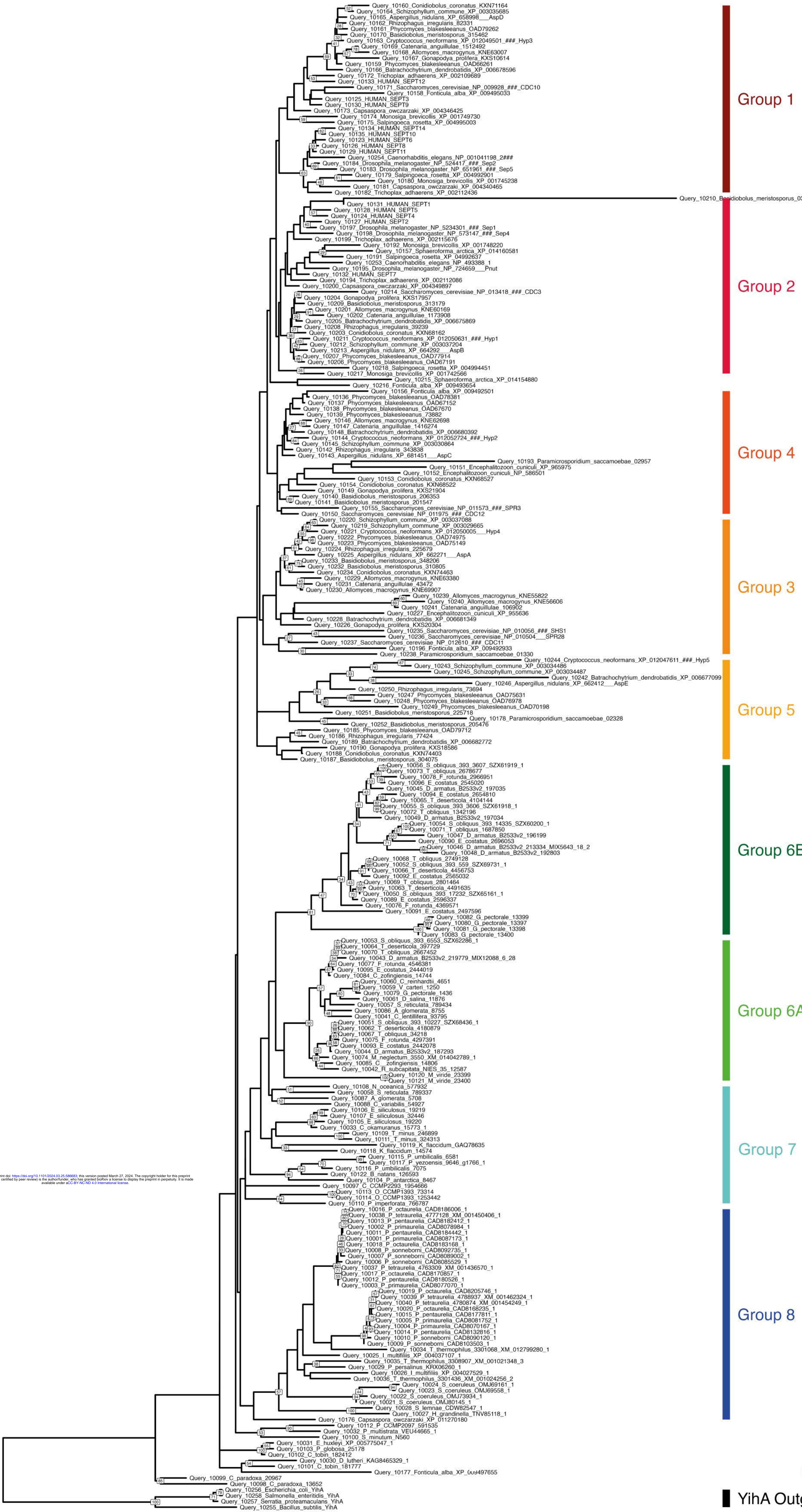
A**B**


A


E

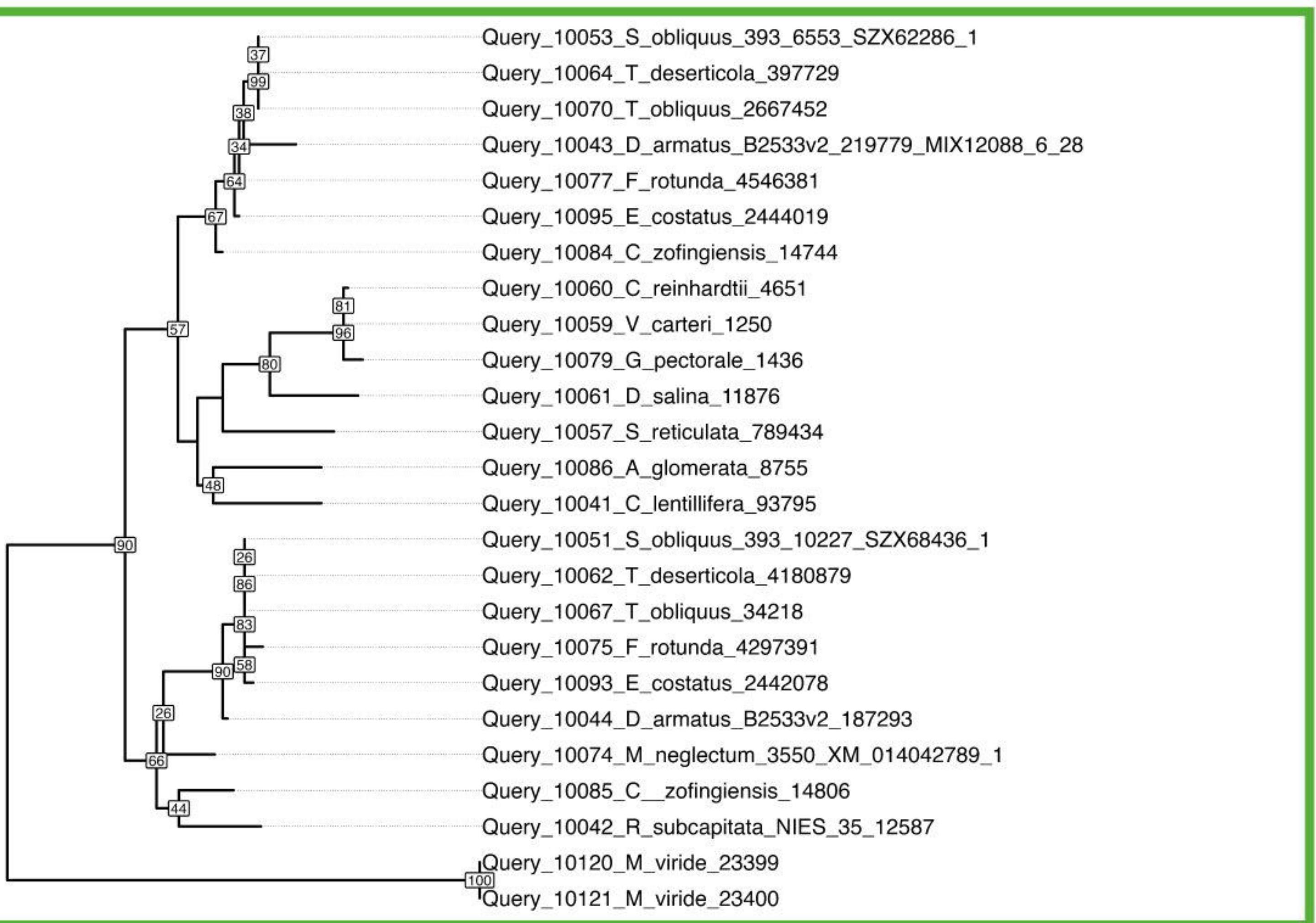
B

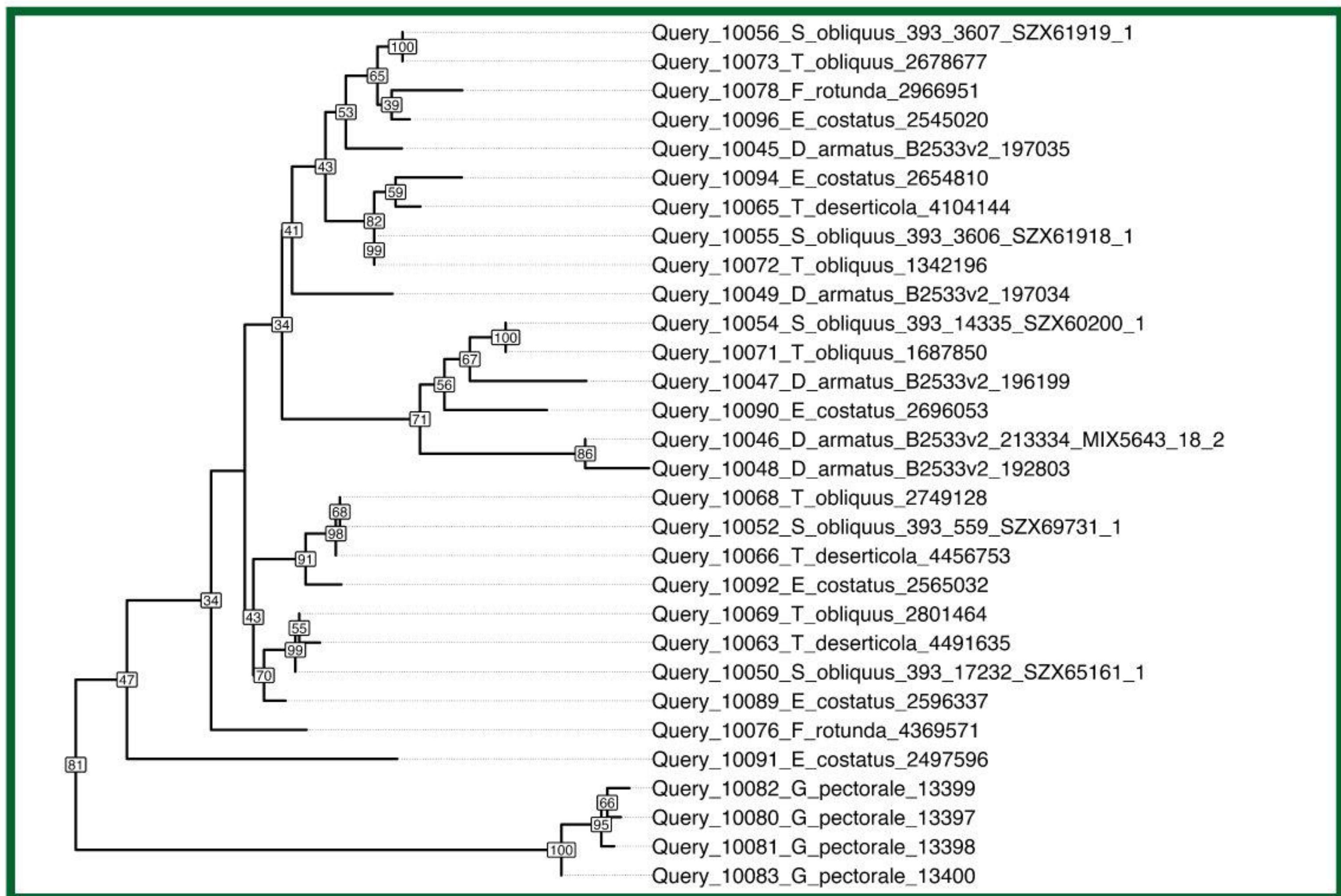



C

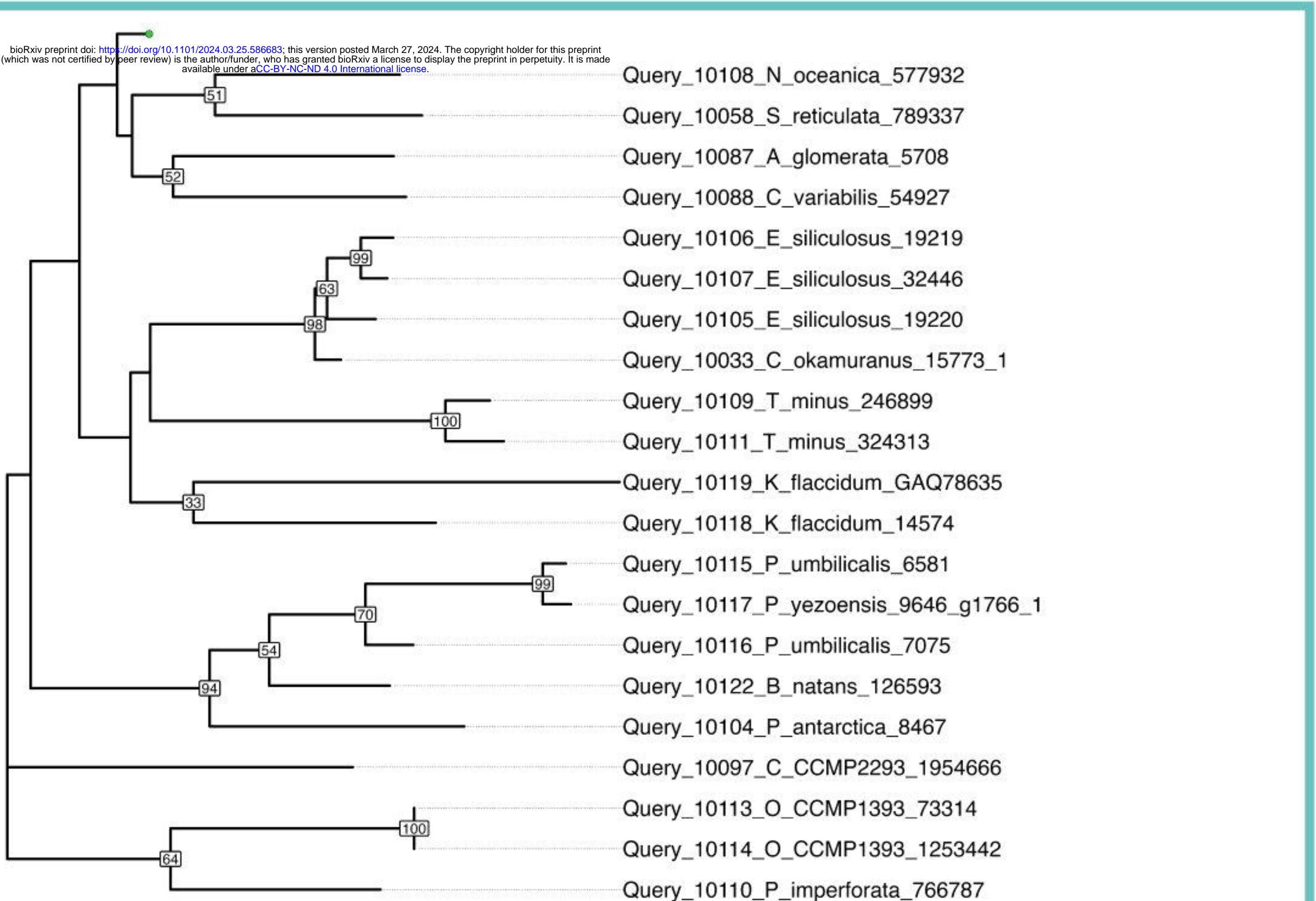
Group 1 **Group 6A**
Group 2 **Group 6B**
Group 3 **Group 7**
Group 4 **Group 8**
Group 5 **Outgroup**

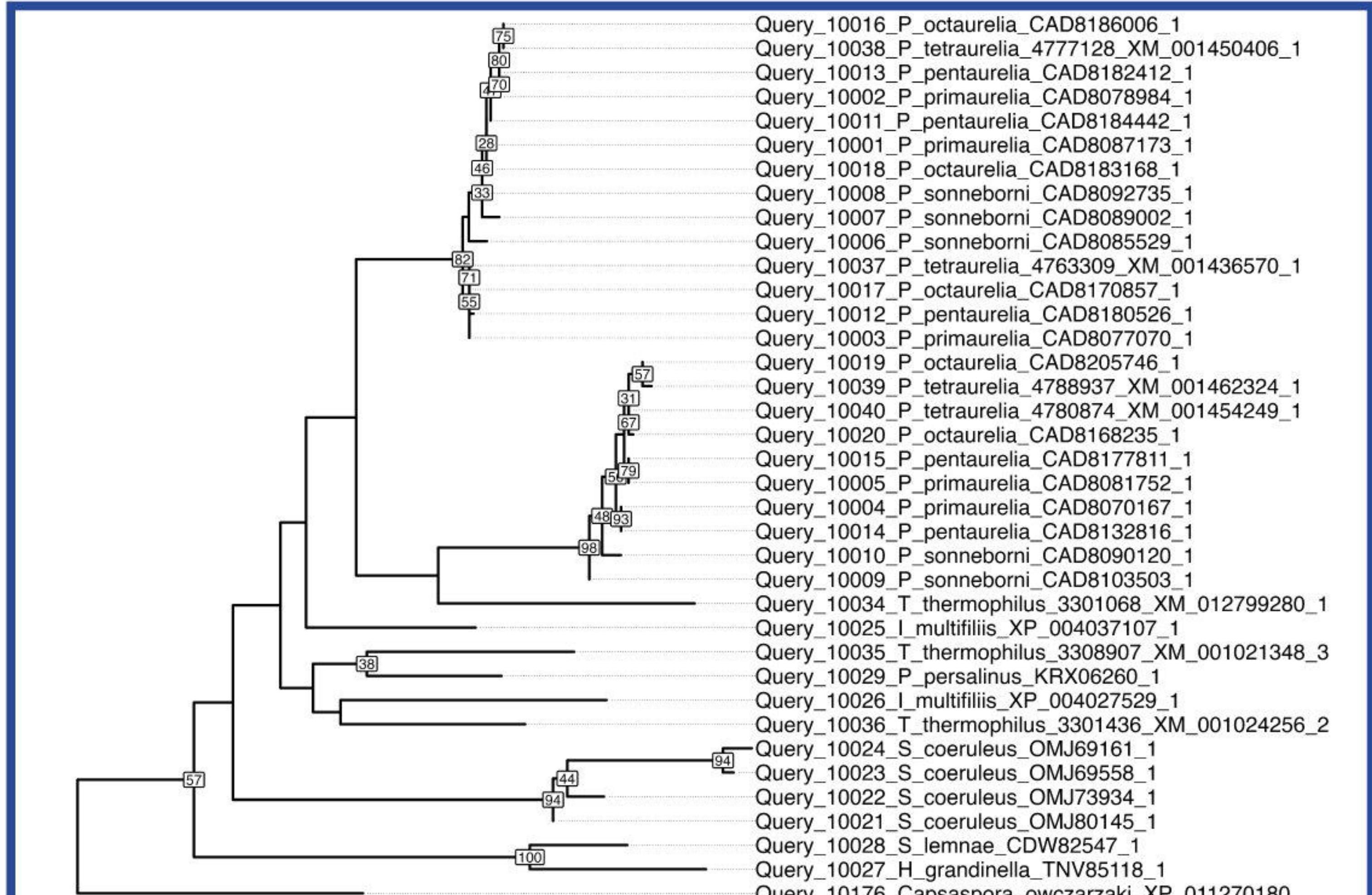
D

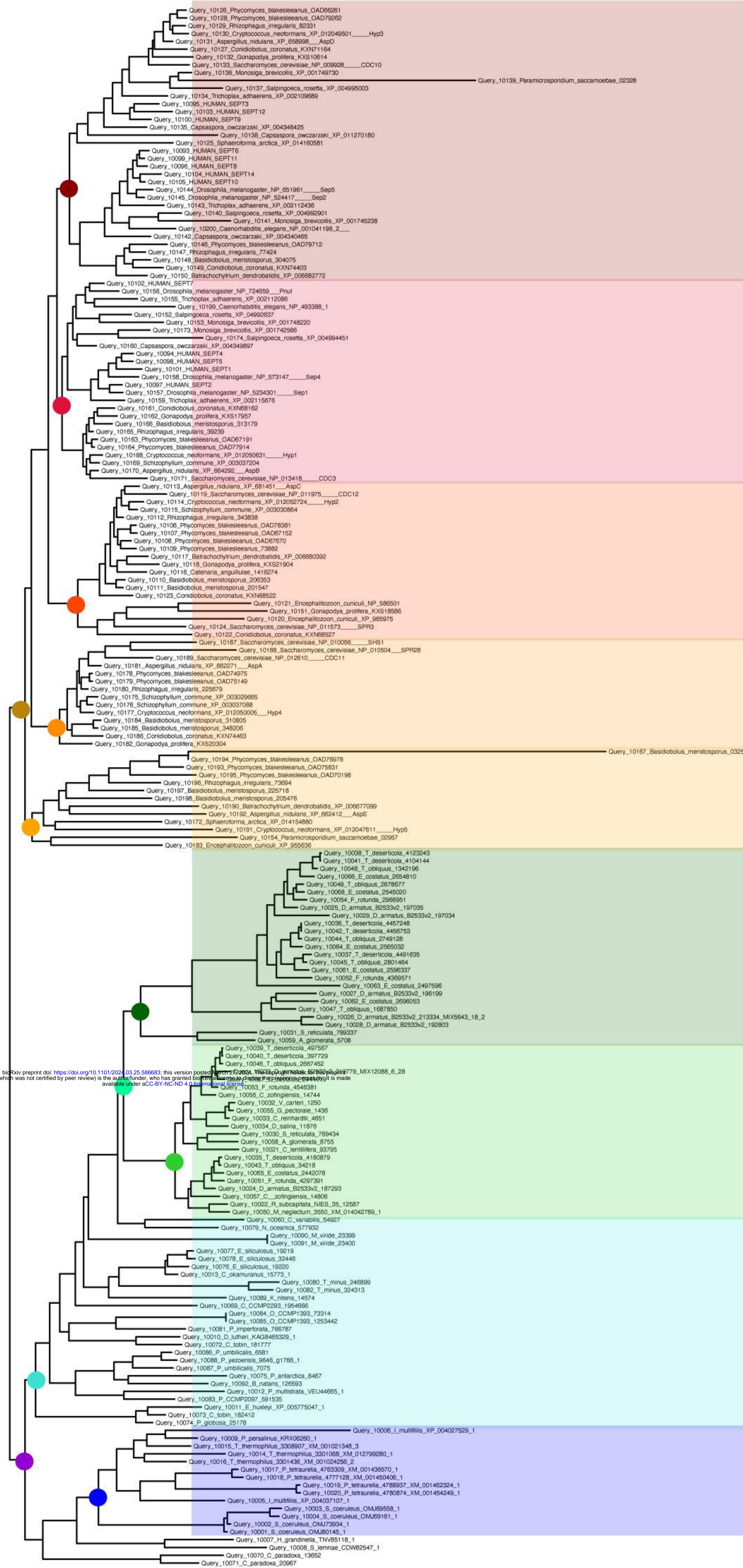



Delic & Shuman et al., Fig. S1

■ YihA Outgroup


Group 6A


Group 6B



Group 7

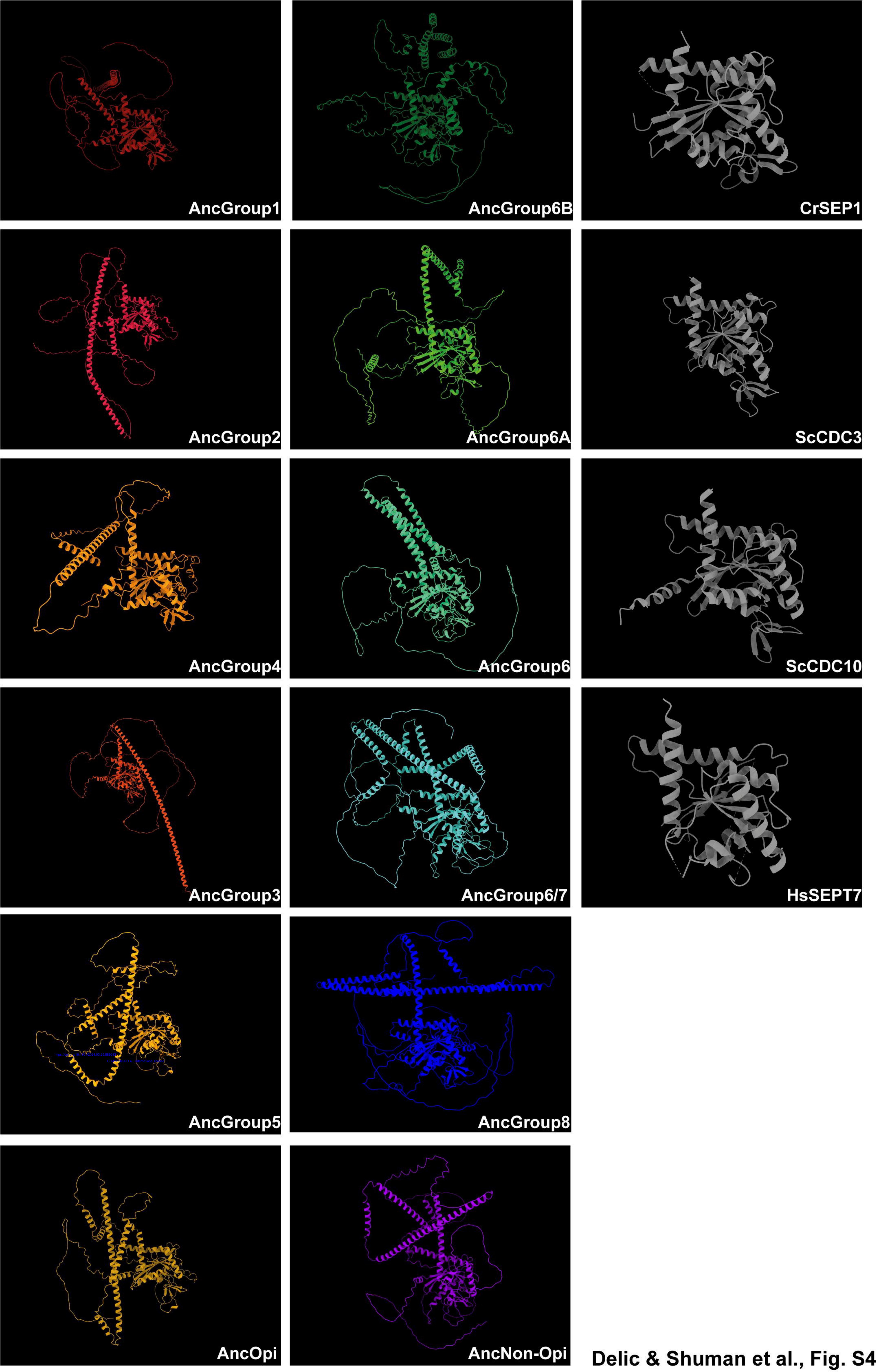
Group 8

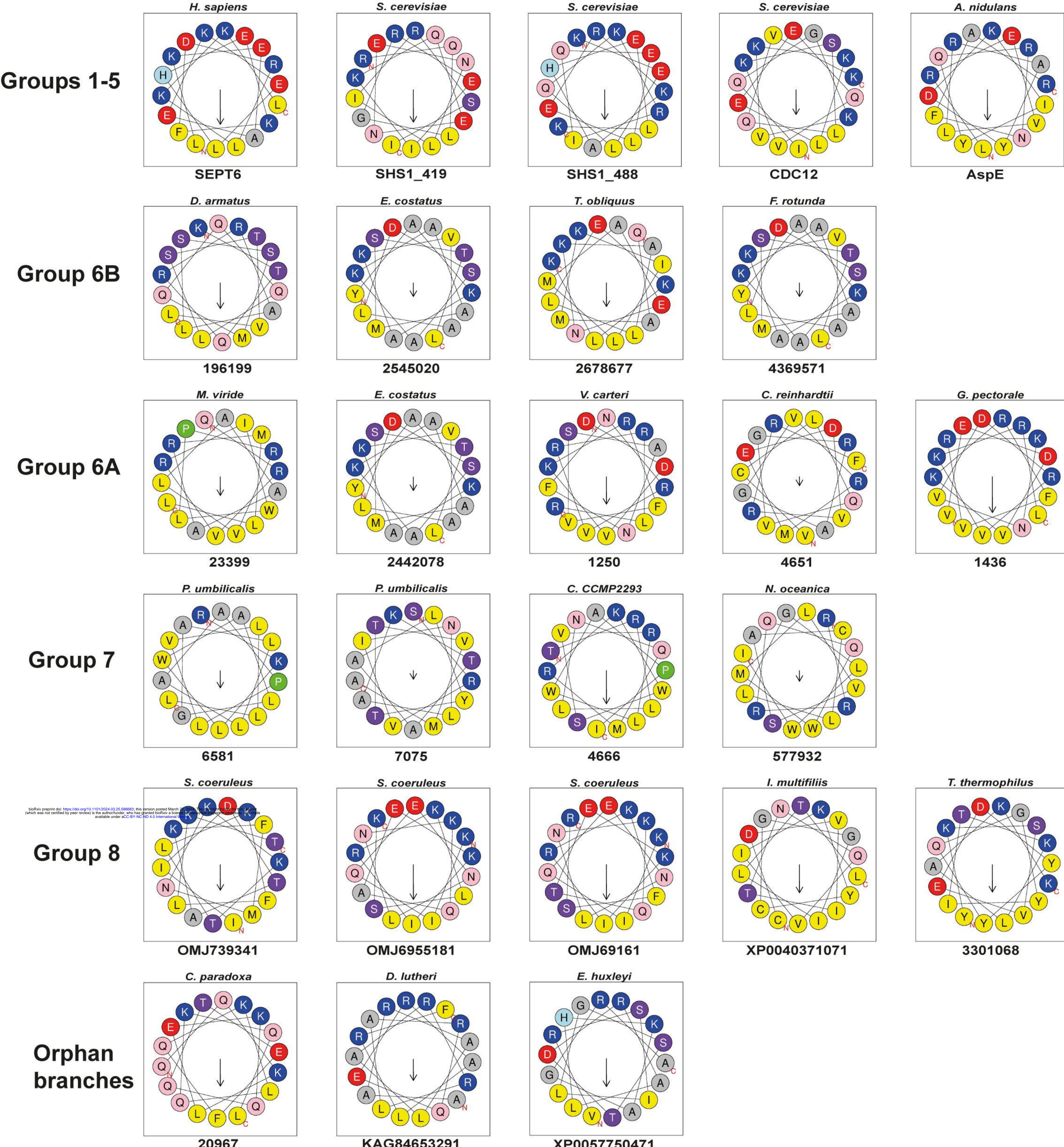
Group 1

Group 2

Group 4

Group 3


Group 5


Group 6B

Group 6A

Group 6/7

Group 8

