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Abstract

Motivation: Accurate quantitative information about the protein abundance is crucial for understanding a biological
system and its dynamics. Protein abundance is commonly estimated using label-free, bottom-up mass spectrometry
protocols. Here, proteins are digested into peptides before quantification via mass spectrometry. However, missing peptide
abundance values, which can make up more than 50% of all abundance values, are a common issue. They result in missing
protein abundance values, which then hinder accurate and reliable downstream analyses.

Results: To impute missing abundance values, we propose PEPerMINT, a graph neural network model working directly
on the peptide level that flexibly takes both peptide-to-protein relationships in a graph format as well as amino acid
sequence information into account. We benchmark our method against eleven common imputation methods on six diverse
datasets, including cell lines, tissue, and plasma samples. We observe that PEPerMINT consistently outperforms other
imputation methods. Its prediction performance remains high for varying degrees of missingness, different evaluation
approaches and differential expression prediction. As an additional novel feature, PEPerMINT provides meaningful
uncertainty estimates and allows for tailoring imputation to the user’s needs based on the reliability of imputed values.
Availability and implementation: The code is available at https://github.com/DILiS-1lab/pepermint.
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Introduction

Proteins are the main acting molecules in cells. The
characterization of their quantity in different biological contexts
plays a fundamental role in understanding cellular function
and regulation in disease [1, 2]. Methods based on label-
free mass spectrometry (MS) are commonly used for high
throughput quantification of protein abundance in biological
samples [3]. In MS-based bottom-up proteomics, proteins
are enzymatically digested into peptides before subjecting
them to a mass spectrometer. Individual peptides are then
commonly identified by matching their spectra to corresponding
databases [4]. With data-dependent acquisition (DDA), only
the top most abundant peptides within a given analysis time
window are individually fragmented and used for identification
and quantification. In contrast, data-independent acquisition
(DIA) fragments all peptides within a given time and mass
window. The higher sensitivity of DIA has increased its use
in recent years [5]. Finally, several aggregation methods exist
to infer protein abundance by computationally aggregating the

measured peptide abundance values into protein abundances
[6, 7] to allow downstream analysis on the protein level.

With label-free MS,
exhibit a high number of missing values (e.g. 22.1% - 68.8%

peptide abundance measurements

for the datasets used in this paper). These might either
be due to peptides with an abundance below the detection
limit, often referred to as missing not at random (MNAR),
or due to random errors and stochastic fluctuations in the
measurement process, often referred to as missing completely
at random (MCAR) [8, 9, 10]. While performing peptide-
to-protein aggregation, these missing values can propagate
to the protein level and ultimately hamper downstream
analyses [11, 12]. Therefore, different methods for imputing
missing values following different paradigms - relying on
single (e.g., minimal) values, leveraging local similarities or
global structure - have been suggested and benchmarked
[9, 12, 13] (see overview in Table 1). Basic methods, such as
average, k-nearest neighbors (KNN), iterative singular value
decomposition (ISVD), principal component analysis (PCA)
or random forest (RF), that are applicable beyond proteomics
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have been especially widely adopted [14, 15]. More complex
extensions, mostly dedicated to protein imputation, based on
mixture models or matrix factorization, have been suggested
[13, 16]. In addition, adaptations of basic methods such as
RF or linear regression models have been proposed to include
additional features like mRNA measurements [17].

Deep learning (DL) was suggested for missing value
Arisdakessian et al. [18]

introduced a basic neural network of several fully connected

imputation in omics datasets.
layers and a single dropout layer for imputing single-cell RNA
sequencing datasets. Webel et al. [19] proposed the application
of autoencoders for the imputation of MS-based proteomics
datasets. Barzine et al. [20] used a neural network and
mRNA expression values along with context information from
GO terms and UniProt keywords to predict missing protein
abundance values.

While additional information, such as mRNA measurements,
can improve imputation performance, obtaining mRNA data
requires costly additional wet-lab experiments or might even
be infeasible (e.g., for plasma samples). Furthermore, there
are multiple proteomics-specific features beyond GO terms
or UniProt keywords that can provide additional information
and context to machine learning models for learning patterns
across similar proteins or peptides that current imputation
methods fail to exploit. In particular, similarities in physical
properties of the measured molecules, such as peptide mass,
sequence length, and charge state, are helpful for peptide-to-
protein aggregation [7]. Also, amino acid sequence information
is available for missing proteins and peptides, and language
models pre-trained on amino acid sequences have shown good
performance on a variety of protein-related tasks [21]. The
embeddings derived from these pre-trained language models
encode the valuable biophysical properties of the underlying
protein or peptide but currently remain unused as features for
imputation. In addition, neither of the described DL-based
imputation methods considers the particular relationships
between proteins and peptides. Peptides originating from
the same protein are expected to have strongly correlated
abundances, a relationship that can be exploited to improve
imputation performance and that also enables leveraging
abundance information on non-unique peptides. Moreover,
while multiple contributions have focused on imputing values
in high missingness scenarios [16, 20], little attention has been
paid to the inherent uncertainty coming with such imputations.
So far, most imputation methods have not been designed
with uncertainty in mind, resulting in uncertainty estimates
for imputed values either being not available or obtained via
multiple imputation [22]. Nevertheless, uncertainty estimates
are of high value as they can enhance the trust in imputation
results, and also help users filter out uncertain imputations.
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Table 1. Overview of imputation methods used for our benchmark.
‘We capture basic methods, more complex ones, and imputation
methods based on deep neural networks representing all three
generally considered categories of imputation methods. Further
selection criteria were their appearance in proteomics imputation
benchmark studies and their availability in terms of support in
open-source software packages.

Method Benchmarked by Supported by
Single Value
MinDet (9, 26] (26, 27, 28, 29]
MinProb [9, 12, 26, 30] [26, 27, 28, 29]
Median [19, 26] [26]
Local Similarity
KNN [9, 12, 15, 19, 26, 30] [26, 27, 28, 29, 31]
RF [32] [19, 26, 30] (26, 27, 28, 29]
MICE [33] [19, 26] [26, 31, 33]
Global Structure
ISVD [34] (9, 12, 26, 30] [26, 35]
BPCA [36] [12, 15, 26, 30, 19] [26, 27, 28, 29, 35]
DAE [19] [19] [19]
VAE [19] [19] [19]
CF [19] [19] [19]

‘We here address these gaps and propose a new DL-based
model for imputation in proteomics datasets that exploits
additional proteomics features in the form of amino acid
sequences and peptide-protein relationships. As graph neural
network (GNN) models have shown considerable success in
modeling complex relationships between molecules and learning
from biological and omics data [23, 24, 25], our method relies
on a GNN architecture. What is more, while most proteomics
imputation methods still impute on the protein level, our
model acts directly on the peptide level, a strategy shown to
yield improved imputation results [9]. Furthermore, our DL
architecture enables uncertainty estimates for imputed values at
low computational overhead to provide the user with a valuable
tool for imputation prediction diagnostics. We systematically
benchmark our novel method against eleven imputation
methods from different categories across six representative
datasets with different ground-truth mechanisms using three
evaluation metrics (see overview in Fig. 1). Furthermore, we

showcase its uncertainty quantification capabilities.

Methods

We introduce PEPerMINT (PEPtide Mass

Imputation NeTwork), a method combining abundance values

spectrometry

and information from amino acid sequences and protein-peptide
relations to impute missing values on the peptide level. For its
implementation and systematic benchmarking, we use our novel
open-source PyProteoNet framework (see Supplement).
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Fig. 1. Overview of our PEPerMINT imputation method and our benchmarking framework. (A) Our PEPerMINT imputation model combines both

peptide sequence information and abundance values across samples into a latent representation. Structural information is included via a peptide-peptide

graph using a graph attention layer. (B) PEPerMINT is compared to eleven published imputation methods from three different categories. (C, D)

‘We perform a systematic evaluation on six diverse datasets with ground truth derived from three different mechanisms with respect to three different

evaluation metrics (see Methods for details).
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Table 2. Overview of benchmark datasets and their characteristics including availability via ProteomeXchange, dataset ground-truth category
(masked: removed abundance values, DDA /DIA, mixture: mixture of known ratios), number of samples, number of biological samples (BS),
technical replicates per biological sample (TR per BS), number of proteins and peptides, percentage of missing values on the peptide level.

Name, Reference Identifier Category #Samples #BS #TR per BS #Peptides #Proteins Missingness
A1l: prostate cancer [37] PXD029525 masked 18 6 3 57770 6292 54.0%
A2: Crohn’s fibrosis [38] PXDO022214 masked 13 13 1 37158 4481 33.7%
A3: breast cancer [39] PXD035857 masked 15 15 1 103608 13627 68.8%
B1: HEK293-E. coli [40] PXD018408 DDA/DIA 16 2 8 16400 3045 25.2%
B2: HIV blood [41] PXD047528 DDA/DIA 15 15 1 2535 435 41.8%
C: HeLa-E.coli [6] PXD000279 ~ mMmasked + 6 2 3 50260 6683 22.1%

PEPerMINT imputation

For our PEPerMINT imputation model, we propose a neural
network architecture combining a learnable transformation of
abundance values, a GNN operating on the peptide graph,
as well as amino acid sequence embeddings derived from a
transformer-based language model (see Fig. 1A for a visual
overview).

Input features

We assume a proteomics dataset with abundance values
for n (potentially non-unique) peptides measured across s
samples given as n X s matrix A where the elements of
A either represent logarithmized (natural logarithm) and
standardized (zero mean, unit variance) abundance values or
missing values. Missing values are ignored for logarithmization
and standardization. We address the problem of predicting
abundance values for the missing values. PEPerMINT takes
two inputs: the abundance matrix A and an n x 1024 sequence
embedding matrix S. S is precomputed from the peptide
amino acid sequences using the ProtT5 language model, which
has previously shown good performance generating protein
embeddings from sequence strings for tasks like predicting
protein secondary structure [21]. This allows PEPerMINT to
account for abundance values from non-missing samples as
well as different biophysical peptide properties encoded in the
sequence embeddings [21].

Peptide-peptide graph

The digestion of proteins MS-based
quantification results in the characteristic protein-peptide

structure of MS-based datasets that can be described by a
bipartite graph [42] where each peptide is assigned to one or

into peptides for

more proteins. This structure can provide valuable information
for the imputation of missing values since peptides belonging
to the same protein are expected to show similar abundance
profiles across samples. We transform this structure into a
peptide-only graph G = (V, E) whereby peptides are nodes
€ V that have an edge € E between them if they belong to
the same protein. Therefore, in G, all peptides belonging to the
same protein are fully connected, and all peptides from proteins
with shared peptides form a connected component (see Fig. 1A
middle). We provide G as input to PEPerMINT.

Neural network architecture

Fig. 2 shows a simplified representation of PEPerMINT’s
architecture. PEPerMINT scales down the sequence embeddings
of each peptide by applying a learnable transformation
FOsequence s R?X1024 _ pnX16 - This aims to balance the size
of abundance and sequence-based information. Next, for each
peptide, we concatenate the sequence embedding and the vector
containing peptide abundances across samples (abundance
vector) and apply another learnable non-linear transformation

to create a latent representation feo, ., : R"*(T16) _ grx128

To account for the protein-peptide structure of the dataset
represented by the peptide-peptide graph G we use an
attention-based GNN consisting of a single GATv2 [43] layer
with 64 heads with each head outputting a vector of shape
|£]. To keep the peptide-specific information from our
latent representation, we add a skip connection bypassing
the GNN. We add another learnable transformation on the
concatenated output of the skip connection and the GNN

output fe,,,, : RPX(64]5]+128) _ pnx128

Uncertainty prediction of imputed values

To allow the estimation of uncertainty for imputed values,
abundance values are predicted in a Bayesian setting. At
the same time, this allows our model to better adapt
to differing amounts of measurement noise for individual
peptides (heteroscedastic noise) [44, 45]. Therefore, instead
of single abundance values, mean and variance values
of Gaussian abundance distributions are predicted [46] by
two separate output heads [47] (fe, : R™*'*® - R"*° and

f@az :R’nxlzg_)RTLXS).

Training scheme and self-supervised learning

We create a test set for each dataset by masking 10% of
its abundance values uniformly at random (setting them to
missing). However, for DDA /DIA datasets, the test set is given
by all missing DDA abundance values that have a corresponding
non-missing DIA value. From the remainder of the peptides
(after picking the test set), we pick 10% of non-missing values
uniformly at random as the validation set and mask them. On
the resulting dataset, training is performed in a self-supervised
manner. Similar to the training of denoising autoencoders as,
e.g., done by Webel et al. [19], for each training step, we
mask a fraction v of non-missing values and compute the loss
over them. The fraction v is sampled randomly with samples
uniformly distributed over the [5%,15%) interval to improve
model generalization.

To improve the training performance in the Bayesian setting,
the model is trained in two rounds. First, we only train the fo,
head (see Fig. 2) with mean squared error (MSE) loss before
tuning the mean p and variance o2 together within a second
fe,,) and Gaussian
negative log-likelihood loss [48]. For both training rounds, we

training run using both output heads (fe

n?

employ early stopping with respect to the MSE computed on
the holdout validation set after each epoch. We define one epoch
as consisting of 500 randomly masked datasets.

rorsom [ concat || forams || Foar [ concat o] Foua |2 Fou
r f

Fig. 2. Simplified representation of the architecture of PEPerMINT with

input feature representations (grey) and learnable (multilayer) trans-

formations (blue). See Supplement Fig. S1 for a detailed visualization.
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Imputation methods used for comparison

To evaluate PEPerMINT, we compare it against a broad,
representative selection of eleven methods from the literature
that are commonly used for imputation and have appeared
frequently in other proteomics benchmarks (see Table 1 and
Supplement for details).

(i) Single-value methods: These methods either impute
missing abundance values with the same single value or, for each
missing value, randomly draw a value from a predetermined
distribution. We evaluated MinDet (using the 0.01 quantile
of non-missing values within each sample), MinProb (drawing
from a normal distribution around the 0.01 quantile within
each sample), and Median (peptide-wise across samples) as
commonly used methods of this class.

(ii) Local similarity methods: These methods assume
that missing values of a peptide can be predicted from the
abundance values of similar peptides. We selected k nearest
neighbor (KNN) imputation as it is simple and widely used [9,
26, 15]. We also included imputation based on a Bayesian ridge
regression model as suggested by the MICE [33] imputation
framework and an RF-based imputation [32] as a commonly
used method with good performance reported previously [30].

(iii) Global structure methods: These methods assume that
proteomics datasets contain redundant information and can,
thus, be well described by a low dimensional representation,
which is leveraged for inferring missing values. We use Bayesian
principal component analysis (BPCA) [14] and iterative
singular value decomposition (ISVD) [34] as the most frequently
used representatives. To include DL methods, two autoencoder
(AE) based methods (variational AE and denoising AE) and
a method based on collaborative filtering (CF), all recently
proposed in [19], were considered.

Datasets
We use six benchmark datasets with the goal of spanning a
variety of biological backgrounds, varying degrees of complexity
(blood plasma, cell lines, tumor tissue) with diverse dataset
sizes (between <500 to >13000 proteins and <2600 to >100000
peptides) and differing percentages of missingness on the
peptide level (22.8-68.1%) for evaluation with respect to three
different types of ground truth (see overview in Table 2, and
further details in the Supplement).

The first three benchmark datasets (A1-A3) do not contain
explicit ground truth values. Therefore, we mask abundances,

made available under aCC-BY-NC-ND 4.0 International license.

as commonly done in the literature [9, 30], using the measured
abundance of masked values as ground truth.

In addition, we use two datasets (B1-B2) acquired in DDA
mode with orthogonal ground truth acquired in DIA mode. The
more accurate DIA measurements contain fewer missing values,
which allows the evaluation of imputation methods on genuinely
missing values in the DDA data. To make the DIA and DDA
data comparable, all DIA abundance values are scaled to have
the same mean as the corresponding DDA abundance values.

For the evaluation of differential expression (DE), we use a
dataset (labeled C) of protein mixtures with known (spiked-in)
ratios from different organisms serving as ground truth. Similar
datasets have been used in the literature to evaluate methods
for peptide-to-protein aggregation [6] and imputation [15, 30].

Evaluation metrics

For abundance-based evaluation, we use the root mean squared
error (RMSE) on all missing values that have non-missing
ground truth values (masked values or values with orthogonal
DIA measurements) similar to earlier evaluations of imputation
methods [15, 20, 30].
compute the RMSE sample-wise. As an additional abundance-

To allow variance estimation, we
based evaluation, we compare imputation methods with
pairwise significance tests using a Bonferroni-corrected one-
sided (paired) Wilcoxon signed-rank test. For every pair of
imputation methods, the test compares the two absolute errors
of imputed values for each peptide and dataset sample.

In addition, we evaluate imputation methods for the correct
identification of differentially expressed peptides. For each
peptide, the corresponding sample abundance values between
groups of replicates of biological samples with different spike-
in ratios are compared using a Benjamini-Hochberg corrected
Welch’s t-test.
different peptides are detected as differentially expressed.

Depending on the significance threshold,

Those are compared to a known ground truth of differentially
expressed peptides (all spiked-in peptides in our mixture
dataset C) to compute true positives and false positives. We
assess the performance over varying significance thresholds via
a ROC curve (see more details in Supplement section D).

Results

We evaluated the performance of our PEPerMINT peptide
imputation methods on six proteomics datasets with various
biological backgrounds and missingness characteristics. Then,
we also compared it against a broad, representative selection of

o
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Fig. 3. A: Sample-wise RMSE of all evaluated imputation methods on all six benchmark datasets with 95% confidence interval error bars (bootstrapped).

B: Results for the prostate cancer (Al) dataset stratified by their fraction of missing values over the samples (see supplement for stratified results of

other datasets). Our newly proposed PEPerMINT imputation outperforms other methods on all datasets, irrespective of the missingness fraction.
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Fig. 4. Pairwise comparison of different imputation methods by statistical
significance test results (see Methods). Colors encode how many of the
six evaluated datasets the imputation method given in the row performs
significantly better (5% significance level) than the imputation method
given in the column (insignificant test results increase the count by
0.5). Blue cells indicate the method given in the row outperforms the

imputation method given by the column in the majority of cases.

eleven widely used imputation methods. A comparison of the
runtime of all presented imputation methods can be found in
Fig. S8 of the Supplement.

Abundance-based evaluation

We first performed an abundance-based evaluation via the
sample-wise RMSE for four datasets with artificially introduced
missing values and two DDA /DIA datasets with ground truth
values acquired using the DIA (Fig. 3A). Particularly, we
find that our PEPerMINT imputation method gives the best
performance across all evaluated datasets, outperforming the
second best-performing method (BPCA) by up to 20% on the
breast cancer dataset. Out of the other evaluated methods, RF,
BPCA, MICE, and CF also show good results. Interestingly,
imputing missing values with the peptide-wise median gives
better results than the more complex KNN imputation and
methods based on autoencoders (DAE, VAE). ISVD, MinDET,
and MinProb imputation were found to be generally worse,
except for the good performance of MinDet and MinProb on the
HIV blood dataset. We obtain similar results for dataset-wise
mean absolute error as an alternative metric (see Supplement).

Further, as predicting the missing abundance of a peptide
could be hampered if measured only in a few samples, we
investigated whether imputation performance depends on the
degree of missingness per peptide. Therefore, we stratified the
evaluated peptides by their fraction of missing values across
samples (Fig. 3B for the prostate cancer dataset; similar results
for other datasets, see Supplement). Again, PEPerMINT
outperforms other imputation methods for any fraction of
missing values. The biggest advantage over competitor methods
is observed on peptides with high fractions of missing values.
It can also be noted that PEPerMINT, RF, BPCA, CF, DAE,
and especially ISVD imputation show improved performance
when the fraction of missing values decreases. In contrast,
MinProb and MinDet perform better with high fractions of
missing values.

Fig. 4 shows the results for statistically comparing impu-
tation methods using a Wilcoxon signed-rank test (see
Methods). Our PEPerMINT method performs significantly
better than all other evaluated methods on the majority of
benchmark datasets. It should be noted that in contrast to the
sample-wise RMSE results shown in Fig. 3, the Wilcoxon test
compares individual imputed values without averaging the error
per dataset sample. The good performance of PEPerMINT also
holds when stratifying peptides for missingness across samples
(see Supplement Fig. S4).

PEPerMINT | 5

Evaluation of differential expression prediction

DE analysis is a common downstream analysis task performed
on MS-based proteomics datasets. Therefore, we compared
our proposed method with the other imputation methods with
respect to the performance of DE analysis on the imputed
dataset. For evaluation, we used the ground truth protein ratios
that can be inferred from the species-specific mixture rates.
We restricted the evaluation to peptides that can uniquely be
assigned to one species. The receiver operating characteristics
(ROC) curve in Fig. 5 shows that our method is performing
better than the other methods, with the highest area under the
ROC curve (AUC). The precision-recall curve (Supplement Fig.
S5) supports this result.

Predicted uncertainty of imputed values

Our PEPerMINT approach allows the out-of-the-box prediction
of uncertainty for imputed values, helping users obtain a
quantitative estimate of their trustworthiness. To evaluate
the usefulness of this computed uncertainty, we compared
the imputed values against their ground truth colored by
their predicted uncertainty (Fig. 6A). The imputed values
with the lowest uncertainty (dark blue) tend to show better
predictions (low error) and high abundances. The latter fits
with the characteristics of data acquired via MS because high
abundance values commonly are proportionally less influenced
by measurement noise and are, therefore, assumed to be more
reliable [49]. In addition, we find that removing imputed
values with high predicted uncertainty from the evaluation
generally improves imputation quality (Fig. 6B). Furthermore,
we observe that filtering out imputations with substantial
uncertainty but keeping those with low uncertainty, can again
massively increase the accuracy of downstream analysis. Re-
using the experimental setup of the DE analysis in Fig. 5, we
find that by filtering at a predicted uncertainty threshold of 0.2
in Fig. 6C, we can obtain an AUC of 0.84, compared to an AUC
of 0.78 for the PEPerMINT imputation alone (vs. 0.68 without
imputation, see Supplement). This further validates the quality
and benefit of the uncertainty predictions given by our method.

Discussion and conclusion

Overall, PEPerMINT results in superior performance compared
to other benchmarked methods across datasets, missingness
levels of the peptides, and evaluation metrics. In addition,
PEPerMINT provides a handle to the problem of imputation
quality by predicting uncertainties for imputed values, with
evident improvement potential for downstream analyses. This
also distinguishes PEPerMINT from most other imputation

methods, which commonly cannot result in confidence
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Fig. 5. ROC curve for the performance of DE analysis of peptides on
the HeLa-FE.coli dataset imputed with different imputation methods with
5% FDR thresholds marked (dots). Our PEPerMINT imputation method
(yellow) outperforms other methods, having the largest area under the

curve (AUC).
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Fig. 6. PEPerMINT’s predicted uncertainty for the imputed values for
the HeLa-E.coli dataset (see Supplement for other datasets). A: Imputed
abundance values vs. ground truth colored by predicted uncertainty (low:
dark blue, high: yellow). B: Imputed values ordered by their predicted
uncertainty with RMSE computed over different uncertainty quantiles
[50]. C: ROC curve zoomed in at low FDR values for the performance
of DE analysis for imputing values only up to a predicted uncertainty
threshold (see Supplement for details). The yellow ROC curve (< 1.0
uncertainty) is identical to the yellow PEPerMINT ROC curve from
Fig. 5. Filtering out imputed values with high predicted uncertainties

decisively improves DE analysis performance after imputation.

statements. We showed that PEPerMINT’s uncertainty
estimates are highly correlated with imputation error, thereby
aptly guiding users on when to rely on or filter out the imputed
values. Further, filtering out imputed peptide abundance values
with high predicted uncertainty eventually decisively improved
the performance of the DE prediction task.

From the diverse characteristics of our benchmark datasets,
it can be derived that PEPerMINT’s high performance is not
limited to a specific dataset size or fraction of missing values.
Further, our benchmark comprises datasets with and without
technical replicates, i.e., samples with very high similarity.
Thus, imputation could be considered easier when relying
on technical replicates. However, PEPerMINT’s performance
seems unaffected by this factor and even outperforms other
methods by the largest margin on the breast cancer dataset,
which is devoid of technical replicates. This further hints at
PEPerMINT actually learning biologically relevant patterns
instead of merely averaging across technical replicates.

Comparing our different categories of datasets, PEPerMINT
performs best on our masked benchmark datasets that, by
design, only exhibit MCAR missing values. This can be
explained by our self-supervised training scheme, which also
masks uniformly at random and aligns well with MCAR missing
values. Nevertheless, PEPerMINT still shows very good results
on DDA benchmark datasets with DIA ground truth values
that can be assumed to contain both MCAR and MNAR
missing values. Further, PEPerMINT also performs well on
the HIV blood dataset, in which a high fraction of missing
values is due to lowly abundant peptides (MNAR) as the blood
plasma proteome is well studied with missing values rarely
occurring. Its increased percentage of MNAR compared to the
other datasets could be the cause for the different ranking of
imputation method performances on this dataset, e.g., very
good performance of MinDet and MinProb imputation that
replace missing values with low abundance values.

For peptides with a high percentage of missing values,
PEPerMINT compares especially well against other well-
performing methods such as BPCA or RF imputation. This
can be explained by PEPerMINT’s ability to exploit additional
information (amino acid sequence, abundance of peptides

made available under aCC-BY-NC-ND 4.0 International license.

belonging to the same protein) to obtain context about a
peptide’s properties, even if little abundance information is
available for the peptide itself. Indeed, using ablation studies,
we find both additional information layers to provide at least
some performance benefit to PEPerMINT (see Supplement Fig.
S9). As our method also allows the flexible integration of other
information layers both in tabular as well as graph form, it
could be readily extended to improve proteomics imputation
even further.

A limitation of our method when compared with other
imputation methods is its higher runtime (see Supplement
Fig. S8). However, the fastest-running methods like Median or
MinProb also perform worse than more complex methods with
longer runtimes like BPCA or RF. When executed on a GPU,
PEPerMINT shows a runtime similar to or faster than that of
BPCA imputation. Of note, all considered imputation methods
finish within minutes, which is well acceptable for MS-based
proteomics analysis workflows.

Further benchmarking criteria [51] and methods for
proteomic imputation relying on DL and ensembling [52] or
statistical models that take the protein-peptide structure into
account [53] are emerging. They are exciting avenues for future
exploration and for potential extensions of PEPerMINT, our
GNN-based method working directly on the peptide level that
flexibly takes both peptide-to-protein relationships as well
as amino acid sequence information into account to improve
prediction of missing abundance values.

Data and Code Availability

All datasets, with the exception of the HIV blood dataset,
were downloaded from the links provided in their original
publications. The repository containing the code used for
all experiments can be found under https://github.com/
DILiS-lab/pepermint. The repository also contains links to
relevant dataset files extracted from the original datasets (also
including the HIV blood dataset).
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