

1 **Infection of human organoids supports an intestinal niche for *Chlamydia trachomatis***

2 Pargev Hovhannisyan¹, Kathrin Stelzner¹, Markus Keicher¹, Kerstin Paprotka¹, Mastura Neyazi²,

3 Mindaugas Pauzuolis², Waled Mohammed Ali¹, Karthika Rajeeve^{1,3}, Sina Bartfeld^{2,4,5}, Thomas Rudel^{1,*}

4 ¹ Chair of Microbiology, University of Würzburg, Würzburg, Germany

5 ² Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, University of
6 Würzburg, Würzburg, Germany

7 ³ Infection Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India

8 ⁴ Institute of Biotechnology, Technical University Berlin, Berlin, Germany

9 ⁵ Si-M/‘Der Simulierte Mensch’, Technische Universität Berlin and Charité–Universitätsmedizin
10 Berlin, Berlin, Germany

11 *Correspondence to: thomas.rudel@uni-wuerzburg.de

12

13

14

15

16

17

18

19

20

21

22

23 **Abstract**

24 Several reports suggest that intestinal tissue may be a natural niche for *Chlamydia trachomatis*
25 infection and a reservoir for persistent infections in the human body. Due to the human specificity of
26 the pathogen and the lack of suitable host models, there is limited knowledge on this topic. In our
27 study, we modelled the course of the chlamydial infection in human primary gastrointestinal (GI)
28 epithelial cells originating from patient-derived organoids. We show that GI cells are resistant to
29 apical infection and *C. trachomatis* needs access to the basolateral membrane to establish an
30 infection. Transmission electron microscopy analysis reveals the presence of both normal as well as
31 aberrant chlamydial developmental forms in the infected cells, suggesting a possible cell-type
32 specific nature of the infection. Furthermore, we show that the plasmid-encoded Pgp3 is an
33 important virulence factor for the infection of human GI cells. This is the first report of *C.*
34 *trachomatis* infection in human primary intestinal epithelial cells supporting a possible niche for
35 chlamydial infection in the human intestinal tissue.

36

37 **Keywords:** *Chlamydia trachomatis*, human infection model, organoid, persistence

38

39

40

41

42

43

44

45

46 **Author summary**

47 Chlamydial infection has a high global prevalence and is a major health concern. Untreated
48 infections may cause complications and lead to serious health problems, especially in women.
49 Although the infection is usually localized to the genital tract, experiments performed in a mouse
50 infection model as well as the accumulating clinical data suggest that the human gastrointestinal (GI)
51 tract might represent a hidden infection niche and a source of reinfections. In our study, we used the
52 advantages of the organoid technology to model the chlamydial infection in patient-derived primary
53 GI epithelial cells. We were able to show that these cells are resistant to the infection, however,
54 *Chlamydia* could utilize a basolateral entry route for efficient infection. *Chlamydia* form either
55 normal or persistent-like developmental forms in these GI epithelial cells. We also showed the
56 importance of the plasmid-mediated virulence in the infection of human GI cells. The results
57 obtained in the GI infection model replicated phenotypes predicted and expected for *Chlamydia*
58 human intestinal infection, and therefore support a role of the human GI tract as a potential niche
59 for chlamydial infection.

60

61 **Introduction**

62 *Chlamydia trachomatis* is a human-specific pathogen, which causes the most common bacterial
63 sexually transmitted infections worldwide [1]. Different serovars of *C. trachomatis* have specific
64 tissue tropism and cause diseases at different anatomical sites: serovars A-C cause eye infections,
65 genital infections are usually associated with the serovars D-K and the more invasive serovars L1-L3
66 infect the lymphatic system [2, 3].

67 *Chlamydia* are obligate intracellular bacteria with a unique biphasic developmental cycle, during
68 which they alternate between two morphologically and functionally different forms – elementary
69 bodies (EBs) and reticulate bodies (RBs). *Chlamydia* possess complex and redundant mechanisms for
70 host cell attachment and entry, which explains their ability to infect a wide range of cell types [4].
71 Several host cell receptors, including human integrin β 1 receptor [5], epidermal growth factor
72 receptor [6], fibroblast growth factor receptor [7] and Ephrin A2 receptor (EphA2) [8], have been
73 found to be used by *C. trachomatis* to enter the host cell. EBs, the infectious forms of the organism,
74 are adapted to survive in extracellular space [9]. Upon contact with the host cell, they induce their
75 internalization and develop in a membrane bound compartment called inclusion, where they
76 differentiate into RBs. After several rounds of replication, RBs re-differentiate into EBs, which are
77 released from the cell to infect neighboring cells [9, 10]. Under stress conditions, RBs can enter a
78 non-replicative but viable state called persistence, in order to survive the unfavorable conditions.
79 They can re-enter the developmental cycle after the physiological conditions have normalized [1,
80 10].

81 The obligate intracellular lifestyle and human specificity of *C. trachomatis* limit the availability of
82 relevant physiological host models to study the infection. Most of the knowledge about the
83 interactions of *C. trachomatis* with the host is derived from *in vitro* experiments, which are mainly
84 based on the use of transformed cell line models and which not always recapitulate the *in vivo*
85 situation [11]. Since it is possible to infect mice with human *C. trachomatis* serovars under certain

86 conditions, murine models have been widely used to study the immunopathogenesis. However,
87 these do not always reflect the pathology of the disease observed in humans [12, 13]. In recent
88 years, the advances in stem cell biology allowed the establishment of complex human primary cell-
89 based host models, such as organoids, which are currently being actively used in the field of
90 infection biology [14, 15]. Chlamydial infection has been recently successfully modelled and studied
91 in both human and murine organoids derived from female genital tract tissues, such as human
92 fallopian tube organoids [16], murine endometrial organoids [17] and human cervical organoids [18].
93 These studies have profoundly improved our understanding of chlamydial infection.

94 The majority of studies on *C. trachomatis*-host interactions focuses on the genital tract. There is only
95 a limited number of studies addressing the infection at extra-genital sites. It is well known that *C.*
96 *trachomatis* can infect the epithelium of the human rectum and pharynx, with a high prevalence in
97 men who have sex with men [19]. There have also been reported cases of *C. trachomatis* DNA and
98 antigens being detected in appendix and intestinal biopsies from patients [20, 21].

99 Besides human-specific pathogens, the genus *Chlamydia* contains species, which infect wild or
100 domesticated animals [22]. Interestingly, gastrointestinal (GI) infection occurs in most animal hosts
101 and the GI tract is a natural site of *Chlamydia* infection [23]. Some authors have proposed that *C.*
102 *trachomatis* could have evolved as a commensal of the human GI tract [24] and that the human GI
103 tract can be a site of persistent chlamydial infections and a possible reservoir of infections in the
104 genital tract [23, 25]. Studies in mice demonstrated that following oral inoculation, the murine
105 chlamydial pathogen *C. muridarum* crosses multiple GI barriers and establishes a long lasting non-
106 pathological colonization in the large intestine [26]. It was also reported that Pgp3, a chlamydial
107 plasmid-encoded virulence factor, is important for the colonization of the GI tract of mice as it helps
108 *Chlamydia* to reach the large intestine by providing resistance against gastric acid in stomach and
109 CD4⁺ T lymphocyte-mediated immunity in the small intestine [26].

110 In the present work, we investigated *C. trachomatis* infection in primary epithelial cells derived from
111 different regions of the human GI tract using organoid-based host models. We show that *C.*
112 *trachomatis* is able to infect the human GI cells from the basolateral, but not apical surface.
113 Moreover, we demonstrate that in some cells chlamydial development is restricted and leads to the
114 formation of aberrant bodies, hallmarks of persistent infection. We also reveal that the chlamydial
115 plasmid and plasmid-encoded Pgp3 are important virulence factors for the infection of human GI
116 cells as their absence leads to growth defects.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132 **Results**

133 ***C. trachomatis* infects human primary GI epithelial cells**

134 To test if *C. trachomatis* has the ability to infect human primary GI epithelial cells, we used human
135 adult stem cell-derived organoids as a host model. They consist of primary epithelial cells organized
136 into a single layer. In order to have each major region of the human GI tract represented in our
137 studies, we modelled the infection in organoids derived from human corpus (stomach), jejunum
138 (small intestine) and colon (large intestine) (Fig 1A, S1 Fig). GI organoids were dissociated into small
139 multicellular fragments, infected with GFP-expressing *C. trachomatis* and re-suspended into fresh
140 extracellular matrix (ECM) for the formation of new organoids. Starting from 24 hours post-infection
141 (p.i.), we could clearly observe fluorescent *C. trachomatis* inclusions in both gastric and intestinal
142 organoids (Fig 1B). However, in order to avoid the shredding of the 3D organoids, which disrupts the
143 epithelial barrier integrity and to mimic the natural (apical) route of infection, we switched to a 2D
144 setting by generating monolayers from organoids. In 2D configuration, GI cells grow in a patchy
145 manner by forming dense small islands (S1 Fig), which gradually grow and eventually fuse forming a
146 confluent monolayer. We infected the GI cells and HeLa cells (a common *C. trachomatis* host model)
147 with *C. trachomatis* and observed that, in contrast to HeLa cells, chlamydial inclusions in the GI
148 monolayers exhibited uneven distribution and were mostly located on the edges of the cell islands
149 (Fig 1C). The infection pattern was maintained even after several rounds of chlamydial replication (4
150 and 8 days p.i.) and the inclusions were mostly observed on the edges of cell patches or at the fusion
151 of two or more cell patches. We also observed that the infection progresses from the margins
152 inward to the centre of the patches, presumably via successive infection of new adjacent cells. While
153 HeLa cells were almost completely lysed by *C. trachomatis* infection on day 4, primary GI cells,
154 especially those in the centre of the monolayers, were still intact.

155 **Disruption of the cell junctions increases the efficiency of *C. trachomatis* infection in GI cells**

156 The observed novel pattern of *C. trachomatis* infection in GI monolayers could either be attributable
157 to the physical properties of cells in monolayers or be a consequence of cell-type/state specific
158 infection events. As we observed that proliferative cells are often found closer to the edges of cell
159 islands in GI monolayers, we asked whether *Chlamydia* might predominantly infect actively dividing
160 cells. We co-stained the infected gastric monolayers for Ki67, which is a nuclear protein and a
161 marker of proliferation, and determined the number of inclusions associated with Ki67-positive or
162 negative cells (S2A, S2B Fig). We could not find a direct link between the cell proliferation status and
163 the infection, as the microscopic analysis revealed a similar infection burden in Ki67-positive and
164 negative cells.

165 We also observed that, in contrast to HeLa cells, GI monolayer cells have a dense arrangement
166 within individual cell patches and hypothesized that *Chlamydia* might preferentially infect the edges
167 of the patches due to the distinct localization of the entry receptors on the basolateral surface, e.g.
168 at cell-cell junctions, and their absence on the apical surface of the cells. To test this hypothesis, we
169 disrupted the cell-cell junctions by pre-treating the gastric cells with the Ca^{2+} chelating agent
170 ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA), which was previously
171 reported to cause disruption of tight junctions and increase the paracellular space [27, 28]. We
172 applied live cell imaging to monitor the effect of EGTA on primary gastric and HeLa cells.

173 Characteristic morphological changes, such as gradually increasing distance between neighbouring
174 cells and loss of monolayer integrity, were observed in the treated gastric cells, whereas HeLa cells
175 exhibited a more defined and elongated shape (Fig 2A). Following EGTA pre-treatment, gastric and
176 HeLa cells were infected with *C. trachomatis* and subjected to microscopy analysis 24 hours p.i.. It
177 revealed a more dispersed infection pattern in the EGTA-treated gastric cells compared to untreated
178 control cells (Fig 2B), as well as a significantly higher infection rate in gastric cells pre-treated with
179 EGTA for 30 min (approx. 1.7-fold higher) or 60 min (approx. 2.8-fold higher) (Fig 2C). We detected
180 no changes in the infection pattern or rate of HeLa cells upon pre-treatment with EGTA (Fig 2B, 2C).

181 The cell morphology and the infection pattern of intestinal cells were affected in a similar manner
182 upon EGTA pre-treatment (S3A, S3B Fig).

183 ***C. trachomatis* infects the GI cells via the basolateral route**

184 As GI cells with disrupted junctions could be efficiently infected by *C. trachomatis*, we next tested
185 the ability of the pathogen to selectively infect gastric and intestinal monolayers from the apical
186 versus the basolateral surface. Culturing the cells on a porous membrane in cell culture inserts
187 allowed a separation of these two surfaces. Gastric and small intestinal primary cells were seeded on
188 the membrane and grown until they formed a confluent monolayer with a polarized phenotype,
189 where the basolateral side of the cells was oriented to the cell culture insert membrane. The cells
190 were infected with *C. trachomatis* from the apical or basolateral side (Fig 3A) and analyzed 24 hours
191 p.i. by confocal microscopy. Interestingly, we detected no or extremely few inclusions in apically
192 infected gastric and intestinal monolayers, whereas the basolateral infection was highly efficient (Fig
193 3B). To check whether the observed phenotype of basolateral infection is specific to human GI cells
194 only or might also be common for other columnar epithelial cell types, we performed the infection
195 assay in organoid-derived human primary fallopian tube epithelial cells (S4A Fig, S4B Fig). Although
196 we detected inclusions in apically infected fallopian tube samples, the basolateral infection resulted
197 in a significantly higher infection rate.

198 Next, we aimed to identify a basolaterally expressed host cell receptor, which could potentially be
199 involved in the invasion of GI cells by *C. trachomatis*. Integrin receptors, including β 1-integrins, are
200 usually located at the basolateral surface of polarized epithelial cells [29, 30]. Integrin β 1 receptor is
201 also exploited by *C. trachomatis* for host cell entry among several other receptors [5]. To determine
202 its involvement in the infection, we treated the gastric cells grown on cell culture inserts with anti-
203 integrin β 1 blocking antibodies and infected with *C. trachomatis*. Confocal microscopy analysis of the
204 infected samples 24 hours p.i. revealed a significantly reduced (2.3-fold) infection rate in antibody-
205 treated cells compared to untreated cells (Fig 3C, 3D). Collectively, our findings indicate that human

206 GI epithelial cells are highly resistant to *C. trachomatis* apical infection and an access to the
207 receptors localized on the basolateral surface of the cells is needed for efficient infection.

208 **Chlamydial plasmid-encoded Pgp3 is important for propagation in human GI cells**

209 The chlamydial plasmid, particularly the plasmid encoded virulence factor Pgp3, is important for the
210 colonization of the GI tract of the mice by *C. muridarum* [31]. Pgp3 has been found to play a critical
211 role in protecting *Chlamydia* against gastric acid killing and thus allowing its further dissemination
212 into the lower GI tract of the mice. We asked whether chlamydial plasmid and Pgp3 are involved in
213 the infection of human GI cells and therefore compared the infectivity of wild-type (*Ctr* WT), Pgp3-
214 deficient (*Ctr* Δ *pgp3*) and plasmid-free (*Ctr* PF) *C. trachomatis* strains in human gastric, small and
215 large intestinal epithelial cells (Fig 4A). We first titrated the infectivity of the strains in HeLa cells to
216 reach similar infection load in order to enable a cross-strain comparison in GI cells and obtained a
217 similar infection rate for *Ctr* WT and *Ctr* Δ *pgp3* and a slightly higher rate for *Ctr* PF (S5A Fig). Next, we
218 performed the infectivity assay in human GI cells derived from three different donors using
219 proportionate bacterial loads. During primary infection in gastric cells, *Ctr* Δ *pgp3* and *Ctr* PF showed
220 significantly reduced infectivity (approx. 2.3-fold and 2.9-fold lower, respectively) compared to *Ctr*
221 WT (Fig 4B) and a similar trend was observed in small and large intestinal cells (Fig 4C, 4D). To assess
222 chlamydial development and fitness, equal amounts of cell lysates were transferred onto freshly
223 seeded HeLa cells 48 hours p.i. and analyzed 24 hours p.i. (here referred to as progeny infection). *Ctr*
224 Δ *pgp3* from gastric cells formed significantly fewer (2.8-fold fewer) infective progeny compared to
225 *Ctr* WT (Fig 4E) and a similar trend was observed in intestinal cells (Fig 4F, 4G). *Ctr* WT and *Ctr* Δ *pgp3*
226 grown in HeLa cells formed equal amount of progeny, and *Ctr* PF formed significantly fewer (approx.
227 1.8-fold fewer) progeny compared to *Ctr* WT and *Ctr* Δ *pgp3* despite the initially higher load in
228 primary infection (S5B Fig).

229 To confirm the results by measuring another parameter for chlamydial development, we also
230 determined the average size of the inclusions during primary infection. Interestingly, although *Ctr*

231 WT and *Ctr Δpgp3* formed inclusions of similar size in HeLa cells (S5C Fig), in gastric cells *Ctr Δpgp3*
232 formed significantly smaller inclusions compared to *Ctr* WT (Fig 5A) and a similar trend was
233 observed in intestinal cells (Fig 5B, 5C). Taken together, these results suggest that the lack of the
234 Pgp3 reduces the infectivity of *C. trachomatis* in human primary gastric and possibly also in intestinal
235 epithelial cells.

236 **Human GI cells harbour aberrant developmental forms of *C. trachomatis***

237 Human intestinal tissue is hypothesized to represent a potential niche for persistent chlamydial
238 infection, which is frequently characterized by the appearance of so-called aberrant bodies (ABs),
239 irregular particles much larger than RBs [23, 32]. We therefore characterized chlamydial inclusions in
240 human GI cells at the ultrastructural level by using transmission electron microscopy (TEM). Gastric
241 and intestinal cells derived from 3 different donors were infected with *C. trachomatis* and 40 hours
242 p.i. processed for TEM. Surprisingly, we found a mixed population of normal (Fig 6A) and aberrant
243 (Fig 6B) developmental forms of inclusions in both gastric and intestinal cells. Morphological
244 evaluation of the obtained micrographs revealed different morphologies of aberrant inclusions,
245 some of them containing exclusively enlarged ABs and some others harbouring also dividing forms of
246 RBs or even EBs. In contrast to GI cells, no ABs could be detected in infected HeLa cells. This
247 indicates that gastric and intestinal cells could harbour ABs and thus potentially may serve as a
248 reservoir for persistent infection.

249

250

251

252

253

254

255 **Discussion**

256 Increasing evidence suggests that the mucosa of the GI tract provides a niche for persistent *C.*
257 *trachomatis* infections in the human body and can potentially cause repeated infections in other
258 tissues, including the genital tract [23]. Nevertheless, there is only a limited number of studies on
259 the pathogenesis of *C. trachomatis* in human GI cells and most of the knowledge comes from murine
260 infection models. So far, *C. trachomatis* GI infection has been studied using cancer cell line models,
261 such as human enteroendocrine LCC-18 and CNDT-2 cells [33], Caco-2 and COLO-205 colon
262 carcinoma cells [34]. In the present study, we modelled *C. trachomatis* infection in human primary
263 gastric and intestinal epithelial cells.

264 Our results based on 3D and 2D infection models indicate that both gastric and intestinal cells can
265 support the chlamydial development. However, attachment of *Chlamydia* to the basolateral
266 membrane is necessary for establishing an infection. In the GI monolayer model, the tightly arranged
267 cell architecture renders the cells resistant to infection from the apical surface, whereas the
268 infection from the basolateral surface is highly efficient (Fig 3B). In line with this, in subconfluent GI
269 monolayers *C. trachomatis* infects the marginally located cells, even after completion of several
270 chlamydial developmental cycles (Fig 1C). We assume this is due to the localization of the chlamydial
271 entry receptors on the basolateral, but not on the apical surface of the cells. Consequently, only the
272 cells on the edges of the cell patches allow *Chlamydia* to access the basolateral side, while other
273 cells are engaged in junctional complexes. This theory is substantiated by the observation that
274 disruption of the cell-cell contacts by the Ca^{2+} chelating agent EGTA increases the number of infected
275 cells and renders the infection pattern more random (Fig 2B, 2C). In polarized epithelial cells tight
276 and adherens junctions shield the basolaterally expressed integrins [29], which prompted us to
277 assess the role of the known chlamydial entry receptor integrin $\beta 1$ as a potential candidate receptor.
278 Blocking of the receptor on the basolateral surface of the gastric cells led to a decreased infection
279 rate, confirming its involvement in the infection (Fig 3C, 3D). Recently, it has been demonstrated

280 that EphA2, another chlamydial entry receptor, is strictly localized at cell-cell junctions in primary
281 gastric epithelial cells [15]. Thus, further studies are needed to evaluate the involvement of EphA2
282 and other basolaterally positioned receptors in the *C. trachomatis* infection of human GI cells.

283 To check if the basolateral route of chlamydial infection might take place in other columnar
284 epithelial cell models as well, we modelled the infection in human primary fallopian tube cells.
285 Although we could detect inclusions in apically infected samples, the basolateral infection resulted in
286 a significantly higher infection rate (S4A, S4B). This might explain the low infection rate (<5%)
287 previously reported in a similar apically infected fallopian tube model [35]. However, it is to note
288 that in contrast to GI cells, the culture of human fallopian tube cells on 3 µm pore-size membranes (a
289 technical requirement imposed by the experimental setup) compromises their ability to polarize and
290 hinders the comparison with the GI model.

291 The importance of the plasmid for the successful colonization of the GI tract by *Chlamydia* has been
292 demonstrated in the mouse model of infection [26]. The importance of the plasmid is further
293 evidenced by the fact that naturally occurring plasmid-free clinical isolates are very rare [36, 37].
294 Following oral inoculation, *Chlamydia* overcome several GI barriers in mice in order to reach and
295 colonize the large intestine, and plasmid lacking mutants, in particular Pgp3-mutants, are defective
296 in colonizing the upper GI tract of the mice [26, 31]. It is speculated that *Chlamydia* use plasmid-
297 encoded factors to colonize the upper GI tract, whereas chromosome-encoded factors are more
298 important for colonization of the lower GI tract [26]. We compared the infectivity of the wild-type,
299 Pgp3-deficient and plasmid-free *C. trachomatis* in human GI cells to check if the plasmid-associated
300 infectivity defects reported *in vivo* could be reproduced in a human system *in vitro*. Compared to the
301 wild-type, *Ctr Δpgp3* formed significantly fewer and smaller inclusions in human gastric cells and a
302 similar trend was observed in intestinal cells (Fig 4, Fig 5). In mice Pgp3 plays a role in resisting
303 gastric acid in stomach and evasion of the CD4+ T lymphocyte-mediated immunity in the small
304 intestine [26]. However, our epithelial model does not contain immune cells nor is gastric acid

305 produced because the appropriate cells (parietal cells) are absent in the system. Further studies are
306 needed to clarify the specific role of Pgp3 during the infection of GI epithelial cells.

307 In search of signs of persistence, we performed electron microscopic analysis of infected GI cells,
308 which revealed that gastric, small and large intestinal cells infected with *C. trachomatis* harbor not
309 only normal developed inclusions, but also aberrant developmental forms, which have different
310 morphologies (Fig 6). 2D monolayer cultures of primary GI cells are not monotypic and contain
311 different cell types and we assume that possibly some cell types restrict, while some others permit
312 chlamydial development. Interestingly, inclusions of similar morphology have been found in the
313 intestine of the pigs naturally or experimentally infected with *C. suis* [38].

314 Taken together, our infection model replicated phenotypes predicted and expected for *C.*
315 *trachomatis* human intestinal infection, like the occurrence of persistent infection, and therefore
316 supported a role of the human GI tract as a potential niche for chlamydial infection. At the same
317 time, our results in 2D monolayers imply that the healthy intact GI epithelium is resistant to luminal
318 *C. trachomatis* infection. It is likely that prior events affecting the epithelial barrier integrity and
319 polarity, such as inflammation, epithelial-mesenchymal transition or mechanical injuries, could be
320 necessary for the establishment of infection. Our study also highlights the importance of using
321 physiologically relevant host models for modelling host-pathogen interactions. There are, however,
322 clear limitations of our model like the absence of natural microbiota and a functional innate and
323 adaptive immune system. The intestinal microbiota and immune system are important factors that
324 protect the intestinal epithelium from pathogens [39]. Initial attempts have been undertaken to
325 generate human intestinal models complemented with human microbiota and innate immune cells
326 [40, 41]. Although these systems still do not adequately resemble the natural human intestinal
327 environment, they will be useful to further investigate the role of chlamydial infection in the human
328 GI tract.

329

330 **Methods**

331 **Ethics statement**

332 This study was approved by the ethical committee of the University Hospital of Würzburg (approval
333 37/16 and 36/16).

334 **Culture of organoids**

335 Patient-derived gastric (corporal), small intestinal (jejunal), large intestinal (colonic) and fallopian
336 tube organoid lines were retrieved from an established biobank and cultured in Matrigel drops
337 (Corning, 356231) overlaid with the corresponding organoid culture medium in 24-well plates and
338 kept in a humidified incubator at 37°C and 5% CO₂. Advanced DMEM/F12 (Thermo Fisher Scientific,
339 12634028) supplemented with 10 mM HEPES (Thermo Fisher Scientific, 15630056) and 1%
340 GlutaMAX (Thermo Fisher Scientific, 35050061) was used as a basal medium and the organoid-
341 specific growth factors were added to it (full composition of the media is provided in S1 Table).
342 Organoids were passaged every 7-14 days at a ratio 1:2 to 1:10 depending on the donor and the
343 medium was changed every 2-3 days. During the first two days of culture after splitting, media were
344 supplemented with 10 µM ROCK inhibitor (AbMole Bioscience, Y-27632).

345 **Culture of organoid-derived 2D monolayers**

346 2D monolayers in the microwell plates were generated according to previously established protocols
347 [42] (Neyazi et al., in preparation): organoids were dissociated into single cells using TrypLE (Thermo
348 Fisher Scientific, 12604013) at 37°C, seeded into the microwell plate and grown in corresponding
349 organoid culture medium at 37°C and 5% CO₂. To generate monolayers on cell culture inserts (Sigma
350 Aldrich, P1TP01250), dissociated cells were seeded onto the membrane and grown in corresponding
351 organoid culture medium till reaching confluence at 37°C and 5% CO₂.

352 **Culture of cell lines**

353 Human cervix adenocarcinoma cells (HeLa 229, ATCC CCL-2.1TM) were cultured in RPMI-1640
354 medium (Thermo Fisher Scientific, 72400054) supplemented with 10% fetal calf serum (FCS) (Sigma
355 Aldrich, F7524) and maintained in a humidified incubator at 37°C and 5% CO₂.

356 ***C. trachomatis* strains and cultivation**

357 All *C. trachomatis* strains used in the study originate from the *C. trachomatis* L2 (434/Bu, ATCC VR-
358 902B). The GFP-expressing strain was generated by transforming *C. trachomatis* L2 with pGFP::SW2
359 plasmid as previously described [43]. The plasmid-free strain was generated using novobiocin
360 treatment as previously described [36]. The Pgp3 deletion mutant was generated by transforming
361 the plasmid-free *C. trachomatis* L2 with pGFP::SW2Δpgp3 plasmid.

362 For stock preparation, the strains were propagated in HeLa 229 cells for 48 hours, after which the
363 cells were lysed with glass beads and *Chlamydia* were separated by centrifugation at 2,000 x g for 10
364 min at 4°C. *Chlamydia* were afterwards pelleted by centrifugation at 30,000 x g for 30 min at 4°C and
365 washed with 1x sucrose-phosphate-glutamic acid buffer (SPG). The bacterial pellet was re-
366 suspended in 1x SPG buffer, aliquoted and stored at -80°C. For infectivity titration, HeLa 229 cells
367 grown in 24-well microplates (Ibidi, 82426) were infected with different amounts of bacteria for 2
368 hours and 24 hours p.i. the cells were fixed and stained (details of the staining provided in
369 Immunofluorescence). The number of chlamydial inclusions and host cell nuclei was measured and
370 analyzed with Operetta automated microscopy system (Perkin-Elmer). The amount of the *Chlamydia*
371 resulting in a *Chlamydia* inclusion to HeLa cell nuclei ratio of 0.5 was determined and the obtained
372 infection rate was considered as a multiplicity of infection (MOI) of 0.5. Ten times more bacteria
373 were used for the infection of primary epithelial cells (MOI relative to HeLa cells).

374 **Infection of the organoids**

375 Organoids were infected following a published protocol [16]: briefly, mature organoids were
376 released from Matrigel drops with cold basal medium and mechanically disrupted into small

377 fragments. Fragmented organoids were centrifuged (300 x g for 5 min at 4°C) and the pellet was
378 infected with GFP-expressing *C. trachomatis* L2 for 20 min at MOI of 5. After incubation, the pellet
379 was re-suspended in fresh Matrigel and seeded in a microwell plate. The infection was monitored
380 daily using phase-contrast and fluorescence microscopy (Leica DMI3000B).

381 **Infection of the monolayers**

382 For the 2D infections in microwell plates, HeLa and primary GI cells were seeded in 24-well
383 microplates (Ibidi, 82426) and grown to 70% confluence. For the 2D long-term infections (Fig 1C),
384 HeLa and GI cells were infected with *C. trachomatis* at MOI of 0.5 and after 2 hours of incubation,
385 the medium of the plates was exchanged. Images were obtained with a phase-contrast and
386 fluorescence microscope (Leica DMI3000B) every 24 hours and the medium change was performed
387 as needed. For the 2D infectivity assays HeLa cells were infected at MOI of 0.5 and the primary GI
388 cells were infected at MOI of 5. After 2 hours of infection, the medium of the plates was exchanged.
389 To assess the primary infection, 24 hours p.i. the cells were fixed, stained and the numbers of
390 inclusions and the host cell nuclei were quantified with Operetta automated microscopy system. To
391 assess the infectivity (progeny infection), infected cells were lysed with glass beads 48 hours p.i. and
392 dilutions of the supernatant were used to infect freshly seeded HeLa cells, which were fixed 24 hours
393 p.i., stained and analyzed with Operetta automated microscopy system.

394 For infection assays in cell culture inserts, the bacterial inoculum resuspended in basal medium to a
395 volume of 75 µl, was applied to the apical surface of cells in cell culture inserts or carefully added as
396 a drop to the basolateral side on inverted inserts. After 2 hours of incubation, the inoculum was
397 removed and the inserts were kept in the corresponding growth media. For receptor-blocking
398 assays, the basolateral surfaces of the cells were pre-treated with blocking anti-integrin β1 antibody
399 (25 µg/ml, R&D Systems, MAB17781) for 1h at 37°C, followed by infection with *C. trachomatis* L2 at
400 MOI of 0.5 in the presence of antibodies. After 2 hours of infection, the inoculum was removed and
401 the cells were kept in corresponding growth media. The cells were fixed 24 hours p.i. and analyzed

402 via confocal microscopy. The numbers of chlamydial inclusions and host cell nuclei were
403 determined using Fiji.

404 To induce disruption of the cell-cell junctions, cells were treated with 4 mM EGTA (Sigma Aldrich,
405 E4378) for the specified amount of time at 37°C prior to infection.

406 **Immunofluorescence**

407 At designated times, cells were washed with phosphate buffered saline (PBS, Thermo Fisher
408 Scientific, 14190169) and fixed with 4% paraformaldehyde (PFA, Morphisto, 11762.01000). After
409 permeabilization with 0.2% Triton X-100 (Roth, 3051.4) in PBS, cells were blocked with 2% FCS or 1%
410 bovine serum albumin (Roth, 8076.3) in PBS. Following primary antibodies were used: anti-HSP60
411 (Santa Cruz, sc-57840), anti-E-cadherin (Becton Dickinson, 560064), anti-Ki67 (Cell Signaling, 9129S).
412 Alexa Fluor (Thermo Fisher Scientific) or Cy (Dianova) conjugated secondary antibodies were used.
413 Actin filaments were stained with Phalloidin (MoBiTec, MFP-D555-33) and the DNA with DAPI (Sigma
414 Aldrich, D9542). Images were collected using a confocal microscope (Leica, TCS SP5) or Operetta
415 automated microscopy system (Perkin-Elmer).

416 **Live cell imaging**

417 Gastric and HeLa cells were seeded in 8-well chamber µ-slides (ibidi, 80826) and grown in
418 corresponding media until reaching 70% confluence. Prior to imaging cells were incubated with 2.5
419 µM CellTracker™ Green (Thermo Fisher Scientific/Invitrogen, C2925) fluorescent probe for 30 min at
420 37°C and subsequently washed with PBS. Time-lapse imaging was performed on a Leica TCS SP5
421 confocal microscope with a 40x oil immersion objective (Leica HC PL APO CS2, NA=1.3) 5 min after
422 addition of 4 mM EGTA. During the imaging cells were incubated at 37°C and 5% CO₂ using a live-cell
423 incubation chamber (Life Imaging Systems) and images were recorded in 1 min time intervals in 8-bit
424 mode at a resolution of 1024x1024. The LAS AF software (Leica) was used for setting adjustment and
425 image acquisition, and Fiji for image-processing [44].

426 **Transmission electron microscopy**

427 Primary GI and HeLa cells were cultured in 24-well microplates (Ibidi, 82426) as subconfluent
428 monolayers and infected with wild-type *C. trachomatis* L2 at MOI of 5 and 0.5, respectively. Prior to
429 infection, the GI cells were pre-treated with 4 mM EGTA for 30 min. 40 hours p.i., cells were washed
430 with PBS, fixed with 2.5% glutaraldehyde (Sigma) for 30 min at room temperature, washed with 50
431 mM Cacodylate buffer (Roth), incubated in OsO₄/Cacodylate buffer for 1 hour and in 0.5%
432 Uranylacetat overnight. Dehydrated samples were embedded in EPON and cut. Images were taken
433 with JEOL JEM-1400 Flash microscope.

434 **Statistical analysis**

435 The experimental data were analyzed using Graphpad Prism 9.3.1 software. For the analysis at least
436 three independent experiments were used, unless otherwise indicated. Statistical significance was
437 determined using unpaired Student's t-test between two groups and one-way or two-way ANOVA
438 between multiple groups. Data are shown as mean \pm SD. A P value of less than 0.05 represented a
439 statistically significant difference.

440

441

442

443

444

445

446

447 **Acknowledgements**

448 We thank Claudia Gehrig-Höhn and Daniela Bunsen for their support in preparation of samples for
449 TEM and imaging; Dr. Carmen Aguilar and Dr. Özge Kayisoglu for valuable advice. Figures 1A, 3A and
450 4A were made in Biorender.com.

451

452 **Declaration of interests**

453 The authors declare that no competing interests exist.

454

455

456

457

458

459

460

461

462

463

464 **References**

465

- 466 1. Witkin SS, Minis E, Athanasiou A, Leizer J, Linhares IM. Chlamydia trachomatis: the Persistent
467 Pathogen. *Clinical and vaccine immunology : CVI*. 2017;24(10).
- 468 2. O'Connell CM, Ferone ME. Chlamydia trachomatis Genital Infections. *Microbial cell* (Graz,
469 Austria). 2016;3(9):390-403.
- 470 3. Bébérac C, de Barbeyrac B. Genital Chlamydia trachomatis infections. *Clinical Microbiology
471 and Infection*. 2009;15(1):4-10.
- 472 4. Abdelrahman YM, Belland RJ. The chlamydial developmental cycle. *FEMS microbiology
473 reviews*. 2005;29(5):949-59.
- 474 5. Stallmann S, Hegemann JH. The Chlamydia trachomatis Ctad1 invasin exploits the human
475 integrin beta1 receptor for host cell entry. *Cell Microbiol*. 2016;18(5):761-75.
- 476 6. Patel AL, Chen X, Wood ST, Stuart ES, Arcaro KF, Molina DP, et al. Activation of epidermal
477 growth factor receptor is required for Chlamydia trachomatis development. *BMC microbiology*.
478 2014;14:277.
- 479 7. Kim JH, Jiang S, Elwell CA, Engel JN. Chlamydia trachomatis co-opts the FGF2 signaling
480 pathway to enhance infection. *PLoS Pathog*. 2011;7(10):e1002285.
- 481 8. Subbarayal P, Karunakaran K, Winkler AC, Rother M, Gonzalez E, Meyer TF, et al. EphrinA2
482 receptor (EphA2) is an invasion and intracellular signaling receptor for Chlamydia trachomatis. *PLoS
483 Pathog*. 2015;11(4):e1004846.
- 484 9. Elwell C, Mirrashidi K, Engel J. Chlamydia cell biology and pathogenesis. *Nat Rev Microbiol*.
485 2016;14(6):385-400.
- 486 10. Murray SM, McKay PF. Chlamydia trachomatis: Cell biology, immunology and vaccination.
487 *Vaccine*. 2021;39(22):2965-75.
- 488 11. Dolat L, Valdivia RH. A renewed tool kit to explore Chlamydia pathogenesis: from molecular
489 genetics to new infection models. *F1000Research*. 2019;8.
- 490 12. De Clercq E, Kalmar I, Vanrompay D. Animal models for studying female genital tract
491 infection with Chlamydia trachomatis. *Infection and immunity*. 2013;81(9):3060-7.
- 492 13. Dockterman J, Coers J. Immunopathogenesis of genital Chlamydia infection: insights from
493 mouse models. *Pathog Dis*. 2021;79(4):ftab012.
- 494 14. Aguilar C, Alves da Silva M, Saraiva M, Neyazi M, Olsson IAS, Bartfeld S. Organoids as host
495 models for infection biology – a review of methods. *Experimental & Molecular Medicine*. 2021.
- 496 15. Wallaschek N, Reuter S, Silkenat S, Wolf K, Niklas C, Kayisoglu Ö, et al. Ephrin receptor A2,
497 the epithelial receptor for Epstein-Barr virus entry, is not available for efficient infection in human
498 gastric organoids. *PLoS Pathog*. 2021;17(2):e1009210.
- 499 16. Kessler M, Hoffmann K, Fritsche K, Brinkmann V, Mollenkopf HJ, Thieck O, et al. Chronic
500 Chlamydia infection in human organoids increases stemness and promotes age-dependent CpG
501 methylation. *Nature communications*. 2019;10(1):1194.
- 502 17. Bishop RC, Boretto M, Rutkowski MR, Vankelecom H, Derré I. Murine Endometrial Organoids
503 to Model Chlamydia Infection. *Frontiers in cellular and infection microbiology*. 2020;10:416-.
- 504 18. Koster S, Gurumurthy RK, Kumar N, Prakash PG, Dhanraj J, Bayer S, et al. Modelling
505 Chlamydia and HPV co-infection in patient-derived ectocervix organoids reveals distinct cellular
506 reprogramming. *Nature communications*. 2022;13(1):1-15.
- 507 19. Adamson PC, Klausner JD. Diagnostic tests for detecting Chlamydia trachomatis and
508 Neisseria gonorrhoeae in rectal and pharyngeal specimens. *Journal of clinical microbiology*.
509 2021;60(4):e00211-21.
- 510 20. Dlugosz A, Törnblom H, Mohammadian G, Morgan G, Veress B, Edvinsson B, et al. Chlamydia
511 trachomatis antigens in enteroendocrine cells and macrophages of the small bowel in patients with
512 severe irritable bowel syndrome. *BMC gastroenterology*. 2010;10:19.

- 513 21. Borel N, Marti H, Pospischil A, Pesch T, Prähauser B, Wunderlin S, et al. Chlamydiae in human
514 intestinal biopsy samples. *Pathog Dis.* 2018;76(8):fty081.
- 515 22. Cheong HC, Lee CYQ, Cheok YY, Tan GMY, Looi CY, Wong WF. Chlamydiaceae: Diseases in
516 Primary Hosts and Zoonosis. *Microorganisms.* 2019;7(5):146.
- 517 23. Rank RG, Yeruva L. Hidden in plain sight: chlamydial gastrointestinal infection and its
518 relevance to persistence in human genital infection. *Infection and immunity.* 2014;82(4):1362-71.
- 519 24. Bavoil PM, Marques PX, Brotman R, Ravel J. Does active oral sex contribute to female
520 infertility? *J Infect Dis.* 2017;216(8):932-5.
- 521 25. Yeruva L, Spencer N, Bowlin AK, Wang Y, Rank RG. Chlamydial infection of the
522 gastrointestinal tract: a reservoir for persistent infection. *Pathog Dis.* 2013;68(3):88-95.
- 523 26. Zhong G. Chlamydia overcomes multiple gastrointestinal barriers to achieve long-lasting
524 colonization. *Trends in Microbiology.* 2021.
- 525 27. Herman RE, Makienko EG, Prieve MG, Fuller M, Houston JRME, Johnson PH. Phage Display
526 Screening of Epithelial Cell Monolayers Treated with EGTA: Identification of Peptide FDFWITP that
527 Modulates Tight Junction Activity. *SLAS Discovery.* 2007;12(8):1092-101.
- 528 28. Rothen-Rutishauser B, Riesen F, Braun A, Günthert M, Wunderli-Allenspach H. Dynamics of
529 tight and adherens junctions under EGTA treatment. *The Journal of membrane biology.*
530 2002;188(2):151-62.
- 531 29. Tegtmeier N, Wessler S, Necchi V, Rohde M, Harrer A, Rau TT, et al. *Helicobacter pylori*
532 Employs a Unique Basolateral Type IV Secretion Mechanism for Caga Delivery. *Cell Host Microbe.*
533 2017;22(4):552-60 e5.
- 534 30. Lee JL, Streuli CH. Integrins and epithelial cell polarity. *J Cell Sci.* 2014;127(Pt 15):3217-25.
- 535 31. Ma J, He C, Huo Z, Xu Y, Arulanandam B, Liu Q, et al. The Cryptic Plasmid Improves
536 Chlamydia Fitness in Different Regions of the Gastrointestinal Tract. *Infection and immunity.*
537 2020;88(3).
- 538 32. Stelzner K, Vollmuth N, Rudel T. Intracellular lifestyle of Chlamydia trachomatis and host-
539 pathogen interactions. *Nat Rev Microbiol.* 2023;21(7):448-62.
- 540 33. Dlugosz A, Muschiol S, Zakikhany K, Assadi G, D'Amato M, Lindberg G. Human
541 enteroendocrine cell responses to infection with Chlamydia trachomatis: a microarray study. *Gut*
542 *Pathog.* 2014;6:24-.
- 543 34. Foschi C, Bortolotti M, Marzali G, Polito L, Marangoni A, Bolognesi A. Survival and death of
544 intestinal cells infected by Chlamydia trachomatis. *PLoS one.* 2019;14(4):e0215956.
- 545 35. McQueen BE, Kiatthanapaiboon A, Fulcher ML, Lam M, Patton K, Powell E, et al. Human
546 Fallopian Tube Epithelial Cell Culture Model To Study Host Responses to Chlamydia trachomatis
547 Infection. *Infection and immunity.* 2020;88(9).
- 548 36. O'Connell CM, Nicks KM. A plasmid-cured Chlamydia muridarum strain displays altered
549 plaque morphology and reduced infectivity in cell culture. *Microbiology (Reading).* 2006;152(Pt
550 6):1601-7.
- 551 37. Turman BJ, Darville T, O'Connell CM. Plasmid-mediated virulence in Chlamydia. *Front Cell*
552 *Infect Microbiol.* 2023;13:1251135.
- 553 38. Pospischil A, Borel N, Chowdhury EH, Gusetti F. Aberrant chlamydial developmental forms
554 in the gastrointestinal tract of pigs spontaneously and experimentally infected with Chlamydia suis.
555 *Veterinary Microbiology.* 2009;135(1):147-56.
- 556 39. Pickard JM, Zeng MY, Caruso R, Núñez G. Gut microbiota: Role in pathogen colonization,
557 immune responses, and inflammatory disease. *Immunological reviews.* 2017;279(1):70-89.
- 558 40. Bouffi C, Wikenheiser-Brokamp KA, Chaturvedi P, Sundaram N, Goddard GR, Wunderlich M,
559 et al. In vivo development of immune tissue in human intestinal organoids transplanted into
560 humanized mice. *Nature biotechnology.* 2023:1-8.
- 561 41. Williamson IA, Arnold JW, Samsa LA, Gaynor L, DiSalvo M, Cocchiaro JL, et al. A high-
562 throughput organoid microinjection platform to study gastrointestinal microbiota and luminal
563 physiology. *Cellular and molecular gastroenterology and hepatology.* 2018;6(3):301-19.

- 564 42. Aguilar C, Pauzuolis M, Pombaiah M, Vafadarnejad E, Arampatzis P, Fischer M, et al.
565 *Helicobacter pylori* shows tropism to gastric differentiated pit cells dependent on urea chemotaxis.
566 2022;13(1):5878.
- 567 43. Wang Y, Kahane S, Cutcliffe LT, Skilton RJ, Lambden PR, Clarke IN. Development of a
568 transformation system for *Chlamydia trachomatis*: restoration of glycogen biosynthesis by
569 acquisition of a plasmid shuttle vector. *PLoS Pathog.* 2011;7(9):e1002258.
- 570 44. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-
571 source platform for biological-image analysis. *Nat Methods.* 2012;9(7):676-82.

572

573

574 **Figure Captions**

575 **Fig 1. *C. trachomatis* infects patient-derived GI cells.** (A) Schematic representation of host model
576 generation. (B) Human gastric and intestinal organoids infected with GFP-expressing *C. trachomatis*
577 (MOI of 5) at 48 hours p.i. (C) Organoid-derived subconfluent monolayers of human primary
578 gastrointestinal epithelial cells and HeLa cells were infected with GFP-expressing *C. trachomatis*
579 (MOI of 0.5) and observed daily. Shown are representative images obtained at 1, 4 and 8 days p.i..
580 Images in (B) and (C) were taken with phase-contrast and in the green fluorescence channel and
581 merged. Scale bar: 100 μ m.

582

583 **Fig 2. Disruption of the cell junctions affects the infection rate and pattern in gastric cells.** (A) Stills
584 from live cell imaging experiment performed to monitor the effect of 4 mM EGTA on the
585 morphology of human gastric (left panel) and HeLa (right panel) cells over the time course of
586 treatment (green: CellTracker dye, gray: brightfield). Scale bar: 25 μ m. (B) Representative confocal
587 fluorescence images showing the effect of EGTA treatment on the outcome of infection in gastric
588 (left panel) and HeLa (right panel) cells. Gastric and HeLa cells were pre-treated with 4 mM EGTA (for
589 15, 30 or 60 min) or left untreated, and infected with GFP-expressing *C. trachomatis* (MOI of 5 and
590 0.5, respectively). 24 hours p.i. the cells were fixed, stained and subjected to confocal microscopy
591 (blue: DAPI, green: *C. trachomatis*, red: E-Cadherin or Actin). Scale bar: 50 μ m. (C) To measure the
592 changes of the infection rate caused by EGTA pre-treatment, the numbers of chlamydial inclusions
593 and host cell nuclei were determined in 14 fields of view per sample by automated microscopy. Data
594 represent mean values \pm SD from three independent experiments. Statistical analysis was performed
595 using two-way ANOVA (ns = not significant, *P<0.05, ****P<0.0001).

596

597 **Fig 3. *C. trachomatis* infects human GI cells from the basolateral surface.** (A) Schematic
598 representation of the infection setup. (B) Gastric and small intestinal cells grown on cell culture
599 inserts were infected with GFP-expressing *C. trachomatis* (MOI of 5) from the apical or basolateral
600 surface and after 2 hours of incubation the inoculum was removed, and the cells were kept in fresh
601 organoid medium. 24 hours p.i. the cells were fixed, stained and subjected to confocal microscopy.
602 Shown are representative confocal fluorescence Z-stack images of at least three independent
603 experiments (blue: DAPI, green: *C. trachomatis*). Scale bar: 50 μ m. (C) The gastric cells grown on cell
604 culture inserts were pre-treated with 25 μ g/ml blocking anti-integrin β 1 antibodies for 1 hour or left
605 untreated, infected with GFP-expressing *C. trachomatis* (MOI of 5) for 2 hours in the presence of
606 blocking antibodies. 24 hours p.i. cells were fixed, stained and subjected to confocal microscopy.
607 Shown are representative confocal fluorescence Z-stack images of five independent experiments
608 (blue: DAPI, green: *C. trachomatis*). Scale bar: 50 μ m. (D) The numbers of chlamydial inclusions and
609 host cell nuclei in (C) were quantified in at least 10 fields of view per sample using Fiji. Data
610 represent mean values \pm SD from five independent experiments. Statistical analysis was performed
611 using an unpaired t-test (**P<0.001).

612

613 **Fig 4. Pgp3-deficient *C. trachomatis* shows a growth defect in human GI cells.** (A) Schematic
614 representation of the primary and progeny infection assays. To compare the infectivity of *Ctr* WT, *Ctr*
615 Δ *pgp3* and *Ctr* PF strains in gastric (B), small intestinal (C) and large intestinal (D) cells, subconfluent
616 monolayers of the cells were infected using MOI of 5. 24 hours p.i. the cells were fixed, stained and
617 the infection rate was determined by quantifying the numbers of inclusions and host cell nuclei in 14
618 fields of view per sample by automated microscopy. To assess the infectivity of the chlamydial
619 progeny, the infected cells were lysed 48 hours p.i. and freshly seeded HeLa cells were infected with
620 an aliquot of the lysates. 24 hours p.i. the HeLa cells were fixed, stained and the infection rates for
621 the chlamydial progenies from gastric (E), small intestinal (F) and large intestinal (G) cells were

622 determined in 14 fields of view per sample by automated microscopy. All graphs represent mean
623 values \pm SD from three independent experiments. Statistical significance was determined by one-
624 way ANOVA (ns = not significant, **P<0.01, ***P<0.001, ****P<0.0001). The data point numbers
625 and shapes below the graphs refer to the donor IDs used in the experiments.

626

627 **Fig 5. Pgp3-deficient *C. trachomatis* forms smaller inclusions in human GI cells.** Subconfluent
628 monolayers of gastric (A), small intestinal (B) and large intestinal (C) cells were infected with *Ctr* WT,
629 *Ctr* Δ *pgp3* and *Ctr* PF strains at MOI of 5. 24 hours p.i. the cells were fixed, stained and the average
630 size of the inclusions was determined by automated microscopy in 14 fields of view per sample. All
631 graphs represent mean values \pm SD from three independent experiments. Statistical significance was
632 determined by one-way ANOVA (ns = not significant, *P<0.05, **P<0.01, ***P<0.001). The data
633 point numbers and shapes below the graphs refer to the donor IDs used in the experiments.

634

635 **Fig 6. Human GI cells harbour aberrant inclusions.** Subconfluent monolayers of gastric, small and
636 large intestinal epithelial cells derived from three different donors were pre-treated with EGTA and
637 infected with *C. trachomatis* at MOI of 5 and HeLa cells were infected at MOI of 0.5. 40 hours p.i. the
638 cells were fixed and processed for TEM. Shown are representative images of the normal (A) and
639 aberrant-like (B) inclusions found in the respective cells. Triangles indicate EBs (blue), RBs (yellow)
640 and ABs (red). Scale bar: 2 μ m.

641

642

643 **Supporting information**

644 **S1 Table.** Media composition for human gastric, intestinal and fallopian tube organoids (CM:
645 conditioned medium; EGF: epidermal growth factor; FGF-10: fibroblast growth factor-10; TGF- β :
646 transforming growth factor- β ; IGF-1: insulin-like growth factor I; FGF-2: fibroblast growth factor-
647 basic)

Human gastric organoid medium			
Reagent	Supplier	Catalog Number	Final concentration
Basal medium			30%
WNT CM	stable cell line		50%
R-Spondin CM	stable cell line		10%
Noggin CM	stable cell line		10%
B27 supplement	Thermo Fisher Scientific	12587010	1x
N-acetylcysteine	Sigma Aldrich	A9165	1.25 mM
EGF	Peprotech	AF-100-15	50 ng/mL
FGF-10	Peprotech	100-26	100 ng/mL
Gastrin-I	Tocris	3006	1 nM
TGF- β inhibitor	Tocris	2939	2 μ M
Human intestinal organoid medium			
Reagent	Supplier	Catalog Number	Final concentration
Basal medium			30%
WNT CM	stable cell line		50%
R-Spondin CM	stable cell line		10%
Noggin CM	stable cell line		10%
B27 supplement	Thermo Fisher Scientific	12587010	1x
N-Ac	Sigma Aldrich	A9165	1.25 mM
EGF	Peprotech	AF-100-15	50 ng/mL
IGF-1	Biolegend	590904	100 ng/mL
FGF-2	Peprotech	AF-100-18B	50 ng/mL
Gastrin-I	Tocris	3006	10 nM
TGF- β inhibitor	Tocris	2939	0.5 μ M
Human fallopian tube organoid medium			
Reagent	Supplier	Catalog Number	Final concentration
Basal medium			40%
WNT CM	stable cell line		25%
R-Spondin CM	stable cell line		25%
Noggin CM	stable cell line		10%
B27 supplement	Thermo Fisher Scientific	17504044	1x
N2 supplement	Thermo Fisher Scientific	17502048	1x
EGF	Peprotech	AF-100-15	50 ng/mL
FGF-10	Peprotech	100-26	100 ng/mL
Nicotinamide	Sigma	3376	1 mM
TGF- β inhibitor	Tocris	2939	0.5 μ M

648

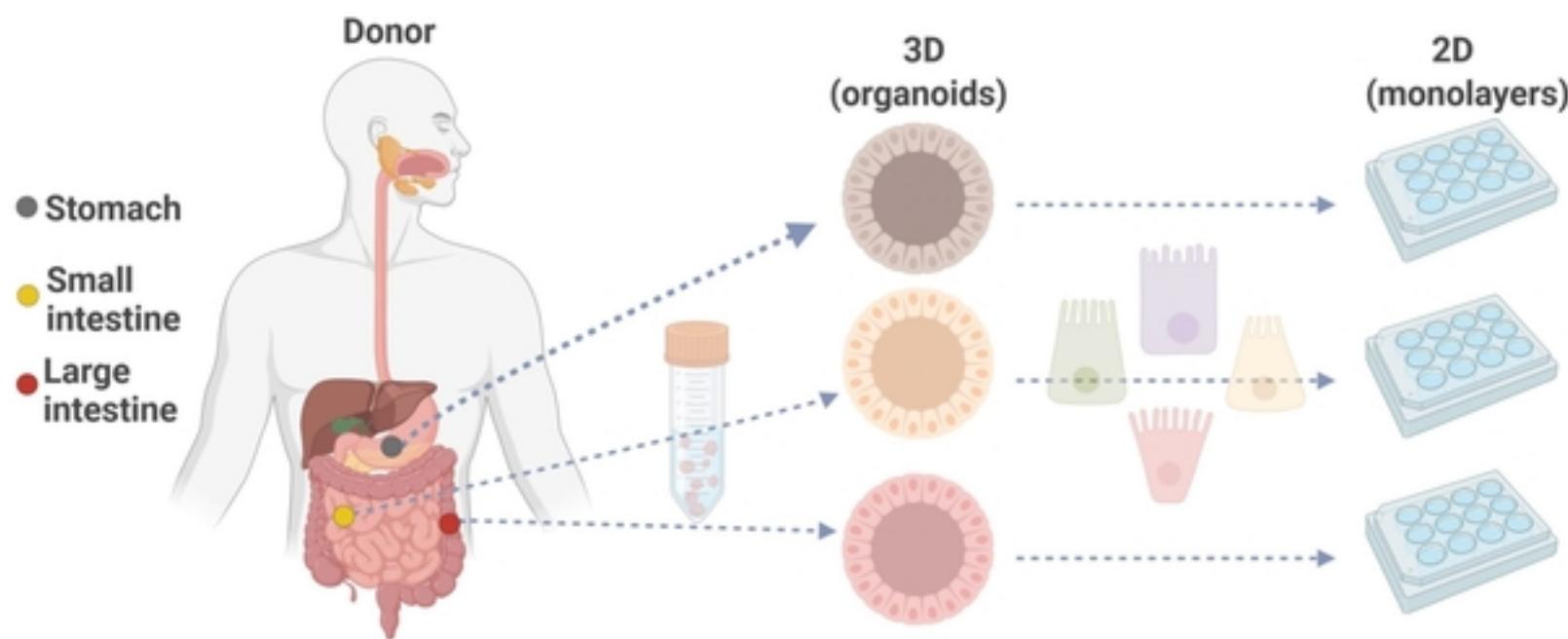
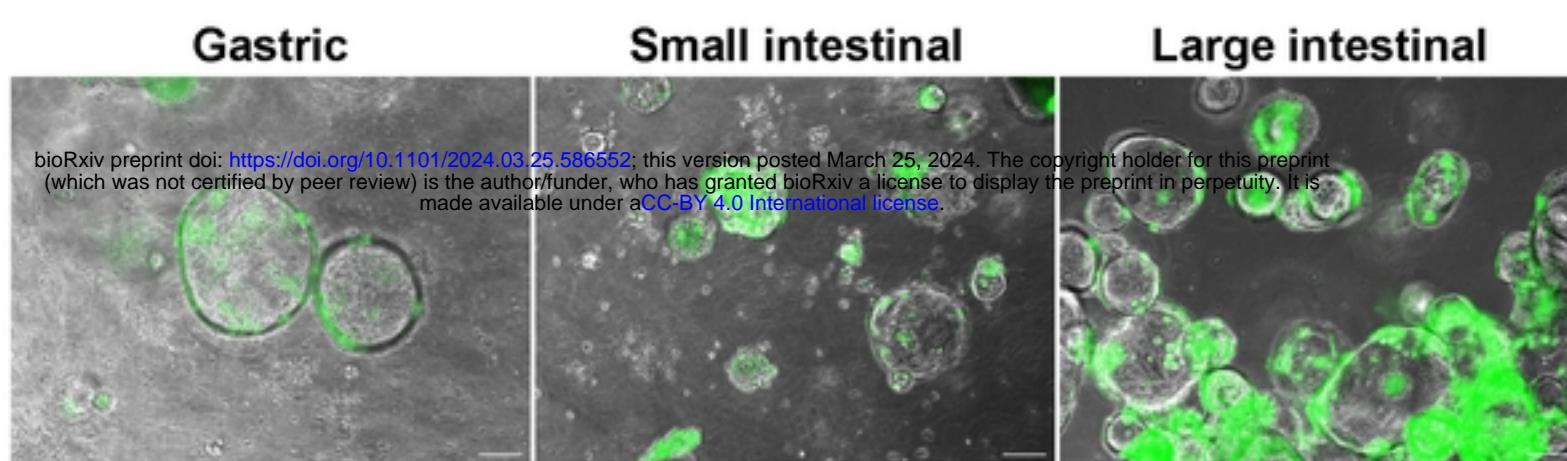
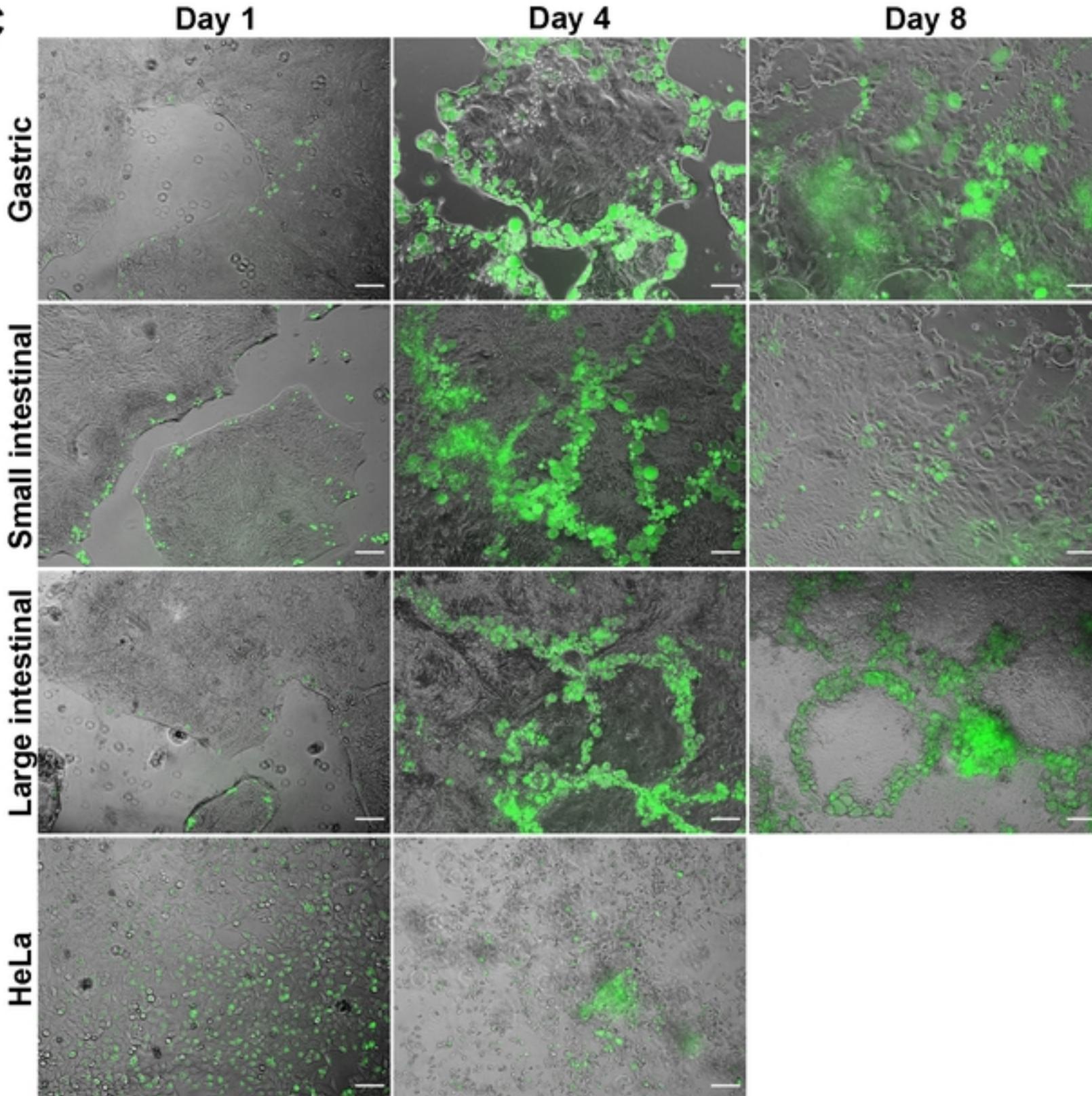
649 **Supporting information captions**

650 **S1 Fig. The morphology of uninfected GI organoids and monolayers.** Representative phase-contrast
651 images of the human gastric (corporal), small intestinal (jejunal), large intestinal (colonic) organoids
652 in a Matrigel drop and the subconfluent 2D monolayers derived from respective organoid cultures in
653 microwell plates. Scale bar: 100 μ m.

654

655 **S2 Fig. *C. trachomatis* infects Ki67-positive and negative gastric cells.** (A) Subconfluent gastric cells
656 in microwell plates were infected with GFP-expressing *C. trachomatis* (MOI of 5) and 24 hours p.i.
657 fixed, stained and subjected to confocal microscopy. Representative fluorescence microscopic
658 images of three independent experiments show the localization of Ki67-positive cells in uninfected
659 and infected samples (blue: DAPI, green: *C. trachomatis*, grey: actin, magenta: Ki67). Scale bar: 50
660 μ m. (B) The percentage of the chlamydial inclusions residing in Ki67-positive or negative cells was
661 determined by manually quantifying inclusions in five fields of view per sample. Data represent
662 mean values \pm SD from three independent experiments. Statistical analysis of the data was
663 performed using unpaired t-test (ns = not significant).

664




665 **S3 Fig. The effect of EGTA treatment on the morphology and infection pattern of intestinal cells.**
666 (A) Small and large intestinal epithelial cells grown as subconfluent monolayers were treated with 4
667 mM EGTA for 30 min at 37°C or left untreated. Phase-contrast images show the changes in the
668 morphology of the cells upon treatment. Scale bar: 100 μ m. (B) Intestinal cells pre-treated with 4
669 mM EGTA for 30 min or left untreated, were infected with GFP-expressing *C. trachomatis* (MOI of 5).
670 24 hours p.i. the cells were fixed, stained and subjected to confocal microscopy (blue: DAPI, green: *C.*
671 *trachomatis*, red: Actin). Scale bar: 100 μ m.

672

673 **S4 Fig. *C. trachomatis* apical versus basolateral infection in human fallopian tube cells. (A)**
674 Organoid-derived human primary fallopian tube cells grown on cell culture inserts were infected
675 with GFP-expressing *C. trachomatis* (MOI of 5) from apical or basolateral surface. After 2 hours of
676 incubation, the inoculum was removed and the cells were kept in the fresh organoid medium. 24
677 hours p.i. the cells were fixed, stained and subjected to confocal microscopy. Shown are
678 representative confocal fluorescence Z-stack images of four independent experiments (blue: DAPI,
679 green: *C. trachomatis*). Scale bar: 50 μ m. (B) The numbers of chlamydial inclusions and host cell
680 nuclei in (A) were quantified in at least 4 fields of view per sample using Fiji. Data represent mean
681 values \pm SD from four independent experiments. Statistical analysis was performed using an
682 unpaired t-test (*P<0.05). The data point numbers and shapes below the graphs refer to the donor
683 IDs used in the experiments.

684

685 **S5 Fig. Infection of the Pgp3-deficient and plasmid-free *C. trachomatis* in HeLa cells. (A)** Primary
686 infection of HeLa cells infected with *Ctr* WT, *Ctr* Δ *pgp3* and *Ctr* PF. Subconfluent monolayers of HeLa
687 cells were infected with the chlamydial derivatives at MOI of 0.5. 24 hours p.i. the cells were fixed,
688 stained and the infection rate was determined by quantifying the numbers of inclusions and host cell
689 nuclei in 14 fields of view per sample by automated microscopy. To assess the infectivity of the
690 chlamydial progeny (B), the infected HeLa cells were lysed 48 hours p.i. and freshly seeded HeLa cells
691 were infected with an aliquot of the lysates. 24 hours p.i. the cells were fixed, stained and the
692 infection rate was determined in 14 fields of view per sample by automated microscopy. (C) The
693 average size of the inclusions during primary infection was determined by automated microscopy in
694 14 fields of view per sample. All graphs represent mean values \pm SD from three independent
695 experiments. Statistical significance was determined by one-way ANOVA (ns = not significant,
696 *P<0.05, **P<0.01, ***P<0.001).

Fig 1**A****B****C**

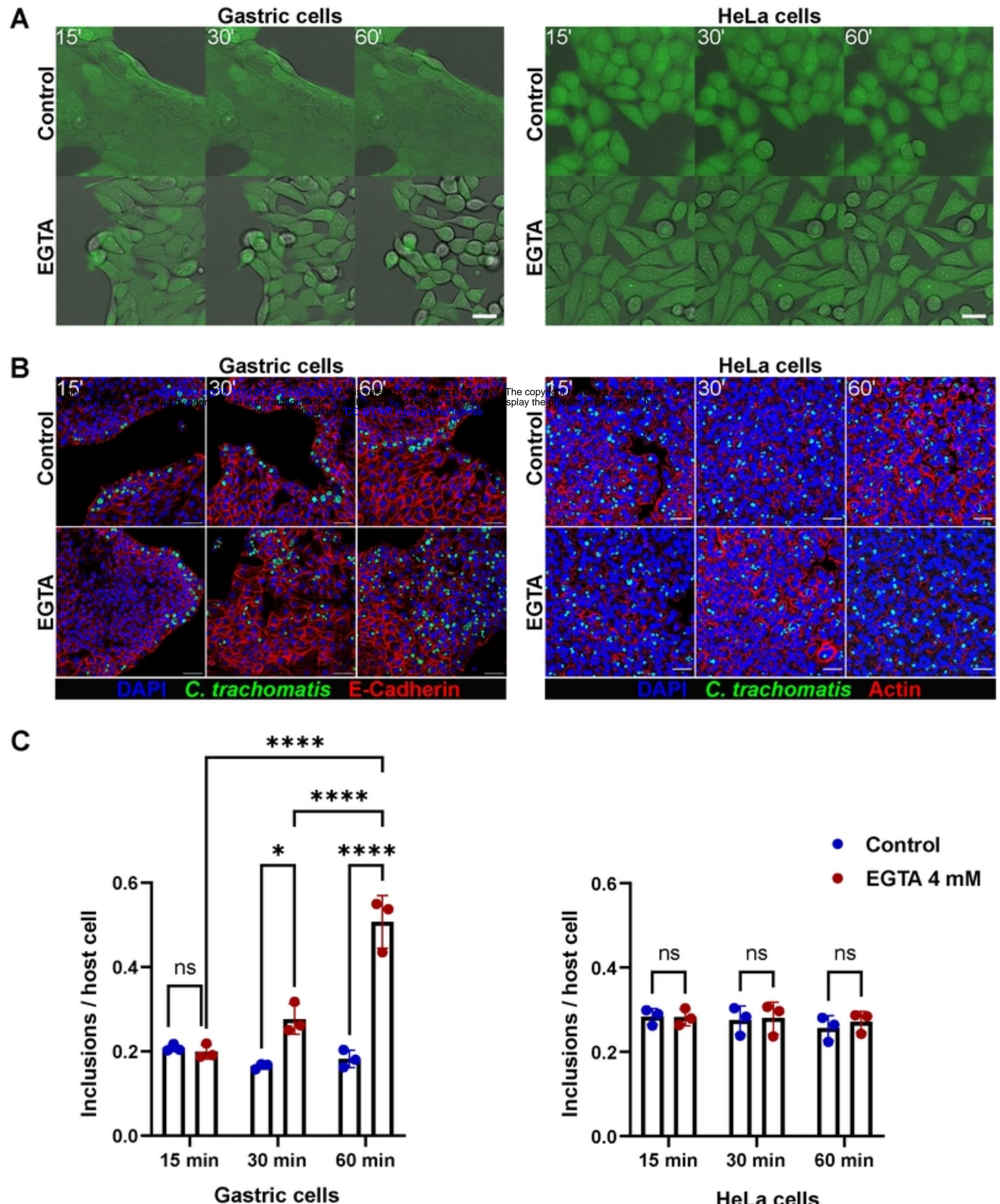

Fig 2

Fig 3

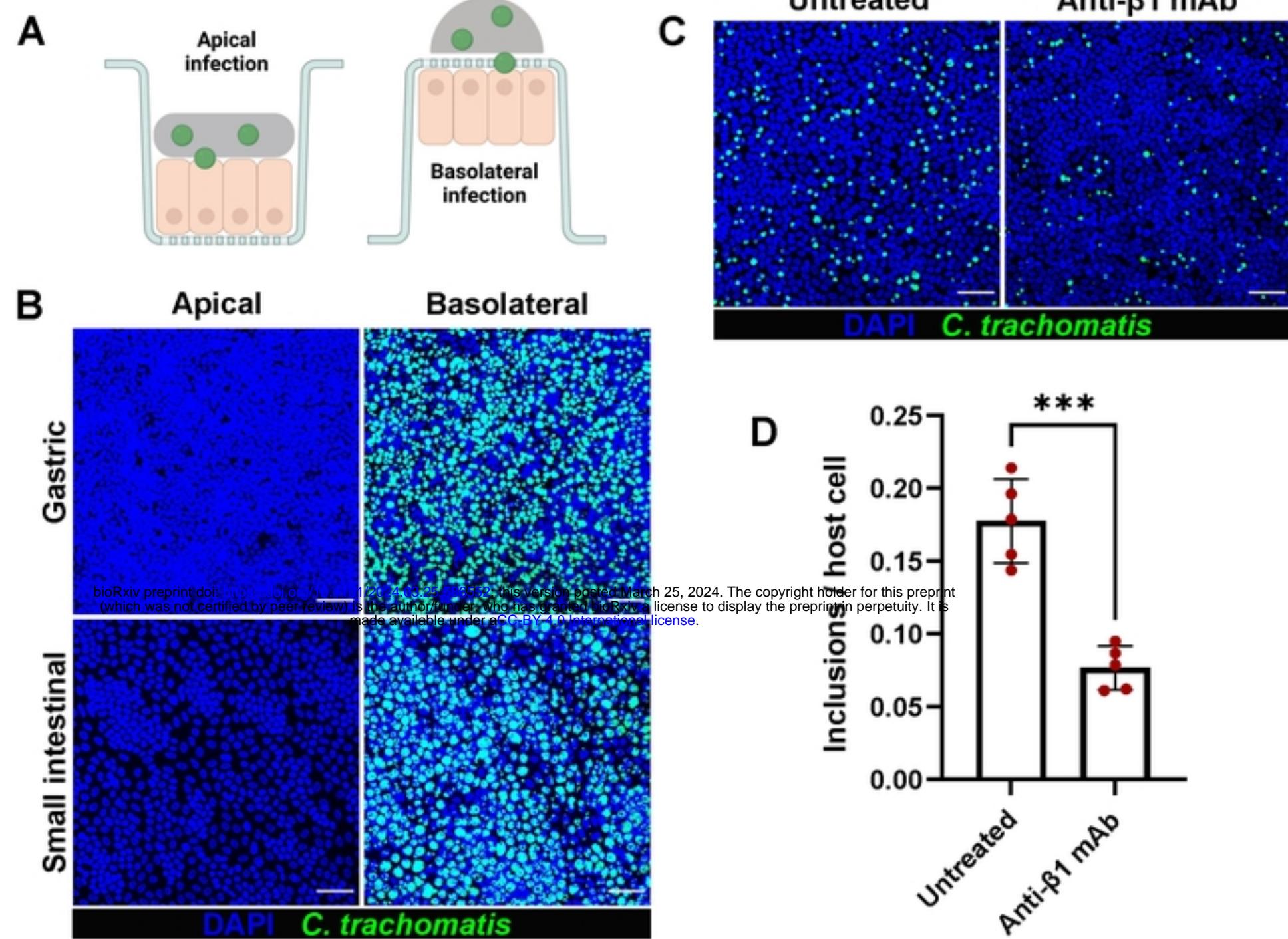
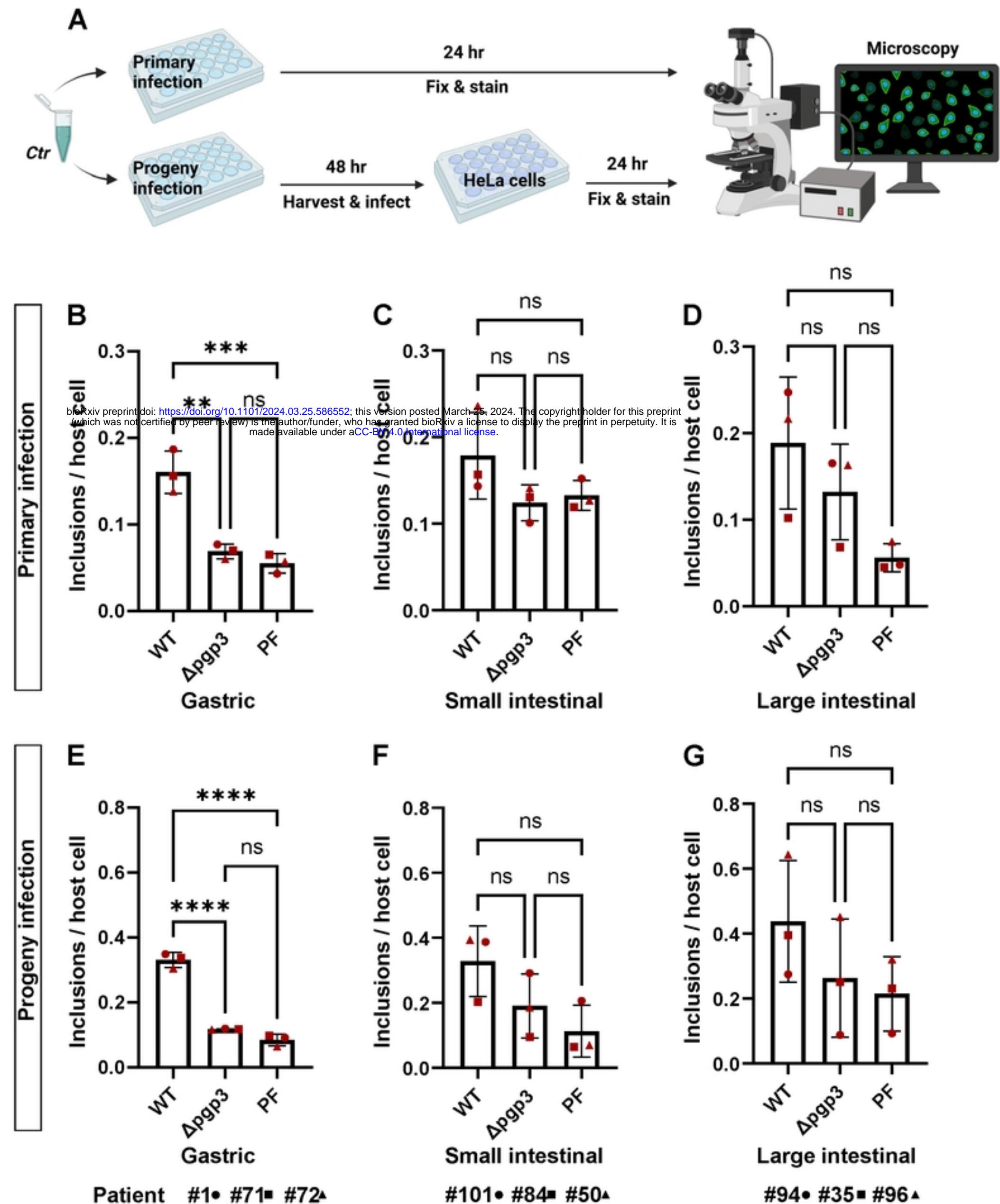
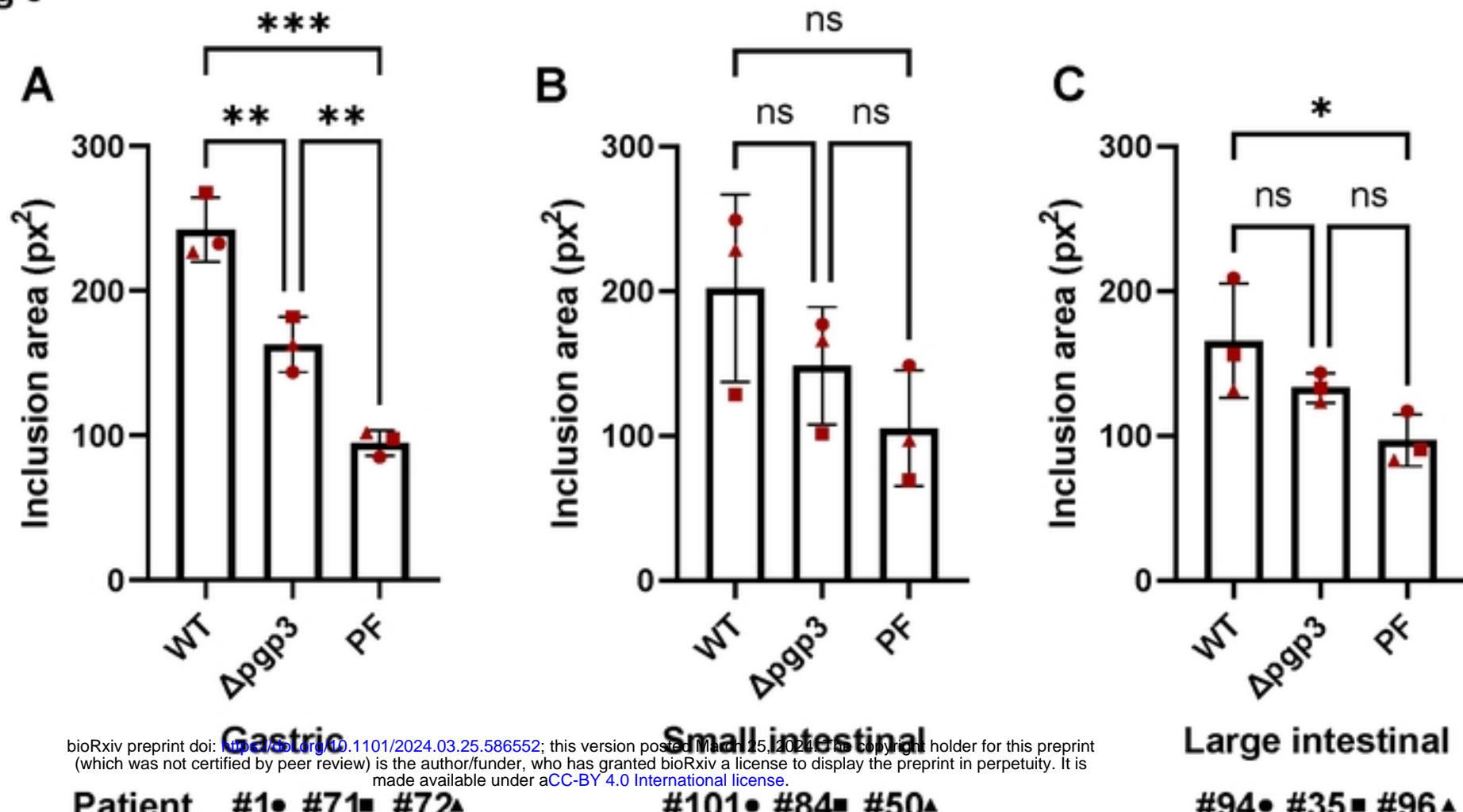
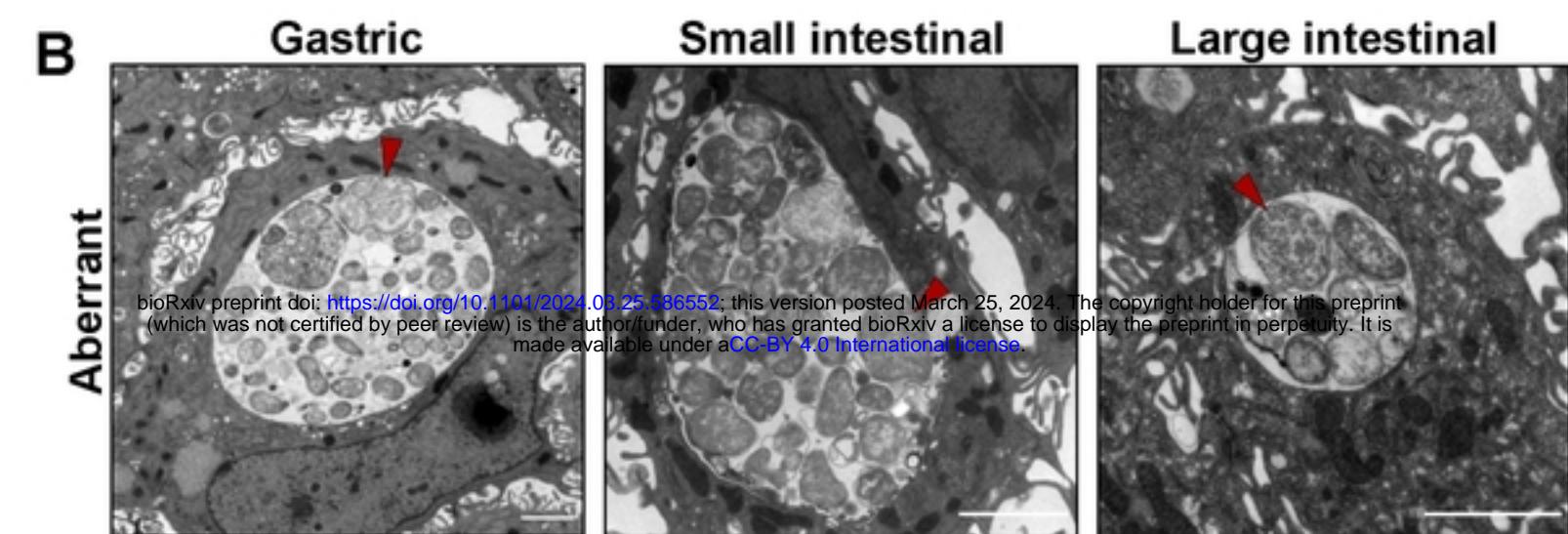
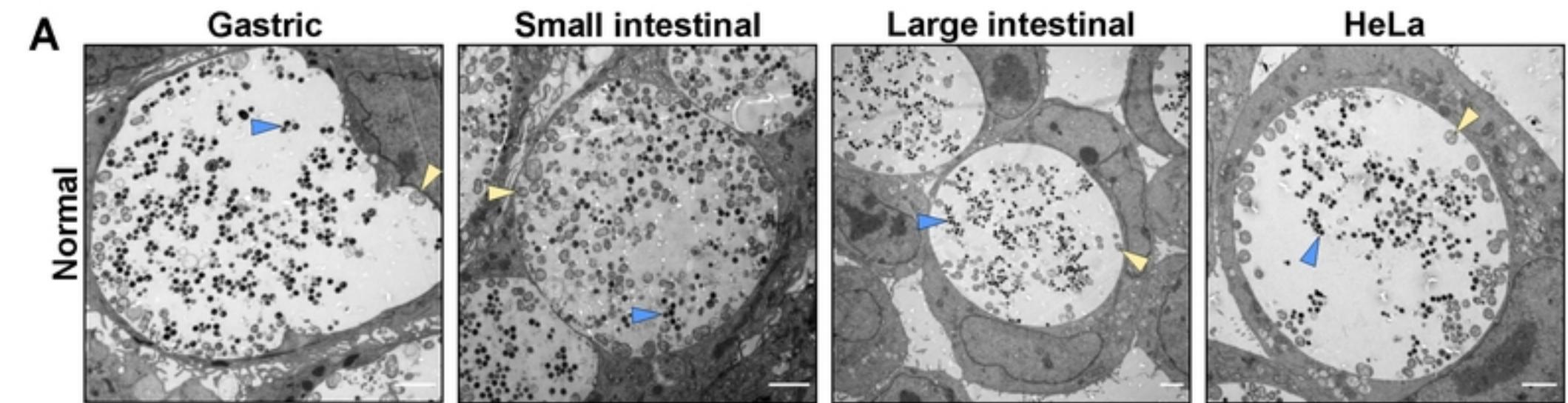






Fig 4

Fig 5

Fig 6