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ABSTRACT

Septins are a family of membrane-associated cytoskeletal GTPases that play crucial roles in
various cellular processes, such as cell division, phagocytosis, and organelle fission. Despite
their importance, the evolutionary origins and ancestral function of septins remain unclear. In
opisthokonts, septins form five distinct groups of orthologs, with subunits from multiple groups
assembling into heteropolymers, thus supporting their diverse molecular functions. Recent
studies have revealed that septins are also conserved in algae and protists, indicating an ancient
origin from the last eukaryotic common ancestor. However, the phylogenetic relationships
among septins across eukaryotes remained unclear. Here, we expanded the list of non-
opisthokont septins, including previously unrecognized septins from rhodophyte red algae and
glaucophyte algae. Constructing a rooted phylogenetic tree of 254 total septins, we observed a
bifurcation between the major non-opisthokont and opisthokont septin clades. Within the non-
opisthokont septins, we identified three major subclades: Group 6 representing chlorophyte green
algae (6A mostly for species with single septins, 6B for species with multiple septins), Group 7

representing algae in chlorophytes, heterokonts, haptophytes, chrysophytes, and rhodophytes,
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and Group 8 representing ciliates. Glaucophyte and some ciliate septins formed orphan lineages
in-between all other septins and the outgroup. Combining ancestral-sequence reconstruction and
AlphaFold predictions, we tracked the structural evolution of septins across eukaryotes. In the
GTPase domain, we identified a conserved GAP-like arginine finger within the G-interface of at
least one septin in most algal and ciliate species. This residue is required for homodimerization
of the single Chlamydomonas septin, and its loss coincided with septin duplication events in
various lineages. The loss of the arginine finger is often accompanied by the emergence of the
a0 helix, a known NC-interface interaction motif, potentially signifying the diversification of
septin-septin interaction mechanisms from homo-dimerization to hetero-oligomerization. Lastly,
we found amphipathic helices in all septin groups, suggesting that curvature-sensing is an
ancestral trait of septin proteins. Coiled-coil domains were also broadly distributed, while
transmembrane domains were found in some septins in Group 6A and 7. In summary, this study
advances our understanding of septin distribution and phylogenetic groupings, shedding light on

their ancestral features, potential function, and early evolution.
INTRODUCTION

Septins are a family of paralogous cytoskeletal GTPases that associate with one another in
defined stoichiometries to create nonpolar filaments. The first four septin genes (CDC3, CDC10,
CDC11, and CDC12) were identified in a cell-cycle defective screen in Saccharomyces
cerevisiae (Hartwell, 1971; Hartwell et al., 1974). Detailed molecular characterization of these
septins showed that each gene encodes a distinct septin subunit that associates with other septin
subunits to create filaments and other higher-order structures such as rings on the plasma
membrane (Byers and Goetsch, 1976; Field et al., 1996; Longtine et al., 1996; McMurray and
Thorner, 2008). It was later shown that septin assembly and filamentation are influenced by lipid

composition of membranes (Bertin et al., 2010).

A septin subunit is comprised of a core GTPase domain and variable N- and C-terminal
extensions (NTE and CTE). The GTPase domain is responsible for binding and hydrolyzing
GTP, as well as mediating septin-septin interactions and polymerization (Sirajuddin et al., 2007;
Hussain et al., 2023). The N-terminal domain of septins often contains a polybasic domain (PB1)
directly upstream of the start of the GTPase domain, which plays critical roles in lipid

recognition and septin polymerization (Omrane et al., 2019; Cavini et al., 2021). Depending on
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the septin subunit, the C-terminal domain can contain a coiled-coil domain which has been
proposed to mediate lateral pairing of septin filaments (Leonardo et al., 2021). Additionally,
some subunits also possess an amphipathic helix (AH) which has been shown to allow septins to
recognize micron-scale curvature (Bridges et al., 2016; Cannon et al., 2019). The structure of
septin protomers has been described using the human SEPT2/6/7 heterohexameric complex,
which unequivocally identified two binding interfaces for septin subunits (Sirajuddin et al.,
2007): The G-interface is defined as the face of the subunit with the GTP-binding pocket, where
trans interactions with an opposing subunit stimulates GTP hydrolysis, whereas the NC-interface
is the opposite face of the subunit. Both interfaces can be involved in homomeric and

heteromeric dimerization events.

Previous phylogenetic analyses of opisthokont septins identified conserved residues within the
G- and NC-interfaces (Pan et al., 2007; Auxier et al., 2019; Shuman and Momany, 2021).
Additionally, these analyses provided an evolutionary basis for the modularity of septin paralogs
in support of Kinoshita’s rule, which states that septins belonging to the same phylogenetic
group can replace one another within the canonical protomer (Kinoshita, 2003b; Pan et al., 2007)
For example, human SEPT3, 9, and 12 all belong to Group 1A and can replace one another
within a protomer. Thus, these phylogenetic analyses can provide structural and biochemical

insights into the assembly of septins.

Most of the cellular, biochemical, and phylogenetic characterizations of septin proteins have
been from the opisthokont (animal & fungal) lineage. The presence of septins outside of
opisthokonts was initially noted by Versele & Thorner, who mentioned the presence of bona fide
septins in Chlamydomonas reinhardtii & Nannochloris spp. (Versele and Thorner, 2005).
Subsequent studies in the green algae Nannochloris bacillaris and Marvania geminata and the
ciliate Tetrahymena thermophilus characterized the localization of septins outside of the
opisthokont paradigm. In the former, immunofluorescence studies using an antibody against the
single septin in N. bacillaris showed its localization at the division site of both algae (Yamazaki
et al., 2013). In the latter, septins were reported to localize to the mitochondria scission sites and
proposed to regulate mitochondrial stability via autophagy pathways (Wloga et al., 2008).
Additional septins have since been identified in some other algae and protists (Nishihama et al.,
2011; Yamazaki et al., 2013; Onishi and Pringle, 2016); however, the phylogenetic relationship

of these non-opisthokont septins remained unclear.
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91 In this work, we provide an update to the distribution of septins across the eukaryotic tree of life
92  and a rigorous phylogenetic analysis to compare their relationship to previously identified septin
93  groups. We trace the evolution of structural motifs within the septin GTPase domains by

94  combining ancestral sequence reconstruction and machine-learning 3D structural prediction.

95  Lastly, we trace the gains and losses of septin-associated features in the NTE and CTE, such as
96  the polybasic domain, coiled-coil, AH, and putative transmembrane domains to assess their

97  evolutionary origins.
98 MATERIALS AND METHODS
99  Identification of New Septin Sequences

100 To identify new non-opisthokont septin sequences, we utilized both the Joint Genome Institute
101  Phycocosm webpage (https://phycocosm.jgi.doe.gov/) and the NCBI Genome database

102 (https://blast.ncbi.nlm.nih.gov/). We used the initial set of queries consisting of Chlamydomonas,
103 Symbiodinium, and Paramecium septins. These searches identified several septins in the phyla in
104  which they have not been reported. To enhance the chance of finding new sequences in these and
105  other divergent branches, we added Porphyra, Ectocarpus, and Cyanophora to the list of queries
106  and performed additional searches (Table 1; Supplementary File 1). BLASTP searches were

107  performed on November 14, 2021 using a BLOSUM62 matrix, E-value cutoff of 1x10-, word
108  size of 3, and filtered low complexity regions. The JGI database searches used proteomes from
109  Excavata, Archeaplastida, Rhizaria, Heterokonta, and Alveolata (Supplementary File 2). Due to
110  the limited availability of information for ciliate species on JGI, additional searches were

111 performed using the NCBI database, specifically focusing on Alveolata (taxid:33630)

112 (Supplementary File 2). Identified sequences were further examined manually for the presence of
113 G-motifs (G1, G3, and G4) and S-motifs (S1-S4) to confirm that they are bona fide septins.

114  Opisthokont septins were selected from (Auxier et al., 2019).

115  Phylogenetic Analysis and Ancestral Sequence Reconstruction

116  Phylogenetic trees were constructed following the methodology described by (Auxier et al.,

117 2019). A total of 131 opisthokont and 123 non-opisthokont septins were used; as an outgroup,
118  several prokaryotic YihA proteins were also included (Supplementary File 3). Sequences were
119  first aligned using the constraint-based alignment tool (COBALT) (Papadopoulos and Agarwala,

120 2007), which incorporates information about protein domains in a progressive multiple
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121  alignment. This tool biases the alignment within the septin GTPase domain. To remove regions
122 of randomly similar sequences from the alignment, we employed ALISCORE and ALICUT
123 (Misof and Misof, 2009; Kiick et al., 2010; Kueck, 2017). ALISCORE identifies regions of
124  ambiguous alignment, which were subsequently removed using ALICUT. This process resulted
125  in areduced MSA file containing highly conserved regions within the GTPase domain

126  (Supplementary File 4), which was then used to generate the phylogenetic tree.

127 Tree generation was performed using the CIPRES gateway (Miller et al., 2010),

128  employing RAXML-HPC v.8 on XSEDE with the PROTCAT substitution model and the LG
129  protein matrix and a rapid 1000 bootstrap analysis. The generated trees were visualized using the
130 Rstudio package "ggtree." Bootstrap values displayed on the trees have been limited to values

131  greater than 25.

132 For ancestral sequence reconstruction (ASR), we utilized the FASTML server for maximum-
133 likelihood computing of the ancestral states (Ashkenazy et al., 2012). Due to limitations with the
134  FASTML server, we reduced our list of septin sequences from 254 to 200 by removing some
135  sequences from some fungal species and all sequences from the genus Paramecium except for
136  the species tetraurelia. The resulting 200 sequences (Supplementary File 5) were aligned using
137  COBALT alignment. As ASR provides meaningful interpretation when the entire protein

138  sequence is provided, we did not utilize ALISCORE and ALICUT processing. To generate a new
139  phylogenetic tree, we used the IQTree webserver (http://igtree.cibiv.univie.ac.at/) with an

140  automatic amino acid replacement matrix, 1000 ultrafast bootstraps, and all other default

141  parameters (Trifinopoulos et al., 2016; Minh et al., 2020). This tree reproduced the same

142 phylogenetic groupings and general branching patterns as our more rigorous ALISCORE and
143 ALICUT processed tree. Nodes of interest, including parental nodes for the septin phylogenetic
144 groups, opisthokont and protist divide, and the last eukaryotic common ancestor (LECA) node,
145  were defined based on the joint reconstruction output file and labeled in Supplementary File 5.

146  The protein sequences at these nodes were extracted and referred to as the ancestral septins.
147  AlphaFold Predictions and Search for Polybasic Domains in N-terminal Extension

148  AlphaFold predictions were executed using the Colabfold Google notebook v1.3.0. The specific
149  parameters can be found within the “config.json” file in each respective folder. Due to

150  computational limitations of AlphaFold with extremely long sequences, some sequences required
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151  trimming. The objective of trimming was to preserve the entire GTPase domain and the CTE
152  while reducing the sequence length to a manageable size (approximately 800 amino acids).

153  Generally, the protein sequence was truncated from the N-terminal end. Predictions primarily
154  used an MMseqs2 MSA. Five models with three recycles each were generated and the highest-
155 ranking model was selected (Supplementary File 6). The resulting 3D structures were visualized
156  using ChimeraX. Topology diagrams were drawn in Adobe Illustrator, following the convention
157  wused in (Cavini et al., 2021). For AlphaFold predictions of K. flaccidum and I. multifiliis septins,
158  we used version 1.5.2 of the ColabFold notebook. The structures were visualized using

159  ChimeraX and colored according to AlphaFold confidence.

160  To search for potential polybasic domains in the NTE of our reconstructed ancestral sequences,
161  we developed a Python script that uses a sliding 10-amino-acid window to calculate the local
162  average isoelectric point and plots this value against the first amino acid position across the
163 entire protein length. To focus solely on the NTE, which is where PB1 in extant septins is

164  primarily located, we aligned the ancestral septins to the GTPase domain of S. cerevisiae Cdc3
165 using CLUSTAL®. Only residues before the start of the GTPase domain were plotted. To

166  visualize the multiple sequence alignment (MSA) of the ancestral septins, a CLUSTAL®

167  alignment was performed without the Cdc3 GTPase domain to compare the amino acid

168  composition between GTPase domain-adjacent polybasic domains. The MSA was visualized

169  using the R package “ggmsa,” and the amino acids were colored according to their properties.
170  Identification of amphipathic helices in extant septin sequences

171  For high-throughput prediction of amphipathic helices, we developed a Python script that
172 consists of two steps of analysis: (1) secondary structure prediction by s4pred (Moffat and Jones,
173 2021) followed by (2) amphipathicity assessment of a-helices. In (1), secondary structure
174  prediction was performed for the amino acid sequence of a given septin protein using the

175  run_model.py script provided in https://github.com/psipred/s4pred. In (2), either a “fully-helical”

176  or “partially-helical” segment of an amino-acid sequence was extracted by a sliding 18 amino-
177  acid window. In a “partially-helical” segment, at least 6 amino acids at both ends of the 18 amino
178  acid window must be fully helical. For example, while a segment with a prediction

179  “HHHHHHCCCCCCHHHHHH” (6x H — 6x C — 6x H) was permitted, those with

180 “HHHHHCCCCCCHHHHHHH” (5x H — 6x C — 7x H) were not. We included “partially-
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helical” segments for further assessment because some membrane-bound Ahs could be predicted
as “partially helical,” where two helices are broken apart by non-helical sequence (e.g., Sun2
AH: Lee et al., 2023). For each helical segment, the amphipathicity was calculated and assessed
similarly to HeliQuest software (Gautier et al., 2008), but with modifications. First, the mean
hydrophobic moment value <uH> was calculated as previously described (Eisenberg et al.,
1982) using the hydrophobicity scale values (Fauchere and Pliska, 1983) based on an assumption
that all helices rotate with a 100 degree step. Then, the discriminant factor D = 0.944 x <uH> +
0.33 x z (where z is the net charge) was calculated accordingly to HeliQuest. Finally, the helical
segment was considered amphipathic if all of the criteria below were satisfied: 1) D > 0.68 OR
(<uH> > 0.4 AND z = 0); ii) The hydrophobic face contains at least 3 consecutive bulky
hydrophobic residues (L, V, F, I, W, M, Y) (e.g. a hydrophobic face “SYALLVT” is
satisfactory); iii) “Core” of the hydrophobic face does NOT contain any charged residue (’core’:
the area of 90° centered around the pole). This search resulted in the identification of 4809
possible AH domains, with the vast majority showing overlap with one another (Supplementary
File 7).

We then filtered the data to exclude AHs that are positioned inside of an septin GTPase
domain. The GTPase domain of Cdc3 from S. cerevisiae was used as a reference to define the
start and end residues for the GTPase domain of the other 254 extant sequences. The list of
possible AHs of 18 amino acids in length was then screened by excluding those that overlapped
with the GTPase domain. Sequences satisfying these criteria were considered to possess an AH
(Supplementary File 8) and were highlighted in a cladogram generated using the R package
"ggtree." To generate helical wheel diagrams, individual AH sequences from the dataset were

used as input to run the HeliQuest program (Gautier et al., 2008).
Search for coiled-coil and putative transmembrane domains in extant septin sequences

To identify septins with coiled-coil domain and/or putative transmembrane domains in the set of
254 extant septins, we used the existing annotations on the UniProt database (The UniProt
Consortium, 2023) release 2023 04. A BLASTP search using our list of 254 septins as query
against the UniprotKB database retrieved 206 hits, for which “Coiled coil” and
“Transmembrane” annotations were downloaded from the database. According to the UniProt
documentation, these annotations are based on the COILS program (Lupas et al., 1991) with a

minimum size of 28 amino acids for coiled-coil domains, and TMHMM and Phobius predictions
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212 (Krogh et al., 2001; Kéll et al., 2004) for transmembrane domains. For the remaining 48

213 sequences, manual searches for coiled-coil and transmembrane domains were performed using
214 Cocopred (Feng et al., 2022) and Phobius. These predictions are conservative and unlikely to
215  identify all possible coiled-coil and transmembrane domains; for example, the present analysis
216  identified fewer coiled-coil-containing septins than Auxier et al. (2019), which used the hidden-
217  Markov-model-based Marcoil program. Results of these searches are summarized in

218  Supplementary File 8.
219  RESULTS
220  Identification of new septin sequences

221  To search for septin sequences outside of opisthokonts, we compiled a small query list of

222 previously identified septin sequences from algal and protist species (Table 1). These sequences
223 were selected based on their evolutionary diversity, aiming to enhance the chance of identifying
224 septins from various taxa. We conducted BLASTP searches using the BLOSUMG62 matrix and an
225  E-value cutoff of 1x107, utilizing the protein databases available on the Joint Genome Institute’s
226  (JGI) Phycocosm webpage and the Alveolata database on the NCBI BLAST website (see

227  Materials and Methods). These searches revealed previously unreported sequences in multiple
228  taxa under the supergroups Archaeplastida and Chromista, including two species of thodophyte
229  red algae (Porphyra umbilicalis and Pyropia yezeonsis) and one species of glaucophyte algae
230  (Cyanophora paradoxa) (Figure 1). Our searches also reproduced a previous failure to identify
231  any septin sequences in the entire supergroups of Amoebozoa and Excavata (Fig. 1; Onishi &
232 Pringle, 2016). At lower phylogenetic levels, septins were also not detected in Viridiplantae

233 (land plants) (Fig. 1).

234  Table 1: Query sequences used in BLASTP searches

Phylum Species Identifier

Chlorophyta Chlamydomonas Crel2.g556250

(green algae) reinhardtii
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Glaucophyta Cyanophora 13652g13185t1
paradoxa

Rhodophyta Porphyra 6951

(red algae) umbilicalis

Phaeophyceae Ectocarpus CBN74010

(brown algae) siliculosus

Ciliophora Paramecium CAI38984

(ciliates) tetraurelia

Dinoflagellates Symbiodinium symbB1.v1.2.007989.t1 2
minutum

235  *This transcript encodes a very long 4484-aa predicted protein. See Onishi & Pringle (2016) for
236  details. The 560-aa amino-terminal sequence containing the septin GTPase domain was used as

237  query.
238  New septin phylogenetic groups

239  The discovery of new septin sequences in distant branches of eukaryotes raised questions about
240  their phylogenetic relationship with other septins. Previous studies have classified septins into
241  five groups, but these groupings were defined predominantly based on septin sequences within
242 the opisthokont lineage. We thus combined these new non-opisthokont septin sequences with a
243  preexisting list of opisthokont septins (Auxier et al., 2019) and used the resulting 254 sequences
244  to generate a consensus RAXML tree (Fig. S1) and a simplified cladogram (Fig. 2A). Briefly, the
245 254 sequences and four prokaryotic YihA NTPases (used here as an outgroup; (Weirich et al.,
246 2008)) were aligned using NCBI’s COBALT alignment tool and processed using ALISCORE

247  and ALICUT to remove ambiguous regions of alignment.

248  Consistent with results from previous reports (Momany et al., 2001; Kinoshita, 2003a; Pan et al.,
249  2007; Shuman and Momany, 2021), our phylogenetic analysis grouped the opisthokont septins
250 into five distinct clades (Fig. 2A; Fig. S1): Groups 1 and 2 include septins from both animals and
251  fungi, while Groups 3, 4, and 5 represent fungi-specific clades. Although limited sampling of

252  non-opisthokont septins has previously placed some of them in Group 5 (Onishi and Pringle,
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253 2016; Shuman and Momany, 2021), it is now clear that Group 5 septins are distinct from non-

254  opisthokont septins, consistent with the proposal by Yamazaki et al. (2013).

255  The non-opisthokont septins themselves form three new groups (Groups 6-8) (Fig. 2B; Fig. S2).
256  Group 6 is a monophyletic group of green algal species divided into two subgroups: Group 6A
257  includes some septins that are encoded as a single gene in the genome, in species such as C.

258  reinhardtii and N. bacillaris (Versele and Thorner, 2005; Yamazaki et al., 2013). Group 6B, in
259  contrast, exclusively represents septins that appear to have emerged through gene duplication.
260  For example, of five septins in the green alga Gonium pectorale, only one belongs to Group 6A
261  while the remaining four belong to Group 6B (Fig. 2B; Fig. S2). The genes for these four septins
262  form a cluster in the assembled G. pectorale genome. (Scaffold 65:140824 - 165695),

263  suggesting a very recent gene duplication event. Similarly, of the seven septins in Desmodesmus
264  armatus, five belong to Group 6B (Fig. 2B; Fig. S2). Group 7 is a paraphyletic group composed
265  of septins from various groups of algae, such as additional green algae (e.g., Symbiochloris

266  reticulata), heterokonts (Ectocarpus siliculosus), haptophytes (Chrysochromulina tobinii),

267  cryptophytes (Crytophyceae sp. CCMP2293), chlorarachniophytes (Bigelowiella natans), and
268  rhodophytes (P. umbilicalis) (Fig. 2B; Fig. S2). Finally, Group 8 is a monophyletic group

269  comprised exclusively of septins from ciliates, except for one highly divergent sequence from the
270  unicellular opisthokont Capsaspora owczarzaki. Within Group 8, septins from Paramecium and
271 Stentor coeruleus formed genus-specific clades, suggesting recent expansion events of septin

272 genes within their lineages (Fig. 2B; Fig. S2).

273  Several non-opisthokont sequences are currently not classified in Groups 6-8 because their

274  phylogenetic positioning was sensitive to the programs and parameters used (Fig. 2A; Fig. S1).
275  These include sequences from glaucophytes (C. paradoxa), dinoflagellates (S. minutum,

276  Pseudonitzschia multistrata), and coccolithophores and related haptophytes (Emiliania huxleyi,
277  Phaeocystis globosa, C. tobinii, Diacronema lutheri). Curiously, a septin from Fonticula alba,

278  an opisthokont cellular slime mold, also belonged to this orphan group. Additional sampling of
279  sequences from these and related species will likely help improve the confidence in their

280  phylogenetic positioning.

281  Conservation of G-interface residues in non-opisthokont septins
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282  In previous studies, septins from Groups 1-5 were found to have several highly conserved

283  regions in their GTPase domains (Fig. 3A) that participate in inter-subunit contacts across the G-
284  and NC-interfaces (Fig. 3BC; Pan et al., 2007; Auxier et al., 2019; Shuman and Momany, 2021;
285  Castro et al., 2023). To gain insights into the evolution of these interfaces in septins across the
286  eukaryotic tree, we expanded the alignment to all 254 septins and generated a Weblogo

287  representation for each septin group (Fig. 3D). In general, the GTPase-specific motifs (G1, G3,
288  G4), septin-specific motifs (S2, S3, S4) except for the S1 motif (Pan et al., 2007; Auxier et al.,
289  2019; Nishihama et al., 2011; Onishi & Pringle, 2016), and some key residues in the septin-

290  unique element are all well conserved. More specifically, most of the key residues in the five G-
291 interfaces (Gigl-Gig5) are all conserved, except for Gig2 which appears to be variable in Group
292 8 (Fig. 3D). In contrast, key residues in the four NC-interfaces (NCigl-4) are poorly conserved
293 in Groups 6b, 7, and 8. These results suggest that non-opisthokont septins may primarily form
294 homo- or hetero-dimers through the G-interface, and further addition of subunits through NC-
295 interfaces may be limited to Group 6a. In support of this speculation, we found a unique arginine
296  residue that is highly conserved in many Group 6-8 septins but not in Groups 1-5 (Fig. 3D);

297  similar “arginine (R-) fingers” are found in other GTPases that form G-dimers (Koenig et al.,

298  2008; Schwefel et al., 2013; see below).

299  Reconstituted ancestral septins suggest that the arginine finger in the G-interface is an

300 ancestral feature

301  To delve deeper into the evolution of the structural motifs within the septin GTPase domain, we
302  used ancestral sequence reconstruction (ASR) (Ashkenazy et al., 2012) to resurrect ancestral
303  septins. Due to the limitations of the program used, we reconstructed an IQTree of 200 of the
304 254 septins (Fig. 4A; Fig. S3). The grouping of septin clades and the overall topology of the tree
305  were largely consistent with the RAXML tree (Fig. 2). Using this [QTree, ASR prediction was
306 made for several key nodes representing Groups 1-8 and their parental nodes, and then

307  AlphaFold2 (Jumper et al., 2021) was used to predict their 3D structures for the GTPase domain
308 and the C-terminal extension (see Materials and Methods). Perhaps unsurprisingly given the
309  conservation of the extant sequences (Fig. 3D), the tertiary structures of the ancestral sequences
310  all appeared similar among themselves and with experimentally determined septin structures

311 (Fig. S4).
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312 To highlight gains and losses of sub-domain motifs during the evolution of ancestral septins,

313 interpretive topology diagrams of the GTPase domains were generated based on the AlphaFold
314  predictions (Fig. 4BC). This analysis revealed a largely consistent core structure of the GTPase
315  domains consisting of six a-helices (a1-06) and nine B-sheets (B1-B6 and Pa-Pc), as well as a few
316  variable a-helices that emerged or were lost at specific ancestral nodes (see below). In addition
317  to the helices and sheets, we identified an arginine residue positioned in the S3 motif of

318  AncGroup 6-8 and LECA septins (Figs. 3BD and 4C). Although this residue is not found in the
319  reconstructed in AncGroup 1-5 septins (Fig. 4C), some extant Group 5 septins, such as A.

320  nidulans AspE, appear to have it (see below). Thus, this “R-finger” arginine is an ancestral

321  feature of septin family proteins that has been lost in most opisthokonts. Intriguingly, it has been
322 reported that this R-finger in the single septin of C. reinhardtii is required for its homo-

323  dimerization across the G-interface (Pinto et al., 2017), where it reaches into the GTP-binding
324  pocket of the opposite subunit to accelerate GTP hydrolysis (see Fig. 3C, G-interface). Thus, we
325  suspected that the R-finger would invariably be conserved in single septins found in other

326  species. This prediction was partially confirmed: 20 of the 23 single septins that were included in
327  our analysis have an R-finger at the expected position (Fig. 5A), suggesting that the dimerization
328  mechanism observed in C. reinhardtii may be ancestral and conserved in many algae and

329  protists. Of the other three that lacked an R-finger, the sequence from the dinoflagellate S.

330  minutum is an extremely large 4484-aa protein, with a septin-like domain near the N-terminus
331 and some additional domains (e.g., SMC domain, HSP70) that are not found in other septins.
332 The other two (from the ciliates Halteria grandinella and Stylonychia lemnae) have the arginine
333 replaced by a histidine residue. It is unknown whether these single septins still form a G-dimer
334  without an R-finger or have taken unique evolutionary paths to function without dimerizing

335  through the G-interface.

336  Interestingly, in many algae and protists with multiple septin genes, a loss of the R-finger is
337  observed in some of the duplicated genes (Fig. SA). For example, the ciliate

338  Ichthyophthirius multifiliis possesses two septins: XP004037107 with an R-finger and

339  XP004027529 without (Fig. 5B). Similarly, the filamentous charophyte green alga

340  Klebsormidium flaccidum has two proteins with and without an R-finger (GAQ92127 and

341  GAQ78635, respectively; Fig. 5B). Given the apparent selective pressure against the loss of R-

342  finger in single septins as well as the loss of R-finger in most opisthokont septins that are
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343  invariably encoded as multiple copies in a genome (see below), it is tempting to speculate that
344  these septins may have lost their R-finger because of evolution to form hetero-oligomers.

345  Biochemical characterization of these septins is needed to address this possibility.

346  Unlike the non-opisthokont counterparts, the vast majority of opisthokont septins do not possess
347  an R-finger between the S2-S3 motifs (Figs. 3D and 4C). In Group 1-4 septins, the arginine

348  residue is replaced by small uncharged amino acids such as serine, glycine, or alanine. Although
349  there is an invariant histidine residue in the adjacent position (Fig. 3D) that could potentially be
350 involved in GTP hydrolysis (Weirich et al., 2008), a mutation to this amino acid in human

351  SEPT2 did not affect its GTPase activity (Sirajuddin et al., 2009). Thus, it is unlikely that the
352 Group 1-4 opisthokont septins employ an R-finger-like molecular mechanism to interact through
353  their G-interfaces. The R-finger is also absent in most filamentous-fungus-specific Group 5

354  septins (Figs. 3D and 4C), consistent with the previous observation that the S1-S4 motifs in

355  septins in these groups are highly variable (Shuman and Momany, 2021). However, some

356  septins, such as Aspergillus nidulans AspE (Fig. 5A), have an arginine residue located between
357  the divergent S2-S3 motifs. Available data suggest that AspE is not incorporated into canonical
358  septin complexes, although it interacts with them in a developmental-stage-specific manner

359  (Hernandez-Rodriguez et al., 2014). It is interesting to speculate that AspE-type Group 5 septins

360  have retained the ancestral trait to form a homomeric G-dimer using their R-fingers.
361  Conservation of a0 and a5’ helices in opisthokont septins

362  In addition to the core helices and sheets, AncGroup 1-5 (opisthokont) septins displayed two

363  additional invariant a-helices, both positioned in the NC-interface: a0 at the junction between the
364  N-terminal extension and the GTPase domain, and a5’ that is positioned in-between 04 and 6
365 (Fig. 4C). Interestingly, however, these helices are not well conserved in Group 6-8 septins (Fig.
366  4C). In the human SEPT2/6/7 complex (and plausibly in many other opisthokont septins

367 complexes), the a0 helix is an integral part of the NC interface where it forms an electrostatic
368 inter-subunit interaction (Cavini et al., 2021). In addition, the a5'-helix contains a polyacidic

369  region that is known to interact with the polybasic region 1 (PB1) within the a0 helix of a

370  neighboring subunit across the NC interface (Fig. 3C; Cavini et al., 2021). Thus, it is

371  conceivable that the a0 and a5’ helices evolved together in the opisthokont lineage as the

372 positioning of PB1 was fixed in the former (see below).
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373  The PB1 domain in a0 helix binds to phospholipids such as phosphatidylinositol 4-phosphate,
374  4,5-bisphosphate, and 3,4,5-triphosphate (Zhang et al., 1999; Casamayor and Snyder, 2003;

375 Bertin et al., 2010; Onishi et al., 2010; Krokowski et al., 2018). The PB1 domain has been

376  observed in some septins in non-opisthokont species such as in C. reinhardtii (Wloga et al.,

377  2008; Nishihama et al., 2011; Pinto et al., 2017) despite the lack of a0 in the same proteins (Figs.
378 3D and 4B), raising the possibility that the emergence of PB1 precedes that of a0. To test this,
379  we examined the NTEs of the reconstructed ASR sequences for the presence of PB1 by

380 developing a Python script that calculates the isoelectric point of a 10 amino-acid window

381  moving along protein sequences. We observed a basic region proximal to the beginning of the
382  GTPase domain in AncGroup 1-5 septins (including in the very short NTE of AncGroup3 septin)
383  (Fig. 6AB), consistent with the presence of PB1 in the majority of extant opisthokont septins

384  (Nishihama et al., 2011; Shuman et al., 2021). Similarly, the regions immediately upstream of
385  the G1 motif in AncGroup 6 and 6/7 septins are also highly basic (Fig. 6A). In contrast, the NTE
386  of AncGroupS8 is overall acidic (Fig. 6A), and a few basic residues found in this region are

387 interdigitated by acidic residues (Fig. 6B), consistent with the reported ambiguity about the

388  presence of polybasic regions in septins in 7. thermophila and P. tetraurelia (Wloga et al., 2008).
389  Interestingly, CLUSTALw® alignment identified additional polybasic domains in AncGroup 6B
390  and 6/7 septins at positions 339 and 214 aa upstream of the G1 motif, respectively, which

391  exhibited higher homology to the proximal PB1 observed in AncGroup 1-5 septins (Fig. 6B), and
392  the Gl-proximal sequences (PB1”) are non-opisthokont-specific (Fig. 6B). Given the low overall
393  sequence conservation of these regions in AncGroup 8 (Fig. 6B), it is not clear whether PB1’ is
394  an ancestral feature that has been lost in opisthokont septins, or it was newly inserted adjacent to
395  the G1 motif in the lineage leading to Group 6 and 7 septins. Overall, however, the presence of a
396  polybasic region in the NTE appears to be an ancestral feature that predates the emergence of

397  opisthokont-specific a0.
398  Amphipathic helices are an ancestral feature of septins

399  Some opisthokont septins have the remarkable ability to recognize micron-scale membrane
400  curvature through an amphipathic helix (AH) (Bridges et al., 2016; Cannon et al., 2019).

401  Perturbation of these AHs can lead to abnormal subcellular localization of septin proteins

402  (Cannon et al., 2019). To ask if AHs are found outside of opisthokonts and therefore can be an

403  ancestral feature of septins, we developed a high-throughput pipeline to identify AH domains in
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404  alarge number of polypeptide sequences by predicting alpha helices and then calculating their
405  amphipathicity (see Materials & Methods), and applied it to the NTE and C-terminal extension
406  (CTE) of our eukaryotic septin collection. This pipeline precisely identified previously reported
407  AH domains in fungal and animal septins (Cannon et al., 2019; Lobato-Marquez et al., 2021;
408  Woods et al., 2021), such as Cdc12 and Shsl in S. cerevisiae and Ashbya gossyppii, human

409  SEPT6, Caenorhabditis elegans UNC-61, and Drosophila melanogaster Sepl (Fig. S5). In

410  addition, our analysis revealed the presence of predicted AHs in septin sequences spanning all
411  Groups (Fig. 7A; Table 2) with varying levels of conservation. In opisthokonts, for instance,
412  predicted AHs were detected in 68% of Group 2 and Group 4 sequences, while only 13% of
413  Group 3 sequences exhibited AHs. In Group 1, there is a striking difference between the two
414  subclades: a predicted AH is completely absent in 1A (animals and fungi), while it is found in
415  75% of septins in 1B (animal-specific). This unexpected dichotomy suggests a potential

416  connection between the evolution of AHs and the positioning of subunits within a canonical

417  octameric protomer, in which 1A subunits occupy the central dimer. Like Group 3, only a small
418  fraction of Group 5 septins (22%) have predicted AHs; unlike Group 1, there is no specific

419  subgroup in which AHs are conserved, suggesting sporadic loss/gain of the domain within this
420  group (Fig. 7A; Table 2). Notably, A. nidulans AspE has an unequivocal predicted AH with a
421  large hydrophobic moment (Fig. 7E; Fig. S5), which may contribute to the highly cortical

422  localization of this septin (Hernandez-Rodriguez et al., 2014). In general, the AHs in Groups 1-5
423  displayed features consistent with stereotypical amphipathicity, with a large hydrophobic

424  window and a hydrophilic face composed of both positively and negatively charged residues

425  (Fig. S5).

426  The wide distribution of AHs is also observed in all non-opisthokont groups (Fig. 7A; Table 2).
427  Group 6A, consisting largely of single septins, has the highest rate of AH domains at 68%. In
428  Group 6B, septins with predicted AHs were found in most subclades, with a total preservation
429  rate of 50%. In Groups 7 and 8, septins with predicted AHs were found in at 38% and 19%,
430  respectively. In the Heliquest visualization, both AHs present in Group 6B and Group 7

431  exhibited hydrophilic faces primarily composed of positively charged residues interspersed with
432 small polar residues such as serines and threonines (Fig. S5). In some instances, weaker

433  amphipathic helices were observed, as exemplified by P. umbilicalis 6581, which lacked a

434  strongly pronounced hydrophilic face but still fulfilled the criteria of our search because of their
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435  high net charges that raised the D-factor (Fig. 7E; Fig. S5). Some Group 6A and Group 8 septins
436  have predicted AHs similar to those observed in Groups 1-5 with a large hydrophobic window
437  opposite the cluster of both positively and negatively charged residues.

438  Selective distribution of coiled-coil and transmembrane domains in specific septin groups

439  Many animal and fungal septins contain a coiled-coil (CC) motif in the CTE which is thought to
440  be involved in polymer stabilization and the formation of bundles and filament pairs (Sirajuddin
441  etal, 2007; Bertin et al., 2010; Cavini et al., 2021). We utilized the existing annotation of coiled-
442  coil domains in the Uniprot database to identify them in our list of 254 extant septins.

443  Interestingly, we observed the presence of CCs in Groups 1B, 3, 4, and 6B (Fig 7B; Table 2).
444  The majority of these sequences were also positive for AH domains (Fig. 7D), with AH domains
445  residing within CC domains in many cases, such as in S. cerevisiae Cdc12 (Fig 7E; Cannon et
446  al., 2019). Interestingly, CC domains were almost entirely excluded from non-opisthokont

447  Groups 6A, 7, and 8 (Fig. 7B; Table 2), suggesting that the CC domains observed in Group 6B
448  were a result of convergent molecular evolution. It is interesting to speculate that septin gene
449  duplication in some green algae (Fig. 5A) and the formation of heterooligomeric complexes may

450  have led to the emergence of lateral pairing between septin subunits.

451  Lastly, it has previously been reported that some non-opisthokont septins possess putative

452  transmembrane (TM) domains or short hydrophobic patches (Wloga et al., 2008; Nishihama et
453  al., 2011). Thus, we searched for the presence of potential TM domains in our list of 254 extant
454  septin sequences. Except for one sequence from the parasitic fungus Catenaria anguillulae

455 (AOA1Y214M7, Group 2A, 46% identical to S. cerevisiae Cdc3) that has a unique N-terminal
456  TM domain, all septins with a TM domain were found in the non-opisthokont lineages, with

457  notable enrichment in Groups 6A and 7 (Fig. 7CE; Table 2). This distribution of TM domains in
458  our dataset seems to suggest that they emerged early in the non-opisthokont branch after its split
459  with opisthokonts and were subsequently lost in many species in Group 6B and 8. [See, however,
460  Discussion for another possibility given a recent report by (Perry et al., 2023).] It is interesting to
461  note that there is little overlap between the distributions of CC and TM domains in Group 6

462  septins (Fig. 7D), perhaps suggesting that the evolution of septin-septin interactions through CC
463  domains necessitated a concomitant loss of TM that would otherwise restrict the accessibility of

464 CTE.
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465  In summary, our searches for a-helix-based structures that are often associated with septin CTE
466  suggest that the AH and TM domains may have ancient origins in septin evolution, while the CC

467  domain may have evolved independently in multiple lineages.
468

469  Table 2. Conservation of various features in septin groups.

Group Phylum R-finger o0? PB1* PB1’* AH CC ™

(“e) (%) (%)" (%)
1 Animals/fungi 0 Strong Yes  No 27°¢ 18 0
2 Animals/fungi 0 Strong Yes  No 68 6.5 3.2
3 Fungi 0 Strong Yes  No 13 33 0
4 Fungi 0 Strong Yes  No 68 46 0
5 Filamentous fungi 5.6 Strong Yes  No 22 17 0
6A Green algae 100 None No Yes 68 16 44
6B Green algae 80 None  Yes Yes 50 87 6.7
7 Various algae 91 Weak Yes? Yes?¢ 38 9.5 43

d

8 Ciliates 60 Weak No No 189 2.7 11

470  ?Based on AlphaFold predictions of ancestral protein structures.

471  ®Based on analyses of extant sequences. Values greater than 30 are bold-faced. See

472  Supplementary File 8 for details.

473 ©0% in 1A, 75% in 1B.

474  9Because Group 7 is paraphyletic, we could not confidently infer the conservation of PB
475  domains based on AngGroup6/7.

476

477  DISCUSSION

478  Septins have been reported in a variety of eukaryotic lineages outside of opisthokonts (Versele
479  and Thorner, 2005; Wloga et al., 2008; Nishihama et al., 2011; Yamazaki et al., 2013; Onishi
480  and Pringle, 2016; Shuman and Momany, 2021), although their phylogenetic relationships have
481  not been fully explored. Here, we performed an updated search for septins in non-opisthokont

482  lineages and found that septins are widely spread in two distinct non-opisthokont eukaryotic
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483  supergroups: Archaeplastida and Chromista. Because these two supergroups and opisthokonts
484  share the ancestry only at the LECA level, our results strongly support the idea that the first

485  septin appeared in an early eukaryotic ancestor. We inferred structural features related to septin-
486  septin interactions, membrane binding, and curvature sensing across eukaryotic evolution, and

487  hypothesized functions related to ancestral septins.

488  Septins in Archaeplastida and Chromista form new phylogenetic clades outside of the previously
489  defined Groups 1-5, herein named Groups 6A, 6B, 7, and 8. Group 6A and 6B are composed
490  exclusively of septins from various green algae, while septins in Groups 7 and 8 belong to other
491  various algae (some other green algae, red algae, heterokonts, haptophytes, cryptophytes,

492  chlorarachniophytes) and ciliates, respectively. It is peculiar that these septins in algae from

493  diverse groups formed a single clade separate from the ciliate septins, which is inconsistent with
494  the general taxonomical classification of these species (compare Fig. 1 and Fig. 2A). It is

495  tempting to speculate that these algal septins may have spread through horizontal transfer of

496  nuclear genes, when ancestral red and green algae were taken up by other eukaryotes to form

497  secondary and tertiary endosymbiosis (Keeling and Palmer, 2008; Archibald, 2012).

498 In this study, we found that the majority (but not all) of non-opisthokont septins have a

499  conserved arginine residue within the G-interface. This arginine is predicted to act similarly to
500 other R-fingers in GTPase-activating proteins (GAPs). Because R-fingers are also found in other
501  “paraseptin” GTPases such as TOC34/TOC159 and AIG1/GIMAP (Leipe et al., 2002; Weirich et
502  al., 2008), it is likely an ancestral feature that has been lost in some lineages. Biochemical and
503  structural studies on the single Group 6A septin from C. reinhardtii have shown that this arginine
504  is critical for the very high GTPase activity of this septin (40 times higher than human SEPT9,
505  the most active septin GTPase in opisthokonts) and its homo-dimerization through the G-

506 interface (Pinto et al., 2017). Interestingly, while Group 6A septins invariably have an R-finger,
507  some Group 6B septins have lost this residue. It appears that the loss of R-finger is a crucial

508  evolutionary step associated with septin gene duplication in many eukaryotic lineages, including
509  Group 6 (green algae), Group 8 (ciliates), and the transition from ancestral septin to

510  opisthokonts.

511  Suppose we imagine an ancestral septin dimer with subunits possessing two potential interaction

512 interfaces (G and NC). In that case, we predict that the presence of an R-finger strongly biases
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513  the interaction to the G-interface, suggesting that most ancestral septins formed a dimer across
514  their G-interface. Upon gene duplication, some septins lost the R-finger and gained the NC-

515  interface interaction motif, 0. These evolutionary events then would shift the equilibrium to

516  favor the NC-interface, allowing for the formation of septin heterocomplex protomers. In some
517  cases, evolution of non-opisthokont septin complexes may have involved further mutations in the
518  GTP-binding pocket and the G-interface, causing some septins to be locked in apo-nucleotide or

519  GTP-bound state, as seen in some opisthokont septins (Hussain et al., 2023).

520  When hypothesizing about the potential ancestral functions of septins, we sought to identify

521  motifs that are crucial for septin function. We observe the presence of a polybasic domain

522  immediately preceding the GTPase domain in all septins except for Group 8. Previous studies
523  have implicated this domain to be important for membrane recognition, as well as stabilizing an
524  NC-interaction interface (Bertin et al., 2010; Cavini et al., 2021). The wide distribution of the
525  polybasic domain, but not an a0 helix in which it is found in opisthokonts, suggests that the role
526  of ancestral septins involved their binding to lipid bilayers. In support of this, we found that AH
527  domains were also present across many of the septin phylogenetic groups, suggesting that they
528  are also an ancestral septin feature. By comparing helical wheel diagrams of these AH domains
529  across species, we begin to see some level of heterogeneity in the amino acid composition.

530  Models to distinguish curvature sensing peptides highlight the importance of specific amino acid
531  composition in either being a membrane sensor versus a membrane binder (van Hilten et al.,

532 2023). It could be that the variation in amino acid composition confers distinct membrane

533 binding properties, such as curvature sensing or subcellular localization. Within Groups 1-5, AH
534  domains often had large hydrophobic faces and a large hydrophobic moment due to the presence
535  of acidic and basic residues along the hydrophilic face. In contrast, in some lineages, particularly
536  in group 6B and group 7, we observe the reduction of charged residues and often find threonine
537  and serine residues. These residues may act as potential phosphorylation sites to adaptively

538 regulate the functional properties of these helices (Byeon et al., 2022). Future biochemical

539  studies of the AH domains of diverse septins would provide additional context to the ancestral

540  role of this domain.

541  We identified the presence of CC and putative TM domains in the CTE of septins across various

542  phylogenetic groups. In non-opisthokonts, we observed an almost exclusive and ubiquitous
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543  conservation of CC domains in Group 6B, while TM domains are highly enriched in Group 6A.
544  Considering that Group 6B is composed of septins that have undergone recent gene duplication,
545  itraises an interesting possibility that septins utilize CC to form interactions between subunits
546 and filaments only after the emergence of heterocomplexes. In this scenario, gene duplication
547  and subsequent diversification would be a prerequisite for this specialization of function among
548  subunits. It is important to note that our classification of septin groups was based solely on the
549  sequences of the GTPase domain, independently of the CTE sequence. Therefore, the strong
550  correlation between Group 6A/TM and Group6B/CC suggests a co-evolution between the

551  GTPase and CTE.

552 In addition to Group 6, TM domains were found sporadically in the CTE of some Group 7 and 8
553 septins but largely missing from the opisthokont sequences we used in our analysis. We initially
554  interpreted this as evidence that the TM domain emerged after the opisthokont/non-opisthokont
555  split and was subsequently lost in some lineages. However, a recent study by Perry et al. (2023)
556  reported the presence of TM domains in a transcript isoform of C. elegans UNC-61 (Group 1) as
557  well as many other opisthokont proteins currently annotated as septins on the Uniprot database
558  (but were not included in our list of 254 septins). Interestingly, many of these TM domains are
559  found in the NTE, as seen in C. anguillulae AOA1Y214M7 (Fig. 7E). Thus, we provide two

560  possible interpretations: The N- and C-terminal TM domains evolved independently in

561  opisthokonts and non-opisthokonts, respectively. Alternatively, the LECA septin possessed a TM
562  in the C-terminus, which was inherited by some progeny in all septin groups; in opisthokonts,
563  domain movement within a gene (Furuta et al., 2011) shifted the position of TM from C- to N-

564  terminus.

565  For future studies of septin evolution and general principles of evolutionary constraints, two

566  approaches appear particularly appealing. First, a comparative approach using green algae with
567  single vs. multiple septins seems to provide a unique opportunity to understand the evolution of
568  septin duplication and the formation of heterocomplexes. For example, while C. reinhardtii

569  possesses a single Group 6A septin with R-finger, PB1/PB1°, AH, and possible TM ((Wloga et
570  al., 2008; Nishihama et al., 2011); though it is not currently annotated as such on Uniprot), a

571  related green alga in the same Chlamydomonadales order, G. pectorale, has a total of five septins
572 (one Group 6A and four 6B) with various combinations of septin features (Supplementary File

573 8). The Kinoshita rule (Kinoshita, 2003a) of opisthokont septins highlights the modularity and
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574  redundancy of opisthokont septin subunits at each position of a canonical protomer, where a

575  septin from the same group can replace one another. Biochemical and cell biological experiments
576  of Group 6A and Group 6B septins can shed light on whether this rule also applies to non-

577  opisthokont septins.

578  Second, to understand how — parsimoniously — a single septin with R-finger evolved into a

579  highly variable family of five septin groups in opisthokonts, some filamentous fungi possessing
580  Group 5 with putative R-fingers seem to be an ideal model. One such protein, AspE in 4.

581  nidulans, has been shown to be excluded from the heterooligomeric complex formed by other
582  subunits (Herndndez-Rodriguez et al., 2014). Perhaps this septin has an extremely high GTPase
583  activity, forms a G-dimer, and works independently of canonical filaments or binds to filaments

584  in a substoichiometric fashion.

585  Finally, although our study provided a general overview of septin evolution, it is important to
586  consider these evolutionary events in the context of the cellular processes the ancestral septins
587  were involved in. Given the near-universal role of animal and fungal septins in cytokinesis, it is
588  tempting to speculate that ancestral septins had similar roles. In support of this, the single septin
589 in the green alga N. bacillaris showed its localization at the division site (Yamazaki et al., 2013).
590  However, the two and only other reports on non-opisthokont septins did not show division-site
591  localization: in another green alga C. reinhardtii, a septin was found at the flagella-base region,
592  and in the ciliate 7. thermophila, septins were found associated with mitochondria (Wloga et al.,
593  2008; Pinto et al., 2017). Further functional studies of septins in non-opisthokonts are necessary

594  toreveal the ancestral and fundamental functions of septins.
595
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807 FIGURE LEGENDS

808  Figure 1. Distribution of septins in non-opisthokont phyla. (A) Unrooted taxonomic tree of
809  eukaryotes (based on (Cavalier-Smith, 2018). Gray and dotted branches indicate lineages in
810  which no septin sequence was identified, while black and colored branches represent lineages
811  with identified septins. Representative species are shown and color-matched to their respective
812  lineages, and the total numbers of septin paralogs identified in their genomes are indicated.

813  *Possible septins were identified in Planoprotostelium fungivorum; because this is the only
814  example of species with septins within Amoboezoa and Sulcozoa, we could not determine

815  whether they are a result of unique gene retention, horizontal gene transfer, or contamination.

816  Figure 2. Identification of new septin groups in non-opisthokonts. (A) A simplified

817  cladogram representation of a RAXML tree (Fig. S1) of 254 extant septin sequences across

818  eukaryotic lineages. Individual septin phylogenetic clades are color-coded and labeled. The tree
819 s rooted using four prokaryotic YihA proteins as an outgroup. (B) Magnified views of the four
820  new phylogenetic clades. See Fig. S2 for the original RAXML trees. Bootstrap values greater
821  than 25 are displayed at nodes.

822  Figure 3. Patterns of conservation and diversity of interface motifs across septin Groups. (A)
823  Topology diagram of the GTPase domain secondary structures from N to C-terminus. Conserved
824  GTPase motifs and septin motifs are noted above by black lines (based on Grupp and

825  Gronemeyer 2023) and the NC and G-interacting group regions are noted below by dashed lines
826  (based on Auxier et al 2019). The typical position of the R-finger (when present) is indicated by
827  the pink star. (B) A folded septin monomer. This aggregate depiction includes all predicted

828  domains across eukaryote septins. Relative positions of secondary structures are based on PDB
829  structures 7M6J and 8FWP (Mendonga et al., 2021; Grupp and Gronemeyer, 2023; Marques da
830  Silvaetal., 2023). (C) A septin trimer approximating interactions through their G- and NC-

831 interfaces, based on PDB structure 7M6J. Grey stars with pink outline indicate the predicted
832  positions of R-fingers if they are present in the subunits forming an interface. (D) Weblogo

833  representation of select septin motifs, interacting groups, and structural elements across the

834  eukaryotic septin groups. GTPase motifs and septin motifs are depicted above in black, and NC
835  and G-interacting group regions are depicted below in grey. *Note, the location of S1 in groups

836  6a-8 was determined by relative position in the alignment to the beginning of S2. This loop
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837  region which resides between a2 and 34 has considerable sequence length variability and also

838  includes a region where the a3’ helix is predicted.

839  Figure 4. Ancestral sequence reconstruction of key evolutionary nodes throughout septin

840  evolution. (A) Simplified tree diagram displaying the shape of the IQTree (Fig. S3) used in

841  ancestral sequence reconstruction. Squares and triangle, key nodes with ancestral septins

842  corresponding to interpretive diagrams shown in panel C. (B) Representative topology diagram
843  of septin GTPase domain indicating both the G-interface and NC-interface. N and C represent
844  the N-terminal and C-terminal end of the protein. a helices and B sheets are each numbered

845  sequentially from the N- to C-termini, except for those in the SUE (Ba-Bc). (C) Interpretive

846  topology diagrams of the reconstructed ancestral septins at the nodes labeled in panel A. Novel
847  structural motifs found in this study are highlighted in magenta. Secondary structures outlined in
848  bold solid lines and dotted lines represent motifs with higher (pLDDT >70) and lower (pLDDT
849  <70) AlphaFold confidence scores, respectively. R, arginine finger.

850  Figure 5. GAP-like R-finger is widely conserved in single septins. (A) Numbers of septins with
851  and without R-finger in 68 species representing the three septin-harboring eukaryotic

852  supergroups. (B) AlphaFold predictions of septins with and without R-finger in the species /.
853  multifiliis (top row) and K. flaccidum (bottom row). N- and C-, amino-terminus and carbonyl-
854  terminus, respectively. Magenta arrowheads indicate the positions with the presence or absence

855  of R-finger. Structures are colored according to the AlphaFold pLDDT confidence scores.

856  Figure 6. N-terminal polybasic domains across septins. (A) Calculation of isoelectric point

857  windows across the NTE of reconstructed ancestral sequences. The average isoelectric point of a
858  sliding 10 amino acid window is calculated across the NTE of reconstructed ancestral sequences.
859  X=0 represents the start of the GTPase domain. (B) CLUSTALw multiple sequence alignment of
860  reconstructed ancestral sequences displaying two polybasic domains in non-opisthokont lineages.

861  Numbers indicate the amino acid positions from the start of the GTPase domain.

862  Figure 7. Distribution of AH, coiled-coil, and transmembrane domains across septin groups. (A-
863  C) Simplified cladograms of the RAXML tree of 254 septins (see Fig. 2A), with individual

864  sequences with AH (A, magenta), coiled-coil (B, blue), and transmembrane (C, green) domains
865  highlighted. (D) Venn diagram showing the numbers of septins with AH, coiled-coil, and/or

866  transmembrane domains. (E) Protein domain diagrams of septins with AH, coiled-coil, and/or
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867  transmembrane domains. Grey box, septin GTPase domain; magenta box, AH domain; blue box,

868  coiled-coil domain; green box, transmembrane domain.

869  Supplementary Figure 1. RAXML tree of all eukaryotic septins with 1000 bootstraps and YihA
870  family as outgroup. Bootstrap values <25 are not shown. Defined phylogenetic groups are

871  colored and displayed adjacent to tree tips.
872  Supplementary Figure 2. Magnified views of septin groups 6-8.

873  Supplementary Figure 3. IQTree tree 200 septin sequences used in ancestral sequence
874  reconstitution. Groups as defined in Figure 2 are redefined adjacent to branch tips. Colored

875  nodes represent select ancestral sequences used for AlphaFold prediction.

876  Supplementary Figure 4. AlphaFold-predicted 3D structures of ancestral septins. Structures in
877  grey are experimentally determined Protein Data Bank (PDB) files of septin GTPase domains,
878  included here as references. Structures are orientated such that the NC-interface is towards the

879  left of the monomer and the G-interface is towards the right.

880  Supplementary Figure 5. Representative helical wheel diagrams of predicted AHs across septin
881  phylogenetic groups. Arrow represents the hydrophobic moment vector. Amino acids are
882  colored according to their chemistry: yellow, hydrophobic; purple, Ser/Thr residues; grey,

883  Gly/Ala residues; blue, basic residues; red, acidic residues; pink, Asp; green, Pro.

884
885  Supplementary File/Data

886  Supplementary File 1. Query Septin FASTA sequences used in this study.
887  Supplementary File 2. List of Searched JGI Genomes + NCBI Taxa.

888  Supplementary File 3. Septin + YihA Fasta File.

889  Supplementary File 4. ALISCORE & ALICUT Processed File.

890  Supplementary File 5. IQTREE Input and Output files.

891  Supplementary File 6. AlphaFold Prediction Files.

892  Supplementary File 7. AH 18-aa Raw Output.
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893  Supplementary File 8. Table summarizing properties of septins used in this study

894  (Phylogenetic group, R-finger, AH, CC, TM).
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