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Abstract

MicroRNAs are small RNA molecules that can repress the expression of protein coding genes
post-transcriptionally. Previous studies have shown that microRNAs can also have
alternative functions including target noise buffering and co-expression, but these
observations have been limited to a few microRNAs. Here we systematically study microRNA
alternative functions in mouse embryonic stem cells, by genetically deleting Drosha - leading
to global loss of microRNAs. We apply complementary single-cell RNA-seq methods to study
the variation of the targets and the microRNAs themselves, and transcriptional inhibition to
measure target half-lives. We find that microRNAs form four distinct co-expression groups
across single cells. In particular the mir-290 and the mir-182 clusters are abundantly,
variably and inversely expressed. Intriguingly, some cells have global biases towards specific
miRNAs originating from either end of the hairpin precursor, suggesting the presence of
unknown regulatory cofactors. We find that miRNAs generally increase variation and
covariation of their targets at the RNA level, but we also find miRNAs such as miR-182 that
appear to have opposite functions. In particular, miRNAs that are themselves variable in
expression, such as miR-291a, are more likely to induce covariations. In summary, we apply
genetic perturbation and multi-omics to give the first global picture of microRNA dynamics
at the single cell level.
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Background

MicroRNAs (miRNAs) are ~22 nucleotide small non-coding RNAs that guide Argonaute
effector proteins to target mRNAs in a sequence-specific manner, leading to their
translational inhibition and increased degradation through de-adenylation and de-capping
(Bartel 2018). miRNAs group into seed families that mostly target the same pool of mRNAs
through complementary base pairing of their seven-nucleotide seed region (Lai 2002; Bartel
2009). Each family targets hundreds of mRNAs and together miRNAs are considered key
post-transcriptional regulators (Friedman et al. 2009).

It is well-established that miRNAs can repress the expression of their targets, both at the
RNA and the protein level (Baek et al. 2008; Selbach et al. 2008). However, alternative
functions for miRNAs have also been proposed, including buffering of gene expression
variation (noise) (Hornstein and Shomron 2006; Tsang et al. 2007; Ebert and Sharp 2012;
Siciliano et al. 2013). This is an attractive hypothesis, since miRNAs reduce translational
efficiency of their targets, which reduces the noise of their targets. Similarly, the repression
allows higher transcription of the targets to reach the same final protein output, and this
higher transcription again reduces noise according to theory. The hypothesis that miRNAs
buffer gene expression noise fits well with observations that many mutant animals that are
devoid of specific miRNAs do not display obvious phenotypes under laboratory conditions,
but only when subjected to stress conditions (Miska et al. 2007; Li et al. 2009).

Another alternative miRNA function that has been proposed is to induce gene expression
covariances between targets (synchronize expression) (Rzepiela et al. 2018; Tarbier et al.
2020). In individual cells where a given miRNA is highly abundant, the targets will be
coordinately repressed, while in a cell where the miRNA is lowly abundant, the targets will
be coordinately alleviated. This would for instance make sense for targets that form part of
the same protein complex, where correct stoichiometry is important for correct assembly
and folding (Tarbier et al. 2020; Gutierrez-Perez et al. 2021). However, studying these
alternative functions require single-cell methods, since variation and covariation across
individual cells must be measured.

There is evidence for both of these alternative miRNA functions. In 2015, a study combining
fluorescent reporters bearing binding sites for select miRNAs with single-cell imaging
showed that miRNAs can reduce target expression noise for lowly abundant targets, and
increase target expression noise for highly abundant targets, at the protein level(Schmiedel
et al. 2015). This could have the biological function of ensuring that the exactly right amount
of protein is output in each single cell, which can be important for lowly abundant regulators
like transcription factors.

Since then, reliable methods to measure both miRNAs and their targets in single cells using
RNA sequencing have emerged. Standard single-cell RNA-sequencing methods such as 10x
Chromium or Smart-seq3 can detect mRNA targets with high throughout in terms of cells, or
high sensitivity in detecting individual mRNA molecules, respectively (Zheng et al. 2017;
Hagemann-Jensen et al. 2020). There also exists several protocols to sequence miRNAs in
single cells, which are quite similar to the methods used for pooled cell (bulk) applications,
but with minor modifications. These methods give representative views of the miRNA
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profiles of single cells, although they typically detect only a subset of the miRNA molecules
in the samples(Faridani et al. 2016; Hucker et al. 2021).

A recent study applied an innovative but labor-intensive method to split the lysate from
single cells in two, and sequence the small RNA complement from one half and the mRNA
complement from another half (Wang et al. 2019). This study provided evidence that
miRNAs are negatively correlated with their targets in single cells, and that miRNAs
themselves can vary in expression between cells. Another study provided evidence that miR-
182 can cause its targets (including several known pluripotency factors such as Nanog and
Sox2) to vary more in expression, and that this increased variation is important for
transitions between mouse embryonic stem cell equilibrium states (Chakraborty et al. 2020).
Two independent studies introduced a total of four miRNAs into cells and observed that
their targets increased in variation but also that the targets started to covary more
(Gambardella et al. 2017; Rzepiela et al. 2018). This covariation was also observed in recent
study from our group, where we observed expression covariations between targets
disappear in mouse embryonic stem cells that were genetically depleted of the key Drosha
biogenesis protein (Tarbier et al. 2020).

In summary, there is emerging evidence that miRNAs may have other function than simple
repression of their targets, including increasing or buffering target expression variation at
the RNA or protein level. However, previous studies have focused on limited numbers of
miRNAs and targets, and no systematic transcriptome-wide investigation has yet been
undertaken.

Here we profile the biogenesis and function of miRNAs in single embryonic stem cells by
globally profiling miRNAs in single cells, mRNA transcripts in single cells and mRNA half-lives
in the same cell population. We apply a previously published method - Small-seq (Faridani et
al. 2016) - to sequence miRNAs in 192 individual mouse embryonic stem cells, more cells
than have been profiled in previous miRNA single-cell studies. We find that specific miRNA
families are highly variable across cells, even in our homogenous cell population. Integrating
our Small-seq data with public measurements of miRNA half-life, we find that short-lived
miRNAs tend to be more stably expressed. We study miRNA covariation patterns and find
that miRNAs expressed from the same genomic clusters tend to be positively correlated,
suggesting co-transcriptional regulation that is preserved to the level of the mature miRNAs.
We find that miRNAs from the mir-290 cluster and the mir-182 clusters are strongly and
negatively correlated across single cells. Since these miRNAs are known to have overlapping
functions in pluripotency but distinct functions in regulation of cell cycle and cell transitions
(see Discussion section), this suggests the presence of a miRNA-mediated functional switch.
We find that some individual cells have global biases towards miRNAs originating from
either the 5-prime arm or 3-prime arm of the precursor transcript, suggesting the existence
of currently unknown cofactors that determine this bias.

Further integrating our previously published whole-cell single-cell RNA sequencing data, we
find that miRNA primary transcripts are abundantly detected, as cleaved transcripts in
control mouse embryonic stem cells and as full-length transcripts in cells that are genetically
ablated for the Drosha biogenesis protein. We find that miRNA-mediated repression is
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relatively low (~15% repression) compared to the overall natural variation of target
expression between cells. Expanding findings from other studies, we find that most miRNAs
induce target variation and covariation of their targets at the RNA level, but we also find
notable examples of miRNAs with opposite effects. Finally, we show that the induction of
gene expression covariation in the target pools of miRNAs can be directly linked to the
expression variability of the miRNAs themselves. In summary, we here combine Small-seq
with single-cell mRNA sequencing to give a more detailed look into miRNA functions at the
cellular level, supporting and extending previous observations, and giving new insights into
miRNA biogenesis and covariance patterns.
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Results

Small-seq detects ~3000 distinct miRNA molecules in each mouse embryonic stem cell

We sequenced the miRNA complements of 192 individual mouse embryonic stem cells using
an optimized Small-seq (single-cell small RNA-seq) (Faridani et al. 2016) protocol to
investigate miRNA variability in these cells. The cells had been cultured in a 2i and LIF
medium and sorted in the G2/M cell cycle stage to generate a homogenous population
(Methods)(Kolodziejczyk et al. 2015). Following stringent quality control (Suppl. Fig. 1-2) we
found that the number of detected distinct miRNA sequences ranged from 160 to 300, with
an average of 230 distinct miRNAs (Figure 1A, Supplementary Table S1). This number is
higher than that reported in a recent benchmarking study (Hucker et al. 2021), highlighting
the high quality of our data. We found that the miRNA with the highest expression was miR-
290a-5p, which was detected in ~500 molecules per cell on average (Figure 1B). Summing
over all miRNAs, we found an average of ~3000 molecules per cell. Assuming that one
mouse embryonic stem cells contain ~110,000 miRNA molecules (Calabrese et al. 2007)
(Calabrese et al., 2007), comparable to measurements in other mammalian cells (Bissels et
al. 2009), this suggests that the sensitivity of our method is around ~3%. We found that the
miRNA composition is relatively similar across cells, showing mostly subtle differences
(Figure 1C). On average, the ten most highly expressed miRNAs comprised 55% of the total
miRNA molecules in a given cell, comparable to bulk data (Lappalainen et al. 2013). In
summary, we find that miRNA complements in single mouse embryonic stem cells can be
profiled to fine resolution, even though the sequencing has relatively low sensitivity.

Small-seq data correlates well with bulk small RNA-seq data

The miRNA complement of mouse embryonic stem cells have been profiled in bulk cells in
several studies. We find that the expression ranks of miRNAs in bulk small RNA-seq data
correlates well with Small-seq (here the data from all single cells were pooled, Figure 1D).
The Spearman’s correlation coefficient of miRNA expression ranks ranged from 0.49 to 0.61
when compared with three representative bulk studies (1E). Some differences may in fact
reflect biological differences in culture conditions—all available bulk sRNA-sequencing data
stem from mouse embryonic stem cells cultured in serum only while our cell population has
been grown in the 2i and LIF medium. We conclude that Small-seq overall correlates well
with bulk sequencing methods, within typical variability of distinct Omics methods and cell
growth conditions.

miR-183 and miR-294 are abundant and highly variable across single cells

miRNAs show highly variable expression between tissues (Keller et al. 2022), which is not
surprising since cells with different tissue identity vary greatly at all layers of regulation from
chromatin states to post-transcriptional regulation. However, little is known about the
variability between individual cells belonging to the same tissues or cell culture. An
advantage of single-cell sequencing over bulk sequencing is that variability of expression
across cells can be measured. We first sorted the cells using principal component analysis
(PCA), and as expected, our homogeneous cell population groups together without clear
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outlier cells (Figure 2A). However, while some cell pairs show remarkably similar expression
profiles (Figure 2B) other pairs show substantial differences (Figure 2C). We next compared
the mean expression of individual miRNAs against their expression variation across all cells
(Figure 2D). As is typical of single-cell sequencing data, the mean expression and expression
variation are inversely correlated — resulting in a negative slope - because of technical
sampling noise (Grun et al. 2014). However, some miRNAs were clearly more variable than
expected for technical reasons, indicating biological variability (miRNAs indicated in red,
Figure 2D). Some miRNAs - exemplified by miR-16 - were confined to narrow ranges of
expression while others - such as miR-183 and miR-294 - were variably expressed across
individual cells (Figure 2E). We next compared the mean miRNA expression against miRNA
half-lives, as measured in a previous study (Kingston and Bartel 2019). We found that highly
variably miRNAs tend to have high expression and long half-lives (Figure 2F, top), while
stably expressed miRNAs often have low expression and short half-lives (Figure 2F, below).
We would expect that miRNAs with short half-lives are stable, since fast turn-over allows for
rapid transcription, which in turn reduce expression variation (noise). It is surprising that
highly expressed miRNAs tend to be more variable, but this could be specific to mESCs,
where cell transitions including differentiation might depend on induction of a few specific
miRNAs. Overall, we find that most miRNAs are stably expressed in mouse embryonic stem
cells, while a few such as miR-183 and miR-294 are highly variable.

miRNAs form four distinct co-expression groups across single cells

Another advantage of single-cell sequencing is that covariations of miRNAs across single cells
can be detected. Sorting miRNAs and cells according to their expression revealed clear
global patterns (Figure 3A). We find several miRNAs that group together according to their
expression profiles, including from top to bottom: (i) miR-26a, miR-30e, miR-182, miR-183
and miR-298; (ii) miRNAs that derive mainly from the 5-prime arms of the mir-290 genomic
cluster; (iii) miRNAs that derive mainly from the 3-prime arms of the mir-290 cluster and (iv)
a cluster comprised of miR-16, miR-25, miR-92, miR-103 and miR-130a. These expression
trends are also observable when individual miRNAs are grouped into families based on their
respective seed sequences (not shown). Curiously, there is a group of cells that express
many mature miRNAs from both the 3-prime arm and the 5-prime arm of the miRNA genes
from the mir-290 cluster (cell group ‘A’) and a group that express few mature miRNAs from
both arms of genes from this cluster (group ‘C’). At the same time, there are other groups of
cells which show discordant expression of these miRNA groups. Specifically, in group B,
mMiRNAs stemming from the 3-prime arm of the mir-290 cluster are more abundant than
those originating from the 5-prime arm, while in group E the reverse holds. This suggests
that there may be unknown global protein cofactors present in individual cells that drive
preferential processing of either arm of the hairpin (see below). Surprisingly, miR-293 seems
to act contrary to all other members of the mir-290 cluster, with its 3-prime arm following
the expression pattern of the 5-prime arm of the other miR-290 members, and its 5-prime
arm following the pattern of the 3-prime arms of the other cluster members. In summary,
we find that clustered miRNAs, but also some un-clustered miRNAs, follow each other in
expression patterns, and that strand selection of miR-293 appears to be contrary to that of
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the other cluster members. These observations prompted a more in-depth analysis into the
expression of individual miRNAs and global processing patterns.

miRNAs from the miR-182 and miR-290 clusters are anti-correlated in expression

We next changed our focus from expression patterns of groups of miRNAs to specific
expression covariations of pairs of individual miRNAs (Methods). These analyses largely
recapitulate three of the four groups identified above - (i) miR-26a, miR-182 and miR-183;
(ii) miRNAs that derive mainly from the 5-prime arms of the mir-290 genomic cluster and (iii)
miRNAs that derive mainly from the 3-prime arms of the mir-290 cluster but also including
miR-16 and miR-20a (Figure 3B). The former is anti-correlated with the latter two, more so
with the 3-prime arms than with the 5-prime arms. The two arms of the mir-290 cluster
group more strongly among themselves but show no anti-correlation with one another.
Summing up mature miRNAs from both arms to estimate overall miRNA precursor
expression, we now see that all members of the mir-290 cluster group strongly together and
are negatively correlated with miR-26a, miR-182 and miR-183 (Figure 3C). We can also
clearly see the co-expression within the mir-182 and miR-183 genomic cluster, and within
the mir-17 cluster (miR-19b and miR-20a). The observed covariation of miRNA originating
from the same genomic clusters suggests that co-transcription is a major player in shaping
miRNA expression profiles.

Each single mouse embryonic stem cell has biases in miRNA arm selection

We next studied arm biases of miRNA precursors, by correlating the fraction of sequenced
miRNAs that originate from the 5-prime arms of precursors, across cells (Figure 3D). It
appeared that arm selection is not highly correlated between miRNA precursors, however,
we can clearly see that the 5-prime fraction of miR-293 is strongly anti-correlated with that
of other members of the mir-290 cluster, while these other members show positive
correlations of their 5-prime fractions. Further, close observation reveals that in fact the 5-
prime fractions of many miRNAs are subtly and positively correlated with each other and
anti-correlated with the 5-prime fraction of miR-293 (Suppl. Fig. 3-4). This suggests that
there may be global arm biases in certain cells, possibly mediated through the activity of a
yet unknown protein cofactor that impacts all miRNAs equally - with the notable exception
of miR-293.

Pri-miRNAs from the miR-17 and miR-290 clusters are positively correlated in expression

While Small-seq is optimized for detecting mature miRNAs and does not detect miRNA
primary transcripts (pri-miRNAs), we detect these in our previous study, where we applied
the Smart-Seq2 method to profile poly-adenylated transcripts in single cells (Tarbier et al.
2020). In cells genetically depleted for Drosha we detect large parts of the pri-miRNA
transcripts, which is expected since this protein is needed for cleaving the primary
transcripts to produce miRNAs (Figure 4A, below). In control cells that express Drosha
protein, we mainly detect cleaved transcripts (Figure 4A, above). This is consistent with
previous observations that cleaved pri-miRNAs remain in the chromatin for some time after
processing (Conrad et al. 2014), and also pri-miRNAs have previously been reported in
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sequencing of single nuclei (Elias et al. 2023), where they are located. The paucity of full-
length pri-miRNAs in the control cells further suggests that pri-miRNA are cleaved relatively
fast after being transcribed in mouse embryonic stem cells. We used the levels of pri-
miRNAs in the Drosha knock-out cells as a proxy for transcription (Figure 4B) and found that
the miR-17 and miR-290 clusters were strongly covarying (correlation coefficient 0.6, Figure
4C). This suggests that the covariation between the miRNAs from the miR-17 cluster and the
3p-derived miRNAs from the miR-290 cluster (Figure 3B) is induced at the transcriptional
level, while the negative covariation between the miR-17 cluster and the 5p-derived miRNAs
is induced post-transcriptionally, by an unknown mechanism. Unfortunately, we could not
robustly profile expression of the mir-182 cluster in these data, so we cannot resolve if the
anticorrelation between the mi-290 and mir-182 clusters are induced at the transcriptional
level. Overall, we use single-cell data to infer expression of pri-miRNAs and infer their
dynamics and interdependencies.

Most miRNA repression is conferred by miR-17, miR-291 and miR-292

We next investigated the impact of miRNAs on their target expression, by comparing single-
cell RNA-seq data from Drosha knockout cells with control cells (Tarbier et al. 2020). We
found that computationally predicted TargetScan targets (Agarwal et al. 2015) of the ten
most highly expressed miRNAs were on average de-repressed around 15%, consistent with
findings from bulk studies (Methods) (Baek et al. 2008; Selbach et al. 2008). However, this
average repression effect was surprisingly small relative to the overall natural variation of
expression between cells (Figure 5A), suggesting that the natural variation of expression
overshadows the impact of the miRNAs at the RNA level (see Discussion section). We next
looked at median changes of TargetScan targets in Drosha knockout versus control cells, for
the top 16 miRNA families (Figure 5B-C). We found the miR-17, miR-291 and miR-292
families to have the strongest impact on the transcriptome, consistent with their relatively
high measured expression in bulk and single cells (Figure 5B, panel inserts). The miR-290-5p
and miR-291-5p families surprisingly have little impact on their targets’ expression, in spite
of being fairly abundant. Similarly, it is surprising to see that the passenger strands of the
miR-290 cluster are among the most abundant miRNAs but show practically no effect on
their targets. This may suggest that these miRNAs are indeed just abundant by-products that
are not loaded into Argonaute, or that they may have functions other than simple repression
(see Discussion section below). To gain more confidence in these observations, we
estimated mRNA half-lives transcriptome-wide through a time-series experiment of
transcriptionally inhibited mouse embryonic stem cells. Specifically, we inhibited
transcription with a-amanitin and measured mRNA levels at five time points following the
transcriptional arrest and estimated half-lives using a linear model (Methods,
Supplementary Table S2). We observed the same families to have strong target effects as in
the previous analysis (Figure 5D), showing the robustness of these results and confirming
that expression changes reflect changes in half-life rather than indirect effects at the
transcriptional level. In summary, in our single cells we find that most repression is
conferred by three families — miR-17, miR-291 and miR-292 — consistent with their high
expression in bulk small RNA-seq data and also our mRNA half-life measurements.
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Distinct miRNAs increase and reduce target expression variation at RNA level

It is known from studies with reporter constructs, that miRNAs can buffer gene expression
variation at the protein level (Schmiedel et al. 2015). Evidence from miRNA overexpression
studies indicate that miRNAs may increase variation at the RNA level (Gambardella et al.
2017; Rzepiela et al. 2018), however, transcriptome-wide evidence from natural cell
conditions is still lacking. We leveraged our published single-cell RNA-seq to and find that
miRNA targets naturally tend to be more variable in expression at the RNA level than are
other genes (Figure 6A). This particularly holds for targets of miR-291a, which is one of the
most highly expressed miRNAs in mouse embryonic stem cells (Figure 5B). We further find
that miRNA targets generally decrease in expression variation when Drosha is ablated,
suggesting that they increase variation in their targets at the RNA level (Figure 6B). This in
particular holds for targets of highly expressed and strongly repressing miRNAs like miR-
291a, but also for miR-290a-5p, which although abundant, confers little repression (see
above). Surprisingly, the targets of let-7 and miR-182 decrease in variability when Drosha is
ablated, suggesting that these miRNAs naturally decrease variability of their targets at the
RNA level. In summary, we provide evidence that miRNAs naturally induce expression
variability of their targets at the RNA level, but surprisingly, select miRNAs have the exact
opposite effect.

Evidence that targets of miR-17 and miR-302 are buffered at the protein level

We next investigated if RNA and protein variation correlates in single cells. In collaboration
with colleagues, we recently developed SPARC - a new method to profile the whole poly-
adenylated transcriptome and select proteins in the same single cells (Reimegard et al.
2021). Re-analyzing SPARC data from human embryonic stem cells, we found that RNA
variation is a relatively poor predictor of protein variation for the same gene, in single cells
(Figure 6C, above) (Reimegard et al. 2021). We found that proteins that are less variable
than their cognate mRNAs tend to have high protein-to-mRNA ratios, while the reverse
holds for proteins that are more variable (Figure 6D, lower left, Methods). Further, when
estimating the ratio of RNA to protein, we found that the targets of miR-17 and miR-302,
both abundant in human embryonic stem cells, are lower than for background genes (Figure
6D, lower right), suggesting translational repression. Last, we found that protein variation
was lower than RNA variation for targets of miR-17 and miR-302, suggesting that the miRNA
may increase RNA variation but buffer protein variation, consistent with previous studies on
miRNA impact on expression noise (Figure 6D, lower right). However, these observations are
preliminary and more methods development in the single-cell proteomics field will be
required to elucidate this in a more systematic manner.

Variable miRNAs induce strong gene expression covariations between target transcripts

It has previously been suggested that certain miRNAs may have the potential to induce
covariations within their target pool (Rzepiela et al. 2018) and we have previously provided
evidence that these effects may in fact occur naturally for many miRNAs (Tarbier et al.
2020). Here we re-analyze our single-cell RNA-seq data in more detail and find that targets
of several specific miRNA families naturally covary in mouse embryonic stem cells (Figure
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7A). Strikingly, most miRNA that induce such covariation patterns among their targets, such
as miR-294-3p, were themselves highly variable (compare Figure 2E and 7A). Abundant
miRNA families with low expression variation, such as miR-16 (part of the miR-15 family), do
not seem to induce target co-expression (compare Fig. 2E and 7A). Surprisingly, miRNA
abundance does not seem to determine covariation of the targets, rather the variability of
the miRNA itself influences the level of covariations (Figure 7B). Since variation and
covariation patterns within a cell sample cannot be measured with bulk methods, this again
highlights the importance of single-cell miRNA quantifications in understanding miRNA
function. A striking outlier in these analyses is the let-7 family, whose targets are negatively
covarying (asynchronous, Figure 7A). This miRNA family is lowly abundant in mouse
embryonic stem cells but has been included for its well-described function in exit from
pluripotency (Gambardella et al. 2017). Since it is lowly abundant in mouse embryonic stem
cells and thus might not confer strong regulation of its targets, we speculate that its
apparent effects in negative covariations could be linked to the function of its targets rather
than direct miRNA effects. In summary, we provide evidence that several miRNA families can
induce covariation between their targets, and that this particularly holds for miRNA families
that are variable in expression between cells.
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Discussion

Here we perform the first systematic and transcriptome-wide study of miRNA and target
expression variation and covariation in single mouse embryonic stem cells. We show that
miRNA profiles in single cells largely resemble their bulk counterparts although the single
cell measurements can be used to estimate miRNA and target expression variation and
covariation. We find that the sensitivity of miRNA single-cell sequencing is around 3%, which
is lower than that of standard scRNA-seq. Most miRNAs are stably expressed in single cells,
although a notable few are highly variable. In particular miRNAs from the mir-290 cluster
and the mir-182 cluster are variably and negatively correlated. We show that miRNA profiles
are shaped by the transcription of clusters and by a tendency for each single cell to favor
miRNAs originating from either end of the hairpin precursors. This bias acts in a similar
fashion on all miRNAs in a given cell and suggests the existence of unknown protein
cofactors whose presence or absence drives this bias. Surprisingly, we find that the natural
variation of mMRNA expression appears to overshadow the repressive effect of miRNAs (~15%
repression), at least on the RNA level. Most miRNAs increase noise of their targets at the
RNA level, but we provide evidence from published single-cell proteomics data that they
may reduce noise at the protein level. Lastly, miRNAs that are themselves highly and variably
expressed tend to induce expression covariations between their targets.

In the field of sequencing mRNAs, there exists methods that have sensitivity of >50% -
meaning that probability that a given mRNA molecules will be represented in the generated
sequence data (Hagemann-Jensen et al. 2020). In comparison, we here estimate that our
method has a sensitivity of ~3%, which is comparable or better than other methods tested
(Hucker et al. 2021). This means that methods to sequence miRNAs in single cells are more
dominated by stochastic sampling noise compared to ordinary scRNA-seq data, and sets
limits to the quantitative questions that can be addressed. However, we here show that
biological insights can be inferred from Small-seq data, when we focus on the 10-20 most
highly abundant miRNA molecules. Limiting analyses to the most highly abundant miRNAs
may not be a major problem, since the ten most expressed miRNAs both dominate the
expression profile (Figure 1C) and also likely confer the most of the repression (Mullokandov
et al. 2012).

We observe that the natural variation of expression of miRNA targets appear to overshadow
the relatively subtle repression conferred by miRNAs, at least at the transcript level (Figure
5A). This could indicate that miRNAs may have important functions other than repression,
such as regulating target expression variation or covariation. However, it should be
considered that the target transcripts are translated to proteins, which typically have longer
half-lives than transcripts. In this way the temporal fluctuations at the transcript level may
be buffered at the more stable protein level. However, there is evidence for miRNA-induced
noise reduction also at the protein level (Schmiedel et al. 2015), and for miRNA-induced
covariation for proteins that form part of the same complexes (Gutierrez-Perez et al. 2021).

A main finding of our miRNA covariation analyses is that the mir-290 and mir-182 clusters
are variably expressed and negatively correlated, suggesting a potential ‘switch-like’
mutually exclusive function between the two clusters. This is interesting, given that both
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clusters are involved in maintaining pluripotency and in stem cell self-renewal. Specifically,
members of the mir-290 performs this function by indirectly upregulating Myc, Lin28 and
Sall4 (Melton 2010), while the mir-182 cluster represses Argonaute2, a miRNA-interacting
protein that can facilitate differentiation through for instance let-7 (Suh 2011). In addition,
members of the mir-290 cluster can advance progression through the cell cycle by targeting
inhibitors of Cdk2-Cyclin E (Wang et al. 2008), and the mir-182 cluster can facilitate
transitions between stem cell states by increasing variability of specific target genes such as
Esrrb and Sox2 (Chakraborty 2020). It seems unlikely that differences between cells that
have high mir-290 expression and cells with high mir-182 relate to cell cycle, given that the
mouse embryonic stem cells in our study were sorted by cell stage (Methods). However, it
seems possible that any switch-like behavior relates to different stem cell states, reflecting
different compositions of pluripotency factors.

We further show that miR-293 is, in many ways, an outlier in the mir-290 cluster. It is the
only abundant miRNA that targets GC-rich genes (Suppl. Fig. 7) and is an outlier with regard
to its expression patterns and predicted targets in mouse embryonic stem cells (Ciaudo et al.
2009). miR-293 further appears to escape the global cellular precursor arm bias and in fact
may be regulated exactly opposite from all other miRNA, including its polycistronic
neighbors, by whatever factors drive said bias. This makes it an extremely interesting
candidate for future research into miRNA processing.

Surprisingly, the passenger strands (5-prime arms) of the mir-290 cluster are among the
most abundant miRNAs in mouse embryonic stem cells but have virtually no effect on their
targets, as measured by mRNA steady-state levels and half-lives (Figure 5C-D). This suggests
they can accumulate as by-products of the mature miR-290 miRNAs but are not loaded into
Argonaute. Their stability has previously been confirmed through miRNA half-life
estimates(Kingston and Bartel 2019).

Alternative miRNA functions are still understudied. The limited evidence we have to date
stems from mathematical models, reporter assays, or overexpression experiments and is
often limited to few miRNA-target interactions. We here reexamine existing hypotheses and
add physiological evidence for thousands of miRNA-target interactions at the RNA level.
Furthermore, we show that miRNA expression variability links to target covariation,
highlighting the importance of inter-cellular miRNA heterogeneity.

In summary, while several studies have profiled miRNAs and their targets in single cells,
there is a paucity of systematic and transcriptome-wide studies in individual mouse
embryonic stem cells. We here outline the landscape of miRNA and target expression
variation and covariation, and find that most miRNAs are stably expressed, with the notable
exception a few miRNAs. The mir-290 and mir-182 clusters are variably expressed and
negatively correlated, suggesting switch-like functions in defining distinct stem cell states.
We further find that most miRNAs induce expression variation at the RNA level, but some
may buffer variation at the protein level. miRNAs that are themselves highly and variably
expressed induce covariations between their targets. Lastly, miRNA primary transcripts can
be detected in whole-cell scRNA-seq data, opening up new possibilities in studying miRNA
biogenesis at fine resolution.
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Figure legends

Figure 1: miRNA profiling in single mouse embryonic stem cells by Small-seq. (A) Number
of distinct miRNAs detected in each single cell. (B) Top 25 miRNAs in mouse embryonic stem
cells. The number of detected molecules was estimated using unique molecular identifiers
(UMls) to resolve PCR duplicates. (C) Expression of top 10 miRNAs in 192 individual single
cells. The grey area represents the contribution of all miRNAs other than the top ten ones.
(D) Expression rank of miRNAs detecting in mouse embryonic stem cells by Small-seq and
bulk small RNA-seq (Leung 2011). Lower rank means higher expression. (E) Spearman’s rank
correlation between miRNA expression as profiled by Small-seq and three representative
bulk small RNA-seq data sets (Leung 2011, Bosson 2014, Davis 2012).

Figure 2: miRNA expression variation across single mouse embryonic stem cells. (A)
Principal component analysis (PCA) of 192 single cells by their miRNA expression profiles. (B)
Comparison of miRNA expression between two cells with similar profiles. Each dot indicates
expression of one miRNA. (C) Comparison of miRNA expression between two cells with
dissimilar profiles. (D) miRNA mean expression vs. expression variation. Each dot indicates
one miRNA. Red color indicates variably expressed miRNAs while blue indicates stable
expressed miRNAs. The grey dots are generated by random sampling and indicate expected
technical noise. (E) Expression of six select variable (red) and stable (blue) miRNAs across
192 cells. The density profiles are smoothened. (F) Heatmaps of variably expressed (top) and
stably expressed (bottom) miRNAs, indicating mean expression vs. miRNA half-life. Red color
indicates the presence of several miRNAs with those features; blue color indicates the
absence of miRNAs with those features.

Figure 3: miRNA expression covariation across single mouse embryonic stem cells. (A) Four
distinct miRNA co-expression groups across 192 cells. The miRNAs (rows) and cells (columns)
were grouped using unsupervised hierarchical clustering. Red color indicates high expression
relative to the mean for the given miRNAs, blue color indicates low expression. (B)
Correlation between expression of miRNA strands. Blue color indicates positive correlation
while red indicates negative correlation. (C) As in (B), but summing expression from 5-prime
and 3-prime arms of each miRNA hairpin. (D) As in (B), but the correlation was done on the
fraction of sequenced RNAs that originate from the 5-prime arm of the hairpin. Blue color
indicates that the two miRNA hairpins have similar arm select across the cells, while red
color indicates that the two hairpins have opposite arm selection across cells.

Figure 4: Expression covariation of miRNA primary transcripts. (A) Genome browser shot of
miRNA primary transcripts from the miR-17 cluster sequenced by Smart-seq2. The clustered
miRNAs (in blue shading) are cleaved out in the control cells (above) but retained in the
Drosha KO cells (below). Each grey shading indicates one sequence read; the 3’ end of the
primary miRNA is to the right. (B) miRNA primary transcript expression in control and Drosha
KO cells (left). Schematic of mature miRNAs that are part of the same miRNA primary
transcript (transcribed from the same genomic cluster). (C) Expression covariation of miRNA
primary transcripts. The color code indicates the Spearman’s ranked test correlation value.
Blue color indicates positively covarying primary transcripts.
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Figure 5: miRNA target repression in single cells. (A) Expression of miRNA targets in cells
devoid of miRNAs (Drosha KO) and control cells (parental). The expression is normalized so
that a cell with mean expression for the given target is assigned an expression value of 1.
The density plot is made of a compound of the predicted TargetScan targets for the top 10
expressed miRNAs in mouse embryonic stem cells (Methods). The mean expression of the
targets is upregulated (de-repressed) by ~15% in the Drosha KO cells. (B) Cumulative
distribution function (CDF) plots of the expression of targets of top miRNAs in mouse
embryonic stem cells. The insert boxes show miRNA expression ranks according to bulk small
RNA-seq (upper left corner) and Small-seq (lower right corner). (C) Heatmap of miRNA target
de-repression in Drosha KO vs. control cells. The color indicates the log fold-change in
expression, with red indicating stronger de-repression. The targets are sorted according to
confidence level, as estimated by the TargetScan cumulative score. (D) as in (C), but showing
changes to transcript half-lives in Drosha KO vs. control cells.

Figure 6: Expression variation of miRNA targets in mouse single embryonic stem cells. (A)
Heatmap of miRNA target expression variation across single cells, without perturbation. The
color code indicates expression variation (noise) as estimated by coefficient of variation
squared (CV?) residuals (Methods). Red color indicates that the targets of the miRNA are
naturally more variable. (B) As in (A), but showing changes in expression variation following
Drosha knockout. Blue color indicates miRNAs whose targets decrease in variation upon the
loss of the Drosha biogenesis protein. (C) Expression variation for select genes at the RNA
and protein level. Measurements were performed using combined single-cell RNA and
protein profiling in the same single human embryonic stem cells (Reimegard 2021). Lower
left panel: estimated translational efficiency and expression noise. The normalized RNA
variation was for select genes subtracted from the normalized protein variation, and the
genes were divided into three groups: genes with higher protein variation; genes with
comparable RNA and protein variation; and genes with higher RNA variation. For each
group, the estimated translational efficiency (Methods) was plotted. (D) difference between
protein and RNA expression and difference between protein and RNA variation. Background
genes were marked in grey, while miR-17 and miR-302 targets were marked in light blue and
blue respectively. Genes that are regulated by both miRNAs are marked in dark blue.

Figure 7: Expression covariation of miRNA targets in mouse single embryonic stem cells.
(A) Heatmap of miRNA target covariation across single cells. The covariation enrichment was
performed as previously described (Tarbier 2020). Blue color indicates mRNAs that are co-
expressed more frequently than expected by chance; red color indicates mRNAs that are co-
expressed less frequently than expected by chance. (B) Covariance enrichment for targets of
miRNAs belonging to different groups, considering the top expressed 16 miRNA families.
‘Variable’ indicates the 8 miRNA families with the highest expression variation, while ‘stable’
indicates the 8 miRNA families with the most stable expression. ‘Abundant’ indicates the 8
top expressed miRNA families; while ‘sparse’ indicates the 8 least expressed miRNA families
among this set.

15


https://doi.org/10.1101/2024.03.24.586475
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.24.586475; this version posted March 27, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

References

Agarwal V, Bell GW, Nam JW, Bartel DP. 2015. Predicting effective microRNA target sites in
mammalian mRNAs. Elife 4.

Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP. 2008. The impact of microRNAs on
protein output. Nature 455: 64-71.

Bartel DP. 2009. MicroRNAs: target recognition and regulatory functions. Cell 136: 215-233.

Bartel DP. 2018. Metazoan MicroRNAs. Cell 173: 20-51.

Bissels U, Wild S, Tomiuk S, Holste A, Hafner M, Tuschl T, Bosio A. 2009. Absolute quantification
of microRNAs by using a universal reference. Rna 15: 2375-2384.

Calabrese JM, Seila AC, Yeo GW, Sharp PA. 2007. RNA sequence analysis defines Dicer's role in
mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the
United States of America 104: 18097-18102.

Chakraborty M, Hu S, Visness E, Del Giudice M, De Martino A, Bosia C, Sharp PA, Garg S. 2020.
MicroRNAs organize intrinsic variation into stem cell states. Proceedings of the National
Academy of Sciences of the United States of America 117: 6942-6950.

Ciaudo C, Servant N, Cognat V, Sarazin A, Kieffer E, Viville S, Colot V, Barillot E, Heard E, Voinnet
0. 2009. Highly dynamic and sex-specific expression of microRNAs during early ES cell
differentiation. PLoS Genet 5: €1000620.

Conrad T, Marsico A, Gehre M, Orom UA. 2014. Microprocessor activity controls differential
miRNA biogenesis In Vivo. Cell Rep 9: 542-554.

Ebert MS, Sharp PA. 2012. Roles for microRNAs in conferring robustness to biological processes.
Cell 149: 515-524.

Elias AE, Nunez TA, Kun B, Kreiling JA. 2023. primiReference: a reference for analysis of primary-
microRNA expression in single-nucleus sequencing data. J Genet Genomics 50: 108-121.

Faridani OR, Abdullayev I, Hagemann-Jensen M, Schell JP, Lanner F, Sandberg R. 2016. Single-cell
sequencing of the small-RNA transcriptome. Nature biotechnology 34: 1264-1266.

Friedman RC, Farh KK, Burge CB, Bartel DP. 2009. Most mammalian mRNAs are conserved targets
of microRNAs. Genome research 19: 92-105.

Gambardella G, Carissimo A, Chen A, Cutillo L, Nowakowski TJ, di Bernardo D, Blelloch R. 2017.
The impact of microRNAs on transcriptional heterogeneity and gene co-expression
across single embryonic stem cells. Nature communications 8: 14126.

Grun D, Kester L, van Oudenaarden A. 2014. Validation of noise models for single-cell
transcriptomics. Nature methods 11: 637-640.

Gutierrez-Perez P, Santillan EM, Lendl T, Wang J, Schrempf A, Steinacker TL, Asparuhova M,
Brandstetter M, Haselbach D, Cochella L. 2021. miR-1 sustains muscle physiology by
controlling V-ATPase complex assembly. Sci Adv 7: eabh1434.

Hagemann-Jensen M, Ziegenhain C, Chen P, Ramskold D, Hendriks GJ, Larsson AJM, Faridani OR,
Sandberg R. 2020. Single-cell RNA counting at allele and isoform resolution using Smart-
seq3. Nature biotechnology 38: 708-714.

Hornstein E, Shomron N. 2006. Canalization of development by microRNAs. Nature genetics 38
Suppl: S20-24.

Hucker SM, Fehlmann T, Werno C, Weidele K, Luke F, Schlenska-Lange A, Klein CA, Keller A,
Kirsch S. 2021. Single-cell microRNA sequencing method comparison and application to
cell lines and circulating lung tumor cells. Nature communications 12: 4316.

Keller A, Groger L, Tschernig T, Solomon J, Laham O, Schaum N, Wagner V, Kern F, Schmartz GP,
Li Y et al. 2022. miRNATissueAtlas2: an update to the human miRNA tissue atlas. Nucleic
acids research 50: D211-D221.

Kingston ER, Bartel DP. 2019. Global analyses of the dynamics of mammalian microRNA
metabolism. Genome research 29: 1777-1790.

Kolodziejczyk AA, Kim JK, Tsang JC, llicic T, Henriksson J, Natarajan KN, Tuck AC, Gao X, Buhler M,
Liu P et al. 2015. Single Cell RNA-Sequencing of Pluripotent States Unlocks Modular
Transcriptional Variation. Cell Stem Cell 17: 471-485.

16


https://doi.org/10.1101/2024.03.24.586475
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.24.586475; this version posted March 27, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Lai EC. 2002. Micro RNAs are complementary to 3' UTR sequence motifs that mediate negative
post-transcriptional regulation. Nature genetics 30: 363-364.

Lappalainen T, Sammeth M, Friedlander MR, t Hoen PA, Monlong J, Rivas MA, Gonzalez-Porta M,
Kurbatova N, Griebel T, Ferreira PG et al. 2013. Transcriptome and genome sequencing
uncovers functional variation in humans. Nature 501: 506-511.

Li X, Cassidy JJ, Reinke CA, Fischboeck S, Carthew RW. 2009. A microRNA imparts robustness
against environmental fluctuation during development. Cell 137: 273-282.

Miska EA, Alvarez-Saavedra E, Abbott AL, Lau NC, Hellman AB, McGonagle SM, Bartel DP, Ambros
VR, Horvitz HR. 2007. Most Caenorhabditis elegans microRNAs are individually not
essential for development or viability. PLoS Genet 3: e215.

Mullokandov G, Baccarini A, Ruzo A, Jayaprakash AD, Tung N, Israelow B, Evans MJ,
Sachidanandam R, Brown BD. 2012. High-throughput assessment of microRNA activity
and function using microRNA sensor and decoy libraries. Nature methods 9: 840-846.

Reimegard J, Tarbier M, Danielsson M, Schuster J, Baskaran S, Panagiotou S, Dahl N, Friedlander
MR, Gallant CJ. 2021. A combined approach for single-cell mRNA and intracellular
protein expression analysis. Commun Biol 4: 624.

Rzepiela AJ, Ghosh S, Breda J, Vina-Vilaseca A, Syed AP, Gruber AJ, Eschbach K, Beisel C, van
Nimwegen E, Zavolan M. 2018. Single-cell mRNA profiling reveals the hierarchical
response of miRNA targets to miRNA induction. Mol Syst Biol 14: e8266.

Schmiedel JM, Klemm SL, Zheng Y, Sahay A, Bluthgen N, Marks DS, van Oudenaarden A. 2015.
Gene expression. MicroRNA control of protein expression noise. Science 348: 128-132.

Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. 2008. Widespread
changes in protein synthesis induced by microRNAs. Nature 455: 58-63.

Siciliano V, Garzilli |, Fracassi C, Criscuolo S, Ventre S, di Bernardo D. 2013. MiRNAs confer
phenotypic robustness to gene networks by suppressing biological noise. Nature
communications 4: 2364.

Tarbier M, Mackowiak SD, Frade J, Catuara-Solarz S, Biryukova I, Gelali E, Menendez DB, Zapata
L, Ossowski S, Bienko M et al. 2020. Nuclear gene proximity and protein interactions
shape transcript covariations in mammalian single cells. Nature communications 11:
5445.

Tsang J, Zhu J, van Oudenaarden A. 2007. MicroRNA-mediated feedback and feedforward loops
are recurrent network motifs in mammals. Molecular cell 26: 753-767.

Wang N, Zheng J, Chen Z, Liu Y, Dura B, Kwak M, Xavier-Ferrucio J, Lu YC, Zhang M, Roden C et al.
2019. Single-cell microRNA-mRNA co-sequencing reveals non-genetic heterogeneity and
mechanisms of microRNA regulation. Nature communications 10: 95.

Wang Y, Baskerville S, Shenoy A, Babiarz JE, Baehner L, Blelloch R. 2008. Embryonic stem cell-
specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nature
genetics 40: 1478-1483.

Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD,
McDermott GP, Zhu J et al. 2017. Massively parallel digital transcriptional profiling of
single cells. Nature communications 8: 14049.

17


https://doi.org/10.1101/2024.03.24.586475
http://creativecommons.org/licenses/by-nc-nd/4.0/

A miRNiafxtegiieprint doghttps://dorergé@:ii@E51080 36 886UMERNWs version posted March 27, 2024. The copyright holder for this preprint
single(ibiske\ESSdetiscevfied by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

3 made available under aCC-BY-NC-ND 4.0 International license.
2 g w0
2 8
8 § 300
58 K}
g E 200
0
Q
5, lnNEEEEEEnEEes
0000000000000 000000000000
RPN RELRLD
0 TTCOWTNNTCTT-FTOOW TOMDOMO T TN
! ' ! e SRR RER5 s V8I8 72838 &
R Tiddidddd fed e iddEalddd
miRNAs detected EEEEEEEEEECEEE EEE EEgEEEQ
15 15
miRNA complexity
individual seed
miRNAs families
P
3
©
3
=
he]
1]
40 60 80 20 40 60 80 100
Percentage of all miRNA reads Percentage of all miRNA reads
D Expression ranks E Comparison with
of reliably detected miRNAs bulk small RNA-seq
S4 e e o © Py
- ° e oy 08
o ‘4 L) Y
g= ®e ‘, LX 4
© L)
<‘Z<”§ ol o° %0"°0 LY &, 0.4
£s © o % © 0.61 & %o,)
@ g . . o & & 72
=3 9 ey,
S I D . °
)
o '-.'. 'o.' tho = 0.62 ————— 0.62 0.74 &% ’
DN Py LX 4 12 K
% o oy p<2.2x10 .04
% %
o- T T T T T 1 O@
0 20 40 60 80 100 049 071 086 %% Mos
Small-seq

Figure 1


https://doi.org/10.1101/2024.03.24.586475
http://creativecommons.org/licenses/by-nc-nd/4.0/

A Principal kimipbnprepninilgkis https:/dok

=

.1101/20e4sGithdsafldir 5; this version posted March 27, 2024. The copyright holder for this preprint

(which-was not y peer review) is tharuthexgresiaonvho has granted bioRxiv a license to display the preprint in perpetuity. It is
2rAdde available under aC%—gBY-NC-ND 4.0 International license.
p<2.3x102
ooOO ©

100
1

g [©]
&

10

€0d

miRNA expression in cell C39 (A.

1
L

T 1
100 1000
miRNA expression in cell C25 (A.U.)

C Cells with dissimilar
-8 miRNA expression
o 2 27 p=069
pol Q 5 p<23x102 o %O
0o ° °" 6 0°
=0/ © o o
o ) o
£ [} g ?O
c 0 X5
o
S o o©O
D .. o fols ° ol 8
miRNA expression variability s ggo &
3] [
< Bie e
Z O 000 ©
‘E~-Jo_oooe
T T T 1
- 1 10 100 1000
(3 miRNA expression in cell A02 (A.U.)
€ . . - -y
£ miRNA half-life and variability
g 30+,
c
°
@
g
& ?;' 2 . &
i o
- o random samplllng () ) E’ 201 z
o | e stable expression = <
e © variable expression ° g
= &
= @
r T 1 ©
0.01 1 100 < 10, S
=z =z
Mean expression Pé >z
E miRNA expression profiles J
0
g o mmu—m!H—294—3p 30 SR
= © mmu-miR-25-3p F 1
@ mmu-miR-16-5p
© mmu-miR-183-5p
g @ mmu-miR-293-5p &
S @® mmu-miR-103-3p 2 o
2 201 s
2z £ 3
[7] o Py o
§ 3 2
E Q
3
< ] 3
- 10 )
S =z
> | T z
(=] E %
o
=3
° T T T T T 0- : . :
50 100 150 200 250 1 4 16 64
miRNA expression Mean normalized miRNA expression

Figure 2


https://doi.org/10.1101/2024.03.24.586475
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.24.586475; this version posted March 27, 2024. The copyright holder for this preprint
A (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

Group A Group B Group C mad%%\ﬁ%llsble under@r%gp-%Y-NC-ND 4.0 International license.

| I | mir-26a-5p
miR-182-5p
1 miR-183-5p
miR-298-5p
| miR-30e-5p
| miR-291b-5p
I miR-291a-5p
| miR-290a-5p
miR-293-3p
miR-294-5p
| | miR-293-5p
| miR-295-3p
miR-291a-3p
miR-292a-3p
miR-294-3p
| miR-92a-1-3p
r miR-25-3p
miR-103-3p
miR-130a-3p
I miR-16-5p

Scaled expression

—
32101234 2
o
B g
o o 22 o I3
Q0 QQ A QMM A Q Q Q Q Q
WWOLWW [V OO [O[Waw® O T
Il el ol oo | © | W I [Tw Il | -
TANNDUW-—TOOWLW-—ANTAN® [ T [ ©O []
OCDVDDVDDDDDDDDODD OO D T~ O (7}
T R e S NI AN N o
T CCC T CCCCCTXTxT o
EEEEEEEEEEEEEEEEEEEE 3
miR-26a-5p | @ @] 0000900 ®
. m ]
miR-182-5p (] [ ] x =
miR-183-5p ® 00 ° 3
miR-295-5p ® @ £y
miR-291a-5p 000 a 'g
miR-294-5p o0 o
miR-290a-5p ( =] D
. © © ©
miR-293-p CJ o 388888288383
miR-295-3p @ ® ® - AA-~AN-~NAN- QAN ey
miR-291a-3p @ 5 293[] O °
miR-292a-3p o 290a 3
miR-294-3p @ <. 16 Q
miR-292a-5p ® o 182 g
miR-293-5p @ s 20a 5
miR-16-5p = 26a s
miR-20a-5p 3 18 .
miR-19b-3p T 21: I
miR-7a-5p 4 1]
" 292a =
miR-21a-5p > 19 =
miR-183-3p @ 204 @ o &
S
s 295 o -0 T
291a L) S

-1 -08-06-04-02 0 02 04 06 08 1

Spearman’s ranked correlation coefficient

Figure 3


https://doi.org/10.1101/2024.03.24.586475
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.24.586475; this version posted March 27, 2024. The copyright holder for this preprint
A (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

=~ ———made;avaitable-underaC€-BY-NC-ND 4.0 International license.

[EEE]
©
=
=
9]
<4
©
Q.
©
<
&
<t
o
CBEE]
|-
o -
p>4
s |
5
<4
(=)
miR-17 family
[ Drosha kO
Drosha Parental
N
&
pri-mir-21 <&
B
N pri-mir-21 x
& o
-mir-7 S
B [ 3
pri-mir-7 x 3
KA 2,
pri-mir-16 & El
I 5PN pri-mir-16 x %
P .. °
pri-mir-17 ST 3
| ] SFIFISES pri-mir-17 x EA
| B A R R A —— &
mir-290 b\‘o‘\'b’y@a,p.o,
vi-mir-
S & &S &S
0 400 800 4 5 B BN BN
i 5 3 1 08-06-0402 0 02 04 06 08 1
Average Expression

(RPM)

Figure 4


https://doi.org/10.1101/2024.03.24.586475
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.24.586475; this version posted March 27, 2024. The copyright holder for this preprint
A miGNBIrerressicdtisievogqrapareddajninsiuaeltarerl, who has granted bioRxiv a license to display the preprint in perpetuity. It is
expression heterogeweityavailable under aCC-BY-NC-ND 4.0 International license.

0.8 i

Parental cells
Drosha KO

o
)
|

Fraction of cells
o
S
|

0.2 -
0.0 -
[ I I I ]
0 1 2 3 4
Normalized miRNA target expression in single cells
B miRNA target expression changes in Drosha KO cells (CDF)
8 | @ MiR-2912-3p/294-3p/295-3 |-~ -+ - <= -
|| @ miR-17-5p/20-5p/93-5p/106
@ miR-290a-5p/292a-5p
O miR-19-3p
@ miR-15-5p/16-5p/195-5p/32
O miR-25-3p/32-5p/92-3p/363
O miR-292a-3p/467a-5p - /
O miR-21ac-5p /
8 | ® mir-7-5p p
© miR-130-3p/301-3p
O miR-30-5p/384-5p
O miR-26-5p
@ miR-183-5p
@ miR-291-5p
@ miR-182-5p
I @ miR-293-3p
2 8 1| ® control
[
2 Expression ranks
5 L !
S in SRNA-seq Expn'essmn ranks
o in'Small-seqg
8 (bulk) -
<] (single-cell)
@
g 2 @ miR-291a-3p/294-3p/295-3p
a @ miR-290a-5p/292a-5p
@ miR-291-5p
@ miR-293-3p
O miR-25-3p/32-5p/92-3p/363
O miR-292a-3p/467a-5p
@ miR-182-5p
O miR-30-5p/384-5p
& 1 O miR-26-5p
@ miR-183-5p
© miR-130-3p/301-3p
@ miR-15-5p/16-5p/195-5p/32
@ miR-17-5p/20-5p/93-5p/106
@ miR-7-5p
O miR-21ac-5p
QO miR-19-3p
L @ control
T T T T T
-05 0.0 05 1.0 15
Derepression as log2 FC (KO/WT)
C miRNA target expression changes in Drosha KO cells
miR-291a-3p/294-3p/295-3p/302abd-3p 10
miR-292a-3p/467a-5p ’
miR-17-5p/20-5p/93-5p/106-5p
miR-130-3p/301-3p =
miR-25-3p/32-5p/92-3p/363-3p/367-3p 2 0.5
miR-293-3p ]
miR-15-5p/16-5p/195-5p/322-5p/497-5p | F g
o
miR-19-3p —| r ﬁ
miR-290a-5p/292a-5p | oo 0.0
miR-30-5p/384-5p | = '-‘c-
miR-182-5p — ro2
miR-26-5p — r 9
i _5p - L & -0.5
miR-291-5p =3
miR-183-5p - - oo
control — L
miR-21ac-5p | - 10
miR-7-5p | - o
I L L L L e e e e e .
BR88BRSLILSLEIRSEIL
- rrrr A NANOOO®OS S 0
top ranking targets considered
D miRNA target half-life changes in Drosha KO cells
N Y T Y T T
miR-292a-3p/467a-5p -
miR-291a-3p/294-3p/295-3p/302abd-3p —| - 0.4
miR-17-5p/20-5p/93-5p/106-5p — F o
miR-19-3p — -2 0.3
miR-293-3p —| s
miR-130-3p/301-3p —| - 8 02
miR-25-3p/32-5p/92-3p/363-3p/367-3p —| -3 ’
miR-290a-5p/292a-5p — - N
miR-15-5p/16-5p/195-5p/322-5p/497-5p — — E 0.1
miR-182-5p —| — ‘g
miR-7-5p — - < 0.0
miR-183-5p — -3
miR-26-5p — - 5
miR-21ac-5p - 3 —01
=
miR-30-5p/384-5p [ ] - &
miR-291-5p — -0.2
control - —
T T 1T TFT T T T T T T T 1T
0000900090990 090999000 o -0.3
OWOoOWLWOoOWOoWwWOoWwWOowWwWOolwowOows
Fr AN AOOTIDODOUODOORNDDIDOD S

top ranking targets considered

Figure 5


https://doi.org/10.1101/2024.03.24.586475
http://creativecommons.org/licenses/by-nc-nd/4.0/

A

bioRxiv preprint dQi: htt
(which was néﬂ%éh\ge

s://doi,0rg/10.1101/2024.03.24.586475; this versjon poﬂ_
FOlEARS IRt ORISR IeRARIN AN MO hntod bi
. made-avai Hablo vnder aCC | BY| D4.01
miR-21ac-5p
miR-30-5p/384-5p 0.15
miR-466bcp-3p
miR-297bc-3p/466ade-3p/4679g
miR-26-5p L 0.10
miR—25-3p/32-5p/92-3p/363-3p/367-3p :
miR-15-5p/16-5p/195-5p/322-5p/497-5p
miR-17-5p/20-5p/93-5p/106-5p ||
miR-19-3p - 0.05
miR—-291a-3p/294-3p/295-3p/302abd-3p ([N 0
miR-182-5p
miR-183-5p - 0.00
miR-292a-3p/467a-5p
let-7-5p_miR-98-5p
miR-291-5p | L 005
miR-290a-5p/292a-5p ’
control
miR-293-3p
L I S O S B B B -0.10
83833823833 3383838333838
v—v—N(\l(")(‘OVVIOLD(D(DI\I\wwG)O)vO_

Top ranking targets considered

miRNA target transcript noise changes in Drosha KO cells

=

miR-21ac-5p

miR-291-5p

miR-290a-5p/292a-5p
miR-291a-3p/294-3p/295-3p/302abd-3p
miR-25-3p/32-5p/92-3p/363-3p/367-3p
miR-466bcp-3p

miR-183-5p
miR-17-5p/20-5p/93-5p/106-5p
miR-30-5p/384-5p
miR-297bc-3p/466ade—-3p/467g
miR-19-3p

miR-293-3p
miR-15-5p/16-5p/195-5p/322-5p/497-5p
control

miR-292a-3p/467a-5p

miR-26-5p

miR-182-5p

let—7-5p/miR-98-5p

0.06

0.04

- 0.02

- 0.00

- -0.02

- -0.04

-0.06

100—{

150
750
800
850
900
950
1000 +

T
o o
n o
© ~

550
600 —

T
o
o
1o}

200
250
300
350
400
450

Top ranking targets considered

Mal

iv]

ntern

Protein per mRNA ratio (A.U.)

2

8

6

RGeS ano

al licg1R5tein and RNA variation correlate weakly

°
* r ~0.366
c N p ~0.005
ie]
_(-3 °
I
: - .
‘© (1)
I o * ) -
.g' [ X ] .. .......
1) ° ° o g0e.. """ (]
N © — . Y o®®
ﬁ P ° .“ {4 [ ) M L4
£ o o ° °
8 [ ] L] [ ] ‘ ° o o ®
=z ° ° e
T °
°
°
[ I I 1
-2 -1 0 1

Normalized RNA variation

miRNA target noise (RNA and protein levels)

' = —~ o]
- < ©
3 2 P S <
_ o —_ o
! OOO 1
3 £ o) £ “
- [} 3
_ : g g
3 8 ©1%00e0 5 -
: c
: s ® 5 o
- @ T 7
€71 0§ e
ol o
3 : ‘o © 38 9
Jd : S - 2~ 0
3 1 3 R
: ‘ D o S I~ [
=) (o

low |
medium
high |

O miR-17 targets O non-targets

Protein variation )
@ miR-302 targets @ co-targets

- RNA variation

Figure 6



https://doi.org/10.1101/2024.03.24.586475
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.24.586475; this version posted March 27, 2024. The copyright hglder for this preprint
A (which was not certified by peer review) isiRNtharfetdenstgtasosenpresionXiv a license to display the preprifdin perpehiRNAtssibsets

made available under aCC-BY-NC-ND 4.0 International license. o
miR-291a-3p/294-3p/295-3p/302abd-3p 3
MiR-17-5p/20-5p/93-5p/106-5p
: 0
A miR-26-5p M 2 3 o Ea
miR-292a-3p/467a-5p || 3 =8 =1 |
. o
miR-182-5p s g £
miR-293-3p £ 1 58
miR-19-3p S8 gi ©
miR-30-5p/384-5p &< 0 8% O]
i Qg c 2
miR-183-5p I g 838
miR-25-3p/32-5p/92-3p/363-3p/367-3p g8 gg .
miR-21ac-5p % 3 -1 Sk o
control o% »g °©
MiR-15-5p/16-5p/195-5p/322-5p/497-5p | = 5
let-7-5p/miR-98-5p B B
miR-290a-5p/292a-5p i
miR-291-5p 3 T L B
O O 9 9 ©9 © © O © O 9O O 9O O O O O O o -
o wn o n o n (=) n o 0 o 0 o wn o n o n o A
— ~— o sV (3] [} < < wn o) © © ~ ~ © © (] [} 9 0\0 ‘Q\Q’ 6@,(\
R > N
) : O X N L
Top ranking targets considered R ) ® B

Figure 7


https://doi.org/10.1101/2024.03.24.586475
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Abstract
	Background
	Discussion
	References

