

1 Enteric glutamatergic interneurons 2 regulate intestinal motility

3 Ryan Hamnett^{1,2}, Jacqueline L. Bendrick^{2,3}, Keiramarie Robertson^{2,3}, Eric Tianjiao Zhao^{2,4}, Julia
4 A. Kaltschmidt^{1,2,*}

5

6 ¹ Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305
7 USA

8 ² Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305 USA

9 ³ Stanford Neurosciences Interdepartmental Program, Stanford University, Stanford, CA 94305
10 USA

11 ⁴ Department of Chemical Engineering, Stanford University, Stanford, CA, 94305 USA

12

13 * Corresponding author: jukalts@stanford.edu

14 Abstract

15 The enteric nervous system (ENS) controls digestion autonomously via a complex neural
16 network within the gut wall. Enteric neurons expressing glutamate have been identified by
17 transcriptomic studies as a distinct subpopulation, and glutamate can affect intestinal motility by
18 modulating enteric neuron activity. However, the nature of glutamatergic neurons, their position
19 within the ENS circuit, and their function in regulating gut motility are unknown.

20 Here, we identify glutamatergic neurons as longitudinally projecting descending interneurons in
21 the small intestine and colon, in addition to a novel class of circumferential neurons only in the
22 colon. Both populations make synaptic contact with diverse neuronal subtypes, and signal with
23 a variety of neurotransmitters and neuropeptides in addition to glutamate, including
24 acetylcholine and enkephalin. Knocking out the glutamate transporter VGLUT2 from enkephalin
25 neurons profoundly disrupts gastrointestinal transit, while *ex vivo* optogenetic stimulation of
26 glutamatergic neurons initiates propulsive motility in the colon. This motility effect is reproduced
27 when stimulating only the descending interneuron class, marked by *Calb1* expression. Our
28 results posit glutamatergic neurons as key interneurons that regulate intestinal motility.

29

30 Introduction

31 Digestion is regulated by the enteric nervous system (ENS), an intrinsic network of neuronal
32 circuits within the gut wall that acts independent of the central nervous system (CNS)¹. Intestinal
33 motility is typically initiated by sensory neurons detecting luminal contents and stimulating motor
34 neuron activity via interneurons²⁻⁴. Each neuron type is further divided into subpopulations that
35 have specific roles and express unique combinations of neurotransmitters and neuropeptides,
36 enabling the full spectrum of gastrointestinal (GI) functions^{5,6}.

37 Glutamate is expressed in enteric neurons, typically alongside the more widespread
38 acetylcholine (ACh), and can mediate excitatory postsynaptic potentials in enteric neurons via
39 myriad ionotropic and metabotropic receptors to influence GI motility⁷⁻¹¹. Furthermore,
40 glutamate may be involved in several pathologies of the GI tract, including inflammatory bowel
41 disease (IBD) and ischemia/reperfusion injury¹²⁻¹⁵. Recent single cell (sc)RNAseq studies
42 identified glutamate in only 2-3 enteric neuron subpopulations based on VGLUT2 expression,
43 the predominant glutamatergic marker in the ENS^{5,6,16,17}. However, the expression profiles of
44 these clusters do not match the typical neurochemical coding of known functional enteric
45 subtypes^{5,6,17,18}. How glutamate achieves its effects and through which recipient neurons are
46 also little explored, though previous studies show that two morphologically-distinct ENS
47 subtypes, Dogiel Type 1 and Type 2 neurons, respond to exogenous glutamate, which,
48 combined with widespread expression of glutamate receptors, suggests glutamatergic neurons
49 communicate with large portions of the enteric circuit^{9,12,19}.

50 Here, we use intersectional genetics, virally mediated single neuron tracing,
51 immunohistochemistry (IHC) and optogenetics to elucidate the role of glutamatergic neurons in
52 GI motility and explore their position within the enteric circuit. In the small intestine (SI) and
53 colon, glutamatergic neurons are descending interneurons that project over several centimetres,
54 while an additional morphological class exists in the colon, which project circumferentially. Both
55 populations form putative synapses with numerous neuronal subpopulations, including
56 calretinin, secretagogin and somatostatin neurons. Knocking out VGLUT2 from most enteric
57 glutamatergic neurons profoundly quickens total GI transit *in vivo*, while optogenetically
58 activating these neurons *ex vivo* initiates and accelerates propulsive motility of faecal contents
59 in the colon. This propulsive effect is reproduced when exciting only Calb1 neurons, which
60 represent the longitudinal descending interneuron glutamatergic subpopulation. Together, our
61 results suggest at least two morphologically distinct glutamatergic populations, capable of
62 engaging multiple diverse components of the enteric circuit to stimulate GI motility.

64 Results

65 **Neurochemical coding of VGLUT2 neurons suggests excitatory, non-motor identity**

66 VGLUT2 is expressed at varying levels in all regions of the mouse myenteric plexus (MP): the
67 duodenum, jejunum, ileum, and proximal and distal colon²⁰. We sought to validate and extend
68 recent scRNASeq findings of VGLUT2 co-expression with other ENS markers using
69 immunohistochemistry (IHC) and RNAscope to provide insight into the neurochemical coding
70 and therefore potential function of VGLUT2 neurons. Given that VGLUT2 protein itself is not
71 typically found in the soma¹¹, making co-expression with other markers difficult to ascertain, we
72 used VGLUT2 recombinase lines (VGLUT2-Cre or VGLUT2-Flp) crossed with reporters (Cre-
73 dependent tdTomato or Flp-dependent GFP) to visualise VGLUT2 neurons as VGLUT2^{tdT} and
74 VGLUT2^{GFP}, respectively.

75 We observed VGLUT2 somata only in the MP, though some VGLUT2^{GFP} fibres were seen in the
76 submucosal plexus (SMP; Extended Data Fig. 1a). In the MP, almost all VGLUT2 neurons were
77 cholinergic, ~30-50% were serotonergic, depending on region, and almost no VGLUT2 neurons
78 co-expressed nNOS (Fig. 1a-c,i). Despite this cholinergic identity, only 10-16% of VGLUT2
79 neurons co-expressed calretinin, another marker that is predominantly cholinergic, and which
80 delineates ascending interneurons and excitatory motor neurons (Fig. 1d,j). Secretagogin, a
81 calcium binding protein currently of unknown function in the ENS, colocalised with VGLUT2
82 significantly more strongly in the SI compared to the colon (Fig. 1e,j), suggesting a difference in
83 the types of VGLUT2 neurons found between the two organs. This was similarly observed for
84 co-expression between Vip^{tdT} and VGLUT2^{GFP}, which was significantly less in the colon (Fig.
85 1f,k). VIP is known to mark inhibitory motor neurons together with nNOS, as well as descending
86 interneurons. Given that VGLUT2 does not colocalise with nNOS, it is likely that VGLUT2+/VIP+
87 cells are interneurons. Penk^{tdT} co-expressed with more than 50% of VGLUT2^{GFP} cells across
88 most regions of the intestines (Fig. 1g,k). Penk^{tdT} is a marker of enkephalin neurons, which are
89 typically interneurons or excitatory motor neurons. Finally, *Calcb*, the mRNA of CGRP, which
90 has previously been used as a sensory neuron marker, colocalised with 10-20% of VGLUT2
91 neurons in the ileum and colon, but not at all in the proximal SI (Fig. 1h,k).

92 These data suggest that VGLUT2 is likely to be expressed in interneurons, given its
93 coexpression with ChAT, 5-HT, VIP and Penk, while it is unlikely to be in motor neurons due to
94 its lack of colocalisation with nNOS and calretinin, and the absence of any fibres in the smooth
95 muscle layers.

96

97 **VGLUT2 neurons display two different morphologies in the colon**

98 To further establish VGLUT2 neuron identity beyond their neurochemical coding, we employed
99 a sparse labelling strategy to visualise the morphology of individual VGLUT2 neurons²¹. By
100 injecting low titre Cre-dependent AAV-GFP systemically into the retro-orbital sinus of VGLUT2-
101 Cre mice (VGLUT2^{AAV-GFP}), a small number of enteric neurons are transduced and will express
102 GFP, allowing visualisation of their full morphology without the fibres of other neurons
103 interfering.

104 We observed two distinct morphologies of VGLUT2^{AAV-GFP} neurons: longitudinal descending
105 interneurons in both the SI and colon (Fig. 2a,c,d; VGLUT2^{Long}), and circumferential neurons
106 (VGLUT2^{Circ}), which were found only in the colon (Fig. 2b,e) and to our knowledge represent a
107 previously undescribed morphology. VGLUT2^{Long} neurons always projected aborally over
108 distances of up to 40 mm (Fig. 2f,g), were monoaxonal, and had sparse branches along the
109 length of the primary fibre, though the primary fibre sometimes bifurcated, particularly in the
110 colon (Fig. 2a,c,d). These longitudinal neurons tended to be longer in the SI than colon (Fig.
111 2h). In contrast, VGLUT2^{Circ} neurons projected in either direction around the circumference of
112 the colon, largely staying within a one or two ganglionic stripes (Fig. 2b,f)²⁰. VGLUT2^{Circ} neurons
113 often projected over the anti-mesenteric border, though never over the mesenteric border, and
114 they arborised in myenteric ganglia, which we term 'nests' (Fig. 2b,e). Circumferential neurons
115 also had one main axon, though they had several small, short filaments near the soma (Fig. 2b,
116 inset), distinguishing them from previously described circumferential neurons²². VGLUT2^{Circ}
117 were significantly shorter than VGLUT2^{Long}, and significantly more branched (Fig. 2h,i).

118 Knowing that VGLUT2 broadly colocalises with a number of ENS markers from IHC (Fig. 1) and
119 from scRNASeq studies^{5,6}, we next asked in which morphological class of VGLUT2 neurons
120 (VGLUT2^{Long} or VGLUT2^{Circ}) the expression of a given marker occurs, by performing the same
121 viral tracing approach with other Cre reporter lines. We additionally asked if these markers were
122 only expressed in VGLUT2-like descending longitudinal and circumferential neurons, or if they
123 also represented other enteric neuron classifications.

124 We chose markers that were expected to label diverse populations and that had available
125 genetic tools: Penk^{AAV-GFP}, Tac1^{AAV-GFP} and Vip^{AAV-GFP} (Extended Data Fig. 1a-c). The neurons
126 were assigned functional classifications based on morphological measurements such as
127 orientation, length, branching, and fibre location (e.g. within muscle for motor
128 neurons)(Extended Data Fig. 1d-i). Penk^{AAV-GFP} neurons were classified as ascending
129 interneurons, descending interneurons (including some that bore different orientation and
130 branching patterns to VGLUT2^{Long}), excitatory motor neurons, and circumferential neurons
131 (Extended Data Fig. 2j,m). Tac1^{AAV-GFP} showed morphology consistent with ascending
132 interneurons, excitatory motor neurons, and circumferential neurons (Extended Data Fig. 2k,n).
133 Finally, Vip^{AAV-GFP} neurons were predominantly inhibitory motor neurons in the SI with some
134 descending interneurons, while the colon additionally had ascending interneurons and neurons
135 that appeared to project to the epithelium (Extended Data Fig. 2l,o). The circumferential neurons
136 seen in both Penk^{AAV-GFP} and Tac1^{AAV-GFP} resembled VGLUT2^{Circ} morphology, while Vip^{AAV-GFP}
137 and some Penk^{AAV-GFP} descending interneurons resembled VGLUT2^{Long}.

138 Thus, sparse viral labelling revealed the projection patterns of VGLUT2 longitudinal and
139 circumferential neurons, as well as Penk, Tac1 and Vip neurons, a proportion of which shared
140 the same morphology as VGLUT2 neurons. 3 to 6 different neuronal classifications were
141 observed for Penk, Tac1 and Vip, compared to 2 for VGLUT2, suggesting the relative specificity
142 of VGLUT2 as a marker for enteric neuron subtypes.

143

144 **VGLUT2 neurons form synaptic varicosities along entire length of fibre**

145 To visualise where individual VGLUT2 neurons form synapses, we expressed synaptophysin-
146 fused tdTomato in VGLUT2-Cre neurons ($\text{VGLUT2}^{\text{syn-tdT}}$) to highlight putative pre-synaptic
147 varicosities. We combined this genetic strategy with sparse viral labelling, using Cre-dependent
148 AAV-GFP as previously described, to enable us to assign varicosities to specific regions of
149 neurons of known morphology.

150 Given the long length yet sparse branching of $\text{VGLUT2}^{\text{Long}}$ neurons, we hypothesised that they
151 would form synapses along the entire length of the fibre, not just on the branches. Confirming
152 this, GFP+ varicosities colocalised with syn-tdT on both the primary fibre and the branches of
153 $\text{VGLUT2}^{\text{Long}}$ neurons (Fig. 3a-c). For $\text{VGLUT2}^{\text{Circ}}$ neurons, varicosities were found within nests
154 in myenteric ganglia (Fig. 3d). Varicosities were far denser on branches and nests than they
155 were on primary fibres (Fig. 3e,i), and more likely to be glutamatergic, evidenced by
156 colocalisation with VGLUT2 IHC (Fig. 3f,j), with the exception of the terminal region of the fibre
157 of $\text{VGLUT2}^{\text{Long}}$ neurons (Fig. 3b). Glutamatergic varicosities on branches were also far more
158 likely to be in close contact with other HuC/D+ neurons (Fig. 3g,k), ~10% of which were other
159 VGLUT2 neurons (Fig. 3h,l). Despite the high proportion of glutamatergic synapses at the
160 primary fibre terminal, only ~50% appeared to contact a HuC/D+ cell (Fig. 3g,k).

161 We next asked whether other neurotransmitters and neuropeptides are released from the same
162 varicosities to communicate with both neurons and non-neuronal cell types. Enkephalin and the
163 tachykinin substance P were both found in longitudinal and circumferential neuron varicosities in
164 the SI and colon, though substance P showed a strong enrichment in the colon and specifically
165 in $\text{VGLUT2}^{\text{Circ}}$ (Fig. 3m,n,r). Interestingly, enkephalin was the only neuropeptide to be found in
166 varicosities on both branches and the primary fibre (Fig. 3m). Cholecystokinin (CCK) and CGRP
167 were only found in the branches of a minority of $\text{VGLUT2}^{\text{Long}}$ in the SI and colon, while VIP was
168 not found in any (Fig. 3o-r), despite previously observing colocalisation between Vip^{tdT} and
169 $\text{VGLUT2}^{\text{GFP}}$ (Fig. 1).

170 These data show that varicosities in VGLUT2 neurons are found primarily in the nests of
171 $\text{VGLUT2}^{\text{Circ}}$ neurons and the sparse branches of $\text{VGLUT2}^{\text{Long}}$ neurons, where they are likely pre-
172 synaptic sites to release glutamate and neuropeptides such as enkephalin and substance P to
173 communicate with other neurons.

174

175 Knocking out VGLUT2 in the ENS quickens total GI motility

176 Application of exogenous glutamate to intestinal preparations is known to be able to depolarise
177 myenteric neurons and alter muscle contractility, but the necessity of glutamate in the ENS has
178 not been previously tested. In part this is because of the difficulty in genetically knocking out
179 glutamate or its transporters, as VGLUT2 homozygous knockout mice die shortly after birth²³.
180 To restrict VGLUT2 knockout to the ENS, we crossed VGLUT2-Flx mice with Wnt1-Cre, a
181 neural crest marker known to be expressed in most ENS neurons and glia, but the offspring of
182 this cross also died shortly after birth (data not shown). Instead, given the strong colocalisation
183 between Penk and VGLUT2 in both longitudinal and circumferential neurons, we crossed
184 VGLUT2-Flx with Penk-Cre to generate PenkCre-VGLUT2^{flx/flx} mutants and VGLUT2^{flx/flx}
185 littermate controls. We reasoned that this would knock out VGLUT2 in the majority of

186 glutamatergic ENS neurons, while still limiting potential non-ENS effects. PenkCre-VGLUT2^{flx/flx}
187 offspring were viable and appeared healthy, albeit with more male offspring than female.
188 PenkCre-VGLUT2^{flx/flx} males were significantly smaller than their control littermates, weighing
189 18.4 g compared to 24.2 g, while this difference was not as pronounced in females (Fig. 4a).
190 Male colons were also slightly shorter, with a mean of 45.5 mm in mutants and 51.1 mm in
191 controls, while no significant differences were observed for SI length (Fig. 4b,c).

192 To test *in vivo* GI function, mice were gavaged with carmine red, and the time elapsed until red
193 faecal pellets were produced was measured. Mutants displayed significantly faster total GI
194 transit time than littermate controls, with a mean of 163 and 124 minutes in male and female
195 PenkCre-VGLUT2^{flx/flx} mice, respectively, compared with 295 and 230 minutes in their
196 corresponding controls (Fig. 4d). This coincided with significantly more pellets produced by
197 PenkCre-VGLUT2^{flx/flx} mice: 5.58 and 8.80 pellets/hr in males and females, respectively,
198 compared with 3.43 and 5.17 pellets/hr in male and female controls. Both male and female
199 PenkCre-VGLUT2^{flx/flx} pellets were significantly smaller than their respective controls', weighing
200 28.55% and 38.13% less respectively, though the total faecal mass produced by each mouse
201 and the faecal water content were not significantly different (Fig. 4e-h).

202 To determine the source of the differences in total GI transit within the GI tract, we separately
203 tested stomach, SI and colon function. To test the stomach and SI, we gavaged mice with
204 rhodamine dextran and waited for 15 minutes to observe gastric emptying and SI transit. There
205 was a minor difference in gastric emptying between the groups, while there was no difference in
206 SI transit (Fig. 4i,j). There was also no difference in colonic motility, assessed by the speed and
207 transit of an artificial faecal pellet in *ex vivo* colons (Fig. 4k,l). Thus, while the source remains
208 elusive, these data suggest that glutamatergic function in enkephalin neurons is important for *in*
209 *vivo* functioning of the GI tract.

210

211 Optogenetic activation of glutamatergic neurons stimulates colonic motility

212 To further explore the function of glutamate neurons within the ENS, we next asked whether
213 optogenetic activation of enteric VGLUT2 neurons is sufficient to affect *ex vivo* colonic motility
214 (Fig. 5a). We crossed VGLUT2-Cre with Cre-dependent channelrhodopsin2 to produce
215 VGLUT2^{ChR2}, and exposed a focal area (~5 mm) of isolated colon to 460 nm LED light at 5 Hz
216 for 20 seconds. Stimulation of the mid-colon of VGLUT2^{ChR2}, but not ChR2 controls lacking Cre
217 (WT^{ChR2}), caused propulsion of an artificial faecal pellet through the colon and at greater speed
218 compared with pre-stimulation conditions (Fig. 5b-d). This was neuronally mediated, as any
219 response to optogenetic stimulation was abolished under tetrodotoxin (TTX; Extended Data Fig.
220 3a).

221 Having established that VGLUT2 neuron activity could stimulate colonic motility, we next
222 assessed factors that could affect the movement of the pellet through the colon in response to
223 VGLUT2 neuron excitation. Factors included pellet location in the colon, stimulation location,
224 and pre-stimulation state. Pre-stimulation activity had a strong effect on the subsequent
225 influence of stimulation: if the colon had just finished moving the pellet, then stimulation was
226 typically unable to elicit much response, whereas if the pellet was moving at the time of

227 stimulation, it was highly likely that the pellet would be expelled (Fig. 5e,f). The location of
228 stimulation also affected the response, albeit to a lesser degree, and, interestingly, exciting
229 VGLUT2 neurons in any of the proximal, mid or distal colon was able to elicit a strong response
230 in pellet propulsion, regardless of pellet location with respect to the stimulation location (Fig. 5g-j
231 and Extended Data Fig. 3b,c). This was illustrated by the distal stimulation condition, which had
232 a strong effect on pellet propulsion if the pellet was within the distal half of the colon, but could
233 still affect proximally located pellets.

234 To determine if the effect of stimulating VGLUT2 cells was specific to VGLUT2 cells, we also
235 stimulated *Trpv1*^{ChR2} colons, as *Trpv1*-Cre is expressed across a similar number of neurons to
236 VGLUT2 (Extended Data Fig. 3d-f). *Trpv1* neurons were primarily found within the MP, as well
237 as some non-neuronal cells, most notably putative pericytes surrounding blood vessels within
238 the SMP (Extended Data Fig. 3d-f). Exciting *Trpv1* cells optogenetically had a minor effect on
239 speed of propulsion, albeit less than stimulating VGLUT2 neurons, but did not have a
240 corresponding effect on pellet distance travelled (Extended Data Fig. 3g,h).

241 These results demonstrate that VGLUT2 neurons are capable of strongly and specifically
242 affecting motility across the length of the colon, but this can be modulated by stimulation
243 location, luminal contents location, and the prior activity state of the enteric circuit.

244

245 **VGLUT2 neurons signal to a diverse array of different cell types**

246 To establish how activation of VGLUT2 neurons achieves its effects on colonic motility, we
247 sought to position VGLUT2 neurons within the enteric circuit by identifying which enteric
248 neurons they communicated to. We focused our analysis on the respective branches and nests
249 of VGLUT2^{Long} and VGLUT2^{Circ} neurons sparsely transduced by Cre-dependent AAV-GFP, as
250 that was where syn-tdT signal and VGLUT2 IHC signal itself were most concentrated. We
251 costained with 4 markers that marked the cell bodies of potential recipient enteric neuron
252 subtypes: calretinin (excitatory motor neurons, ascending interneurons), nNOS (inhibitory
253 motor), Scgn (putative interneuron and sensory), and Sst (putative interneurons, distinct from
254 Scgn)(Fig. 6a-c).

255 Approximately half of all VGLUT2^{Long} branches contacted only 1 neuron, and very few contacted
256 more than 5 (Fig. 6d). Of the cell types investigated, Sst was the least likely to be contacted,
257 while calretinin was the most likely, but all 4 cell types were in close contact with VGLUT2^{AAV-GFP}
258 varicosities, in both the SI and colon (Fig. 6e,f). We next assessed the proportion of recipient
259 neurons that were a given cell type out of the total recipient population, across VGLUT2^{Long} in
260 the SI and both VGLUT2 classes in the colon (Fig. 6g-j). While no significant differences were
261 found for calretinin and Scgn between VGLUT2^{Circ} and VGLUT2^{Long} neurons, VGLUT2^{Circ}
262 neurons contacted approximately twice as many nNOS neurons and dramatically more Sst
263 neurons as VGLUT2^{Long} did (Fig. 6g-j). Of note, no significant differences were found between
264 SI and colon VGLUT2^{Long} neurons in their recipient populations. To determine if the proportion
265 of recipient neurons that were a specific subtype was due to chance or due to preferential
266 communication from VGLUT2 neurons, we performed chi-squared analysis, comparing the
267 proportion of recipient neurons of a given cell type with the overall proportion of MP neurons of

268 that cell type from an existing dataset²⁰. SI VGLUT2^{Long} neurons did not show any preferential
269 targeting, but did contact significantly fewer nNOS neurons than expected by chance (Extended
270 Data Fig. 4a). Colonic VGLUT2^{Long} neurons preferentially targeted calretinin and Scgn neurons,
271 and contacted fewer nNOS and Sst neurons than expected based on chance (Extended Data
272 Fig. 4b). While VGLUT2^{Circ} neurons similarly showed a preference for calretinin neurons and
273 avoidance of nNOS neurons, they contacted fewer Scgn neurons than expected by chance
274 (Extended Data Fig. 4c). VGLUT2^{Circ} also preferentially targeted Sst neurons, with 43% of
275 neurons receiving input from VGLUT2^{Circ} being Sst+, while Sst+ neurons represent only 13% of
276 MP neurons in the proximal colon (Extended Data Fig. 4c). These data demonstrate that
277 VGLUT2 neurons output to a diverse array of different cell types with different functions, and
278 that VGLUT2^{Long} and VGLUT2^{Circ} neurons show distinct preferences in recipient populations.

279

280 **Calb1 and Prlr mark the two separate VGLUT2 populations in the colon**

281 Given the strong differences in morphology and recipient neurons between VGLUT2^{Long} and
282 VGLUT2^{Circ}, we next asked whether the two populations of colonic neurons would have different
283 contributions to the motility effect seen in optogenetics experiments (Fig. 5). Separate
284 manipulation of the two morphological populations necessitated identifying single gene markers
285 that could be used as Cre drivers. To identify appropriate single gene markers, we first matched
286 the morphological classes to previously described transcriptional classes.

287 scRNAseq data predicted that there are three VGLUT2 neuron populations in the colon: putative
288 interneuron 2 (PIN2), PIN3, and putative sensory neuron 4 (PSN4)⁵. Through manual
289 interrogation of the dataset, we anticipated that the three populations could be distinguished by
290 their expression of enkephalin, VIP, and secretagogin, where PIN3 would only express
291 enkephalin, PSN4 would express VIP ± secretagogin, and PIN2 would express enkephalin ±
292 secretagogin. VIP and enkephalin were expected to colocalize only a small amount in the PIN2
293 group; this colocalization was not tested directly.

294 To determine co-expression, we systemically injected Flp-dependent AAV-mCherry into mice
295 expressing VGLUT2-Flp, Penk-Cre or Vip-Cre, and Cre-dependent ReaChR-mCitrine, creating
296 VGLUT2^{AAV-mCherry}/Penk^{ReaChR-mCitrine} and VGLUT2^{AAV-mCherry}/Vip^{ReaChR-mCitrine}, respectively
297 (Extended Data Fig. 5a-d). This would sparsely transduce VGLUT2 neurons to allow
298 visualisation of morphology, and determine colocalisation with the mCitrine reporter in Penk or
299 Vip neurons, and with Scgn IHC. Of 9 VGLUT2^{Circ} neurons in VGLUT2^{AAV-mCherry}/Penk^{ReaChR-mCitrine}
300 mice, all expressed mCitrine and very few expressed Scgn (2/9), which suggested that these
301 were PIN2 or PIN3 neurons. However, we concluded that VGLUT2^{Circ} belonged to PIN3
302 because no VGLUT2^{Circ} neurons expressed mCitrine in VGLUT2^{AAV-mCherry}/Vip^{ReaChR-mCitrine} mice
303 (Extended Data Fig. 5a,b), as predicted by scRNAseq.

304 PIN2 and PSN4 were more difficult to separate, likely due to their similar transcriptional
305 profiles⁵. Of 25 VGLUT2^{Long} neurons in VGLUT2^{AAV-mCherry}/Penk^{ReaChR-mCitrine} mice, 22/25
306 expressed Penk, of which 8 expressed Scgn, which may suggest that these 22 neurons
307 belonged to PIN2, with the remaining 3 Penk- neurons in PSN4 (Extended Data Fig. 5c). 10/13
308 VGLUT2^{Long} neurons in VGLUT2^{AAV-mCherry}/Vip^{ReaChR-mCitrine} mice coexpressed mCitrine (Extended

309 Data Fig. 5d). These VGLUT2+/VIP+ longitudinal neurons likely belong to both PIN2 and PSN4,
310 and were harder to separate than expected due to the low number of Scgn-expressing neurons
311 (3/10). It is important to note that no differences in morphology between the putative PIN2 and
312 PSN4 longitudinal neurons were observed.

313 Having established that VGLUT2^{Circ} neurons belong to PIN3 and VGLUT2^{Long} belong to
314 PIN2/PSN4, we interrogated scRNAseq datasets to identify single gene markers that were
315 highly enriched in each population but with minimal expression elsewhere in the ENS.
316 Consequently, PIN3 (VGLUT2^{Circ}) was marked by prolactin receptor (*Prlr*), which shows
317 widespread expression in both males and females throughout the body, including neurons and
318 non-neurons in the intestines²⁴ (Extended Data Fig. 5e). In contrast, PIN2 (VGLUT2^{Long}) was
319 marked by calbindin (*Calb1*), a calcium binding protein that has previously been used as a
320 sensory marker¹, though it has also been posited as an interneuron marker²⁵. PIN2 was chosen
321 over PSN4 to represent VGLUT2^{Long} neurons because PIN2 had more readily available unique
322 markers to distinguish it from other enteric neuron populations (including PSN4), such as *Calb1*,
323 *Piezo2*, and *Bdnf*.

324 We validated co-expression of VGLUT2 with both candidates using combined RNAscope/IHC
325 for *Slc17a6*, *Prlr*, *Calb1* and HuC/D (Extended Data Fig. 5f), though cell counts of
326 *Slc17a6+/Prlr+* cells proved difficult due to the low number of transcripts per neuron.
327 Quantification of *Calb1* expression in VGLUT2 neurons was performed using combined
328 RNAscope for *Calb1* and IHC for VGLUT2^{tdT} and HuC/D. *Calb1* coexpression showed
329 significant regional variation, being highest (22% of VGLUT2 neurons) in the proximal colon,
330 and lowest (8%) in the mid-colon (MC) (Fig. 7a,b).

331 We next confirmed the respective longitudinal and circumferential morphology of *Calb1* and *Prlr*
332 neurons using specific Cre lines²⁶ and sparse viral transduction (Fig. 7c-f). For *Calb1* neurons,
333 we found no evidence of epithelial projections, as might be expected of sensory neurons, with
334 the majority of *Calb1* neurons showing descending longitudinal interneuron morphology, while 2
335 *Calb1* neurons showed circumferential morphology (Fig. 7c,e,g-j). 100% of *Prlr* neurons
336 analysed showed circumferential morphology closely resembling VGLUT2^{Circ} (Fig. 7d,f-j).

337 We focused on the function of *Calb1* neurons using the same *ex vivo* optogenetics approach as
338 before (Fig. 5). This approach was not feasible with the *Prlr* population, as crossing *Prlr*-IRES-
339 Cre with a CAG-controlled ChR2 line would likely lead to off-target, non-neuronal effects
340 following stimulation given the widespread expression of *Prlr*. Stimulating *Calb1*^{ChR2} neurons
341 had a similar effect to stimulating VGLUT2^{ChR2}, increasing the speed and distance travelled of
342 artificial pellets (Fig. 7k,l). These effects also showed the same dependency on pre-stimulation
343 state (Fig. 7m,n), and activated *Calb1*^{ChR2} neurons were able to stimulate organ-wide motility
344 regardless of stimulation site (Fig. 7o, Extended Data Fig. 5g). Thus, it is likely that VGLUT2^{Long}
345 neurons in the colon, marked by *Calb1*, are responsible for the ability of VGLUT2^{ChR2} to initiate
346 propulsive motility in the colon.

347

348 Discussion

349 We present a thorough morphological and functional characterization of glutamatergic circuitry
350 within the enteric nervous system. VGLUT2 neurons present as putative longitudinal
351 interneurons, projecting over long distances in the descending direction within the myenteric
352 plexus of the small intestine and colon. Additionally, we uncover that VGLUT2 is expressed in a
353 novel class of circumferential neurons in the colon, a previously unrecognized component of the
354 enteric network. VGLUT2^{Long} neurons primarily establish glutamatergic synapses at branches
355 and terminals, while VGLUT2^{Circ} neurons form synapses in nests, extensively innervating
356 specific myenteric ganglia. Knocking out glutamate from enkephalin neurons considerably
357 accelerates total GI transit and affects faecal pellet production. Furthermore, stimulation of
358 VGLUT2 neurons *ex vivo* initiates strong propulsive motility, likely facilitated by Calb1+
359 longitudinal glutamatergic neurons, engaging multiple components of the enteric circuit by
360 directly communicating with a variety of distinct neuronal subtypes.

361 Our sparse viral transduction demonstrates that VGLUT2^{Long} neuron fibres never leave the
362 plane of the MP, showing no direct interaction with other intestinal layers and suggesting an
363 interneuron identity. This classification is further supported by co-expression with 5-HT, VIP and
364 enkephalin^{3,27,28}. This contrasts with prior speculation that enteric glutamatergic neurons are
365 sensory, on the basis of co-expression with substance P and calbindin⁹. While we note similar
366 co-expression, substance P is found across a wide variety of neuron subtypes⁶, and our tracing
367 of calbindin neurons does not suggest a classic sensory morphology, given the lack of
368 projections to the epithelium, which we did observe for VIP neurons. Glutamate neurons have
369 also previously been noted in the SMP, which our data do not support⁹. This discrepancy may
370 be due to the previous study employing IHC of glutamate directly and therefore potentially
371 identifying GABA neurons in which glutamate is a precursor²⁹.

372 In contrast to VGLUT2^{Long}, the function of VGLUT2^{Circ} neurons, to our knowledge a novel class
373 of enteric neuron, remains unclear. PrlrCre is an effective tool for isolating VGLUT2^{Circ} neurons,
374 but because of its widespread non-neuronal expression in the intestines, we could not use
375 PrlrCre with ChR2 or other lines that were not neuronally restricted. Though circumferentially
376 oriented neurons have been identified previously and suggested to be sensory²², VGLUT2^{Circ}
377 neurons are distinct from these by being monoaxonal and less arborised. VGLUT2^{Circ} neurons
378 tend to innervate one stripe of neurons in the MP, suggesting that they could be involved in
379 coordinating circumferentially aligned ganglia²⁰.

380 We found that VGLUT2 neurons were able to strongly and swiftly initiate propulsion of luminal
381 contents following *ex vivo* optogenetic stimulation. VGLUT2 is also expressed in some extrinsic,
382 non-ENS fibres within the intestinal wall, particularly in dorsal root ganglion sensory fibres,
383 which can release CGRP from their sensory terminals to affect GI motility through inflammation
384 and sensitisation to pain³⁰. These terminals, which may still be present in the *ex vivo*
385 preparation, also express Trpv1, thus because we saw only a minor effect on pellet propulsion
386 when stimulating Trpv1 neurons, it is unlikely that these terminals are responsible for the effect
387 seen when stimulating VGLUT2 neurons. As shown by our synaptic tracing, motility initiation
388 and acceleration instead appear to be achieved by VGLUT2 neurons engaging multiple
389 components of the enteric circuit. These include other VGLUT2 neurons, supporting the idea of

390 interneuronal chains for long distance communication beyond local microcircuits^{31,32}, and
391 calretinin neurons. Calretinin neurons represent both motor neurons, which directly control
392 motility, and ascending interneurons, which could allow signalling oral to the site of stimulation³³.
393 High speed and large field-of-view calcium imaging following stimulation of specific neurons
394 would be necessary to fully visualise the flow of information through the enteric circuit.

395 Though confocal microscopy cannot be used to definitively identify synaptic contacts, the
396 approach has been validated by electron microscopy and used to establish enteric circuitry
397 previously^{11,34,35}, and the preferential targeting by VGLUT2 neurons to different neuronal
398 subtypes in the recipient population suggests specificity. The majority of synaptic sites on
399 VGLUT2^{Long} neurons are on branches, but they are also present on the primary fibre,
400 particularly at the terminal, where they often do not contact HuC/D+ cells. It is possible that
401 synapses are formed between an axon and unlabelled dendrite distal to the soma, rather than
402 between axon and soma, and indeed commonplace in the central nervous system. Dendrites in
403 the ENS receive the majority of synaptic input, but are typically small, filamentous, and very
404 close to the soma^{36–38}, with only circumferential neurons displaying anything resembling longer
405 dendrites amongst the neuron types we imaged. This may suggest that putative synaptic sites
406 away from other neurons are instead involved in communicating with non-neuronal cell types, or
407 in axo-axonal communication. Support for this includes the observation that enkephalin was
408 found in varicosities on the primary fibre, which has recently been proposed as a signalling
409 molecule between enteric interneurons and non-neurons such as colonocytes and T cells,
410 based on receptor-ligand pair mapping⁵.

411 While the cell-type specific KO and optogenetic experiments provide strong evidence for the
412 role of glutamatergic neurons in GI motility, the molecular role of glutamate in achieving these
413 effects remains to be elucidated. Glutamate release from varicosities in colonic motility have
414 previously been suggested to induce and alter the strength of muscle contractions via ionotropic
415 receptors, mediate slow synaptic transmission via metabotropic glutamate receptors, and
416 facilitate synaptic plasticity in the ENS, highlighting the complexity of glutamatergic
417 neurotransmission^{7–11,19}. Given the plethora of different glutamatergic receptors present on
418 enteric neurons, it is likely that glutamate has multiple functional roles, depending on circuit
419 state and whether it is released from VGLUT2^{Long} or VGLUT2^{Circ}. Glutamate release from a
420 source that is extrinsic to the ENS may also have played a role in disrupting GI transit in the
421 cell-type specific KO experiments, due to Penk/VGLUT2 co-expression in areas of the hindbrain
422 and spinal cord, both of which can modulate GI motility^{17,39–42}. Finally, optogenetic activation will
423 result in release not only of glutamate but of co-expressed signalling molecules as well,
424 including ACh, enkephalin and substance P, all of which may modulate circuit activity in different
425 manners. Future experiments should seek to disentangle the effects of glutamate from co-
426 released molecules.

427 In conclusion, our findings demonstrate that intestinal motility is regulated by glutamatergic
428 neurons, which in turn can be segregated into at least two distinct subtypes, one of which
429 represents a novel neuron class in the ENS. Our studies represent a step forward in elucidating
430 the complexity of enteric circuits, demonstrating that defined neuronal subtypes communicate
431 directly with a wide variety of other neuron subtypes to facilitate long-distance communication in
432 the intestines beyond immediate sensory responses to local luminal contents. Future work

433 should further explore the active roles that interneurons play in processing information in the
434 ENS and in facilitating plasticity in response to physiological and disease states.

435

436

437 References

- 438 1. Furness, J. B. The enteric nervous system and neurogastroenterology. *Nat. Rev. Gastroenterol. Hepatol.* **9**, 286–294 (2012).
- 439 2. Fung, C. & Vanden Berghe, P. Functional circuits and signal processing in the enteric nervous system. *Cell. Mol. Life Sci.* **77**, 4505–4522 (2020).
- 440 3. Rao, M. & Gershon, M. D. The bowel and beyond: The enteric nervous system in neurological disorders. *Nat. Rev. Gastroenterol. Hepatol.* **13**, 517–528 (2016).
- 441 4. Spencer, N. J. & Hu, H. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. *Nat. Rev. Gastroenterol. Hepatol.* **2020** **17**, 338–351 (2020).
- 442 5. Droklyansky, E. *et al.* The Human and Mouse Enteric Nervous System at Single-Cell Resolution. *Cell* **182**, 1606-1622.e23 (2020).
- 443 6. Morarach, K. *et al.* Diversification of molecularly defined myenteric neuron classes revealed by single-cell RNA sequencing. *Nat. Neurosci.* **24**, 34–46 (2021).
- 444 7. Campbell, B. G., Couceyro, P. R., Keana, J. F. & Weber, E. N-Methyl-D-Aspartate Receptor-Mediated Contractions of the Guinea Pig Ileum Longitudinal Muscle/Myenteric Plexus Preparation: Modulation by Phencyclidine and Glycine Receptors. *J. Pharmacol. Exp. Ther.* **257**, 754–766 (1991).
- 445 8. Leembruggen, A. J. L. *et al.* Group I Metabotropic Glutamate Receptors Modulate Motility and Enteric Neural Activity in the Mouse Colon. *Biomolecules* **13**, (2023).
- 446 9. Liu, M.-T., Rothstein, J. D., Gershon, M. D. & Kirchgessner, A. L. Glutamatergic Enteric Neurons. *J. Neurosci.* **17**, 4764–4784 (1997).
- 447 10. Seifi, M. & Swinny, J. D. Immunolocalization of AMPA receptor subunits within the enteric nervous system of the mouse colon and the effect of their activation on spontaneous colonic contractions. *Neurogastroenterol. Motil.* **28**, 705–720 (2016).
- 448 11. Swaminathan, M., Hill-Yardin, E. L., Bornstein, J. C. & Foong, J. P. P. Endogenous Glutamate Excites Myenteric Calbindin Neurons by Activating Group I Metabotropic Glutamate Receptors in the Mouse Colon. *Front. Neurosci.* **13**, 1–15 (2019).
- 449 12. Filpa, V. *et al.* Role of glutamatergic neurotransmission in the enteric nervous system and brain-gut axis in health and disease. *Neuropharmacology* **111**, 14–33 (2016).
- 450 13. Giaroni, C. *et al.* Protein kinase c modulates NMDA receptors in the myenteric plexus of the guinea pig ileum during in vitro ischemia and reperfusion. *Neurogastroenterol. Motil.* **23**, 91–103 (2011).
- 451 14. Giuliani, D. *et al.* Involvement of glutamate receptors of the NMDA type in the modulation of acetylcholine and glutamate overflow from the guinea pig ileum during in vitro hypoxia and hypoglycaemia. *Neurochem. Int.* **48**, 191–200 (2006).
- 452 15. Varga, G. *et al.* N-Methyl-d-aspartate receptor antagonism decreases motility and inflammatory activation in the early phase of acute experimental colitis in the rat. *Neurogastroenterol. Motil.* **22**, 7–9 (2010).
- 453 16. Brumovsky, P. R. *et al.* Expression of vesicular glutamate transporters type 1 and 2 in sensory and autonomic neurons innervating the mouse colorectum. *J. Comp. Neurol.* **519**, 3346–3366 (2011).
- 454 17. Zeisel, A. *et al.* Molecular Architecture of the Mouse Nervous System. *Cell* **174**, 999–1014 (2018).

480 18. Qu, Z. D. *et al.* Immunohistochemical analysis of neuron types in the mouse small
481 intestine. *Cell Tissue Res.* **334**, 147–161 (2008).

482 19. Kirchgessner, A. L. Glutamate in the enteric nervous system. *Curr. Opin. Pharmacol.* **1**,
483 591–596 (2001).

484 20. Hamnett, R. *et al.* Regional cytoarchitecture of the adult and developing mouse enteric
485 nervous system. *Curr. Biol.* **32**, 1–10 (2022).

486 21. Li, Z. *et al.* Regional complexity in enteric neuron wiring reflects diversity of motility
487 patterns in the mouse large intestine. *Elife* **8**, 1–27 (2019).

488 22. Furness, J. B., Robbins, H. L., Xiao, J., Stebbing, M. J. & Nurgali, K. Projections and
489 chemistry of Dogiel type II neurons in the mouse colon. *Cell Tissue Res.* **317**, 1–12
490 (2004).

491 23. Wallén-Mackenzie, Å. *et al.* Vesicular glutamate transporter 2 is required for central
492 respiratory rhythm generation but not for locomotor central pattern generation. *J.*
493 *Neurosci.* **26**, 12294–12307 (2006).

494 24. Aoki, M. *et al.* Widespread Cell-Specific Prolactin Receptor Expression in Multiple Murine
495 Organs. *Endocrinol. (United States)* **160**, 2587–2599 (2019).

496 25. Sang, Q., Williamson, S. & Young, H. M. Projections of chemically identified myenteric
497 neurons of the small and large intestine of the mouse. *J. Anat.* **190**, 209–222 (1997).

498 26. Brown, R. S. E. *et al.* Prolactin action in the medial preoptic area is necessary for
499 postpartum maternal nursing behavior. *Proc. Natl. Acad. Sci. U. S. A.* **114**, 10779–10784
500 (2017).

501 27. Sang, Q. & Young, H. M. Chemical coding of neurons in the myenteric plexus and
502 external muscle of the small and large intestine of the mouse. *Cell Tissue Res.* **284**, 39–
503 53 (1996).

504 28. Grider, J. R. Interplay of somatostatin, opioid, and GABA neurons in the regulation of the
505 peristaltic reflex. *Am. J. Physiol. - Gastrointest. Liver Physiol.* **267**, (1994).

506 29. Ottersen, O. P. & Storm-Mathisen, J. Glutamate- and GABA-containing neurons in the
507 mouse and rat brain, as demonstrated with a new immunocytochemical technique. *J.*
508 *Comp. Neurol.* **229**, 374–392 (1984).

509 30. Russell, F. A., King, R., Smillie, S. J., Kodji, X. & Brain, S. D. Calcitonin gene-related
510 peptide: physiology and pathophysiology. *Physiol. Rev.* **94**, 1099–1142 (2014).

511 31. Bornstein, J. C., Furness, J. B., Smith, T. K. & Trussell, D. C. Synaptic responses evoked
512 by mechanical stimulation of the mucosa in morphologically characterized myenteric
513 neurons of the guinea-pig ileum. *J. Neurosci.* **11**, 505–518 (1991).

514 32. Spencer, N. J. *et al.* Long range synchronization within the enteric nervous system
515 underlies propulsion along the large intestine in mice. *Commun. Biol.* **4**, 1–17 (2021).

516 33. Brookes, S. J. H., Steele, P. A. & Costa, M. Calretinin immunoreactivity in cholinergic
517 motor neurones, interneurones and vasomotor neurones in the guinea-pig small intestine.
518 *Cell Tissue Res.* **263**, 471–481 (1991).

519 34. Mann, P. T., Southwell, B. R., Young, H. M. & Furness, J. B. Appositions made by axons
520 of descending interneurons in the guinea-pig small intestine, investigated by confocal
521 microscopy. *J. Chem. Neuroanat.* **12**, 151–164 (1997).

522 35. Neal, K. B. & Bornstein, J. C. Mapping 5-HT inputs to enteric neurons of the guinea-pig
523 small intestine. *Neuroscience* **145**, 556–567 (2007).

524 36. Bornstein, J. C., Hendriks, R., Furness, J. B. & Trussell, D. C. Ramifications of the axons
525 of AH-neurons injected with the intracellular marker biocytin in the myenteric plexus of the
526 guinea pig small intestine. *J. Comp. Neurol.* **314**, 437–451 (1991).

527 37. Nurgali, K., Stebbing, M. J. & Furness, J. B. Correlation of Electrophysiological and
528 Morphological Characteristics of Enteric Neurons in the Mouse Colon. *J. Comp. Neurol.*
529 **468**, 112–124 (2004).

530 38. Pompolo, S. & Furness, J. B. Sources of inputs to longitudinal muscle motor neurons and
531 ascending interneurons in the guinea-pig small intestine. *Cell Tissue Res.* **280**, 549–560
532 (1995).

533 39. Chang, H. Y., Mashimo, H. & Goyal, R. K. Musings on the wanderer: What's new in our
534 understanding of vago-vagal reflex? IV. Current concepts of vagal efferent projections to
535 the gut. *Am. J. Physiol. - Gastrointest. Liver Physiol.* **284**, 357–366 (2003).

536 40. Liu, T. *et al.* The coexistence of VGluT2 and neuropeptides or leu-enkephalin in the
537 medullary dorsal horn: A confocal and electron microscopic immunohistochemical study
538 in the rat. *Neurosci. Lett.* **584**, 390–394 (2014).

539 41. Travagli, R. A. & Anselmi, L. Vagal neurocircuitry and its influence on gastric motility. *Nat. Rev. Gastroenterol. Hepatol.* **13**, 389–401 (2016).

541 42. Smith-Edwards, K. M. *et al.* Extrinsic Primary Afferent Neurons Link Visceral Pain to
542 Colon Motility Through a Spinal Reflex in Mice. *Gastroenterology* **157**, 522–536.e2
543 (2019).

544 43. King, P. H., Redden, D., Palmgren, J. S., Nabors, L. B. & Lennon, V. A. Hu antigen
545 specificities of ANNA-1 autoantibodies in paraneoplastic neurological disease. *J. Autoimmun.* **13**, 435–443 (1999).

547 44. Guyer, R. A. *et al.* Single-cell multiome sequencing clarifies enteric glial diversity and
548 identifies an intraganglionic population poised for neurogenesis. *Cell Rep.* **42**, 112194
549 (2023).

550 45. Swaminathan, M. *et al.* Video imaging and spatiotemporal maps to analyze
551 gastrointestinal motility in mice. *J. Vis. Exp.* **2016**, 1–8 (2016).

552 46. Spear, E. T. *et al.* Altered gastrointestinal motility involving autoantibodies in the
553 experimental autoimmune encephalomyelitis model of multiple sclerosis.
554 *Neurogastroenterol. Motil.* **30**, 1–11 (2018).

555 47. Hibberd, T. J. *et al.* Optogenetic Induction of Colonic Motility in Mice. *Gastroenterology*
556 **155**, 514–528.e6 (2018).

557 48. Ershov, D. *et al.* TrackMate 7: integrating state-of-the-art segmentation algorithms into
558 tracking pipelines. *Nat. Methods* **19**, 829–832 (2022).

559

560

561

562 Materials and Methods

563 Animals

564 All procedures conformed to the National Institutes of Health Guidelines for the Care and Use of
565 Laboratory Animals and were approved by the Stanford University Administrative Panel on
566 Laboratory Animal Care. Mice were group housed up to a maximum of five adults per cage.
567 Food and water were provided *ad libitum* and mice were maintained on a 12:12 LD cycle. All
568 experiments were performed on adult mice aged 2-10 months of both sexes.

569

Common name	Full name	Source	RRID
C57BL/6J	C57BL/6J	The Jackson Laboratory	IMSR_JAX:000664
Calb1-Cre	B6;129S- <i>Calb1</i> ^{tm2.1(cre)Hze} /J	The Jackson Laboratory	IMSR_JAX:028532
ChAT-Cre	B6.129S- <i>Chat</i> ^{tm1(cre)LowL} /MwarJ	The Jackson Laboratory	IMSR_JAX:031661
ChR2-EYFP	B6.Cg- <i>Gt(ROSA)26Sor</i> ^{tm32(CAG-COP4*H134R/EYFP)Hze} /J; Ai32	The Jackson Laboratory	IMSR_JAX:024109
Frt-GFP	STOCK <i>Gt(ROSA)26Sor</i> ^{tm1.2(CAG-EGFP)Fsh} /Mmjx	The Jackson Laboratory	MMRRC_032038-JAX
LSL-FSF-ReaChR-mCitrine*	B6;129S- <i>Gt(ROSA)26Sor</i> ^{tm2.1Ksv0} /J	The Jackson Laboratory	IMSR_JAX:024846
LSL-tdTomato	B6;129S6- <i>Gt(ROSA)26Sor</i> ^{tm14(CAG-tdTomato)Hze} /J; Ai14	The Jackson Laboratory	IMSR_JAX:007908
Penk-Cre	B6;129S- <i>Penk</i> ^{tm2(cre)Hze} /J	The Jackson Laboratory	IMSR_JAX:025112
Prlr-Cre	Prlr-IRES-Cre	Gift from Prof Dave Grattan	
Synaptophysin-tdTomato (syn-tdT)	B6;129S- <i>Gt(ROSA)26Sor</i> ^{tm34.1(CAG-Syp/tdTomato)Hze} /J	The Jackson Laboratory	IMSR_JAX:012570
Tac1-Cre	B6;129S- <i>Tac1</i> ^{tm1.1(cre)Hze} /J	The Jackson Laboratory	IMSR_JAX:021877
Trpv1-Cre	B6.129- <i>Trpv1</i> ^{tm1(cre)Bbm} /J	The Jackson Laboratory	IMSR_JAX:017769
VGLUT2-Cre	B6.129S6(FVB)- <i>Slc17a6</i> ^{tm2(cre)LowL} /MwarJ	The Jackson Laboratory	IMSR_JAX:028863
VGLUT2Flp	B6;129S- <i>Slc17a6</i> ^{tm1.1(flip)Hze} /J	The Jackson Laboratory	IMSR_JAX:030212

VGLUT2 ^{Flx}	STOCK <i>Slc17a6</i> ^{tm1LowL} /J	The Jackson Laboratory	IMSR_JAX:012898
Vip-Cre	STOCK <i>VIP</i> ^{tm1(cre)Zjh} /J	The Jackson Laboratory	IMSR_JAX:010908

570 *Note that this line actually shows FRT-site read through, rendering this line as only Cre-
571 dependent

572

573 Immunohistochemistry

574 Immunohistochemistry was performed as previously described²⁰. Mice were euthanized by CO₂
575 and cervical dislocation and the intestines were removed and flushed of faecal contents with
576 cold PBS. The proximal, middle and distal 2-3 cm of the small intestine were separated to
577 isolate the duodenum, jejunum and ileum, respectively, while the colon was cut in two. All
578 segments were pinned to Sylgard 170 in cold PBS, and the mesentery was cut away before
579 cutting open each segment longitudinally along the mesenteric border. Each piece of tissue was
580 stretched flat and pinned, muscularis facing upwards, for fixation in 4% PFA for 90 minutes at
581 4°C with shaking. After fixation, the muscularis was peeled away using fine forceps and a cotton
582 bud.

583 For immunohistochemistry, small pieces of wholemount tissue (typically ~7x7 mm²) were placed
584 in WHO microtitration trays (International Scientific Supplies) containing PBS. Tissue was
585 incubated in PBT (PBS, 1% BSA, 0.1% Triton X-100) containing the primary antibodies
586 overnight at 4°C with shaking. The following day, tissue was washed 3 times in PBT for 30
587 minutes each. Tissue was then transferred to PBT containing secondary antibodies, incubated
588 for 2 h at room temperature with shaking. After washing in PBT and PBS, tissue was mounted
589 onto slides using a paintbrush, ensuring it was flat by gentle manipulation with paint brushes
590 under a dissection microscope. The tissue was rinsed in ddH₂O after air-drying and
591 coverslipped using Fluoromount-G (Southern Biotech).

Target	Host	Concentration	Source	Catalogue no.	RRID
Advillin	Rabbit	1:2000	Abcam	ab72210	AB_1951510
Calretinin	Chicken	1:2000	EnCor Bio	CPCA-Calret	AB_2572241
CCK	Rabbit	1:16000	Immunostar	20078	AB_572224
CGRP	Rabbit	1:1000	Immunostar	24112	AB_572217
ChAT	Rabbit	1:4000	Gift from Thomas Jessell/Susan Morton	CU1574	AB_2750952
met-Enkephalin	Rabbit	1:1000	Immunostar	20065	AB_572250
GFP	Sheep	1:1000	Biogenesis	4745-1051	AB_619712
HuC/D	Human	1:50000	Gift from Vanda Lennon	HuC/D_Lennon ⁴³	AB_2813895

HuC/D	Rabbit	1:5000	Abcam	ab184267	AB_2864321
nNOS	Rabbit	1:2000	Sigma-Aldrich	N7280	AB_260796
nNOS	Sheep	1:1000	Millipore	AB1529	AB_90743
RFP	Rabbit	1:1000	Rockland	600-401-379	AB_2209751
Secretagogin	Chicken	1:3000	EnCor Bio	CPCA-SCGN	AB_2744521
Serotonin (5-HT)	Goat	1:2000	Immunostar	20079	AB_572262
Somatostatin	Rat	1:500	Millipore	MAB354	AB_2255365
Substance P	Rat	1:200	Millipore	MAB356	AB_94639
VGLUT2	Guinea pig	1:3000	Synaptic Systems	135 404	AB_887884
VIP	Rabbit	1:750	Immunostar	20077	AB_572270

592 **Table 1** Primary antibodies

593

Target	Fluorophore	Host	Concentration	Source	Catalogue no.	RRID
Chicken	Cy3	Donkey	1:500	Jackson Immuno Research	703-165-155	AB_2340363
Chicken	AF 647	Donkey	1:500	Jackson Immuno Research	703-605-155	AB_2340379
Guinea pig	AF 647	Donkey	1:500	Jackson Immuno Research	706-605-148	AB_2340476
Goat	AF 488	Donkey	1:500	Invitrogen	A11055	AB_2534102
Human	AF 405	Donkey	1:500	Jackson Immuno Research	709-475-149	AB_2340553
Human	AF 647	Donkey	1:500	Jackson Immuno Research	709-605-149	AB_2340578
Rabbit	DyLight 405	Donkey	1:500	Jackson Immuno Research	711-475-152	AB_2340616
Rabbit	AF 488	Donkey	1:500	Invitrogen	A21206	AB_2535792
Rabbit	Cy3	Donkey	1:500	Jackson Immuno Research	711-165-152	AB_2307443
Rabbit	Cy5	Donkey	1:500	Jackson Immuno Research	711-175-152	AB_2340607
Rat	Cy3	Donkey	1:500	Jackson Immuno Research	712-165-153	AB_2340667

Rat	Cy5	Donkey	1:500	Jackson Immuno Research	712-175-153	AB_2340672
Sheep	AF 488	Donkey	1:500	Invitrogen	A11015	AB_141362
Sheep	Cy5	Donkey	1:500	Jackson Immuno Research	713-175-147	AB_2340730

594 **Table 2** Secondary antibodies

595

596 **RNAscope**

597 Dissections and tissue processing for RNAscope were performed as described for
598 immunohistochemistry, but after 90-minute fixation and peeling, they were returned to fresh 4%
599 PFA and further fixed at 4°C overnight. Protein-RNA co-detection was performed as previously
600 described⁴⁴ using RNA-protein Co-detection ancillary kit (ACD 323180), adapted for
601 wholemount tissue. Tissue was placed in staining nets and dehydrated in ethanol (50%, 70%,
602 100%, 100%) for 5 minutes each before hydrogen peroxide incubation for 15 minutes. After a
603 brief rinse in water, tissue was incubated in co-detect target antigen retrieval solution for 5
604 minutes in a steamer at >95°C, then rinsed in PBS and incubated overnight with primary
605 antibody (Table 1) diluted in co-detection diluent. RNA detection was then performed using
606 RNAscope multiplex fluorescent reagent kit V2 (ACD 323100). Tissue was washed in PBS with
607 0.2% Tween (PBS-T), and post-fixed in 10% formalin for 30 minutes. After further PBS-T
608 washes, tissue was digested with Protease Plus for 30 minutes at 40°C. Following a rinse with
609 water, tissue was incubated for 2 hours in RNAscope probes (Table 3) at 40°C. Amplification
610 and development of probe signal was performed according to manufacturer's instructions. After
611 probe development, tissue was incubated with appropriate secondary antibodies (Table 2), then
612 mounted and coverslipped on slides as for IHC.

Probe target	Channel	Source	Catalogue no.
<i>Calcb</i>	C3	ACDBio	425511
<i>Slc17a6</i>	C2	ACDBio	319171
<i>Calb1</i>	C1	ACDBio	428431
<i>Prlr</i>	C3	ACDBio	430791

613 **Table 3** RNAscope probes

614

615 ***Ex vivo* colonic motility**

616 *Ex vivo* colonic motility was assessed using an experimental setup modified from approaches
617 previously described^{45,46}. The colon was dissected out from 2-10 month-old mice euthanized by
618 CO₂ and cervical dislocation, and submerged in warmed, carbogenated Krebs solution (pH 7.4
619 containing (in mmol/l): 117 NaCl, 4.7 KCl, 3.3 CaCl₂, 1.5 MgCl₂, 25 NaHCO₃, 1.2 NaH₂PO₄ and
620 11 Glucose) in a Sylgard dish. For experiments using an artificial faecal pellet, the caecum was

621 removed at this point and endogenous faecal matter was gently flushed from the colon using a
622 syringe and warmed Krebs solution; otherwise, the caecum and faecal matter were left intact.
623 The mesentery was cut away and the colon was transferred to an organ chamber, which was
624 continuously perfused with carbogenated warm Krebs and heated from below by a water bath to
625 maintain the chamber at ~35°C. The colon was pinned at either end to the Sylgard chamber
626 base under light tension. After 10 minutes' acclimation, videos were recorded at 3.75 frames/s
627 using IC capture software (Imaging Source) and a high-resolution monochromatic firewire
628 industrial camera (Imaging Source, DMK41AF02) connected to a 2/3" 16mmf/1.4 C-Mount Fixed
629 Focal Lens (Fujinon HF16SA1) mounted above the organ bath. If used, tetrodotoxin (TTX, 1 µM;
630 Alomone Labs) was diluted in warm, carbogenated Krebs and exchanged with the organ bath
631 buffer, then circulated.

632 For experiments involving artificial pellets described below, 3D-printed pellets based on real
633 faecal pellets were lubricated with KY jelly, inserted into the proximal colon and gently pushed
634 ~1.5 cm in using a blunt-ended gavage needle.

635 Experiments assessing colonic motility of PenkCre-VGLUT2^{flx/flx} mice were performed at the
636 same time as SI transit and gastric emptying experiments (see below), thus mice were fasted
637 overnight prior to dissection. Artificial pellets were Clear Resin v4 (Formlabs) and were based
638 on real faecal pellet sizes from the experimental mice, given that PenkCre-VGLUT2^{flx/flx} mice
639 produced smaller pellets and had smaller colons. Pellet widths were 2.4 mm and 3 mm for
640 mutants and controls, respectively. Experimental trials were defined as a single passage of the
641 artificial pellet through the colon to expulsion. Four trials were run per colon, with the artificial
642 pellet being re-lubricated and re-inserted each time it was expelled.

643 For optogenetics experiments, 6-minute videos were acquired in which the colon was stimulated
644 during the midpoint of the video by a 460 nm LED (UHP-T-460-DI, Prizmatix; 20 s stimulation, 5
645 Hz, 20 ms pulse-width⁴⁷, controlled using a signal generator (Feeltech FY6600-60M)) situated
646 25%, 50% or 75% along the length of the colon for proximal, mid or distal stimulation,
647 respectively. Artificial pellets were 3D-printed polycarbonate of approximately 5 mm in length
648 and 3 mm at their widest. The location of the pellet was not controlled by the experimenter, and
649 was based on its location at the time of stimulation. So that the fibre optic and associated
650 apparatus did not interfere with the video recording, the light was emitted ~20 mm away from
651 the colon from a pinhole in the centre of a shield placed over the end of a collimator (Prizmatix),
652 resulting in an illumination spot on the colon of ~5 mm diameter. Experimental trials involving
653 stimulation began only once the pellet had been inserted and expelled by the colon in the
654 absence of any stimulation, to confirm normal colonic activity. The pellet was then re-inserted
655 for experimental trials involving stimulation.

656

657 ***In vivo* procedures**

658 ***Total GI transit***

659 Whole GI transit was assessed as previously described⁴⁶. Mice were orally gavaged with 300 µl
660 6% Carmine red (C1022; Sigma-Aldrich) in 0.5% methylcellulose (274429; Sigma-Aldrich)

661 dissolved in 0.9% NaCl. Mice were separated into individual cages containing only a cotton
662 nestlet square and a small weigh boat containing gel (DietGel 76A), then observed for up to 7
663 hours for production of red faecal pellets.

664 *Faecal water content, pellet number and pellet size*

665 Faecal water content was assessed as previously described⁴⁶. Mice were housed individually in
666 empty cages for 1 hour during which all faecal pellets were collected immediately after
667 expulsion, photographed, and stored in pre-weighed tubes. Tubes were weighed at the end of
668 the 1-hour observation to determine faecal mass, then incubated for 48 hours at 55°C. The
669 dried pellets were then weighed and compared to their original faecal mass to determine faecal
670 water content. Pellet length was measured using FIJI.

671 *Small intestine transit and gastric emptying*

672 SI transit and gastric emptying were determined as previously described⁴⁶. Mice were fasted
673 overnight prior to this experiment. Mice were orally gavaged with 100 µl 2.5 mg/ml rhodamine B
674 dextran (D-1841; Molecular Probes) in 2% methylcellulose dissolved in water. 15 minutes after
675 gavage, the mice were euthanized and the stomach and SI were removed in warmed,
676 carbogenated Krebs buffer. The SI was measured and divided into 10 equal segments; the
677 stomach and each SI segment were placed in separate tubes containing 0.9% NaCl and
678 homogenized to release luminal contents. Following a 15-minute centrifugation at 2234 rcf, the
679 fluorescence intensity of the supernatant was measured for each sample using a Varioskan
680 LUX (Thermo Scientific).

681

682 **Retro-orbital injections**

683 AAVs (AAV9::CAG-FLEX-EGFP-WPRE, Addgene 51502; AAV9::Ef1a-fDiO-mCherry, Addgene
684 114471) were diluted in sterile, ice-cold PBS to between 4×10^{10} and 4×10^{11} genome
685 copies(GC)/ml, depending on the experimental aim and the Cre line being injected; injected
686 AAV was diluted more for Cre lines with high representation in the ENS and for full neuron
687 morphology tracing, in which sparse labelling was essential. Mice were anaesthetized with 3%
688 isoflurane and treated with proparacaine droplets applied to the eye. After allowing time (30-60
689 s) for the proparacaine to take effect, mice were injected retro-orbitally with 100 µl diluted AAV
690 using 31g insulin needles (BD-324920; BD). Mice were dissected after 2-4 weeks, allowing for
691 adequate AAV expression.

692

693 **Image acquisition**

694 Images were acquired using a 20x (NA 0.75) or 63x (NA 1.40) oil objective on a Leica SP8
695 confocal microscope. Regions to be imaged, including entire neurons for morphology analysis,
696 were identified, acquired and stitched using the Navigator mode within LASX (Leica). For
697 neuron morphology tracing, a preview of the entire neuron was built up in Navigator mode
698 before acquiring a Z-stack of the entire region to ensure that all parts of the neuron in all layers
699 (e.g. in muscle layers or MP) were included. Stacks were acquired with 2-2.5 µm between each

700 focal plane. Branch or axon end points were identified by the abrupt loss of fluorescence signal
701 in the fibre; neurons in which fluorescence signal gradually faded away were not imaged as fibre
702 terminals could not be confirmed. Neurons were only included for morphology tracing if fibres
703 could be confidently assigned to a given neuron.

704

705 **Image analysis**

706 *Cell counting*

707 Cell counting analysis was performed as previously described²⁰ using ImageJ/FIJI (NIH,
708 Bethesda, MD). To count individual cell types, such as VGLUT2 neurons or VGLUT2 subtypes,
709 first, Z-stacks of HuC/D were blurred using a Gaussian blur before thresholding and
710 watershedding to identify individual neurons; neuronal locations were then identified and drawn
711 using the Analyze Particles function (minimum size 50 μm^2 , minimum circularity 0.3), converting
712 the output to a binary mask. The HuC/D mask was then combined with non-thresholded cell
713 subtype images using the Image Calculator function. The result of this calculation was then
714 maximally projected and counted in an automated fashion using the same procedure as
715 described for HuC/D. For VGLUT2 overlap analysis, once VGLUT2 neuron locations were
716 identified, they were combined with images of other markers (e.g. PenkCre-tdT, Scgn etc.)
717 using Image Calculator, thresholded and counted as above to determine proportion of VGLUT2
718 neurons coexpressing these markers.

719 *Neuron morphology*

720 Three-dimensional reconstructions of neuronal morphology were created and analyzed in Imaris
721 9.7 (Bitplane). Fibres were traced in a semi-automatic way using the Autopath feature within the
722 FilamentTracer module. Starting points were manually selected, typically at the neuronal soma.
723 Fibre width in Autopath was set at 0.9 μm for tracing to enable tracing of fibres in close
724 proximity. In cases of ambiguity, such as overlapping or recursive branches, the most
725 parsimonious option was chosen (e.g. fewest number of branch points), ensuring that fibres
726 never looped and reconnected with themselves. Filament statistics, including Sholl analysis and
727 filament length, were exported to Microsoft Excel for grouping and further analysis. Assignment
728 of neuron morphology to different functional groups was based on the following criteria.
729 Interneurons were assigned if the neuron fibre stayed within the plane of the MP for all or the
730 vast majority of its projection, and terminated there; ascending if they projected orally,
731 descending if they projected aborally. Motor neurons were assigned if arborization within the
732 muscle layers was observed; excitatory if they projected orally, inhibitory if they projected
733 aborally. Circumferential was assigned based on the dominant orientation angle; these neurons
734 typically arborized in myenteric ganglia, but may have traversed through the circular muscle.
735 Epithelium-projecting neurons were not fully traced, given that peeled wholemount preparations
736 were used. Neurons were assigned as epithelium-projecting if their fibres went into the circular
737 muscle but did not arborize or clearly terminate there; typically only the first ~100-150 μm of the
738 neuron fibre was visible before it passed through the circular muscle.

739 *Varicosity analysis*

740 Neuronal varicosities were analyzed using the Spots module in Imaris 9.7. Varicosities were
741 identified using syn-tdT expression, setting varicosity XY size to 1.2 μm diameter and modelling
742 the point spread function elongation in the Z-axis as 4 μm diameter to avoid mistakenly stacking
743 synapses. Spots were first filtered on Quality (based on syn-tdT fluorescence intensity); this
744 identified all syn-tdT varicosities in the image, regardless of coexpression with other markers.
745 Subsequent filtering identified only varicosities that colocalized with GFP fluorescence,
746 excluding all others, to measure the total number of varicosities. This could then be further
747 filtered based on fluorescence signal intensity of other markers, such as VGLUT2 IHC to
748 determine whether varicosities were glutamatergic. Varicosity identification was manually
749 checked to prevent the mis-assignment of GFP-negative varicosities to GFP-positive neurons,
750 such as in the case of overlapping fibres. Varicosities were assigned to the primary fibre (the
751 longest continuing fibre at a branch point) or branches manually, with the start and end of the
752 primary axon fibre being defined as the first or last $\sim 200 \mu\text{m}$ of the fibre.

753 *Output analysis*

754 Recipient neurons were assigned if they were within 1 μm of a varicosity of minimum size 1 μm ,
755 and manually assigned using the Spots module in Imaris 9.7. If a recipient neuron did not
756 express a marker, it was marked as HuC/D-only. Typically 20-30 branches were analyzed per
757 neuron; the mean proportion of output neurons identified as a given type was calculated and
758 presented per neuron, with a minimum of 4 neurons per mouse. Data was collated and
759 analyzed in Microsoft Excel.

760

761 **Video analysis**

762 Videos of optogenetic stimulation of *ex vivo* colons were analyzed in ImageJ/FIJI, with individual
763 trials being treated independently. Videos were split into pre-stimulation and post-stimulation
764 periods, ignoring the 20 s stimulation period in between. Pre-stimulation covered the 2 minutes
765 before the stimulation start time. Post-stimulation analysis covered between 30 s and 2 minutes
766 after the stimulation end time; the analysis period stopped if the pellet did not move or stopped
767 moving ($<1 \text{ mm}$ in 30 s) to avoid interpreting spontaneous movement as stimulation-induced.
768 Measurements of colon length and pellet start and end points were taken manually in FIJI, while
769 the TrackMate plugin⁴⁸ (v7.11) for FIJI was used to analyse pellet movement before and after
770 stimulation. A spot diameter of 4-6 mm was used to identify the pellet using the LoG detector,
771 while tracks were analysed with the Overlap Tracker. The desired track was isolated through
772 filtering by quality, location, and distance travelled, with further adjustments made using
773 TrackScheme as needed.

774 Spot and edge data were exported to produce individual pellet tracks in R, normalising tracks
775 such that 0-100% represented the full length of the colon. Plotted post-stimulation tracks were
776 overlaid with pre-stimulation tracks in Illustrator. Track data was exported from Trackmate to
777 Microsoft Excel for measures of distance and speed. Distance was calculated using manual
778 start and end points, normalised to percentages. Speed was calculated by dividing track
779 displacement by track duration. For the analysis of speed and distance by pre-stimulation

780 activity, three categories were defined based on if there had been significant movement (>5 mm
781 travelled) 0-15 s, 15-30 s, or 30+ s before stimulation.

782 Spatiotemporal maps (STMs) were generated using Scribble 2.0 and Matlab (2012a) plugin
783 Analyze 2.0⁴⁵.

784 PenkCre-VGLUT2Flx videos *ex vivo* colonic motility was analysed using TrackMate as
785 described above, with trials averaged per mouse.

786

787 **Statistics**

788 All statistical tests and graphical representation of data were performed using Prism 9 software
789 (GraphPad), other than plotting artificial pellet tracks, which was performed in R. Statistical
790 comparisons were performed using one-way ANOVA to determine significant differences in a
791 number of parameters, including between regions, types of neuron, and synaptic innervation,
792 with Tukey's or Sidak's multiple comparisons test being employed to further investigate
793 differences between individual groups, depending on the comparison being performed. Two-
794 way ANOVAs with Sidak's multiple comparisons test were used where two factors grouped the
795 data, including sex and genotype, genotype and stimulus condition, or stimulus condition and
796 stimulus location. The Kruskal-Wallis test with Dunn's multiple comparisons test was used to
797 investigate differences in recipient neuron identity, given the non-parametric nature of the data.
798 The results of these tests are indicated on graphs as asterisks to indicate significance of at least
799 $p < 0.05$. Chi-squared analysis was used to determine if there was an enrichment for cells of a
800 specific neuronal subtype receiving input from VGLUT2 neurons when compared to their overall
801 representation in the MP, for example if a neuron subtype was 10% of all MP neurons, but
802 received 20% of the contacts from VGLUT2 neurons.

803

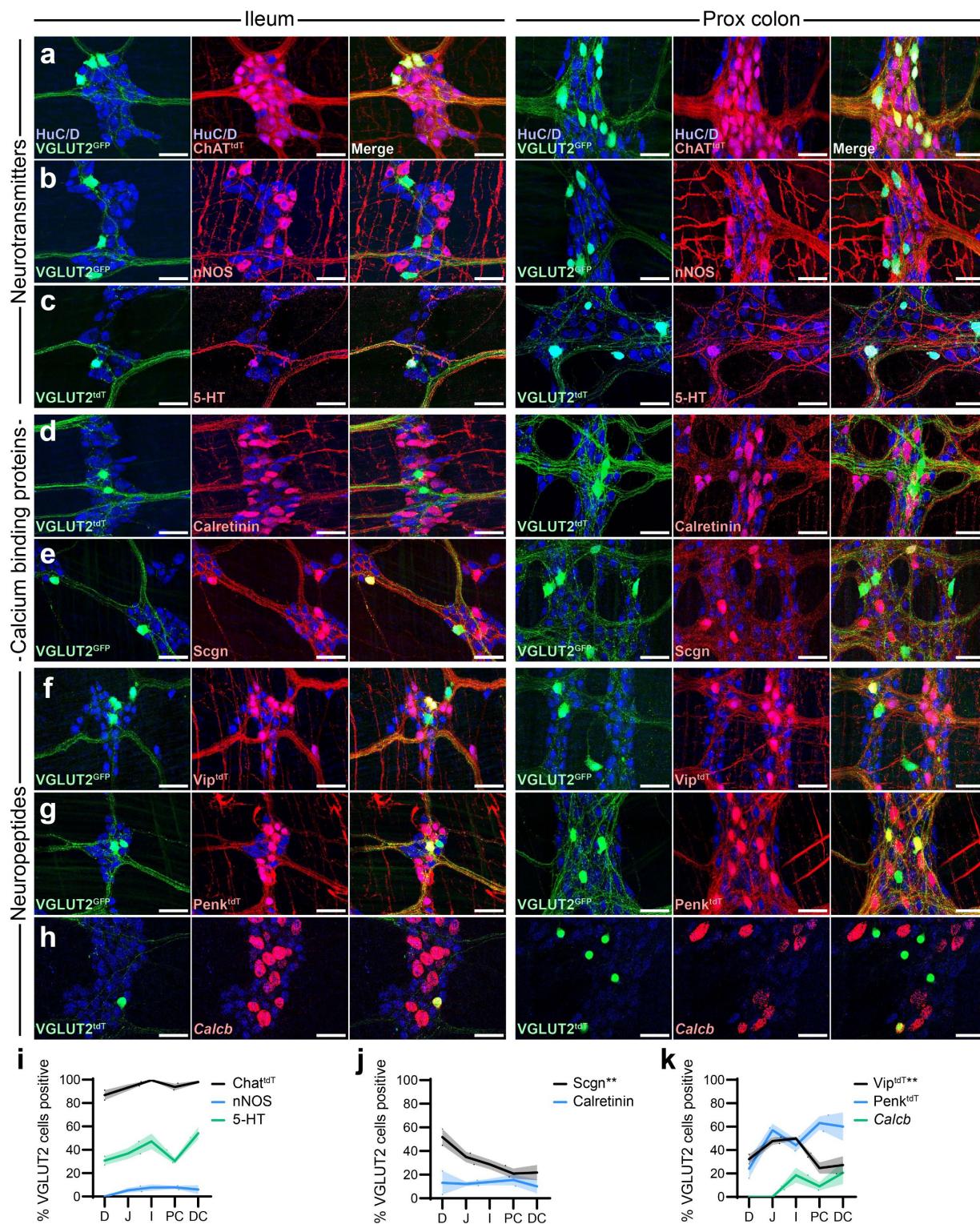
804

805 Acknowledgements

806 We thank members of the Kaltschmidt lab for experimental advice and discussions. We thank
807 Dr. Vanda A. Lennon (Mayo Clinic) for the human HuC/D primary antibody, and Dr. Nirao Shah
808 for the Prlr-IRES-Cre mouse. We thank Dr. Beatriz Robinson and Dr. Lucy Xu for their
809 assistance with data analysis. This work was supported by an EMBO Fellowship ALTF 180-
810 2019 (R.H.), Bertarelli Foundation Fellowship (J.L.B.), NIH T32-MH020016 (J.L.B.; K.R.),
811 Stanford Neurosciences Interdepartmental Graduate Program (K.R.), a research grant from The
812 Shurl and Kay Curci Foundation (J.A.K.), the Firmenich Foundation (J.A.K.), the Carol and
813 Eugene Ludwig Family Foundation (J.A.K.), Stanford ADRC Developmental Project Grant
814 (National Institutes of Health Grant P30AG066515) (J.A.K.), National Institutes of Health Grant
815 R21 HD110950 (J.A.K.), the Wu Tsai Neurosciences Institute (J.A.K.) and the Stanford
816 University Department of Neurosurgery (J.A.K.).

817

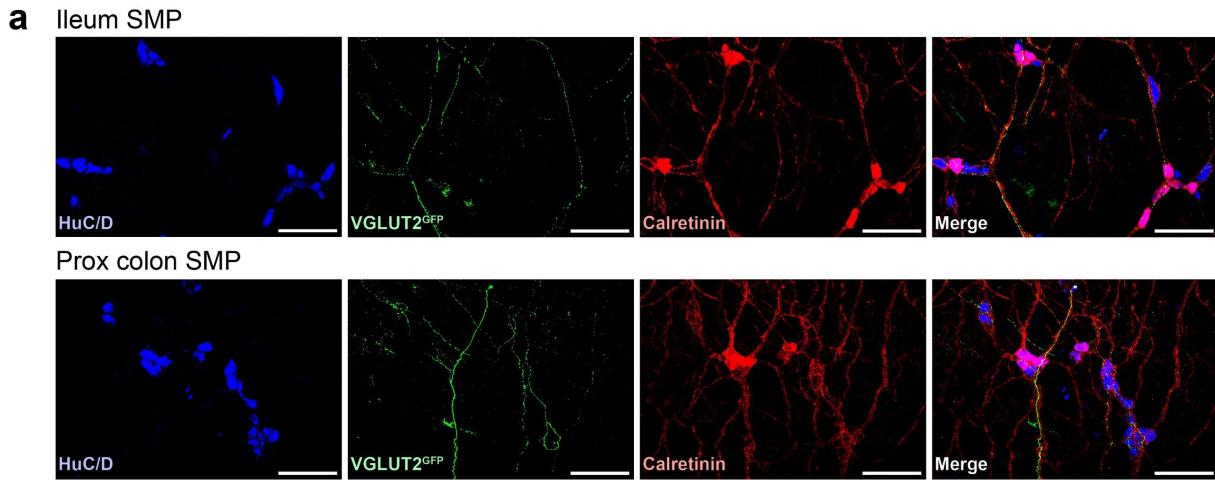
818 Author Contributions


819 R.H. and J.A.K designed and conceptualised the project. R.H., J.B. and K.R. performed the
820 experiments. R.H. and J.B. analysed the experimental results. E.T.Z. provided resources. R.H.
821 wrote the manuscript with feedback from all authors. J.A.K. supervised the project.

822

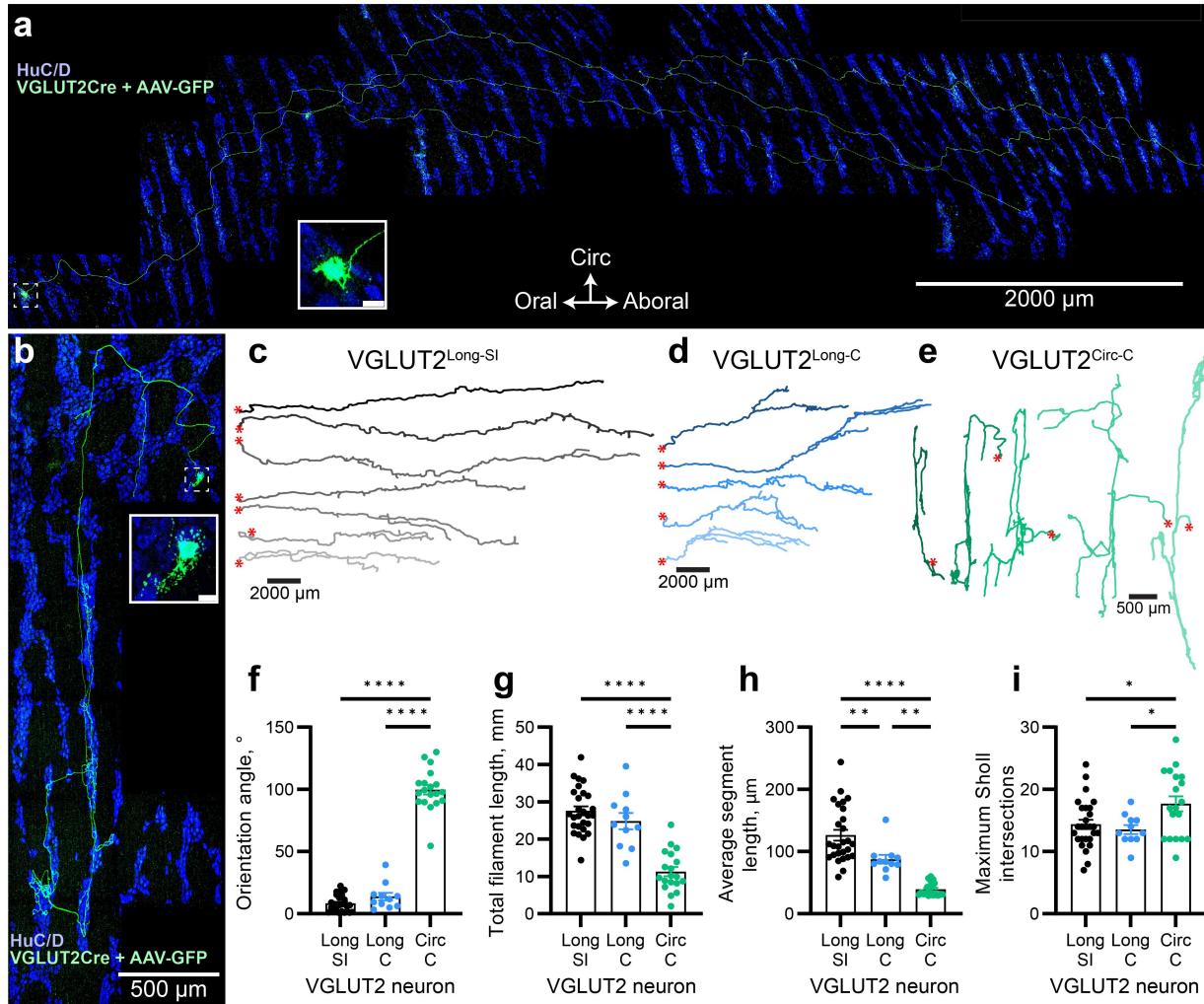
823 Competing interests

824 The authors declare no competing interests.


825

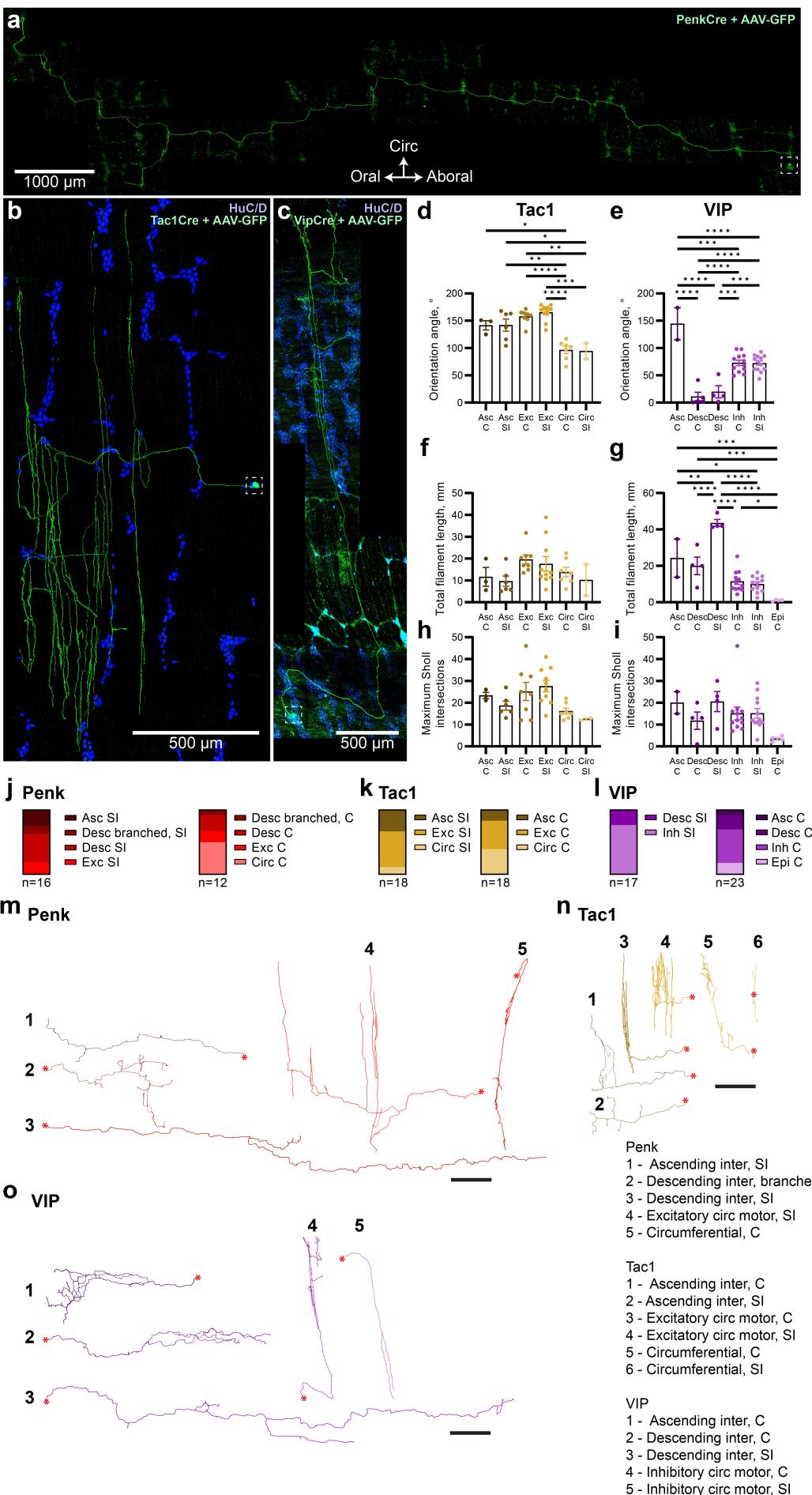
826 **Fig. 1.** Glutamatergic neuron coexpression with other ENS markers. **a-h**, Representative
 827 images of adult wholemount MP showing VGLUT2^{tdT} or VGLUT2^{GFP} (green) and neuronal label
 828 HuC/D (blue) alongside immunohistochemical labels or genetically encoded reporters for
 829 neurotransmitters (red, **a-c**), calcium binding proteins (red, **d,e**), and neuropeptides (red, **f-h**) in

830 the ileum (left) and proximal colon (right). Scale bars: 50 μ m. **i-k**, Proportion of VGLUT2^{tdT} or
831 VGLUT2^{GFP} neurons (mean \pm SEM) positive for each neuronal marker across intestinal regions
832 as in **a-h**, divided into neurotransmitters (**i**), calcium binding proteins (**j**) and neuropeptides (**k**).
833 n=3-9. All tests one-way ANOVA to determine differences for a single marker colocalising with
834 VGLUT2^{tdT} or VGLUT2^{GFP} across intestinal regions. **p< 0.01.

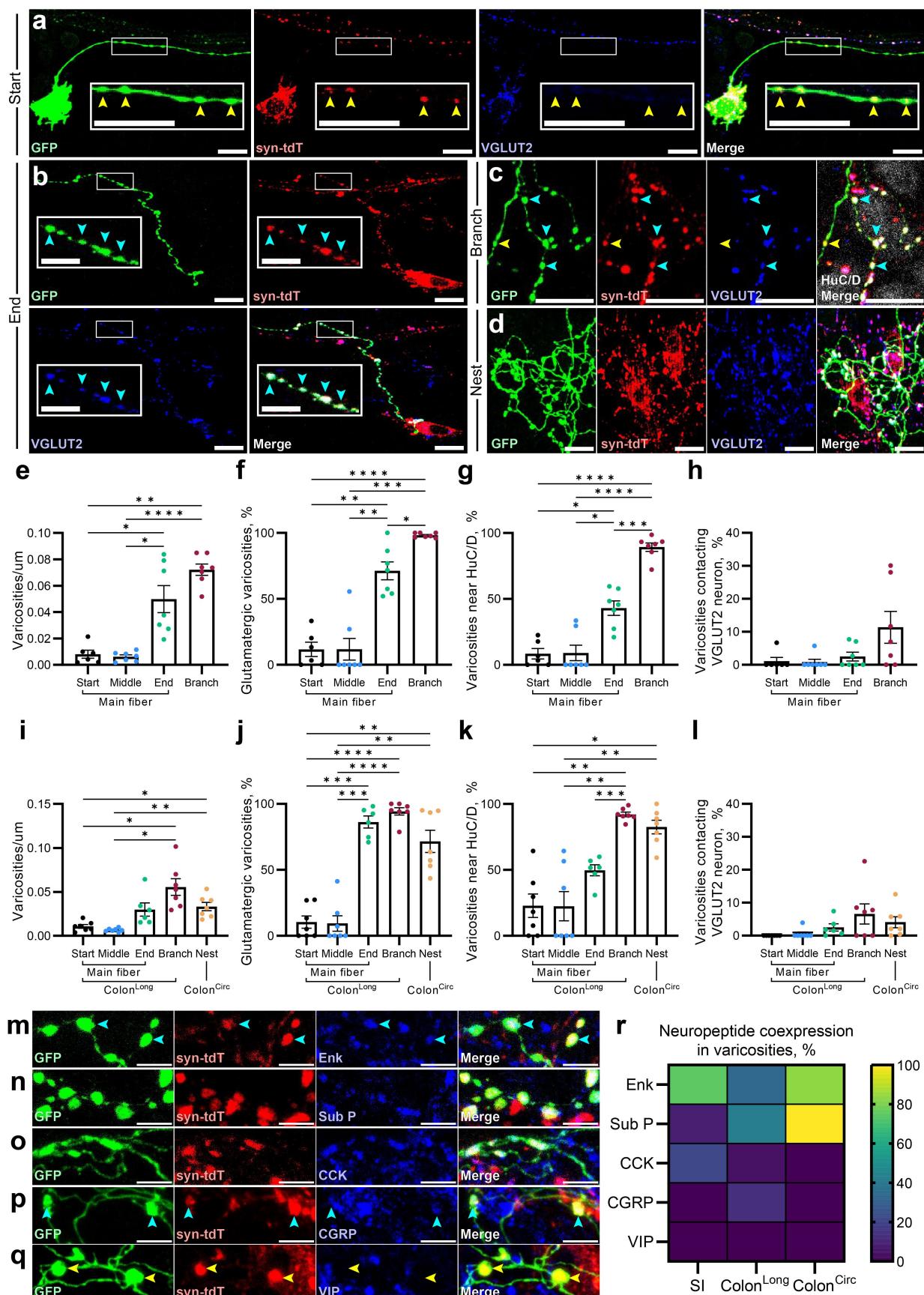

835

836

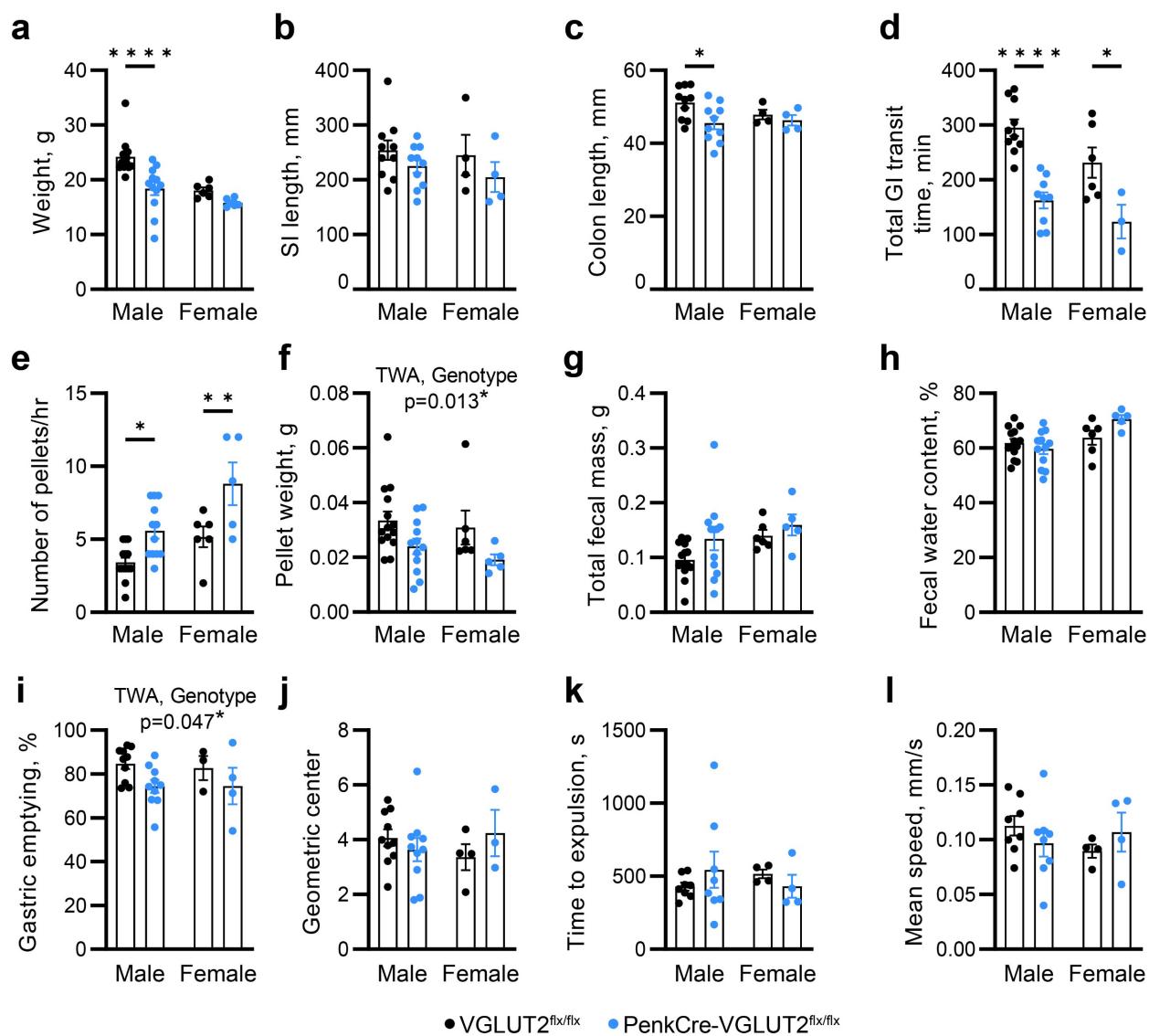
837 **Extended Data Fig. 1.** VGLUT2 expression in the submucosal plexus (SMP). **a**, Representative
838 images of adult wholemount MP showing VGLUT2^{GFP} (green), calretinin (red), and neuronal
839 label HuC/D (blue) in the SMP of the ileum (top) and proximal colon (bottom).


840

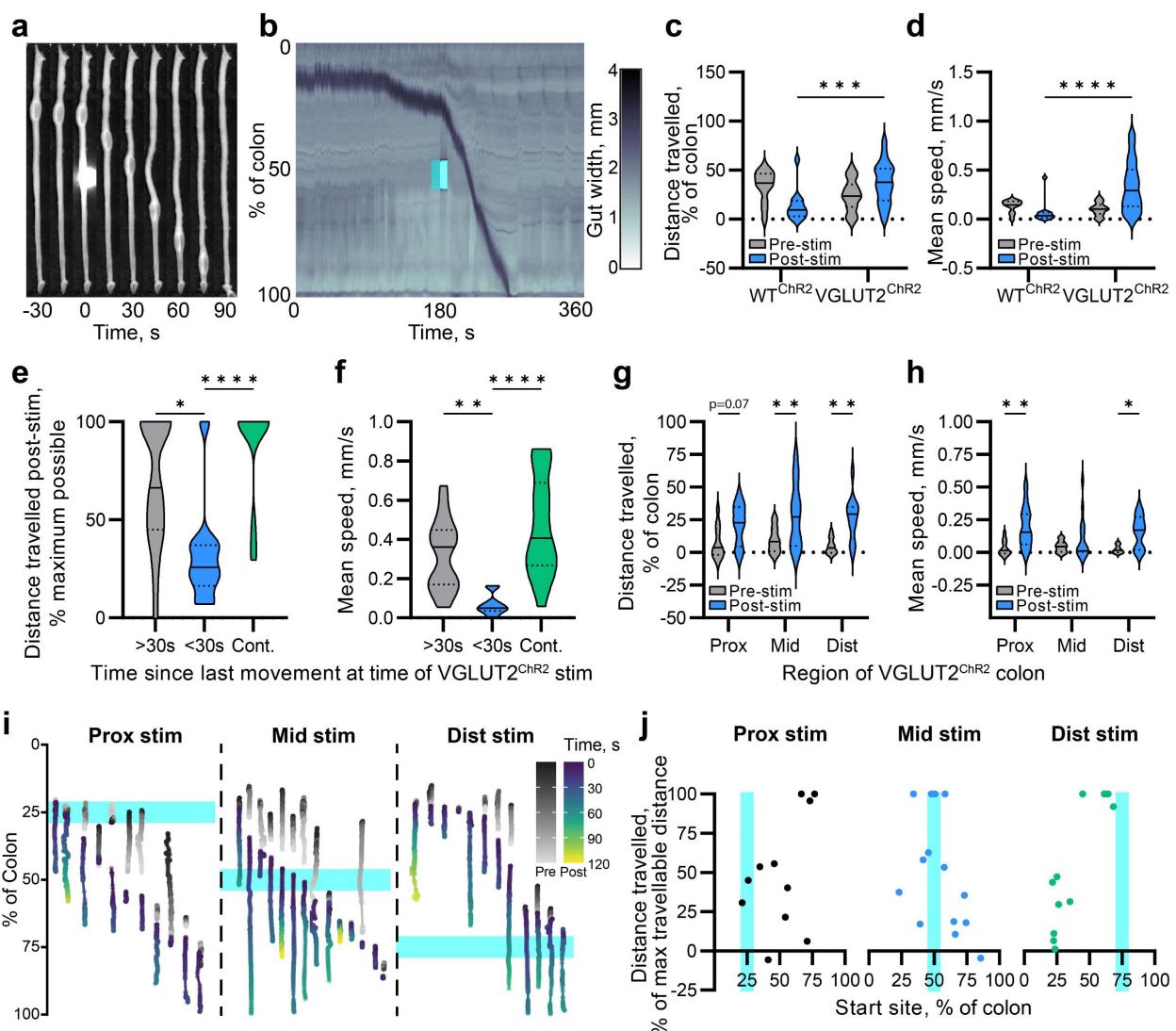
841


842 **Fig. 2.** Glutamatergic neurons are divided into 2 morphological classes. **a,b**, Representative
843 images of VGLUT2-Cre neurons transduced by Cre-dependent AAV-GFP and immunostained
844 for GFP (green) to reveal full neuron morphology, alongside HuC/D (blue). Longitudinal (a) and
845 circumferential (b) neurons are shown. Neuronal somata are inset (white boxes). Scale bars as
846 indicated. **c-e**, Representative traces of AAV-GFP-labelled longitudinal neurons in the small
847 intestine (c) and colon (d), and circumferential neurons in the colon (e). Soma location indicated
848 by red asterisk. **f-i**, Quantification (mean \pm SEM) of VGLUT2^{AAV-GFP} neuron orientation (f), total
849 filament length (g), average segment length (h), and maximum Sholl intersections (i). n=11-27.
850 Each dot represents a different neuron, taken from across 7 mice. Abbreviations: C: colon; SI:
851 small intestine.

852

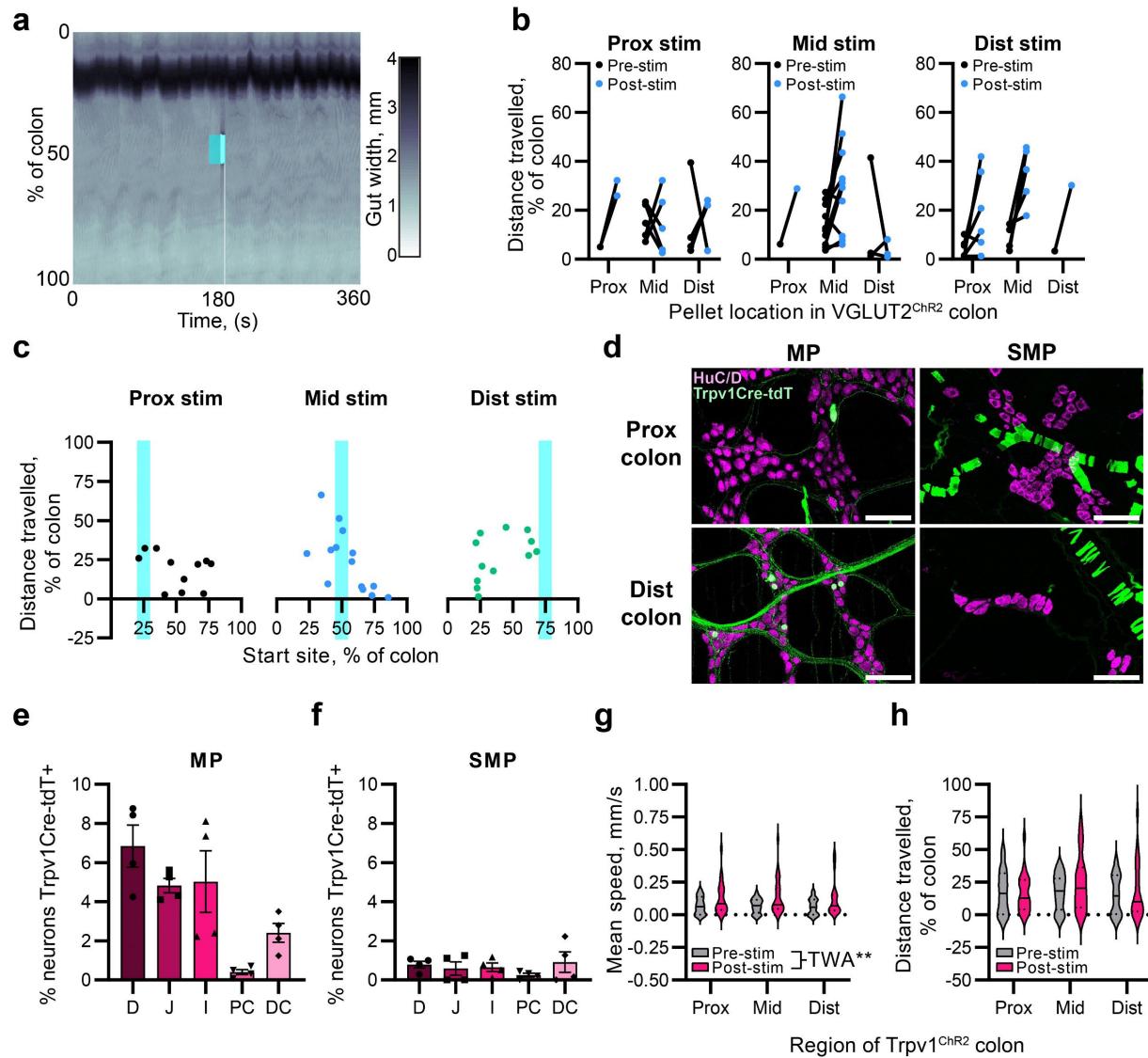

882 **Extended Data Fig. 2.** Neuronal morphology of other enteric markers reveals diversity of
883 neuronal classes. **a-c**, Representative images of a Penk^{AAV-GFP} ascending interneuron (**a**),
884 Tac1^{AAV-GFP} excitatory motor neuron (**b**) and Vip^{AAV-GFP} inhibitory motor neuron (**c**), which were
885 transduced by Cre-dependent AAV-GFP and immunostained for GFP (green) and HuC/D (blue;
886 **b,c** only). Neuronal somata indicated by white boxes. Scale bars as indicated. **d-i**,
887 Quantification (mean \pm SEM) of Tac1^{AAV-GFP} (**d,f,h**) and Vip^{AAV-GFP} (**e,g,i**) neuron orientation
888 (**d,e**), total filament length (**f,g**), and maximum Sholl intersections (**h,i**). n=2-12 neurons per
889 group. Each dot represents a different neuron, taken from across 3 (Tac1) and 7 (Vip) mice. At
890 least two neurons had to be identified as a given classification to be included in this analysis.
891 Penk^{AAV-GFP} neurons were not analysed in this way due to the large diversity of different neuron
892 classifications and resulting low n per class. All tests one-way ANOVA. *p< 0.05, **p< 0.01,
893 ***p< 0.001, ****p< 0.0001. **j-l**, Proportions of different neuron classes identified for Penk^{AAV-GFP}
894 (**j**), Tac1^{AAV-GFP} (**k**), and Vip^{AAV-GFP} (**l**) in the SI (left) and colon (right). n as indicated. At least two
895 neurons had to be identified as a given classification to be included in this analysis. **m-o**,
896 Representative traces of Penk^{AAV-GFP} (**m**), Tac1^{AAV-GFP} (**n**), and Vip^{AAV-GFP} (**o**) neuron classes.
897 Numbers beside each trace correspond to legend (bottom right). Scale bars: 1000 μ m for motor
898 and circumferential neurons; 2000 μ m for interneurons. Soma location indicated by red asterisk.
899 Abbreviations for **d-l**: C: colon; SI: small intestine; Asc: ascending interneuron; Desc:
900 descending interneuron; Exc: excitatory motor neuron, Circ: circumferential neuron; Inh:
901 inhibitory motor neuron; Epi: epithelium-projecting neuron. Note that for epithelium-projecting
902 neurons, only the portion within the muscularis was traced and measured.

903



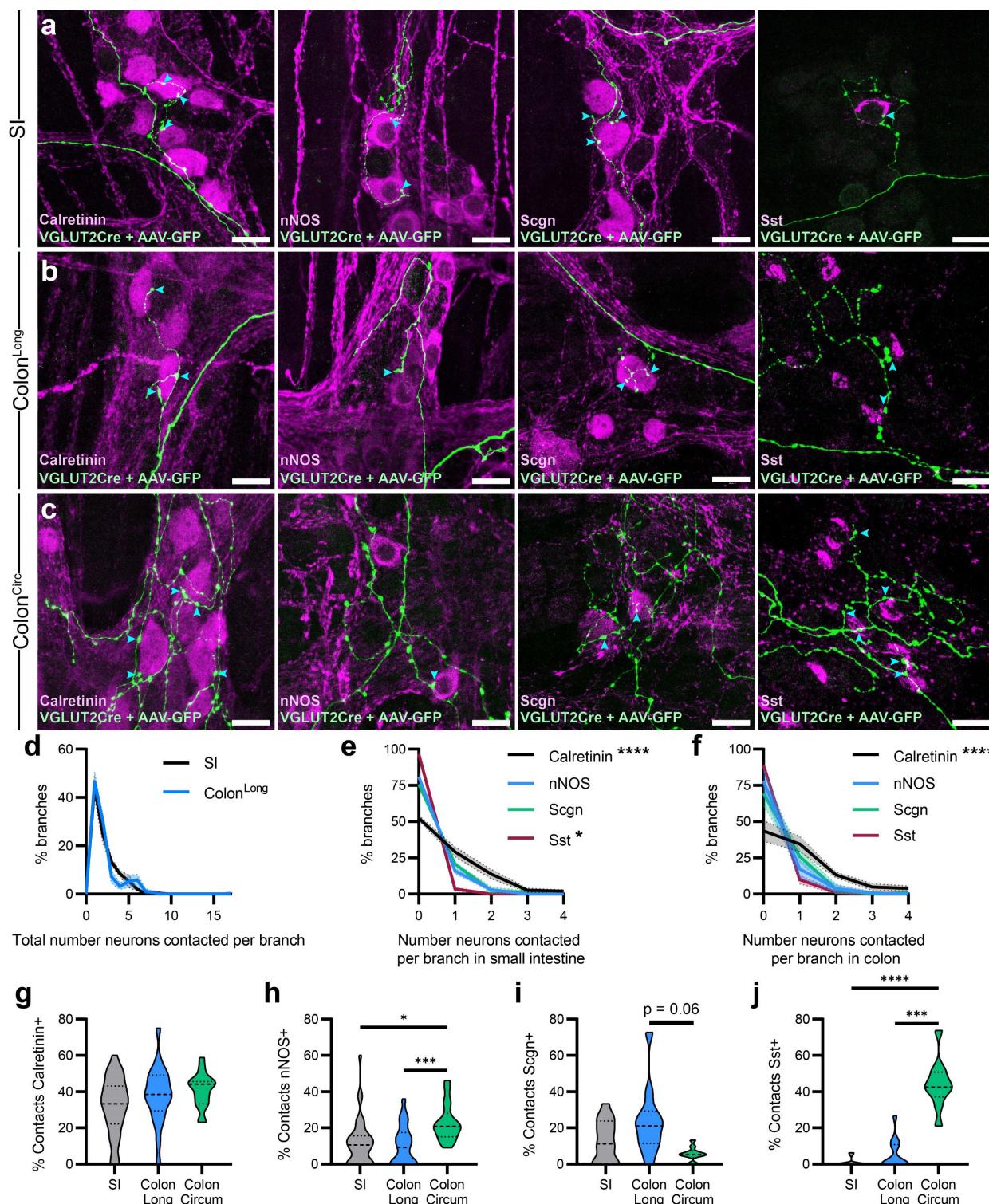
905 **Fig. 3.** Putative synaptic varicosities are found in all regions of VGLUT2 neurons. **a-d**,
906 Representative images of VGLUT2^{syn-tdT} (red) neurons transduced by Cre-dependent AAV-GFP
907 (green) and immunolabelled for VGLUT2 IHC (blue) to identify putative synapses at the start (**a**),
908 end (**b**) and on the branches (**c**) of VGLUT2^{Long} neurons, and in nests in VGLUT2^{Circ} neurons
909 (**d**). Inset white boxes indicate zoomed areas (**a,b**). Yellow arrows indicate GFP+/syn-tdT+
910 colocalisation; cyan arrows indicate GFP+/syn-tdT+/VGLUT2+ colocalisation. Scale bars: 20 μ m
911 for all images except inset zoom in **b**: 10 μ m. **e-l**, Quantification (mean \pm SEM) of density (**e,i**),
912 proportion glutamatergic (**f,j**), proportion within 5 μ m of a HuC/D+ soma (**g,k**), and proportion
913 contacting a VGLUT2^{syn-tdT} neuron (**h,l**) of GFP+/syn-tdT+ varicosities in the SI (**e-h**) and colon
914 (**i-l**) across different regions of VGLUT2^{Long} and VGLUT2^{Circ} neurons. **m-q**, Representative
915 images of VGLUT2^{syn-tdT} (red) neurons transduced by AAV-GFP (green) and immunolabelled for
916 enkephalin (**m**), substance P (**n**), CCK (**o**), CGRP (**p**), and VIP (**q**). Scale bars: 5 μ m. **r**,
917 Heatmap showing proportion of VGLUT2^{Long} and VGLUT2^{Circ} neurons in the SI and colon that
918 colocalise with neuropeptides shown in **m-q**. n = 2-7 mice, 3-6 neurons per mouse.

919


920 **Fig. 4.** Knocking out VGLUT2 from Penk-Cre neurons accelerates total gastrointestinal transit.
921 **a-c**, Weight, SI length and colon length of male and female PenkCre-VGLUT2^{flx/flx} mice (blue)
922 and VGLUT2^{flx/flx} littermate controls (black). **d-h**, Total gastrointestinal transit time (d), number of
923 pellets produced per hour (e), initial pellet weight (f), total faecal mass of all pellets (g), and
924 faecal water content (h) following oral gavage of carmine red dye. Each dot for pellet weight and
925 faecal water content represents the mean value of all pellets from a single mouse. Groups as in
926 a-c. **i,j**, Percentage gastric emptying (i) and geometric centre of fluorescent signal (j) 15 minutes
927 after oral gavage with rhodamine dextran. Groups as in a-c. **k,l**, Time to pellet expulsion (k) and
928 mean pellet speed (l) of artificial faecal pellets inserted into the colon. Dots represent mean
929 values from 4 trials per mouse colon. Groups as in a-c. n for a-h: VGLUT2^{flx/flx} male: 14;
930 VGLUT2^{flx/flx} female: 6; PenkCre-VGLUT2^{flx/flx} male: 12; PenkCre-VGLUT2^{flx/flx} female: 5. n for i-l:
931 VGLUT2^{flx/flx} male: 8-10; VGLUT2^{flx/flx} female: 4; PenkCre-VGLUT2^{flx/flx} male: 8-10; PenkCre-
932 VGLUT2^{flx/flx} female: 4. All tests two-way ANOVAs (TWA) for genotype and sex. Comparisons in
933 which there was an overall significant effect of genotype but no significant differences following
934 multiple comparisons testing are indicated (f,i). *p< 0.05, **p< 0.01, ****p< 0.0001

935
936 **Fig. 5.** Optogenetic activation of VGLUT2 neurons stimulates colonic propulsive motility. **a**,
937 Representative timelapse of an ex vivo VGLUT2^{ChR2} colon stimulated in the mid-colon with 460
938 nm LED at t=0. **b**, Representative spatio-temporal map of a VGLUT2^{ChR2} colon showing the
939 width of each point along the length of the colon (y axis, %) over 6 minutes. Optogenetic
940 stimulation (cyan box) occurs half way through the recording. The dark band indicates the
941 artificial faecal pellet. **c,d**, Violin plots of distance travelled as a percentage of the full colon
942 length (**c**) and mean speed (**d**) of artificial pellets before and after mid-colon optogenetic
943 stimulation in WT^{ChR2} and VGLUT2^{ChR2} colons. n: WT^{ChR2}: 6 mice, 2-3 trials per mouse;
944 VGLUT2^{ChR2}: 20 mice, 1-4 trials per mouse. **e,f**, Violin plots of the effect of time since last pellet
945 movement on distance travelled by artificial pellets as a proportion of the remaining length of
946 colon (**e**), and of mean pellet speed (**f**), following mid-colon optogenetic stimulation of
947 VGLUT2^{ChR2} colons. n: >30s: 17 trials across 14 mice. <30s: 10 trials across 7 mice. Cont: 23
948 trials across 15 mice. 1-3 trials per mouse. **g,h**, Violin plots of the effect of optogenetic
949 stimulation location on distance travelled as a percentage of the full colon length (**g**) and mean
950 speed (**h**). n: Prox: 12 trials across 8 mice; Mid: 13 trials across 5 mice; Dist: 12 trials across 6
951 mice. **i**, Normalised motion tracks of individual artificial pellets in VGLUT2^{ChR2} colons, split based

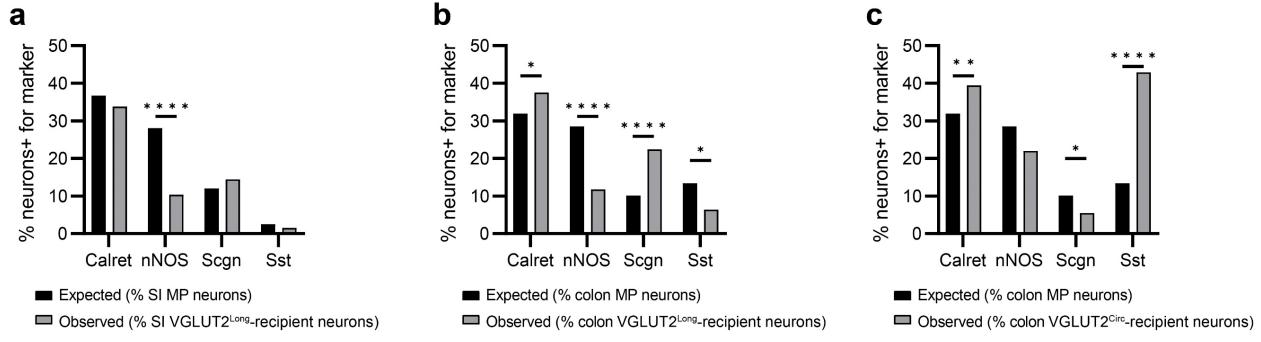
952 on stimulation location (cyan), coloured by time before (greys) and after (viridis) optogenetic
953 stimulation. Movement in the x axis indicates colon displacement. Same dataset as **g,h, j**,
954 Correlation between distance travelled by artificial pellets as a proportion of the remaining
955 length of colon and the location of the pellet at the time of stimulation (start site), split based on
956 stimulation location (cyan). Each dot represents a single trial. Same dataset as **g,h**.


957

958

959 **Extended Data Fig. 3.** Optogenetic excitation of VGLUT2, Trpv1 and Vip populations. **a**,
960 Representative spatio-temporal map of a VGLUT2^{ChR2} colon treated with 1 μ M tetrodotoxin
961 (TTX), showing the width of each point along the length of the colon (y axis, %) over 6 minutes.
962 Optogenetic stimulation (cyan box) occurs half way through the recording. The dark band
963 indicates the artificial faecal pellet. **b**, Distance travelled by artificial pellets in 2 minutes before
964 optogenetic stimulation, and up to 2 minutes after stimulation of VGLUT2^{ChR2} colons, split by
965 pellet location and stimulation location. **c**, Correlation between distance travelled by artificial
966 pellets as a proportion of the total length of colon and the location of the pellet at the time of
967 stimulation (start site), split based on stimulation location (cyan). Each dot represents a single
968 trial. Graphs are alternate visualisations of Fig. 5j. **d**, Representative images of adult
969 wholemount MP showing Trpv1^{tdT} (green) and neuronal label HuC/D (magenta) in the proximal
970 colon (top) and distal colon (bottom) MP (left) and SMP (right). Scale bars 100 μ m. **e,f**,
971 Proportion of total HuC/D neurons (mean \pm SEM) positive for Trpv1^{tdT} in the MP (**e**) and SMP (**f**)
972 across intestinal regions. **g,h**, Violin plots of artificial pellet speed (**g**) and distance travelled (**h**)

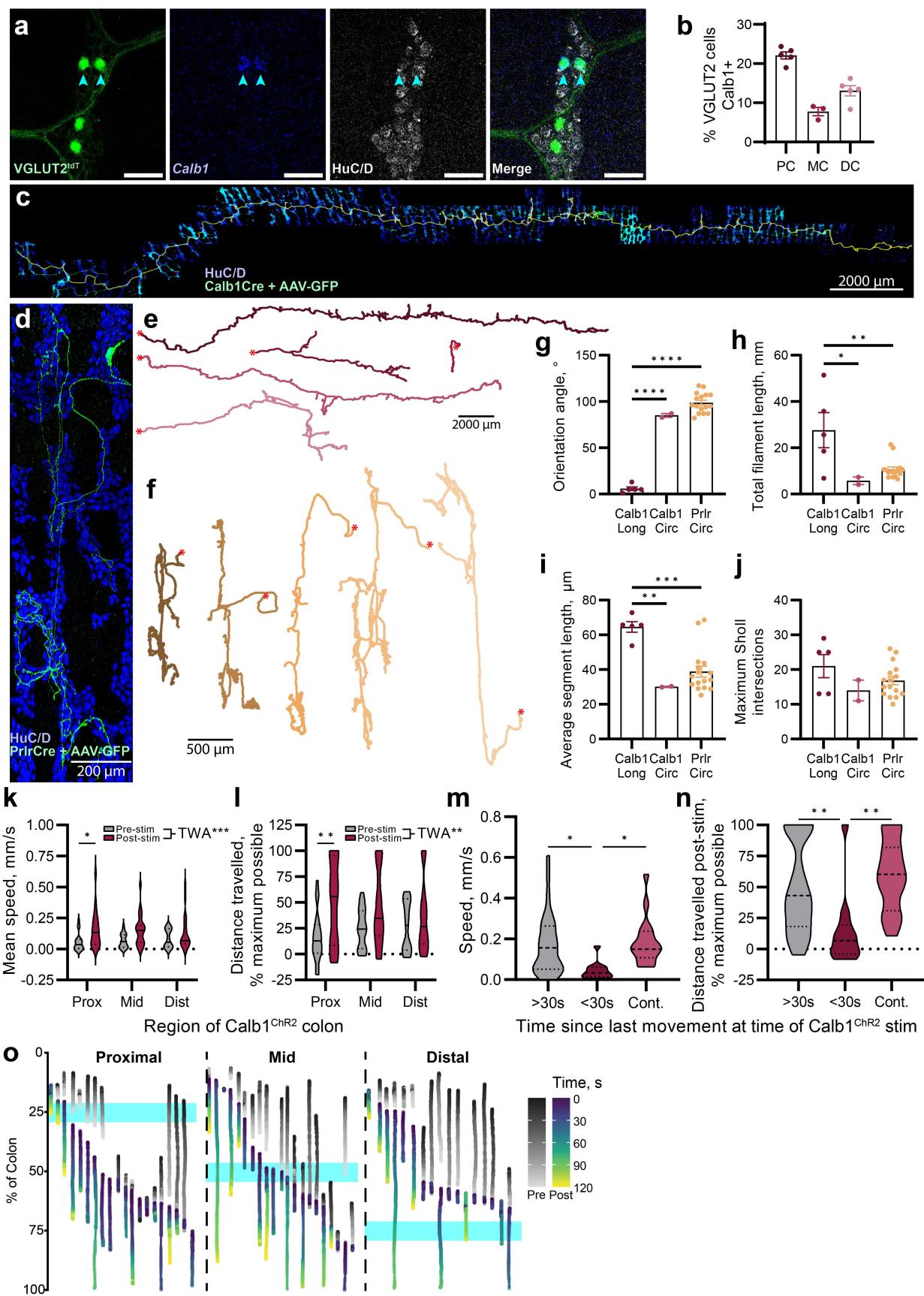
973 following mid-colon optogenetic stimulation of $\text{Trpv1}^{\text{ChR2}}$ colons, divided by stimulation location.
974 Two-way ANOVAs (TWA) performed for pre/post stimulation and stimulation location.
975 Comparisons in which there was an overall significant effect of stimulation but no significant
976 differences following multiple comparisons testing are indicated (**i**). * $p < 0.05$, ** $p < 0.01$, *** $p <$
977 0.0001. Abbreviations: D: duodenum; J: jejunum; I: ileum; PC: proximal colon; DC: distal colon.
978



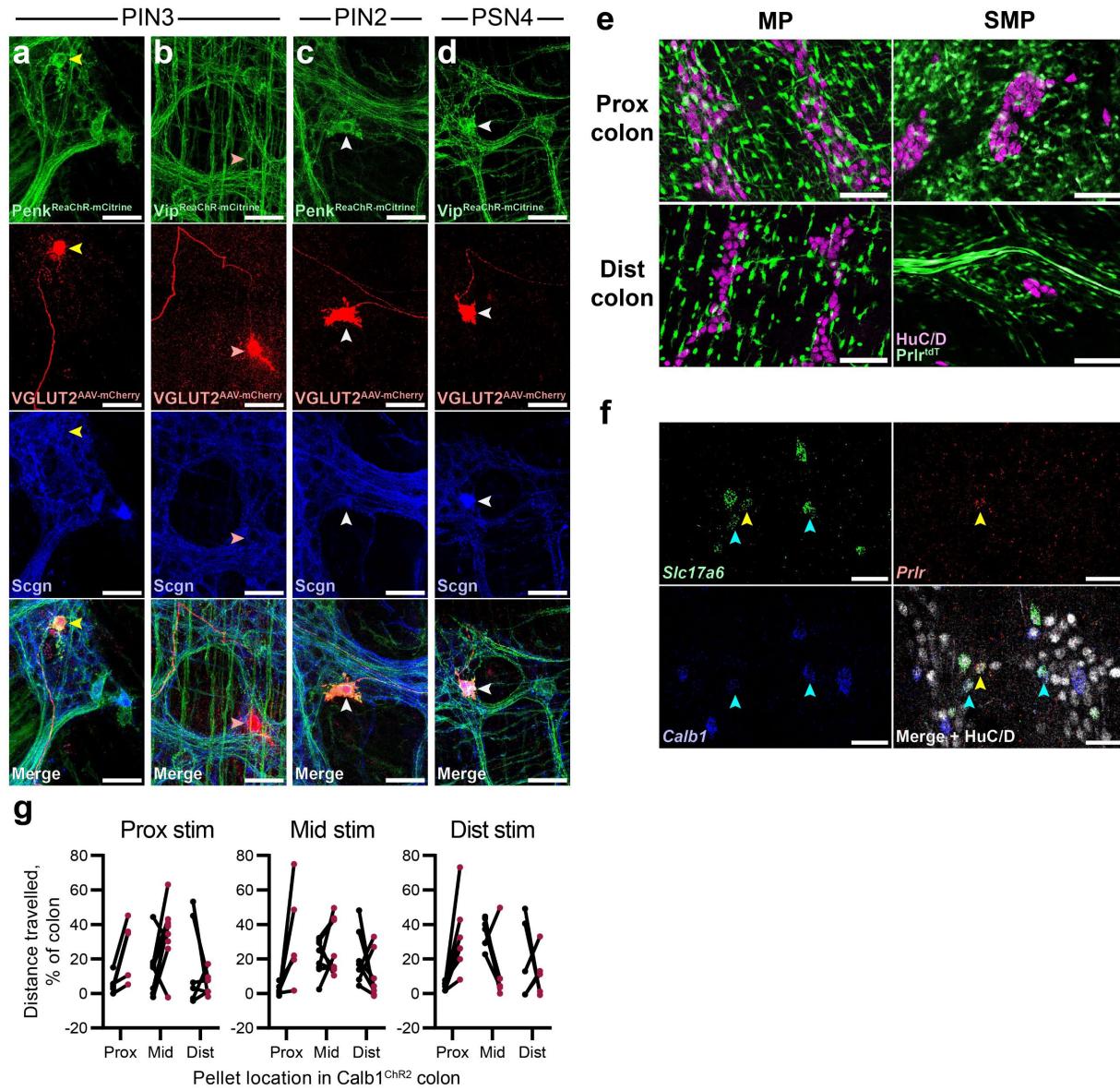
979

980 **Fig. 6. VGLUT2 neurons form putative synapses with diverse neuron populations.** **a-c**,
981 Representative images of adult wholemount MP images showing sparsely transduced VGLUT2^{AAV-GFP}
982 fibres (green) from VGLUT2^{Long} neurons in the SI (a) and colon (b) and VGLUT2^{Circ} neurons (c),
983 and immunohistochemical labels for calretinin, nNOS, Srgn and Sst (magenta). Cyan arrows
984 indicate examples of VGLUT2 varicosities contacting indicated neuron type. Scale bars: 20 μ m.

985 **d**, Frequency distribution for the total number of HuC/D+ neurons contacted by VGLUT2^{Long}
986 neuron branches. **e,f**, Frequency distribution showing number of neurons of a given subtype
987 contacted by VGLUT2^{Long} neuron branches in the SI (**e**) and colon (**f**). Kruskal-Wallis test with
988 Dunn's multiple comparisons. n: ≥ 20 branches (VGLUT2^{Long}) across 4-8 neurons per organ (SI
989 or colon) per mouse, 6 mice. **g-j**, Proportion of total recipient neurons contacted by VGLUT2^{Long}
990 and VGLUT2^{Circ} neurons positive for calretinin (**g**), nNOS (**h**), Scgn (**i**), or Sst (**j**). One-way
991 ANOVA with Tukey's multiple comparisons test. n: ≥ 20 branches (VGLUT2^{Long}) or ≥ 5 nests
992 (VGLUT2^{Circ}) across 4-8 neurons per organ (SI or colon) per mouse, 2-4 mice per marker.


993

994


995 **Extended Data Fig. 4.** Chi-squared analysis of VGLUT2 neuron recipient populations. **a-c**,
996 Proportion of total small intestine (**a**) or colon (**b,c**) myenteric neurons expressing a given
997 marker (calretinin, nNOS, Scgn or Sst) compared with the proportion of neurons receiving input
998 from VGLUT2^{Long} (**a,b**) or VGLUT2^{Circ} (**c**) neurons that express the marker. All analyses chi-
999 squared test, *p< 0.05, **p< 0.01, ***p< 0.0001.

1000

1002 **Fig. 7.** VGLUT2 neuron classes can be isolated genetically. **a**, Representative images of adult
1003 wholemount MP showing IHC for VGLUT2^{tdT} (green) and HuC/D (grey) alongside *Calb1*
1004 RNAscope (blue). Cyan arrows indicate VGLUT2+/*Calb1*+ neurons. Scale bars: 50 μ m. **b**,
1005 Proportion of VGLUT2 neurons (mean \pm SEM) positive for *Calb1* in the MP across colonic
1006 regions. **c,d**, Representative images of *Calb1*-Cre neurons (**c**) and *Prlr*-Cre (**d**) transduced by
1007 Cre-dependent AAV-GFP and immunostained for GFP (green) to reveal full neuron morphology,
1008 alongside HuC/D (blue). Scale bars as indicated. **e,f**, Representative traces of AAV-GFP-
1009 labelled *Calb1*-Cre (**e**) and *Prlr*-Cre (**f**) neurons in the colon. Soma location indicated by red
1010 asterisk. Scale bars as indicated. **g-j**, Quantification (mean \pm SEM) of *Calb1*^{AAV-GFP} and *Prlr*<sup>AAV-
1011 GFP</sup> neuron orientation (**g**), total filament length (**h**), average segment length (**i**), and maximum
1012 Sholl intersections (**j**). n: *Calb1*^{Long}: 5, *Calb1*^{Circ}: 2, *Prlr*: 16. Each dot represents a different
1013 neuron. **k,l**, Violin plots of the effect of optogenetic stimulation location on mean speed (**k**) and
1014 distance travelled as a percentage of the remaining colon length (**l**) in *Calb1*^{ChR2} colons. Two-
1015 way ANOVA (TWA) for pre/post stimulation and stimulation location. Significant differences
1016 were observed for overall pre- vs post- stimulation, and Šídák's multiple comparisons test
1017 revealed a significant difference between proximally stimulated samples. n: 17-21 trials over 8
1018 mice per region stimulated. **m,n**, Violin plots of the effect of time since last pellet movement on
1019 mean pellet speed (**m**) and distance travelled by artificial pellets as a proportion of the
1020 remaining length of colon (**n**) following mid-colon optogenetic stimulation of *Calb1*^{ChR2} colons. n:
1021 >30s: 29 trials across 8 mice. <30s: 12 trials across 6 mice. Cont: 16 trials across 6 mice. 1-6
1022 trials per mouse. **o**, Normalised motion tracks of individual artificial pellets in *Calb1*^{ChR2} colons,
1023 split based on stimulation location (cyan), coloured by time before (greys) and after (viridis)
1024 optogenetic stimulation. Movement in the x axis indicates colon displacement. Same dataset as
1025 **k-n**.

1026

1040 arrowheads indicate *Calb1*+/*Slc17a6*+ neurons, yellow arrowheads indicate *Prlr*+/*Slc17a6*+
1041 neurons. **g**, Distance travelled by artificial pellets in 2 minutes before optogenetic stimulation,
1042 and up to 2 minutes after stimulation of *Calb1*^{ChR2} colons, split by pellet location and stimulation
1043 location. Scale bars: 50 μ m (**a-d,f**), 100 μ m (**e**).