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Abstract 
 

Molecular recognition events between proteins drive biological processes in living systems. 

However, higher levels of mechanistic regulation have emerged, where protein-protein 

interactions are conditioned to small molecules. Here, we present a computational strategy for 

the design of proteins that target neosurfaces, i.e. surfaces arising from protein-ligand 

complexes. To do so, we leveraged a deep learning approach based on learned molecular 

surface representations and experimentally validated binders against three drug-bound 

protein complexes. Remarkably, surface fingerprints trained only on proteins can be applied 

to neosurfaces emerging from small molecules, serving as a powerful demonstration of 

generalizability that is uncommon in deep learning approaches. The designed chemically-

induced protein interactions hold the potential to expand the sensing repertoire and the 

assembly of new synthetic pathways in engineered cells. 
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Main 
 

Protein-protein interactions (PPIs) play an essential role in healthy cell homeostasis, but are 

also involved in numerous diseases(1, 2). For this reason, several therapies targeting PPIs 

have been developed over the last decades and multiple computational tools have been 

recently proposed to design novel protein interactions(3). The governing principles 

determining the propensity of proteins to form interactions are intricate due to the interplay of 

several contributions, such as geometric and chemical complementarity, dynamics, and 

solvent interactions. Therefore it remains challenging to predict and design novel PPIs, 

especially in the absence of evolutionary constraints. Native PPIs can also be controlled by 

additional regulatory layers such as allostery(4), post-translational modifications(5), or direct 

ligand binding(6, 7). Compound-bound surfaces, which we refer to as neosurfaces, are one of 

the most fascinating and challenging types of molecular recognition instances, where relatively 

minor changes at the protein binding site can have a large impact on binding affinities. The 

interest in such interactions has been fueled by the development of new drug modalities; 

specifically molecular glues that form neosurfaces to trigger protein interactions for 

degradation and other applications(8, 9), thus representing a promising route for the 

development of innovative therapeutics.  

 

In synthetic biology, molecular components that rely on small molecule-induced neosurfaces 

have been used to engineer chemically-responsive systems with precise spatio-temporal 

control of cellular activities(10). Small molecule triggers have been used to both induce and 

disrupt PPIs, thereby functioning as ON or OFF switches for engineered cellular functions(10–

12). There are several practical advantages in using small molecules as triggers due to their 

simple administration, biodistribution, cell permeability, safety, and high affinity and specificity 

to their target proteins. Protein-based switches controlled by small molecules have already 

been applied to regulate transcription(13, 14), protein degradation(15–17), and protein 

localization(18–20), among many other applications. In addition to their use in basic research, 

engineering molecular switches is becoming a more common mechanism of controlling 

protein-based and cellular therapeutics, whose activity may have to be regulated to mitigate 

potentially dangerous side effects(11, 21, 22). While several chemically-disruptable 

heterodimer (OFF-switch) systems have been proposed(10, 11, 21), computationally 

designed chemically-induced dimerization (CID, ON-switch) systems remain challenging due 

to the complexity of modeling neosurfaces. Previous attempts at designing CID systems 

primarily relied on experimental methods(10, 13, 23, 24) and, despite the emergence of 

artificial intelligence and numerous computational tools, only few tools can generalize to both 

proteins and small molecules as a target for protein design, resulting in a lack of suitable 
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approaches for the design of novel chemically-induced PPIs. Computational methods to 

design novel CIDs mostly relied on transplanting an existing drug binding site to a known 

heterodimer interface(25) or using docking of putative pre-existing proteins (i.e. scaffolds) 

followed by interface optimization(26). However, these approaches can face limitations such 

as the risk of drug-independent dimerization, the lack of suitable scaffold proteins for design, 

or the extensive need for in vitro maturation techniques.  

 

We recently reported a geometric deep learning-based framework called MaSIF (Molecular 

Surface Interaction Fingerprinting)(27) for the study of protein surface features, and for the 

design of novel protein-protein interactions(28). In this study, we aim to test whether our 

surface-centric approach can generalize to non-protein ligands without additional training data 

by using a higher-level representation, namely the geometric and chemical features found on 

the molecular surface. To do so, we designed site-specific binders that target neosurfaces 

composed of a small molecule ligand and protein surface moieties, resulting in de novo ligand-

dependent protein interactions. We successfully designed and characterized novel protein 

binders recognizing the B-cell lymphoma 2 (Bcl2) protein in complex with the clinically-

approved inhibitor Venetoclax(29), the progesterone-binding antibody DB3 in complex with its 

ligand(30), and finally the peptide deformylase 1 (PDF1) protein from Pseudomonas 

aeruginosa in complex with the antibiotic Actinonin(31). Lastly, we show that such ligand-

controlled systems can be utilized in both in vitro and cellular contexts for a range of synthetic 

biology applications, unlocking possibilities for the development and regulation of novel 

therapeutic approaches.  

 
MaSIF captures interaction propensities of neosurfaces 
 

Within our geometric deep learning framework, MaSIF(27), we previously developed two 

applications: i) MaSIF-site to accurately predict regions of the protein surface with a high 

propensity to form an interface with another protein and, ii) MaSIF-search to rapidly find and 

dock protein partners based on complementary surface patches. In MaSIF-search, we extract 

surface patch descriptors (“fingerprints”), so that patches with complementary geometry and 

chemistry have similar fingerprints, whereas non-interacting patches have low fingerprint 

similarity. Surface fingerprints allow to perform an initial ultra-fast search in an alignment-free 

manner using the Euclidean distances between them. Patches with fingerprint distances below 

a threshold are then further aligned in 3D and scored with an interface-post alignment (IPA) 

score to refine the selection.  
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In its initial conception, MaSIF only considered canonical amino acids as part of the protein 

molecular surface and was not compatible with small molecules, glycans, and other ligands. 

Thus, we present here MaSIF-neosurf to incorporate small molecules as part of the molecular 

surface representation of the target protein to predict interfaces and partners based on the 

neosurface fingerprints (Fig. 1A, see Methods). MaSIF was initially trained to operate on 

general chemical and geometric surface properties of biomolecules, while abstracting the 

underlying structure. Thus, it is not restricted to only protein surfaces, but should in principle 

also capture the surface patterns arising from other non-protein surfaces. Upon generation of 

the molecular surface of the protein-drug complex, MaSIF-neosurf computes the two 

geometric features: shape index(32) and distance-dependent curvature(33). In addition, three 

chemical features are also used: Poisson-Boltzmann electrostatics, which can be computed 

directly from the small molecule, and hydrogen bond donor/acceptor propensity(34) and 

hydrophobicity(35–37), for which we developed new featurizers tailored to capture the 

chemical properties of the small molecules (see Methods and fig. S1). 

 

To assess the capabilities of MaSIF-neosurf, we benchmarked its performance on several 

ternary complexes whose interface is composed of protein and ligand surfaces. We aimed to 

recover known binding partners for proteins with small molecules at the binding interface. After 

assembling a list of 14 ligand-induced protein complexes, we split each of them into two 

subunits, resulting in 28 independent benchmarking cases, and processed them with and 

without the small molecule bound. The ligand-free protein surfaces, together with 200 decoy 

proteins, constitute our database, which we query with surface patches from all 28 protein-

ligand complexes. Since each of the 228 protein candidates is decomposed into almost 4000 

patches on average, the database represents a large search space with more than 900’000 

potential binding sites. We then evaluated whether the correct binding partner is retrieved and 

docked in the correct rigid-body orientation. When considering the protein-ligand complex as 

a docking partner, MaSIF-neosurf recovers more than 70% of the correct binding partners and 

their binding poses (Fig. 1B). Only a small subset of test cases could be recovered in the 

absence of the ligand and the general trend is that in such cases the protein surface is a large 

contributor towards the overall protein interaction (fig. S2). The ability to capture the 

neosurface properties is further supported by an increased descriptor distance score between 

interacting partners (i.e. an increased complementarity between interacting fingerprints, see 

Methods) and an increased interface post-alignment (IPA, see Methods) score in the presence 

of the small molecule compared to the case without (Fig. 1C-D). Overall, MaSIF-neosurf 

captures, in many instances, features that are determinant for ligand-mediated protein 

interactions and, to further test its capabilities, we sought to de novo design this type of 

interactions.  
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Fig. 1: Neosurface properties are captured to identify interface sites and binding partners. A. Geometric and 
chemical features of the ligand-protein complexes are computed, including the molecular surface representation 
(MSMS), hydropathy score, proton donors/acceptors and Poisson-Boltzmann electrostatics. Surface features are 
vectorized in a descriptor (also referred to as “fingerprint”) and used by MaSIF-neosurf for interface propensity 
prediction or protein partner search. The ligand-containing fingerprint is then used to find complementary 
fingerprints in a patch database. B. Ranking predictions using MaSIF-neosurf on a benchmark dataset of known 
ternary complexes and a set of 200 decoys. Complementary partner search was performed in the presence 
(orange) and absence (blue) of the respective small molecule ligand. C-D. Interface post-alignment score (IPA; C) 
and descriptor distance score (see Methods; D) of the interacting complexes in the presence (orange) and absence 
(blue) of the drug compared to a set of random patch alignments (gray)  
 

 
Designing novel ligand-induced protein interactions 
 
Recently, we proposed the MaSIF-seed pipeline for the design of de novo site-specific protein 

binders(28). Given the performance of MaSIF-seed against multiple therapeutically relevant 

targets, we sought to test whether such an approach could generalize to design site-specific 

binders to neosurfaces composed of ligand and protein atoms. By doing so, we tackle the 

challenge of designing chemically controlled protein interactions and test our understanding 

of molecular recognition events mediated by neosurfaces. We therefore adapted our MaSIF-

seed pipeline to our newly proposed MaSIF-neosurf framework (Fig. 2A). Once neosurfaces 

are computed for a given protein-ligand complex, we first take advantage of MaSIF-site to 

identify the regions most likely to become buried in an interface. Then an extensive fingerprint 

search identifies complementary structural motifs (i.e. binding seeds) from a database of 
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~640’000 structural fragments (402 million surface patches/fingerprints). Therefore, by 

focusing on the predicted buried regions of the interface and searching for highly 

complementary motifs, the vast space of patches and binding motifs is quickly reduced to the 

most promising candidates. Finally, the top seeds are refined by sequence optimization and 

grafted with Rosetta(38) on recipient proteins (i.e. scaffolds) to stabilize the binding motif. 

Lastly, a final round of sequence design is performed to improve atomic contacts at the 

interface. 

 

We designed ligand-dependent protein binders targeting ligand-bound proteins from different 

families: Bcl2 in complex with the clinically approved drug Venetoclax; an anti-progesterone 

antibody (DB3) in complex with its ligand; and peptide deformylase 1 (PDF1) from P. 

aeruginosa in complex with the antibiotic Actinonin (Fig 2B). We first identified a moderate to 

high interface propensity of these neosurfaces with MaSIF-neosurf, selected 1 to 3 relevant 

interface patches depending on the solvent-accessible surface area exposed by the ligand 

(Fig. 2B), and searched for complementary fingerprints in our seed database. Top-ranking 

seeds were selected, refined, and grafted onto recipient scaffolds, and approximately 2000 

designs per target complex were selected with computational filters (Fig. 2C and table S1, see 

Methods). Our pipeline generated designs with diverse helical and beta sheet-based binding 

motifs, as well as various protein folds, thus sampling a wide space of sequences and 

topologies (Fig. 2C). All selected designs were predicted to favorably engage the neosurface 

by showing increased interface structural metrics in the presence of the ligand, such as the 

predicted binding energy, the buried surface area and the number of atomic contacts (fig. S3).  

 

Experimental validation of ligand-induced PPIs  
 
The computational designs were screened by yeast display(39) and, after two rounds of 

fluorescent-activated cell sorting (FACS), enriched clones were deep sequenced (fig. S4 and 

table S2). We show one binder targeting each of the selected test cases (Fig. 3A). The best 

designs show no binding in the absence of the corresponding small molecules, whereas 

modest to high binding signals were observed with the ligands in yeast display experiments 

(Fig. 3B). These changes of binding signal upon small molecule addition are consistent with 

the expected behavior of a chemically induced PPI. Interestingly, small molecules contributed 

about 10-12% of the predicted target buried surface area, but they improved the predicted 

binding energy (ΔΔG) of the interface compared to the ligand unbound form by 17% to 27.7%. 

This result demonstrates a small, yet critical contribution that each ligand plays in the binding 

event, highlighting the difficulty of the design problem (table S3).  
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Fig. 2: Design of ligand-induced protein interactions with MaSIF-neosurf. A. To design novel ligand-induced 
protein interactions, potential interface sites are first identified on the target protein-ligand complex. The 
corresponding patches are then used to find complementary fingerprints in a patch database. The top patches are 
aligned and scored to refine the selection. Associated binding motifs (seeds) undergo sequence optimization with 
an emphasis on designing new hydrogen bond networks with the target protein and small molecule. Seeds are 
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then grafted on suitable scaffolds from a structural database, and the rest of the scaffold interface is redesigned 
using Rosetta. Finally, the top ~2000 designs, according to different structural metrics, are selected and screened 
experimentally. B. Target candidates in complex with their respective small molecules (top row). Neosurfaces 
displaying their protein binding propensity (bottom row). Sites selected for binder design are highlighted with 
dashed circles. C. Seed structural diversity (top row) includes motifs that are: helical (H); two-strand beta sheets 
(S2); three-strand beta sheets (S3); and more complex beta sheet motifs (S+). Diversity of the ~2000 computational 
designs (bottom row) mapped using multidimensional scaling (MDS) of pairwise RMSDs between all designs. 
Experimentally confirmed binders are highlighted with a star.  
 
 

 

Moreover, point mutants at the interface hotspot residues abrogated binding to the target 

complex, which further supports the designed binding mode (Fig. 3C). No binding was 

observed with the native scaffolds used for the seed grafting and interface design, underlying 

the critical role of the interface design pipeline (Fig. 3C). Finally, specificity towards the desired 

ligand was confirmed by using control compounds: S55746 for Bcl2, 19-O-Benzoyl-

Progesterone (OBz-Pro) for DB3 IgG and Tertbutyldimethylsilyl-Actinonin (TBDMS-Act) for 

PDF1 (Fig. 3D and fig. S5). These analogs retained binding to the protein target (fig. S5). 

However, no binding to the designs was observed, confirming that the correct interface on the 

target complex is engaged with high ligand specificity (Fig. 3D).  

 

Biochemical characterization and structural validation 
 
To map the binding site with high confidence and identify potential beneficial mutations (fig. 

S6), we performed a site-saturation mutagenesis (SSM) study (fig. S6). To assess the effect 

of the different mutations over the designed ligand-dependent interaction, we computed the 

average enrichment score of each mutation when comparing binding versus non-binding 

populations on yeast display experiments, similar to other deep saturation mutagenesis 

studies(40, 41). Globally, we observed that such interactions have exquisite sensitivity to 

single-point mutants and that residues with high sensitivity mapped very closely to the 

designed interfaces, supporting the accuracy of our computational models (Fig. 4A). 

 

The initial successful designs were expressed and purified for further biophysical 

characterization. All designs were monomeric, folded and highly stable in solution (fig. S7). All 

three designs showed binding affinities in the range of native transient PPIs(42), from mid-

nanomolar to low-micromolar, after pure in silico generation (fig. S8). Specifically, DBAct553_1 

showed a binding affinity (KD) of 542 nM, DBVen1619_1 and DBPro1156_1 showed affinities 

of 4 μM and >10 μM, respectively.  
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Fig. 3: De novo design and screening of small molecule-dependent binders. A. Models of the designed 
binders in complex with their respective target complexes: Bcl2:Venetoclax, DB3:Progesterone and 
PDF1:Actinonin B. Histograms of the binding signal (PE, phycoerythrin) measured by flow cytometry on yeast 
displaying the designed binders. Yeast were either unlabeled or labeled with 500 nM of their respective target 
protein preincubated with the ligand, or with the target protein alone. C. Histograms of the binding signal (PE, 
phycoerythrin) measured by flow cytometry on yeast displaying designed binders, a mutated version with a single 
point mutant at the predicted interface and the starting scaffold used for the design process. Yeast cells were 
labeled with 500 nM of their respective drug:protein complex. Dashed lines represent the geometric mean of the 
designed binder signal. D. Binding measured on yeast displaying DBVen1619_1, DBPro1156_1 or DBAct553_1 
labeled with the target protein alone (gray), the target protein in complex with the original small molecule (blue), or 
the target protein in complex with the small molecule analog (magenta). Control analogs tested were S55746, 
Progesterone-19-O-Benzoyl (OBz-Pro) and Tertbutyldimethylsilyl-Actinonin (TBDMS-Act). 
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In the SSM scan, some mutations suggested potential improvements in affinity (fig. S6). Due 

to the large number of beneficial mutation candidates for DBVen1619_1, we created a 

combinatorial library covering 6 residues, sampling a set of favorable amino acids identified 

by SSM (fig. S9). Three of the six positions converged into single mutations (K1Q, M3L, I13K) 

while the remaining three residues did not converge. We engineered a variant, DBVen1619_2, 

with the three beneficial mutations and confirmed the binding improvement on yeast display 

(fig. S9). Among the favorable mutations, M3L in the core of the interface between 

Bcl2:Venetoclax and DBVen1619_2 plays a crucial role (Fig. 4B). The conformational rigidity 

of a leucine is likely to be preferred to the rotameric flexibility of a methionine(43), reducing 

the entropic cost of the binding interaction(44). On the other hand, the second beneficial 

mutation (I13K) is likely to provide a favorable electrostatic interaction with a glutamate nearby. 

Overall, the incorporation of the three mutations resulted in a 42-fold improvement of the 

affinity (KD = 96 nM, Fig. 4C) 

 

For the progesterone-dependent binder, DBPro1156_1, four favorable mutations were 

identified by SSM and showed an increased binding on yeast display (fig. S10). Two mutations 

(Y12W and S16G) significantly improved the binding signal and showed an additive effect in 

the resulting design, DBPro1156_2. Modeling of the two mutations suggested increased 

interface packing (Y12W) and the removal of a steric clash (S16G) (Fig. 4B, middle panel). 

DBPro1156_2 showed a binding affinity of 18 nM, which represents an improvement of three 

orders of magnitude, relative to the parent design, solely with two mutations (Fig. 4C).  

 

Several mutations were found to slightly improve binding of DBAct553_1 to Actinonin-bound 

PDF1 (fig. S11). Most of these mutations were hypothesized to result in a more elaborate 

hydrogen bond network across the interface (e.g. R7N or A8R) (Fig. 4B). Of note, the 

combination of I3E with R7N was found to be deleterious for binding (fig. S11), most probably 

because of their spatial proximity that might trigger unwanted side chain rearrangement. A 

combination of the beneficial mutations (R7N and A8R) gave rise to DBAct553_2, which bound 

with an affinity of 446 nM for the Actinonin-bound PDF1 (Fig. 4C). 

 

To evaluate the structural accuracy of our computational design approach, we co-crystalized 

the ternary complex of Actinonin-bound PDF1 with DBAct553_1 (PDB: 8S1X, Fig. 4D). The 

crystal structure closely resembled the computational model with a Cα RMSD (Root Mean 

Square Deviation) of 2.33 Å and a full-atom interface RMSD (iRMSD) of 2.26 Å, which 

demonstrates the accuracy of our design pipeline. The deviation from our initial model can to 

a large extent be attributed to a misplaced residue (Y2) in the model of the design scaffold 

which induced a slight shift of the N-terminal helix (fig. S12). Consequently, the Cα RMSD of 
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our model deviates 0.93 Å from that of the experimental structure (fig. S12). Of note, the 

AlphaFold2(45) prediction of the monomeric designed binder aligned perfectly with our 

structure with a Cα RMSD of 0.49 Å by placing residue Y2 with the correct orientation. Overall, 

this observation together with previous findings suggests that an increased use of deep 

learning tools like AlphaFold should significantly increase the model accuracy and therefore 

success rate(46). Finally, we obtained low-resolution cryo-electron microscopy densities of the 

DBPro1156_2 in complex with DB3 Fab and progesterone that confirmed the designed binding 

mode and interface engagement with the small molecule (Fig. 4E). Despite the absence of 

structural data for the remainder of the designs, the mutational sensitivity assessed by the 

SSM (Fig. 4A) and the lack of binding with the small molecule analogs (Fig. 3D) suggests that 

the binders engage the target interface with a binding mode in agreement with our 

computational models. 

 

Designed CIDs are functional in cell-based systems 
 
Chemically controllable components have important applications in synthetic biology and have 

been shown to be useful in modulating the activity of emerging cell-based therapies (10, 11, 

47). To test whether our computationally designed CIDs would assemble in a more complex 

cellular context, we engineered reporter proximity-based systems that were expressed in cell-

free system or mammalian cells and that in the presence of the small molecule could activate 

a signaling pathway or lead to the reconstitution of a reporter protein. The most natural 

functional logic for chemically-induced protein interactions is to function as ON-switch 

systems. 

 

We first repurposed a previously described heterodimerization-based reporter system(48) to 

test the DB3 antibody as a single-chain variable fragment (scFv) binding to DBPro1156_2. 

Here, DB3 was fused to a zinc finger 438 transcription factor and DBAct553_2 to a T7 RNA 

polymerase (Fig. 5A), and tested in a cell-free reporter system. The heterodimerization in 

presence of the drug induces proximity between the T7 RNA polymerase and the transcription 

factor, thus leading to the transcription of a reporter linear DNA template and its translation 

into a red fluorescent protein (mCherry). While only baseline fluorescence was observed in 

absence of progesterone, a 15.8-fold increase was observed after addition of progesterone 

(Fig. 5B). Similarly, a titration of progesterone demonstrated a dose-response curve, 

suggesting possible utilization as a novel cell-free biosensor (Fig. 5C). 
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Fig. 4: Optimization, characterization and functionalization of the designed binders. A. Computational model 
colored with the average enrichment score of the site-saturation mutagenesis of each amino acid position of the 
designed binder. Red color suggests that an amino acid position is sensitive to mutations, while blue color highlights 
a more tolerant amino acid position. Target proteins are shown in gray. B. Computational models incorporating the 
beneficial mutations that improved the affinity of the designed binders. Target proteins are shown in gray and 
designed binders in their respective color. C. Affinity measurement for DBVen1619_2, DBPro1156_2 and 
DBAct553_2 performed by biolayer interferometry. Each measurement was performed in presence (orange) or 
absence (blue) of the respective small molecule. The fits were calculated using a nonlinear four-parameter curve 
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fitting analysis. D. Crystal (xtal) structure of DBAct553_1 in complex with Actinonin-bound PDF1 (PDB: 8S1X). The 
computational model (light pink) is aligned with the crystal structure (magenta). Inset: the alignment of the residues 
at the interface. E. Cryo-electron microscopy densities obtained for DBPro1156_2 in complex with progesterone-
bound DB3. 
 
 

 
 
Fig. 5: Computationally designed CIDs are functional in cell-based systems. A. Schematic of the cell free-
expression system with single chain variable fragment (scFv) DB3-fused to a zinc finger transcription factor and 
DBPro1156_2 fused to T7 RNA polymerase. B. Fluorescence (Relative fluorescence unit; RFU) measured in wells 
containing each monomeric component or mixed, without or with 20 μM progesterone. C. Progesterone dose-
dependent responses performed in a cell free system containing both components. D. Schematic of the GEMS 
reporter system functionalizing Bcl2-based CID. Both protein components of the CID are individually fused to 
erythropoietin receptor (EpoR) chains linked to an intracellular human IL6RB domain, which induces the expression 
of a reporter gene (secreted NanoLuc luciferase) when activated. E. NanoLuc luminescence of HEK293 cells 
transfected with Bcl2-GEMS only, DBVen1619_2 only or both together without or with 1 μM Venetoclax. F. 
Venetoclax dose-dependent responses performed on HEK293 transfected with Bcl2 and DBV1619 GEMS 
receptors. G. Schematic of the split NanoLuc system functionalizing DBAct553_1 and PDF1. H. Intracellular 
NanoLuc luminescence of HEK293 transfected with C-term split NanoLuc-fused PDF1 only, N-term split NanoLuc-
fused DBAct553_1 only or both together without or with 25μM Actinonin. I. Actinonin dose-dependent responses 
performed on HEK293 transfected with split-NanoLuc PDF1 and DBAct553_1. p < 0.0001 (****), non-significant 
(ns). 
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To test the chemically-induced activity of the designed modules in mammalian cells, we used 

a previously described system called generalized extracellular molecule sensor (GEMS)(13). 

Briefly, the target protein and the designed binder are both fused to an erythropoietin receptor 

(EpoR) linked to an intracellular domain of a human interleukin 6 receptor subunit B (IL6RB) 

(Fig. 5D). Transcription of a reporter gene (NanoLuc luciferase)(49) will be triggered upon a 

conformational change induced by the heterodimerization in presence of the drug. By 

incorporating Bcl2 and DBVen1619_2 in the GEMS system, we observed a 26.8-fold change 

in luminescence in the presence of Venetoclax, while minimal background was observed in 

the absence of the drug (Fig. 5E). These results show the desired behavior of an ON-switch 

system. Additionally, our modified GEMS system displayed a heightened sensitivity to the 

drug, with a half maximal effective concentration (EC50) of 0.31 nM, which is likely due to the 

co-localization of the sensing modules in the cell membrane (Fig. 5F).  

 

Next, we designed a cytoplasmic system to respond to Actinonin and fused PDF1 and 

DBAct553_1 to two moieties of a split NanoLuc (Fig. 5G). In this system we also observed a 

significant increase in signal (19.1-fold) upon dosing of the cells with Actinonin (Fig. 5H). This 

novel ON-switch system was also highly sensitive to the presence of the drug, as shown by 

the titration reporting an EC50 of 27 nM (Fig. 5I). Overall, we showed that our computationally 

designed CIDs can be used to functionalize molecular components in cellular systems, 

suggesting a promising route for the development of new modules  for synthetic biology 

including a wide range of biosensors and cell-based applications. 

 

Discussion 
 
Current deep learning-based protein design pipelines are primarily conditioned on the natural 

amino acid repertoire(50–52) and therefore lack generalization to the design of interactions 

involving small molecules. This gap is mainly due to the scarcity of protein-ligand structural 

data, and especially ternary complexes, within the training sets based on the PDB, where such 

complexes are limited(53–55). Geometric deep learning approaches principled in the physical 

and chemical features of the molecular surface can overcome these limitations, and provide 

joint representations for protein and small molecule complexes. The resulting neosurfaces 

capture and present generalizable molecular features that enable the challenging task of 

designing protein binders targeting these hybrid interfaces. Utilizing the MaSIF-neosurf 

framework, we successfully designed three specific binders against Bcl2:Venetoclax, 

DB3:Progesterone and PDF1:Actinonin complexes. All designed binders showed high 

stability, specificity and native-like affinity for their target complexes by pure in silico 

generation. The affinities were experimentally optimized to nanomolar range and their binding 
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mode was confirmed through mutational and structural characterization, showcasing the 

accuracy of our design pipeline. Notably, our pipeline managed to capture the subtle, yet 

crucial contributions of each ligand (10-12% of the buried SASA only; table S3) to induce 

protein interactions. This sensitivity represents an additional layer of complexity to the task of 

designing highly sensitive CIDs, compared to previous attempts targeting large ligand 

interfaces(26). 

 

To demonstrate the functionality of our designed CID systems, we probed their efficiency and 

specificity in the context of a complex cellular environment. They exhibited robust ON-switch 

behavior in both cytoplasmic and membrane-bound circuits, showcasing their potentially wide 

applicability in mammalian systems as logic gates, synthetic circuits, or new biosensors for 

detecting specific metabolites(10, 13). This relevance is further underscored by our use of the 

FDA-approved drug Venetoclax for treating leukemia(29) the natural product Actinonin with 

potentially chemotherapeutic effects (31) or the endogenous hormone progesterone (56). 

These can be utilized for combined anti-cancer therapies with chimeric antigen receptor (CAR) 

T cells, which are often hindered by off-target toxicities (11, 57). The addition of synthetic small 

molecule activators could allow finer control of their activity and elevate their safety profile. 

 

While the design of specific protein-ligand interactions remains challenging, the presented 

results lay a strong foundation for further innovations. Incorporation of deep learning-based 

structure validation methods, such as AlphaFold2(45) (fig. S13) or RoseTTAFold(58), or 

generative models complemented with surface fingerprints(51) could improve design success 

rates. Additionally, accounting for conformational flexibility and dynamics at the surface could 

pave the way for more complex interaction types, such as intrinsically disordered proteins. 

Overall, we envision that surface-based representation can contribute to solving molecular 

design problems in low-data regimens, such as the design of protein-based molecules with 

non-natural amino acids. The capability of extracting expressive fingerprints from 

protein:ligand complexes opens up the tantalizing possibility of rationally designing innovative 

drug modalities, such as on-command cell-based therapies(11, 17), controllable biologics(21, 

23), or molecular glues, which thus far remains an outstanding challenge in drug 

development(8, 9) 
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