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1 INTRODUCTION

Genes are the fundamental units within organisms that control the transmission and expression
of hereditary traits. Investigating the functions of genes and their interrelationships is crucial
for unveiling the genetic and developmental mechanisms of organisms. This understanding is
instrumental in identifying the root causes of genetic diseases and in the development of novel
therapeutic approaches. Cells can be seen as collections of genes. The selective expression of
these genes dictates the direction of cell differentiation, thereby endowing cells with distinct
morphologies and functions. The advancement of single-cell sequencing technologies[13, 15] has
enabled us to observe gene expression from the perspective of individual cells, accumulating vast
amounts of transcriptomic data. This, in turn, facilitates the application of deep learning methods
in scenarios related to genes and cells[19, 26, 30]. However, such methods heavily rely on the
quality of transcriptional sequencing data, the collection and processing of which are notably
time-consuming and labor-intensive.

The success of Large Language Models (LLMs) in the field of Natural Language Processing(NLP)
suggests an alternative method for problem-solving. LLMs gain a general understanding of nat-
ural language through pre-training on vast corpora and then undergo fine-tuning for specific
problem scenarios, thus aiding in solving practical issues. LLMs can be applied to various scien-
tific research fields with just appropriate textual input (prompt), without the need for additional
complex modeling. Nonetheless, the application of LLMs in addressing gene-related issues has
been sparse: GenePT[5] utilizes LLMs to generate embedding vectors for genes and cells while
Cell2Sentence[16] has fine-tuned GPT-2 for cell annotation tasks. To alleviate this issue, this paper
focuses on exploring the performance of LLMs across a spectrum of gene-related problems and
evaluates the effectiveness of several mainstream LLMs in these contexts. To comprehensively
assess the understanding of LLMs on gene and cell-related issues, we examine their capabilities in
three aspects: identification of genes, prediction of gene interrelations, and cell-level annotation
tasks. In addition, both GenePT and Cell2Sentence independently employ a method where the
names of the top 100 highly expressed genes are concatenated to form a textual representation of a
cell, referred to as a "cell sentence". However, we argue that such representations lack the textual
structure characteristic of natural language. To make the cell sentence more comprehensible to
LLMs, we have appended a succinct functional description to each gene name, a method we have
dubbed "cell sentence plus". Empirical evidence supports that this approach indeed enhances the
performance of LLMs.

The contributions of this paper can be summarized as follows:

e We provide guidance for fine-tuning LLMs to address gene-related issues.

e We evaluate the performance of several mainstream LLMs in gene-related application scenar-
ios.

e For cell annotation tasks, we have improved the mainstream textual representation of cells by
adding textual descriptions after each gene name, which enhances the effectiveness of LLMs.

e Our training code, details, and data are open-sourced at https://github.com/epang-ucas/
Evaluate_LLMs_to_Genes, which can facilitate future research on this topic on using LLMs
for gene-related problems.
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2 RELATED WORK

Recently, research in LLMs has experienced an explosive growth, pushing forward not only tra-
ditional tasks in NLP such as text classification, text generation, conversational bots and so on,
but also accelerating the pace of innovation in research methodologies across the natural sciences.
In this wave, several notable LLM projects have stood out. ChatGPT[22], developed by OpenAl,
is a significant LLM based on the GPT[23] architecture, recognized for its conversation abilities
akin to human interactions and its extensive knowledge comprehension. Meta’s LLaMA[34] aims
to enhance training efficiency and lower computational expenses, highlighting its openness and
accessibility. BLOOM[27], from the BigScience research workshop, is an open-source, multilingual
LLM emphasizing its linguistic versatility and commitment to open scientific practices. THUDM’s
ChatGLM[46] targets the Chinese market, focusing on generation capabilities within specific
linguistic contexts. Anthropic’s Mistral[14] prioritizes interpretability, seeking to improve trans-
parency and user comprehension of model behaviors. These examples represent leading efforts in
the realm of universal LLM research, hence their selection for analysis in this paper. Furthermore, in
the biosciences, BioGPT[20] is dedicated to generative pre-training in the biomedical field, aiming
to process and generate text related to biomedicine, marking it as another focus of our evaluation.

The application of LLMs in solving gene-related problems in cell biology poses an ongoing
challenge. GPTCelltype[11] employs GPT-4 to identify cell types based on marker gene information.
Cell2Sentence[16], through fine-tuning GPT-2, annotates cells by generating a textual representation
for each one, based on the names of the top 100 genes ranked by their transcriptional expression
values in the cell. GenePT[5] uses a similar approach for textualizing cells and employs GPT-3.5 to
generate embedding vectors, which are then combined with other supervised learning models for
various downstream tasks. The scarcity of efforts in fine-tuning LLMs for gene-related issues is
apparent, with only Cell2Sentence being a notable attempt at cell annotation. This paper explores
the potential of LLMs in cell biology by fine-tuning seven LLMs across nine datasets, representing
a diverse range of problem scenarios.

Beyond directly deploying LLMs to tackle gene-related issues, the success of LLMs has also
sparked a trend in the field of cellular biology to construct specialized pre-trained foundation
models[6, 9, 32, 42]. The underlying idea of these models is to draw an analogy between the concept
of cells in biology to sentences in the field of NLP, and similarly, liken the concept of genes within
cells to the words that make up sentences. This approach enables the application of transformer
models to mine transcriptional expression data and to be utilized in a variety of downstream tasks
such as cell annotation, inference of gene regulatory networks, and prediction of gene perturbations.
In recent years, advances in high-throughput sequencing technologies along with efforts[1, 25, 41]
in standardizing data collection and management have made it feasible to apply this “pre-training
& fine-tuning" strategy on transcriptomics. These foundation models have indeed achieved the
best results so far in specific problem scenarios. However, their demands for massive amounts of
data and computational resources present significant challenges.

3 METHODS

In this paper, we select 7 generative LLMs and evaluate them across 9 datasets representing diverse
problem scenarios. All evaluation tasks can be conceptualized to understand genes from three
perspectives: individual genes, gene pairs, and cells. We employed the LORA[12] method uniformly
across all LLMs for fine-tuning, with the implementation based on Llama-factory[10]. All fine-tuning
experiments were performed on a single A800 GPU with a learning rate set to 0.00005. Figure 1
illustrates our process for fine-tuning LLMs to address gene-related issues comprehensively. Initially,
we represented genes or cells in text form, followed by the application of appropriate prompts
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NCBI Gene Gene A: gene A’s LLMs to be
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Gene name Query NCBI dataset Getbo_le?criptiqns from Finetune LLMs to answer if gene
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(a) Identification of Genes.
Gene A & Gene B Gene A gene Ays text descrllptllons LLMs to be Yes/No
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this gene pair has interaction
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LLMs to be
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Finetune LLMs to answer which cell type these cells belong to

(c) Cell Annotation.

Fig. 1. Overview of fine-tuning LLMs to solve gene-related problems. (a) For tasks with respect to the
identification of genes, we first retrieve gene textual records from the NCBI database, then fine-tune LLMs to
predict whether a gene has a certain function or trait. (b) For predicting the interaction between gene pairs,
we input two genes and their respective NCBI descriptions, and fine-tune LLMs to determine if there is an
interaction between them. (c) For cell annotation tasks, based on the expression values of genes within a cell,
we select the top 100 genes to form a cell sentence. Then, by adding concise text descriptions after each gene
name to create a cell sentence plus, we fine-tune LLMs to identify the cell type.

for fine-tuning the LLMs. This section will first describe our method for textual representation of
genes and cells, then introduce the downstream tasks selected for evaluating the LLMs.

3.1 Textual Representation of Genes and Cells

To ensure LLMs fully comprehend the target genes, textual descriptions about these genes are
necessary. The NCBI is a crucial resource offering an extensive array of databases and analytical
tools in the biomedical and biotechnological fields. Its gene database[3] contains detailed records of
the majority of genes, including their names, symbols, locations, gene products (such as proteins),
and various attributes, such as gene functions, phenotypes, and interactions, among others. We
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utilized the complete records from NCBI as the textual description for each gene. For genes not
included in the NCBI Gene Database, we generated a pseudo-description by consulting GPT-3.5 as
an alternative.

Textual descriptions of cells are more complex. The transcriptional expression values of genes
represent the absolute or relative quantity of transcriptional products under specific conditions.
Typically, the transcriptional expression values of all genes within a cell are sufficient to reflect the
cell’s identity and state. The mainstream approach for textualizing cells involves sorting all genes
within a cell by their transcriptional expression values, retaining the top 100 genes, and sequentially
concatenating their names. This method, known as “cell sentence” within Cell2Sentence[16], results
in a sentence composed of 100 gene names without a natural linguistic structure, significantly
diverging from the corpus LLMs encountered during their pre-training phase. To make the “cell
sentence” more sentence-like, we introduced the “cell sentence plus”, where each gene name is
followed by a brief description of that gene, facilitating the LLMs’ understanding of the input’s
meaning, as illustrated in Figure 1c. Additionally, considering the lengthy descriptions of genes in
NCBI, we employed GPT-3.5’s API service to refine all gene descriptions and limit their length to
within 10 tokens, resulting in cell sentence plus lengths of approximately 2000 tokens, well within
the input capacity of most LLMs (which typically have a maximum token limit of 4096).

3.2 Downstream Tasks Related to Genes and Cells

Input: "Bivalent domains consist of large regions of H3K27me3 harbouring smaller regions of
H3K4me3. Given a gene and its corresponding text description provided by NCBI gene database,
determine whether this gene is bivalently marked or marked solely by H3K4me3.\n {gene}: {gene
text description}\nYour answer is: "

output: "bivalent"

Input: 'Given two genes and the corresponding text description provided by NCBI gene database,
judge whether there is gene interaction between the two genes:\n{gene A}.{text A}\n{gene B}:{text
B\,
output:

yes'

Input: "ldentify the cell type most likely associated with these 100 highly expressed genes listed
in descending order. RAB3B(RAS oncogene family member involved in synaptic transmission
regulation) MT-CO1(unknown gene) ...... CTSD(Protein-coding gene involved in protein turnover
and enzyme activation) SELT(unknown gene). This is the cell type corresponding to these genes:
output: ‘cortical layer 5-6 excitatory neuron'

Fig. 2. Examples of prompts for fine-tuning LLMs on three types of tasks. From top to bottom, they are:
Identification of Genes, Gene-Gene Interaction, Cell Annotation.

3.2.1 Identification of Genes. The first category of tasks aims to explore the LLMs’ understanding
of individual genes, examining whether they can extract and even infer specific knowledge about
a gene based on records from the NCBI database. Following the setup of downstream tasks in
GeneFormer[32], we evaluate the performance of LLMs across six datasets encompassing various
aspects, including dosage sensitivity, chromatin dynamics, and network dynamics. To simplify
these issues, all tasks have been formalized into binary classification tasks. We briefly described
the task objectives to the LLMs, provided them with the gene under investigation along with
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its corresponding NCBI record, and queried whether the gene possesses a certain function or
characteristic. An exemplary prompt template is illustrated in Figure 2. It is noteworthy that due to
the high costs associated with biological experimentation, publicly available data are exceedingly
scarce, leading to relatively small sample sizes for these six datasets.

Gene dosage sensitivity predictions. The dosage sensitivity of a gene refers to individuals’ sensi-
tivity to changes in gene dosage, such as an increase in gene copy number. Some genes, when their
copy number changes, can lead to significant health or developmental issues, while others may
be relatively insensitive to such changes. Studying gene dosage sensitivity is crucial for genetic
diagnosis. We finetuned LLMs using a dataset of 481 samples reported in prior studies[21, 29, 49]
to distinguish dosage-sensitive genes and insensitive ones, divided into training and test sets at a
9:1 ratio.

Bivalent chromatin structure predictions. The bivalent structure of genes refers to a special
chromatin structure observed in certain cell types, especially embryonic stem cells, characterized
by the simultaneous presence of markers indicative of activation and repression, signifying a gene’s
state of being both activated and repressed. Investigating gene bivalent structures is significant
for understanding cellular characteristics and differentiation mechanisms. Our data derive from
genes found in 56 conserved regions of the genome[2]. Initially, we explored whether LLMs could
differentiate between bivalent genes and non-methylated genes, then further distinguished between
bivalent genes and Lys4-only modified genes (indicating an activated state). The dataset sizes were
147 and 184, respectively, both divided at a 9:1 ratio.

Genomic distances of Transcription Factors. Transcription factors(TFs) exert their effects by binding
to DNA sequences near gene promoters. TFs binding close to their target sites generally represent
a rapid and direct regulatory mechanism, while long-range TFs involve more complex regulatory
schemes. We utilized a dataset from Chen et al.[4], comprising 173 samples divided at a 9:1 ratio.

Core regulatory elements predictions. The gene regulatory mechanism is a complex process by
which organisms control the timing and extent of gene expression. Identifying core regulatory
elements can help pinpoint the root causes of diseases. We employed data from an NOTCH1
(N1)-dependent gene network provided by Theodoris, C. V. et al.[31, 33] to determine which genes
are core elements of this N1 network and which are peripheral downstream effectors. The dataset
contained 281 samples.

N1 downstream targets predictions. Utilizing a dataset also provided by [31, 33], we further fine-
tuned LLMs to predict genes directly affected by this N1 network. The dataset for N1 downstream
targets versus non-targets comprised 1103 samples.

3.2.2 Gene Gene Interaction. The second category of tasks explores whether LLMs can predict
interactions between genes. We supplied LLMs with pairs of genes to test, along with their respective
NCBI records, and fine-tuned the LLMs to output predictions, as shown in Figure 2. We used
the Gene-Gene Interaction(GGI) dataset from Du et al.[7], generated based on gene ontology
annotations. This dataset had its training and test sets predefined, with the training set containing
249,281 samples and the test set comprising 20,338 samples after our filtration step.

3.2.3 Cell Annotation. Cells serve as containers for genes, providing the platform on which genes
play their role. The selective expression of genes determines the morphology and function of cells.
The third category of tasks focuses on cell-level application scenarios. We selected a classic problem
in the single-cell domain for evaluation: cell type annotation, a crucial step in single-cell data
analysis essential for understanding the functions and characteristics of different cells. We used
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Table 1. Overview of Downstream Tasks and their Datasets.

dataset task type categories train size test size

dosage sensitivity Gene-level 2 432 49
bivalent vs non-methylated Gene-level 2 132 15
bivalent vs lys-4 methylated Gene-level 2 165 19
long- vs short- range TFs Gene-level 2 155 18
N1 central vs peripheral Gene-level 2 252 29
N1 activated vs non-target Gene-level 2 992 111

gene gene interaction Gene pairs level 2 249281 20338

Multiple Sclerosis cellAnno Cell-level 18 7844 13316

hEmbyro cellAnno Cell-level 61 90288 10033

Table 2. Overview of the LLMs to be evaluated and their final score.

LLMS ‘ trainable params  all params  pre-train dataset size final scores rank
GPT2 294,912 124,734,720 40G 0.568 7
BioGPT 786,432 347,549,696 15M 0.721 6
ChatGLM 1,949,696 6,245,533,696 1T 0.741 4
BLOOM 3,932,160 7,072,948,224 1.61T 0.760 2
Mistral 3,407,872 7,245,139,968 8T 0.754 3
Llama-7b 4,194,304 6,742,609,920 14T 0.736 5
Llama-13b 6,553,600 13,022,417,920 1.4T 0.768 1

the Multiple Sclerosis (M.S.) dataset for experiments, initially published by Schirmer et al.[28],
sampled from 9 healthy individuals and 12 patients. Following the split method of scGPT[6], we
used samples from healthy individuals as the training set, totaling 7,844 samples, and samples from
patients as the test set, totaling 13,316 samples. This split method introduced noise between the
training and test sets, posing a challenge for the annotation models. In addition to public datasets,
we also tested on data produced in our wet lab experiments, derived from human early embryos,
comprising 100,321 samples across 61 cell types, divided into training and test sets at a 9:1 ratio.

Above we have introduced the basic situation of all the test tasks selected in this paper and
the reasons for choosing. Table 1 summarizes the datasets used in all experiments, and Figure 2
provides an example prompt for each of the three categories of tasks.

4 RESULTS

In this study, we selected the currently most popular LLMs as the subjects for our evaluation,
including Llama, Mistral, BLOOM, and ChatGLM. The rationale behind this selection is discussed
in the first paragraph of Chapter 2. For each of these LLMs, the 7-billion-parameter version was
chosen for evaluation, with Llama-13b serving as the representative for larger parameter models.
Given that ChatGPT’s latest model is not open-sourced, we included its predecessor, GPT-2, in our
evaluation. BioGPT, a specialized LLM for the biomedical literature domain, was also included in
this evaluation. All LLMs were uniformly fine-tuned using LORA, with details on the parameter
count and pre-training data volume presented in Table 2.
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Table 3. Results of tasks related to Identification of Genes, measured by the correct number of predictions.

LLMS ‘dosage methylated lys-4 range N1 central NI activated accuracy

GPT2 39 11 15 13 19 68 0.684
BioGPT 41 14 16 10 25 80 0.772
ChatGLM 40 13 17 13 20 78 0.751
BLOOM 41 14 18 12 23 80 0.780
Mistral 43 15 18 13 21 73 0.759
Llama-7b 40 12 17 13 22 70 0.722
Llama-13b 43 13 17 12 26 78 0.784

4.1 Through fine-tuning, LLMs can understand genes from different perspectives

Recognizing that datasets related to the Identification of genes functions and traits are generally
small in size, as shown in Table 1, we demonstrated the LLMs’ test results using the number of
correctly predicted test cases and calculated the overall accuracy across six datasets as the score
for this task category. The final results, as shown in Table 3, are presented succinctly, with dataset
names abbreviated and corresponding to those listed in Table 1 in sequence. It was observed that
Llama-13b performed the best, affirming that model parameter size remains a crucial factor in
gene-related domains. BLOOM and BioGPT followed closely behind, ranking second and third
respectively, suggesting that the diversity (BLOOM was pre-trained on multilingual corpora) and
specialization (BioGPT was pre-trained on specialized biological corpora) of pre-training corpora
significantly contribute to model performance. These conclusions are in line with experiences from
other scientific fields where LLMs have been applied.

Moreover, in experiments to identify whether genes are bivalent or unmethylated, Mistral
achieved the best results, correctly predicting all 15 test cases. Notably, only Mistral successfully
predicted a special case of TCF12 among all models. TCF12 is a transcription factor, and in our
dataset, most TFs were bivalently modified (out of 15 test cases, 12 were TFs, with only TCF12
being unmethylated). In addition, Mistral has a total of five cases in which only its own prediction
is correct and other models are wrong, with the highest number of all LLMs, followed by BioGPT
(three cases) and Llama-13b(two cases). Mistral’s exceptional performance on more challenging
test cases can likely be attributed to its extensive pre-training on 8 trillion tokens, allowing it to be
exposed to a broader range of corpora than the other models.

In experiments distinguishing long-range and short-range TFs, all models incorrectly predicted
the SPIB gene. This may be attributed to the descriptions provided to the LLMs, which mentioned
that the SPIB gene is a lymphocyte-specific enhancer, suggesting a regulatory relationship requiring
rapid response to external signals, thus leading all models to classify it as a short-range transcription
factor. However, Tfs often do not have a singular mode of action, and SPIB could potentially interact
with other proteins through long-range mechanisms under certain conditions, as indicated by its
experimental determination as long-range. Such scenarios are not uncommon in the biological
literature. Since much biological knowledge is derived from experimental findings, which may
involve randomness or errors, the biological corpora could contain biased or incorrect descriptions,
potentially leading to partial or erroneous outputs from LLMs in certain applications.

4.2 LLMs is able to predict most gene pairs interrelation

The performance of various LLMs on the GGI task is presented in Table 4. GPT-2’s performance was
notably inferior to that of other models, likely due to its smaller number of trainable parameters

, Vol. 1, No. 1, Article . Publication date: March 2024.



How do Large Language Models understand Genes and Cells 9

Table 4. Results of GGl task, measured by prediction accuracy.

LLMs ‘GPTZ BioGPT ChatGLM BLOOM Mistral Llama-7b Llama-13b
accuracy ‘ 0.699  0.835 0.748 0.743 0.739 0.743 0.769

Table 5. Results of Cell Annotaion tasks, measured by traditional classification metrics.

‘ Multiple Sclerosis ‘ hEmbyro
LLMS ‘ accuracy recall precision F1 score ‘ accuracy recall precision F1 score
GPT2 0.355 0.271 0.289 0.251 0.288 0.191 0.224 0.189

BioGPT 0.623 0.491 0.539 0.471 0.586 0.500 0.550 0.510
ChatGLM 0.678 0.520 0.569 0.507 0.771 0.732 0.768 0.747

BLOOM 0.714 0.571 0.605 0.557 0.797 0.769 0.794 0.78

Mistral 0.715 0.586 0.595 0.577 0.814 0.775 0.792 0.782
Llama-7b 0.686 0.553 0.587 0.546 0.799 0.776 0.792 0.782
Llama-13b 0.701 0.582 0.593 0.569 0.802 0.773 0.789 0.780

which may have limited its ability to fit such extensive data. The results for Mistral, BLOOM,
Llama-7b, and Llama-13b followed a similar pattern where a larger number of trainable parameters
correlated with improved performance. Exceptions to this trend were ChatGLM and BioGPT.
ChatGLM, with less than two million parameters, outperformed Llama-7b, which possesses over four
million parameters, earning it notable praise. BioGPT, leveraging its outdated model architecture
with less than one million parameters, surpassed all other models, exceeding the next best model
(Llama-13b) by 6.5 percentage points. The success of BioGPT on the GGI task underscores the
importance of domain-specific pre-training in the field of single-cell research.

Within the GGI test set, encompassing 20,338 instances, nearly half (9,841 instances) were
accurately predicted by all models, with only a small fraction(734 instances) incorrectly predicted
across the board. This outcome is reasonable, because the GGI dataset is derived from genes’
commonalities in their ontology annotations. Gene Ontology(GO) is a system for describing genes
using a set of terms, akin to tagging genes with appropriate labels based on their functions. The
gene’s NCBI records and its GO annotation offer complementary perspectives, yet for many genes,
these descriptions are substantially overlapping (even some genes contain their GO annotation
terms in their NCBI records). For such genes, LLMs is easy to judge whether they have commonality
according to NCBI records, whereas the prediction of other less straightforward cases challenges
the models’ capacity for knowledge extrapolation. Among all the LLMs evaluated, BioGPT achieved
the best and far leading performance on the GGI task, a feat not replicated in other downstream
tasks explored within this paper. This can likely be attributed to its pre-training on biological
literature, which would have exposed it to a large corpus of NCBI descriptions and GO annotations.

4.3 LLMs’ Ability in Cell Annotation Tasks

The performance of all LLMs on cell annotation tasks is shown in Table 5. The left side presents
results for the M.S. dataset (comprising 18 categories), and the right side for the human embryonic
dataset (comprising 61 categories). Given that the M.S. dataset’s train and test sets originate from
different individuals, predicting cell types presents a higher challenge. We employed traditional
multi-classification metrics to assess model performance. Notably, the accuracy metric is calculated
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Table 6. Ablation Study: Cell Sentence vs Cell Sentence Plus.

‘ Multiple Sclerosis ‘ hEmbyro
Model ‘ acc acc(plus) 1) F1 F1(plus) 1) ‘ acc acc(plus) T4 F1 F1(plus) T}

GPT2 | 0526 0.355(10.171) 0377 0.251 (}0.126) | 0.266 0.288 (10.022) 0.156 0.189 (10.033)
BioGPT | 0.640 0.623(10.017) 0.480 0.471 (}0.009) | 0.590 0.586 (10.004) 0.524 0.510 (10.014)
ChatGLM | 0.644 0.678 (10.034) 0.495 0507 (10.012) | 0.743 0.771 (10.028) 0.715 0.747 (10.032)
BLOOM | 0.693 0.714(10.021) 0536 0.557 (10.021) | 0.774 0.797 (10.023) 0.749 0.780 (10.031)

Mistral | 0.707 0.715 (10.008) 0.569 0.577 (10.008) | 0.807 0.814 (10.007) 0.776 0.782 (10.006)
Llama-7b | 0.685 0.686 (10.001) 0.526 0.546 (10.020) | 0.779  0.799 (10.020) 0.757 0.782 (10.025)
Llama-13b | 0.688 0.701 (10.013) 0.540 0.569 (10.029) | 0.789 0.802 (10.013) 0.761 0.780 (10.019)

globally (macro), and the remaining three metrics are calculated by categories average (micro). The
results demonstrate that Mistral achieved the best performance on both datasets, closely followed
by BLOOM. Considering the annotation task involved processing long token sequences (averaging
about 2,000 tokens), Mistral 8T’s extensive pre-training data volume enhanced its understanding of
long texts. Conversely, GPT-2 and BioGPT showed significant performance drops, primarily due to
their smaller model and pre-training dataset sizes, limiting their capability with long text inputs.

To validate the effectiveness of the "cell sentence plus" approach, we also conducted an ablation
study by traditional "cell sentence" methods to textually represent cells, followed by training large
models using the same prompts. As shown in Table 6, the "cell sentence plus" technique improved
performance for all LLMs above 6 billion parameters, affirming the validity of our approach.
However, for GPT-2 and BioGPT, lacking the capability to process long texts, the "cell sentence
plus" method proved to be burdensome.

We took the average of each model’s prediction accuracy over the two datasets as their score on
this type of task. The average scores of the three types of tasks are calculated as the final score
of LLMs evaluation. The final scores and their rankings are shown in Table 2, with the only 13b
LLM taking the first place, with BLOOM and Mistral in second and third place. Due to its smaller
parameter size, BioGPT ranked lower in cell-level tasks, yet its performance in the first two task
categories was exceptional, underscoring the impact of domain-specific large models in solving
niche area problems. We look forward to the emergence of biological domain LLMs built on the
latest model architectures.

5 DISCUSSION

In this paper, we demonstrate how fine-tuning LLMs can address issues related to genes and cells,
and we evaluate the performance of seven LLMs across nine datasets. The scenarios encompass
tasks such as identifying individual gene identities, predicting relationships between gene pairs, and
cell-level annotation. The 13b version of Llama, as the sole 13-billion-parameter model in our study,
emerged as the frontrunner, underscoring the significance of model size for the efficacy of LLMs.
BLOOM and Mistral, ranking second and third, highlight the enhancement in LLM performance
attributed to the diversity and volume of pre-training corpora. BioGPT, despite its smaller scale
and inability to process long text inputs compared to other models, showcased a remarkable
understanding of genes and GGI relationships, pointing to the importance of domain-specific
pre-training corpora. Overall, LLMs performed commendably across all tasks, illustrating their
potential to comprehend and even solve gene-related issues to a certain extent. However, in specific
tasks like cell type annotation, LLMs’ predictions still fall short when compared to specialized
single-cell sequencing models. On the M.S. dataset, LLMs achieved an accuracy rate of about 0.7,
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whereas specialized models could reach above 0.8. Nevertheless, considering the limited input
information (only the top 100 gene names) and lower training costs for LLMs, such outcomes are
acceptable. Currently, specialized models either involve complex modeling of gene relationships or
require pre-training on large-scale sequencing data, whereas fine-tuning LLMs merely necessitates
considering to conceptualize the issue in textual form.

Applying LLMs in cellular biology presents several challenges. Firstly, the scarcity of biomedically
relevant textual corpora limits the development of domain-specific large parameter LLMs. Secondly,
the presence of bias and even erroneous descriptions in biological literature could potentially
mislead LLMs into making incorrect judgments. Furthermore, biological processes often involve
complex regulatory and causal relationships, with many mechanisms still beyond our current
understanding. Much of this information is difficult to convey through text alone, restricting LLMs
to solving only relatively superficial biological problems. However, given their flexible interaction
modes and powerful capabilities in information retrieval and synthesis, LLMs can assist cellular
biologists in quickly acquiring basic knowledge about genes and cells and provide preliminary
insights into more complex issues. We recommend researchers in gene-related fields use LLMs as
tools for information retrieval and idea generation, rather than relying solely on LLM conclusions
to address practical problems.

Our work also has its limitations. Our evaluation scope is not comprehensive enough, not only
for the LLMs but also for selected downstream tasks. Our evaluation metrics are too simplistic,
considering only the accuracy of fine-tuned LLMs in solving gene-related classification tasks and
neglecting other aspects such as training efficiency, hyperparameter selection, and robustness,
which only crudely reflect the potential application of LLMs in this field. In the future, we will
attempt to conduct evaluations using more professional and comprehensive methods(8, 17, 37, 47].
Our prompts for LLMs are also quite straightforward, requiring a more thoughtful design for
practical problem-solving.

Regarding the future direction of applying LLMs to gene-related issues, we offer the following
suggestions: 1) Construct specialized LLMs for the biological domain based on the latest LLM archi-
tectures. The main challenge lies in the scarcity of biological corpora. Apart from collecting more
corpora, approaches such as data augmentation and adversarial learning should be considered. 2)
Develop cell sentence pre-trained LLMs. High-throughput sequencing technology has accumulated
billions of transcriptomic data points, sufficient for large model pre-training. Processing these
data into a cell sentence plus format for LLM pre-training could enhance the understanding of
information encapsulated in this format, aiding in addressing many downstream tasks related to
sequencing data. 3) Explore more downstream scenarios for LLMs. The tasks involved in this paper
tend to focus on the understanding of genes and cells. For more specific application scenarios, such
as embryonic development, gene editing, and the genetics of aging, LLMs are also expected to play
a larger role, but how to textually describe these problems is a challenge. Moreover, due to the
costly nature of biological experiments, experimental data in many biological contexts is extremely
limited. To alleviate this, we consider introducing semi-supervised learning[18, 24, 35, 36, 43, 48]
methods to tackle gene-related problems, which aim to enhance the limited labeled data with
large-scale unlabeled data. Additionally, for certain downstream tasks where data imbalance is a
severe issue, we consider introducing methods from Imbalanced Learning[38-40, 44, 45] to increase
focus on rare categories. All in all, LLMs can not only serve as a research tool for cell biology
researchers, but also is expected to play a greater role in solving gene-related problems.
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