

1 Five millennia of mitochondrial introgression in Atlantic bluefin tuna  
2 identified using ancient DNA

3 Emma Falkeid Eriksen<sup>1\*</sup>, Adam Jon Andrews<sup>1,2,3</sup>, Svein Vatsvåg Nielsen<sup>4</sup>, Per Persson<sup>5</sup>,  
4 Estrella Malca<sup>6,7</sup>, Vedat Onar<sup>8</sup>, Veronica Aniceti<sup>9</sup>, G  el Piqu  s<sup>10</sup>, Federica Piattoni<sup>3</sup>,  
5 Francesco Fontani<sup>11</sup>, Martin Wiech<sup>12</sup>, Keno Ferter<sup>12</sup>, Oliver Kersten<sup>1</sup>, Giada Ferrari<sup>1</sup>, Alessia  
6 Cariani<sup>3</sup>, Fausto Tinti<sup>3</sup>, Elisabetta Cilli<sup>11</sup>, Lane M. Atmore<sup>1</sup>, Bastiaan Star<sup>1\*</sup>

7 <sup>1</sup> Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences  
8 (IBV), University of Oslo, Norway

9 <sup>2</sup> Norwegian Institute of Water Research, Oslo, Norway

10 <sup>3</sup> Department of Biological, Geological and Environmental Sciences, University of Bologna,  
11 Ravenna, Italy

12 <sup>4</sup> Stavanger Maritime Museum, Stavanger, Norway

13 <sup>5</sup> Museum of Cultural History, University of Oslo, Norway

14 <sup>6</sup> Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami,  
15 Florida, United States of America

16 <sup>7</sup> NOAA Fisheries, Southeast Fisheries Science Center, Miami, Florida, United States of  
17 America

18 <sup>8</sup> Osteoarchaeology Practice and Research Centre, Faculty of Veterinary Medicine, Istanbul  
19 University-Cerrahpa  , Istanbul, T  rkiye

20 <sup>9</sup> Museum of Natural History, University of Bergen, Bergen, Norway

21 <sup>10</sup> ASM, CNRS, Universit   Paul Val  ry-Montpellier 3, Montpellier, France

22 <sup>11</sup> Department of Cultural Heritage, University of Bologna, Ravenna, Italy

23 <sup>12</sup> Institute of Marine Research, PO Box 1870, N-5817 Bergen, Norway

24 \*Corresponding authors: emeriks@uio.no, bastiaan.star@ibv.uio.no

25

26

## 27 Abstract

28 Mitogenomic (MT) introgression between species is readily documented in marine fishes.  
29 Such introgression events may either be long-term natural phenomena or the result of human-  
30 driven shifts in spatial distributions of previously separated species. Determining the drivers  
31 behind MT introgression is stymied by the difficulty of directly observing patterns of  
32 interbreeding over long timescales. Using ancient DNA spanning five millennia, we here  
33 investigate the long-term presence of MT introgression from Pacific bluefin tuna (*Thunnus*  
34 *orientalis*) and albacore (*Thunnus alalunga*) into Atlantic bluefin tuna (*Thunnus thynnus*), a  
35 species with extensive exploitation history and observed shifts in abundance, and demographic  
36 distribution. Comparing ancient (n=130) and modern (n=78) mitogenomes of specimens  
37 covering most of the range of Atlantic bluefin tuna we detect no significant spatial or temporal  
38 population structure. This lack of spatiotemporal genomic differentiation is indicative of  
39 ongoing gene flow between populations and large effective population sizes over millennia.  
40 Moreover, we identify introgressed MT genomes in ancient specimens up to 5000 years old  
41 and find that this rate of introgression has remained similar through time. We therefore  
42 conclude that MT introgression in the Atlantic bluefin tuna is to date unaffected by  
43 anthropogenic impacts. By providing the oldest example of directly observed MT introgression  
44 in the marine environment, our results highlight the utility of ancient DNA to obtain temporal  
45 insights in the long-term persistence of such phenomena.

## 46 Introduction

47 Genetic introgression is the integration of genetic material from one parent species into another  
48 following interspecific hybridization and backcrossing (Rhymer & Simberloff, 1996).  
49 Although frequency of the phenomenon across biological systems remains debated, the  
50 increased use of next-generation sequencing across non-model taxa has revealed introgression  
51 to be a more common phenomenon in nature than previously thought (Dagilis et al., 2022). The  
52 majority of documented introgression in animals involves introgression of the mitochondrial  
53 (MT) genome (Sloan et al., 2017; Pons et al., 2014; Toews & Brelsford, 2012). Typically  
54 inherited maternally in vertebrates, the non-recombining introgressed mitogenome remains  
55 largely intact over time (Seixas et al., 2018; Brown, 2008). The presence of introgressed MT  
56 haplotypes can cause significant bias when using mitogenomic data to describe a species  
57 demographic properties or evolutionary history. Even rare hybridization events can result in  
58 the presence of whole MT haplotypes that do not accurately reflect the typical history or

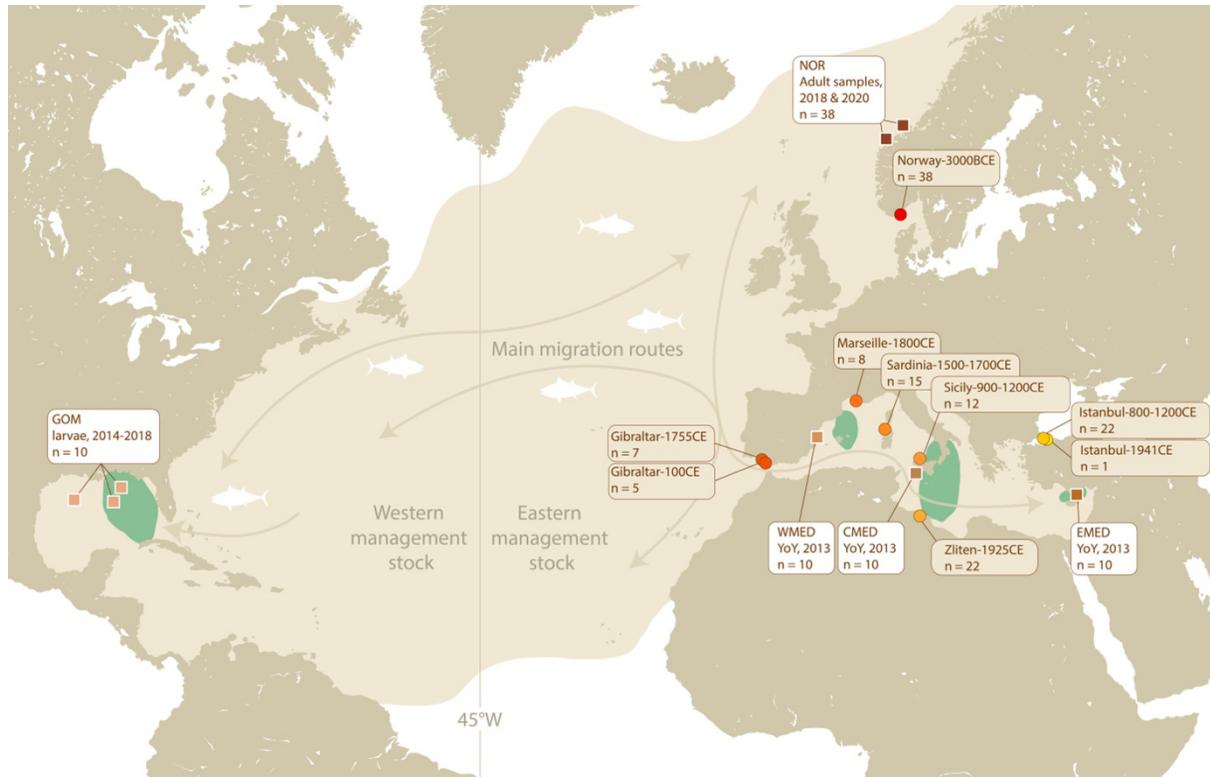
59 demography of the taxon. For example, the presence of introgressed MT haplotypes may  
60 dominate genealogies with recent dispersal history and thereby overshadow genetic signals  
61 from past dispersal events (Sloan et al., 2017; Ballard & Whitlock, 2004). Presence of  
62 introgressed, heterospecific alleles and haplotypes will also affect population genomic analyses  
63 by inflating measures of genetic diversity and divergence (Oosting et al., 2023; Rodriguez &  
64 Krug, 2022; Wang et al., 2022; Hawks, 2017). Avoiding such inflation is important because  
65 these statistics can influence management choices (Willi et al., 2022; Hohenlohe et al., 2021;  
66 Kardos et al., 2021) and inflated measures of genetic diversity or effective population size may  
67 exaggerate the genetic robustness of a truly vulnerable population.

68 Marine fish hybridize according to their ecologies and life history strategies, thus the  
69 rate of introgression will vary according to migration behavior, spawning site overlap,  
70 fecundity, spawning ontology, and offspring survival (Montanari et al., 2016; Gardner, 1997;  
71 Hubbs, 1955). In the economically important redfish (*Sebastes spp.*), high rates of introgressive  
72 hybridization (15% of all samples) have been found between two species (*S. fasciatus* and *S.*  
73 *mentella*) that live sympatrically in hybrid zones and yet maintain their morphology,  
74 resembling one of the parent species (Benestan et al., 2021; Roques et al., 2001). Likewise,  
75 introgression has been observed in European seabass (*Dicentrarchus labrax*) (Duranton et al.,  
76 2020; Vandeputte et al., 2019), capelin (*Mallotus villosus*) (Cayuela et al., 2020; Colbeck et  
77 al., 2011), European anchovy (*Engraulis encrasicolus*) (Le Moan et al., 2016), Australasian  
78 snapper (*Chrysophrys auratus*) (Oosting et al., 2023) and Atlantic and Pacific herring (*Clupea*  
79 *harengus* and *C. pallasii*) (Semenova, 2020).

80 Formation of hybrid zones after recent range shifts induced by contemporary climate  
81 change have already been observed in a number of species (Kersten et al. 2023; Ottenburghs,  
82 2021; Garroway et al., 2010; Taylor & Larson, 2019; Ryan et al., 2018) including marine fish  
83 (Muñoz et al., 2014; Potts et al., 2014). The formation of such hybrid zones can have both  
84 deleterious and advantageous effects. For instance, in trout, warmer freshwater temperatures  
85 and lower precipitation is expected to increase introgressive hybridization between native  
86 European brown trout (*Salmo trutta*) and released non-native brown trout in Mediterranean  
87 rivers, potentially leading to loss of local genetic variants (Vera et al., 2023). Yet in rainbowfish  
88 (*Melanotaenia spp.*), it has been suggested that introgressive hybridization contributes to  
89 climate change resiliency by incorporating potentially adaptive genetic variation (Brauer et al.,  
90 2023; Turbek & Taylor, 2023). Regardless of the evolutionary consequences, knowledge about  
91 the *timing* of the introgression is necessary to understand if it is anthropogenic impacts that

92 increase rates of hybridization, thereby positively or negatively altering the adaptive potential  
93 of species (Xuereb et al., 2021; Hoffmann & Sgrò, 2011).

94 In this study, we investigate introgression in the ecologically and economically  
95 important Atlantic bluefin tuna (*Thunnus thynnus*, Linneaus 1758), a highly migratory marine  
96 predatory fish distributed across the Atlantic Ocean (SCRS, 2023; Block, 2019; Nøttestad et  
97 al., 2020). Atlantic bluefin exhibits strong natal homing behavior (Brophy et al., 2016;  
98 Boustany et al., 2008; Block et al., 2005) and is therefore managed as two separate stocks: the  
99 larger Eastern stock spawning predominantly in the Mediterranean, and a smaller Western  
100 stock spawning predominantly in the Gulf of Mexico (ICCAT, 2023). Recent studies, however,  
101 have demonstrated weak genetic divergence in Atlantic bluefin and the existence of a  
102 previously unknown spawning ground in the Slope Sea where the stocks seem to interbreed  
103 (Díaz-Arce et al., 2024; Aalto et al., 2023; Andrews et al., 2021; Rodríguez-Ezpeleta et al.,  
104 2019), thereby challenging the assumption of two reproductively isolated populations. After  
105 severe international overfishing of Atlantic bluefin in the last century, the Eastern Atlantic  
106 bluefin stock has at present efficiently recovered due to strict management measures and  
107 favorable oceanographic conditions in the recent decade (ICCAT 2022a, 2022b) followed by  
108 improved recruitment with a series of very strong year classes (Reglero et al. 2018; Garcia et  
109 al. 2013; ICCAT 2023). The Atlantic bluefin has an extensive exploitation history, starting in  
110 the early Neolithic (ca. 6000 BCE), expanding through the Greek and Roman era and  
111 developing into an intense fishing industry towards the end of the last millennium (Andrews et  
112 al., 2022). Consequently, Atlantic bluefin stocks were depleted by the 21st century (Block,  
113 2019; MacKenzie et al., 2009), leading to shifts in its demographic distribution and foraging  
114 behavior (Di Natale, 2015; MacKenzie et al., 2014; Andrews et al., 2023a; Worm & Tittensor,  
115 2011). These distributional changes, as well as the establishment of potentially new spawning  
116 grounds may affect the rate of introgression in the species by providing increased or decreased  
117 opportunities for hybridization.


118 MT introgression within the *Thunnus* genus has been well documented, and together  
119 with the lack of reliable phylogenetically informative markers to distinguish the species,  
120 contributed to an unresolved phylogeny within the genus until recently (Alvarado Bremer et  
121 al., 1997; Chow et al., 2006; Chow & Kishino, 1995; Díaz-Arce et al., 2016; Santini et al.,  
122 2013; Viñas & Tudela, 2009). The Atlantic bluefin was previously thought to be a subspecies  
123 of Northern bluefin tuna together with Pacific bluefin (*Thunnus orientalis*, Temminck and  
124 Schlegel 1844). The bluefins are now regarded as distinct species (Chow et al., 2006; Díaz-  
125 Arce et al., 2016) with non-overlapping ranges (Tseng et al., 2011) (see Figure S1). The Pacific

126 bluefin, distributed across the North Pacific Ocean, is closely related to albacore tuna (*Thunnus*  
127 *alalunga*, Bonnaterre 1788) in mitochondrial phylogenies (Gong et al., 2017; Viñas & Tudela,  
128 2009; Chow et al., 2006). Albacore tuna is found in both the Pacific, Indian and Atlantic  
129 Oceans, including the Mediterranean Sea, typically preferring warmer waters than the Pacific  
130 and Atlantic bluefins, but with largely overlapping ranges and spawning areas (Chow &  
131 Ushijima, 1995; Saber et al., 2015). In the most recent and resolved nuclear phylogeny, the  
132 albacore tuna occurs as the sister-species to the other *Thunnus* species, and the Pacific and  
133 Atlantic bluefin form a monophyletic group (Díaz-Arce et al., 2016; Ciezarek et al. 2018) (see  
134 Figure S1).

135 MT introgression has been demonstrated from both albacore and Pacific bluefin into  
136 the Atlantic bluefin and from the Atlantic bluefin and albacore into the Pacific bluefin, but no  
137 MT introgression has been found in albacore (Alvarado Bremer et al., 2005; Carlsson et al.,  
138 2004; Chow & Kishino, 1995; Rooker et al., 2007; Viñas et al., 2003, 2011; Viñas & Tudela,  
139 2009; Chow et al., 2006; Chow & Inoue, 1993). In the Atlantic bluefin, the rates of  
140 introgression from either albacore or Pacific bluefin are similar at around 2-5% (Rooker et al.,  
141 2007; Viñas & Tudela, 2009). Nonetheless, it is unclear when these introgression events started  
142 to occur or whether they are ongoing. In addition to the distributional shifts likely caused by  
143 high fishing pressures, it is possible that climate warming has contributed to novel  
144 opportunities for introgression in recent decades. The distribution of Atlantic bluefin over the  
145 last century has fluctuated with temperature (Faillettaz et al., 2019; Ravier & Fromentin, 2004),  
146 and ocean warming has been implicated in altering migration patterns, spawning ontology, and  
147 habitats of the Atlantic bluefin (Díaz-Arce et al., 2023; Faillettaz et al., 2019; Fiksen & Reglero,  
148 2022; Muhling et al., 2011). Determining the timing of hybridization events can therefore shed  
149 light on the drivers of introgression.

150 DNA extracted from historical or ancient samples (hDNA or aDNA) allows us to  
151 directly investigate the timing of introgression events and to elucidate potential changes in  
152 population structure and genetic diversity over time (Kersten et al. 2023). Fish bones have  
153 physiological qualities that may increase the likelihood of finding well preserved DNA (Ferrari  
154 et al., 2021; Kontopoulos et al., 2019; Szpak, 2011) allowing for whole genome sequencing  
155 (Star et al., 2017), even from very limited amounts of bone (e.g. <10 mg) (Atmore et al., 2023).  
156 Here we use such aDNA methods to analyze mitogenomes from 130 ancient and 78 modern  
157 Atlantic bluefin spanning a period of approximately 5000 years (Figure 1). By sampling both  
158 before and after the period of heavy exploitation (1970-2007) and ongoing climate change, we

159 investigate spatiotemporal patterns of genetic diversity and provide the longest historical time  
160 series of the presence of MT introgression in the marine environment to date.



161  
162 *Figure 1: Distribution of the Atlantic bluefin tuna, including spawning areas (green) currently considered by*  
163 *management (adapted from IMR (2021)). The equal-distance line (45°W) separates the Eastern and Western*  
164 *stocks for management purposes. Sample locations of modern (squares, white boxes) and ancient tuna (circles,*  
165 *brown boxes) used in this study are indicated on the map. Arrows indicate the main migration routes of adult*  
166 *Atlantic bluefin (adapted from Fromentin et al., 2014). GOM = Gulf of Mexico, NOR = Norway, WMED =*  
167 *Western Mediterranean, CMED = Central Mediterranean, EMED = Eastern Mediterranean. YoY = young-of-*  
168 *the-year.*

## 169 Methods

### 170 Collection, extraction, and sequencing of ancient samples from Norway

171 38 Neolithic (ca. 3000 BCE) tuna bones from the south of Norway were obtained from three  
172 archaeological excavations at Jortveit from 2018 to 2020. Bones were found at varying depths  
173 (42-130 cm) in six of nine total trenches and were estimated to be from 3700-2500 BCE based  
174 on radiocarbon dating of wood and charcoal from the sediment profiles, as well as directly  
175 dated bone harpoons. Three of the bones were also directly radiocarbon dated to the period  
176 approximately 3400-2800 BCE (Nielsen, 2020a, 2020b, 2020c; Nielsen & Persson, 2020).

177 All laboratory work prior to PCR was performed in a dedicated aDNA laboratory at the  
178 University of Oslo, following strict anti-contamination protocols (Gilbert et al., 2005; Llamas  
179 et al., 2017). Upon introduction to the aDNA lab, bones were brush-cleaned and UV-ed ten  
180 minutes on each side to reduce surface DNA contamination. The bones were then cut using an

181 electric dentistry tool with an attached cutting disc in a sterile extraction hood, preserving  
182 morphometric landmarks. Cut fragments were crushed using a custom designed stainless-steel  
183 mortar as described in Gondek, Boessenkool, and Star (2018).

184 All samples were extracted using a standard extraction protocol adapted from Dabney  
185 et al. (2013) after a pre-digestion step (DD from Damgaard et al. 2015) or mild bleach treatment  
186 and pre-digestion (BleDD from Boessenkool et al., 2017) as described in Ferrari et al. (2021)  
187 (Table S1). In summary, powdered bone (2 × 200 mg per sample) was subjected to the DD or  
188 BleDD treatment and digested in 1 ml 0.5 M EDTA, 0.5 mg/ml proteinase K and 0.5% N-  
189 Laurylsarcosine for 18-24 h at 37 C. Combined digests were extracted with 9 × volumes of PB  
190 buffer (QIAGEN) and DNA was purified with MinElute columns on a QIAvac 24 Plus vacuum  
191 manifold system (QIAGEN).

192 Dual-indexed sequencing libraries were built as double stranded, blunt-ended libraries  
193 following Meyer and Kircher (2010) and Kircher et al. (2012) with modifications or as single  
194 stranded libraries following the Santa Cruz Reaction (SCR) protocol (Kapp et al. 2021) (Table  
195 S1). Meyer and Kircher libraries were built from 20 µL of ligated DNA extract or extraction  
196 blanks and performed in half volumes reactions. The single stranded SCR libraries were built  
197 from 3-20 µL of ligated DNA extract (depending on the DNA concentration) or 20 µL  
198 extraction blanks using dilution tier 4. Indexing PCRs were performed with Taq Pfu Turbo Cx  
199 HotStart DNA polymerase (Agilent) with the following cycling conditions: 2 min activation at  
200 95 C, 30 s denaturation at 95 C, 30 s annealing at 60 C, 1 min elongation at 72 C, and 10 min  
201 final extension at 72 C. Sample extracts were subject to 12 PCR cycles, while extraction blanks  
202 were subject to 30 PCR cycles to increase the chance of detecting contamination. Amplified  
203 libraries were cleaned using Agencourt AMPure XP PCR purification beads (Bronner et al.,  
204 2013) and examined on a Fragment Analyzer™ (Advanced Analytical) using the High  
205 Sensitivity NGS Fragment Analysis Kit to determine suitability for sequencing. Libraries were  
206 sequenced on the Illumina HiSeq 4000 or NovaSeq 6000 (SP Flow Cell) platforms at the  
207 Norwegian Sequencing Centre with paired-end 150 bp reads and demultiplexed allowing zero  
208 mismatches in the index tag.

209 Ancient specimens from the Mediterranean

210 92 individuals from archaeological excavations and zoological collections throughout the  
211 Mediterranean region dating from 100 to 1941 CE were obtained from Andrews et al. (in prep.)  
212 as BAM files (Table S2). These samples were prepared and extracted in the Ancient DNA  
213 Laboratory of the Department of Cultural Heritage (University of Bologna, Ravenna Campus,

214 Italy), following strict criteria for aDNA analysis as per the Norwegian samples, and sequenced  
215 as single-stranded libraries (Kapp et al., 2021) at Macrogen facilities (Seoul, South  
216 Korea/Amsterdam, Netherlands) on a HiSeq X (100 bp paired-end) Illumina sequencing  
217 platform. Reads were processed using the Paleomix pipeline v.1.2.14 (Schubert et al., 2014)  
218 with settings described below (see “Bioinformatic processing of ancient and modern sequence  
219 data”), yielding an average of 28% endogenous DNA and 11-fold MT coverage (Table S8).

220 Collection, extraction, and sequencing of modern samples

221 Modern tuna tissue samples of migratory, foraging adults (total-weight range: 151 - 313 kg)  
222 from Norway (NOR) (n = 38) were collected by the Norwegian Institute of Marine Research  
223 (IMR), from commercial catch off the coast of Møre og Romsdal, Western Norway. Two  
224 batches of modern Norwegian samples were obtained, the first from September 2018 and the  
225 second from September 2020 (Table S3). These batches were taken from two single purse seine  
226 catches and each of them are therefore assumed to belong to the same shoal. The 2018 batch  
227 of samples was freeze dried muscle tissue powdered at IMR facilities. The 2020 batch was  
228 collected as skin samples cut out between the spines of the dorsal fin and submerged  
229 immediately in RNAlater, shipped, and placed in a -20°C freezer within a week. The modern  
230 samples from Norway were all extracted in the modern DNA isolation laboratories at the  
231 University of Oslo, using the DNeasy Blood & Tissue kit (Qiagen) and following the  
232 manufacturer's protocol.

233 Modern larvae or young-of-the-year (YoY) specimens (GOM: Gulf of Mexico,  
234 WMED: Western Mediterranean Balearic Islands, CMED: Central Mediterranean Sicily,  
235 EMED: Eastern Mediterranean Levantine Sea, n = 40, Table S4) were collected from each of  
236 the major Atlantic bluefin spawning sites (Figure 1) between 2013 and 2018. Juvenile albacore  
237 samples from the Bay of Biscay were caught by commercial vessels trolling in the Bay of  
238 Biscay between June and September of 2010 (Table S5). Larvae and tissue samples from each  
239 specimen were preserved in 96% ethanol and stored at -20 °C until further processing. Modern  
240 spawning site and albacore samples were extracted at the University of Bologna by a modified  
241 salt-based extraction protocol, as per Cruz et al. (2017), using SSTNE extraction buffer  
242 (Blanquer, 1990), and treated with RNase to remove residual RNA.

243 For all modern samples, DNA concentration was measured using a Qubit® dsDNA BR  
244 Assay Kit (Thermo Fisher Scientific, USA), where negative controls employed for each batch  
245 of samples extracted indicated undetectable levels of contamination. For the Norwegian  
246 samples, libraries were built using the TruSeq DNA Nano200 preparation kit (Illumina).

247 Modern spawning site extracts, along with albacore extracts, underwent single stranded library  
248 preparation following the SCR library protocol (Kapp et al., 2021). Sequencing and  
249 demultiplexing, allowing for zero mismatches, was performed at the Norwegian Sequencing  
250 Center on a combination of the HiSeq 4000 and NovaSeq 6000 (SP Flow Cell) Illumina  
251 sequencing platforms with paired-end 150 bp reads for all samples.  
252 Raw sequence data of Pacific bluefin whole genome (Suda et al., 2019) were downloaded from  
253 DDBJ (accession no DRA008331) (Table S6) and used for interspecific population structure  
254 analyses.

255 Bioinformatic processing of ancient and modern sequence data

256 Both modern and ancient reads were processed using the Paleomix pipeline v.1.2.14 (Schubert  
257 et al., 2014). Adapters were removed and forward and reverse reads were collapsed and  
258 trimmed with AdapterRemoval v.2.3.1 (Schubert et al., 2016), discarding collapsed reads  
259 shorter than 25 bp. All reads were aligned to a draft nuclear (NCBI BioProject: PRJNA408269)  
260 and MT reference genome (GenBank accession nr NC\_014052.1) with BWA-mem v.0.7.17  
261 (Li & Durbin, 2009) for mapping. All reads were filtered to a minimum Phred score quality of  
262 25, so that only reads with higher mapping quality to the reference genome were considered  
263 endogenous and used for subsequent analyses. PCR duplicates were removed in Picard Tools  
264 v.2.18.27 and indel realignment (*GATKs IndelRealigner*) was performed to produce final BAM  
265 files. DNA post-mortem damage patterns were assessed in mapDamage v.2.0.9 (Ginolhac et  
266 al., 2011; Jónsson et al., 2013) after downsampling to 100,000 randomly selected reads.

267 MT BAMfiles were further processed in GATK v.4.1.4.0 following GATK best  
268 practices (McKenna et al., 2010). Individual genotypes were called (GATK v.4.1.4.0  
269 *HaplotypeCaller -ploidy 1*) and then combined into a joint gvcf (GATK v.4.1.4.0  
270 *CombineGVCFs*) before genotyping (GATK v.4.1.4.0 *GenotypeGVCFs*). Genotypes were  
271 hard-filtered in BCFtools v.1.9 (Li et al., 2009) (-i 'FS<60.0 && SOR<4 && MQ>30.0 &&  
272 QD > 2.0' --SnpGap 10) and VCFtools v.0.1.16 (Danecek et al., 2011) (--minGQ 15 --minDP  
273 2 --remove-indels).

274 Filtered VCFs were indexed using Tabix v.0.2.6 (Li, 2011) and consensus sequences  
275 created as individual fasta files in BCFtools v.1.9 (bcftools consensus -H 1). Outgroup  
276 sequences were downloaded from GenBank (Clark et al., 2016) and curated using SeqKit v.  
277 0.11.0 (*restart -i*) (Shen et al., 2016) so that all sequences started at position 1 in the D-loop,  
278 to correspond with the sample sequences. After renaming the fasta headers to their appropriate  
279 sample-IDs using BBMap v.38.50b (Bushnell, 2014) and combining the files to a multiple

280 sequence alignment (MSA), the joint fasta files were aligned using MAFFT v.7.453 (Katoh et  
281 al., 2002) (*--auto*).

282 Initial investigations and creation of datasets

283 Preliminary analyses were performed on a jointly called and filtered VCF and multiple-fasta,  
284 which included all samples. Missingness and depth was assessed for all samples using  
285 VCFtools v.0.1.16 (Danecek et al., 2011) and Principal Component analyses (PCA) (Adegenet  
286 (Jombart, 2008) in R v.4.1.2) and a Maximum Likelihood (ML) tree (IQTREE v. 1.6.12  
287 (Nguyen et al., 2015), *-m MFP -bb 1000 -BIC*) was used to investigate clustering patterns and  
288 assess the presence of introgressed MT genomes. To look for identical haplotypes, we assessed  
289 the number of single nucleotide polymorphisms (SNPs) that differed between specimens using  
290 an in-house python3 script ([https://github.com/laneatmore/nucleotide\\_differences](https://github.com/laneatmore/nucleotide_differences)), which uses  
291 MSAs as input to count the number of true SNP differences between all individuals (excluding  
292 those that were missing data) and generates distance matrices based on these differences.

293 Given that ancient bones may represent the same individual if they were obtained from  
294 the same archaeological context, we assessed the number of pairwise SNP differences between  
295 specimens at different filtering settings. To be conservative, ancient samples were considered  
296 identical if, in a pairwise comparison, they had no SNP differences at minDP2 *or* if they had  
297 only one SNP difference at minDP3 *and* came from the same archaeological layer. Using these  
298 criteria, we detected several genetically identical specimens of which the specimen with the  
299 highest endogenous DNA content was kept. Genetically identical modern samples were kept  
300 since distinct individuals were sampled. All samples with missingness above 50% (VCFtools  
301 v.0.1.16 *--missing-indv*, F\_MISS) were also discarded. In total, 22 out of 208 samples (~10%)  
302 were discarded from further analyses (Table S7 and S8).

303 Datasets were created for each sampling location depending on the presence of  
304 introgressed MT genomes (Table S13). First, a dataset excluding the introgressed individuals  
305 was created to allow for comparison of the effect of introgressed haplotypes on summary  
306 statistics. A haplotype was assumed to be introgressed if it clustered with albacore or Pacific  
307 bluefin in the PCA (Figure S3). This clustering was additionally supported by the ML and  
308 BEAST trees, which revealed the same individuals falling into highly supported monophyletic  
309 clades with the respective species (Figure S4). As the genotyping and filtering process in the  
310 GATK pipeline is affected by the haplotype variants present in the analyses, only samples  
311 within each dataset should be called and filtered together to accurately present the variation  
312 (GATK, 2016). These separate datasets were therefore separately genotyped, filtered, and

313 aligned (with settings described in the section above) to create respective multiple-fasta files  
314 for subsequent analyses. An overview of these individual datasets can be found in Table S14.

315 Population genomic analyses

316 Genetic population structure was investigated using Principal Component analyses (PCA) as  
317 implemented in the R-package Adegenet (Jombart, 2008). A map of missing loci and alleles  
318 diverging from the reference genome, was created to assess missing genotypes in both ancient  
319 and modern samples and better visualize introgressed specimens. All plots were created with  
320 R 4.3 in RStudio (Rstudio Team 2021), using various packages for data loading, analyses, and  
321 visualization (see supplementary Section 1).

322 Genetic diversity was investigated using a range of standard population genetic  
323 measurements. The number of haplotypes (Nh) and haplotype diversity (hD) (Nei 1987) was  
324 calculated in R-package pegas (Paradis, 2010) and independently assessed in Fitchi  
325 (Matschiner, 2016). The number of segregating sites (S), nucleotide diversity ( $\pi$ ) (Nei 1987),  
326 Tajima's D (TD) (Tajima, 1989), and Fu and Li's F statistic (F) (Fu & Li, 1993) were calculated  
327 in DnaSP v.6 (Rozas et al., 2017). S,  $\pi$ , TD values were confirmed in pegas. To account for  
328 differences in sample sizes across sites when calculating  $\pi$  and TD, an additional analysis using  
329 1000 bootstrap replicates and subsampling five individuals per round without replacement, was  
330 performed in pegas on datasets where the total sample size was over five.

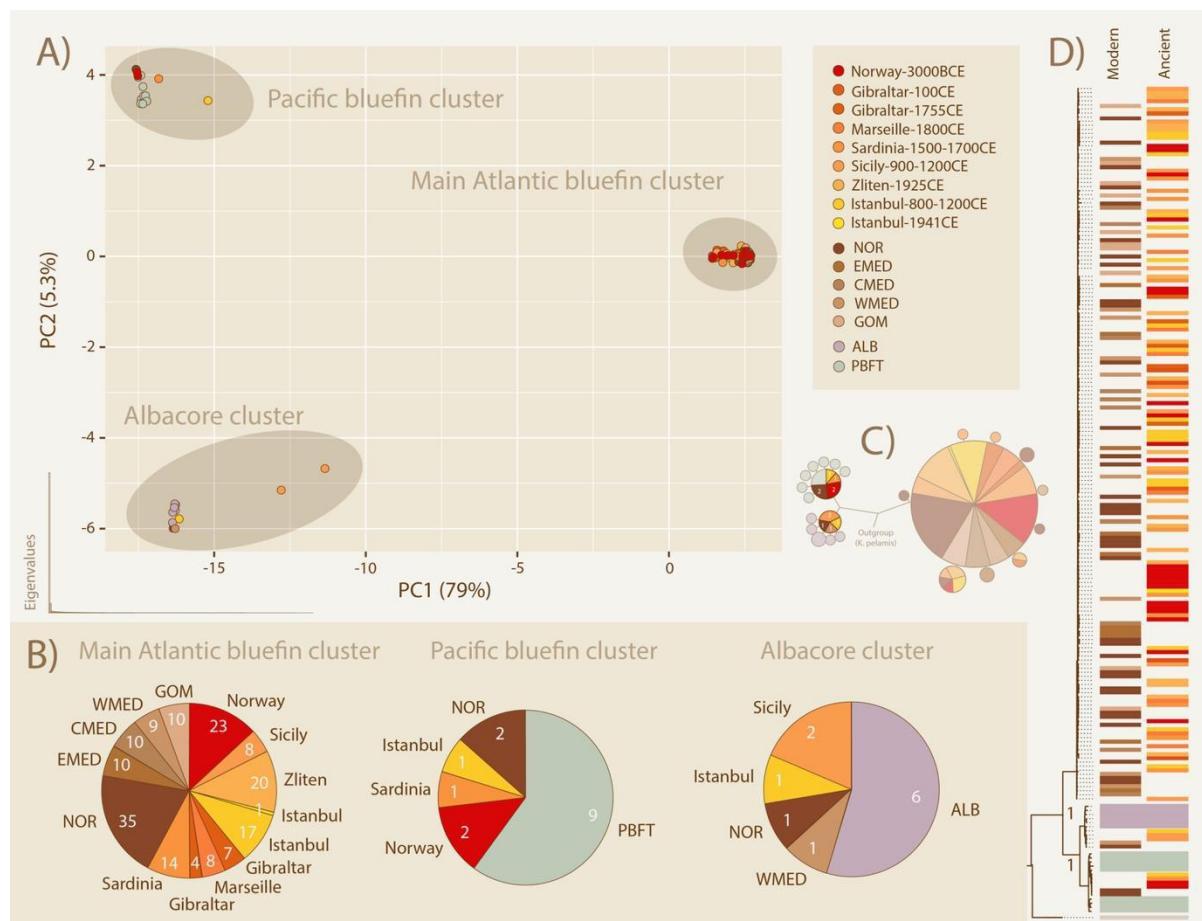
331 Phylogenetic relationships were investigated using both ML and Bayesian approaches. ML  
332 trees with 100 nonparametric bootstrap replicates were created in IQTREE v. 1.6.12 (Nguyen  
333 et al., 2015). ModelFinder Plus (MFP) (Kalyaanamoorthy et al., 2017) was used to search all  
334 available models, and best-fit models were selected according to the Bayesian Information  
335 Criterion (BIC) (Schwarz, 1978). Bayesian trees were created in BEAST 2 v.2.6.4 (R.  
336 Bouckaert et al., 2014), using the Yule model prior under a strict clock with mutation rate  
337  $3.6 \times 10^{-8}$  substitutions per site per year as per Donaldson and Wilson (1999), running MCMC  
338 over 800,000,000 generations and sampling once every 1000 generations. bModelTest (R. R.  
339 Bouckaert & Drummond, 2017) was used to assess available site models, and the resulting  
340 logfile was inspected in Tracer v1.7.2 (Rambaut et al., 2018). Trees were downsampled in  
341 LogCombiner (implemented in BEAST 2 v.2.6.4), resampling every 10,000 trees.  
342 TreeAnnotator (implemented in BEAST 2 v.2.6.4) was used to remove the first 10% of the  
343 trees (burnin) and create a target maximum clade credibility tree. Nodes with less than 50%  
344 posterior support were excluded from the summary analysis in TreeAnnotator so that only

345 nodes present in the majority of the trees were annotated. The final trees in all phylogenetic  
346 analyses were visualized and curated in FigTree v.1.4.4 (Rambaut, 2018).

347 Evolutionary relationships were visualized using haplotype networks created in Fitchi  
348 (*--haploid -p*) (Matschiner, 2016) using the ML trees generated in IQTREE (described above)  
349 as input with bootstrap values removed using the R-package ape (Paradis et al., 2004). For the  
350 dataset including introgressed individuals and outgroup species, a minimum edge length of  
351 seven substitutions was defined (*-e 7*) so that haplotypes separated by seven or fewer  
352 substitutions were collapsed into one node. For the dataset only containing Atlantic bluefin  
353 haplotypes, each node was defined as a unique haplotype (*-e 1*).

354 Genetic distance between sample locations was assessed using measures of absolute  
355 ( $d_{xy}$ ) and relative ( $\Phi$ ST) divergence, calculated using DnaSP v.6 (“*DNA divergence between*  
356 *populations*”, *all sites*) (Rozas et al., 2017) and Arlequin v.3.5 (Excoffier & Lischer, 2010)  
357 respectively. In Arlequin, pairwise  $\Phi$ ST was calculated via a distance matrix computed by  
358 Arlequin based on Tamura & Nei (1993) and assuming no rate heterogeneity, as suggested by  
359 bModelTest (R. R. Bouckaert & Drummond, 2017) (implemented in BEAST 2 v.2.6.4 (R.  
360 Bouckaert et al., 2014)). To test the significance of  $\Phi$ ST, p-values were generated in Arlequin  
361 using 1000 permutations.

## 362 Results


### 363 DNA yield and library success

364 A total of 1.7 billion sequencing reads were obtained for the 38 ancient samples from Norway.  
365 These specimens had remarkable DNA preservation with 100% library success and yielding,  
366 on average, 24% endogenous DNA and 20-fold MT coverage (Table S7). The reads showed  
367 postmortem degradation patterns expected for authentic ancient DNA (Figure S2). A total of  
368 3.1 billion sequencing reads were obtained for the 84 modern specimens, resulting in 711-fold  
369 MT coverage on average for the 78 Atlantic bluefin specimens (Table S9 and S10) and 221-  
370 fold MT coverage on average for the six albacore samples (Table S11). The Pacific bluefin raw  
371 sequence data from Suda et al. (2019) yielded 3322-fold MT coverage (Table S12). After  
372 stringent filtering, 186 out of 208 specimens (~90%) were kept for further analyses (Table S7  
373 and S8).

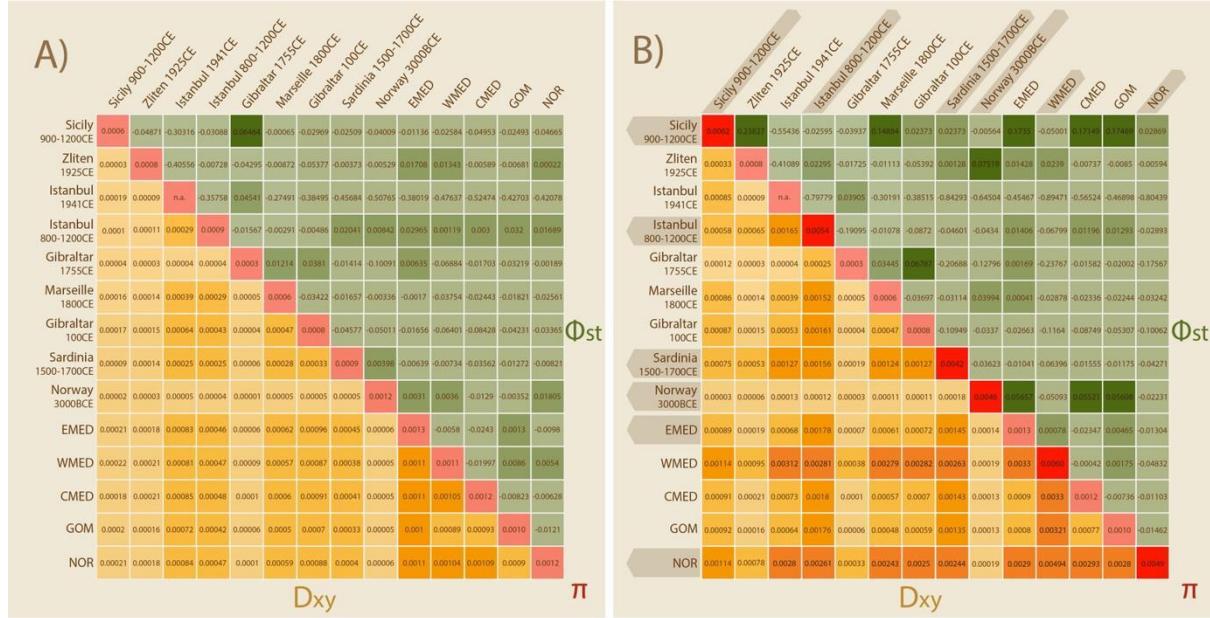
### 374 Detecting introgressed MT mitogenomes

375 Out of 186 samples analyzed, seven ancient and four modern individuals had MT haplotypes  
376 that clustered closely with albacore or Pacific bluefin in both the PCA, haplotype network and

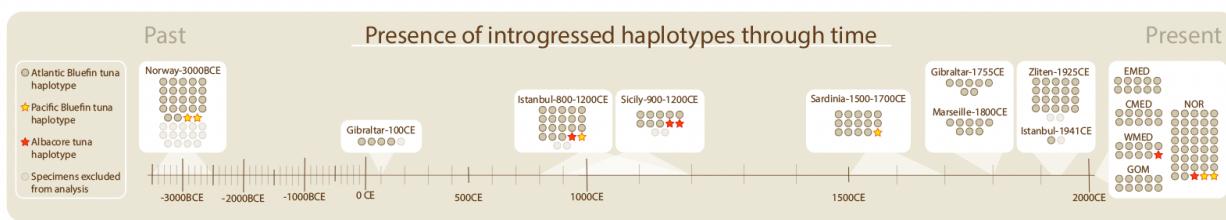
377 phylogenies. The PCA reveals three distinct clusters (Figure 2) with PC1 separating an Atlantic  
378 bluefin cluster from a Pacific bluefin and albacore cluster and PC2 separating the latter two  
379 speciese. Within the Pacific bluefin cluster, we observe two modern (both NOR) and four  
380 ancient (two Norway 3000BCE, one Istanbul 800-1200CE and one Sardinia 1500-1700CE)  
381 Atlantic bluefin specimens. Within the albacore cluster, we observe two modern (one NOR and  
382 one WMED) and three ancient (one Istanbul-800-1200CE and two Sicily-900-1200CE)  
383 Atlantic bluefin specimens. The PCA-clusters are reiterated in the haplotype network (Figure  
384 2). ML and Bayesian phylogenetic analyses provided full statistical support (bootstrap=100,  
385 posterior probability=1) for the three species as monophyletic groups with the same six Pacific-  
386 like and five albacore-like haplotypes again clustering with their respective species (Figure 2,  
387 see also Figure S6). We conclude that these Pacific-like and albacore-like haplotypes are  
388 introgressed MT genomes into Atlantic bluefin tuna.



389  
390 *Figure 2: Species clusters and introgressed MT haplotypes within Atlantic bluefin specimens, revealed by PCA,*  
391 *haplotype network and phylogenetic analyses A) Three species specific clusters detected in ancient and modern*  
392 *Atlantic tuna specimens. The PCA shows three species specific clusters and PCA eigenvalues are shown in the*  
393 *bottom left corner. Modern modern Pacific tuna (blue) and albacore (grey) specimens are included as controls.*  
394 *B) Relative abundance of haplotypes per location within each PCA-cluster is visualized as pie-charts, with the*  
395 *number of samples from each location indicated on the slices. C) Haplotype network showing three species*  
396 *specific haplotypes. Haplotypes separated by seven or fewer substitutions were collapsed into single nodes. D)*


397 *Interspecific phylogeny of specimens with posterior probability support for the species clades (see also Figure*  
398 *S6). Colors are representative of the spatiotemporal cohorts listed in the legend of panel A).*

399 **Spatiotemporal population structure**


400 We find no significant genomic differentiation between any of the temporal cohorts. We also  
401 observe no spatial differences in the level of genetic variation between any of the sampling  
402 locations for Atlantic bluefin. Atlantic bluefin individuals from both management stocks and  
403 across the Eastern stock range and spawning areas are scattered across the intraspecific PCA  
404 (Figure S8) and haplotype network (Figure S9). The sampling locations are also distributed  
405 along the entire phylogeny within the Atlantic bluefin group (Figure 2, see also Figure S6 and  
406 S10). The intraspecific Atlantic bluefin haplotype network reveals a star-like pattern with more  
407 recent haplotypes deriving from an ancestral, central haplotype (Figure S9).

408 **Genetic divergence and diversity influenced by introgression**

409 Measures of pairwise genetic distance between Atlantic bluefin sampling locations show low  
410 levels of absolute ( $d_{xy}$ ) and relative ( $\Phi_{st}$ ) divergence, either excluding (Figure 3a) or including  
411 introgressed MT haplotypes (Figure 3b). Genetic differentiation increases when introgressed  
412 samples are included. This increase is driven by the inclusion of genetically more divergent  
413 haplotypes, which are not present at each location or temporal cohort. In all cases, levels of  $\Phi_{st}$   
414 remained low and non-significant (Figure S7) across all populations. Including individuals with  
415 introgressed MT haplotypes increased values of nucleotide diversity  $\pi$  and  $S$  (Table S15). The  
416 number of haplotypes ( $hD$ ) is not impacted; most sample locations only contained unique  
417 specimens ( $N=Nh$ ) therefore leading to a  $hD$  of 1, meaning 100% probability of obtaining  
418 unique samples during random sampling. Tajima's D (TD) was also not affected by the  
419 inclusion of introgressed individuals and was significantly negative for most locations and  
420 temporal cohorts and when analyzing all specimens jointly (Table S15).



421  
422 *Figure 3: No significant spatiotemporal population structure in Atlantic bluefin tuna based on mitogenomic data*  
423 *of 186 specimens. Pairwise population divergence is presented as a heatmap showing absolute ( $d_{xy}$ ) and relative*  
424 *( $\Phi_{ST}$ ) divergence between populations when A) excluding and B) including the introgressed mitogenomes.*  
425 *Divergence is inflated when including introgressed mitogenomes. Locations containing introgressed individuals*  
426 *are highlighted with darker shading in panel B). The nucleotide diversity within each population is shown on the*  
427 *diagonal. P-values for  $\Phi_{ST}$  can be found in supplementary (Figure S7).*



429  
430 *Figure 4: Introgressed Pacific bluefin MT haplotypes (yellow stars) or albacore MT haplotypes (red stars) are*  
431 *observed along an entire 5000-year-old chronology of ancient Atlantic bluefin tuna specimens. Individual tuna*  
432 *specimens ( $n=208$ ) (circle or star) are grouped according to their age, determined by archaeological context.*  
433 *Specimens were either modern ( $n=78$ ), or ancient ( $n=130$ ) and dated by archaeological context. Uncertainty in*  
434 *the age range of ancient specimens is depicted beneath their respective sample sets (light shading).*

### 435 MT haplotype introgression over time

436 We observe MT haplotype introgression into Atlantic bluefin throughout a 5000-year  
437 chronology (Figure 4). The earliest observation is the presence of two introgressed MT  
438 haplotypes from Pacific bluefin in the Neolithic (ca. 3000 BCE) in Norway. Pacific bluefin  
439 tuna MT haplotypes are further found in early medieval Istanbul (800-1200CE), late-medieval  
440 Sardinia (1500-1700 CE) and modern Norway. Albacore MT haplotypes are found in early  
441 medieval Istanbul (800-1200CE) and Sicily (900-1200CE), modern Western Mediterranean  
442 and modern Norway.

## 443 Discussion

444 We here present a 5000-year chronology of MT introgression in the Atlantic bluefin tuna. The  
445 presence of introgressed MT haplotypes in the Neolithic (ca. 3000 BCE), turn of the  
446 millennium (800-1200 CE), and in present day populations reveals that introgression resulted  
447 from long-term natural phenomena rather than being a consequence of recent anthropogenic  
448 impacts. Moreover, our results show that the frequency of introgression in the Atlantic bluefin  
449 has remained stable over millennia despite shifts in abundance and distribution of Atlantic  
450 bluefin populations.

### 451 Evidence of mitochondrial introgression through time

452 We obtain similar rates of MT introgression as reported by previous studies in our modern  
453 samples, with rates of introgression for Pacific bluefin and albacore at 2.6% (2/78 individuals)  
454 each. Including our ancient samples in the calculation, the rate of introgression remains  
455 astonishingly stable with 3.2% Pacific bluefin haplotypes (6/186) and 2.7% albacore-like  
456 haplotypes (5/186) across all samples. In total, six Pacific-like and five albacore-like  
457 haplotypes consistently cluster with their respective species through all interspecific analyses.  
458 We do not observe albacore-like haplotypes from the Neolithic period, but because of the low  
459 frequency of introgression compared to the sample size we speculate this is likely due to  
460 sampling stochasticity rather than lack of natural hybridization at the time. Still, it cannot be  
461 excluded that Neolithic climate conditions drove albacore populations away from areas  
462 inhabited by Atlantic bluefin.

463 The location of the hybridization events with introgressive hybridization from both  
464 albacore and Pacific bluefin remain to be investigated. While the albacore has overlapping  
465 ranges and spawning areas with both bluefin species, the Pacific and Atlantic bluefins are  
466 geographically separated with no documented migration. The potential migration of Pacific  
467 bluefin into the Atlantic Ocean has been hypothesized to occur via the Indian Ocean and  
468 following the Agulhas current around the tip of Africa (Bremer et al. 2005). Whether this  
469 represents a contemporary migration route or a historical process where past, stronger currents  
470 might have facilitated admixture is unclear (Bremer et al. 2005). The similar rate of  
471 introgression from both albacore and Pacific bluefin and the lack of introgressed MT  
472 haplotypes in the albacore makes the range-overlapping albacore an unlikely carrier of MT  
473 haplotypes between the bluefins. As Pacific bluefin also contains Atlantic bluefin-like MT  
474 haplotypes, another hypothesis for their presence is incomplete lineage sorting (ILS). The  
475 *Thunnus* genus is thought to have diverged rapidly within the last 6-10 million years, with a

476 more recent speciation of the Pacific and Atlantic bluefins only around 400,000 years ago  
477 (Santini et al. 2013; Ciezarek et al. 2018; Díaz-Arce et al. 2016). While introgressive  
478 hybridization is the likely origin of albacore-like haplotypes in both bluefin species (Ciezarek  
479 et al. 2018), observed gene-tree versus species-tree discordance that did not deviate from  
480 expectations under ILS. These results indicate that the observed patterns of Pacific-like MT  
481 haplotypes in the Atlantic bluefin population, and vice versa, may be a result of ILS rather than  
482 introgressive hybridization. Larger genomic databases are required to further delineate between  
483 these two hypotheses.

484 While our historical investigation focuses on the eastern Atlantic with samples from the  
485 Mediterranean and Norway, introgressed MT genomes from albacore have also been found in  
486 the Gulf of Mexico (1% frequency) and the Slope Sea (6% frequency). Because introgressed  
487 MT genomes in Atlantic bluefin were first observed in the eastern Atlantic, their presence in  
488 the western Atlantic has been hypothesized to be introduced via gene flow from the  
489 Mediterranean (Díaz-Arce et al., 2024). An increase in gene flow from the Mediterranean into  
490 the Gulf of Mexico and Slope Sea will likely erode genetic differences between the two  
491 management stocks (Díaz-Arce et al., 2024). Direct observations of intogression events within  
492 the Western Atlantic bluefin stock have not been made, although albacore is known to spawn  
493 across tropical waters including the South-West Sargasso Sea as well as the Mediterranean  
494 (ICCAT, 2016, 2020; NOAA, 2023). Future studies should investigate long-term MT  
495 intogression in the Gulf of Mexico to disentangle the recently suggested changes in  
496 demographic patterns (Díaz-Arce et al., 2024) and locate the origins of the intogression events.

497 Introgressed haplotypes impact estimates of genomic differentiation

498 We observe that the presence of introgressed haplotypes increases measures of genetic  
499 diversity ( $S$  and  $\pi$ ), which is driven by the highly divergent alleles of such introgressed MT  
500 genomes (Figure S5). The inclusion of these diverging haplotypes also influences the measures  
501 of genetic divergence ( $d_{xy}$  and  $\Phi_{ST}$ ) between locations and temporal cohorts, consistently  
502 increasing the absolute genetic diversity ( $d_{xy}$ ) and altering the pattern of relative genetic  
503 divergence ( $\Phi_{ST}$ ). Tajima's D (TD) was not consistently affected by the inclusion of  
504 introgressed individuals, although in some cases TD changed value and lost or attained  
505 significance when introgressed haplotypes were included (Table S15). Considering these  
506 results, it is important to be aware of highly diverging haplotypes when extrapolating  
507 population genetic statistics from subsamples of natural populations containing highly  
508 diverging haplotypes. The low frequency of natural hybridization in Atlantic bluefin causes

509 stochasticity at low sample sizes, and we find that the inclusion of introgressed individuals  
510 inflates population genomic statistics that are commonly used for management and population  
511 viability assessments (Hohenlohe et al., 2021).

512 **Spatiotemporal population structure**

513 We find no significant divergence and no pattern of genomic MT differentiation between any  
514 of the spatial or temporal cohorts. Ancient and modern samples largely intermixed in all  
515 analyses, suggesting mitogenomic stability and temporal continuity through time. Similar  
516 observations in other species, such as Atlantic cod (*Gadus morhua*) (Martínez-García et al.,  
517 2021) and New Zealand snapper (*Chrysophrys auratus*) (Oosting et al., 2023) emphasize the  
518 low power of the MT genome to observe spatiotemporal differentiation in wide ranging fish  
519 species. The regular presence of identical haplotypes across sampling locations and temporal  
520 cohorts emphasizes the lack of mitogenomic variation and informative markers for population  
521 structure in this species. Although we cautiously removed identical samples from the same  
522 archaeological excavations, the presence of identical samples across cohorts that were  
523 processed in different laboratories shows this as a naturally occurring phenomenon.

524 Population genetic statistics confirmed low mitogenomic variation with no significant  
525 divergence between any of the spatiotemporal cohorts and no temporal loss of genetic diversity  
526 despite heavy exploitation (Figure 3A, Table S15). Across datasets, TD was negative and often  
527 significant, suggesting an excess of rare alleles in the datasets. This is indicative of either  
528 positive selection or recent population expansion (Fijarczyk & Babik, 2015; Delph & Kelly,  
529 2014). Population expansion is further corroborated in the intraspecific haplotype network,  
530 where newer haplotypes are derived from a shared central haplotype forming a star-like pattern  
531 (Figure S9). These results highlight robust preservation of the MT genome despite centuries of  
532 human exploitation.

533 **Conclusion**

534 Atlantic bluefin tuna has experienced significant changes in distribution linked to sea surface  
535 temperature oscillations during the past centuries (Faillettaz et al., 2019; Muhling et al., 2011;  
536 Ravier & Fromentin, 2004), alongside intense exploitation (Andrews et al., 2022; Block, 2019),  
537 biomass depletion, range contraction, trophic niche loss (Andrews et al., 2023; Di Natale, 2015;  
538 Tangen, 2009), followed by recovery, increased biomass, and range expansion of the Eastern  
539 Atlantic bluefin stock during the last decade (Nøttestad et al. 2020; ICCAT 2023). Despite such

540 extensive spatial shifts in distribution over time, we show that MT introgression is a long-term  
541 natural phenomenon in Atlantic bluefin. The stable frequency over time suggests that this  
542 phenomenon is robust against historical climate fluctuations and more recent anthropogenic  
543 impacts. By providing a baseline observation, our study highlight the utility of ancient DNA to  
544 obtain temporal insights in the long-term persistence of such phenomena, which is essential for  
545 disentangling the drivers of introgression and any fitness consequences of MT intogression.

546 **Acknowledgements**

547 This work was supported by the European Union's Horizon 2020 Research and Innovation  
548 Programme under the Marie Skłodowska-Curie grant agreement No. 813383 (SeaChanges) and  
549 the 4-OCEANS Synergy grant agreement no. 951649. The European Research Agency is not  
550 responsible for any use that may be made of the information this work contains. Special thanks  
551 goes to the Norwegian Sequencing Centre (University of Oslo;  
552 <https://www.sequencing.uio.no>) for the sequencing of genomic libraries. Computation was  
553 performed using the resources and assistance from SIGMA2. The collection of recent samples  
554 in Norway was financed by the Institute of Marine Research. The collection of larva samples  
555 in the Gulf of Mexico was funded by the NOAA RESTORE Science Program, BLOOFINZ-  
556 GoM #NOAA-NOS-NCCOS-2017-2004875; Cooperative Institute for Marine and  
557 Atmospheric Studies #NA20OAR4320472. This work is a contribution to the  
558 <https://tunaarchaeology.org/> project.

559 We are grateful to Ørjan Sørensen at the Institute of Marine Research (IMR) for his  
560 contributions to the collection and shipping of the modern Atlantic bluefin samples from  
561 Norway and providing sample metadata. We thank Verónica Gómez-Fernández (Instituto  
562 Nacional de Investigaciones Científicas y Ecológicas, Spain), Gabriele Carenti (CEPAM,  
563 CNRS, Université Côte d'Azur, France) and Darío Bernal-Casasola (Department of History,  
564 Geography and Philosophy, Faculty of Philosophy and Letters, University of Cádiz, Spain) for  
565 sample collection. We thank Leif Nøttestad (IMR) and Mark Ravinet (CEES, University of  
566 Oslo) for comments and stimulating scientific discussions.

567 **Author contributions following CRediT (<https://credit.niso.org/>)**

568 Emma Falkeid Eriksen: Conceptualization, Data curation, Formal Analysis, Investigation,  
569 Methodology, Visualization, Writing – original draft, Writing – review & editing  
570 Adam Jon Andrews: Data curation, Investigation, Methodology, Writing – review & editing  
571 Svein Vatsvåg Nielsen: Resources, Writing – review & editing

572 Per Persson: Writing – review & editing  
573 Estrella Malca: Resources, Writing – review & editing  
574 Vedat Onar: Resources  
575 Veronica Aniceti: Resources  
576 G  el Piqu  s: Resources  
577 Federica Piattoni: Data curation, methodology, Writing – review & editing  
578 Francesco Fontani: Investigation  
579 Martin Wiech: Resources, Writing-review & editing  
580 Keno Ferter: Resources, Writing-review & editing  
581 Oliver Kersten: Investigation, Writing-review & editing  
582 Giada Ferrari: Investigation, Writing-review & editing  
583 Alessia Cariani: Resources, Funding acquisition, Writing-review & editing  
584 Fausto Tinti: Resources, Funding acquisition, Writing-review & editing  
585 Elisabetta Cilli: Resources, Funding acquisition  
586 Lane M. Atmore: Software, Supervision, Writing – review & editing  
587 Bastiaan Star: Conceptualization, Funding acquisition, Project administration, Software,  
588 Supervision, Writing – original draft, Writing – review & editing

## 589 **Competing interests**

590 The authors declare no competing interests.

## 591 **Data archiving**

592 All mitochondrial BAM files used in this study has been uploaded in the European  
593 Nucleotide Archive (ENA) and can be accessed at  
594 <https://www.ebi.ac.uk/ena/browser/view/PRJEB74135>. See supplementary csv containing  
595 filenames, project accession number and ENA identifier for all samples.

## 596 **References**

597 A.J. Andrews, B. Star, A. Di Natale, E. Malca, G. Zapfe, D. Bernal-Casasola, V. Onar, V. Aniceti, G. Carenti,  
598 G. Piques, F. Piattoni, F. Fontani, E.F. Eriksen, L. Atmore, O. Kersten, F. Tinti, E. Cilli, A. Cariani.  
599 One millennia of nuclear genomes reveal the demographic history of Atlantic bluefin tuna. In prep.  
600 Aalto, E. A., Dedman, S., Stokesbury, M. J. W., Schallert, R. J., Castleton, M., & Block, B. A. (2023). Evidence  
601 of bluefin tuna (*Thunnus thynnus*) spawning in the Slope Sea region of the Northwest Atlantic from  
602 electronic tags. *ICES Journal of Marine Science*, 80(4), 861–877.  
603 <https://doi.org/10.1093/icesjms/fsad015>  
604 Alvarado Bremer, J. R., Naseri, I., & Ely, B. (1997). Orthodox and unorthodox phylogenetic relationships among  
605 tunas revealed by the nucleotide sequence analysis of the mitochondrial DNA control region. *Journal of*  
606 *Fish Biology*, 50(3), 540–554. <https://doi.org/10.1111/j.1095-8649.1997.tb01948.x>  
607 Alvarado Bremer, J. R., Vi  as, J., Mejuto, J., Ely, B., & Pla, C. (2005). Comparative phylogeography of Atlantic  
608 bluefin tuna and swordfish: The combined effects of vicariance, secondary contact, introgression, and

609 population expansion on the regional phylogenies of two highly migratory pelagic fishes. *Molecular*  
610 *Phylogenetics and Evolution*, 36(1), 169–187. <https://doi.org/10.1016/j.ympev.2004.12.011>

611 Andrews, A. J., Di Natale, A., Bernal-Casasola, D., Aniceti, V., Onar, V., Oueslati, T., Theodropoulou, T.,  
612 Morales-Muñiz, A., Cilli, E., & Tinti, F. (2022). Exploitation history of Atlantic bluefin tuna in the  
613 Eastern Atlantic and Mediterranean—Insights from ancient bones. *ICES Journal of Marine Science*,  
614 79(2), 247–262. <https://doi.org/10.1093/icesjms/fsab261>

615 Andrews, A. J., Pampoulie, C., Di Natale, A., Addis, P., Bernal-Casasola, D., Aniceti, V., Carenti, G., Gómez-  
616 Fernández, V., Chosson, V., Ughi, A., Von Tersch, M., Fontanals-Coll, M., Cilli, E., Onar, V., Tinti, F.,  
617 & Alexander, M. (2023a). Exploitation shifted trophic ecology and habitat preferences of Mediterranean  
618 and Black Sea bluefin tuna over centuries. *Fish and Fisheries*. <https://doi.org/10.1111/faf.12785>

619 Andrews, A. J., Orton, D., Onar, V., Addis, P., Tinti, F., & Alexander, M. (2023b). Isotopic life-history signatures  
620 are retained in modern and ancient Atlantic bluefin tuna vertebrae. *Journal of Fish Biology*, 103(1), 118–  
621 129. <https://doi.org/10.1111/jfb.15417>

622 Andrews, A. J., Puncher, G. N., Bernal-Casasola, D., Di Natale, A., Massari, F., Onar, V., Toker, N. Y., Hanke,  
623 A., Pavay, S. A., Savojardo, C., Martelli, P. L., Casadio, R., Cilli, E., Morales-Muñiz, A., Mantovani,  
624 B., Tinti, F., & Cariani, A. (2021). Ancient DNA SNP-panel data suggests stability in bluefin tuna genetic  
625 diversity despite centuries of fluctuating catches in the eastern Atlantic and Mediterranean. *Scientific*  
626 *Reports*, 11(1), 20744. <https://doi.org/10.1038/s41598-021-99708-9>

627 Atmore, L. M., Ferrari, G., Martínez-García, L., van der Jagt, I., Blevis, R., Granado, J., Häberle, S., Dierickx, K.,  
628 Quinlan, L. M., Lõugas, L., Makowiecki, D., Hufthammer, A. K., Barrett, J. H., & Star, B. (2023).  
629 Ancient DNA sequence quality is independent of fish bone weight. *Journal of Archaeological Science*,  
630 149, 105703. <https://doi.org/10.1016/j.jas.2022.105703>

631 Ballard, J. W. O., & Whitlock, M. C. (2004). The incomplete natural history of mitochondria. *Molecular Ecology*,  
632 13(4), 729–744. <https://doi.org/10.1046/j.1365-294X.2003.02063.x>

633 Benestan, L. M., Rougemont, Q., Senay, C., Normandeau, E., Parent, E., Rideout, R., Bernatchez, L., Lambert,  
634 Y., Audet, C., & Parent, G. J. (2021). Population genomics and history of speciation reveal fishery  
635 management gaps in two related redfish species (*Sebastes mentella* and *Sebastes fasciatus*). *Evolutionary*  
636 *Applications*, 14(2), 588–606. <https://doi.org/10.1111/eva.13143>

637 Blanquer, A. (1990). Phylogéographie intraspécifique d'un poisson marin, le flet *Platichthys flesus* L.  
638 (Heterosomata): Polymorphisme des marqueurs nucléaires et mitochondriaux [Thesis, Montpellier 2]. In  
639 <Http://www.theses.fr>. <http://www.theses.fr/1990MON20015>

640 Block, B. A. (2019). *The Future of Bluefin Tunas: Ecology, Fisheries Management, and Conservation*. JHU Press.

641 Block, B. A., Teo, S. L. H., Walli, A., Boustany, A., Stokesbury, M. J. W., Farwell, C. J., Weng, K. C., Dewar,  
642 H., & Williams, T. D. (2005). Electronic tagging and population structure of Atlantic bluefin tuna.  
643 *Nature*, 434(7037), 1121–1127. <https://doi.org/10.1038/nature03463>

644 Boessenkool, S., Hanghøj, K., Nistelberger, H. M., Der Sarkissian, C., Gondek, A. T., Orlando, L., Barrett, J. H.,  
645 & Star, B. (2017). Combining bleach and mild predigestion improves ancient DNA recovery from bones.  
646 *Molecular Ecology Resources*, 17(4), 742–751. <https://doi.org/10.1111/1755-0998.12623>

647 Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., Suchard, M. A., Rambaut, A., &  
648 Drummond, A. J. (2014). BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. *PLOS*  
649 *Computational Biology*, 10(4), e1003537. <https://doi.org/10.1371/journal.pcbi.1003537>

650 Bouckaert, R. R., & Drummond, A. J. (2017). bModelTest: Bayesian phylogenetic site model averaging and  
651 model comparison. *BMC Evolutionary Biology*, 17(1), 42. <https://doi.org/10.1186/s12862-017-0890-6>

652 Boustany, A. M., Reeb, C. A., & Block, B. A. (2008). Mitochondrial DNA and electronic tracking reveal  
653 population structure of Atlantic bluefin tuna (*Thunnus thynnus*). *Marine Biology*, 156(1), 13–24.  
654 <https://doi.org/10.1007/s00227-008-1058-0>

655 Brauer, C. J., Sandoval-Castillo, J., Gates, K., Hammer, M. P., Unmack, P. J., Bernatchez, L., & Beheregaray, L.  
656 B. (2023). Natural hybridization reduces vulnerability to climate change. *Nature Climate Change*, 13(3),  
657 Article 3. <https://doi.org/10.1038/s41558-022-01585-1>

658 Bronner, I. F., Quail, M. A., Turner, D. J., & Swerdlow, H. (2013). Improved Protocols for Illumina Sequencing.  
659 *Current Protocols in Human Genetics*, 79(1), 18.2.1-18.2.42.  
660 <https://doi.org/10.1002/0471142905.hg1802s79>

661 Brophy, D., Haynes, P., Arrizabalaga, H., Fraile, I., Fromentin, J. M., Garibaldi, F., Katavic, I., Tinti, F.,  
662 Karakulak, F. S., Macías, D., Busawon, D., Hanke, A., Kimoto, A., Sakai, O., Deguara, S., Abid, N., &  
663 Santos, M. N. (2016). Otolith shape variation provides a marker of stock origin for north Atlantic bluefin  
664 tuna (*Thunnus thynnus*). *Marine and Freshwater Research*, 67(7), 1023–1036.  
665 <https://doi.org/10.1071/MF15086>

666 Brown, K. H. (2008). Fish mitochondrial genomics: Sequence, inheritance and functional variation. *Journal of*  
667 *Fish Biology*, 72(2), 355–374. <https://doi.org/10.1111/j.1095-8649.2007.01690.x>

668 Bushnell, B. (2014). *BBMap: A Fast, Accurate, Splice-Aware Aligner* (LBNL-7065E). Lawrence Berkeley  
669 National Lab. (LBNL), Berkeley, CA (United States). <https://www.osti.gov/biblio/1241166>

670 Carlsson, J., McDowell, J. R., Díaz-Jaimes, P., Carlsson, J. E. L., Boles, S. B., Gold, J. R., & Graves, J. E.  
671 (2004). Microsatellite and mitochondrial DNA analyses of Atlantic bluefin tuna (*Thunnus thynnus*  
672 *thynnus*) population structure in the Mediterranean Sea. *Molecular Ecology*, 13(11), 3345–3356.  
673 <https://doi.org/10.1111/j.1365-294X.2004.02336.x>

674 Cayuela, H., Rougemont, Q., Laporte, M., Mérot, C., Normandeau, E., Dorant, Y., Tørresen, O. K., Hoff, S. N.  
675 K., Jentoft, S., Sirois, P., Castonguay, M., Jansen, T., Praebel, K., Clément, M., & Bernatchez, L. (2020).  
676 Shared ancestral polymorphisms and chromosomal rearrangements as potential drivers of local  
677 adaptation in a marine fish. *Molecular Ecology*, 29(13), 2379–2398. <https://doi.org/10.1111/mec.15499>

678 Chow, S., & Inoue, S. (1993). *Intra and interspecific restriction fragment length polymorphism in mitochondrial*  
679 *genes of Thunnus tuna species*.

680 Chow, S., & Kishino, H. (1995). Phylogenetic relationships between tuna species of the genus *Thunnus*  
681 (Scombridae: Teleostei): Inconsistent implications from morphology, nuclear and mitochondrial  
682 genomes. *Journal of Molecular Evolution*, 41(6). <https://doi.org/10.1007/BF00173154>

683 Chow, S., Nakagawa, T., Suzuki, N., Takeyama, H., & Matsunaga, T. (2006). Phylogenetic relationships among  
684 *Thunnus* species inferred from rDNA ITS1 sequence. *Journal of Fish Biology*, 68(A), 24–35.  
685 <https://doi.org/10.1111/j.0022-1112.2006.00945.x>

686 Chow, S., & Ushijima, H. (1995). Global population structure of albacore (*Thunnus alalunga*) inferred by RFLP  
687 analysis of the mitochondrial ATPase gene. *Marine Biology*, 123(1), 39–45.  
688 <https://doi.org/10.1007/BF00350321>

689 Cieza, A. G., Osborne, O. G., Shipley, O. N., Brooks, E. J., Tracey, S. R., McAllister, J. D., Gardner, L. D.,  
690 Sternberg, M. J. E., Block, B., & Savolainen, V. (2019). Phylotranscriptomic Insights into the  
691 Diversification of Endothermic *Thunnus* Tunas. *Molecular Biology and Evolution*, 36(1), 84–96.  
692 <https://doi.org/10.1093/molbev/msy198>

693 Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2016). GenBank. *Nucleic Acids*  
694 *Research*, 44(Database issue), D67–D72. <https://doi.org/10.1093/nar/gkv1276>

695 Colbeck, G. J., Turgeon, J., Sirois, P., & Dodson, J. J. (2011). Historical introgression and the role of selective vs.  
696 Neutral processes in structuring nuclear genetic variation (AFLP) in a circumpolar marine fish, the  
697 capelin (*Mallotus villosus*). *Molecular Ecology*, 20(9), 1976–1987. <https://doi.org/10.1111/j.1365-294X.2011.05069.x>

698 Collette, B. B., Reeb, C., & Block, B. A. (2001). Systematics of the tunas and mackerels (Scombridae). *Fish*  
699 *Physiology* (Vol. 19, pp. 1–33). Academic Press. [https://doi.org/10.1016/S1546-5098\(01\)19002-3](https://doi.org/10.1016/S1546-5098(01)19002-3)

700 Cruz, V. P., Vera, M., Pardo, B. G., Taggart, J., Martinez, P., Oliveira, C., & Foresti, F. (2017). Identification and  
701 validation of single nucleotide polymorphisms as tools to detect hybridization and population structure  
702 in freshwater stingrays. *Molecular Ecology Resources*, 17(3), 550–556. <https://doi.org/10.1111/1755-0998.12564>

703 Dabney, J., Knapp, M., Glocke, I., Gansauge, M.-T., Weihmann, A., Nickel, B., Valdiosera, C., Garcia, N., Paabo,  
704 S., Arsuaga, J.-L., & Meyer, M. (2013). Complete mitochondrial genome sequence of a Middle  
705 Pleistocene cave bear reconstructed from ultrashort DNA fragments. *Proceedings of the National*  
706 *Academy of Sciences*, 110(39), 15758–15763. <https://doi.org/10.1073/pnas.1314445110>

707 Dagilis, A. J., Peede, D., Coughlan, J. M., Jofre, G. I., D'Agostino, E. R. R., Mavengere, H., Tate, A. D., &  
708 Matute, D. R. (2022). A need for standardized reporting of introgression: Insights from studies across  
709 eukaryotes. *Evolution Letters*, 6(5), 344–357. <https://doi.org/10.1002/evl3.294>

710 Damgaard, P. B., Margaryan, A., Schroeder, H., Orlando, L., Willerslev, E., & Allentoft, M. E. (2015). Improving  
711 access to endogenous DNA in ancient bones and teeth. *Scientific Reports*, 5(1), 11184.  
712 <https://doi.org/10.1038/srep11184>

713 Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E., Lunter, G.,  
714 Marth, G. T., Sherry, S. T., McVean, G., Durbin, R., & 1000 Genomes Project Analysis Group. (2011).  
715 The variant call format and VCFtools. *Bioinformatics*, 27(15), 2156–2158.  
716 <https://doi.org/10.1093/bioinformatics/btr330>

717 Delph, L. F., & Kelly, J. K. (2014). On the importance of balancing selection in plants. *The New Phytologist*,  
718 201(1), 10.1111/nph.12441. <https://doi.org/10.1111/nph.12441>

719 Di Natale, A. (2015). *REVIEW OF THE HISTORICAL AND BIOLOGICAL EVIDENCES ABOUT A*  
720 *POPULATION OF BLUEFIN TUNA (THUNNUS THYNNUS L.) IN THE EASTERN*  
721 *MEDITERRANEAN AND THE BLACK SEA*. ICCAT.  
722 [https://www.iccat.int/Documents/CVSP/CV071\\_2015/n\\_3/CV071031098.pdf](https://www.iccat.int/Documents/CVSP/CV071_2015/n_3/CV071031098.pdf)

723 Díaz-Arce, N., Arrizabalaga, H., Murua, H., Irigoién, X., & Rodríguez-Ezpeleta, N. (2016). RAD-seq derived  
724 genome-wide nuclear markers resolve the phylogeny of tunas. *Molecular Phylogenetics and Evolution*,  
725 102, 202–207. <https://doi.org/10.1016/j.ympev.2016.06.002>

728 Díaz-Arce, N., Gagnaire, P.-A., Richardson, D. E., Walter III, J. F., Arnaud-Haond, S., Fromentin, J.-M., Brophy,  
729 D., Lutcavage, M., Addis, P., Alemany, F., Allman, R., Deguara, S., Fraile, I., Goñi, N., Hanke, A. R.,  
730 Karakulak, F. S., Pacicco, A., Quattro, J. M., Rooker, J. R., ... Rodríguez-Ezpeleta, N. (2024).  
731 Unidirectional trans-Atlantic gene flow and a mixed spawning area shape the genetic connectivity of  
732 Atlantic bluefin tuna. *Molecular Ecology*, 33(1), e17188. <https://doi.org/10.1111/mec.17188>

733 Donaldson, K. A., & Wilson, R. R. (1999). Amphi-Panamic Geminates of Snook (Percoidei: Centropomidae)  
734 Provide a Calibration of the Divergence Rate in the Mitochondrial DNA Control Region of Fishes.  
735 *Molecular Phylogenetics and Evolution*, 13(1), 208–213. <https://doi.org/10.1006/mpev.1999.0625>

736 Duranton, M., Allal, F., Valière, S., Bouchez, O., Bonhomme, F., & Gagnaire, P.-A. (2020). The contribution of  
737 ancient admixture to reproductive isolation between European sea bass lineages. *Evolution Letters*, 4(3),  
738 226–242. <https://doi.org/10.1002/evl3.169>

739 Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population  
740 genetics analyses under Linux and Windows. *Molecular Ecology Resources*, 10(3), 564–567.  
741 <https://doi.org/10.1111/j.1755-0998.2010.02847.x>

742 Faillettaz, R., Beaugrand, G., Goerville, E., & Kirby, R. R. (2019). Atlantic Multidecadal Oscillations drive the  
743 basin-scale distribution of Atlantic bluefin tuna. *Science Advances*, 5(1), eaar6993.  
744 <https://doi.org/10.1126/sciadv.aar6993>

745 Ferrari, G., Cuevas, A., Gondek-Wyrozemska, A. T., Ballantyne, R., Kersten, O., Pálssdóttir, A. H., van der Jagt,  
746 I., Hufthammer, A. K., Ystgaard, I., Wickler, S., Bigelow, G. F., Harland, J., Nicholson, R., Orton, D.,  
747 Clavel, B., Boessenkool, S., Barrett, J. H., & Star, B. (2021). The preservation of ancient DNA in  
748 archaeological fish bone. *Journal of Archaeological Science*, 126, 105317.  
749 <https://doi.org/10.1016/j.jas.2020.105317>

750 Fijarczyk, A., & Babik, W. (2015). Detecting balancing selection in genomes: Limits and prospects. *Molecular  
751 Ecology*, 24(14), 3529–3545. <https://doi.org/10.1111/mec.13226>

752 Fiksen, Ø., & Reglero, P. (2022). Atlantic bluefin tuna spawn early to avoid metabolic meltdown in larvae.  
753 *Ecology*, 103(1), e03568. <https://doi.org/10.1002/ecy.3568>

754 Fromentin, J.-M., Reygondeau, G., Bonhommeau, S., & Beaugrand, G. (2014). Oceanographic changes and  
755 exploitation drive the spatio-temporal dynamics of Atlantic bluefin tuna (*Thunnus thynnus*). *Fisheries  
756 Oceanography*, 23(2), 147–156. <https://doi.org/10.1111/fog.12050>

757 Fu, Y. X., & Li, W. H. (1993). Statistical tests of neutrality of mutations. *Genetics*, 133(3), 693–709.  
758 <https://doi.org/10.1093/genetics/133.3.693>

759 García A, Cortés D, Quintanilla J, Rámirez T, Quintanilla L, Rodríguez JM, Alemany F. 2013 Climate-induced  
760 environmental conditions influencing interannual variability of Mediterranean bluefin (*Thunnus  
761 thynnus*) larval growth. *Fish. Oceanogr.* 22, 273–287. (doi:10.1111/fog.12021)

762 Gardner, J. P. A. (1997). Hybridization in the Sea. In J. H. S. Blaxter & A. J. Southward (Eds.), *Advances in  
763 Marine Biology* (Vol. 31, pp. 1–78). Academic Press. [https://doi.org/10.1016/S0065-2881\(08\)60221-7](https://doi.org/10.1016/S0065-2881(08)60221-7)

764 Garroway, C. J., Bowman, J., Cascaden, T. J., Holloway, G. L., Mahan, C. G., Malcolm, J. R., Steele, M. A.,  
765 Turner, G., & Wilson, P. J. (2010). Climate change induced hybridization in flying squirrels. *Global  
766 Change Biology*, 16(1), 113–121. <https://doi.org/10.1111/j.1365-2486.2009.01948.x>

767 GATK. (2016). *GATK Hands -On Tutorial: Variant Discovery with GATK*. [https://qcb.ucla.edu/wp-  
769 content/uploads/sites/14/2016/03/GATK\\_Discovery\\_Tutorial-Worksheet-AUS2016.pdf](https://qcb.ucla.edu/wp-<br/>768 content/uploads/sites/14/2016/03/GATK_Discovery_Tutorial-Worksheet-AUS2016.pdf)

770 Gilbert, M. T. P., Bandelt, H.-J., Hofreiter, M., & Barnes, I. (2005). Assessing ancient DNA studies. *Trends in  
771 Ecology & Evolution*, 20(10), 541–544. <https://doi.org/10.1016/j.tree.2005.07.005>

771 Ginolhac, A., Rasmussen, M., Gilbert, M. T. P., Willerslev, E., & Orlando, L. (2011). mapDamage: Testing for  
772 damage patterns in ancient DNA sequences. *Bioinformatics*, 27(15), 2153–2155.  
773 <https://doi.org/10.1093/bioinformatics/btr347>

774 Gondek, A. T., Boessenkool, S., & Star, B. (2018). A stainless-steel mortar, pestle and sleeve design for the  
775 efficient fragmentation of ancient bone. *BioTechniques*, 64(6), 266–269. [https://doi.org/10.2144/btn-2018-0008](https://doi.org/10.2144/btn-<br/>776 2018-0008)

777 Gong, L., Liu, L.-Q., Guo, B.-Y., Ye, Y.-Y., & Lü, Z.-M. (2017). The complete mitochondrial genome  
778 characterization of *Thunnus obesus* (Scombriformes: Scombridae) and phylogenetic analyses of  
779 *Thunnus*. *Conservation Genetics Resources*, 9(3), 379–383. <https://doi.org/10.1007/s12686-017-0688-2>

780 Hawks, J. (2017). Introgression Makes Waves in Inferred Histories of Effective Population Size. *Human Biology*,  
781 89(1), 67–80.

782 Hoffmann, A. A., & Sgrò, C. M. (2011). Climate change and evolutionary adaptation. *Nature*, 470(7335), Article  
783 7335. <https://doi.org/10.1038/nature09670>

784 Hohenlohe, P. A., Funk, W. C., & Rajora, O. P. (2021). Population genomics for wildlife conservation and  
785 management. *Molecular Ecology*, 30(1), 62–82. <https://doi.org/10.1111/mec.15720>

786 Hubbs, C. L. (1955). Hybridization between Fish Species in Nature. *Systematic Biology*, 4(1), 1–20.  
787 <https://doi.org/10.2307/sysbio/4.1.1>

788 ICCAT. (2016). Report of the 2016 ICCAT North and South Atlantic albacore stock assessment meeting. *ICCAT*.  
789 [https://www.iccat.int/Documents/Meetings/Docs/2016\\_ALB\\_REPORT\\_ENG.pdf](https://www.iccat.int/Documents/Meetings/Docs/2016_ALB_REPORT_ENG.pdf)  
790 ICCAT. (2020). 2020 Advice to the commission - 5.1 ALB – Atlantic Albacore. *ICCAT*.  
791 [https://www.iccat.int/documents/scrs/execsum/alb\\_eng.pdf](https://www.iccat.int/documents/scrs/execsum/alb_eng.pdf)  
792 ICCAT (2022a). Recommendation By ICCAT Amending The Recommendation 21-08 Establishing A Multi-  
793 Annual Management Plan For Bluefin Tuna In The Eastern Atlantic And The Mediterranean (Rec-22-  
794 08).  
795 ICCAT (2022b). Recommendation By ICCAT Establishing A Management Procedure For Atlantic Bluefin Tuna  
796 To Be Used For Both The Western Atlantic And Eastern Atlantic And Mediterranean Management Areas  
797 (Rec 22-09).  
798 ICCAT. (2023). *REPORT for biennial period, 2022-23 PART I (2022)—Vol. 3 Annual Reports*. ICCAT.  
799 [https://www.iccat.int/Documents/BienRep/REP\\_TRILINGUAL\\_22-23\\_I\\_3.pdf](https://www.iccat.int/Documents/BienRep/REP_TRILINGUAL_22-23_I_3.pdf)  
800 IMR. (2021, October 29). *Makrellstørje*. Havforskningsinstituttet (Institute of Marine research), Bergen, Norway.  
801 <https://www.hi.no/hi/temasider/arter/makrellstørje>  
802 Jombart, T. (2008). adegenet: A R package for the multivariate analysis of genetic markers. *Bioinformatics*,  
803 24(11), 1403–1405. <https://doi.org/10.1093/bioinformatics/btn129>  
804 Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F., & Orlando, L. (2013). mapDamage2.0: Fast  
805 approximate Bayesian estimates of ancient DNA damage parameters. *Bioinformatics*, 29(13), 1682–  
806 1684. <https://doi.org/10.1093/bioinformatics/btt193>  
807 Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: Fast  
808 Model Selection for Accurate Phylogenetic Estimates. *Nature Methods*, 14(6), 587–589.  
809 <https://doi.org/10.1038/nmeth.4285>  
810 Kapp, J. D., Green, R. E., & Shapiro, B. (2021). A Fast and Efficient Single-stranded Genomic Library Preparation  
811 Method Optimized for Ancient DNA. *Journal of Heredity*, 112(3), 241–249.  
812 <https://doi.org/10.1093/jhered/esab012>  
813 Kardos, M., Armstrong, E. E., Fitzpatrick, S. W., Hauser, S., Hedrick, P. W., Miller, J. M., Tallmon, D. A., &  
814 Funk, W. C. (2021). The crucial role of genome-wide genetic variation in conservation. *Proceedings of  
815 the National Academy of Sciences*, 118(48), e2104642118. <https://doi.org/10.1073/pnas.2104642118>  
816 Katoh, K., Misawa, K., Kuma, K., & Miyata, T. (2002). MAFFT: A novel method for rapid multiple sequence  
817 alignment based on fast Fourier transform. *Nucleic Acids Research*, 30(14), 3059–3066.  
818 <https://doi.org/10.1093/nar/gkf436>  
819 Kersten, O., Star, B., Krabberød, A. K., Atmore, L. M., Tørresen, O. K., Anker-Nilssen, T., Descamps, S., Strøm,  
820 H., Ulf S. Johansson, Sweet, P. R., Jakobsen, K. S., & Boessenkool, S. (2023). Hybridization of Atlantic  
821 puffins in the Arctic coincides with 20th-century climate change. *Science Advances*, 9(40),  
822 <https://doi.org/10.1126/sciadv.adh1407>  
823 Knaus, B. J., & Grünwald, N. J. (2017). vcfr: A package to manipulate and visualize variant call format data in R.  
824 *Molecular Ecology Resources*, 17(1), 44–53. <https://doi.org/10.1111/1755-0998.12549>  
825 Kodama, Y., Shumway, M., Leinonen, R., & International Nucleotide Sequence Database Collaboration. (2012).  
826 The Sequence Read Archive: Explosive growth of sequencing data. *Nucleic Acids Research*, 40(Database  
827 issue), D54–56. <https://doi.org/10.1093/nar/gkr854>  
828 Kontopoulos, I., Penkman, K., McAllister, G. D., Lynnerup, N., Damgaard, P. B., Hansen, H. B., Allentoft, M.  
829 E., & Collins, M. J. (2019). Petrous bone diagenesis: A multi-analytical approach. *Palaeogeography,  
830 Palaeoclimatology, Palaeoecology*, 518, 143–154. <https://doi.org/10.1016/j.palaeo.2019.01.005>  
831 Le Moan, A., Gagnaire, P.-A., & Bonhomme, F. (2016). Parallel genetic divergence among coastal–marine  
832 ecotype pairs of European anchovy explained by differential introgression after secondary contact.  
833 *Molecular Ecology*, 25(13), 3187–3202. <https://doi.org/10.1111/mec.13627>  
834 Li, H. (2011). Tabix: Fast retrieval of sequence features from generic TAB-delimited files. *Bioinformatics*, 27(5),  
835 718–719. <https://doi.org/10.1093/bioinformatics/btq671>  
836 Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform.  
837 *Bioinformatics*, 25(14), 1754–1760. <https://doi.org/10.1093/bioinformatics/btp324>  
838 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., & 1000  
839 Genome Project Data Processing Subgroup. (2009). The Sequence Alignment/Map format and  
840 SAMtools. *Bioinformatics*, 25(16), 2078–2079. <https://doi.org/10.1093/bioinformatics/btp352>  
841 Llamas, B., Valverde, G., Fehren-Schmitz, L., Weyrich, L. S., Cooper, A., & Haak, W. (2017). From the field to  
842 the laboratory: Controlling DNA contamination in human ancient DNA research in the high-throughput  
843 sequencing era. *STAR: Science & Technology of Archaeological Research*, 3(1), 1–14.  
844 <https://doi.org/10.1080/20548923.2016.1258824>  
845 MacKenzie, B. R., Mosegaard, H., & Rosenberg, A. A. (2009). Impending collapse of bluefin tuna in the Northeast  
846 Atlantic and Mediterranean. *Conservation Letters*, 2(1), 26–35. [https://doi.org/10.1111/j.1755-263X.2008.00039.x](https://doi.org/10.1111/j.1755-<br/>847 263X.2008.00039.x)

848 MacKenzie, B. R., Payne, M. R., Boje, J., Høyer, J. L., & Siegstad, H. (2014). A cascade of warming impacts  
849 brings bluefin tuna to Greenland waters. *Global Change Biology*, 20(8), 2484–2491.  
850 <https://doi.org/10.1111/gcb.12597>

851 Martínez-García, L., Ferrari, G., Oosting, T., Ballantyne, R., van der Jagt, I., Ystgaard, I., Harland, J., Nicholson,  
852 R., Hamilton-Dyer, S., Baalsrud, H. T., Brieuc, M. S. O., Atmore, L. M., Burns, F., Schmölcke, U.,  
853 Jakobsen, K. S., Jentoft, S., Orton, D., Hufthammer, A. K., Barrett, J. H., & Star, B. (2021). *Historical  
854 Demographic Processes Dominate Genetic Variation in Ancient Atlantic Cod Mitogenomes*.  
855 <https://doi.org/10.17863/CAM.71522>

856 Matschiner, M. (2016). Fitchi: Haplotype genealogy graphs based on the Fitch algorithm. *Bioinformatics*, 32(8),  
857 1250–1252. <https://doi.org/10.1093/bioinformatics/btv717>

858 McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D.,  
859 Gabriel, S., Daly, M., & DePristo, M. A. (2010). The Genome Analysis Toolkit: A MapReduce  
860 framework for analyzing next-generation DNA sequencing data. *Genome Research*, 20(9), 1297–1303.  
861 <https://doi.org/10.1101/gr.107524.110>

862 Meyer, M., & Kircher, M. (2010). Illumina Sequencing Library Preparation for Highly Multiplexed Target  
863 Capture and Sequencing. *Cold Spring Harbor Protocols*, 2010(6), pdb.prot5448.  
864 <https://doi.org/10.1101/pdb.prot5448>

865 Montanari, S. R., Hobbs, J.-P. A., Pratchett, M. S., & van Herwerden, L. (2016). The importance of ecological  
866 and behavioural data in studies of hybridisation among marine fishes. *Reviews in Fish Biology and  
867 Fisheries*, 26(2), 181–198. <https://doi.org/10.1007/s11160-016-9420-7>

868 Muhlfeld, C. C., Kovach, R. P., Jones, L. A., Al-Chokhachy, R., Boyer, M. C., Leary, R. F., Lowe, W. H., Luikart,  
869 G., & Allendorf, F. W. (2014). Invasive hybridization in a threatened species is accelerated by climate  
870 change. *Nature Climate Change*, 4(7), Article 7. <https://doi.org/10.1038/nclimate2252>

871 Muhling, B. A., Lee, S.-K., Lamkin, J. T., & Liu, Y. (2011). Predicting the effects of climate change on bluefin  
872 tuna (*Thunnus thynnus*) spawning habitat in the Gulf of Mexico. *ICES Journal of Marine Science*, 68(6),  
873 1051–1062. <https://doi.org/10.1093/icesjms/fsr008>

874 Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A Fast and Effective Stochastic  
875 Algorithm for Estimating Maximum-Likelihood Phylogenies. *Molecular Biology and Evolution*, 32(1),  
876 268–274. <https://doi.org/10.1093/molbev/msu300>

877 Nielsen, S. V. (2020a). *Myrfunn fra Jortveit. Rapport 1 av 3. Jortveit, 172/2, Grimstad, Agder*.  
878 <https://www.duo.uio.no/handle/10852/85693>

879 Nielsen, S. V. (2020b). *Myrfunn fra Jortveit. Rapport 2 av 3. Jortveit, 172/2, Grimstad, Agder*.  
880 <https://www.duo.uio.no/handle/10852/85694>

881 Nielsen, S. V. (2020c). *Myrfunn fra Jortveit. Rapport 3 av 3. Jortveit, 172/2, Grimstad, Agder*.  
882 <https://www.duo.uio.no/handle/10852/85695>

883 Nielsen, S. V., & Persson, P. (2020). The Jortveit farm wetland: A Neolithic fishing site on the Skagerrak coast,  
884 Norway. *Journal of Wetland Archaeology*, 0(0), 1–24. <https://doi.org/10.1080/14732971.2020.1776495>

885 NOAA. (2023, May 18). *North Atlantic Albacore Tuna* | NOAA Fisheries (New England/Mid-Atlantic, Southeast).  
886 NOAA. <https://www.fisheries.noaa.gov/species/north-atlantic-albacore-tuna>

887 Nøttestad, L., Boge, E., & Ferter, K. (2020). The comeback of Atlantic bluefin tuna (*Thunnus thynnus*) to  
888 Norwegian waters. *Fisheries Research*, 231, 105689. <https://doi.org/10.1016/j.fishres.2020.105689>

889 Oosting, T., Martínez-García, L., Ferrari, G., Verry, A. J. F., Scarsbrook, L., Rawlence, N. J., Wellenreuther, M.,  
890 Star, B., & Ritchie, P. A. (2023). Mitochondrial genomes reveal mid-Pleistocene population divergence,  
891 and post-glacial expansion, in Australasian snapper (*Chrysophrys auratus*). *Heredity*, 130(1), Article 1.  
892 <https://doi.org/10.1038/s41437-022-00579-1>

893 Ottenburghs, J. (2021). The genic view of hybridization in the Anthropocene. *Evolutionary Applications*, 14(10),  
894 2342–2360. <https://doi.org/10.1111/eva.13223>

895 Paradis, E. (2010). pegas: An R package for population genetics with an integrated-modular approach.  
896 *Bioinformatics*, 26(3), 419–420. <https://doi.org/10.1093/bioinformatics/btp696>

897 Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of Phylogenetics and Evolution in R language.  
898 *Bioinformatics*, 20(2), 289–290. <https://doi.org/10.1093/bioinformatics/btg412>

899 Pons, J.-M., Sonstagen, S., Dove, C., & Crochet, P.-A. (2014). Extensive mitochondrial introgression in North  
900 American Great Black-backed Gulls (*Larus marinus*) from the American Herring Gull (*Larus  
901 smithsonianus*) with little nuclear DNA impact. *Heredity*, 112(3), Article 3.  
902 <https://doi.org/10.1038/hdy.2013.98>

903 Potts, W. M., Henriques, R., Santos, C. V., Munnik, K., Ansorge, I., Dufois, F., Booth, A. J., Kirchner, C., Sauer,  
904 W. H. H., & Shaw, P. W. (2014). Ocean warming, a rapid distributional shift, and the hybridization of a  
905 coastal fish species. *Global Change Biology*, 20(9), 2765–2777. <https://doi.org/10.1111/gcb.12612>

906 Rambaut, A. (2018, November 26). *FigTree v1.4.4*. GitHub. <https://github.com/rambaut/figtree/releases>

907 Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior Summarization in  
908 Bayesian Phylogenetics Using Tracer 1.7. *Systematic Biology*, 67(5), 901–904.  
909 <https://doi.org/10.1093/sysbio/syy032>

910 Ravier, C., & Fromentin, J.-M. (2004). Are the long-term fluctuations in Atlantic bluefin tuna (*Thunnus thynnus*)  
911 population related to environmental changes? *Fisheries Oceanography*, 13(3), 145–160.  
912 <https://doi.org/10.1111/j.1365-2419.2004.00284.x>

913 Reglero, P., Balbin, R., Abascal, F. J., Medina, A., Alvarez-Berastegui, D., Rasmussen, L., Mourre, B., Saber, S.,  
914 Ortega, A., Blanco, E., de la Gandara, F., Alemany, F. J., Ingram, G. W., Hidalgo, M. Pelagic habitat  
915 and offspring survival in the eastern stock of Atlantic bluefin tuna. – *ICES Journal of Marine Science*,  
916 doi:10.1093/icesjms/fsy135.

917 Rhymer, J. M., & Simberloff, D. (1996). Extinction by Hybridization and Introgression. *Annual Review of Ecology*  
918 and *Systematics*, 27(1), 83–109. <https://doi.org/10.1146/annurev.ecolsys.27.1.83>

919 Rodriguez, A. K., & Krug, P. J. (2022). Ecological speciation by sympatric host shifts in a clade of herbivorous  
920 sea slugs, with introgression and localized mitochondrial capture between species. *Molecular*  
921 *Phylogenetics and Evolution*, 174, 107523. <https://doi.org/10.1016/j.ympev.2022.107523>

922 Rodríguez-Ezpeleta, N., Díaz-Arce, N., Walter, J. F., Richardson, D. E., Rooker, J. R., Nøttestad, L., Hanke, A.  
923 R., Franks, J. S., Deguara, S., Lauretta, M. V., Addis, P., Varela, J. L., Fraile, I., Goñi, N., Abid, N.,  
924 Alemany, F., Oray, I. K., Quattro, J. M., Sow, F. N., ... Arrizabalaga, H. (2019). Determining natal origin  
925 for improved management of Atlantic bluefin tuna. *Frontiers in Ecology and the Environment*, 17(8),  
926 439–444. <https://doi.org/10.1002/fee.2090>

927 Rooker, J. R., Alvarado Bremer, J. R., Block, B. A., Dewar, H., de Metrio, G., Corriero, A., Kraus, R. T., Prince,  
928 E. D., Rodríguez-Marín, E., & Secor, D. H. (2007). Life History and Stock Structure of Atlantic Bluefin  
929 Tuna (*Thunnus thynnus*). *Reviews in Fisheries Science*, 15(4), 265–310.  
930 <https://doi.org/10.1080/10641260701484135>

931 Roques, Sé., SÉvigny, J.-M., & Bernatchez, L. (2001). Evidence for broadscale introgressive hybridization  
932 between two redfish (genus *Sebastes*) in the North-West Atlantic: A rare marine example. *Molecular*  
933 *Ecology*, 10(1), 149–165. <https://doi.org/10.1046/j.1365-294X.2001.01195.x>

934 Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., &  
935 Sánchez-Gracia, A. (2017). DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets.  
936 *Molecular Biology and Evolution*, 34(12), 3299–3302. <https://doi.org/10.1093/molbev/msx248>

937 Ryan, S. F., Deines, J. M., Scriber, J. M., Pfrender, M. E., Jones, S. E., Emrich, S. J., & Hellmann, J. J. (2018).  
938 Climate-mediated hybrid zone movement revealed with genomics, museum collection, and simulation  
939 modeling. *Proceedings of the National Academy of Sciences*, 115(10), E2284–E2291.  
940 <https://doi.org/10.1073/pnas.1714950115>

941 Saber, S., Urbina, J. O. de, Gómez-Vives, M. J., & Macías, D. (2015). Some aspects of the reproductive biology  
942 of albacore *Thunnus alalunga* from the Western Mediterranean Sea. *Journal of the Marine Biological  
943 Association of the United Kingdom*, 95(8), 1705–1715. <https://doi.org/10.1017/S002531541500020X>

944 Santini, F., Carnevale, G., & Sorenson, L. (2013). First molecular scombrid timetree (Percomorpha:  
945 Scombridae) shows recent radiation of tunas following invasion of pelagic habitat. *Italian Journal  
946 of Zoology*, 80(2), 210–221. <https://doi.org/10.1080/11250003.2013.775366>

947 Schroeder, H., Ávila-Arcos, M. C., Malaspina, A.-S., Poznik, G. D., Sandoval-Velasco, M., Carpenter, M. L.,  
948 Moreno-Mayar, J. V., Sikora, M., Johnson, P. L. F., Allentoft, M. E., Samaniego, J. A., Haviser, J. B.,  
949 Dee, M. W., Stafford, T. W., Salas, A., Orlando, L., Willerslev, E., Bustamante, C. D., & Gilbert, M. T.  
950 P. (2015). Genome-wide ancestry of 17th-century enslaved Africans from the Caribbean. *Proceedings  
951 of the National Academy of Sciences*, 112(12), 3669–3673. <https://doi.org/10.1073/pnas.1421784112>

952 Schubert, M., Ermini, L., Sarkissian, C. D., Jónsson, H., Ginolhac, A., Schaefer, R., Martin, M. D., Fernández,  
953 R., Kircher, M., McCue, M., Willerslev, E., & Orlando, L. (2014). Characterization of ancient and  
954 modern genomes by SNP detection and phylogenomic and metagenomic analysis using PALEOMIX.  
955 *Nature Protocols*, 9(5), Article 5. <https://doi.org/10.1038/nprot.2014.063>

956 Schubert, M., Lindgreen, S., & Orlando, L. (2016). AdapterRemoval v2: Rapid adapter trimming, identification,  
957 and read merging. *BMC Research Notes*, 9(1), 88. <https://doi.org/10.1186/s13104-016-1900-2>

958 Schwarz, G. (1978). Estimating the Dimension of a Model. *The Annals of Statistics*, 6(2), 461–464.

959 SCRS. (2021). *Report for biennial period 2020-21 PART I* (2020)—Vol. 1 English version. ICCAT.  
960 [https://www.iccat.int/Documents/BienRep/REP\\_EN\\_20-21\\_I-1.pdf](https://www.iccat.int/Documents/BienRep/REP_EN_20-21_I-1.pdf)

961 SCRS. (2023). *REPORT for biennial period, 2022-23 PART I* (2022)—Vol. 2. ICCAT.  
962 [https://www.iccat.int/Documents/BienRep/REP\\_EN\\_22-23-I-2.pdf](https://www.iccat.int/Documents/BienRep/REP_EN_22-23-I-2.pdf)

963 Seixas, F. A., Boursot, P., & Melo-Ferreira, J. (2018). The genomic impact of historical hybridization with  
964 massive mitochondrial DNA introgression. *Genome Biology*, 19(1), 91. [018-1471-8](https://doi.org/10.1186/s13059-<br/>965 018-1471-8)

966 Semenova, A. V. (2020). Introgressive Hybridization in the Secondary Contact Area of the Atlantic Herring  
967 *Clupea harengus* and the Pacific Herring *C. pallasii* (Clupeidae): Ecological Basis, Geographical  
968 Structure, and Temporal Variability of the Hybridization Zone. *Journal of Ichthyology*, 60(4), 626–642.  
969 <https://doi.org/10.1134/S0032945220030169>

970 Shen, W., Le, S., Li, Y., & Hu, F. (2016). SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File  
971 Manipulation. *PLOS ONE*, 11(10), e0163962. <https://doi.org/10.1371/journal.pone.0163962>

972 Sloan, D. B., Havird, J. C., & Sharbrough, J. (2017). The on-again, off-again relationship between mitochondrial  
973 genomes and species boundaries. *Molecular Ecology*, 26(8), 2212–2236.  
974 <https://doi.org/10.1111/mec.13959>

975 Suda, A., Nishiki, I., Iwasaki, Y., Matsuura, A., Akita, T., Suzuki, N., & Fujiwara, A. (2019). Improvement of the  
976 Pacific bluefin tuna (*Thunnus orientalis*) reference genome and development of male-specific DNA  
977 markers. *Scientific Reports*, 9(1), Article 1. <https://doi.org/10.1038/s41598-019-50978-4>

978 Szpak, P. (2011). Fish bone chemistry and ultrastructure: Implications for taphonomy and stable isotope analysis.  
979 *Journal of Archaeological Science*, 38(12), 3358–3372. <https://doi.org/10.1016/j.jas.2011.07.022>

980 Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. *Genetics*,  
981 123(3), 585–595. <https://doi.org/10.1093/genetics/123.3.585>

982 Tangen, M. (2009). The Norwegian Fishery for Atlantic Bluefin tuna. *ICCAT Collect. Vol. Sci. Pap. ICCAT*, 63:  
983 79–93 (2009). [https://www.iccat.int/Documents/CVSP/CV063\\_2009/n\\_1/CVOL63010079.pdf](https://www.iccat.int/Documents/CVSP/CV063_2009/n_1/CVOL63010079.pdf)

984 Taylor, S. A., & Larson, E. L. (2019). Insights from genomes into the evolutionary importance and prevalence of  
985 hybridization in nature. *Nature Ecology & Evolution*, 3(2), Article 2. <https://doi.org/10.1038/s41559-018-0777-y>

986 Toews, D. P. L., & Brelsford, A. (2012). The biogeography of mitochondrial and nuclear discordance in animals.  
987 *Molecular Ecology*, 21(16), 3907–3930. <https://doi.org/10.1111/j.1365-294X.2012.05664.x>

988 Tseng, M.-C., Shiao, J.-C., & Hung, Y.-H. (2011). Genetic identification of *Thunnus orientalis*, *T. thynnus*, and  
989 *T. maccoyii* by a cytochrome b gene analysis. *Environmental Biology of Fishes*, 91(1), 103–115.  
990 <https://doi.org/10.1007/s10641-010-9764-0>

991 Turbek, S. P., & Taylor, S. A. (2023). Hybridization provides climate resilience. *Nature Climate Change*, 13(3),  
992 Article 3. <https://doi.org/10.1038/s41558-022-01586-0>

993 Vandepitte, M., Gagnaire, P.-A., & Allal, F. (2019). The European sea bass: A key marine fish model in the wild  
994 and in aquaculture. *Animal Genetics*, 50(3), 195–206. <https://doi.org/10.1111/age.12779>

995 Vera, M., Aparicio, E., Heras, S., Abras, A., Casanova, A., Roldán, M.-I., & García-Marin, J.-L. (2023). Regional  
996 environmental and climatic concerns on preserving native gene pools of a least concern species: Brown  
997 trout lineages in Mediterranean streams. *Science of The Total Environment*, 862, 160739.  
998 <https://doi.org/10.1016/j.scitotenv.2022.160739>

999 Viñas, J., Gordoa, A., Fernández-Cebrián, R., Pla, C., Vahdet, Ü., & Araguas, R. M. (2011). Facts and  
1000 uncertainties about the genetic population structure of Atlantic bluefin tuna (*Thunnus thynnus*) in the  
1001 Mediterranean. Implications for fishery management. *Reviews in Fish Biology and Fisheries*, 21(3), 527–  
1002 541. <https://doi.org/10.1007/s11160-010-9174-6>

1003 Viñas, J., Pla, C., Tawil, M. Y., Hattour, A., & Farrugia, A. F. (2003). *Mitochondrial Genetic Characterization  
1004 Of Bluefin Tuna (Thunnus Thynnus) From Three Mediterranean (Libya, Malta, Tunisia); And One  
1005 Atlantic Locations (Gulf Of Cadiz)*. 7.

1006 Viñas, J., & Tudela, S. (2009). A Validated Methodology for Genetic Identification of Tuna Species (Genus  
1007 *Thunnus*). *PLoS ONE*, 4(10), e7606. <https://doi.org/10.1371/journal.pone.0007606>

1008 Wang, P., Dong, N., Wang, M., Sun, G., Jia, Y., Geng, X., Liu, M., Wang, W., Pan, Z., Yang, Q., Li, H., Wei, C.,  
1009 Wang, L., Zheng, H., He, S., Zhang, X., Wang, Q., & Du, X. (2022). Introgression from *Gossypium  
1010 hirsutum* is a driver for population divergence and genetic diversity in *Gossypium barbadense*. *The Plant  
1011 Journal*, 110(3), 764–780. <https://doi.org/10.1111/tpj.15702>

1012 Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A.,  
1013 Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson,  
1014 D., Seidel, D. P., Spinu, V., ... Yutani, H. (2019). Welcome to the Tidyverse. *Journal of Open Source  
1015 Software*, 4(43), 1686. <https://doi.org/10.21105/joss.01686>

1016 Willi, Y., Kristensen, T. N., Sgrò, C. M., Weeks, A. R., Ørsted, M., & Hoffmann, A. A. (2022). Conservation  
1017 genetics as a management tool: The five best-supported paradigms to assist the management of  
1018 threatened species. *Proceedings of the National Academy of Sciences*, 119(1), e2105076119.  
1019 <https://doi.org/10.1073/pnas.2105076119>

1020 Worm, B., & Tittensor, D. P. (2011). Range contraction in large pelagic predators. *Proceedings of the National  
1021 Academy of Sciences*, 108(29), 11942–11947. <https://doi.org/10.1073/pnas.1102353108>

1022 Xuereb, A., D'Aloia, C. C., Andrello, M., Bernatchez, L., & Fortin, M.-J. (2021). Incorporating putatively neutral  
1023 and adaptive genomic data into marine conservation planning. *Conservation Biology*, 35(3), 909–920.  
1024 <https://doi.org/10.1111/cobi.13609>

1025

1026    **Supplementary**

1027    **Supplementary Section 1**

1028    R-packages used in population genomic analyses

- 1029        • vcfR (data loading) (Knaus & Grünwald, 2017)
- 1030        • adegenet (ordination analysis) (Jombart, 2008)
- 1031        • ape (phylogenetic analyses) (Paradis et al., 2004)
- 1032        • pegas (population genomic statistics) (Paradis, 2010)
- 1033        • ggplot in tidyverse (visualization) (Wickham et al., 2019)
- 1034        • gridExtra (visualization) (Auguie and Antonov 2017)
- 1035        • lemon (visualization) (Edwards 2017)

1036

1037

1038 Section 2: Supplementary Tables

1039 *Table S1: Sample locations, laboratory protocols and dsDNA concentration for the ancient Atlantic bluefin*  
1040 *samples from Norway. All samples were taken from bone tissue (vertebrae) and all samples were dated by context*  
1041 *to be from 3000 BCE. More information about the sites can be found in the archaeological reports (Nielsen,*  
1042 *2020a, 2020b, 2020c).*

| Sample-ID              | Coordinates    | Extraction protocol | Qubit concentration | Library protocol |
|------------------------|----------------|---------------------|---------------------|------------------|
| aTUNn02-Norway-3000BCE | N 58.28 E 8.50 | DD                  | 1.24                | M&K DS           |
| aTUNn03-Norway-3000BCE | N 58.28 E 8.50 | DD                  | 0.48                | M&K DS           |
| aTUNn04-Norway-3000BCE | N 58.28 E 8.50 | DD                  | 1.27                | M&K DS           |
| aTUNn05-Norway-3000BCE | N 58.28 E 8.50 | DD                  | 1.02                | M&K DS           |
| aTUNn06-Norway-3000BCE | N 58.28 E 8.50 | DD                  | 2.7                 | M&K DS           |
| aTUNn07-Norway-3000BCE | N 58.28 E 8.50 | bleDD               | n.a.                | M&K DS           |
| aTUNn08-Norway-3000BCE | N 58.28 E 8.50 | bleDD               | n.a.                | M&K DS           |
| aTUNn09-Norway-3000BCE | N 58.28 E 8.50 | bleDD               | n.a.                | M&K DS           |
| aTUNn10-Norway-3000BCE | N 58.28 E 8.50 | bleDD               | n.a.                | M&K DS           |
| aTUNn11-Norway-3000BCE | N 58.28 E 8.50 | bleDD               | n.a.                | M&K DS           |
| aTUNn12-Norway-3000BCE | N 58.28 E 8.50 | bleDD               | n.a.                | M&K DS           |
| aTUNn13-Norway-3000BCE | N 58.28 E 8.50 | bleDD               | n.a.                | M&K DS           |
| aTUNn14-Norway-3000BCE | N 58.28 E 8.50 | bleDD               | n.a.                | M&K DS           |
| aTUNn15-Norway-3000BCE | N 58.28 E 8.50 | bleDD               | n.a.                | M&K DS           |
| aTUNn16-Norway-3000BCE | N 58.28 E 8.50 | bleDD               | n.a.                | M&K DS           |
| aTUNn17-Norway-3000BCE | N 58.28 E 8.50 | bleDD               | 1.28                | SC SS            |
| aTUNn18-Norway-3000BCE | N 58.28 E 8.50 | bleDD               | 13.3                | SC SS            |
| aTUNn19-Norway-3000BCE | N 58.28 E 8.50 | bleDD               | 5.6                 | SC SS            |
| aTUNn20-Norway-3000BCE | N 58.28 E 8.50 | bleDD               | 1.6                 | SC SS            |
| aTUNn21-Norway-3000BCE | N 58.28 E 8.50 | bleDD               | 2.8                 | SC SS            |
| aTUNn22-Norway-3000BCE | N 58.28 E 8.50 | bleDD               | 5.56                | SC SS            |
| aTUNn23-Norway-3000BCE | N 58.28 E 8.50 | bleDD               | 19.6                | SC SS            |
| aTUNn24-Norway-3000BCE | N 58.28 E 8.50 | bleDD               | 3.54                | SC SS            |
| aTUNn25-Norway-3000BCE | N 58.28 E 8.50 | bleDD               | 11                  | SC SS            |
| aTUNn26-Norway-3000BCE | N 58.28 E 8.50 | bleDD               | 6.94                | SC SS            |
| aTUNn27-Norway-3000BCE | N 58.28 E 8.50 | bleDD               | 2.8                 | SC SS            |
| aTUNn28-Norway-3000BCE | N 58.28 E 8.50 | bleDD               | 10.9                | SC SS            |
| aTUNn29-Norway-3000BCE | N 58.28 E 8.50 | bleDD               | 89.6                | SC SS            |
| aTUNn30-Norway-3000BCE | N 58.28 E 8.50 | bleDD               | 1.87                | SC SS            |
| aTUNn31-Norway-3000BCE | N 58.28 E 8.50 | bleDD               | 19.9                | SC SS            |
| aTUNn32-Norway-3000BCE | N 58.28 E 8.50 | bleDD               | 26                  | SC SS            |
| aTUNn33-Norway-3000BCE | N 58.28 E 8.50 | bleDD               | 1.9                 | SC SS            |
| aTUNn34-Norway-3000BCE | N 58.28 E 8.50 | bleDD               | 36                  | SC SS            |
| aTUNn35-Norway-3000BCE | N 58.28 E 8.50 | bleDD               | 78.8                | SC SS            |
| aTUNn36-Norway-3000BCE | N 58.28 E 8.50 | bleDD               | 25.2                | SC SS            |
| aTUNn37-Norway-3000BCE | N 58.28 E 8.50 | bleDD               | 3.18                | SC SS            |
| aTUNn38-Norway-3000BCE | N 58.28 E 8.50 | bleDD               | 3.06                | SC SS            |
| aTUNn39-Norway-3000BCE | N 58.28 E 8.50 | bleDD               | 1.4                 | SC SS            |

DD: Double digestion. Extraction protocol adapted from Damgaard et al. 2015.

bleDD: Bleach and double digestion. Extraction protocol adapted from Boessenkool et al. 2017.

M&K DS: Double stranded libraries. Library protocol adapted from Meyer and Kircher 2010 with modifications from Schroeder et al. 2015.

SC SS: Santa Cruz Reaction single-stranded library protocol from Kapp, Green, and Shapiro 2021.

1044  
1045  
1046

Table S2: Sample locations, date sampled and for the ancient Atlantic bluefin samples from the Mediterranean. All samples were taken from bone tissue (vertebrae). Samples were dated by context at the archaeological sites. More information about the sites can be found in Andrews et al. (2023b).

| Sample-ID                   | Coordinates     | Location         | Date of origin |
|-----------------------------|-----------------|------------------|----------------|
| aTUNm01-Sicily-900-1200CE   | N 38.11 E 13.37 | Palermo          | 900-1000 CE    |
| aTUNm02-Sicily-900-1200CE   | N 38.11 E 13.37 | Palermo          | 900-1000 CE    |
| aTUNm03-Sicily-900-1200CE   | N 38.11 E 13.37 | Palermo          | 900-1000 CE    |
| aTUNm04-Sicily-900-1200CE   | N 38.11 E 13.37 | Palermo          | 900-1000 CE    |
| aTUNm05-Sicily-900-1200CE   | N 38.11 E 13.37 | Palermo          | 900-1000 CE    |
| aTUNm06-Sicily-900-1200CE   | N 38.11 E 13.37 | Palermo          | 900-1000 CE    |
| aTUNm07-Sicily-900-1200CE   | N 37.65 E 12.59 | Mazara del Vallo | 1200 CE        |
| aTUNm08-Sicily-900-1200CE   | N 37.65 E 12.59 | Mazara del Vallo | 1200 CE        |
| aTUNm09-Sicily-900-1200CE   | N 37.65 E 12.59 | Mazara del Vallo | 1200 CE        |
| aTUNm10-Sicily-900-1200CE   | N 37.65 E 12.59 | Mazara del Vallo | 1200 CE        |
| aTUNm11-Sicily-900-1200CE   | N 38.11 E 13.36 | Palermo          | 900-1000 CE    |
| aTUNm12-Sicily-900-1200CE   | N 38.11 E 13.36 | Palermo          | 900-1000 CE    |
| aTUNm13-Zliten-1925CE       | N 33.25 E 14.66 | Zliten           | 1925 CE        |
| aTUNm14-Zliten-1925CE       | N 33.25 E 14.66 | Zliten           | 1925 CE        |
| aTUNm15-Zliten-1925CE       | N 33.25 E 14.66 | Zliten           | 1925 CE        |
| aTUNm16-Zliten-1925CE       | N 33.25 E 14.66 | Zliten           | 1925 CE        |
| aTUNm17-Zliten-1925CE       | N 33.25 E 14.66 | Zliten           | 1925 CE        |
| aTUNm18-Zliten-1925CE       | N 33.25 E 14.66 | Zliten           | 1925 CE        |
| aTUNm19-Zliten-1925CE       | N 33.25 E 14.66 | Zliten           | 1925 CE        |
| aTUNm20-Zliten-1925CE       | N 33.25 E 14.66 | Zliten           | 1925 CE        |
| aTUNm21-Zliten-1925CE       | N 33.25 E 14.66 | Zliten           | 1925 CE        |
| aTUNm22-Zliten-1925CE       | N 33.25 E 14.66 | Zliten           | 1925 CE        |
| aTUNm23-Zliten-1925CE       | N 33.25 E 14.66 | Zliten           | 1925 CE        |
| aTUNm24-Zliten-1925CE       | N 33.25 E 14.66 | Zliten           | 1925 CE        |
| aTUNm25-Zliten-1925CE       | N 33.25 E 14.66 | Zliten           | 1925 CE        |
| aTUNm26-Zliten-1925CE       | N 33.25 E 14.66 | Zliten           | 1925 CE        |
| aTUNm27-Zliten-1925CE       | N 33.25 E 14.66 | Zliten           | 1925 CE        |
| aTUNm28-Zliten-1925CE       | N 33.25 E 14.66 | Zliten           | 1925 CE        |
| aTUNm29-Zliten-1925CE       | N 33.25 E 14.66 | Zliten           | 1925 CE        |
| aTUNm30-Zliten-1925CE       | N 33.25 E 14.66 | Zliten           | 1925 CE        |
| aTUNm31-Zliten-1925CE       | N 33.25 E 14.66 | Zliten           | 1925 CE        |
| aTUNm32-Zliten-1925CE       | N 33.25 E 14.66 | Zliten           | 1925 CE        |
| aTUNm33-Zliten-1925CE       | N 33.25 E 14.66 | Zliten           | 1925 CE        |
| aTUNm34-Zliten-1925CE       | N 33.25 E 14.66 | Zliten           | 1925 CE        |
| aTUNm35-Istanbul-1941CE     | N 41.01 E 28.95 | Istanbul         | 1941 CE        |
| aTUNm36-Istanbul-1941CE     | N 41.01 E 28.95 | Istanbul         | 1941 CE        |
| aTUNm37-Istanbul-800-1200CE | N 41.01 E 28.95 | Istanbul         | 800-1200 CE    |
| aTUNm38-Istanbul-800-1200CE | N 41.01 E 28.95 | Istanbul         | 800-1200 CE    |
| aTUNm39-Istanbul-800-1200CE | N 41.01 E 28.95 | Istanbul         | 800-1200 CE    |
| aTUNm40-Istanbul-800-1200CE | N 41.01 E 28.95 | Istanbul         | 800-1200 CE    |
| aTUNm41-Istanbul-800-1200CE | N 41.01 E 28.95 | Istanbul         | 800-1200 CE    |
| aTUNm42-Istanbul-800-1200CE | N 41.01 E 28.95 | Istanbul         | 800-1200 CE    |
| aTUNm43-Istanbul-800-1200CE | N 41.01 E 28.95 | Istanbul         | 800-1200 CE    |
| aTUNm44-Istanbul-800-1200CE | N 41.01 E 28.95 | Istanbul         | 800-1200 CE    |
| aTUNm45-Istanbul-800-1200CE | N 41.01 E 28.95 | Istanbul         | 800-1200 CE    |
| aTUNm46-Istanbul-800-1200CE | N 41.01 E 28.95 | Istanbul         | 800-1200 CE    |
| aTUNm47-Istanbul-800-1200CE | N 41.01 E 28.95 | Istanbul         | 800-1200 CE    |

|                              |                 |           |              |
|------------------------------|-----------------|-----------|--------------|
| aTUNm48-Istanbul-800-1200CE  | N 41.01 E 28.95 | Istanbul  | 800-1200 CE  |
| aTUNm49-Istanbul-800-1200CE  | N 41.01 E 28.95 | Istanbul  | 800-1200 CE  |
| aTUNm50-Istanbul-800-1200CE  | N 41.01 E 28.95 | Istanbul  | 800-1200 CE  |
| aTUNm51-Istanbul-800-1200CE  | N 41.01 E 28.95 | Istanbul  | 800-1200 CE  |
| aTUNm52-Istanbul-800-1200CE  | N 41.01 E 28.95 | Istanbul  | 800-1200 CE  |
| aTUNm53-Istanbul-800-1200CE  | N 41.01 E 28.95 | Istanbul  | 800-1200 CE  |
| aTUNm54-Istanbul-800-1200CE  | N 41.01 E 28.95 | Istanbul  | 800-1200 CE  |
| aTUNm55-Istanbul-800-1200CE  | N 41.01 E 28.95 | Istanbul  | 800-1200 CE  |
| aTUNm56-Istanbul-800-1200CE  | N 41.01 E 28.95 | Istanbul  | 800-1200 CE  |
| aTUNm57-Istanbul-800-1200CE  | N 41.01 E 28.95 | Istanbul  | 800-1200 CE  |
| aTUNm58-Gibraltar-1755CE     | N 36.28 W 6.09  | Conil     | 1755 CE      |
| aTUNm59-Gibraltar-1755CE     | N 36.28 W 6.09  | Conil     | 1755 CE      |
| aTUNm60-Gibraltar-1755CE     | N 36.28 W 6.09  | Conil     | 1755 CE      |
| aTUNm61-Gibraltar-1755CE     | N 36.28 W 6.09  | Conil     | 1755 CE      |
| aTUNm62-Gibraltar-1755CE     | N 36.28 W 6.09  | Conil     | 1755 CE      |
| aTUNm63-Gibraltar-1755CE     | N 36.28 W 6.09  | Conil     | 1755 CE      |
| aTUNm64-Gibraltar-1755CE     | N 36.28 W 6.09  | Conil     | 1755 CE      |
| aTUNm65-Marseille-1800CE     | N 43.30 E 5.37  | Marseille | 1800 CE      |
| aTUNm66-Marseille-1800CE     | N 43.30 E 5.37  | Marseille | 1800 CE      |
| aTUNm67-Marseille-1800CE     | N 43.30 E 5.37  | Marseille | 1800 CE      |
| aTUNm68-Marseille-1800CE     | N 43.30 E 5.37  | Marseille | 1800 CE      |
| aTUNm69-Marseille-1800CE     | N 43.30 E 5.37  | Marseille | 1800 CE      |
| aTUNm70-Marseille-1800CE     | N 43.30 E 5.37  | Marseille | 1800 CE      |
| aTUNm71-Marseille-1800CE     | N 43.30 E 5.37  | Marseille | 1800 CE      |
| aTUNm72-Marseille-1800CE     | N 43.30 E 5.37  | Marseille | 1800 CE      |
| aTUNm73-Gibraltar-100CE      | N 36.53 W 6.30  | Cadiz     | 100 CE       |
| aTUNm74-Gibraltar-100CE      | N 36.53 W 6.30  | Cadiz     | 100 CE       |
| aTUNm75-Gibraltar-100CE      | N 36.53 W 6.30  | Cadiz     | 100 CE       |
| aTUNm76-Gibraltar-100CE      | N 36.53 W 6.30  | Cadiz     | 100 CE       |
| aTUNm77-Gibraltar-100CE      | N 36.53 W 6.30  | Cadiz     | 100 CE       |
| aTUNm78-Sardinia-1500-1700CE | N 40.86 E 8.62  | Sassari   | 1500-1700 CE |
| aTUNm79-Sardinia-1500-1700CE | N 40.86 E 8.62  | Sassari   | 1500-1700 CE |
| aTUNm80-Sardinia-1500-1700CE | N 40.86 E 8.62  | Sassari   | 1500-1700 CE |
| aTUNm81-Sardinia-1500-1700CE | N 40.86 E 8.62  | Sassari   | 1500-1700 CE |
| aTUNm82-Sardinia-1500-1700CE | N 40.86 E 8.62  | Sassari   | 1500-1700 CE |
| aTUNm83-Sardinia-1500-1700CE | N 40.86 E 8.62  | Sassari   | 1500-1700 CE |
| aTUNm84-Sardinia-1500-1700CE | N 40.86 E 8.62  | Sassari   | 1500-1700 CE |
| aTUNm85-Sardinia-1500-1700CE | N 40.86 E 8.62  | Sassari   | 1500-1700 CE |
| aTUNm86-Sardinia-1500-1700CE | N 40.86 E 8.62  | Sassari   | 1500-1700 CE |
| aTUNm87-Sardinia-1500-1700CE | N 40.86 E 8.62  | Sassari   | 1500-1700 CE |
| aTUNm88-Sardinia-1500-1700CE | N 40.86 E 8.62  | Sassari   | 1500-1700 CE |
| aTUNm89-Sardinia-1500-1700CE | N 40.86 E 8.62  | Sassari   | 1500-1700 CE |
| aTUNm90-Sardinia-1500-1700CE | N 40.86 E 8.62  | Sassari   | 1500-1700 CE |
| aTUNm91-Sardinia-1500-1700CE | N 40.86 E 8.62  | Sassari   | 1500-1700 CE |
| aTUNm92-Sardinia-1500-1700CE | N 40.86 E 8.62  | Sassari   | 1500-1700 CE |

1047

1048

1049

1050

1051 *Table S3: Sample locations, lifestage, tissue, date sampled and dsDNA concentration for the modern Atlantic*  
 1052 *bluefin samples from Norway.*

| Sample-ID   | Coordinates    | Lifestage and<br>Estimated TW<br>(kg) | Tissue          | Year<br>sampled | Qubit<br>concentration<br>(ng/μl) |
|-------------|----------------|---------------------------------------|-----------------|-----------------|-----------------------------------|
| mTUNn01-NOR | N 63.65 E 7.95 | Adult, 151.2                          | Powdered muscle | 2018            | 5.5                               |
| mTUNn02-NOR | N 63.65 E 7.95 | Adult, 218.6                          | Powdered muscle | 2018            | 20.6                              |
| mTUNn03-NOR | N 63.65 E 7.95 | Adult, 219.2                          | Powdered muscle | 2018            | 20.0                              |
| mTUNn04-NOR | N 63.65 E 7.95 | Adult, 225.5                          | Powdered muscle | 2018            | 4.5                               |
| mTUNn05-NOR | N 63.65 E 7.95 | Adult, 217.4                          | Powdered muscle | 2018            | 9.2                               |
| mTUNn06-NOR | N 63.65 E 7.95 | Adult, 221.1                          | Powdered muscle | 2018            | 5.2                               |
| mTUNn07-NOR | N 63.65 E 7.95 | Adult, 228.7                          | Powdered muscle | 2018            | 10.2                              |
| mTUNn08-NOR | N 63.65 E 7.95 | Adult, 227.4                          | Powdered muscle | 2018            | 5.1                               |
| mTUNn09-NOR | N 63.65 E 7.95 | Adult, 240.7                          | Powdered muscle | 2018            | 11.7                              |
| mTUNn10-NOR | N 63.65 E 7.95 | Adult, 264.0                          | Powdered muscle | 2018            | 6.0                               |
| mTUNn11-NOR | N 62.90 E 6.00 | Adult, 215.5                          | Fin skin        | 2020            | 53.4                              |
| mTUNn12-NOR | N 62.90 E 6.00 | Adult, 202.9                          | Fin skin        | 2020            | 43.8                              |
| mTUNn13-NOR | N 62.90 E 6.00 | Adult, 182.7                          | Fin skin        | 2020            | 31.4                              |
| mTUNn14-NOR | N 62.90 E 6.00 | Adult, 313.7                          | Fin skin        | 2020            | 83.7                              |
| mTUNn15-NOR | N 62.90 E 6.00 | Adult, 310.0                          | Fin skin        | 2020            | 27.3                              |
| mTUNn16-NOR | N 62.90 E 6.00 | Adult, 181.4                          | Fin skin        | 2020            | 41.8                              |
| mTUNn17-NOR | N 62.90 E 6.00 | Adult, 225.5                          | Fin skin        | 2020            | 13.4                              |
| mTUNn18-NOR | N 62.90 E 6.00 | Adult, 170.1                          | Fin skin        | 2020            | 44.0                              |
| mTUNn19-NOR | N 62.90 E 6.00 | Adult, 194.0                          | Fin skin        | 2020            | 91.9                              |
| mTUNn20-NOR | N 62.90 E 6.00 | Adult, 220.5                          | Fin skin        | 2020            | 28.5                              |
| mTUNn21-NOR | N 62.90 E 6.00 | Adult, 206.6                          | Fin skin        | 2020            | 81.3                              |
| mTUNn22-NOR | N 62.90 E 6.00 | Adult, 250.7                          | Fin skin        | 2020            | 58.8                              |
| mTUNn23-NOR | N 62.90 E 6.00 | Adult, 190.3                          | Fin skin        | 2020            | 19.1                              |
| mTUNn24-NOR | N 62.90 E 6.00 | Adult, 270.9                          | Fin skin        | 2020            | 23.6                              |
| mTUNn25-NOR | N 62.90 E 6.00 | Adult, 187.7                          | Fin skin        | 2020            | 73.4                              |
| mTUNn26-NOR | N 62.90 E 6.00 | Adult, 186.5                          | Fin skin        | 2020            | 70.5                              |
| mTUNn27-NOR | N 62.90 E 6.00 | Adult, 264.6                          | Fin skin        | 2020            | 38.7                              |
| mTUNn28-NOR | N 62.90 E 6.00 | Adult, 241.9                          | Fin skin        | 2020            | 41.2                              |
| mTUNn29-NOR | N 62.90 E 6.00 | Adult, 296.1                          | Fin skin        | 2020            | 48.3                              |
| mTUNn30-NOR | N 62.90 E 6.00 | Adult, 260.8                          | Fin skin        | 2020            | 32.0                              |
| mTUNn31-NOR | N 62.90 E 6.00 | Adult, 214.2                          | Fin skin        | 2020            | 21.8                              |
| mTUNn32-NOR | N 62.90 E 6.00 | Adult, 170.1                          | Fin skin        | 2020            | 43.2                              |
| mTUNn33-NOR | N 62.90 E 6.00 | Adult, 205.4                          | Fin skin        | 2020            | 36.1                              |
| mTUNn34-NOR | N 62.90 E 6.00 | Adult, 181.4                          | Fin skin        | 2020            | 36.3                              |
| mTUNn35-NOR | N 62.90 E 6.00 | Adult, 182.7                          | Fin skin        | 2020            | 43.8                              |
| mTUNn36-NOR | N 62.90 E 6.00 | Adult, 202.9                          | Fin skin        | 2020            | 32.6                              |
| mTUNn37-NOR | N 62.90 E 6.00 | Adult, 189.0                          | Fin skin        | 2020            | 66.5                              |
| mTUNn38-NOR | N 62.90 E 6.00 | Adult, 204.1                          | Fin skin        | 2020            | 20.4                              |

1053

1054

1055 *Table S4: Sample locations, lifestage, tissue and date sampled for the modern Atlantic bluefin samples from the*  
1056 *Mediterranean and the Gulf of Mexico.*

| Sample-ID    | Coordinates     | Location       | Lifestage | Year sampled |
|--------------|-----------------|----------------|-----------|--------------|
| mTUNm01-EMED | N 35.51 E 33.42 | Cyprus         | YoY       | 2013         |
| mTUNm02-EMED | N 35.51 E 33.42 | Cyprus         | YoY       | 2013         |
| mTUNm03-EMED | N 35.51 E 33.42 | Cyprus         | YoY       | 2013         |
| mTUNm04-EMED | N 35.51 E 33.42 | Cyprus         | YoY       | 2013         |
| mTUNm05-EMED | N 35.51 E 33.42 | Cyprus         | YoY       | 2013         |
| mTUNm06-EMED | N 35.51 E 33.42 | Cyprus         | YoY       | 2013         |
| mTUNm07-EMED | N 35.51 E 33.42 | Cyprus         | YoY       | 2013         |
| mTUNm08-EMED | N 35.51 E 33.42 | Cyprus         | YoY       | 2013         |
| mTUNm09-EMED | N 35.51 E 33.42 | Cyprus         | YoY       | 2013         |
| mTUNm10-EMED | N 35.51 E 33.42 | Cyprus         | YoY       | 2013         |
| mTUNm11-WMED | N 39.27 E 2.07  | Palma          | YoY       | 2013         |
| mTUNm12-WMED | N 39.27 E 2.07  | Palma          | YoY       | 2013         |
| mTUNm13-WMED | N 39.27 E 2.07  | Palma          | YoY       | 2013         |
| mTUNm14-WMED | N 39.27 E 2.07  | Palma          | YoY       | 2013         |
| mTUNm15-WMED | N 39.27 E 2.07  | Palma          | YoY       | 2013         |
| mTUNm16-WMED | N 39.27 E 2.07  | Palma          | YoY       | 2013         |
| mTUNm17-WMED | N 39.27 E 2.07  | Palma          | YoY       | 2013         |
| mTUNm18-WMED | N 39.27 E 2.07  | Palma          | YoY       | 2013         |
| mTUNm19-WMED | N 39.27 E 2.07  | Palma          | YoY       | 2013         |
| mTUNm20-WMED | N 39.27 E 2.07  | Palma          | YoY       | 2013         |
| mTUNm31-CMED | N 36.93 E 13.18 | Sicily         | YoY       | 2013         |
| mTUNm32-CMED | N 36.93 E 13.18 | Sicily         | YoY       | 2013         |
| mTUNm33-CMED | N 36.93 E 13.18 | Sicily         | YoY       | 2013         |
| mTUNm34-CMED | N 36.93 E 13.18 | Sicily         | YoY       | 2013         |
| mTUNm35-CMED | N 36.93 E 13.18 | Sicily         | YoY       | 2013         |
| mTUNm36-CMED | N 36.93 E 13.18 | Sicily         | YoY       | 2013         |
| mTUNm37-CMED | N 36.93 E 13.18 | Sicily         | YoY       | 2013         |
| mTUNm38-CMED | N 36.93 E 13.18 | Sicily         | YoY       | 2013         |
| mTUNm39-CMED | N 36.93 E 13.18 | Sicily         | YoY       | 2013         |
| mTUNm40-CMED | N 36.93 E 13.18 | Sicily         | YoY       | 2013         |
| mTUNm41-GOM  | N 26.12 W 87.78 | Gulf of Mexico | larvae    | 2017         |
| mTUNm42-GOM  | N 25.84 W 88.13 | Gulf of Mexico | larvae    | 2017         |
| mTUNm43-GOM  | N 28.33 W 87.25 | Gulf of Mexico | larvae    | 2018         |
| mTUNm44-GOM  | N 28.33 W 87.25 | Gulf of Mexico | larvae    | 2018         |
| mTUNm45-GOM  | N 28.33 W 87.25 | Gulf of Mexico | larvae    | 2018         |
| mTUNm46-GOM  | N 26.53 W 93.58 | Gulf of Mexico | larvae    | 2014         |
| mTUNm47-GOM  | N 26.53 W 93.58 | Gulf of Mexico | larvae    | 2014         |
| mTUNm48-GOM  | N 27.04 W 93.00 | Gulf of Mexico | larvae    | 2014         |
| mTUNm49-GOM  | N 28.00 W 87.76 | Gulf of Mexico | larvae    | 2014         |
| mTUNm50-GOM  | N 28.00 W 87.76 | Gulf of Mexico | larvae    | 2014         |

1057

1058

1059      *Table S5: Sample locations, lifestage, tissue and date sampled for the modern albacore samples from the Bay of*  
1060      *Biscay.*

| Sample-ID  | Coordinates    | Location      | Lifestage          | Year sampled |
|------------|----------------|---------------|--------------------|--------------|
| ALB-TUN-01 | N 44.46 W 3.12 | Bay of Biscay | Juvenile (5-15 kg) | 2010         |
| ALB-TUN-02 | N 44.46 W 3.12 | Bay of Biscay | Juvenile (5-15 kg) | 2010         |
| ALB-TUN-03 | N 44.46 W 3.12 | Bay of Biscay | Juvenile (5-15 kg) | 2010         |
| ALB-TUN-04 | N 44.46 W 3.12 | Bay of Biscay | Juvenile (5-15 kg) | 2010         |
| ALB-TUN-05 | N 44.46 W 3.12 | Bay of Biscay | Juvenile (5-15 kg) | 2010         |
| ALB-TUN-06 | N 44.46 W 3.12 | Bay of Biscay | Juvenile (5-15 kg) | 2010         |

1061

1062

1063      *Table S6: Pacific bluefin whole genome raw sequences downloaded from the DDBJ database (Kodama et al.,*  
1064      *2012).*

| Original sample-ID | Sample-ID   | DDBJ identifier | Filename              |
|--------------------|-------------|-----------------|-----------------------|
| PAC-DRR177383      | PBFT-TUN-01 | DRA008331       | DRR177383_1.fastq.bz2 |
|                    |             |                 | DRR177383_2.fastq.bz2 |
| PAC-DRR177395      | PBFT-TUN-02 | DRA008331       | DRR177395_1.fastq.bz2 |
|                    |             |                 | DRR177395_2.fastq.bz2 |
| PAC-DRR177400      | PBFT-TUN-03 | DRA008331       | DRR177400_1.fastq.bz2 |
|                    |             |                 | DRR177400_2.fastq.bz2 |
| PAC-DRR177401      | PBFT-TUN-04 | DRA008331       | DRR177401_1.fastq.bz2 |
|                    |             |                 | DRR177401_2.fastq.bz2 |
| PAC-DRR177402      | PBFT-TUN-05 | DRA008331       | DRR177402_1.fastq.bz2 |
|                    |             |                 | DRR177402_2.fastq.bz2 |
| PAC-DRR177403      | PBFT-TUN-06 | DRA008331       | DRR177403_1.fastq.bz2 |
|                    |             |                 | DRR177403_2.fastq.bz2 |
| PAC-DRR177404      | PBFT-TUN-07 | DRA008331       | DRR177404_1.fastq.bz2 |
|                    |             |                 | DRR177404_2.fastq.bz2 |
| PAC-DRR177405      | PBFT-TUN-08 | DRA008331       | DRR177405_1.fastq.bz2 |
|                    |             |                 | DRR177405_2.fastq.bz2 |
| PAC-DRR177406      | PBFT-TUN-09 | DRA008331       | DRR177406_1.fastq.bz2 |
|                    |             |                 | DRR177406_2.fastq.bz2 |

URL: [https://ddbj.nig.ac.jp/public/ddbj\\_database/dra/fastq/DRA008/DRA008331/DRX167946/](https://ddbj.nig.ac.jp/public/ddbj_database/dra/fastq/DRA008/DRA008331/DRX167946/)

1065

1066

1067

1068 *Table S7: Summary statistics from Paleomix for the ancient Atlantic bluefin specimens from Norway. The*  
 1069 *endogenous content is calculated from the alignment to the Atlantic bluefin nuclear reference genome. Samples*  
 1070 *that were removed from further analyses are marked with a star (\*).*

| Sample-ID                | Reads (millions) | Endogenous DNA (fraction) | Mitochondrial coverage | Mean fragment length (bp) |
|--------------------------|------------------|---------------------------|------------------------|---------------------------|
| aTUNn02-Norway-3000BCE   | 32               | 0.06                      | 7                      | 74                        |
| aTUNn03-Norway-3000BCE   | 42               | 0.15                      | 15                     | 64                        |
| aTUNn04-Norway-3000BCE   | 21               | 0.16                      | 8                      | 62                        |
| aTUNn05-Norway-3000BCE   | 120              | 0.51                      | 164                    | 64                        |
| aTUNn06-Norway-3000BCE   | 528              | 0.60                      | 1546                   | 78                        |
| aTUNn07-Norway-3000BCE   | 5                | 0.26                      | 5                      | 77                        |
| aTUNn08-Norway-3000BCE   | 16               | 0.14                      | 6                      | 66                        |
| aTUNn09-Norway-3000BCE   | 17               | 0.50                      | 17                     | 63                        |
| aTUNn10-Norway-3000BCE * | 3                | 0.22                      | 2                      | 80                        |
| aTUNn11-Norway-3000BCE   | 13               | 0.48                      | 14                     | 66                        |
| aTUNn12-Norway-3000BCE * | 20               | 0.46                      | 18                     | 64                        |
| aTUNn13-Norway-3000BCE   | 26               | 0.54                      | 29                     | 67                        |
| aTUNn14-Norway-3000BCE * | 8                | 0.33                      | 7                      | 66                        |
| aTUNn15-Norway-3000BCE   | 10               | 0.17                      | 3                      | 70                        |
| aTUNn16-Norway-3000BCE   | 2                | 0.50                      | 2                      | 66                        |
| aTUNn17-Norway-3000BCE   | 6                | 0.37                      | 11                     | 100                       |
| aTUNn18-Norway-3000BCE * | 6                | 0.03                      | 1                      | 79                        |
| aTUNn19-Norway-3000BCE   | 88               | 0.20                      | 115                    | 109                       |
| aTUNn20-Norway-3000BCE   | 19               | 0.32                      | 38                     | 101                       |
| aTUNn21-Norway-3000BCE   | 9                | 0.38                      | 23                     | 86                        |
| aTUNn22-Norway-3000BCE   | 14               | 0.37                      | 34                     | 101                       |
| aTUNn23-Norway-3000BCE   | 12               | 0.03                      | 3                      | 109                       |
| aTUNn24-Norway-3000BCE   | 153              | 0.64                      | 318                    | 91                        |
| aTUNn25-Norway-3000BCE * | 14               | 0.23                      | 23                     | 81                        |
| aTUNn26-Norway-3000BCE * | 11               | 0.17                      | 10                     | 95                        |
| aTUNn27-Norway-3000BCE * | 16               | 0.34                      | 38                     | 85                        |
| aTUNn28-Norway-3000BCE * | 15               | 0.04                      | 5                      | 97                        |
| aTUNn29-Norway-3000BCE * | 13               | 0.09                      | 11                     | 106                       |
| aTUNn30-Norway-3000BCE   | 11               | 0.18                      | 4                      | 113                       |
| aTUNn31-Norway-3000BCE   | 15               | 0.12                      | 13                     | 120                       |
| aTUNn32-Norway-3000BCE * | 15               | 0.14                      | 12                     | 119                       |
| aTUNn33-Norway-3000BCE * | 12               | 0.13                      | 12                     | 111                       |
| aTUNn34-Norway-3000BCE * | 29               | 0.00                      | 0                      | 122                       |
| aTUNn35-Norway-3000BCE   | 14               | 0.19                      | 15                     | 116                       |
| aTUNn36-Norway-3000BCE * | 14               | 0.03                      | 4                      | 107                       |
| aTUNn37-Norway-3000BCE   | 344              | 0.64                      | 740                    | 77                        |
| aTUNn38-Norway-3000BCE * | 25               | 0.47                      | 32                     | 90                        |
| aTUNn39-Norway-3000BCE   | 9                | 0.15                      | 3                      | 121                       |

1071

1072

1073 *Table S8: Summary statistics from Paleomix for the ancient Atlantic bluefin specimens from the Mediterranean.*  
 1074 *The endogenous content is calculated from the alignment to the Atlantic bluefin nuclear reference genome.*  
 1075 *Samples that were removed from further analyses are marked with a star (\*).*

| Sample-ID                     | Reads (millions) | Endogenous DNA (fraction) | Mitochondrial coverage | Mean fragment length (bp) |
|-------------------------------|------------------|---------------------------|------------------------|---------------------------|
| aTUNm01-Sicily-900-1200CE     | 16               | 0.07                      | 2                      | 83                        |
| aTUNm02-Sicily-900-1200CE     | 5                | 0.17                      | 5                      | 79                        |
| aTUNm03-Sicily-900-1200CE *   | 8                | 0.19                      | 5                      | 68                        |
| aTUNm04-Sicily-900-1200CE *   | 5                | 0.17                      | 3                      | 86                        |
| aTUNm05-Sicily-900-1200CE     | 18               | 0.12                      | 10                     | 91                        |
| aTUNm06-Sicily-900-1200CE     | 6                | 0.21                      | 6                      | 92                        |
| aTUNm07-Sicily-900-1200CE     | 6                | 0.52                      | 16                     | 86                        |
| aTUNm08-Sicily-900-1200CE     | 5                | 0.22                      | 4                      | 103                       |
| aTUNm09-Sicily-900-1200CE     | 8                | 0.07                      | 2                      | 93                        |
| aTUNm10-Sicily-900-1200CE     | 16               | 0.58                      | 73                     | 73                        |
| aTUNm11-Sicily-900-1200CE     | 7                | 0.59                      | 25                     | 79                        |
| aTUNm12-Sicily-900-1200CE     | 7                | 0.12                      | 4                      | 92                        |
| aTUNm13-Zliten-1925CE         | 7                | 0.38                      | 12                     | 70                        |
| aTUNm14-Zliten-1925CE         | 8                | 0.36                      | 15                     | 77                        |
| aTUNm15-Zliten-1925CE         | 7                | 0.06                      | 3                      | 80                        |
| aTUNm16-Zliten-1925CE         | 6                | 0.11                      | 4                      | 68                        |
| aTUNm17-Zliten-1925CE         | 6                | 0.33                      | 5                      | 69                        |
| aTUNm18-Zliten-1925CE         | 8                | 0.40                      | 12                     | 72                        |
| aTUNm19-Zliten-1925CE         | 7                | 0.25                      | 6                      | 75                        |
| aTUNm20-Zliten-1925CE         | 4                | 0.46                      | 7                      | 68                        |
| aTUNm21-Zliten-1925CE *       | 6                | 0.06                      | 3                      | 70                        |
| aTUNm22-Zliten-1925CE         | 8                | 0.37                      | 13                     | 67                        |
| aTUNm23-Zliten-1925CE         | 7                | 0.15                      | 5                      | 63                        |
| aTUNm24-Zliten-1925CE         | 7                | 0.17                      | 4                      | 66                        |
| aTUNm25-Zliten-1925CE         | 6                | 0.45                      | 9                      | 69                        |
| aTUNm26-Zliten-1925CE *       | 9                | 0.08                      | 4                      | 72                        |
| aTUNm27-Zliten-1925CE         | 8                | 0.07                      | 5                      | 83                        |
| aTUNm28-Zliten-1925CE         | 9                | 0.25                      | 9                      | 77                        |
| aTUNm29-Zliten-1925CE         | 9                | 0.18                      | 6                      | 77                        |
| aTUNm30-Zliten-1925CE         | 10               | 0.04                      | 3                      | 86                        |
| aTUNm31-Zliten-1925CE         | 7                | 0.49                      | 10                     | 80                        |
| aTUNm32-Zliten-1925CE         | 9                | 0.28                      | 17                     | 83                        |
| aTUNm33-Zliten-1925CE         | 7                | 0.26                      | 6                      | 74                        |
| aTUNm34-Zliten-1925CE         | 6                | 0.10                      | 4                      | 80                        |
| aTUNm35-Istanbul-1941CE       | 6                | 0.11                      | 1                      | 111                       |
| aTUNm36-Istanbul-1941CE       | 10               | 0.27                      | 10                     | 72                        |
| aTUNm37-Istanbul-800-1200CE   | 5                | 0.51                      | 22                     | 77                        |
| aTUNm38-Istanbul-800-1200CE   | 5                | 0.47                      | 9                      | 70                        |
| aTUNm39-Istanbul-800-1200CE   | 5                | 0.24                      | 7                      | 82                        |
| aTUNm40-Istanbul-800-1200CE * | 4                | 0.45                      | 19                     | 91                        |
| aTUNm41-Istanbul-800-1200CE   | 5                | 0.57                      | 25                     | 76                        |
| aTUNm42-Istanbul-800-1200CE   | 4                | 0.36                      | 7                      | 90                        |
| aTUNm43-Istanbul-800-1200CE   | 4                | 0.32                      | 4                      | 74                        |
| aTUNm44-Istanbul-800-1200CE   | 5                | 0.16                      | 3                      | 76                        |
| aTUNm45-Istanbul-800-1200CE   | 4                | 0.59                      | 16                     | 75                        |
| aTUNm46-Istanbul-800-1200CE   | 4                | 0.53                      | 18                     | 83                        |
| aTUNm47-Istanbul-800-1200CE   | 4                | 0.61                      | 12                     | 77                        |

|                               |    |      |    |     |
|-------------------------------|----|------|----|-----|
| aTUNm48-Istanbul-800-1200CE * | 4  | 0.09 | 2  | 78  |
| aTUNm49-Istanbul-800-1200CE   | 4  | 0.22 | 5  | 79  |
| aTUNm50-Istanbul-800-1200CE   | 6  | 0.50 | 12 | 82  |
| aTUNm51-Istanbul-800-1200CE   | 10 | 0.46 | 31 | 75  |
| aTUNm52-Istanbul-800-1200CE   | 14 | 0.39 | 64 | 78  |
| aTUNm53-Istanbul-800-1200CE   | 6  | 0.38 | 8  | 76  |
| aTUNm54-Istanbul-800-1200CE   | 9  | 0.33 | 15 | 87  |
| aTUNm55-Istanbul-800-1200CE   | 6  | 0.42 | 10 | 77  |
| aTUNm56-Istanbul-800-1200CE   | 10 | 0.47 | 17 | 77  |
| aTUNm57-Istanbul-800-1200CE   | 4  | 0.55 | 25 | 96  |
| aTUNm58-Gibraltar-1755CE      | 10 | 0.06 | 2  | 82  |
| aTUNm59-Gibraltar-1755CE      | 8  | 0.10 | 3  | 79  |
| aTUNm60-Gibraltar-1755CE      | 6  | 0.10 | 3  | 87  |
| aTUNm61-Gibraltar-1755CE      | 8  | 0.08 | 3  | 82  |
| aTUNm62-Gibraltar-1755CE      | 6  | 0.16 | 2  | 85  |
| aTUNm63-Gibraltar-1755CE      | 5  | 0.10 | 3  | 89  |
| aTUNm64-Gibraltar-1755CE      | 14 | 0.06 | 3  | 83  |
| aTUNm65-Marseille-1800CE      | 6  | 0.34 | 10 | 72  |
| aTUNm66-Marseille-1800CE      | 7  | 0.35 | 69 | 95  |
| aTUNm67-Marseille-1800CE      | 9  | 0.22 | 7  | 99  |
| aTUNm68-Marseille-1800CE      | 10 | 0.24 | 6  | 82  |
| aTUNm69-Marseille-1800CE      | 3  | 0.28 | 8  | 82  |
| aTUNm70-Marseille-1800CE      | 6  | 0.25 | 12 | 82  |
| aTUNm71-Marseille-1800CE      | 9  | 0.18 | 27 | 92  |
| aTUNm72-Marseille-1800CE      | 38 | 0.12 | 14 | 72  |
| aTUNm73-Gibraltar-100CE       | 22 | 0.05 | 11 | 92  |
| aTUNm74-Gibraltar-100CE *     | 13 | 0.07 | 2  | 83  |
| aTUNm75-Gibraltar-100CE       | 21 | 0.13 | 10 | 85  |
| aTUNm76-Gibraltar-100CE       | 13 | 0.09 | 5  | 99  |
| aTUNm77-Gibraltar-100CE       | 15 | 0.08 | 6  | 82  |
| aTUNm78-Sardinia-1500-1700CE  | 5  | 0.39 | 8  | 103 |
| aTUNm79-Sardinia-1500-1700CE  | 11 | 0.57 | 29 | 75  |
| aTUNm80-Sardinia-1500-1700CE  | 6  | 0.06 | 4  | 105 |
| aTUNm81-Sardinia-1500-1700CE  | 6  | 0.39 | 10 | 86  |
| aTUNm82-Sardinia-1500-1700CE  | 5  | 0.40 | 15 | 93  |
| aTUNm83-Sardinia-1500-1700CE  | 11 | 0.05 | 2  | 89  |
| aTUNm84-Sardinia-1500-1700CE  | 5  | 0.39 | 14 | 90  |
| aTUNm85-Sardinia-1500-1700CE  | 13 | 0.56 | 34 | 81  |
| aTUNm86-Sardinia-1500-1700CE  | 7  | 0.14 | 5  | 99  |
| aTUNm87-Sardinia-1500-1700CE  | 14 | 0.58 | 58 | 93  |
| aTUNm88-Sardinia-1500-1700CE  | 9  | 0.49 | 13 | 84  |
| aTUNm89-Sardinia-1500-1700CE  | 6  | 0.57 | 15 | 80  |
| aTUNm90-Sardinia-1500-1700CE  | 10 | 0.59 | 31 | 87  |
| aTUNm91-Sardinia-1500-1700CE  | 3  | 0.50 | 11 | 90  |
| aTUNm92-Sardinia-1500-1700CE  | 3  | 0.36 | 7  | 96  |

1076

1077

1078

1079 Table S9: Summary statistics from Paleomix for the modern Atlantic bluefin specimens from Norway. The  
1080 endogenous content is calculated from the alignment to the Atlantic bluefin nuclear reference genome.

| Sample-ID   | Reads (millions) | Endogenous DNA (fraction) | Mitochondrial coverage | Mean fragment length (bp) |
|-------------|------------------|---------------------------|------------------------|---------------------------|
| mTUNn01-NOR | 75               | 0.69                      | 2784                   | 178                       |
| mTUNn02-NOR | 59               | 0.73                      | 1019                   | 170                       |
| mTUNn03-NOR | 56               | 0.72                      | 1508                   | 172                       |
| mTUNn04-NOR | 79               | 0.75                      | 1150                   | 178                       |
| mTUNn05-NOR | 69               | 0.76                      | 823                    | 172                       |
| mTUNn06-NOR | 79               | 0.75                      | 1633                   | 169                       |
| mTUNn07-NOR | 73               | 0.77                      | 1163                   | 170                       |
| mTUNn08-NOR | 76               | 0.75                      | 1811                   | 175                       |
| mTUNn09-NOR | 90               | 0.76                      | 1960                   | 171                       |
| mTUNn10-NOR | 93               | 0.75                      | 2345                   | 171                       |
| mTUNn11-NOR | 21               | 0.76                      | 273                    | 168                       |
| mTUNn12-NOR | 19               | 0.75                      | 307                    | 168                       |
| mTUNn13-NOR | 23               | 0.78                      | 296                    | 168                       |
| mTUNn14-NOR | 19               | 0.76                      | 247                    | 170                       |
| mTUNn15-NOR | 18               | 0.76                      | 283                    | 166                       |
| mTUNn16-NOR | 22               | 0.76                      | 370                    | 170                       |
| mTUNn17-NOR | 22               | 0.75                      | 260                    | 168                       |
| mTUNn18-NOR | 33               | 0.75                      | 512                    | 169                       |
| mTUNn19-NOR | 22               | 0.77                      | 228                    | 167                       |
| mTUNn20-NOR | 19               | 0.75                      | 251                    | 168                       |
| mTUNn21-NOR | 19               | 0.76                      | 520                    | 168                       |
| mTUNn22-NOR | 17               | 0.77                      | 286                    | 166                       |
| mTUNn23-NOR | 17               | 0.77                      | 263                    | 167                       |
| mTUNn24-NOR | 23               | 0.77                      | 301                    | 168                       |
| mTUNn25-NOR | 23               | 0.75                      | 381                    | 169                       |
| mTUNn26-NOR | 21               | 0.76                      | 389                    | 169                       |
| mTUNn27-NOR | 25               | 0.76                      | 343                    | 168                       |
| mTUNn28-NOR | 25               | 0.76                      | 349                    | 166                       |
| mTUNn29-NOR | 22               | 0.75                      | 448                    | 168                       |
| mTUNn30-NOR | 23               | 0.77                      | 419                    | 169                       |
| mTUNn31-NOR | 27               | 0.77                      | 687                    | 166                       |
| mTUNn32-NOR | 22               | 0.78                      | 543                    | 168                       |
| mTUNn33-NOR | 22               | 0.75                      | 458                    | 169                       |
| mTUNn34-NOR | 18               | 0.76                      | 417                    | 166                       |
| mTUNn35-NOR | 24               | 0.76                      | 472                    | 167                       |
| mTUNn36-NOR | 23               | 0.76                      | 356                    | 168                       |
| mTUNn37-NOR | 24               | 0.77                      | 419                    | 166                       |
| mTUNn38-NOR | 24               | 0.75                      | 425                    | 169                       |

1081

1082

1083 *Table S10: Summary statistics from Paleomix for the modern Atlantic bluefin specimens from the Mediterranean*  
 1084 *and the Gulf of Mexico. The endogenous content is calculated from the alignment to the Atlantic bluefin nuclear*  
 1085 *reference genome.*

| Sample-ID    | Reads (millions) | Endogenous DNA (fraction) | Mitochondrial coverage | Mean fragment length (bp) |
|--------------|------------------|---------------------------|------------------------|---------------------------|
| mTUNm01-EMED | 24               | 0.68                      | 716                    | 112                       |
| mTUNm02-EMED | 25               | 0.68                      | 704                    | 124                       |
| mTUNm03-EMED | 22               | 0.69                      | 336                    | 118                       |
| mTUNm04-EMED | 13               | 0.80                      | 445                    | 156                       |
| mTUNm05-EMED | 48               | 0.48                      | 2089                   | 120                       |
| mTUNm06-EMED | 37               | 0.49                      | 1600                   | 115                       |
| mTUNm07-EMED | 31               | 0.67                      | 708                    | 105                       |
| mTUNm08-EMED | 21               | 0.72                      | 230                    | 102                       |
| mTUNm09-EMED | 19               | 0.71                      | 363                    | 100                       |
| mTUNm10-EMED | 23               | 0.73                      | 538                    | 103                       |
| mTUNm11-WMED | 24               | 0.68                      | 1021                   | 83                        |
| mTUNm12-WMED | 27               | 0.70                      | 660                    | 112                       |
| mTUNm13-WMED | 14               | 0.59                      | 574                    | 104                       |
| mTUNm14-WMED | 20               | 0.70                      | 396                    | 81                        |
| mTUNm15-WMED | 26               | 0.66                      | 840                    | 119                       |
| mTUNm16-WMED | 46               | 0.61                      | 1462                   | 80                        |
| mTUNm17-WMED | 63               | 0.58                      | 1212                   | 67                        |
| mTUNm18-WMED | 60               | 0.57                      | 1183                   | 62                        |
| mTUNm19-WMED | 41               | 0.69                      | 410                    | 95                        |
| mTUNm20-WMED | 74               | 0.65                      | 460                    | 70                        |
| mTUNm31-CMED | 36               | 0.35                      | 1180                   | 122                       |
| mTUNm32-CMED | 32               | 0.30                      | 666                    | 126                       |
| mTUNm33-CMED | 54               | 0.60                      | 1385                   | 69                        |
| mTUNm34-CMED | 56               | 0.34                      | 976                    | 128                       |
| mTUNm35-CMED | 38               | 0.61                      | 448                    | 71                        |
| mTUNm36-CMED | 32               | 0.71                      | 745                    | 106                       |
| mTUNm37-CMED | 45               | 0.55                      | 530                    | 104                       |
| mTUNm38-CMED | 36               | 0.35                      | 176                    | 128                       |
| mTUNm39-CMED | 62               | 0.58                      | 705                    | 81                        |
| mTUNm40-CMED | 51               | 0.58                      | 533                    | 60                        |
| mTUNm41-GOM  | 80               | 0.66                      | 696                    | 69                        |
| mTUNm42-GOM  | 51               | 0.38                      | 972                    | 111                       |
| mTUNm43-GOM  | 30               | 0.49                      | 565                    | 106                       |
| mTUNm44-GOM  | 52               | 0.56                      | 881                    | 100                       |
| mTUNm45-GOM  | 44               | 0.47                      | 966                    | 128                       |
| mTUNm46-GOM  | 26               | 0.69                      | 319                    | 78                        |
| mTUNm47-GOM  | 46               | 0.69                      | 49                     | 75                        |
| mTUNm48-GOM  | 26               | 0.65                      | 34                     | 67                        |
| mTUNm49-GOM  | 67               | 0.55                      | 910                    | 102                       |
| mTUNm50-GOM  | 53               | 0.60                      | 430                    | 66                        |

1086

1087

1088 *Table S11: Summary statistics from Paleomix for the modern albacore specimens from the Bay of Biscay. The*  
1089 *endogenous content is calculated from the alignment to the Atlantic bluefin nuclear reference genome.*

| Sample-ID  | Reads (millions) | Endogenous DNA (fraction) | Mitochondrial coverage | Mean fragment length (bp) |
|------------|------------------|---------------------------|------------------------|---------------------------|
| ALB-TUN-01 | 37               | 0.59                      | 277                    | 99                        |
| ALB-TUN-02 | 19               | 0.66                      | 219                    | 117                       |
| ALB-TUN-03 | 28               | 0.65                      | 103                    | 124                       |
| ALB-TUN-04 | 27               | 0.66                      | 377                    | 74                        |
| ALB-TUN-05 | 12               | 0.70                      | 243                    | 95                        |
| ALB-TUN-06 | 25               | 0.68                      | 109                    | 99                        |

1090  
1091 *Table S12: Summary statistics from Paleomix for the modern Pacific bluefin specimens from the Nansei Islands.*  
1092 *Whole genome raw sequence data downloaded from the DDBJ database (Kodama et al., 2012). The endogenous*  
1093 *content is calculated from the alignment to the Atlantic bluefin nuclear reference genome.*

| Sample-ID   | Reads (millions) | Endogenous DNA (fraction) | Mitochondrial coverage | Mean fragment length (bp) |
|-------------|------------------|---------------------------|------------------------|---------------------------|
| PBFT-TUN-01 | 121              | 0.72                      | 2657                   | 152                       |
| PBFT-TUN-02 | 127              | 0.74                      | 5107                   | 151                       |
| PBFT-TUN-03 | 109              | 0.76                      | 2346                   | 151                       |
| PBFT-TUN-04 | 112              | 0.73                      | 1361                   | 151                       |
| PBFT-TUN-05 | 107              | 0.76                      | 4005                   | 151                       |
| PBFT-TUN-06 | 112              | 0.75                      | 3345                   | 151                       |
| PBFT-TUN-07 | 99               | 0.76                      | 3061                   | 151                       |
| PBFT-TUN-08 | 126              | 0.75                      | 3465                   | 151                       |
| PBFT-TUN-09 | 114              | 0.74                      | 4555                   | 151                       |

1094  
1095

1096

1097 *Table S13: Introgressed individuals. Samples that were removed from further analyses due to being identical with*  
1098 *other samples and/or having high missingness are marked with a star (\*).*

| Sample-ID                    | Mitochondrial haplotype |
|------------------------------|-------------------------|
| aTUNn21-Norway-3000BCE       | Pacific bluefin         |
| aTUNn22-Norway-3000BCE       | Pacific bluefin         |
| aTUNn25-Norway-3000BCE *     | Pacific bluefin         |
| aTUNn26-Norway-3000BCE *     | Pacific bluefin         |
| aTUNn27-Norway-3000BCE *     | Pacific bluefin         |
| aTUNn28-Norway-3000BCE *     | Pacific bluefin         |
| aTUNn29-Norway-3000BCE *     | Pacific bluefin         |
| aTUNn33-Norway-3000BCE *     | Pacific bluefin         |
| aTUNn34-Norway-3000BCE *     | Pacific bluefin         |
| aTUNn36-Norway-3000BCE *     | Pacific bluefin         |
| aTUNm02-Sicily-900-1200CE    | Albacore                |
| aTUNm04-Sicily-900-1200CE *  | Albacore                |
| aTUNm06-Sicily-900-1200CE    | Albacore                |
| aTUNm39-Istanbul-800-1200CE  | Pacific bluefin         |
| aTUNm46-Istanbul-800-1200CE  | Albacore                |
| aTUNm81-Sardinia-1500-1700CE | Pacific bluefin         |
| mTUNn05-NOR                  | Albacore                |
| mTUNn17-NOR                  | Pacific bluefin         |
| mTUNn35-NOR                  | Pacific bluefin         |
| mTUNm15-WMED                 | Albacore                |

1099

1100

1101 1102 *Table S14: Jointly called and filtered datasets, used in population genomic analyses (N = number of samples in each dataset).*

|                                                            |         | Location                                          | Subset Code                          | N   |
|------------------------------------------------------------|---------|---------------------------------------------------|--------------------------------------|-----|
| Containing samples with signs of introgression             | Modern  | Norwegian sea                                     | <b>NORAll</b>                        | 38  |
|                                                            |         | Western Mediterranean                             | <b>WMEDAll</b>                       | 10  |
|                                                            |         | All modern Atlantic bluefin locations             | <b>modernABFT</b>                    | 78  |
| No introgressed samples present                            | Ancient | Jortveit, Norway                                  | <b>Norway_3000BCE_All</b>            | 25  |
|                                                            |         | Sardinia, Italy                                   | <b>Sardinia_1500_1700CE_All</b>      | 15  |
|                                                            |         | Istanbul, Turkey                                  | <b>Istanbul_800_1200CE_All</b>       | 19  |
|                                                            |         | Sicily, Italy                                     | <b>Sicily_900_1200CE_All</b>         | 10  |
|                                                            | Modern  | All ancient excavation locations                  | <b>AncientAll</b>                    | 109 |
|                                                            |         | All modern and ancient Atlantic bluefin locations | <b>AllABFT</b>                       | 187 |
|                                                            |         | Norwegian sea                                     | <b>NORExIntrog</b>                   | 35  |
|                                                            |         | Eastern Mediterranean                             | <b>EMED</b>                          | 10  |
| Datasets with jointly called and filtered outgroup species | Ancient | Central Mediterranean                             | <b>CMED</b>                          | 10  |
|                                                            |         | Western Mediterranean                             | <b>WMEDExIntrog</b>                  | 9   |
|                                                            |         | Gulf of Mexico                                    | <b>GOM</b>                           | 10  |
|                                                            |         | All modern Atlantic bluefin locations             | <b>modernExIntrog</b>                | 74  |
|                                                            |         | Jortveit, Norway                                  | <b>Norway_3000BCE_ExIntrog</b>       | 23  |
|                                                            |         | Sardinia, Italy                                   | <b>Sardinia_1500_1700CE_ExIntrog</b> | 14  |
|                                                            |         | Istanbul, Turkey                                  | <b>Istanbul_800_1200CE_ExIntrog</b>  | 17  |
|                                                            |         | Sicily, Italy                                     | <b>Sicily_900_1200CE_ExIntrog</b>    | 8   |
|                                                            |         | Cádiz, Spain                                      | <b>Gibraltar_100CE</b>               | 4   |
|                                                            |         | Conil de la Frontera, Spain                       | <b>Gibraltar_1755CE</b>              | 7   |
| 1103                                                       |         | Istanbul, Turkey                                  | <b>Istanbul_1941CE</b>               | 1   |
|                                                            |         | Marseille, France                                 | <b>Marseille_1800CE</b>              | 8   |
|                                                            |         | Zliten, Libya                                     | <b>Zliten_1925CE</b>                 | 20  |
|                                                            |         | All ancient excavation locations                  | <b>AncientExIntrog</b>               | 102 |
|                                                            |         | All modern and ancient Atlantic bluefin locations | <b>AllExIntrog</b>                   | 176 |
|                                                            |         | All samples in <b>AllABFT</b>                     | All Atlantic bluefin locations       |     |
|                                                            |         | + All albacore samples                            | + Bay of Biscay (albacore)           |     |
|                                                            |         | + All Pacific bluefin samples                     | + Nansei Islands (Pacific bluefin)   |     |
|                                                            |         |                                                   | <b>All_ALB_PBFT</b>                  | 202 |
|                                                            |         |                                                   |                                      |     |

1104

1105 In the table above, the following datasets were used for population genomic analyses:

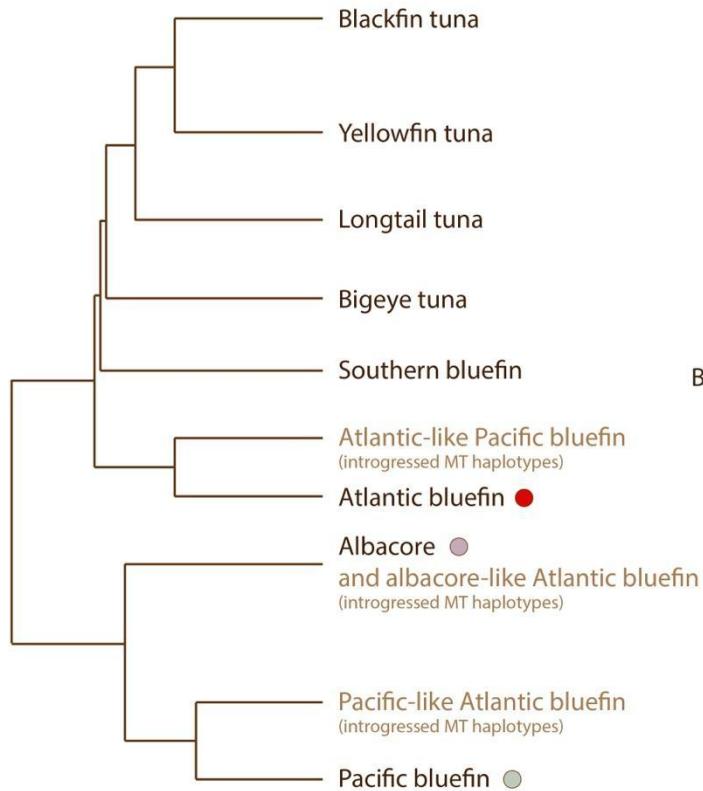
- 1106 • AllABFT: Used for LociMissingness analyses (Figure S5) and calculation of  $\Phi$ ST and  $d_{xy}$  (Figure 3B). No outgroup.
- 1107 • All\_ALB\_PBFT: Used for interspecific PCA (Figure 2A) with no outgroup. It was also used for haplotype network (Figure 2C) and ML and Bayesian phylogenies (Figure 2D and Figure S6) using one katsuwonus pelamis as outgroup (NCBI Reference Sequence: NC\_005316.1)
- 1108 • AllExIntrog: Used for intraspecific PCA (Figure S8) and calculation of  $\Phi$ ST and  $d_{xy}$  (Figure 3A) with no outgroup. It was also used for intraspecific haplotype network (Figure S9), as well as ML and Bayesian phylogenies (Figure S10) using one Pacific bluefin as outgroup (NCBI Reference Sequence: NC\_008455.1)

1109

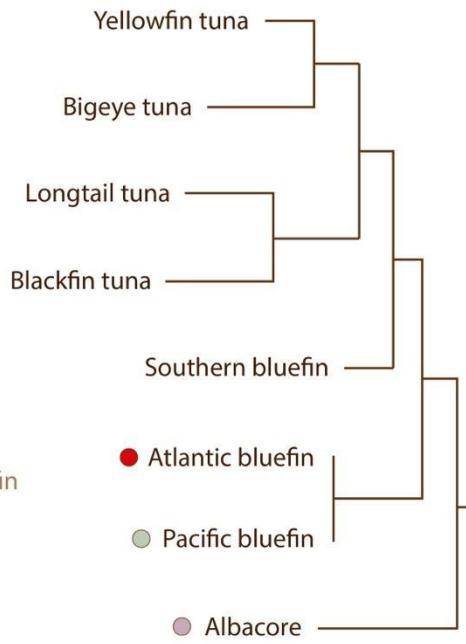
1110 All other datasets were only used for the calculation of population genomic statistics (Table S15).

1115

1116 *Table S15: Population genomic statistics of the separately called and filtered datasets. N = number of samples,*  
 1117 *hD = haplotype diversity, Nh = number of haplotypes, S = number of segregating sites,  $\pi$  = nucleotide diversity,*  
 1118 *TD = Tajima's D. Significance levels (\*\*=0.01, \*=0.05, n.s.=not significant) are indicated for the TD values.*  
 1119 *Datasets containing introgressed samples have been highlighted in beige color.*


| Subset                        | N   | hD    | Nh  | S   | $\pi$  | TD           | $\pi(\text{bs})$ | TD(bs) |
|-------------------------------|-----|-------|-----|-----|--------|--------------|------------------|--------|
| AllABFT_mt                    | 186 | 0.998 | 160 | 809 | 0.0033 | -3.23 (**)   | 0.0027           | -2.49  |
| AllExIntrog_mt                | 175 | 0.999 | 158 | 475 | 0.0009 | -3.23 (**)   | 0.0007           | -2.82  |
| modernABFT_mt                 | 78  | 0.998 | 72  | 699 | 0.0035 | -2.14 (*)    | 0.0035           | -1.18  |
| modernExIntrog_mt             | 74  | 0.999 | 70  | 300 | 0.0012 | -2.49 (*)    | 0.0011           | -1.20  |
| AncientAll_mt                 | 108 | 0.998 | 97  | 710 | 0.0034 | -3.37 (**)   | 0.0024           | -3.42  |
| AncientExIntrog_mt            | 101 | 0.997 | 90  | 332 | 0.0008 | -3.37 (**)   | 0.0005           | -3.45  |
| NORAll_mt                     | 38  | 0.997 | 36  | 621 | 0.0049 | -1.73 (n.s.) | 0.0050           | -0.92  |
| NORExIntrog_mt                | 35  | 0.998 | 34  | 187 | 0.0012 | -2.10 (*)    | 0.0012           | -0.85  |
| WMEDAll_mt                    | 10  | 1.000 | 10  | 477 | 0.0060 | -2.14 (*)    | 0.0060           | -1.28  |
| WMEDExIntrog_mt               | 9   | 1.000 | 9   | 74  | 0.0011 | -1.71 (n.s.) | 0.0011           | -1.21  |
| EMED_mt                       | 10  | 1.000 | 10  | 90  | 0.0013 | -1.59 (n.s.) | 0.0013           | -0.93  |
| CMED_mt                       | 10  | 1.000 | 10  | 90  | 0.0012 | -1.87 (n.s.) | 0.0012           | -1.21  |
| GOM_mt                        | 10  | 1.000 | 10  | 78  | 0.0010 | -2.17 (*)    | 0.0010           | -1.58  |
| Norway_3000BCE_All            | 24  | 1.000 | 24  | 556 | 0.0046 | -3.91 (**)   | 0.0029           | -3.68  |
| Norway_3000BCE_ExIntrog       | 23  | 1.000 | 22  | 201 | 0.0012 | -3.92 (**)   | 0.0008           | -3.65  |
| Sardinia_1500_1700CE_All      | 15  | 1.000 | 15  | 504 | 0.0042 | -3.31 (**)   | 0.0035           | -2.46  |
| Sardinia_1500_1700CE_ExIntrog | 14  | 1.000 | 14  | 95  | 0.0009 | -3.47 (**)   | 0.0007           | -2.65  |
| Istanbul_800_1200CE_All       | 19  | 1.000 | 19  | 542 | 0.0054 | -2.90 (**)   | 0.0049           | -1.94  |
| Istanbul_800_1200CE_ExIntrog  | 17  | 1.000 | 17  | 85  | 0.0009 | -3.04 (**)   | 0.0007           | -2.01  |
| Sicily_900_1200CE_All         | 10  | 1.000 | 10  | 411 | 0.0062 | -4.18 (**)   | 0.0037           | -4.15  |
| Sicily_900_1200CE_ExIntrog    | 8   | 1.000 | 8   | 43  | 0.0006 | -4.55 (**)   | 0.0003           | -4.64  |
| Gibraltar_100CE               | 4   | 1.000 | 4   | 27  | 0.0008 | -0.63 (n.s.) | n.a.             | n.a.   |
| Gibraltar_1755CE              | 7   | 1.000 | 7   | 30  | 0.0003 | -5.17(**)    | 0.0001           | -6.27  |
| Istanbul_1941CE               | 1   | n.a.  | 1   | 0   | n.a.   | n.a.         | n.a.             | n.a.   |
| Marseille_1800CE              | 8   | 1.000 | 8   | 40  | 0.0006 | -2.96 (**)   | 0.0005           | -2.70  |
| Zliten_1925CE                 | 20  | 1.000 | 20  | 111 | 0.0008 | -3.75 (**)   | 0.0006           | -3.38  |

1120


1121 Section 3: Supplementary Figures

1122

A) Mitochondrial phylogeny

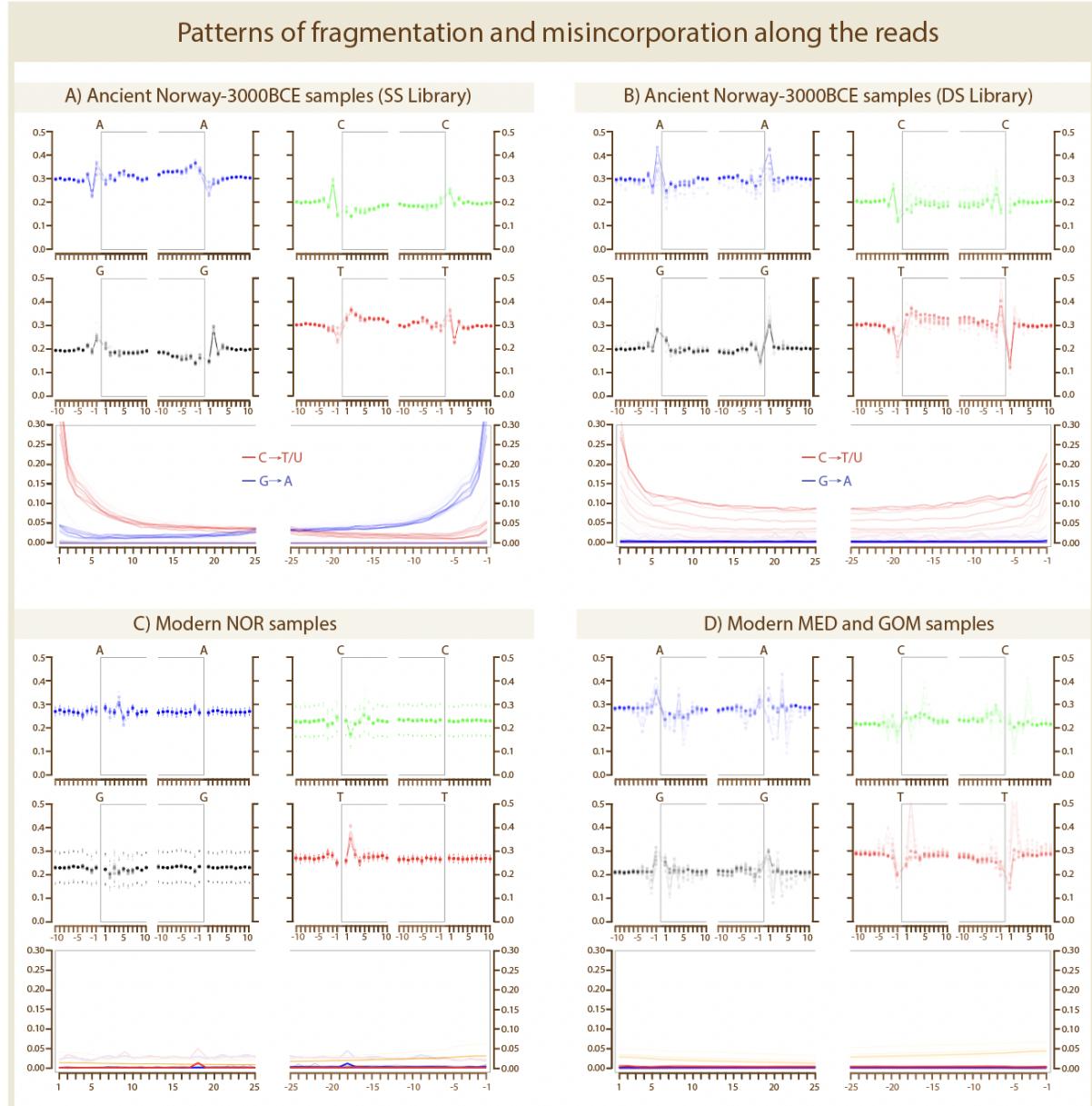


B) Nuclear phylogeny



1123

1124


Figure S1: *Thunnus* phylogenies based on A) the mitochondrial control region adapted from Viñas & Tudela (2009) and B) genome-wide nuclear markers adapted from Díaz-Arce et al. (2016). Tip labels in light brown represent introgressed mitochondrial sequences. The colored circles mark species presented in this study.

1125

1126

1127

1128

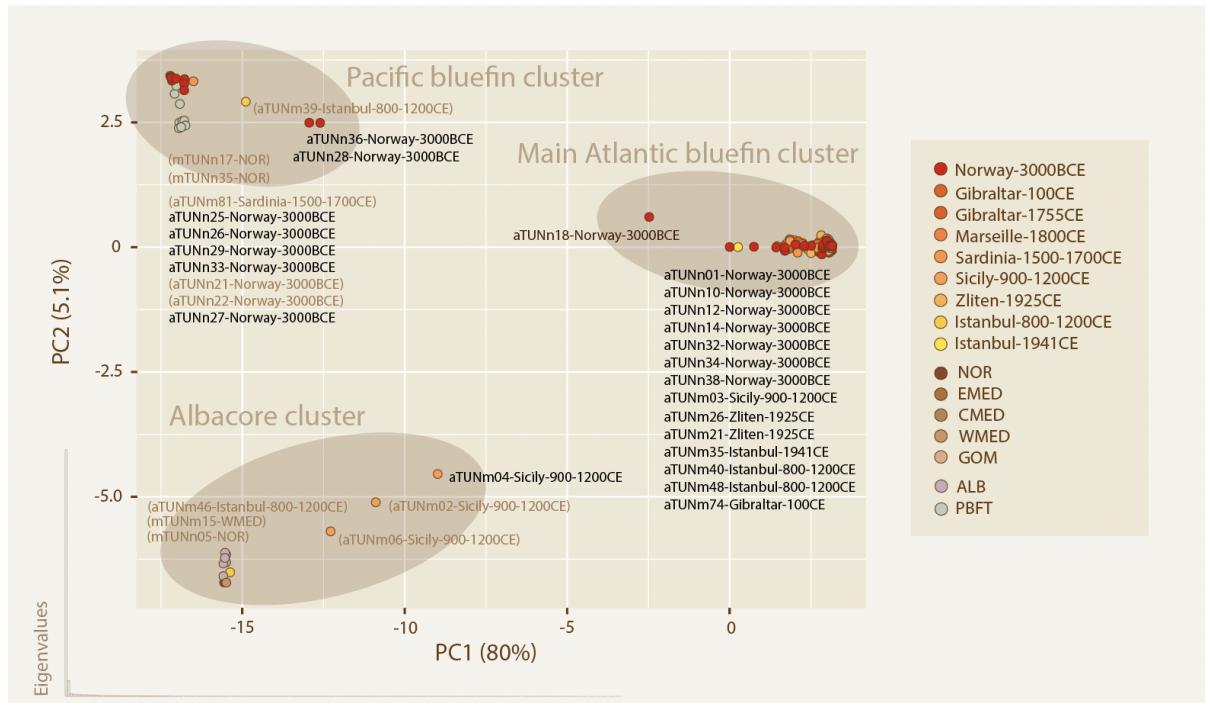


1129

1130

1131

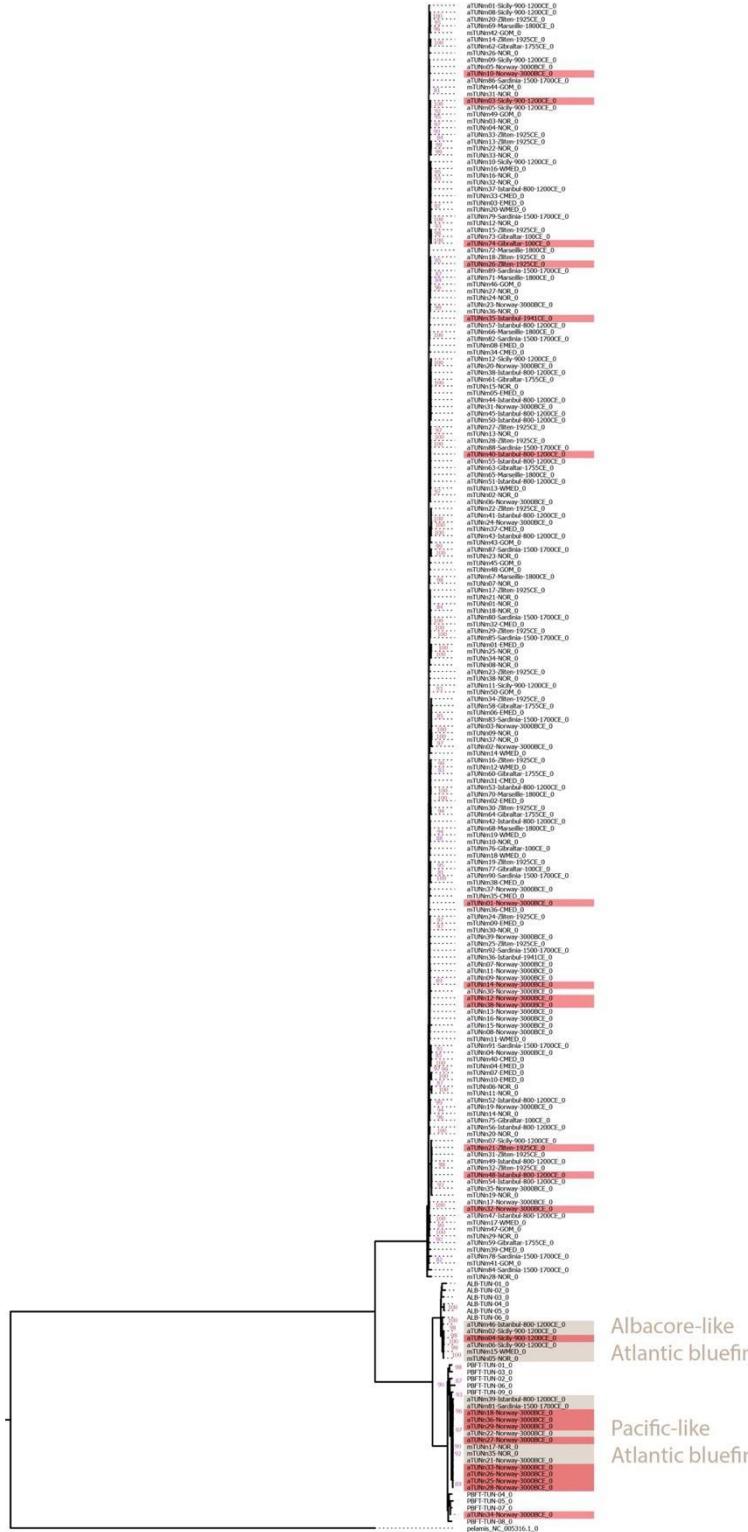
1132


1133

1134

1135

*Figure S2: Fragmentation (upper panels) and misincorporation (lower panels) plots from mapDamage v.2.0.9. The fragmentation plots show the base frequency inside and surrounding the read, where the grey box indicates the location of where the reads have mapped to the reference. The misincorporation plots show the rate of substitutions along the positions of the read ends, relative to the reference (Red: C to T. Blue: G to A. Grey: All other substitutions. Green: Deletions. Purple: Insertions. Orange: Soft-clipped bases).*


1136



1137

1138  
1139  
1140  
1141  
1142  
1143

Figure S3: PCA of all samples included in the exploratory analysis, prior to omission of identical- and high missingness samples. The plot shows an interspecific PCA. Samples that were excluded from subsequent population genomic analyses are marked with the sample name in dark brown. Sample names in parentheses indicate diverging samples that were kept, but taken into account as introgressed haplotypes, in the population genomic analyses.



1144

1145 *Figure S4: ML phylogeny of all samples included in the exploratory analysis, prior to omission of identical- and*  
1146 *high missingness samples. Bootstrap values over 80 are shown in pink. Samples that were excluded from*  
1147 *subsequent population genomic analyses are highlighted in red. Samples highlighted in brown indicate diverging*  
1148 *samples that were kept, but taken into account as introgressed haplotypes, in the population genomic analyses.*

1149

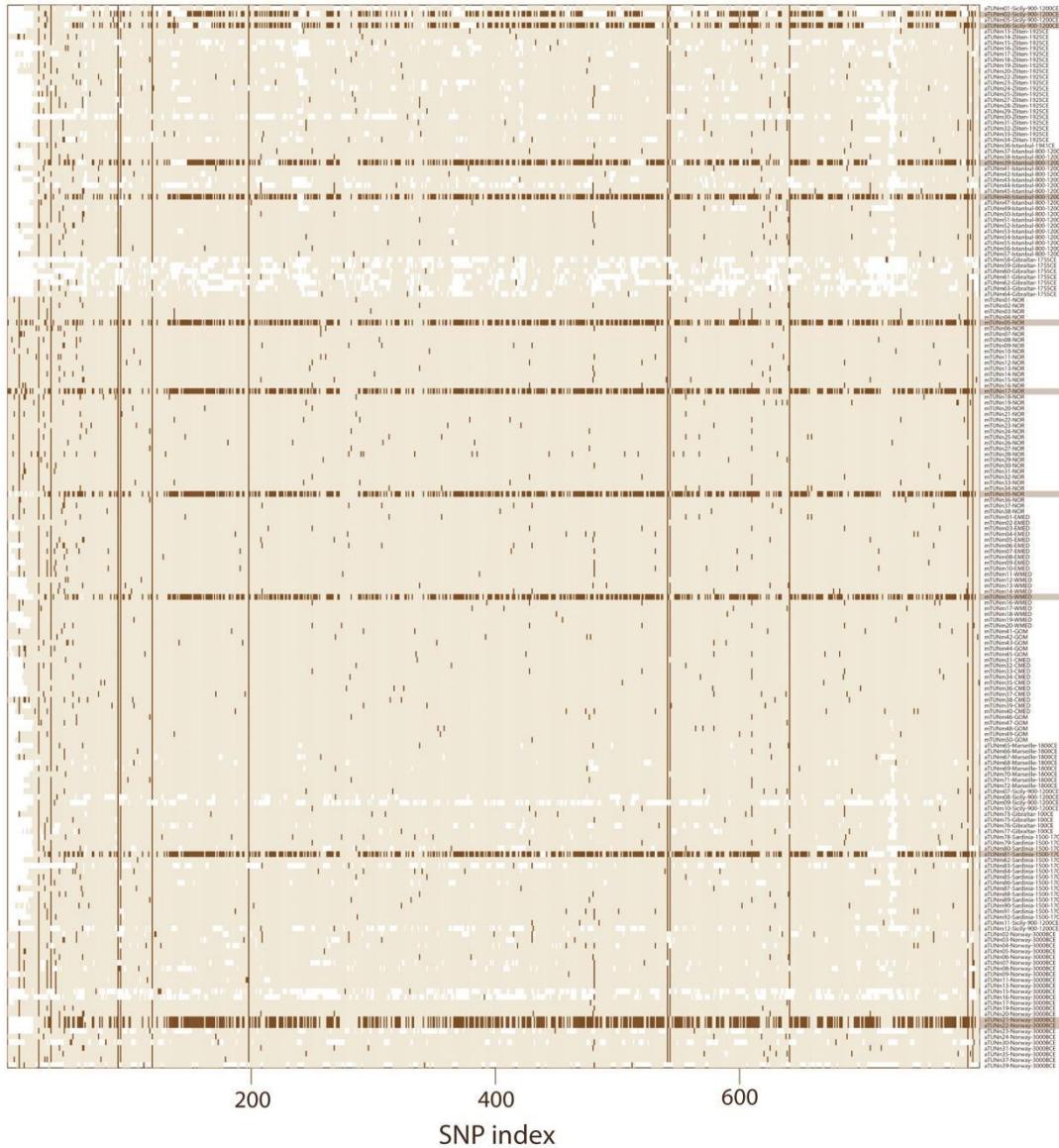
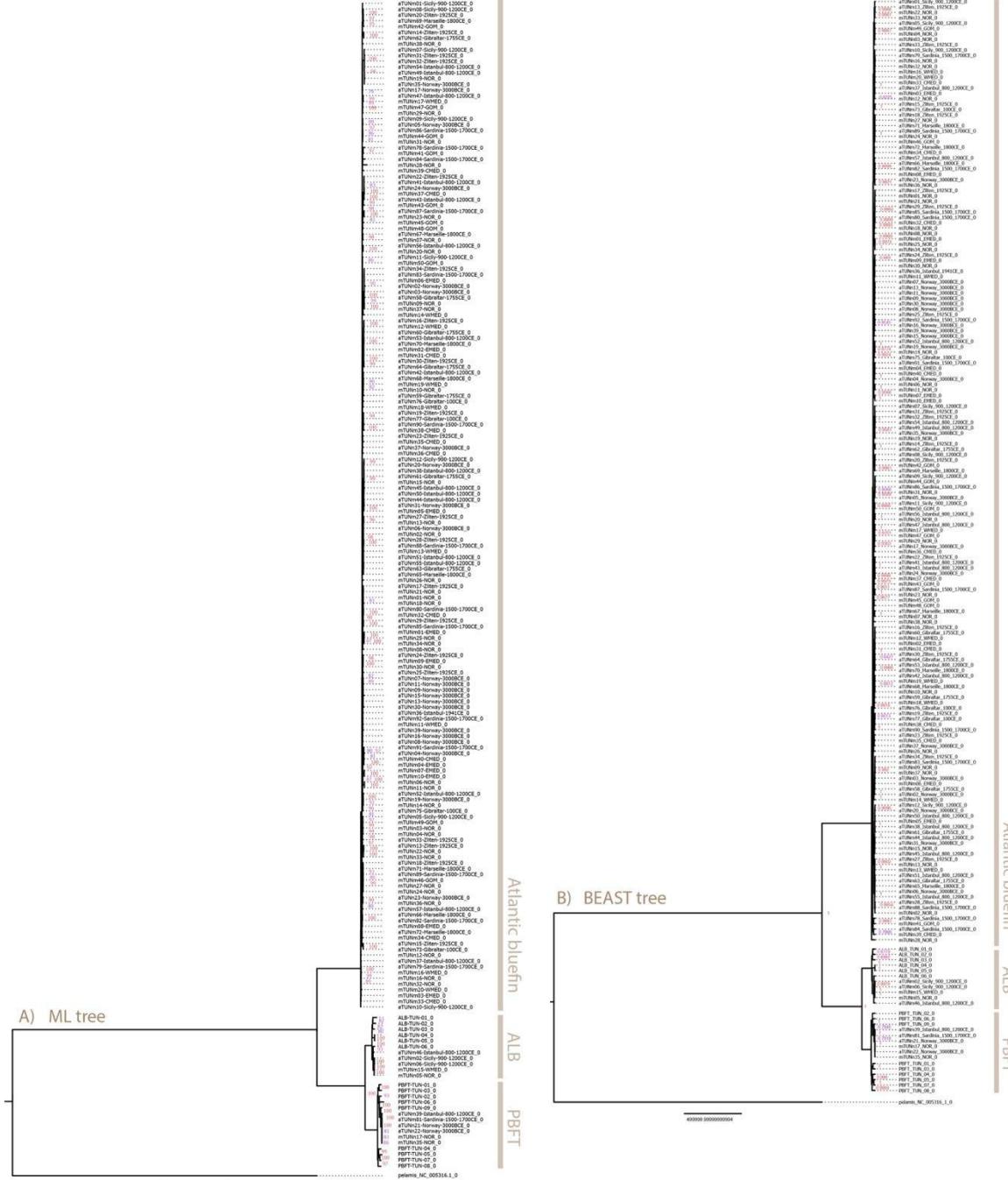
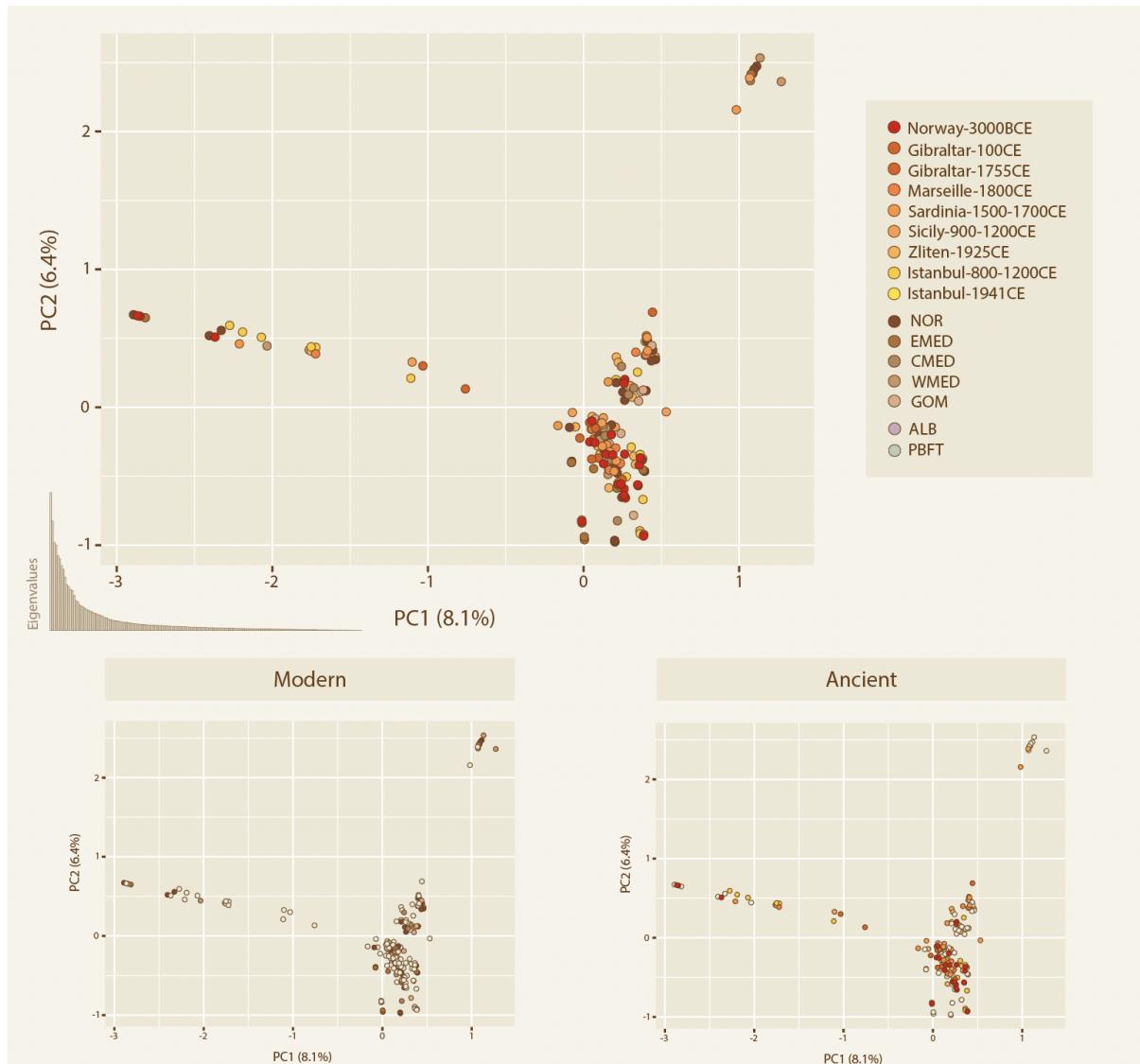




Figure S5: Missing loci (white) and the presence of second alleles (dark brown) across the Atlantic bluefin samples (dataset: AllABFT). The 11 specimens that were identified with introgressed MT genomes have a high number of divergent alleles when compared to the Atlantic bluefin reference genome.

1150  
1151  
1152  
1153  
1154

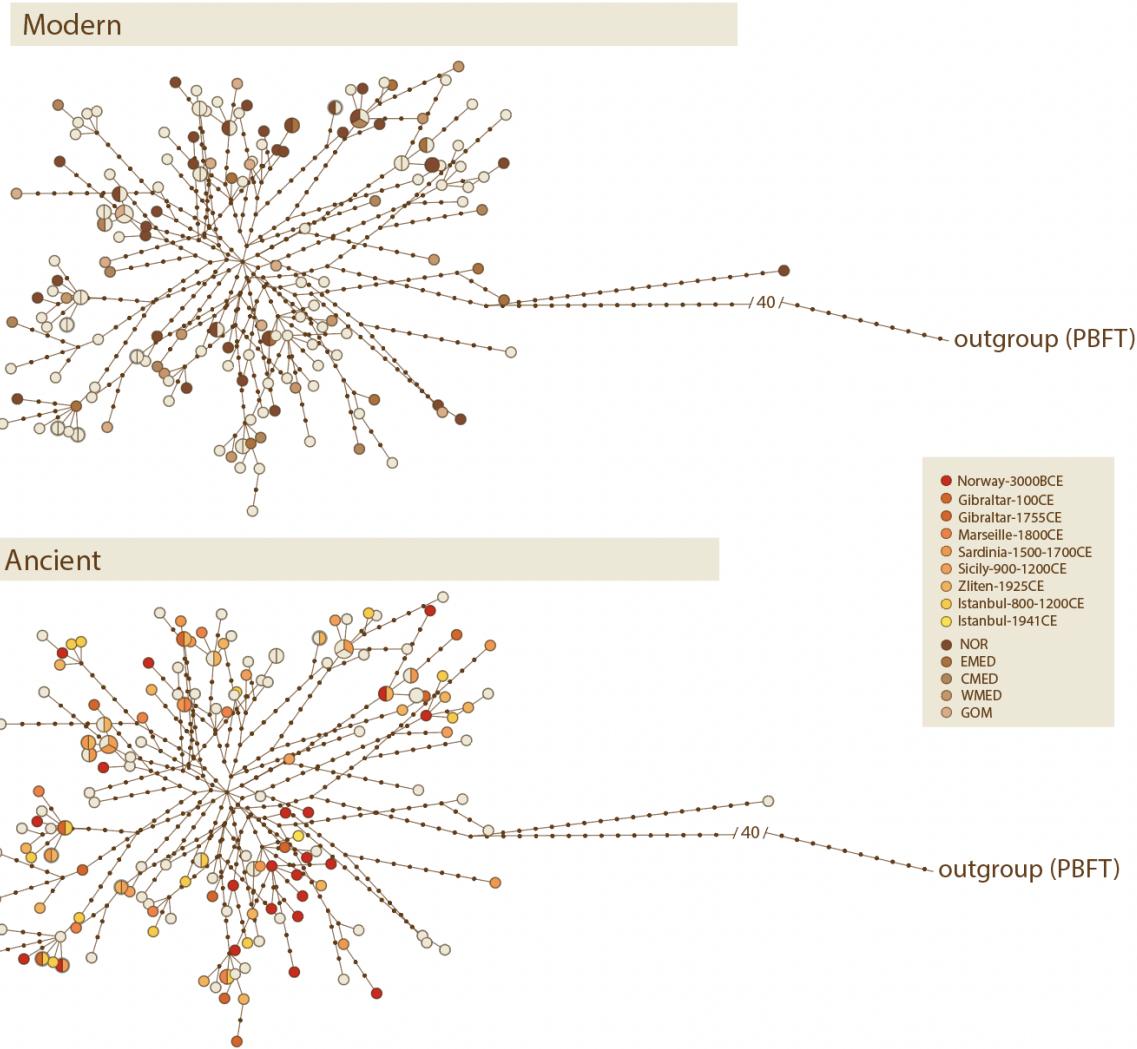


1155


1156 *Figure S6: ML and Bayesian phylogenies of all samples included in population genomic analyses (dataset:*  
1157 *All\_ALB\_PBFT) using Skipjack tuna (Katsuwonus pelamis) as outgroup. Bootstrap values over 80 and posterior*  
1158 *probability values over 0.8 are shown in A) and B) respectively. Species clades are highlighted in brown.*

| p-values for PHist Excluding introgressed individuals |                |                |                |                |                |                |                |                |                | EMED                                     | WMED | CMED | GOM | NOR |
|-------------------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|------------------------------------------|------|------|-----|-----|
| Sicily_900_1200CE                                     | *              |                |                |                |                |                |                |                |                |                                          |      |      |     |     |
| Zilten_1925CE                                         | 0.96680+0.0073 | *              |                |                |                |                |                |                |                |                                          |      |      |     |     |
| Istanbul_1941CE                                       | 0.99902+0.0002 | 0.99902+0.0002 | *              |                |                |                |                |                |                |                                          |      |      |     |     |
| Istanbul_800_1200CE                                   | 0.77539+0.0143 | 0.60938+0.0149 | 0.75684+0.0145 | *              |                |                |                |                |                |                                          |      |      |     |     |
| Gibraltar_1755CE                                      | 0.07520+0.0097 | 0.91504+0.0085 | 0.48633+0.0154 | 0.59961+0.0155 | *              |                |                |                |                |                                          |      |      |     |     |
| Marseille_1800CE                                      | 0.50977+0.0173 | 0.57422+0.0177 | 0.89160+0.0104 | 0.45312+0.0153 | 0.40039+0.0165 | *              |                |                |                |                                          |      |      |     |     |
| Gibraltar_100CE                                       | 0.69629+0.0182 | 0.88965+0.0102 | 0.81348+0.0111 | 0.45996+0.0163 | 0.28516+0.0150 | 0.71875+0.0132 | *              |                |                |                                          |      |      |     |     |
| Sardinia_1500_1700CE                                  | 0.85840+0.0096 | 0.57227+0.0137 | 0.88184+0.0080 | 0.10938+0.0100 | 0.65625+0.0145 | 0.70996+0.0160 | 0.81934+0.0101 | *              |                |                                          |      |      |     |     |
| Norway_3000BCE                                        | 0.86133+0.0090 | 0.64355+0.0171 | 0.56348+0.0152 | 0.27539+0.0160 | 0.99023+0.0032 | 0.31836+0.0136 | 0.56445+0.0150 | 0.34961+0.0141 | *              |                                          |      |      |     |     |
| EMED                                                  | 0.58105+0.0113 | 0.19922+0.0103 | 0.99902+0.0002 | 0.12012+0.0080 | 0.45215+0.0165 | 0.47461+0.0147 | 0.56055+0.0129 | 0.58984+0.0170 | 0.36816+0.0152 | *                                        |      |      |     |     |
| WMED                                                  | 0.73242+0.0139 | 0.26074+0.0143 | 0.91211+0.0085 | 0.42383+0.0167 | 0.93652+0.0082 | 0.84863+0.0092 | 0.91504+0.0082 | 0.60156+0.0173 | 0.34277+0.0169 | 0.50391+1 *                              |      |      |     |     |
| CMED                                                  | 0.99219+0.0027 | 0.56934+0.0160 | 0.99902+0.0002 | 0.39941+0.0137 | 0.70801+0.0159 | 0.88965+0.0117 | 0.99316+0.0022 | 0.97852+0.0041 | 0.63867+0.0133 | 0.79199+1 0.78223+ *                     |      |      |     |     |
| GOM                                                   | 0.84570+0.0118 | 0.63477+0.0130 | 0.79395+0.0130 | 0.04980+0.0061 | 0.79883+0.0116 | 0.80664+0.0107 | 0.88156+0.0117 | 0.73828+0.0144 | 0.40039+0.0133 | 0.41211+1 0.31348+ 0.8056 *              |      |      |     |     |
| NOR                                                   | 0.98633+0.0046 | 0.43262+0.0170 | 0.93945+0.0087 | 0.09863+0.0092 | 0.46875+0.0190 | 0.87109+0.0102 | 0.70215+0.0116 | 0.70801+0.0144 | 0.04395+0.0050 | 0.65820+1 0.35059+ 0.6289 0.76270+0.0135 |      |      |     |     |

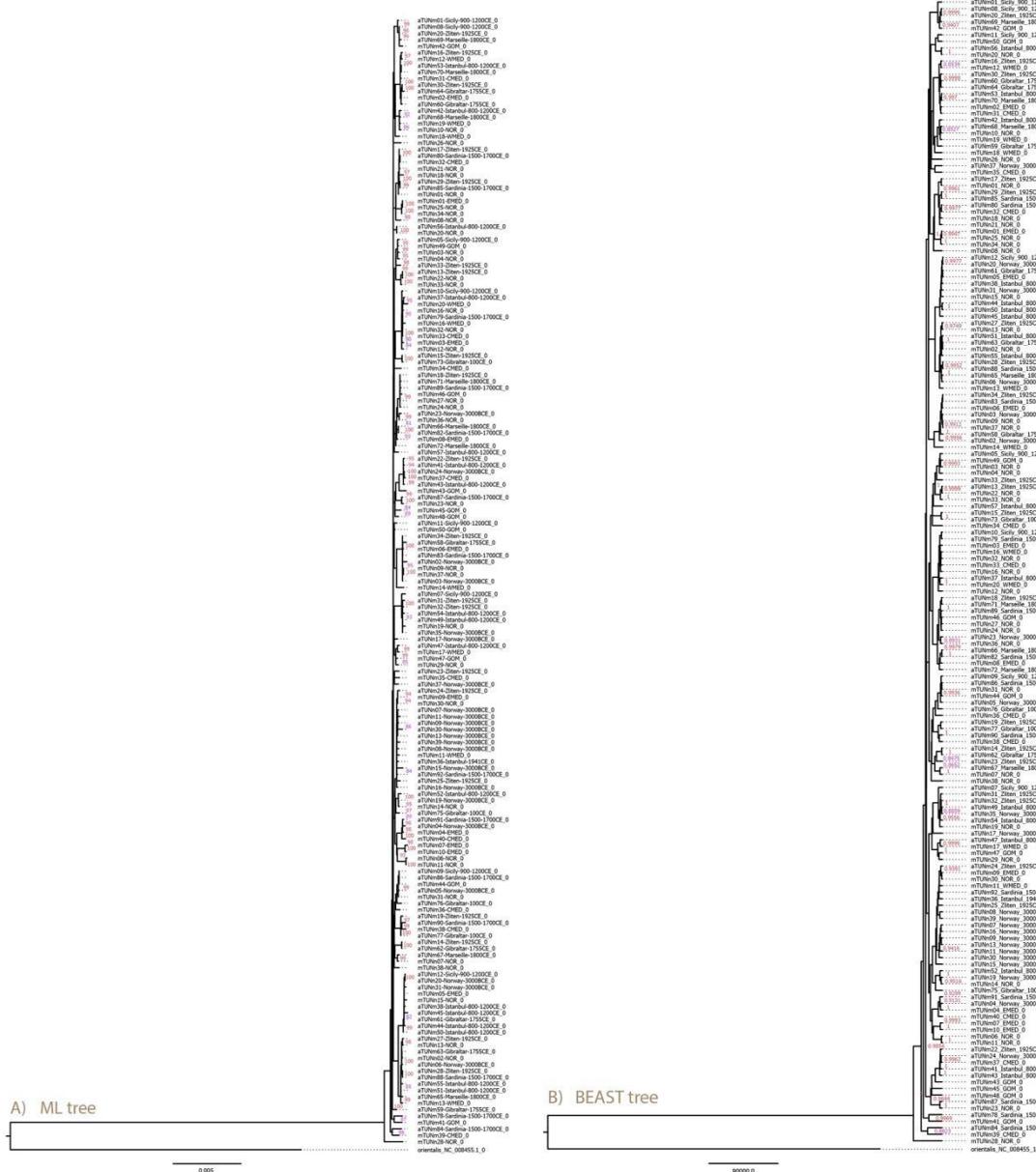
| p-values for PHist Including introgressed individuals |                |                |                |                |                |                |                |                |                | EMED                                | WMED | CMED | GOM | NOR |
|-------------------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-------------------------------------|------|------|-----|-----|
| Sicily_900_1200CE                                     | *              |                |                |                |                |                |                |                |                |                                     |      |      |     |     |
| Zilten_1925CE                                         | 0.00391+0.0023 | *              |                |                |                |                |                |                |                |                                     |      |      |     |     |
| Istanbul_1941CE                                       | 0.99902+0.0002 | 0.99902+0.0002 | *              |                |                |                |                |                |                |                                     |      |      |     |     |
| Istanbul_800_1200CE                                   | 0.35938+0.0125 | 0.38867+0.0145 | 0.79590+0.0101 | *              |                |                |                |                |                |                                     |      |      |     |     |
| Gibraltar_1755CE                                      | 0.49414+0.0147 | 0.65527+0.0126 | 0.52051+0.016  | 0.99902+0.0002 | *              |                |                |                |                |                                     |      |      |     |     |
| Marseille_1800CE                                      | 0.11230+0.0099 | 0.61230+0.0135 | 0.89453+0.0122 | 0.31055+0.0102 | 0.26562+0.0142 | *              |                |                |                |                                     |      |      |     |     |
| Gibraltar_100CE                                       | 0.09570+0.0098 | 0.93066+0.0092 | 0.81934+0.0104 | 0.80566+0.0137 | 0.14551+0.0089 | 0.77148+0.0120 | *              |                |                |                                     |      |      |     |     |
| Sardinia_1500_1700CE                                  | 0.30859+0.0103 | 0.41113+0.0166 | 0.74707+0.0139 | 0.84570+0.0099 | 0.99902+0.0002 | 0.60254+0.0114 | 0.75195+0.0151 | *              |                |                                     |      |      |     |     |
| Norway_3000BCE                                        | 0.33398+0.0164 | 0.10156+0.0102 | 0.47168+0.0132 | 0.89062+0.0095 | 0.95605+0.0056 | 0.15234+0.0110 | 0.43652+0.0135 | 0.52344+0.0133 | *              |                                     |      |      |     |     |
| EMED                                                  | 0.00098+0.0010 | 0.23730+0.0126 | 0.99902+0.0002 | 0.14258+0.0133 | 0.45215+0.0175 | 0.46094+0.0179 | 0.71875+0.0107 | 0.52637+0.0143 | 0.09668+0.0090 | *                                   |      |      |     |     |
| WMED                                                  | 0.39258+0.0156 | 0.33105+0.0132 | 0.99902+0.0002 | 0.82520+0.0102 | 0.99902+0.0002 | 0.93555+0.0072 | 0.97168+0.0043 | 0.97266+0.0056 | 0.66797+0.0123 | 0.39160+1 *                         |      |      |     |     |
| CMED                                                  | 0.00293+0.0016 | 0.62012+0.0167 | 0.99902+0.0002 | 0.16992+0.0115 | 0.72461+0.0135 | 0.94238+0.0064 | 0.99805+0.0010 | 0.65332+0.0159 | 0.09668+0.0110 | 0.78125+1 0.41113+ *                |      |      |     |     |
| GOM                                                   | 0.00098+0.0010 | 0.65430+0.0159 | 0.81641+0.0102 | 0.21209+0.0102 | 0.73145+0.0149 | 0.83984+0.0126 | 0.90918+0.0081 | 0.53418+0.0159 | 0.08008+0.0078 | 0.36523+0.36816+ 0.7285 *           |      |      |     |     |
| NOR                                                   | 0.19043+0.0120 | 0.54395+0.0175 | 0.94336+0.0078 | 0.80273+0.0118 | 0.99902+0.0002 | 0.98828+0.0036 | 0.96973+0.0046 | 0.98926+0.0029 | 0.57715+0.0159 | 0.37598+1 0.80762+ 0.2587 0.50293 * |      |      |     |     |


1159

1160 *Figure S7: FST P-values from Arlequin for the AllExIntrog and AllABFT datasets, corresponding to Figure 3A)*  
1161 *and 3B) respectively. Significant p-values are marked in green. After correcting for multiple testing (Bonferroni*  
1162 *correction), none of the p-values remained significant.*  
1163



1164


1165 *Figure S8: PCA of all non-introgressed Atlantic bluefin individuals (dataset: AllelExIntro). The ancient and*  
1166 *modern samples are highlighted in the bottom panel. Eigenvalues are shown in the left corner of the upper panel.*



1167

1168 *Figure S9: Haplotype network of all non-introgressed Atlantic bluefin individuals, using dataset AllExIntro and*  
1169 *Pacific bluefin (*Thunnus orientalis*) as outgroup. Each node represents a unique haplotype.*

1170



1171

1172

1173

1174