

1 **Laboratory evolution in *Novosphingobium aromaticivorans* enables rapid**
2 **catabolism of a model lignin-derived aromatic dimer**

3

4 Marco N. Allemann^{1,‡}, Ryo Kato², William G. Alexander¹, Richard J. Giannone^{1,3}, Naofumi
5 Kamimura², Eiji Masai², and Joshua K. Michener^{1,†}

6

7 ¹Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN
8 37830, USA. ²Department of Materials Science and Bioengineering, Nagaoka University of
9 Technology, Nagaoka, Niigata, 940-2188, Japan. ³Center for Bioenergy Innovation, Oak Ridge
10 National Laboratory, Oak Ridge, TN, 37830.

11

12 [‡]Present address: University of California, San Diego, CA.

13 [†]To whom correspondence should be addressed: michenerjk@ornl.gov

14

15 **Notice: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-**
16 **AC05-00OR22725 with the U.S. Department of Energy. The United States Government**
17 **retains and the publisher, by accepting the article for publication, acknowledges that the**
18 **United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license**
19 **to publish or reproduce the published form of this manuscript, or allow others to do so, for**
20 **United States Government purposes. DOE will provide public access to these results of**
21 **federally sponsored research in accordance with the DOE Public Access Plan**
22 **(<http://energy.gov/downloads/doe-public-access-plan>).**

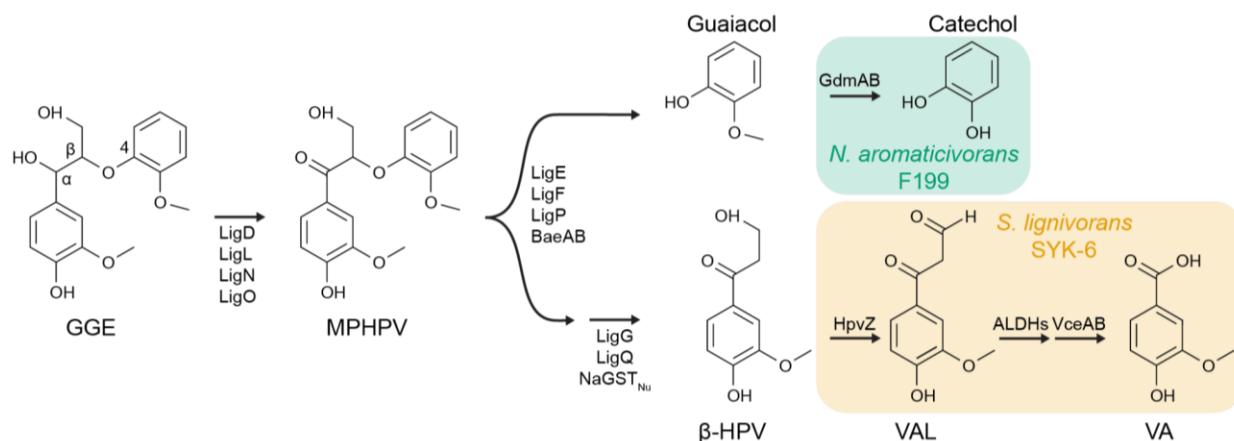
23

24 **Abstract**
25 Lignin contains a variety of interunit linkages, which leads to a range of potential decomposition
26 products that can be used as carbon sources by microbes. β -O-4 linkages are the most common in
27 native lignin and associated catabolic pathways have been well characterized. However, the fate
28 of the mono-aromatic intermediates that result from β -O-4 dimer cleavage has not been fully
29 elucidated. Here, we used experimental evolution to identify mutant strains of *Novosphingobium*
30 *aromaticivorans* with improved catabolism of a model aromatic dimer containing a β -O-4
31 linkage, guaiacylglycerol- β -guaiacyl ether (GGE). We identified several parallel causal
32 mutations, including a single nucleotide mutation in the promoter of an uncharacterized gene that
33 roughly doubled the growth yield with GGE. We characterized the associated enzyme and
34 demonstrated that it oxidizes an intermediate in GGE catabolism, β -hydroxypropiovanillone, to
35 vanilloyl acetaldehyde. Identification of this enzyme and its key role in GGE catabolism furthers
36 our understanding of catabolic pathways for lignin-derived aromatic compounds.
37

38 **Importance**
39 Lignin degradation is a key step for both carbon cycling in nature and biomass conversion to
40 fuels and chemicals. Bacteria can catabolize lignin-derived aromatic compounds, but the
41 complexity of lignin means that full mineralization requires numerous catabolic pathways and
42 often results in slow growth. Using experimental evolution, we identified a new enzyme for
43 catabolism of a lignin-derived aromatic monomer, β -hydroxypropiovanillone. A single mutation
44 in the promoter of the associated gene significantly increased bacterial growth with either β -
45 hydroxypropiovanillone or a related lignin-derived aromatic dimer. This work expands the
46 repertoire of known aromatic catabolic genes and demonstrates that slow catabolism of lignin-
47 derived aromatic compounds may be due to misregulation under laboratory conditions rather
48 than inherent catabolic challenges.

49 **Introduction**

50 Lignin is the second most abundant natural polymer and one of the three major components of
51 plant cell walls (1). The lignin polymer consists of three main monomer units that differ based on
52 the presence and number of methoxy units on the aromatic ring. In plants, these monomer
53 building blocks are coupled via radical mechanisms to generate a wide variety of interunit
54 linkages (2). Breakdown of lignin in the environment is thought to be performed mainly by
55 fungi, which excrete extracellular peroxidases and laccases that cleave high molecular weight
56 polymeric lignin into lower molecular weight aromatic compounds (3). These small soluble
57 products can be further mineralized by other microbes. In bacteria, pathways have been
58 described for conversion of diverse aromatic dimers into their constituent monomers, which can
59 then be funneled into core catabolic pathways such as the various protocatechuate ring cleavage
60 pathways (4, 5). These degradation pathways can also be used to valorize depolymerized lignin
61 into value-added bioproducts (6, 7).


62
63 To date, pathways for catabolism of lignin-derived aromatic dimers connected by β -O-4 linkages
64 have been the best characterized (Figure 1). This linkage typically comprises up to 40-50% of the
65 inter-unit linkages found in lignin (1). A pathway for catabolism of dimers with β -O-4 linkages
66 was first discovered over three decades ago in the alphaproteobacterium *Sphingobium*
67 *lignivorans* SYK-6 (hereafter ‘SYK-6’) using the model compound guaiacylglycerol- β -guaiacyl
68 ether (GGE) and has been extensively characterized at the genetic and biochemical level (8–14).
69 More recently, additional enzymes for degradation of GGE and related intermediates have also
70 been characterized in *Novosphingobium aromaticivorans* F199 (hereafter ‘F199’) (15–17) as
71 well as other bacteria (18, 19). As shown in Figure 1, GGE catabolism in both F199 and SYK-6
72 proceeds via a set of conserved biochemical steps to produce the intermediates β -
73 hydroxypropiovanillone (β -HPV) and guaiacol. In SYK-6, the β -HPV intermediate is funneled
74 into the protocatechuate 4,5-cleavage pathway, and several of the necessary enzymes have
75 recently been described (14, 20), while guaiacol is not assimilated. In contrast, previous work
76 using F199 growing with GGE demonstrated that guaiacol was rapidly consumed but β -HPV
77 accumulated transiently (15).

78
79 While both SYK-6 and F199 can grow with GGE as the sole carbon and energy source, neither
80 wild-type strain grows rapidly under these conditions. We previously used experimental
81 evolution to isolate a mutant of F199, which we termed JMN2, that grows more rapidly with
82 GGE (21). Using barcoded transposon insertion sequencing in JMN2, we discovered a Rieske
83 monooxygenase, GdmA, that demethylates guaiacol to catechol (17). Catechol can then be
84 assimilated using a pathway for oxidative 1,2-cleavage of catechol that is natively present in
85 F199. This newly-described pathway explains how F199 catabolizes the guaiacol produced from
86 GGE degradation.

87
88 Since F199 was shown to accumulate but then fully catabolize β -HPV (15), we hypothesized that
89 an additional pathway was present in this strain but inefficiently regulated under laboratory
90 conditions. However, F199 does not contain a close homolog of the *hpvZ* gene that encodes the
91 first enzyme for β -HPV catabolism in SYK-6 (20), so the identity of this potential catabolic
92 pathway was unknown.

93

94 In this work, we describe further laboratory evolution experiments of F199 grown with GGE as
 95 the sole carbon and energy source. These evolution experiments yielded strains with a range of
 96 growth phenotypes, including one strain with a substantial improvement in yield compared to
 97 JMN2 during growth with GGE. Resequencing, mapping, and comparison of mutations across
 98 these evolved F199 strains led to the discovery of a novel β -HPV processing enzyme that we
 99 designate as HpvY. Heterologous expression in *E. coli* demonstrated that HpvY converts β -HPV
 100 to vanilloyl acetaldehyde (VAL).
 101
 102

103
 104 **Figure 1-** GGE catabolic pathways in two model lignin-degrading bacteria. The alcohol group at
 105 the α position of GGE is oxidized to form MPHPV. Various β -etherases cleave the β -ether group
 106 yielding β -HPV and, in the case of GGE, guaiacol. Previous works identified catabolic pathways
 107 for guaiacol in *N. aromaticivorans* F199 (17) and β -HPV in *S. lignivorans* SYK-6 (14, 20). For
 108 simplicity, stereochemistry of GGE and MPHPV is not shown. Abbreviations: GGE,
 109 guaiacylglycerol- β -guaiacyl ether; MPHPV, α -(2-methoxyphenoxy)- β -hydroxypropiovanillone;
 110 β -HPV, β -hydroxypropiovanillone; VAL: vanilloyl acetaldehyde; VA: vanillic acid. Enzymes:
 111 LigD, LigL, LigN, and LigO, short-chain dehydrogenase/reductases; LigE, LigF, LigP, BaeAB;
 112 β -etherases; LigG, LigQ, NaGST_{Nu} glutathione S-transferase; GdmAB, guaiacol O-demethylase;
 113 HpvZ, β -HPV oxidase; ALDHs, aldehyde dehydrogenases; VceA, VAA-converting enzyme;
 114 VceB, vanilloyl-CoA/syringoyl-CoA thioesterase
 115
 116
 117

Table 1- Strains used in this study

Strain	Description ^a	Source
<i>Escherichia coli</i> strains		
WM6026	<i>lacIq, rrmB3, ΔlacZ4787, hsdR514, ΔaraBAD567, ΔrhaBAD568, rph-1, attλ::pAE12(ΔoriR6K-cat::Frt5), ΔendA::Frt, uidA(ΔMluI)::pir, attHK::pJK1006D(oriR6K-cat::Frt5; trfA::Frt) dap</i>	(22)
<i>Novosphingobium aromaticivorans</i> strains		
F199	Wild-type strain; DSM12444	DSMZ 12444
JMN2	GGE-evolved F199	(21)
JMN123	GGE-evolved F199	This study

JMN122	GGE-evolved F199	This study
JMN121	GGE-evolved F199	This study
JMN30	JMN2, <i>ΔligE</i> (<i>RS12100</i>)	This study
JMN142	JMN123, <i>ΔligE</i> (<i>RS12100</i>)	This study
JMN151	JMN123 with an additional 6.6kb deletion in pNL1	This study
JMN158	JMN123, <i>ΔcatA</i> (<i>RS20025</i>)	This study
JMN159	JMN123, <i>ΔhpvY</i> (<i>RS19130</i>)	This study
JMN160	JMN123. <i>ΔcatB</i> (<i>RS20015</i>)	This study
JMN161	JMN123, <i>ΔgdmA</i> (<i>RS07455</i>)	This study
<i>Sphingobium lignivorans</i> strains		
SYK-6	Wild-type strain	NBRC 103272
Plasmids		
pAK405	Allele exchange plasmid for sphingomonads, Kan ^R , <i>rpsL</i> (Sm ^S)	(23)
pJM328	pAK405, <i>ΔligE</i>	This study
pJM489	pAK405, <i>ΔhpvY</i>	This study
pJM301	pAK405, <i>ΔcatA</i>	(17)
pJM300	pAK405, <i>ΔcatB</i>	(17)
pJM319	pAK405, <i>ΔgdmA</i>	(17)
pET-16b	Expression vector; T7 promoter; Ap ^R	Novagen
p16hpvY	pET-16b with a 1.7-kb NdeI-BamHI PCR-amplified fragment carrying <i>hpvY</i> (<i>RS19130</i>)	This study

118 ^aKan^R, Sm^S, and Ap^R indicate resistance to kanamycin, sensitive to streptomycin, and resistance
119 to ampicillin, respectively.

120

121 Table 2 primers used in this study

Purpose	Primer name	Sequences (5' to 3')
Plasmid construction		
p16hpvY	p16hpvY_F	TCGAAGGTCGTCAATGGCCGAGGCAGCGGGCGA
	p16hpvY_R	GTTAGCAGCCGGATCCTCAGACGAAGTCCACCGTC C

122

123 **Materials and Methods**

124

125 **Bacterial strains and growth conditions**

126 *Escherichia coli* strains were routinely grown at 37°C in Lysogeny Broth (LB) unless stated
127 otherwise. *Novosphingobium aromaticivorans* F199 strains were grown at 30 °C in R2A media
128 (Teknova) unless noted otherwise. For growth of *N. aromaticivorans* strains in minimal media
129 with defined carbon sources, DSM 457 media was used as described previously (24). For solid
130 media, agar was included at 15 g/liter. The antibiotics kanamycin (50 µg/ml) and streptomycin
131 (100 µg/ml) were used as required. Diaminopimelic acid (DAP) was added to LB as needed
132 (60 µg/ml). All aromatic carbon substrates were dissolved in dimethylsulfoxide (DMSO) and
133 added to minimal media for 1 g/L (w/v) final concentration. Due to the toxicity of guaiacol it was
134 added to 0.25 g/L (2.0 mM).

135

136 **Laboratory evolution experiment**

137 Triplicate cultures of wild-type *N. aromaticivorans* DSM12444 were inoculated from a single
138 colony into DSM 457 with 2 g/L glucose and grown overnight at 30 °C. Cells were harvested by
139 centrifugation and washed multiple times with DSM 457 lacking a carbon source and were
140 inoculated into DSM 457 media supplemented with GGE (1 g/L) as a sole carbon source and
141 incubated in a shaking incubator at 30 °C. Cultures were diluted 100-fold when growth was
142 visually apparent by eye and significantly above the non-inoculated control. After approximately
143 2 months of growth and a total of five transfers, aliquots of the GGE grown cultures were
144 streaked onto R2A agar for isolation of single colonies. Several purified colonies from each of
145 the three evolutionary lineages were further screened for their abilities to grow with GGE and the
146 best growing isolate derived from each lineage was chosen for further analysis.

147

148 **Resequencing and identification of mutations**

149 High-quality genomic DNA was isolated from the evolved mutants using a Promega Wizard
150 genomic DNA kit following manufacturer guidelines for Gram-negative bacteria with minor
151 modifications. Genomic DNA was prepared for Illumina library construction and libraries were
152 sequenced on the MiSeq Illumina platform to generate paired-end 300-bp reads using V3
153 chemistry. Sequence analysis and variant calling were performed in Geneious Prime (version
154 2021.0.3). Raw reads were trimmed with BBDuk plugin (version 1.0) with default settings.
155 Trimmed reads were mapped to the *N. aromaticivorans* DSM1244 reference genome using the
156 bowtie plugin (version 7.2.1). To identify single-nucleotide polymorphisms, the minimum
157 variant frequency was set to 0.8. Mutations of interest were further verified by PCR and Sanger
158 sequencing of purified products.

159

160 **Nanopore sequencing and genome assembly**

161 10 ng of high-quality genomic DNA were amplified using the GenomiPhi v2 whole-genome
162 amplification kit (Cytiva, Marlborough, MD), then the resulting DNA was simultaneously
163 cleaned, concentrated, and size selected to remove fragments under 1 kbp by performing a bead
164 cleanup with 0.4x volumes of HighPrep PCR cleanup beads (MagBio, Caithersburg, MD). 1.5 µg
165 of this amplified DNA (hereto referred as wga DNA) was digested by 1.5 µL of T7 endonuclease
166 (New England Biolabs, Ipswich, MA) in a 50 µL reaction for 1 h, then the digested wga DNA
167 along with the native, unamplified DNA (hereto referred as nat DNA) was cleaned, concentrated,

168 and size selected against fragments under 5 kbp using HighPrep PCR beads in a custom buffer
169 containing 1.25 M NaCl and 20% PEG-8000 (25). The resulting DNA was used in conjunction
170 with the Oxford Nanopore Technology (ONT, Oxford, UK) Rapid Barcoding Kit SQK-RBK004
171 to produce a sequencing library with nat and wga DNA barcoded separately, which was then
172 loaded onto a MinION R9.4.1 flow cell driven by a Mk. IIB MinION device. The raw data were
173 basecalled using the ONT Guppy basecaller on an HP Z8 workstation equipped with an NVIDIA
174 Quadro RTX 4000 GPU with 8 GB of memory. The resulting reads for each sample underwent
175 quality control using Filtlong v0.2.1 (<https://github.com/rrwick/Filtlong>) to remove fragments
176 under 1 kbp, then to remove the bottom 5% of reads by quality. The resulting nat reads were
177 used with Trycycler v0.5.1 (26) along with the assemblers Raven v1.5.3 (27), Miniasm +
178 Minimap v0.3-r179 (28), and Flye v2.9 (29). This draft assembly was first polished using
179 Medaka v1.5 (<https://github.com/nanoporetech/medaka>) together with the nat reads, then
180 Medaka polishing was repeated using the wga reads. Short-read polishing was then performed
181 first with Polypolish v0.4.3 (30) then with Pilon v1.24 (31) to remove common errors associated
182 with long-read assemblies (e.g. disagreement in homopolymer length).
183

184 **Targeted gene deletion mutagenesis**

185 Chromosomal deletions in *N. aromaticivorans* were constructed using previously described
186 methods with minor alterations (24). In-frame deletions were generated by allelic exchange using
187 vector pAK405 (23). Briefly, homology arms containing 500-700 bp regions upstream and
188 downstream of genes to be deleted were synthesized and cloned into pAK405 (Genscript,
189 Piscataway, NJ). Constructs were mobilized into *N. aromaticivorans* via conjugation using the *E.*
190 *coli* DAP auxotroph strain WM6026 with selection on R2A media containing kanamycin.
191 Exconjugants were streaked to single colonies once from selection plates and grown overnight in
192 R2A in the absence of kanamycin selection. Aliquots of the overnight culture were plated on
193 R2A + streptomycin agar for counterselection against the integrated plasmid. Streptomycin-
194 resistant colonies were patched to R2A + kanamycin + streptomycin and R2A streptomycin to
195 screen for kanamycin sensitivity. Kanamycin-sensitive colonies were screened for gene deletions
196 by colony PCR.
197

198 **Growth rate measurements**

199 For the data shown in Figures 2, S1, S3, S5, and S6, strains were grown to saturation overnight
200 in DSM 457 minimal media with 2 g/L glucose. Cells were pelleted and washed with DSM 457
201 lacking a carbon source before being diluted 100-fold into fresh medium containing the
202 appropriate carbon source and grown as triplicate 1 mL cultures in 48-well plates (Greiner Bio-
203 One, Kremsmünster, Austria). The growth was monitored by measuring the optical density at
204 600 nm (OD₆₀₀) in an Epoch 2 plate reader (Agilent, Santa Clara, CA). The growth rates were
205 calculated using the R package growthcurver (32).
206

207 For the data shown in Figure 3, strains F199, JMN2, JMN123, JMN159, and SYK-6 were
208 cultured in LB for 24 h at 30°C. The cells were harvested by centrifugation at 14,000 × g for 1
209 min at 4 °C, washed twice with 3 mL of Wx medium, and then suspended in the same buffer.
210 The cell suspensions were inoculated into Wx medium containing 2 mM GGE or HPV to an
211 optical density at 600 nm (OD₆₀₀) of 0.1 and incubated for 100 h at 30 °C with linear shaking at
212 567 cycles per minute using an EPOCH microplate reader (Agilent, Santa Clara, CA). The OD₆₀₀
213 was measured continuously.

214 **Metabolite accumulation assays**

215 Strains were grown to saturation overnight in DSM 457 medium with 2 g/L glucose. Cells were
216 harvested by centrifugation and washed several times with DSM 457 lacking a carbon source.
217 Cells were then diluted into fresh DSM 457 medium containing 1 g/L GGE and incubated at 30
218 °C. At the indicated times ~1 mL aliquots of the culture were removed and cells pelleted and
219 supernatant was collected and filtered to 0.22 µm. Filtered supernatant samples were then
220 analyzed by LC-MS to monitor intermediate product accumulation across the strains over time.
221 For each sample, 5 µL of supernatant was split-loaded onto an in-house pulled nanospray emitter
222 (75 µm inner diameter) packed with 15 cm of C18 resin (1.7 µm Kinetex; Phenomenex) and
223 separated over a 15 min reversed-phase gradient using a Vanquish HPLC interfaced directly to a
224 Q Exactive Plus mass spectrometer (Thermo Scientific) (21). Eluting analytes were measured by
225 the Q Exactive operating in negative ion mode monitoring a mass-to-charge range of 100-500
226 *m/z*; resolution 35,000; 3 microscan spectrum averaging). Peak areas were extracted for MPHPV
227 (317.1031 [M-H]) and β-HPV (195.0663 [M-H]) pathway intermediates via Skyline software
228 (33) and areas compared across samples to assess strain bottlenecks.
229

230 **Preparation of resting cells.**

231 Cells of *E. coli* transformants, F199, JMN2, JMN123, and JMN159 were grown in LB for 12 h
232 (*E. coli* strains) and 24 h (F199 and F199-derivative strains) at 30°C with linear shaking at 160
233 rpm. F199 derivatives were cultured in Wx medium containing 10 mM sucrose, 10 mM
234 glutamate, 0.13 mM methionine, and 10 mM proline (Wx-SEMP) and Wx-SEMP containing 2
235 mM GGE, 2 mM HPV, or 2 mM Guaiacol for 12 h at 30°C. The cells were collected by
236 centrifugation (14,000 ' g for 1 min), washed twice with 50 mM Tris-HCl buffer (pH 7.5),
237 resuspended in the same buffer, and used as resting cells.
238

239 **Conversion of b-HPV by F199, F199-derivative strains, and *E. coli* expressing *hpvY*.**

240 Resting cells of F199, JMN2, JMN123, JMN159, and *E. coli* BL21(DE3) harboring p16hpvY
241 (F199 and F199-derivative strains, OD₆₀₀ of 5.0; *E. coli* transformant, OD₆₀₀ of 10) were
242 incubated with 100 µM HPV at 30°C with shaking for 8–24 h. The supernatant obtained by
243 centrifugation at 19,000 × g for 1 min at 4°C was analyzed by HPLC.
244

245 **Expression of *hpvY* in *E. coli*.**

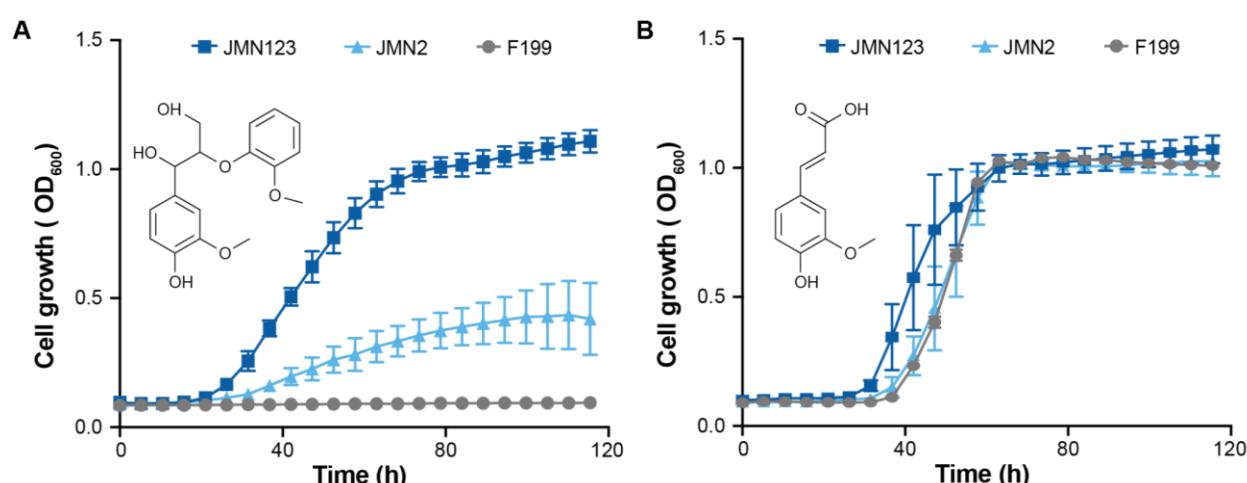
246 A DNA fragment carrying *hpvY* (RS19310) was amplified through PCR using the F199 total
247 DNA and the primer pairs listed in Table 2. The amplified fragment of *hpvY* was cloned into
248 pET-16b using an NEBuilder HiFi DNA assembly cloning kit to form p16hpvY. *E. coli*
249 BL21(DE3) cells harboring p16hpvY were grown in LB, and gene expression was induced for 4
250 h at 30°C by adding 1 mM isopropyl-b-D-thiogalactopyranoside when the OD₆₀₀ of the culture
251 reached 0.5. Gene expression was examined using sodium dodecyl sulfate–12% polyacrylamide
252 gel electrophoresis. The protein bands in gels were stained with Coomassie brilliant blue.
253

254 **HPLC analysis**

255 HPLC analysis was conducted using the ACQUITY UPLC system (Waters). The sample was
256 filtered through a PTFE filter (Captiva Econofilter, Agilent) with a pore size of 0.20 µm and then
257 analyzed using a TSKgel ODS-140HPT column (particle size, 2.3 µm; 2.1 x 100 mm, Tosoh).
258 Analysis of HPV, VAL-Tris, and VAA was performed in gradient mode. The mobile phase was
259 a mixture of solution A (acetonitrile containing 0.1% formic acid) and B (water containing 0.1%

260 formic acid) under the following conditions: 0-3.2 min, 5% A; 3.2-6.0 min, linear gradient from
261 5.0 to 40% A; 6.0-6.5 min, decreasing gradient from 40 to 5.0% A; 6.5-7.0 min, 5% A. The flow
262 rate was 0.5 mL/min, and the column temperature was 30 °C. HPV, VAL-Tris, and VAA were
263 detected at 310 nm.

264


265 Results and Discussion

266

267 Laboratory evolution of F199 for growth with lignin-derived aromatics

268

269 We previously described the evolution and resequencing of strain JMN2, a mutant of F199 that
270 was selected for growth with GGE as the sole carbon source (17, 21). To identify other potential
271 mutations that improve growth with GGE, we initiated additional evolution experiments. Three
272 independent cultures of F199 were grown and serially passaged in minimal media containing
273 GGE as the sole carbon source. After approximately 33 generations, each mixed evolution
274 culture showed improved growth rate and yield compared to the F199 parent. We then isolated
275 approximately eight single colonies from each replicate culture and assayed growth with GGE as
276 the sole carbon and energy source. Each culture yielded at least one isolate that showed
277 significantly improved growth with GGE, and the top-performing strain from each replicate
278 culture was selected and preserved for further analysis (Figure 2A and Figure S1). The growth
279 improvements in evolved strains were specific to GGE and not observed with other lignin-
280 derived aromatic compounds such as ferulate (Figure 2B).
281

282
283

284 **Figure 2-** Adaptive laboratory evolution of *N. aromaticivorans* F199 for improved growth on
285 GGE as a sole carbon source. (A) Growth of wild-type (F199) and evolved (JMN2, JMN123)
286 strains with 1 g/L GGE (3.1 mM) as the sole carbon and energy source. (B) Growth of wild-type
287 and evolved strains with 1 g/L ferulate (5.1 mM) as the sole carbon and energy source. Growth
288 curves shown are the means of at least three independent experiments. Error bars show one
289 standard deviation, calculated from the independent experiments.

290

291

292 Identification of mutations and deletions in evolved lineages

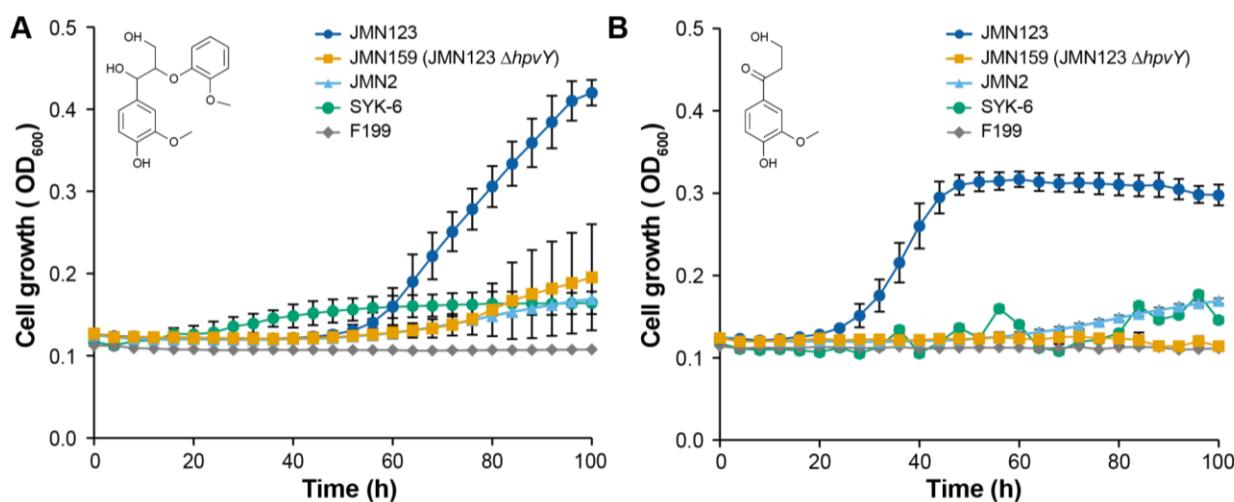
293

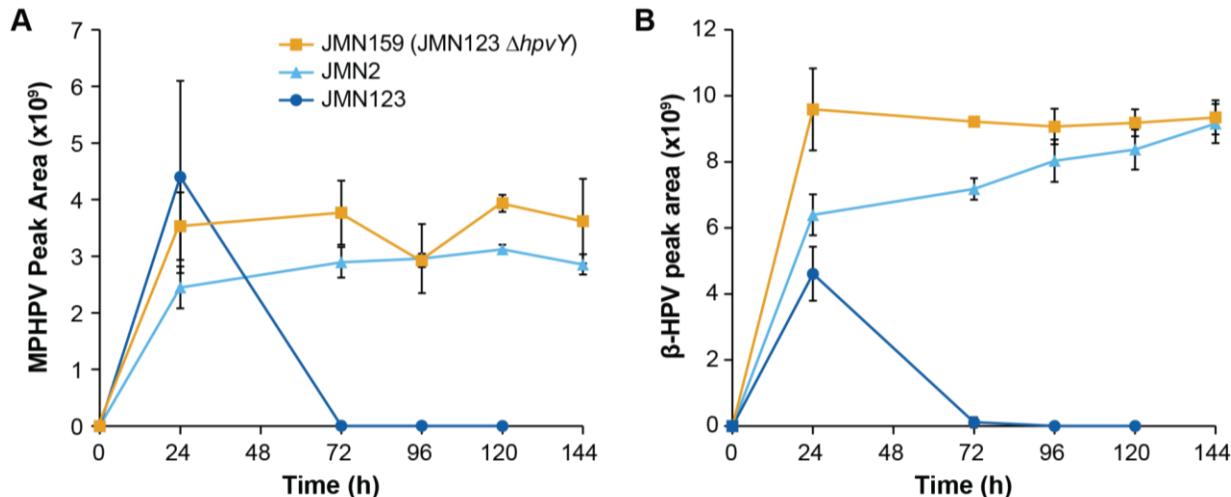
294 To gain insight into the genetic basis for the evolved phenotypes, we resequenced the genomes
295 of all three isolates using short reads and, to detect any large scale rearrangements, generated a
296 *de novo* genome sequence of JMN123 using Nanopore sequencing. No large rearrangements
297 were identified, and a full comparison of the various point mutations found in these strains is
298 shown in Supplementary Table 1. All four strains contain parallel mutations, including large
299 deletions in plasmid pNL1 and mutations upstream of *Saro_RS12100*.
300

301 **Role of *ligE* in GGE metabolism**

302
303 Upon examination and comparison of the mutations found within the four evolved strains, we
304 noted that all four contain an identical point mutation 55 bp upstream of the start codon of
305 *Saro_RS12100*. This gene encodes for LigE, one of the β -etherases known to be involved in
306 GGE catabolism (10, 13). Based on sequence analysis, this upstream region contains plausible -
307 35 and -10 promoter sites as well as an inverted repeat motif (Figure S2). The observed point
308 mutation occurs in the predicted inverted repeat motif and could potentially interfere with
309 binding of a transcriptional regulator (34). Repeated attempts to reconstruct this single nucleotide
310 mutation in a wild-type background were unsuccessful. Instead, an in-frame unmarked deletion
311 of *ligE* was engineered in both JMN2 and JMN123 and the resulting strains were assessed for
312 their growth in minimal medium with GGE. In both genetic backgrounds, the Δ *ligE* mutation
313 severely hindered growth with GGE (Figure S3). Given the phenotypes observed, we propose
314 that the *ligE* promoter mutation was most likely a gain of function mutation that increases *ligE*
315 expression and therefore improves GGE conversion to monomers.
316

317 **Effects of deletions in pNL1**


318
319 Wild-type F199 contains a large plasmid, pNL1, with many accessory catabolic genes (35).
320 Based on previous sequencing and genetic characterization of pNL1, this plasmid can be divided
321 into three distinct regions based on predicted gene functions within each region: replication,
322 mobilization, and aromatic degradation. All four evolved strains contained significant deletions
323 in the aromatic degradation region, which contains a catechol 2,3 cleavage pathway
324 (*xylEGHIJKQ*) (Figure S4). This *xyl* pathway was previously shown to contribute to the
325 degradation of protocatechuate (PCA) in a previous study focused on aromatic pathway
326 discovery in F199 (24).
327


328 An additional 6.6 kb of the aromatic degradation region was deleted in JMN2 than in JMN123.
329 We hypothesized that this genetic difference could explain the improved yield of JMN123 during
330 growth with GGE. To test this hypothesis, we made an additional targeted deletion in pNL1 of
331 JMN123 to replicate the deletion seen in JMN2 (Figure S5A), yielding strain JMN151. JMN151
332 had a slightly lower yield than JMN123 during growth with GGE but was still substantially
333 improved compared to JMN2 (Figure S5B). We conclude that differences in the extent of
334 deletion of pNL1 may affect growth with GGE but are not the major contributor to the improved
335 growth by strain JMN123.
336

337 **Identification of a new enzyme and characterization of its role in GGE catabolism**

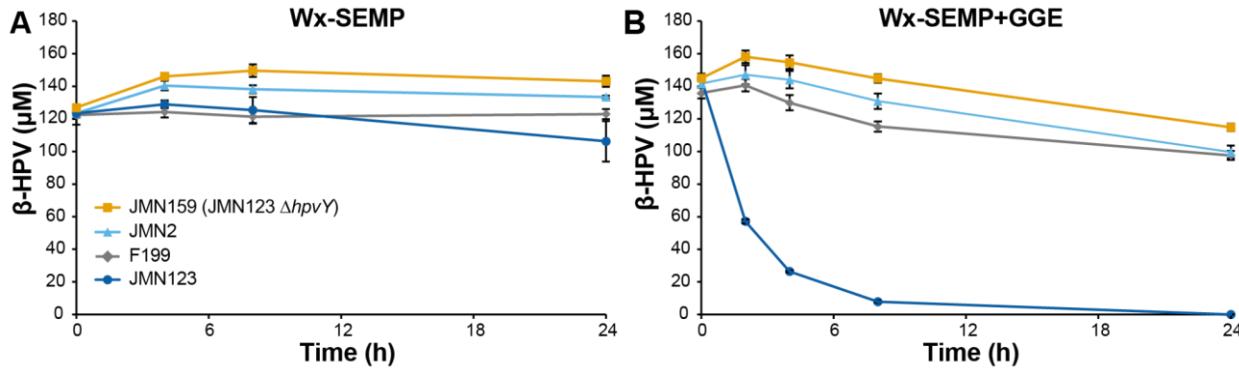
338

339 Further comparison of the mutations found in the four evolved isolates identified a single
340 nucleotide mutation that was uniquely found in JMN123, 49 bp upstream of the start codon of
341 *Saro_RS19130*. As with the *ligE* mutation, this mutation is found in a region upstream of the
342 coding sequence of *RS19130* that contains a predicted promoter (Figure S6). This gene encodes a
343 predicted choline dehydrogenase that has 39% amino acid sequence identity to HpvZ from SYK-
344 6. Based on this homology, we refer to *RS19130* as *hpvY*. An in-frame deletion of *hpvY* was
345 constructed in JMN123 to yield strain JMN159. When strains JMN2, JMN123, and JMN159
346 were grown with GGE as a sole carbon source, JMN159 showed a significant decrease in yield,
347 comparable to JMN2 (Figure 3A).
348

365
366
367
368
369
370

Figure 4: Impact of *hpvY* (RS19130) deletion on GGE conversion. Cells were grown in minimal medium containing 1 g/L GGE (3.1 mM) as the sole carbon source. Accumulation of (A) MPHVP and (B) β -HPV were monitored by LC-MS. Error bars show one standard deviation, calculated from three biological replicates.

371
372
373
374
375
376
377
378
379
380


We also monitored metabolite accumulation during growth with GGE to identify pathway bottlenecks that were introduced or removed by alterations to *hpvY*. Similar to the previous experiments, we grew JMN2, JMN123, and JMN159 with GGE as the sole source of carbon and energy and monitored the concentration of intermediate metabolites MPHVP and β -HPV (Figure 4). JMN2 accumulated significant concentrations of both intermediates, while JMN123 accumulated these intermediates only transiently and then fully consumed them. Deletion of *hpvY* in JMN159 again led to accumulation of these intermediates, consistent with a role for β -HPV catabolism. We hypothesize that accumulated β -HPV inhibited the glutathione transferases responsible for conversion of MPHVP to β -HPV and resulted in MPHVP accumulation.

381
382
383

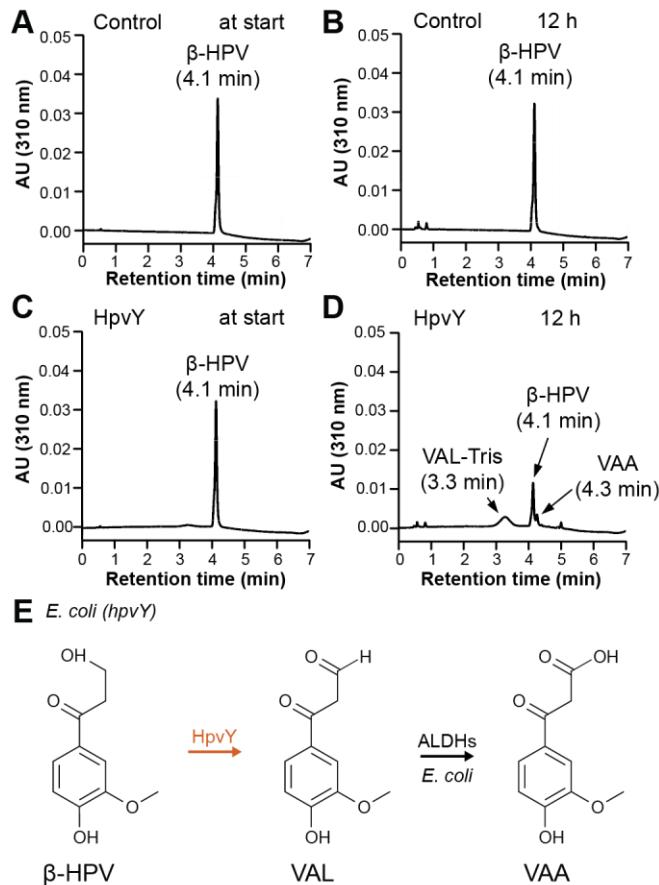
Role of HpvY in β -HPV catabolism

384
385
386
387
388
389
390
391
392
393
394
395
396

Low accumulation of β -HPV during growth with GGE suggested that JMN123 has higher β -HPV conversion activity than the other *N. aromaticivorans* strains tested. To more directly measure β -HPV conversion and to test the regulation of this activity, we grew strains of *N. aromaticivorans* with four different media, harvested the cells, added β -HPV, and measured the disappearance of this substrate by HPLC. When cells were grown in Wx-SEMP medium, minimal β -HPV conversion activity was detected (Figure 5A). Pre-culture with 2 mM GGE strongly induced β -HPV conversion by JMN123 but not by JMN159 (JMN123 Δ hpvY) (Figure 5B). Pre-culture with lysogeny broth (LB) or Wx-SEMP + 2 mM guaiacol also induced β -HPV conversion activity (Figure S8). We conclude that *hpvY* is required for β -HPV conversion and that this pathway is inducible in JMN123, either by metabolites in the GGE catabolic pathway or by a constituent of complex media. The specific inducer molecule and putative transcriptional regulator have not yet been described.

397
398
399
400
401
402

Figure 5: Conversion of β -HPV by resting cells of *N. aromaticivorans*. Strains were pre-cultured in (A) Wx-SEMP or (B) Wx-SEMP + 2 mM GGE, concentrated, and incubated with β -HPV. Residual β -HPV was detected by HPLC. Error bars show the standard deviation, calculated from three biological replicates.


403

Heterologous expression of HpvY and demonstration of β -HPV conversion

404

While β -HPV conversion by JMN123 requires *hpvY*, the effect of HpvY on β -HPV conversion could be indirect. To identify the activity of HpvY, we heterologously expressed *hpvY* in *Escherichia coli* BL21(DE3). We observed expression of a protein with the expected mass of approximately 60 kDa in both the soluble and insoluble fractions (Figure S9). We therefore measured conversion of β -HPV using resting cells of control and *hpvY*-expressing *E. coli*. No conversion of β -HPV was observed by the control cells, while the cells expressing HpvY produced vanilloyl acetaldehyde (VAL) and vanilloyl acetic acid (VAA) (Figure 6). VAA is likely produced through promiscuous oxidation of VAL by endogenous aldehyde dehydrogenases (Figure 1). Based on these results, we conclude that HpvY directly oxidizes β -HPV to VAL, equivalent to the reaction catalyzed by HpvZ (20). A precise comparison of catalytic properties between HpvY and HpvZ would require additional enzyme purification.

416

417
418
419
420
421
422
423
424
425

Figure 6: HPLC analysis of β -HPV conversion by resting *E. coli* cell suspensions containing either an empty plasmid control (A+B) or a plasmid heterologously expressing *hpvY* (C+D). 100 μM β -HPV was added at t_0 . β -HPV, VAA, and VAL-Tris are identified by comparison to authentic standards. (E) Proposed reaction scheme in *E. coli* heterologously expressing HpvY. Abbreviations: β -hydroxypropiovanillone, β -HPV; VAL, vanillyl acetaldehyde; VAL-Tris, imine derivative of VAL produced non-enzymatically by reaction with Tris (20); VAA, vanillyl acetic acid.

426
427
428
429
430

Similar to SYK-6 and resting *E. coli*, it is likely that VAL produced by HpvY in F199 is oxidized to VAA. In SYK-6, VAA is then converted to VA by the actions of VceA, VceB, and an unidentified enzyme. However, homologs of VceA and VceB are not found in F199, suggesting that additional pathway enzymes remain to be discovered.

431
432

Conclusion
In this work, we used adaptive laboratory evolution to generate a mutant strain of *N. aromaticivorans* F199 that rapidly and completely catabolizes a model lignin dimer. Resequencing multiple evolved strains identified several key parallel mutations that contribute to the improved growth phenotype. Further analysis of these mutations led to the discovery of a novel β -HPV converting enzyme, designated HpvY, that converts β -HPV into VAL. This work highlights the utility of experimental evolution for both pathway optimization and pathway discovery.

433
434
435
436
437
438
439

440 **Acknowledgements**

441 This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-
442 00OR22725 with the U.S. Department of Energy (DOE). This work was primarily supported by
443 the U.S. DOE, Office of Science, Office of Biological and Environmental Research, though an
444 Early Career Award to JKM. Metabolite analysis by RJG was supported by the Center for
445 Bioenergy Innovation (CBI), U.S. Department of Energy, Office of Science, Biological and
446 Environmental Research Program under Award Number ERKP886. Analysis of HpvY was
447 supported by a JST grant JPMJPF2104. This work also used the resources of the Compute and
448 Data Environment for Science (CADES) at Oak Ridge National Laboratory, which is supported
449 by the U.S. Department of Energy's Office of Science under Contract No. DE-AC05-
450 00OR22725. The authors wish to thank Leah Burdick for assistance with genomic DNA
451 sequencing.

452

453 **References**

- 454 1. Sjostrom E. 2013. Wood Chemistry: Fundamentals and Applications. Elsevier.
- 455 2. Boerjan W, Ralph J, Baucher M. 2003. Lignin biosynthesis. *Annu Rev Plant Biol* 54:519–546.
- 456 3. Martínez AT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillén F, Martínez MJ,
457 Gutiérrez A, del Río JC. 2005. Biodegradation of lignocellulosics: microbial, chemical, and
458 enzymatic aspects of the fungal attack of lignin. *Int Microbiol* 8:195–204.
- 459 4. Bugg TDH, Ahmad M, Hardiman EM, Rahmannpour R. 2011. Pathways for degradation of lignin in
460 bacteria and fungi. *Nat Prod Rep* 28:1883–1896.
- 461 5. Masai E, Katayama Y, Fukuda M. 2007. Genetic and biochemical investigations on bacterial
462 catabolic pathways for lignin-derived aromatic compounds. *Biosci Biotechnol Biochem* 71:1–15.
- 463 6. Azubuike CC, Allemann MN, Michener JK. 2022. Microbial assimilation of lignin-derived aromatic
464 compounds and conversion to value-added products. *Curr Opin Microbiol* 65:64–72.
- 465 7. Weiland F, Kohlstedt M, Wittmann C. 2022. Guiding stars to the field of dreams: Metabolically
466 engineered pathways and microbial platforms for a sustainable lignin-based industry. *Metab Eng*
467 71:13–41.

468 8. Gall DL, Kim H, Lu F, Donohue TJ, Noguera DR, Ralph J. 2014. Stereochemical features of
469 glutathione-dependent enzymes in the *Sphingobium* sp. strain SYK-6 β -aryl etherase pathway. *J Biol*
470 *Chem* 289:8656–8667.

471 9. Higuchi Y, Sato D, Kamimura N, Masai E. 2020. Roles of two glutathione S-transferases in the final
472 step of the β -aryl ether cleavage pathway in *Sphingobium* sp. strain SYK-6. *Sci Rep* 10:20614.

473 10. Masai E, Ichimura A, Sato Y, Miyauchi K, Katayama Y, Fukuda M. 2003. Roles of the
474 enantioselective glutathione S-transferases in cleavage of beta-aryl ether. *J Bacteriol* 185:1768–1775.

475 11. Sato Y, Moriuchi H, Hishiyama S, Otsuka Y, Oshima K, Kasai D, Nakamura M, Ohara S, Katayama
476 Y, Fukuda M, Masai E. 2009. Identification of three alcohol dehydrogenase genes involved in the
477 stereospecific catabolism of arylglycerol-beta-aryl ether by *Sphingobium* sp. strain SYK-6. *Appl*
478 *Environ Microbiol* 75:5195–5201.

479 12. Tanamura K, Abe T, Kamimura N, Kasai D, Hishiyama S, Otsuka Y, Nakamura M, Kajita S,
480 Katayama Y, Fukuda M, Masai E. 2011. Characterization of the third glutathione S-transferase gene
481 involved in enantioselective cleavage of the β -aryl ether by *Sphingobium* sp. strain SYK-6. *Biosci*
482 *Biotechnol Biochem* 75:2404–2407.

483 13. Gall DL, Ralph J, Donohue TJ, Noguera DR. 2014. A group of sequence-related sphingomonad
484 enzymes catalyzes cleavage of β -aryl ether linkages in lignin β -guaiacyl and β -syringyl ether dimers.
485 *Environ Sci Technol* 48:12454–12463.

486 14. Higuchi Y, Kato R, Tsubota K, Kamimura N, Westwood NJ, Masai E. 2019. Discovery of novel
487 enzyme genes involved in the conversion of an arylglycerol- β -aryl ether metabolite and their use in
488 generating a metabolic pathway for lignin valorization. *Metab Eng* 55:258–267.

489 15. Kontur WS, Bingman CA, Olmsted CN, Wassarman DR, Ulbrich A, Gall DL, Smith RW, Yusko
490 LM, Fox BG, Noguera DR, Coon JJ, Donohue TJ. 2018. *Novosphingobium aromaticivorans* uses a

491 Nu-class glutathione S-transferase as a glutathione lyase in breaking the β -aryl ether bond of lignin. *J*
492 *Biol Chem* 293:4955–4968.

493 16. Kontur WS, Olmsted CN, Yusko LM, Niles AV, Walters KA, Beebe ET, Vander Meulen KA,
494 Karlen SD, Gall DL, Noguera DR, Donohue TJ. 2019. A heterodimeric glutathione S-transferase that
495 stereospecifically breaks lignin's β (R)-aryl ether bond reveals the diversity of bacterial β -etherases. *J*
496 *Biol Chem* 294:1877–1890.

497 17. Bleem A, Kuatsjah E, Presley GN, Hinchen DJ, Zahn M, Garcia DC, Michener WE, König G,
498 Tornesakis K, Allemann MN, Giannone RJ, McGeehan JE, Beckham GT, Michener JK. 2022.
499 Discovery, characterization, and metabolic engineering of Rieske non-heme iron monooxygenases
500 for guaiacol O-demethylation. *Chem Catalysis* 2:1989–2011.

501 18. Dexter GN, Navas LE, Grigg JC, Bajwa H, Levy-Booth DJ, Liu J, Louie NA, Nasseri SA, Jang S-K,
502 Renneckar S, Eltis LD, Mohn WW. 2022. Bacterial catabolism of acetovanillone, a lignin-derived
503 compound. *Proc Natl Acad Sci U S A* 119:e2213450119.

504 19. Tumen-Velasquez M, Johnson CW, Ahmed A, Dominick G, Fulk EM, Khanna P, Lee SA, Schmidt
505 AL, Linger JG, Eiteman MA, Beckham GT, Neidle EL. 2018. Accelerating pathway evolution by
506 increasing the gene dosage of chromosomal segments. *Proc Natl Acad Sci U S A* 115:7105–7110.

507 20. Higuchi Y, Aoki S, Takenami H, Kamimura N, Takahashi K, Hishiyama S, Lancefield CS, Ojo OS,
508 Katayama Y, Westwood NJ, Masai E. 2018. Bacterial Catabolism of β -Hydroxypropiovanillone and
509 β -Hydroxypropiosyringone Produced in the Reductive Cleavage of Arylglycerol- β -Aryl Ether in
510 Lignin. *Appl Environ Microbiol* 84.

511 21. Presley GN, Werner AZ, Katahira R, Garcia DC, Haugen SJ, Ramirez KJ, Giannone RJ, Beckham
512 GT, Michener JK. 2021. Pathway discovery and engineering for cleavage of a β -1 lignin-derived
513 biaryl compound. *Metab Eng* 65:1–10.

514 22. Blodgett JAV, Thomas PM, Li G, Velasquez JE, van der Donk WA, Kelleher NL, Metcalf WW.

515 2007. Unusual transformations in the biosynthesis of the antibiotic phosphinothricin tripeptide. *Nat*

516 *Chem Biol* 3:480–485.

517 23. Kaczmarczyk A, Vorholt JA, Francez-Charlot A. 2012. Markerless gene deletion system for

518 sphingomonads. *Appl Environ Microbiol* 78:3774–3777.

519 24. Cecil JH, Garcia DC, Giannone RJ, Michener JK. 2018. Rapid, Parallel Identification of Catabolism

520 Pathways of Lignin-Derived Aromatic Compounds in *Novosphingobium aromaticivorans*. *Appl*

521 *Environ Microbiol* 84.

522 25. Stortchevoi A, Kamelamela N, Levine SS. 2020. SPRI Beads-based Size Selection in the Range of

523 2-10kb. *J Biomol Tech* 31:7–10.

524 26. Wick RR, Judd LM, Cerdeira LT, Hawkey J, Méric G, Vezina B, Wyres KL, Holt KE. 2021.

525 Trycycler: consensus long-read assemblies for bacterial genomes. *Genome Biol* 22:266.

526 27. Vaser R, Šikić M. 2021. Time- and memory-efficient genome assembly with Raven. *Nat Comput Sci*

527 1:332–336.

528 28. Li H. 2016. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences.

529 *Bioinformatics* 32:2103–2110.

530 29. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. 2019. Assembly of long, error-prone reads using repeat

531 graphs. *Nat Biotechnol* 37:540–546.

532 30. Wick RR, Holt KE. 2022. Polypolish: Short-read polishing of long-read bacterial genome

533 assemblies. *PLoS Comput Biol* 18:e1009802.

534 31. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman

535 J, Young SK, Earl AM. 2014. Pilon: an integrated tool for comprehensive microbial variant

536 detection and genome assembly improvement. *PLoS One* 9:e112963.

537 32. Sprouffske K, Wagner A. 2016. Growthcurver: an R package for obtaining interpretable metrics
538 from microbial growth curves. *BMC Bioinformatics* 17:172.

539 33. MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, Kern R, Tabb DL,
540 Liebler DC, MacCoss MJ. 2010. Skyline: an open source document editor for creating and analyzing
541 targeted proteomics experiments. *Bioinformatics* 26:966–968.

542 34. Fernandez-Lopez R, Ruiz R, Del Campo I, Gonzalez-Montes L, Boer DR, de la Cruz F, Moncalian
543 G. 2022. Structural basis of direct and inverted DNA sequence repeat recognition by helix-turn-helix
544 transcription factors. *Nucleic Acids Res* 50:11938–11947.

545 35. Romine MF, Stillwell LC, Wong KK, Thurston SJ, Sisk EC, Sensen C, Gaasterland T, Fredrickson
546 JK, Saffer JD. 1999. Complete sequence of a 184-kilobase catabolic plasmid from *Sphingomonas*
547 *aromaticivorans* F199. *J Bacteriol* 181:1585–1602.

548