

# Deciphering the RNA-binding protein network during endosomal mRNA transport

**Senthil-Kumar Devan<sup>1,\$</sup>, Sainath Shanmugasundaram<sup>1,\$</sup>, Kira Müntjes<sup>1</sup>, Sander HJ Smits<sup>2,3</sup>, Florian Altegoer<sup>1</sup>, Michael Feldbrügge<sup>1</sup>**

\$ shared first authorship

<sup>1</sup> Institute of Microbiology, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, 40204 Düsseldorf, Germany

<sup>2</sup> Center for Structural Studies, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany

<sup>3</sup> Institute of Biochemistry, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany

**Running title:** Cracking the MLLE domain binding code

**Key words:** Endosome / PAM2 / RNA transport / SLiM / *Ustilago maydis*

## Dr. Michael Feldbrügge

Institute of Microbiology,

CRC Microbial Networking, Cluster of Excellence on Plant Sciences

Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany

Phone: +49 (211) 81-15475

[feldbrue@hhu.de](mailto:feldbrue@hhu.de)

## 1    **Abstract**

2    Microtubule-dependent endosomal transport is crucial for polar growth, ensuring the precise  
3    distribution of cellular cargos such as proteins and mRNAs. However, the molecular  
4    mechanism linking mRNAs to the endosomal surface remains poorly understood. Here, we  
5    present a structural analysis of the key RNA-binding protein Rrm4 from *Ustilago maydis*. Our  
6    findings reveal a new type of Mademoiselle domain featuring a seven-helical bundle that  
7    provides a distinct binding interface. A comparative analysis with the canonical MLLE domain  
8    of the poly(A)-binding protein Pab1 disclosed unique characteristics of both domains.  
9    Deciphering the MLLE binding code enabled prediction and verification of previously  
10   unknown Rrm4 interactors containing short linear motifs. Importantly, we demonstrated that  
11   the human MLLE domains, such as those of PABPC1 and UBR5, employed a similar principle  
12   to distinguish among interaction partners. Thus, our study provides unprecedented mechanistic  
13   insights into how structural variations in the widely distributed MLLE domain facilitates  
14   mRNA attachment during endosomal transport.

15

## 16    **Significance**

17    Polar growing cells, such as fungal hyphae and neurons, utilize endosomes to transport mRNAs  
18   along their microtubules. But how do these mRNAs precisely attach to endosomes? Our study  
19   addresses this question by investing the key mRNA transporter, Rrm4, in a fungal model  
20   microorganism. We uncovered new features of a protein-protein interaction domain that  
21   recognizes specific short linear motifs in binding partners. While this domain resembles one  
22   found in the poly(A)-binding protein, it exhibits distinct motif recognition. Deciphering the  
23   underlying binding code unveiled new interaction partners for Rrm4. The recognition system  
24   is used to form a resilient network of RNA-binding proteins (RBPs) and their interaction  
25   partners during endosomal transport. This principle is applicable to humans, highlighting its  
26   fundamental importance.

Devan, Shanmugasundaram *et al.*

27 **Introduction**

28 Highly polarized cells, such as fungal hyphae, depend on active long-distance transport along  
29 the cytoskeleton to sustain efficient expansion at the growth pole (1). This dependency is  
30 particularly evident in pathogens that employ efficient hyphal growth as part of their infection  
31 strategy (2, 3). Microtubule-dependent trafficking is facilitated by Rab5a-positive endosomes,  
32 which transports various cargos, including proteins, lipids, mRNA, ribosomes and even entire  
33 organelles such as peroxisomes (4-6). Endosomes shuttle throughout the hyphae via the  
34 concerted action of plus-end directed kinesin and minus-end directed dynein motors along  
35 microtubules (7, 8). However, detailed mechanistic insights into how protein-protein  
36 interactions govern cargo specificity and endosomal attachment, are still lacking.

37 We study the fungal pathogen *Ustilago maydis*, which causes smut disease in maize.  
38 Pathogenicity relies on the formation of infectious hyphae, which are reliant on microtubule-  
39 dependent endosomal mRNA transport (5, 9). The key RNA-binding protein Rrm4 plays a  
40 pivotal role by binding to hundreds of mRNA targets, facilitating the distribution of mRNAs  
41 and associated ribosomes throughout the hyphae (10-12). Notably, cargo mRNAs encoding all  
42 four septins undergo endosome-coupled translation, which is essential for the assembly of  
43 heteromeric septin complexes on the surface of endosomes. These complexes are subsequently  
44 transported toward the hyphal tip to form higher-septin filaments (10, 13).

45 Rrm4 comprises three N-terminal RNA recognition motifs (RRMs) for cargo recognition and  
46 three C-terminal Mademoiselle (MLLE) domains for protein-protein interactions (Fig. 1A;  
47 14). The MLLE domains serve as a binding platform with a distinct hierarchy: while the first  
48 and second MLLE domains (MLLE1<sup>Rrm4</sup>, MLLE2<sup>Rrm4</sup>) fulfil accessory functions, the third  
49 MLLE domain (MLLE3<sup>Rrm4</sup>) is crucial for interaction with the two PAM2-like sequences  
50 (PAM2L) of the adaptor protein Upa1, a FYVE zinc finger-containing protein that is essential  
51 for endosomal Rrm4 attachment (Fig 1A; 14, 15). Loss of Upa1 results in severe defects in  
52 endosomal shuttling of Rrm4-containing mRNAs. However, residual shuttling of Rrm4 is still  
53 observed, suggesting the presence of at least one additional, currently unknown, adaptor  
54 protein.

55 The MLLE domain was initially discovered in cytoplasmic poly(A)-binding protein, which  
56 binds to most poly(A) tails in eukaryotic mRNAs (PABPC1, Pab1p and Pab1 in *H. sapiens*, *S.*  
57 *cerevisiae* and *U. maydis*, respectively; 16-18). The MLLE domain of PABPC1 (MLLE<sup>PABPC1</sup>),  
58 has been shown to interact with PAM2 motifs of numerous interaction partners, such as GW182  
59 and eRF3, which function in microRNA biology and translational termination, respectively  
60 (19). PAM2 serves as a prime example of a short linear motif (SLiM). SLiMs are widespread

Devan, Shanmugasundaram *et al.*

61 recognition motifs found in unstructured regions of RNA-binding proteins or their adaptors,  
62 enabling the formation of higher-order interaction networks. It has been proposed, for example,  
63 that 64% of the 120 PABPC1 interaction partners harbor a PAM2 or sequence similar SLiM  
64 sequences (20, 21).

65 In MLLE<sup>PABPC1</sup>, the core structure is consisted of a five  $\alpha$ -helical bundle. In the classical  
66 binding mode, the PAM2 motif binds to the MLLE by interacting with hydrophobic pockets  
67 between helices 2-3 and 3-5. This interaction is facilitated by the highly conserved  
68 phenylalanine and leucine residues of PAM2 (19, 22). Currently, only one exception is known:  
69 the PAM2 sequences of GW182 binds to a different interface along helix 2 (23). A second  
70 MLLE domain is present in UBR5, a HECT-type E3 ubiquitin ligase functioning as chain-  
71 elongating E3 ubiquitin ligase (Homologous to E6AP C-Terminus; 24). This domain interacts  
72 with PAM2 sequences such as PAM2<sup>PAIP</sup>, with high affinity (25). However, the biological  
73 function of its MLLE domain is currently unclear (26-28).

74 The endosomal adaptor protein Upa1 also contains a PAM2 motif (PAM2<sup>Upa1</sup>) for  
75 interaction with the MLLE domain of Pab1 (MLLE<sup>Pab1</sup>, Fig. 1A; 15). Furthermore, an essential  
76 scaffold protein of endosomal mRNAs, Upa2, also harbors four PAM2 sequences. Notably, the  
77 MLLE<sup>Pab1</sup> and MLLE3<sup>Rrm4</sup> exhibit an exquisite specificity in differentiating between PAM2  
78 and PAM2L sequences (14). In essence, endosomal messenger ribonucleoproteins (mRNPs)  
79 containing the MLLE domain proteins Rrm4 and Pab1 are attached to endosomes through  
80 interaction with PAM2 and PAM2L sequences in a complex manner. To understand the  
81 underlying SLiM binding code, we aimed to clarify specific recognition of MLLE domains and  
82 their cognate PAM2 or PAM2L sequences at the structural level. We disclose a new domain  
83 architecture of MLLE3<sup>Rrm4</sup> and uncover mechanistic details that enabled us to decipher and  
84 apply the MLLE3<sup>Rrm4</sup> binding code.

Devan, Shanmugasundaram *et al.*

85 **Results**

86 **MLLE3<sup>Rrm4</sup> constitutes a novel type of seven-helix MLLE domain**

87 In our previous study, we determined a structural model of MLLE3<sup>Rrm4</sup> using TopModel,  
88 revealing the prototypical five  $\alpha$ -helical architecture (helix  $\alpha$ 1 to  $\alpha$ 5, Fig. 1B; 14). However,  
89 crystallization trials to obtain experimental structural insights by X-ray crystallography failed.  
90 Interestingly, structure prediction using AlphaFold (29, 30) suggested the potential presence of  
91 two additional helices at the N-terminus of the MLLE3 domain connected via a serine rich  
92 flexible linker region ( $\alpha$ I and  $\alpha$ II N-terminal of  $\alpha$ 1; Fig. 1B, EV1F).

93 Intrigued by this, we expressed this N-terminally extended version of MLLE3<sup>Rrm4</sup> (aa position  
94 679-792) in *E. coli* and purified it to homogeneity (Fig. 1A, Fig. EV1A-B, H-Rrm4-M3 carrying  
95 an N-terminal hexa-histidine tag; Materials and methods). Crystallization of the protein was  
96 unsuccessful, but upon addition of synthetic peptides of PAM2L1<sup>Upa1</sup> (aa position 237-254) or  
97 PAM2L2<sup>Upa1</sup> (aa position 944 -961; Fig. 1A), crystals of suitable quality for data collection  
98 were obtained. The crystals diffracted to 1.7 Å for MLLE3<sup>Rrm4</sup>-PAM2L1<sup>Upa1</sup> and 2.4 Å for  
99 MLLE3<sup>Rrm4</sup>-PAM2L2<sup>Upa1</sup> (Supporting information (SI) Table S1) and could be solved by  
100 molecular replacement using the previously mentioned structural model obtained by  
101 AlphaFold. The X-ray structure of MLLE3<sup>Rrm4</sup> is remarkably similar to the AlphaFold predicted  
102 model (RMSD 0.5 Å), confirming the presence of two additional helices ( $\alpha$ I and  $\alpha$ II) N-  
103 terminal to the canonical MLLE domain fold consisting of five  $\alpha$ -helices ( $\alpha$ 1 –  $\alpha$ 5; Fig. 1B).

104 To test whether the additional N-terminal  $\alpha$ I and  $\alpha$ II helices play a role in the recognition  
105 of the PAM2-like sequences, we performed GST pull-down assays (14; Materials and  
106 methods). To this end, MLLE3<sup>Rrm4</sup> versions were expressed as a fusion protein with an N-  
107 terminal GST tag (Fig. 1A; G-Rrm4-M3-5H, G-Rrm4-M3-7H). G-Pab1-M containing the  
108 MLLE domain of Pab1 served as a control. PAM2 and PAM2L motifs of Upa1 were expressed  
109 as a fusion protein with the N-terminal hexa-histidine-SUMO tag (Fig. 1A; HS, 17-18 amino  
110 acid long peptides, Materials and methods).

111 GST pull-down experiments revealed that the seven-helix version was able to bind both  
112 PAM2L1,2 sequences of Upa1 in a specific manner (Fig. 1C; lane 4, Fig. EV1C, lane 4). In  
113 contrast, the shorter five-helix version failed to recognize the PAM2L1,2 sequences (Fig. 1C;  
114 lane 3). As expected, MLLE<sup>Pab1</sup> did not bind the PAM2L1,2<sup>Upa1</sup> but recognized its cognate  
115 PAM2 sequence of Upa1 (Fig. 1C; lane 2; Fig. EV1C, lane 2).

116 To gain insights into the interaction kinetics, we used ITC using purified proteins to  
117 investigate the thermodynamics of MLLE3<sup>Rrm4</sup> interactions with PAM2L1,2<sup>Upa1</sup> peptides (Fig.

Devan, Shanmugasundaram *et al.*

118 1A, H-Rrm4-M3; Fig. EV1A). This revealed a  $K_D$  of 15.7  $\mu\text{M}$  for PAM2L1<sup>Upa1</sup> and 5.7  $\mu\text{M}$  for  
119 PAM2L2<sup>Upa1</sup> and no binding to PAM2<sup>Upa1</sup> (Fig. 1D, Fig. EV1D). Thus, our *in vitro* binding  
120 results confirmed that the two newly identified N-terminal helices are essential for the  
121 interaction and that MLLE3<sup>Rrm4</sup> consisting of 7 helices, is sufficient for PAM2L1,2<sup>Upa1</sup> binding  
122 with an affinity comparable to the previously tested longer version of Rrm4 (14).

123 Sequence comparison and AlphaFold predictions with Rrm4 orthologs from related fungi  
124 revealed that the seven-helix version of MLLE3<sup>Rrm4</sup> is conserved in basidiomycetes (Fig.  
125 EV1E-F). In distantly related fungi such as the arbuscular mycorrhizal fungus *Rhizophagus*  
126 *irregularis*, we predominantly find the five helix type MLLE domains, suggesting that this short  
127 version represents the ancient form (Fig. EV1E-F). In summary, our findings reveal that  
128 MLLE3<sup>Rrm4</sup> possesses two extra N-terminal structural helices crucial for *in vitro* ligand  
129 recognition, providing insights into a new type of MLLE domain featuring seven instead of five  
130 helices.

131 **MLLE3<sup>Rrm4</sup> recognizes PAM2-like sequences with a defined binding pocket**

132 To gain insights into the MLLE3<sup>Rrm4</sup> - PAM2L1,2<sup>Upa1</sup> binding mechanism, we inspected our  
133 structural model in more detail. Superposition of both complex structures revealed striking  
134 similarity of the bound peptide conformations (Fig. 2A, RMSD 0.4  $\text{\AA}$ ). The complex interface  
135 features an extensive network of hydrophobic and polar interactions. In both structures,  
136 PAM2L<sup>Upa1</sup> peptides were bound non-canonically to the hydrophobic groove between helices  
137  $\alpha 2$  and  $\alpha 3$  of the MLLE3<sup>Rrm4</sup> domain by inserting the bulky aromatic side chains of  
138 phenylalanine and tyrosine (Fig. 2A, F248 and Y250 in PAM2L1<sup>Upa1</sup>, F955 and Y957 in  
139 PAM2L2<sup>Upa1</sup>). Electron density was present only for the C-terminal half of both PAM2L  
140 sequences consisting of 9 or 10 aa residues of the PAM2L1 or PAM2L2 peptides, respectively  
141 (Fig. 2A; aa positions 246-254 or 953-962). The N-terminal part of both peptides could not be  
142 resolved in the electron density and appears to be flexible.

143 Hydrophobic residues (G736, F740, P752, I756, and L759) of helices  $\alpha 2$ - $\alpha 3$  form the core  
144 of the peptide binding pocket (Fig. 2A-B). Q733 acts as the coordinator residue, stabilizing the  
145 PAM2L<sup>Upa1</sup> interaction by forming hydrogen bonds with the peptide backbones of the two key  
146 bulky aromatic residues F248 and Y250 or F955 and Y957 in the case of PAM2L1<sup>Upa1</sup> or  
147 PAM2L2<sup>Upa1</sup>, respectively (Fig. 2A-B). Furthermore, the positively charged side chain of K732  
148 in  $\alpha 2$  of MLLE3<sup>Rrm4</sup> establishes a polar contact with the hydroxyl group of Y250 of  
149 PAM2L1<sup>Upa1</sup> (Fig. 2B, PAM2L1<sup>Upa1</sup>), whereas the negatively charged side chain of D760 in  $\alpha 3$   
150 contacts the hydroxyl group of the Y957 of PAM2L2<sup>Upa1</sup> (Fig. 2B, PAM2L2<sup>Upa1</sup>).

Devan, Shanmugasundaram *et al.*

151 For verification, we altered key residues of MLLE3<sup>Rrm4</sup> and tested the resulting constructs  
152 in GST pull-down assays (Fig. 2C; Materials and methods). Variations at positions Q733A,  
153 F740A, R744A and I756G in MLLE3<sup>Rrm4</sup> strongly affected the interaction with both HS-  
154 PAM2L1,2<sup>Upa1</sup> versions (Fig. 2C, lane 5-8). The double substitution Q733A,F740A showed no  
155 binding (Fig. 2C, lane 9). In contrast, substituting H729A did not alter the interaction indicating  
156 that this position is not essential for interaction (Fig. 2C, lane 4).

157 **Identifying an essential FxY core in PAM2-like peptides of Upa1**

158 To determine the critical residues in the PAM2L1,2<sup>Upa1</sup> peptides, different variants were tested  
159 in GST pull-down assays (Fig. 2D). Alanine substitutions at positions F248 or Y250 in HS-  
160 PAM2L1<sup>Upa1</sup> as well as F955 or Y957 in HS-PAM2L2<sup>Upa1</sup> abolished the interaction with the G-  
161 Rrm4-M3-7H (Fig. 2E, lane 4, 5 and lane 11, 12, respectively). This outcome was expected  
162 since F248, Y250 in PAM2L1 and F955, Y957 in PAM2L2<sup>Upa1</sup> are inserted into the  
163 hydrophobic pocket between helices 2 and 3. F248 of PAM2L1<sup>Upa1</sup> and F955 of PAM2L2<sup>Upa1</sup>  
164 are involved in aromatic stacking with F740 in the MLLE3<sup>Rrm4</sup> similar to the PAM2<sup>PAIP2</sup>-  
165 MLLE<sup>PABP</sup> interaction in human, which is crucial for peptide binding (22). Alanine  
166 substitutions at positions P251 in PAM2L1<sup>Upa1</sup> (P958 in PAM2L2<sup>Upa1</sup>) did not affect the binding  
167 with the MLLE3<sup>Rrm4</sup> (Fig. 2D, lane 6, 13). This is consistent with the structural information,  
168 since the proline residues of both PAM2L1,2<sup>Upa1</sup> are exposed outside the peptide binding pocket  
169 and do not significantly contribute to PAM2L<sup>Upa1</sup>-MLLE3<sup>Rrm4</sup> interactions (Fig. 2A-B).  
170 Binding was not affected when D246 in PAM2L1<sup>Upa1</sup> and D953 in PAM2L2<sup>Upa1</sup> were  
171 substituted with alanine (Fig. 2E, lane 3, 10). High b-factors reveal a high degree of flexibility  
172 in this region of both PAM2L1,2<sup>Upa1</sup> peptides (Fig. EV2E). Therefore, D246 and D953 might  
173 not be essential for interaction but could play a supporting role in stabilizing the complex  
174 through electrostatic interactions with R744 of MLLE3<sup>Rrm4</sup> (Fig. 2B). Additionally, GST pull-  
175 down assays using an N-terminally truncated (NT) versions of both HS-PAM2L1 and 2<sup>Upa1</sup>  
176 confirmed that the shorter version of the peptides found in the co-crystallized structure (Fig.  
177 2A) is sufficient for the interaction (Fig. 2E, lane 7, 14).

178 Previously, we reported that the Rrm4 from *Rhizophagus irregularis* (*RiRrm4*) co-  
179 localized with Upa1-Gfp and shuttled on endosomes in *U. maydis* (31). We hypothesized that  
180 this interaction might be mediated by the MLLE3 domain of *RiRrm4* (*RiMLLE3<sup>Rrm4</sup>*) by  
181 recognizing the PAM2L motifs of Upa1. However, contrary to the MLLE3<sup>Rrm4</sup> of *U. maydis*  
182 (*UmMLLE3<sup>Rrm4</sup>*), *RiMLLE3<sup>Rrm4</sup>* consists of only five helices. Comparing the AlphaFold  
183 structural model of the complex of *R. irregularis* MLLE3<sup>Rrm4</sup> with *U. maydis* PAM2L2<sup>Upa1</sup>

Devan, Shanmugasundaram *et al.*

184 peptide (ipTM = 0.7) revealed that *RiMLLE3*<sup>Rrm4</sup> retains a perfectly similar PAM2-like peptide  
185 binding pocket comparable to *UmMLLE3*<sup>Rrm4</sup> in spite of having only five helices (Fig. EV2C).  
186 Additionally, we observed that the  $\alpha$ I and  $\alpha$ II of *UmMLLE3*<sup>Rrm4</sup> are involved in multiple intra  
187 molecular interaction and pushing the  $\alpha$ 5 towards the  $\alpha$ 3, whereas in *RiMLLE3*<sup>Rrm4</sup> the  $\alpha$ 5 is  
188 slightly deviated and aligned closely towards the  $\alpha$ 3 even in the absence of the  $\alpha$ I and  $\alpha$ II (Fig.  
189 EV2 D). To verify this interaction, we performed pull-down experiments. Consistently, HS-  
190 PAM2L1,2<sup>Upa1</sup> peptides from *U. maydis* bound to the five-helix version of *RiMLLE3*<sup>Rrm4</sup> (Fig.  
191 EV2B, G-*RiRrm4*-M3, lane 2, 3). Hence, the MLLE3-PAM2L interaction appears to be  
192 evolutionarily conserved. In essence, structural and biochemical analysis allowed the  
193 identification of the FxY core of PAM2L sequences as essential determinant for MLLE3<sup>Rrm4</sup>  
194 recognition.

195 **MLLE3<sup>Rrm4</sup> is necessary and sufficient for endosomal attachment**

196 For functional analysis of the seven-helix type MLLE3 domain, we expressed various versions  
197 of Rrm4 (Fig. 3A), fused with the red fluorescent protein mKate2 at their C-termini in *U. maydis*  
198 (designated Kat, 32). As a genetic background, we used laboratory strain AB33 expressing  
199 bE/bW, the key heteromeric transcription factor for hyphal growth, under the control of the  
200 nitrogen source-regulated promoter  $P_{nar1}$  (33). Therefore, unipolar hyphal growth can be elicited  
201 efficiently and synchronously by switching the nitrogen source (11, 34). Additionally, the  
202 strains expressed Upa1-Gfp to verify that, as expected, mutations in Rrm4 did not influence  
203 shuttling of Upa1-positive endosomes (Fig. EV3A; 14, 15).

204 The wild type version of Rrm4-Kat is fully functional, as indicated by unipolar growth  
205 and shuttling on endosomes (Fig. 3B-D). As reported previously, deletion of MLLE3<sup>Rrm4</sup>  
206 (Rrm4-M3 $\Delta$ -Kat; 35) resulted in bipolar growth and static Rrm4 signals (Fig. 3A-D; Fig.  
207 EV3B-D; 14). Rrm4 versions lacking  $\alpha$ I and  $\alpha$ II also lost functionality (Fig. 3A-D; Fig. EV3B-  
208 D). Similarly, double substitutions in key amino acids Q733A and F740A affected function  
209 (Fig. 3A-D; Fig. EV3B-D). Interestingly, the variation of Q733 to alanine caused the  
210 characteristic increase of bipolar growth indicating that the protein is not functional (Fig. 3B-  
211 C). However, weak shuttling of Rrm4-Q733A-Kat was observed, suggesting residual  
212 interaction with PAM2L motifs of Upa1 (Fig. 3D; Fig. EV3A-C). Taken together, *in vivo*  
213 studies are in agreement with our structural data and highlight the importance of MLLE3<sup>Rrm4</sup>  
214 for endosomal transport.

215 To demonstrate that MLLE3<sup>Rrm4</sup> alone is sufficient for endosomal shuttling, we generated  
216 a strain expressing only MLLE3<sup>Rrm4</sup> (Fig. 3A). We tested two versions. Firstly, in Rrm4<sup>16-673 $\Delta$</sup> -

Devan, Shanmugasundaram *et al.*

217 Kat strains, MLLE3<sup>Rrm4</sup> was expressed under the control of the native promoter. Hyphae grow  
218 bipolarly because this domain cannot replace the full-length protein in function (Fig. 3B-C).  
219 Secondly, the MLLE3<sup>Rrm4</sup> construct used above was expressed under the control of the  
220 constitutively active tef promoter by ectopic insertion at the *ip<sup>S</sup>* locus, in addition to the wild  
221 type allele of *rrm4* (Fig. 3A, see Materials and methods). As expected, this strain showed  
222 unipolar growth (Fig. 3B,C). Importantly, in both strains, the MLLE3<sup>Rrm4</sup>-Kat fusion exhibited  
223 endosomal shuttling with comparable velocity and distance travelled similar to the wild type  
224 (Fig. 3E, Fig. EV3D-F). In both cases, MLLE3-Kat was mislocalized and exhibited aberrant  
225 staining of microtubules (Fig 3E). This is reminiscent for Rrm4 versions lacking the accessory  
226 function of MLLE1 and MLLE2 (14). In essence, the seven-helix type MLLE3 domain of Rrm4  
227 is necessary and sufficient for attachment to transport endosomes.

228 **Deciphering the binding code for MLLE<sup>Pab1</sup> and MLLE3<sup>Rrm4</sup>**

229 To understand how MLLE<sup>Pab1</sup> and MLLE3<sup>Rrm4</sup> domains of *U. maydis* recognize the PAM2 and  
230 PAM2L sequences of Upa1, we began by solving the co-structure of MLLE<sup>Pab1</sup> with the cognate  
231 ligand PAM2<sup>Upa1</sup>. Initially, we employed AlphaFold to predict the structural model of  
232 MLLE<sup>Pab1</sup>, revealing that it is consisted of five helices similar to the MLLE<sup>PABPC1</sup> (Fig. EV4D,  
233 16). This structural similarity is reflected in sequence similarity to other MLLE domains (Fig.  
234 EV4E), indicating evolutionary conservation from fungi to mammals.

235 For experimental verification, we expressed a version of MLLE<sup>Pab1</sup> (aa position 567-636)  
236 in *E. coli* and purified to homogeneity (Fig. EV4A-B; H-Pab1-M carrying an N-terminal hexa-  
237 histidine-tag; Materials and methods). To gain insights into the interaction kinetics, we utilized  
238 ITC with purified protein to investigate the thermodynamics of MLLE<sup>Pab1</sup> interaction with the  
239 PAM2<sup>Upa1</sup> peptide (aa position 128-144; Fig. 1A). We determined a  $K_D$  of 15  $\mu\text{M}$  (Fig. EV4C),  
240 confirming that this version is sufficient for PAM2 binding with an affinity comparable to our  
241 previous report (14).

242 Once again, attempts to crystallize the protein in its apo state were unsuccessful. However,  
243 upon addition of synthetic PAM2<sup>Upa1</sup> peptide, crystals of suitable quality for data collection  
244 were obtained. These crystals diffracted to a resolution of 2.0  $\text{\AA}$  and were successfully solved  
245 by molecular replacement using the structural model generated by AlphaFold (Fig. EV4D; SI  
246 Table S1, MLLE<sup>Pab1</sup>-PAM2<sup>Upa1</sup>).

247 The peptide bound to MLLE<sup>Pab1</sup> by wrapping around  $\alpha$ 3 of MLLE<sup>Pab1</sup>, interacting with the  
248 hydrophobic pockets between helices  $\alpha$ 2- $\alpha$ 3 and helices  $\alpha$ 3- $\alpha$ 5 (Fig. 4A). Hydrophobic residues  
249 in the  $\alpha$ 2,  $\alpha$ 3 and  $\alpha$ 5 of MLLE<sup>Pab1</sup> form the core of its peptide binding pocket (Fig. 4A). These

Devan, Shanmugasundaram *et al.*

250 two pockets provide the most important binding interactions, recognizing the conserved leucine  
251 (L132) and phenylalanine (F139) residues in the PAM2<sup>Upa1</sup> peptide (Fig. 4A). Notably, the  
252 conserved Y580 within MLLE<sup>Pab1</sup> restricts the second hydrophobic pocket, thereby  
253 encompassing F139 (Fig. 4A). Several hydrogen bonds stabilize the interaction: e.g., N135 and  
254 A136 of PAM2<sup>Upa1</sup> interact with K593 of MLLE<sup>Pab1</sup> and S142 of PAM2<sup>Upa1</sup> interacts with E577  
255 of MLLE<sup>Pab1</sup>. Additionally, P141 establishes a hydrogen bond to the coordinator glutamine  
256 (Q573) of MLLE<sup>Pab1</sup> (Fig. 4 A).

257 For validation, we introduced variations in the key residues of the PAM2<sup>Upa1</sup> peptide and  
258 tested the resulting constructs in GST pull-down assays (Fig. 4B, Materials and methods).  
259 Variations at positions L132A or F139A in HS-PAM2<sup>Upa1</sup> abolished the interaction with the G-  
260 Pab1-M (Fig. 4B, lane 3, 4), as expected, since these residues are crucial for the MLLE binding  
261 (Fig. 4A, Fig. EV4E). Substitution at P141A disrupted the interaction with G-Pab1-M (Fig. 4B,  
262 lane 5). This is supported by the *b*-factors, which are low for P141 (Fig. EV4F), indicating low  
263 flexibility that might increase upon variation to alanine. Our *in vitro* interaction assays  
264 confirmed that L132 and F139 are the crucial residues in PAM2<sup>Upa1</sup> for interaction with  
265 MLLE<sup>Pab1</sup>. Thus, we observed a clear difference in the mode of binding between PAM2<sup>Upa1</sup> and  
266 PAM2L<sup>Upa1</sup> by the MLLE domains of Pab1 and Rrm4, respectively.

267 To further confirm the binding code of the two types of MLLE domains, we generated  
268 hybrid versions of the PAM2<sup>Upa1</sup> and PAM2L<sup>Upa1</sup> and tested the resulting constructs in GST  
269 pull-down experiments. The hybrid containing the N-terminal half of PAM2<sup>Upa1</sup> with the critical  
270 leucine and the C-terminal tyrosine was bound by both MLLE domains, but showed reduced  
271 signal intensity (Fig. 4C, lane 3). In contrast, the complementary hybrid sequence was not  
272 bound by any MLLE domain (Fig. 4C, lane 4). Even more convincingly, the simple insertion  
273 of the critical tyrosine of the PAM2L<sup>Upa1</sup> sequence in the PAM2<sup>Upa1</sup> background resulted in a  
274 synthetic version that is recognized by both MLLE domains (Fig. 4C, lane 5), whereas insertion  
275 of critical leucine residue in the PAM2L<sup>Upa1</sup> peptide did not mediate the peptide interaction with  
276 MLLE<sup>Pab1</sup> (Fig. 4C, lane 6). In essence, solving the co-structures of MLLE domains with their  
277 cognate PAM2 and PAM2L sequences allowed deciphering binding specificity and revealed  
278 two distinct, evolutionarily conserved peptide recognition modes.

## 279 **Identification of new Rrm4 interaction partners**

280 As pointed out above, Rrm4 remains associated with shuttling endosomes in the absence of  
281 Upa1, suggesting the presence of additional endosomal adaptor proteins (15). Therefore, we  
282 aimed to leverage our understanding of the binding mechanism and critical residues of PAM2L

Devan, Shanmugasundaram *et al.*

283 recognition to predict unknown interaction partners of MLLE3<sup>Rrm4</sup>. A similar strategy, based  
284 on the PAM2 consensus sequences, previously identified Upa1 and Upa2 as Rrm4 interaction  
285 partners (15, 34).

286 Initially, we utilized the fact that the critical FxY core sequence of PAM2L1,2<sup>Upa1</sup> is N-  
287 terminally flanked by acidic residues (Fig. 1A). Using the KEGG motif search algorithm (36),  
288 we screened for similar PAM2L-motif containing proteins in *U. maydis* genome using the code  
289 ([DE]-[DE]-F-x-Y), retrieving 47 candidates, including the known PAM2L1,2<sup>Upa1</sup>. Next, we  
290 assessed the accessibility of the interaction motif by visually scanning AlphaFold-predicted  
291 models in the unstructured regions (16, 37). We shortlisted 23 candidates containing PAM2L  
292 motifs in either intrinsically disordered regions (IDR) or short unstructured linkers. Third, we  
293 examined the evolutionary conservation of the PAM2L sequences in fungi and shortlisted 12  
294 candidates (SI, Table S4). Finally, we searched for candidates in which the PAM2L motif is  
295 present in basidiomycetes with hyphal growth mode, such as *U. hordei* and *Sporisorium*  
296 *reilianum*, but absent in those proliferating mainly in the yeast form, such as *Malassezia*  
297 *globosa* and *Cryptococcus neoformans*. Applying these four levels of selection criteria, we  
298 identified nine new PAM2L candidates specific for basidiomycetes forming hyphae. The  
299 remaining three candidates harbored PAM2L sequences in linker regions (SI, Table S4).

300 Initially, we selected Vps8 (Fig. 5A; UMAG\_15064), which is part of the CORVET  
301 complex (class C core vacuole/endosome tethering) and is known to be present on Rab5a  
302 positive endosomes in *U. maydis* (38). Examining the evolutionary conservation of the PAM2L  
303 sequence revealed a potential second PAM2L sequence, containing a consensus FxY core motif  
304 (Fig. EV5A). Both sequences are present in its IDR (Fig. 5A,C; PAM2L1<sup>Vps8</sup>, PAM2L2<sup>Vps8</sup>)  
305 reminiscent of Upa1 which features two PAM2L sequences in its N-terminal unstructured  
306 region (Fig. EV5C, 15), absent in the respective *M. globosa* homologs (Fig. EV5A).

307 To test a PAM2L candidate present in a linker region, we selected Taf7 (Transcription  
308 initiation factor TFIID subunit 7, UMAG\_10620; Fig 5B, Fig. EV5B). The evolutionarily  
309 conserved Taf7 functions during transcription and nucleocytoplasmic mRNA export (39, 40).

310 To evaluate the binding capacity of the *de novo* predicted novel PAM2L-motifs, we  
311 performed GST pull-down assays (Fig. 5D; HS-PAM2L1<sup>Vps8</sup>, HS-PAM2L2<sup>Vps8</sup> and HS-  
312 PAM2L<sup>Taf7</sup>, Materials and methods). PAM2L sequences of Vps8 and Taf7 interacted  
313 specifically with MLLE3<sup>Rrm4</sup> but not with MLLE3<sup>Pab1</sup> (Fig. 5C-D; lane 4-6). The second PAM2L  
314 sequence of Vps8, lacking acidic residues N-terminal of the FxY core, showed a weaker  
315 interaction with MLLE3<sup>Rrm4</sup> (Fig. 5C-D, lane 5), emphasizing the supportive role of these acidic  
316 residues through electrostatic interaction. Thus, we successfully predicted additional interaction

Devan, Shanmugasundaram *et al.*

317 partners of MLLE3<sup>Rrm4</sup> in *U. maydis* and demonstrated their interaction *in vitro*. In essence, we  
318 succeeded in deciphering and applying the MLLE binding code to identify novel interaction  
319 partners *de novo*. Future research will clarify the mechanistic and functional details of the  
320 underlying interactions.

321 **Human MLLE domains differentiate between binding partners**

322 To explore whether a similar MLLE binding code governs beyond the fungal lineage, we turned  
323 our focus to the two known MLLE domains from humans, MLLE<sup>PABPC1</sup> and MLLE<sup>UBR5</sup> (Fig.  
324 6A). GST pull-down assays demonstrated that MLLE<sup>PABPC1</sup> interacts with known PAM2  
325 sequences from PAIP2, TOB and GW182 (Fig 6C-D, lane 1-3). However, we couldn't detect  
326 the known interaction with the PAM2 sequence of MKRN1 (RNA-binding E3 ubiquitin ligase  
327 Makorin Ring Finger Protein 1; aa position 161 – 177; 41). Given that a short PAM2<sup>MKRN1</sup>  
328 version of 18 amino acids was not previously tested, additional flanking sequences may be  
329 necessary for this interaction. Intriguingly, our analysis of MKRN1 uncovered a potential  
330 PAM2 variant (PAM2L<sup>MKRN1</sup>) sequence at position 329-346 that is evolutionarily conserved in  
331 a low complexity switch region (Fig. 6 A-C, EV6, PAM2L<sup>Mkrn1</sup>). Indeed, this PAM2L sequence  
332 exhibited a weak interaction with MLLE<sup>PABPC1</sup> (Fig. 6C, lane 5). Consistent with previous  
333 reports, MLLE<sup>PABPC1</sup> did not bind to the PAM2L sequence of UBR5 (Fig. 6D, lane 6; 26).

334 Comparative analysis with MLLE<sup>UBR5</sup> showed clear differences in binding specificity.  
335 While it recognized classical PAM2 sequences of PAIP2 and TOB, it did not interact with the  
336 non-canonical PAM2<sup>GW182</sup> variant (Fig. 6D, lane 1-3; G-Ubr5-M). Furthermore, MLLE<sup>UBR5</sup>  
337 exhibited stronger binding to the PAM2L<sup>MKRN1</sup> than MLLE<sup>PABPC1</sup> (Fig. 6D, lane 5; G-Ubr5-M).  
338 Although we failed to detect the interaction with its own PAM2L<sup>HECT</sup> sequence (Fig. 6D, lane  
339 6; G-Ubr5-M), this failure is likely attributable to its low binding affinity ( $K_D$  of 50  $\mu$ M, 26).  
340 Therefore, human MLLE domains display differential binding capacities, likely utilizing  
341 specific binding interfaces. Notably, we identified MKRN1 as a new interaction partner of  
342 UBR5 (see Discussion).

343 Given the significance of RNA-binding MKRN1 as a target for MLLE domain-containing  
344 proteins in human, we investigated the MKRN1 homologue Mkr1 from *U. maydis*  
345 (UMAG\_12122; Fig. 6C, EV6). Mkr1 contains a conserved PAM2 and a PAM2L sequence at  
346 position 77 - 93 and 180 - 197, respectively, in a conserved low complexity switch region akin  
347 to its human ortholog (Fig. 6A-C, Fig. EV6). GST pull-down experiments revealed that  
348 MLLE3<sup>Rrm4</sup> only bound the PAM2L<sup>Mkr1</sup> sequence (Fig. 6E, lane 4, 5; G-Rrm4-M3-7H, lane  
349 4,5), whereas MLLE<sup>Pab1</sup> recognized both PAM2<sup>Mkr1</sup> and PAM2L<sup>Mkr1</sup> sequences (Fig. 6E, G-

Devan, Shanmugasundaram *et al.*

350 Pab1-M, lane 4, 5). This confirms that PAM2<sup>Mkr1</sup> functions as classical PAM2 motif. However,  
351 the PAM2L<sup>Mkr1</sup> sequence is recognized by both MLLE domains, reminiscent of our synthetic  
352 PAM2/PAM2L peptides (Fig. 4C, lane 3, 5) and the PAM2L<sup>MKRN1</sup> binding by human MLLE  
353 domains (Fig. 6 D, lane 5). In summary, Mkr1 is a previously unknown interaction partner of  
354 the endosomal mRNA transporter Rrm4 as well as the poly(A)-binding protein Pab1. Overall,  
355 MLLE domains serve as sophisticated binding platforms for the formation of defined  
356 interaction networks with PAM2 and PAM2L motif-containing partners.

357

## 358 **Discussion**

359 The transport of mRNAs via endosomes represents a fundamental trafficking mechanism across  
360 various organisms, including fungi, plants and humans (6). Moreover, growing evidence  
361 suggests that endosome-coupled translation is a conserved biological process crucial for local  
362 protein synthesis serving purposes such as septin complex formation in hyphae and localized  
363 mitochondrial protein import in neurons (10, 42). To elucidate the underlying mechanisms, it  
364 is essential to comprehend how mRNAs are attached to endosomes. Here, we present that the  
365 endosomal mRNA transporter Rrm4 harbors a novel seven-helix-type MLLE domain, which is  
366 necessary and sufficient for endosomal attachment (Fig. 7A). These underlying interactions are  
367 integral components of a sophisticated MLLE/PAM2 recognition system, forming a resilient  
368 SLiM-based network with a high level of binding redundancy (Fig. 7B).

## 369 **The SLiM-based MLLE domain binding code**

370 The canonical MLLE domain is typically comprised of four to five helices arranged in a defined  
371 architecture, with a specific binding interface involving helices 2,3 and 5 recognizing cognate  
372 PAM2 motifs (Fig. 7A). An exception to this is the PAM2 sequence of GW182, which utilizes  
373 a different interface along helix 2-3 (Fig. 7A, right; 23). Here, we elucidate how the new seven-  
374 helix-type MLLE domain, MLLE3<sup>Rrm4</sup> is able to differentiate between PAM2 and related  
375 PAM2L sequences. MLLE3<sup>Rrm4</sup> contains two additional helices at the N-terminus of the  
376 conserved MLLE core, a feature absent in all currently known MLLE domains: MLLE1<sup>Rrm4</sup>,  
377 MLLE2<sup>Rrm4</sup>, MLLE<sup>Pab1</sup> from *U. maydis*, and MLLE<sup>PABC1</sup> and MLLE<sup>UBR5</sup> domains from human  
378 and other eukaryotes (Fig. 7A; 14, 19). The two additional helices  $\alpha$ I and  $\alpha$ II of MLLE3<sup>Rrm4</sup>  
379 are not directly involved in peptide recognition but rather prevent canonical PAM2 binding.  
380 The seven-helix-type MLLE3<sup>Rrm4</sup> utilizes a different binding interface along helix 2, resembling  
381 the PAM2<sup>GW182</sup> binding of human MLLE<sup>PABC1</sup> (Fig. 7A). Thus, we demonstrate that the  
382 conserved  $\alpha$ -helical core of the MLLE domain employs various, yet defined, binding pockets

Devan, Shanmugasundaram *et al.*

383 to determine a precise specificity of SLiM binding. Additionally, we decoded the central amino  
384 acid motifs within the PAM2 and PAM2L sequences that determine exquisite binding  
385 specificity.

386 Intriguingly, fundamental principles of MLLE interactions are conserved in humans. The  
387 MLLE domain-containing proteins PABC1 and UBR5 share targets such as PAIP2 and TOB  
388 (19). However, we also observed clear differential recognition, such as MLLE<sup>PABC1</sup> and  
389 MLLE<sup>UBR5</sup> binding to PAM2<sup>GW182</sup> and PAM2L<sup>MKRN1</sup>, respectively. Recent cryo-EM structural  
390 analyses revealed that UBR5 forms functional dimers and tetramers (27, 28). Interestingly,  
391 MLLE<sup>UBR5</sup> is inserted in the middle of the catalytic HECT domain essential for ubiquitin  
392 transfer (Fig. 6A; 24, 27, 28). Thus, recruitment of other factors, such as our newly described  
393 interaction with E3 ubiquitin ligase MKRN1 via its PAM2L sequence, might directly influence  
394 the ubiquitin chain elongation activity of UBR5. The fact that MKRN1 is an RBP links both  
395 MLLE domain proteins, UBR5 and PABC1, to RNA binding protein networks comparable to  
396 their fungal counterparts. Consistently, Mkr1 from *U. maydis* contains a PAM2 and PAM2L  
397 sequence and might also contribute to endosomal mRNA transport.

398 **A SLiM-based RNA-binding protein network for endosomal attachment of mRNAs**

399 Understanding endosomal mRNA transport requires clear elucidation of how mRNAs,  
400 associated RNA-binding proteins, and ribosomes are tethered to endosomes. Previous studies  
401 have shown that Rrm4 continues to hitchhike on endosomes even in the absence of the PAM2L-  
402 containing protein Upa1, indicating the presence of additional adaptor proteins. Rrm4 contains  
403 a platform of three MLLE domains that operates with a strict hierarchy: MLLE1<sup>Rrm4</sup> and  
404 MLLE2<sup>Rrm4</sup> play accessory roles, whereas MLLE3<sup>Rrm4</sup> is essential for endosomal shuttling (Fig.  
405 7B; 14).

406 Applying the MLLE-binding code led to the identification of new interactors of  
407 MLLE3<sup>Rrm4</sup>, such as Taf7 and Vps8 which contain experimentally verified PAM2L sequences  
408 (Fig. 7B). Taf7 is a potential homolog of the general transcription factor Taf7 from *S. pombe*  
409 (39, 43). It might be loaded onto pre-mRNAs during transcriptional initiation, and its interaction  
410 with Rrm4 could be important during remodeling of mRNPs in the cytoplasm prior to  
411 endosomal loading. This function mirrors the mRNPs remodeling role of the nuclear factor  
412 Loc1p during *ASH1* mRNA transport in *S. cerevisiae* (44). Additionally, the nuclear history of  
413 splicing factor Num1 from *U. maydis*, which interacts with molecular motor Kinesin-1, has  
414 been implicated in microtubule-dependent trafficking, such as endosomal mRNA transport  
415 (45).

Devan, Shanmugasundaram *et al.*

416 The second example, Vps8 is particularly intriguing due to its known localization to  
417 transport endosomes through interaction with Rab5a (38). Vps8 performs an evolutionarily  
418 conserved function during endosome maturation by recruiting the CORVET complex (class C  
419 core vacuole/endosome tethering; 38, 46). In *U. maydis*, Vps8 might have acquired new  
420 functionality during endosomal mRNA transport, potentially serving as an additional  
421 endosomal adaptor alongside Upa1 (Fig. 7B). Both proteins, Vps8 and Upa1 have endosomal  
422 counterparts in *S. cerevisiae*, namely RING finger E3 ligases Vps8p and Pip1p, respectively  
423 (Vps8p and Pip1p, 15, 47).

424 As pointed out above, Vps8 interacts with the endosomal marker GTPase Rab5 (38),  
425 indicating a common theme in endosomal mRNA attachment. In plants, two RRM-type RNA-  
426 binding proteins interact with endosomal component *N*-ethylmaleimide-sensitive factor (NSF)  
427 as well as Rab5a (48). However, detailed structural information is currently lacking. In humans,  
428 a recent high-resolution structural analysis of the FERRY complex (Five-subunit Endosomal  
429 Rab5 and RNA/ribosome intermediaY) revealed that the pentameric complex functions as  
430 Rab5 effector (49, 50). The integral subunit Fy2 serves as central binding hub, connecting  
431 FERRY complex members and mRNAs to Rab5. The complex exhibits a novel clamp-like  
432 structure for RNA binding, involving no classic RNA-binding domain but rather coiled coil  
433 regions (49). However, whether cargo mRNAs are recognized in a sequence-specific manner  
434 has not been clarified yet. Potential cargo mRNAs encode mitochondrial proteins (50), which  
435 is a shared feature with the previously reported mRNA cargos of fungal endosomal transport  
436 (11).

437 Studying the MLLE/PAM2L interaction has provided a detailed understanding of the key  
438 components involved in endosomal mRNPs attachment. Our findings align with recent  
439 perspectives suggesting that RBPs form intricate interaction networks using SLiMs (20, 21).  
440 The PAM2 and related SLiMs are known to play roles in network formation via the  
441 MLLE<sup>PABPC1</sup>. Here, we add another layer of complexity by demonstrating that two related  
442 MLLE domains form a sophisticated network. On one hand, they share interaction partners and  
443 binding sequences, but on the other hand, they recognize specific partners using distinct SLiMs  
444 (Figure 7B).

#### 445 Conclusion

446 The hitchhiking of mRNAs with shuttling endosomes represents a common mode of trafficking  
447 observed across eukaryotes, including fungi, plants and humans. This phenomenon is  
448 implicated in a diverse array of processes such as the growth of infectious hyphae, endosperm

Devan, Shanmugasundaram *et al.*

449 development and neuronal functions (6, 51, 52). Currently, the most comprehensive  
450 understanding exists within fungi, where extensive knowledge on the set of molecular motors  
451 (53), the molecular identity of Rab5a-positive endosomes, adaptors, scaffold proteins, key  
452 RNA-binding protein, as well as cargo mRNAs with associated ribosomes are available (6).  
453 Now, we provide mechanistic insights into the intricate network of RNA-binding proteins  
454 during endosomal transport. RBPs rely on MLLE domains recognizing distinct SLiMs in  
455 interaction partners. By deciphering the underlying binding code, we have identified new  
456 interaction partners in both fungi and humans. Studying fundamental principles of mRNA  
457 transport in the microbial model provides a better understanding of pathogenic development (1,  
458 54) and might guide future research endeavors in plant and neuronal systems.  
459

Devan, Shanmugasundaram *et al.*

460 **Materials and methods**

461 **Structure prediction, modelling and analysis**

462 To obtain three dimensional (3D) structural models of the domains and full-length proteins, we  
463 utilized Alphafold2 algorithm (29). Monomeric 3D models were generated by providing the  
464 protein sequences as input with default parameters in the AlphaFold2\_advanced colab notebook  
465 (30). Five models were generated for each protein sequence, and the best model was selected  
466 based on the pLDDT ranking. Structural analysis and comparison were conducted using the  
467 PyMOL molecular graphics system (version 2.0, Schrödinger) and UCSF ChimeraX (version  
468 1.7.1, 55). Interface residues were identified using the PDBePisa server and LigPlot<sup>+</sup> (56, 57).

469 **Plasmids, strains, and growth conditions**

470 *E. coli* (K12) Top10 cells (Thermofisher C404010) were utilized for molecular cloning and  
471 plasmid DNA propagation, while *E. coli* BL21(DE3) LOBSTR cells (Kerafast EC1002) were  
472 employed for recombinant protein expression and purification. Sequences encoding  
473 MLLE3<sup>Rrm4</sup>, MLLE<sup>Pab1</sup> were inserted into the pET22 vector (Merck 69744) with a hexa-  
474 histidine tag at the N-terminus (Fig. 1A, H-Rrm4-M3 and H-Pa1-M) for affinity purification.  
475 Additionally, sequences encoding MLLE3 variants (wildtype, and mutations, SI Tables S11–  
476 S12) were inserted into the pGEX-2T vector (Merck GE28-9546-53) with Glutathione S-  
477 Transferase (GST) sequence at N-terminus for pull-down experiments. Sequences encoding  
478 PAM2 and PAM2L variants were inserted into the Champion pET-Sumo vector (Thermofisher  
479 K30001) with a hexa-histidine and SUMO fusion tag at the N-terminus (HS-PAM2/PAM2L)  
480 for the pull-down experiments. Standard techniques were applied for *E. coli* transformation,  
481 cultivation, and plasmid isolation.

482 All *Ustilago maydis* strains are derivatives of AB33 strain, in which hyphal growth is induced  
483 by switching the nitrogen source in the medium (33). *U. maydis* yeast-like cells were cultivated  
484 in complete medium (CM) supplemented with 1% glucose, while hyphal growth was induced  
485 by transferring to nitrate minimal medium (NM) supplemented with 1% glucose. Incubation  
486 was carried out at 28°C with constant agitation at 200 rpm (33). Further details regarding growth  
487 conditions and general cloning strategies for *U. maydis* can be found elsewhere (58-60).  
488 Plasmids were verified by sanger sequencing, and *U. maydis* strains were generated by  
489 transforming progenitor strains with linearized plasmids using SspI, or SwaI restriction  
490 enzymes. Successful integration of constructs at the desired locus was confirmed by diagnostic  
491 PCR, counter-selection between resistance markers, and Southern blot analysis (59). For

Devan, Shanmugasundaram *et al.*

492 ectopic integration, plasmids were linearized with SspI, targeted to the ipS locus (61) and  
493 selected with carboxin (Cbx). A detailed description of all plasmids, strains, and  
494 oligonucleotides is provided in SI Tables S8–S12.

495 **Recombinant protein expression**

496 Freshly transformed *E. coli* cells were inoculated in 20 ml of expression media. To achieve  
497 high-density expression cultures with tight regulation of induction and expression in shake  
498 flasks, we formulated a complex media inspired by the principle of Studier's autoinduction  
499 media (14, 62). Glucose was added to the media to prevent the unintended induction and leaky  
500 expression of target protein. Phosphate buffer was included to counteract the acidity resulting  
501 from glucose metabolism. Additionally, the medium was supplemented with glycerol, nitrogen,  
502 sulphur, and magnesium to promote high-density growth. Unlike Studier's autoinduction  
503 media, our formulation does not contain lactose; allowing for induction with IPTG at desired  
504 titer and temperature (62; 1.6 % Tryptone, 1% Yeast extract, 50 mM Na<sub>2</sub>HPO<sub>4</sub>, 50 mM  
505 KH<sub>2</sub>PO<sub>4</sub>, 25 mM [NH<sub>4</sub>]<sub>2</sub>SO<sub>4</sub>, 0.5% Glycerol, 0.5% Glucose, 2 mM MgSO<sub>4</sub>). Chloramphenicol  
506 (34 mg/ml) was consistently added to the expression media to select for plasmid encoding the  
507 rare codons. For selection of the expression construct, ampicillin (100 mg/ml), or kanamycin  
508 (200 mg/ml) were used. It's worth noting that the high concentration of kanamycin was  
509 employed to prevent unintended resistance caused by high phosphate concentration (62). This  
510 optimized media formulation facilitated the growth of high-density cultures, reaching up to  
511 OD<sub>600</sub> = 16 in overnight cultures. We refer to this media as TurboX media for protein  
512 expression. The supernatant from the overnight culture was removed by centrifugation at 4°C,  
513 5000 × g for 2 minutes. Cell pellets were resuspended in fresh media with an initial OD<sub>600</sub> of  
514 0.1 and incubated at 37°C with 200 rpm agitation for approximately 2 hours and 30 minutes  
515 until the OD<sub>600</sub> = 1.2. Protein expression was induced by addition of 1 mM IPTG and incubating  
516 at 28°C, 200 rpm, for 4 hours, followed by harvesting via centrifugation at 4°C, 6,000 × g for  
517 5 minutes.

518 **Protein purification**

519 For crystallography and ITC experiments, MLLE variants were purified following the  
520 methodology outlined in our previous report (14). In brief, the hexa-histidine tagged H-Rrm4-  
521 M protein was purified using Nickel-based affinity chromatography (HisTrap HP, GE  
522 Healthcare) on Akta primeplus FPLC system (GE Healthcare). Cell pellets were thawed on ice  
523 and resuspended in buffer A (20 mM HEPES pH 8.0, 200 mM NaCl, 1 mM EDTA, 10 mM

Devan, Shanmugasundaram *et al.*

524 Imidazole pH 8.0, 1 mM PMSF, 0.5 mg/ml Lysozyme, 0.5 mg/ml DNase). Subsequently, cells  
525 were lysed by sonication on ice and centrifuged at 4°C, 18,000 × g for 30 minutes. The  
526 resulting supernatant was loaded onto a pre-equilibrated column with buffer B (20 mM HEPES  
527 pH 8.0, 200 mM NaCl, 10 mM Imidazole), washed with buffer C (20 mM HEPES pH 8.0, 200  
528 mM NaCl, 50 mM Imidazole), eluted with buffer D (20 mM HEPES pH 8.0, 200 mM NaCl,  
529 300 mM Imidazole), and further purified by size exclusion chromatography (HiLoad 26/600  
530 Superdex 200, GE Healthcare), pre-equilibrated with storage buffer E (20 mM HEPES pH 8.0,  
531 200 mM NaCl). The H-Pab1-M version was purified using the same protocol, with the  
532 exception that the wash buffer C was prepared with 20 mM Imidazole (20 mM HEPES pH 8.0,  
533 200 mM NaCl, 20 mM Imidazole). The purity of proteins was assessed by SDS-PAGE. Purified  
534 protein samples were concentrated using Amicon 10,000 MWCO centrifugal filter units  
535 (Merck, Germany) and stored on ice at 4°C until use. Before use, protein samples were ultra-  
536 centrifuged at 4°C, 100,000 × g for 30 minutes and quantified by Nanodrop (A280). Peptides  
537 were custom-synthesized and purchased from Genscript, USA (see Fig. 1A for peptide  
538 sequence).

### 539 **GST pull-down experiments**

540 Pull-down assays were conducted following established procedures (14). Briefly, GST-MLLE  
541 variants and HS-PAM2/PAM2L variants were expressed in *E. coli* LOBSTR strain (Kerafast  
542 EC1002). Cell pellets from 50 ml *E. coli* expression culture were resuspended in 10 ml buffer  
543 F (20 mM HEPES pH 8.0, 200 mM NaCl, 1 mM EDTA; 0.5% Nonidet P-40, 1 mM PMSF,  
544 0.1 mg/ml Lysozyme). After sonication on ice, the lysate was centrifuged at 4°C, 16,000 × g  
545 for 30 minutes. One milliliter of the supernatant was then incubated with 100 µL Glutathione  
546 Sepharose (GS) resin (GE Healthcare), pre-equilibrated in buffer F for 1 hour at 4°C with  
547 constant agitation at 1,000 rpm. The GS resin was washed three times with 1 ml of buffer G (20  
548 mM HEPES pH 8.0, 200 mM NaCl, 1 mM EDTA, 0.5 % Nonidet P-40). Subsequently, the  
549 supernatant containing HS-PAM2/PAM2L variants was added to the GST-MLLE variant  
550 bound resins and incubated for 1 hour at 4°C with agitation. Following the incubation, the resins  
551 were washed as aforementioned, resuspended in 50 µL of 4x Laemmli loading buffer and 50  
552 µL of buffer G, and boiled for 15 minutes at 95 °C. 25 µL of the sample were loaded onto 12%  
553 SDS PAGE gels for analysis, followed by western blotting was using anti-His primary antibody  
554 (Sigma-Aldrich, H1029) and anti-mouse IgG HRP conjugate (Promega, W4021) as the  
555 secondary antibody. Detection was performed using ECLTM Prime (Cytiva, GERPN2236).

Devan, Shanmugasundaram *et al.*

556 Images were captured using the ImageQuant<sup>TM</sup> LAS4000 luminescence image analyzer, (GE  
557 Healthcare) in accordance with the manufacturer's instructions.

558 **Crystallization of MLLE3<sup>Rrm4</sup> and MLLE<sup>Pab1</sup>**

559 IMAC-purified MLLE versions were utilized for co-crystallization studies. Synthetic  
560 PAM2<sup>Upa1</sup> and PAM2L1,2<sup>Upa1</sup> peptides were dissolved in storage buffer E (20 mM Hepes pH  
561 8.0, 200 mM NaCl). Prior to use, protein samples were centrifuged at 100,000  $\times$  g for 30  
562 minutes and quantified by Nanodrop (A280), then mixed with the PAM2<sup>Upa1</sup> or PAM2L1,2<sup>Upa1</sup>  
563 peptide variant in a 1:1.5 molar ratio to achieve a final concentration of 12 mg/ml. Initial  
564 crystallization conditions were screened using MRC-3, 96-well sitting drop plates, and various  
565 commercially available crystallization screening kits at 12 °C. A volume of 0.1  $\mu$ L  
566 homogeneous protein-peptide solution was mixed with 0.1  $\mu$ L reservoir solution and  
567 equilibrated against 40  $\mu$ L of the reservoir. After one-week, initial rod-shaped crystals were  
568 found which were further optimized by slightly varying the precipitant concentrations.  
569 Optimization was also conducted in sitting drop plates (24-well) at 12°C but by mixing 1  $\mu$ L  
570 protein solution with 1  $\mu$ L of the reservoir solution, equilibrated against 300  $\mu$ L reservoir  
571 solution. The best diffracting crystals of MLLE3<sup>Rrm4</sup> with PAM2L1<sup>Upa1</sup> and MLLE3<sup>Rrm4</sup> with  
572 PAM2L2<sup>Upa1</sup> complexes were grown within 7 days in 0.1 M Sodium HEPES pH 7.5, 25% PEG  
573 3000. The best diffracting crystals of MLLE<sup>Pab1</sup> with PAM2 complex were grown within 7 days  
574 in 3.2 M AmSO<sub>4</sub>, 0.1M MES pH 6. Before harvesting the crystals, crystal-containing drops  
575 were overlaid with 2  $\mu$ L mineral oil and immediately frozen in liquid nitrogen.

576 **Data collection, processing, and structure refinement**

577 The complete diffraction data set of the MLLE complexes (H-Rrm4-M3 with PAM2L1<sup>Upa1</sup>, H-  
578 Rrm4-M3 with PAM2L2<sup>Upa1</sup>, H-Pab1-M with PAM2<sup>Upa1</sup>) were collected at beamline ID23EH1  
579 in Hamburg, Germany at 100 K and wavelength 0.98 Å, achieving resolutions up to 2.6 Å. All  
580 data underwent processing using the automated pipeline at the EMBL HAMBURG and were  
581 subsequently reprocessed using XDS (63). AlphaFold2 predicted models for MLLE3<sup>Rrm4</sup> and  
582 MLLE<sup>Pab1</sup> successfully phased the 1.7 Å data set of MLLE3<sup>Rrm4</sup>-PAM2L1<sup>Upa1</sup>, 2.4 Å data set of  
583 MLLE3<sup>Rrm4</sup>-PAM2L2<sup>Upa1</sup>, 2.0 Å data set of MLLE<sup>Pab1</sup>-PAM2<sup>Upa1</sup>, using the program Phaser  
584 from the program Phenix suite (64). The structure was then refined in iterative cycles of manual  
585 building and refinement using the program Coot (65), followed by software-based refinements  
586 using the Phenix suite (64). All residues were found within the preferred and additionally

Devan, Shanmugasundaram *et al.*

587 allowed regions of the Ramachandran plot, detailed data collection and refinement statistics are  
588 listed in the SI Table S1.

589 **Isothermal titration calorimetry**

590 All ITC experiments were conducted following the previous report (14). Prior to use, all the  
591 protein samples used underwent centrifugation at  $451,000 \times g$  for 30 minutes and were  
592 quantified by Nanodrop (A280). The concentration of MLLE versions (Fig. 1A, H-Rrm4-M3  
593 and H-Pa1-M) were adjusted to 100  $\mu\text{M}$  while PAM2 peptide variants were adjusted to 1200  
594  $\mu\text{M}$  using buffer G (20 mM HEPES pH 8.0, 200 mM NaCl). Using an MicroCal iTC200  
595 titration calorimeter (Malvern Panalytical technologies), a peptide variant with a volume of 40  
596  $\mu\text{L}$  was titrated to the different MLLE versions. Each experiment was conducted at least twice,  
597 maintaining consistency. ITC measurements were carried out at 25 °C with a total of 40  
598 injections (1  $\mu\text{L}$  each). The initial injection, with a volume of 0.5  $\mu\text{L}$ , was disregarded from the  
599 isotherm. Technical parameters included a reference power of 5  $\mu\text{cal s}^{-1}$ ; a stirring speed of 750  
600 rpm, a spacing time of 120 s, and a filter period of 5 s. The resulting isotherm was analyzed by  
601 fitting it with a one-site binding model using MicroCal ITC-Origin (Microcal LLC).

602 **Microscopy, image processing and image analysis**

603 Laser-based epifluorescence microscopy was conducted using a Zeiss Axio Observer.Z1,  
604 following previous report (14). To assess uni- and bipolar hyphal growth, cells were cultured in  
605 30 ml volumes until reaching an  $\text{OD}_{600}$  of 0.5, after which hyphal growth was induced. After 6  
606 hours, more than 150 hyphae per strain were examined for growth behavior ( $n = 3$ ). Cells were  
607 scored for unipolar and bipolar growth, and for the formation of a basal septum. For the analysis  
608 of signal number, velocity and distance traveled by fluorescence-labeled Rrm4-Kat variants,  
609 movies were recorded with an exposure time of 150 ms and 150 frames. Over 20 hyphae were  
610 analyzed per strain ( $n = 3$ ). All movies and images were processed and analyzed using  
611 Metamorph software (version 7.7.0.0, Molecular Devices, Seattle, IL, USA). For both  
612 micrographs and kymographs, a segment of 20  $\mu\text{m}$  from the hyphal tip was utilized. To  
613 statistically analyze the signal number, velocity and distance travelled, processive signals  
614 covering a distance of more than 5  $\mu\text{m}$  were manually counted. All collected data points are  
615 depicted, with individual replicates represented in various shades of grey for clarity, while mean  
616 values are highlighted in red. Two-tailed Student's t-tests were employed for all statistical  
617 analyses.

Devan, Shanmugasundaram *et al.*

618 **Data, Materials and Software Availability**

619 The X-ray crystallographic data have been deposited in Protein Data Bank  
620 (<https://www.rcsb.org>) under accession number (PDB ID: 8S6N, 8S6O and 8S6U) for  
621 complexes MLLE3<sup>Rrm4</sup> with PAM2L1<sup>Upa1</sup>, MLLE3<sup>Rrm4</sup> with PAM2L2<sup>Upa1</sup> and MLLE<sup>Pab1</sup> with  
622 PAM2<sup>Upa1</sup>, respectively. Strains, plasmids and their sequences are available upon request. All  
623 other data are included in the manuscript and/or supporting information.

624

625 **Acknowledgements**

626 We thank laboratory members for critically reading the manuscript. We acknowledge Drs.  
627 Georg Groth and Lutz Schmitt for supporting us with ITC experiments. We thank Dr. Astrid  
628 Port, Violetta Applegate and Stefanie Galle from Center for Structural studies (CSS) at HHU  
629 for support with X-ray crystallization. The synchrotron MX data were collected at ESRF ID23-  
630 EH1. We thank Sylvain Engilberge for the assistance in using the beamline. We are grateful  
631 to Dihia Moussaoui at the ESRF for providing assistance during data collection. We  
632 acknowledge Drs. Cornelia Rücklé, Kathi Zarnack and Julian König for the insights on the  
633 PAM2 sequences of Makorin. The work was funded by grants from the Deutsche  
634 Forschungsgemeinschaft under Germany's Excellence Strategy EXC-2048/1 - Project ID  
635 39068111 to MF; Project-ID 267205415 - SFB 1208 to MF (project A09); Project ID  
636 458090666 – SFB1535 to MF (project A03), and FA (project B02) and SHJS (project Z01).  
637 The CSS is funded by the Deutsche Forschungsgemeinschaft (DFG Grant number  
638 417919780; INST 208/740-1 FUGG; INST 208/868-1 FUGG).

639 **Author contributions**

640 SKD, SS, FA and MF designed this study and analyzed the data. SKD and SS contributed  
641 equally to the structural biology and biochemistry. KM and SS performed the cell biology  
642 experiments. KM and SKD coordinated strain generation and experimental design. SHJS, SKD  
643 and FA contributed to X-ray structure analysis. SKD and MF drafted and revised the manuscript  
644 with input from all co-authors. MF contributed funding and resources.

645

646 **Conflict of interest**

647 The authors declare that they have no competing interests.

648

649 **References**

650

651 1. M. Riquelme *et al.*, Fungal morphogenesis, from the polarized growth of hyphae to  
652 complex reproduction and infection structures. *Microbiol. Mol. Biol. Rev.* **82**, 1-47  
653 (2018).

654 2. N. A. Gow, B. Hube, Importance of the *Candida albicans* cell wall during  
655 commensalism and infection. *Curr. Opin. Microbiol.* **15**, 406-412 (2012).

656 3. D. Lanver *et al.*, *Ustilago maydis* effectors and their impact on virulence. *Nat. Rev. Microbiol.* **15**, 409-421 (2017).

658 4. J. Salogiannis, S. L. Reck-Peterson, Hitchhiking: a non-canonical mode of microtubule-  
659 based transport. *Trends in cell biology* **27**, 141-150 (2016).

660 5. G. Steinberg, The transport machinery for motility of fungal endosomes. *Fungal genetics and biology : FG & B* **49**, 675-676 (2012).

662 6. K. Müntjes, S. K. Devan, A. S. Reichert, M. Feldbrügge, Linking transport and  
663 translation of mRNAs with endosomes and mitochondria. *EMBO Rep.* **22**, e52445  
664 (2021).

665 7. M. Schuster *et al.*, Kinesin-3 and dynein cooperate in long-range retrograde endosome  
666 motility along a non-uniform microtubule array. *Mol. Biol. Cell.* **22**, 3645-3657 (2011).

667 8. X. Yao, X. Wang, X. Xiang, FHIP and FTS proteins are critical for dynein-mediated  
668 transport of early endosomes in *Aspergillus*. *Mol. Biol. Cell* **25**, 2181-2189 (2014).

669 9. E. Vollmeister *et al.*, Fungal development of the plant pathogen *Ustilago maydis*. *FEMS Microbiol. Rev.* **36**, 59-77 (2012).

671 10. S. Baumann, J. König, J. Koepke, M. Feldbrügge, Endosomal transport of septin mRNA  
672 and protein indicates local translation on endosomes and is required for correct septin  
673 filamentation. *EMBO Rep.* **15**, 94-102 (2014).

674 11. L. Olgeiser *et al.*, The key protein of endosomal mRNP transport Rrm4 binds  
675 translational landmark sites of cargo mRNAs. *EMBO Rep.* **20**, e46588 (2019).

676 12. Y. Higuchi, P. Ashwin, Y. Roger, G. Steinberg, Early endosome motility spatially  
677 organizes polysome distribution. *J. Cell Biol.* **204**, 343-357 (2014).

678 13. S. Zander, S. Baumann, S. Weidtkamp-Peters, M. Feldbrügge, Endosomal assembly and  
679 transport of heteromeric septin complexes promote septin cytoskeleton formation. *J. Cell Sci.* **129**, 2778-2792 (2016).

681 14. S. K. Devan *et al.*, A Mademoiselle domain binding platform links the key RNA  
682 transporter to endosomes. *PLoS Genet.* **18**, e1010269 (2022).

Devan, Shanmugasundaram *et al.*

683 15. T. Pohlmann, S. Baumann, C. Haag, M. Albrecht, M. Feldbrügge, A FYVE zinc finger  
684 domain protein specifically links mRNA transport to endosome trafficking. *eLife* **4**,  
685 e06041 (2015).

686 16. G. Kozlov *et al.*, Structure and function of the C-terminal PABC domain of human  
687 poly(A)-binding protein. *Proc. Natl. Acad. Sci. U. S. A.* **98**, 4409-4413 (2001).

688 17. G. Kozlov *et al.*, Solution structure of the orphan PABC domain from *Saccharomyces*  
689 *cerevisiae* poly(A)-binding protein. *The Journal of biological chemistry* **277**, 22822-  
690 22828 (2002).

691 18. P. Becht, E. Vollmeister, M. Feldbrügge, Role for RNA-binding proteins implicated in  
692 pathogenic development of *Ustilago maydis*. *Euk. Cell* **4**, 121-133 (2005).

693 19. J. Xie, G. Kozlov, K. Gehring, The "tale" of poly(A) binding protein: the MLLE domain  
694 and PAM2-containing proteins. *Biochim. Biophys. Acta* **1839**, 1062-1068 (2014).

695 20. S. He, E. Valkov, S. Cheloufi, J. Murn, The nexus between RNA-binding proteins and  
696 their effectors. *Nat. Rev. Genet.* **24**, 276-294 (2023).

697 21. M. Kumar *et al.*, The Eukaryotic Linear Motif resource: 2022 release. *Nucleic Acids*  
698 *Res.* **50**, D497-D508 (2022).

699 22. G. Kozlov, M. Menade, A. Rosenauer, L. Nguyen, K. Gehring, Molecular determinants  
700 of PAM2 recognition by the MLLE domain of poly(A)-binding protein. *J. Mol. Biol.*  
701 **397**, 397-407 (2010).

702 23. M. Jinek, M. R. Fabian, S. M. Coyle, N. Sonenberg, J. A. Doudna, Structural insights  
703 into the human GW182-PABC interaction in microRNA-mediated deadenylation. *Nat.*  
704 *Struct. Mol. Biol.* **17**, 238-240 (2010).

705 24. L. A. Hehl *et al.*, Structural snapshots along K48-linked ubiquitin chain formation by  
706 the HECT E3 UBR5. *Nat. Chem. Biol.* **20**, 190-200 (2024).

707 25. N. S. Lim *et al.*, Comparative peptide binding studies of the PABC domains from the  
708 ubiquitin-protein isopeptide ligase HYD and poly(A)-binding protein. Implications for  
709 HYD function. *The Journal of biological chemistry* **281**, 14376-14382 (2006).

710 26. J. Munoz-Escobar, E. Matta-Camacho, G. Kozlov, K. Gehring, The MLLE domain of  
711 the ubiquitin ligase UBR5 binds to its catalytic domain to regulate substrate binding.  
712 *The Journal of biological chemistry* **290**, 22841-22850 (2015).

713 27. Z. Hodakova *et al.*, Cryo-EM structure of the chain-elongating E3 ubiquitin ligase  
714 UBR5. *EMBO J.* **42**, e113348 (2023).

715 28. F. Wang *et al.*, Structure of the human UBR5 E3 ubiquitin ligase. *Structure* **31**, 541-  
716 552 e544 (2023).

Devan, Shanmugasundaram *et al.*

717 29. J. Jumper *et al.*, Highly accurate protein structure prediction with AlphaFold. *Nature*  
718 **596**, 583-589 (2021).

719 30. M. Mirdita *et al.*, ColabFold: making protein folding accessible to all. *Nature methods*  
720 **19**, 679-682 (2022).

721 31. J. Müller, T. Pohlmann, M. Feldbrügge, Core components of endosomal mRNA  
722 transport are evolutionarily conserved in fungi. *Fungal Genet. Biol.* **126**, 12-16 (2019).

723 32. K. Müntjes *et al.*, Establishing polycistronic expression in the model microorganism  
724 *Ustilago maydis*. *Front. Microbiol.* **11**, 1384 (2020).

725 33. A. Brachmann, G. Weinzierl, J. Kämper, R. Kahmann, Identification of genes in the  
726 bW/bE regulatory cascade in *Ustilago maydis*. *Mol. Microbiol.* **42**, 1047-1063 (2001).

727 34. S. Jankowski *et al.*, The multi PAM2 protein Upa2 functions as novel core component  
728 of endosomal mRNA transport. *EMBO Rep.* **24**, e47381 (2019).

729 35. P. Becht, J. König, M. Feldbrügge, The RNA-binding protein Rrm4 is essential for  
730 polarity in *Ustilago maydis* and shuttles along microtubules. *J. Cell Sci.* **119**, 4964-4973  
731 (2006).

732 36. M. Tanabe, M. Kanehisa, Using the KEGG database resource. *Curr. Protoc.*  
733 *Bioinformatics Chapter 1*, 1 12 11-11 12 43 (2012).

734 37. K. L. Huang, A. B. Chadee, C. Y. Chen, Y. Zhang, A. B. Shyu, Phosphorylation at  
735 intrinsically disordered regions of PAM2 motif-containing proteins modulates their  
736 interactions with PABPC1 and influences mRNA fate. *RNA* **19**, 295-305 (2013).

737 38. K. Schneider *et al.*, The Nma1 protein promotes long distance transport mediated by  
738 early endosomes in *Ustilago maydis*. *Mol. Microbiol.* **117**, 334-352 (2022).

739 39. T. Shibuya *et al.*, Characterization of the ptr6(+) gene in fission yeast: a possible  
740 involvement of a transcriptional coactivator TAF in nucleocytoplasmic transport of  
741 mRNA. *Genetics* **152**, 869-880 (1999).

742 40. D. Cheng *et al.*, The nuclear transcription factor, TAF7, is a cytoplasmic regulator of  
743 protein synthesis. *Sci. Adv.* **7**, eabi5751 (2021).

744 41. A. Dold *et al.*, Makorin 1 controls embryonic patterning by alleviating Bruno1-mediated  
745 repression of oskar translation. *PLoS genetics* **16**, e1008581 (2020).

746 42. J. M. Cioni *et al.*, Late endosomes act as mRNA translation platforms and sustain  
747 mitochondria in axons. *Cell* **176**, 56-72 e15 (2019).

748 43. W. C. Shen *et al.*, Systematic analysis of essential yeast TAFs in genome-wide  
749 transcription and preinitiation complex assembly. *EMBO J.* **22**, 3395-3402 (2003).

Devan, Shanmugasundaram *et al.*

750 44. A. Niedner, M. Muller, B. T. Moorthy, R. P. Jansen, D. Niessing, Role of Loc1p in  
751 assembly and reorganization of nuclear ASH1 messenger ribonucleoprotein particles in  
752 yeast. *Proc. Natl. Acad. Sci. U. S. A.* **110**, E5049-5058 (2013).

753 45. N. Kellner, K. Heimel, T. Obhof, F. Finkernagel, J. Kämper, The SPF27 homologue  
754 Num1 connects splicing and kinesin 1-dependent cytoplasmic trafficking in *Ustilago*  
755 *maydis*. *PLoS Genet.* **10**, e1004046 (2014).

756 46. E. D. Perini, R. Schaefer, M. Stoter, Y. Kalaidzidis, M. Zerial, Mammalian CORVET  
757 is required for fusion and conversion of distinct early endosome subpopulations. *Traffic*  
758 **15**, 1366-1389 (2014).

759 47. C. MacDonald, S. Winstorfer, R. M. Pope, M. E. Wright, R. C. Piper, Enzyme reversal  
760 to explore the function of yeast E3 ubiquitin-ligases. *Traffic* **18**, 465-484 (2017).

761 48. L. Tian, H. L. Chou, M. Fukuda, T. Kumamaru, T. W. Okita, mRNA localization in  
762 plant cells. *Plant Physiol.* **182**, 97-109 (2020).

763 49. D. Quentin *et al.*, Structural basis of mRNA binding by the human FERRY Rab5  
764 effector complex. *Mol. Cell* **83**, 1856-1871 e1859 (2023).

765 50. J. S. Schuhmacher *et al.*, The Rab5 effector FERRY links early endosomes with mRNA  
766 localization. *Mol. Cell* **83**, 1839-1855 e1813 (2023).

767 51. A. M. Bourke, A. Schwarz, E. M. Schuman, De-centralizing the Central Dogma: mRNA  
768 translation in space and time. *Mol. Cell* **83**, 452-468 (2023).

769 52. K. R. Luo, N. C. Huang, Y. H. Chang, Y. W. Jan, T. S. Yu, *Arabidopsis* cyclophilins  
770 direct intracellular transport of mobile mRNA via organelle hitchhiking. *Nat Plants* **10**,  
771 161-171 (2024).

772 53. G. Steinberg, Endocytosis and early endosome motility in filamentous fungi. *Curr.*  
773 *Opin. Microbiol.* **20**, 10-18 (2014).

774 54. S. Sankaranarayanan, S. Kwon, K. Heimel, M. Feldbrügge, The RNA world of fungal  
775 pathogens. *PLoS pathogens* **19**, e1011762 (2023).

776 55. E. C. Meng *et al.*, UCSF ChimeraX: Tools for structure building and analysis. *Protein*  
777 *science : a publication of the Protein Society* **32**, e4792 (2023).

778 56. E. Krissinel, K. Henrick, Inference of macromolecular assemblies from crystalline state.  
779 *J. Mol. Biol.* **372**, 774-797 (2007).

780 57. R. A. Laskowski, M. B. Swindells, LigPlot+: multiple ligand-protein interaction  
781 diagrams for drug discovery. *Journal of chemical information and modeling* **51**, 2778-  
782 2786 (2011).

Devan, Shanmugasundaram *et al.*

783 58. S. Baumann, T. Pohlmann, M. Jungbluth, A. Brachmann, M. Feldbrügge, Kinesin-3 and  
784 dynein mediate microtubule-dependent co-transport of mRNPs and endosomes. *J. Cell  
785 Sci.* **125**, 2740-2752 (2012).

786 59. A. Brachmann, J. König, C. Julius, M. Feldbrügge, A reverse genetic approach for  
787 generating gene replacement mutants in *Ustilago maydis*. *Mol. Gen. Genom.* **272**, 216-  
788 226 (2004).

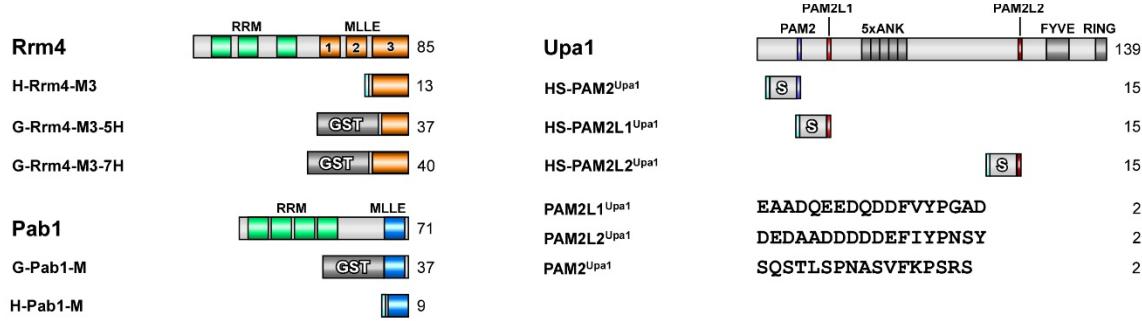
789 60. M. Terfrüchte *et al.*, Establishing a versatile Golden Gate cloning system for genetic  
790 engineering in fungi. *Fungal Genet. Biol.* **62**, 1-10 (2014).

791 61. G. Loubradou, A. Brachmann, M. Feldbrügge, R. Kahmann, A homologue of the  
792 transcriptional repressor Ssn6p antagonizes cAMP signalling in *Ustilago maydis*. *Mol.  
793 Microbiol.* **40**, 719-730 (2001).

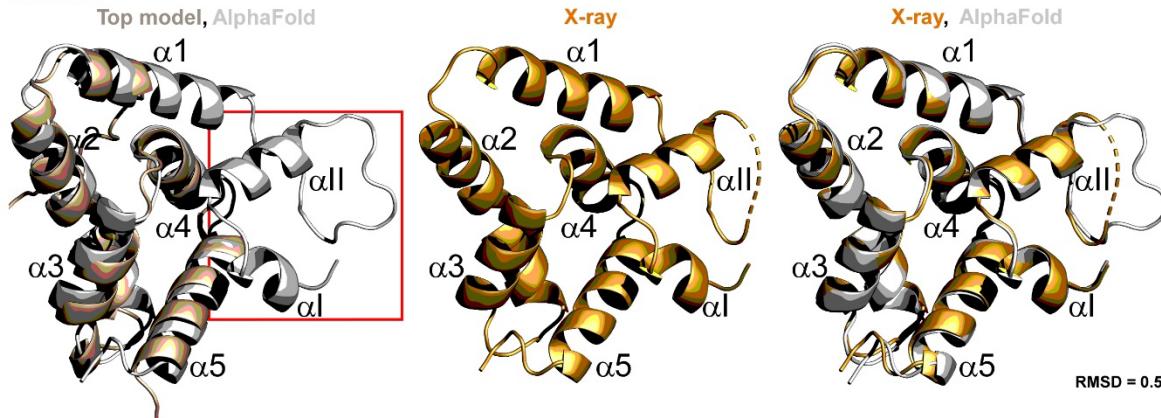
794 62. F. W. Studier, Protein production by auto-induction in high density shaking cultures.  
795 *Protein Expr. Purif.* **41**, 207-234 (2005).

796 63. W. Kabsch, Processing of X-ray snapshots from crystals in random orientations. *Acta  
797 Crystallogr. D. Biol. Crystallogr.* **70**, 2204-2216 (2014).

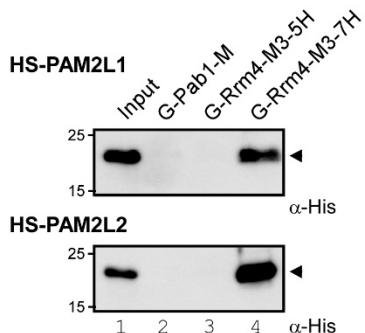
798 64. P. V. Afonine *et al.*, Towards automated crystallographic structure refinement with  
799 phenix.refine. *Acta Crystallogr. D. Biol. Crystallogr.* **68**, 352-367 (2012).


800 65. P. Emsley, K. Cowtan, Coot: model-building tools for molecular graphics. *Acta  
801 Crystallogr. D. Biol. Crystallogr.* **60**, 2126-2132 (2004).

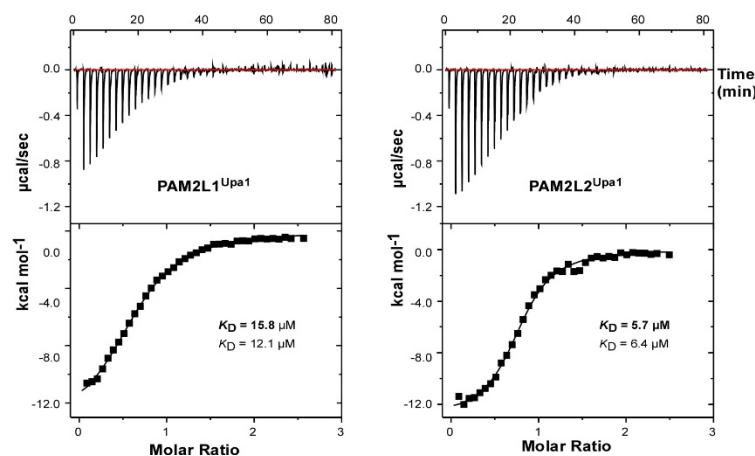
802


803

## Figures


A



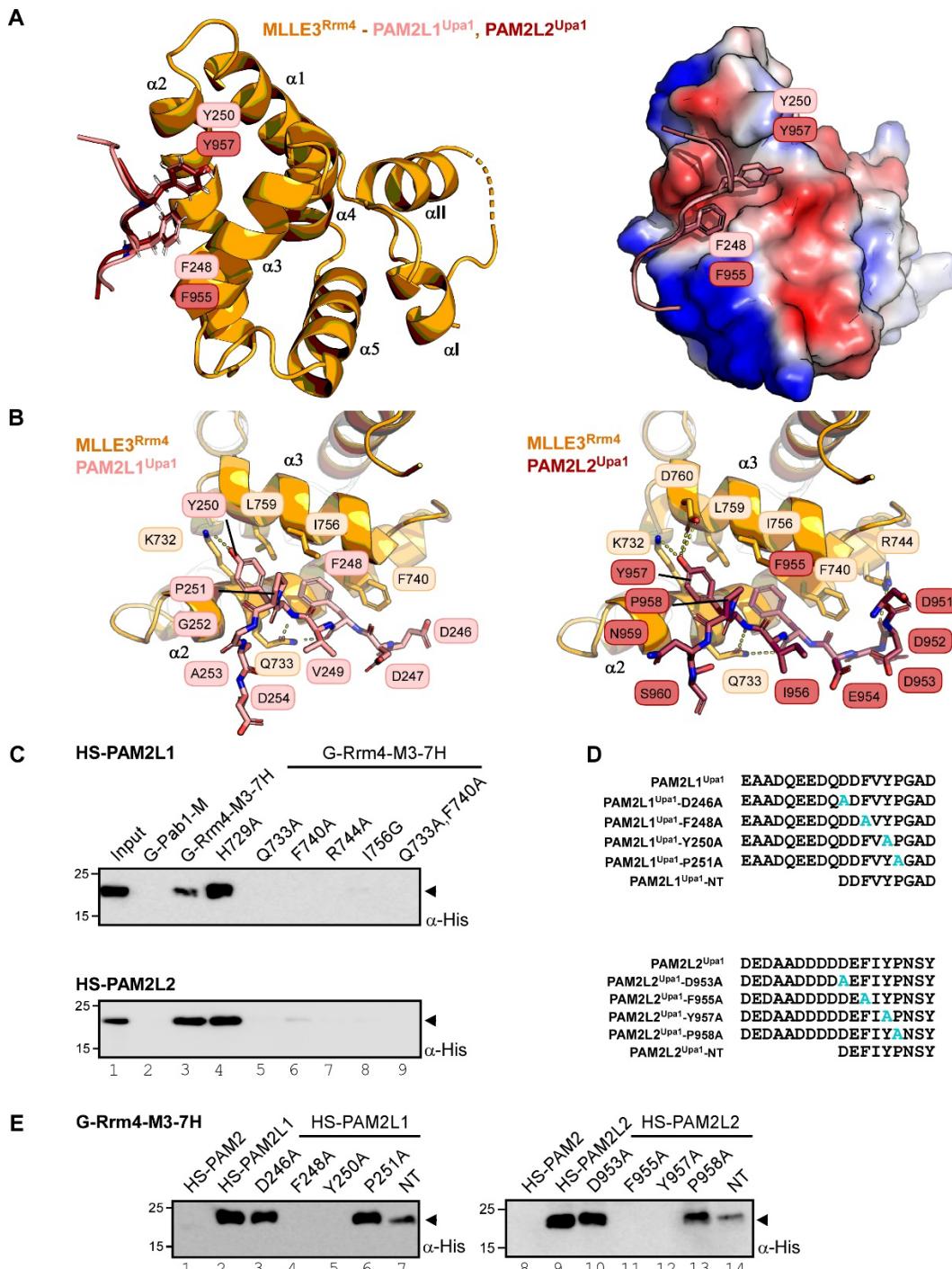

B Rrm4-M3



C



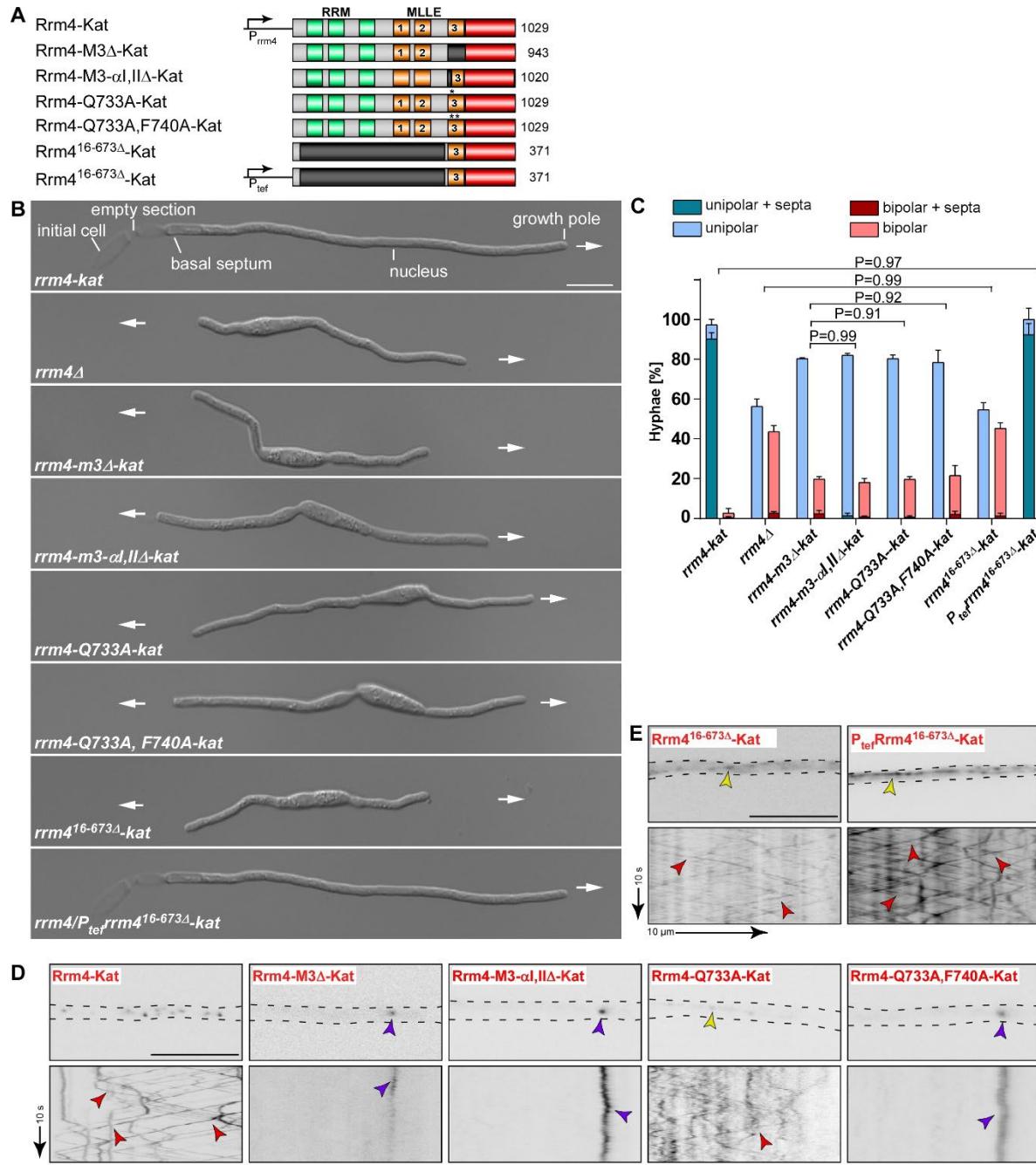
D H-Rrm4-M3




804

805

## Figure 1. A seven-helix type MLLE domain confers specific binding


806 (A) Schematic representation of protein variants (molecular weight in kilo Dalton, green, RNA  
807 recognition motif (RRM); orange, MLLE<sup>Rrm4</sup> domains; bright blue, MLLE<sup>Pab1</sup>; light blue  
808 PAM2<sup>Upa1</sup>; light red PAM2L1<sup>Upa1</sup>; dark red PAM2L2<sup>Upa1</sup>; dark grey, Ankyrin repeats (5xANK),  
809 FYVE domain, and RING domain of Upa1, cyan, His6. Sequences of PAM2 and PAM2L1,2  
810 peptides are denoted. The following symbols are used: M3, MLLE3<sup>Rrm4</sup>; M, MLLE<sup>Pab1</sup>; 5H,  
811 five helices; 7H, seven helices, G, GST tag; HS, His6-Sumo tag. (B) 3D structural models of  
812 MLLE3<sup>Rrm4</sup> domain, generated using TopModel, AlphaFold, and X-ray as indicated. (C)  
813 Western blot analysis of GST pull-down experiments using α-His for detection (input,  
814 respective His6-SUMO peptides). (D) Representative isothermal titration calorimetry (ITC)  
815 binding curves of MLLE3<sup>Rrm4</sup> domain (H-Rrm4-M3).  $K_D$  values of two independent  
816 measurements are given (indicated data in bold).

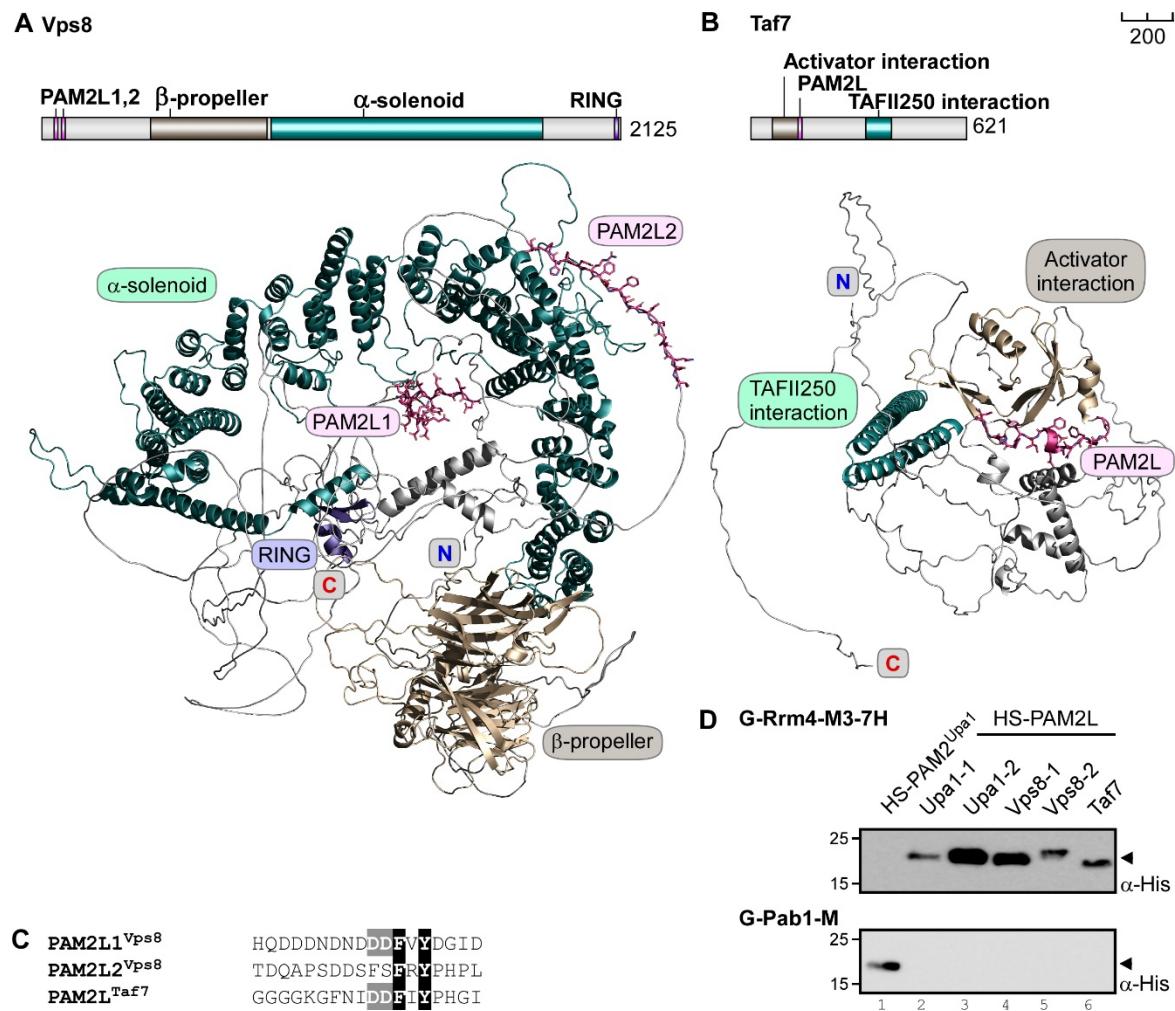


817


818 **Figure 2. PAM2L ligands are recognized via a new interaction interphase of MLLE3**

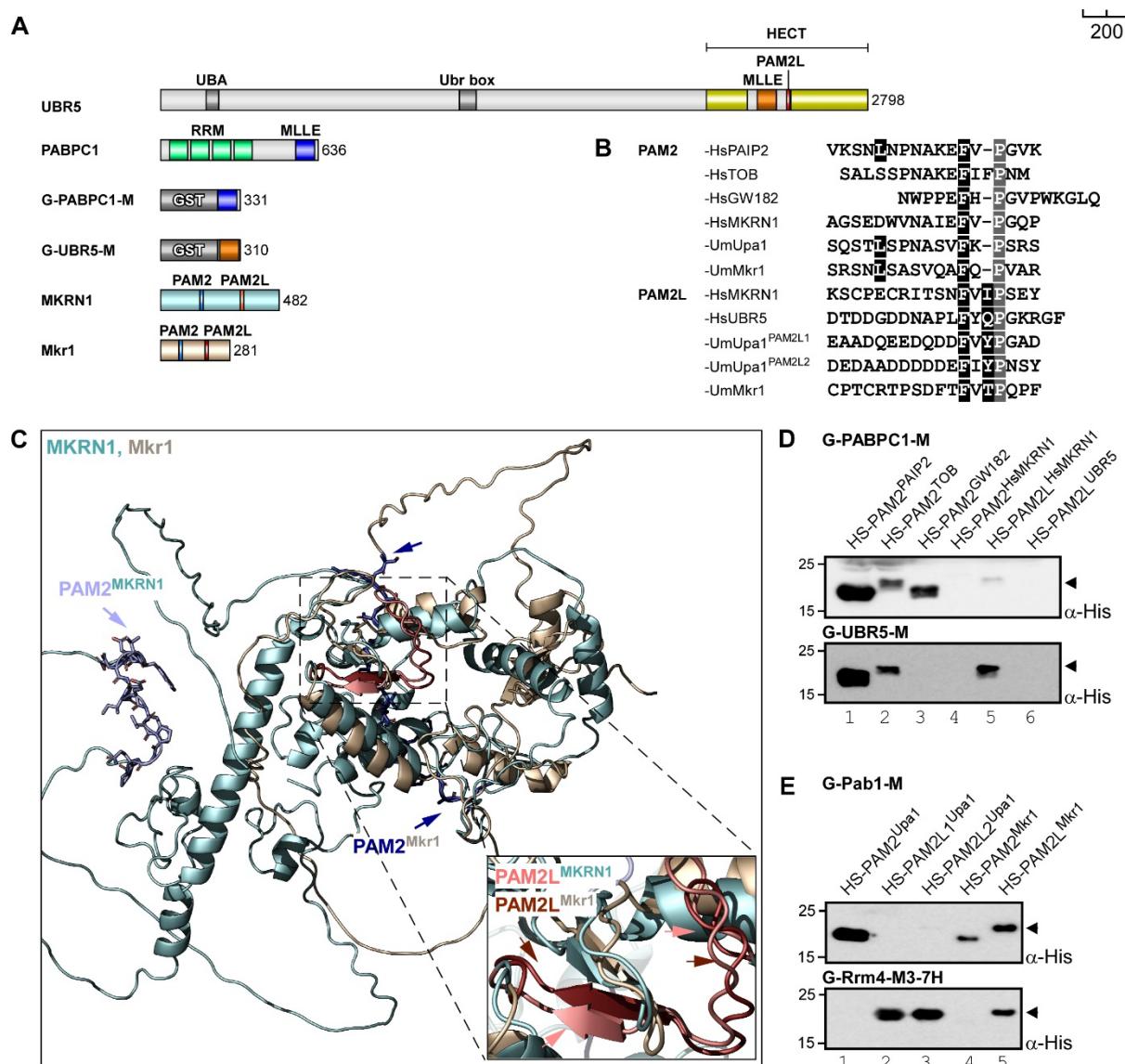
819 (A) Crystal structures of MLLE3<sup>Rrm4</sup>-PAM2L1<sup>Upa1</sup>, MLLE3<sup>Rrm4</sup>-PAM2L2<sup>Upa1</sup> complexes are  
820 superimposed (RMSD 0.4 Å). The PAM2L1,2<sup>Upa1</sup> peptides are inserted into the hydrophobic  
821 pocket formed by the helices α2, 3 of MLLE3<sup>Rrm4</sup>. Models are represented as a cartoon (left,  
822 orange, MLLE3<sup>Rrm4</sup>) and surface (right, MLLE3<sup>Rrm4</sup>, according to electrostatic potential: blue,  
823 positively charged; red, negatively charged residues), salmon sticks, PAM2L1<sup>Upa1</sup>; ruby red  
824 sticks, PAM2L2<sup>Upa1</sup>. Key residues are labeled. (B) Interface between the MLLE3<sup>Rrm4</sup> and  
825 PAM2L1<sup>Upa1</sup> (left) MLLE3<sup>Rrm4</sup> and PAM2L2<sup>Upa1</sup> (right). PAM2L1,2<sup>Upa1</sup> peptides and  
826 interacting side chains of MLLE3<sup>Rrm4</sup> are shown as sticks. Dashed lines indicate hydrogen bond  
827 interactions. (C, E) Western blot analysis of GST pull-down experiments using α-His for  
828 detection (input, respective His<sub>6</sub>-SUMO peptides). (D) Sequence of PAM2L1<sup>Upa1</sup> and  
829 PAM2L2<sup>Upa1</sup> peptide versions tested in E. Alanine substitution is denoted in cyan.



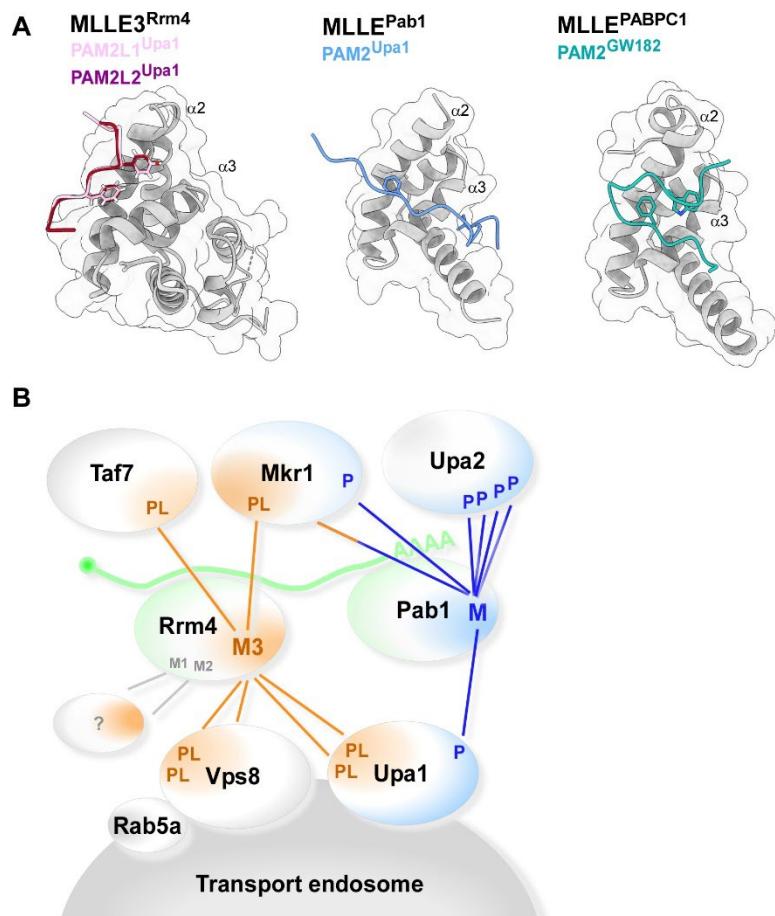

830  
831 **Figure 3. A seven-helix type MLLE domain is necessary and sufficient for endosomal  
832 attachment.**

833 (A) Schematic representation of Rrm4 variants (amino acid number indicated; drawn not in  
834 scale): dark green, RNA recognition motif (RRM); orange, MLLE domains; red, mKate2. (B)  
835 Hyphal growth of AB33 derivatives (6 h.p.i.; size bar 10  $\mu$ m). Growth direction is indicated by  
836 arrows. (C) Quantification of hyphal growth of AB33 derivatives shown in panel B (6 h.p.i.):  
837 unipolarity, bipolarity and basal septum formation were quantified (error bars, SEM.; n = 3  
838 independent experiments, > 150 hyphae were counted per strain; for statistical evaluation, the  
839 percentage of uni- and bipolarity was investigated and unpaired two-tailed Student's t-test was  
840 performed ( $\alpha < 0.05$ ). (D-E) Micrographs (inverted fluorescence image; size bar, 10  $\mu$ m) and  
841 corresponding kymographs of AB33 hyphae derivatives (6 h.p.i.) showing movement of Rrm4-  
842 Kat variants in hyphae (inverted fluorescence images; arrow length on the left and bottom  
843 indicates time and distance, respectively). Processive signals, aberrant microtubule staining and  
844 accumulation of static Rrm4-Kat signals are indicated by red, yellow and purple arrowheads,  
845 respectively.




846

847 **Figure 4. The MLLE domain of Pab1 recognizes its PAM2 ligand in a canonical fashion.**  
848 (A) Crystal structure of PAM2<sup>Upa1</sup> bound to MLLE<sup>Pab1</sup>. The PAM2<sup>Upa1</sup> peptide wraps around  
849 the MLLE<sup>Pab1</sup>. Key residues (L132 and F139) are inserted into the hydrophobic pocket formed  
850 between the helices α3,5 and between the helices α2,3. Models are represented as a cartoon  
851 (left) and surface (right). Light blue sticks, PAM2<sup>Upa1</sup> peptide; interacting side chains of  
852 MLLE<sup>Pab1</sup> are shown as sticks and dashed yellow lines indicate hydrogen bonding. (B-C)  
853 Western blot analyses of GST pull-down experiments using α-His for detection. PAM2<sup>Upa1</sup>  
854 sequence is denoted in light blue, PAM2L2<sup>Upa1</sup> sequence is denoted in red, hybrid versions are  
855 denoted in light blue-red dual color)



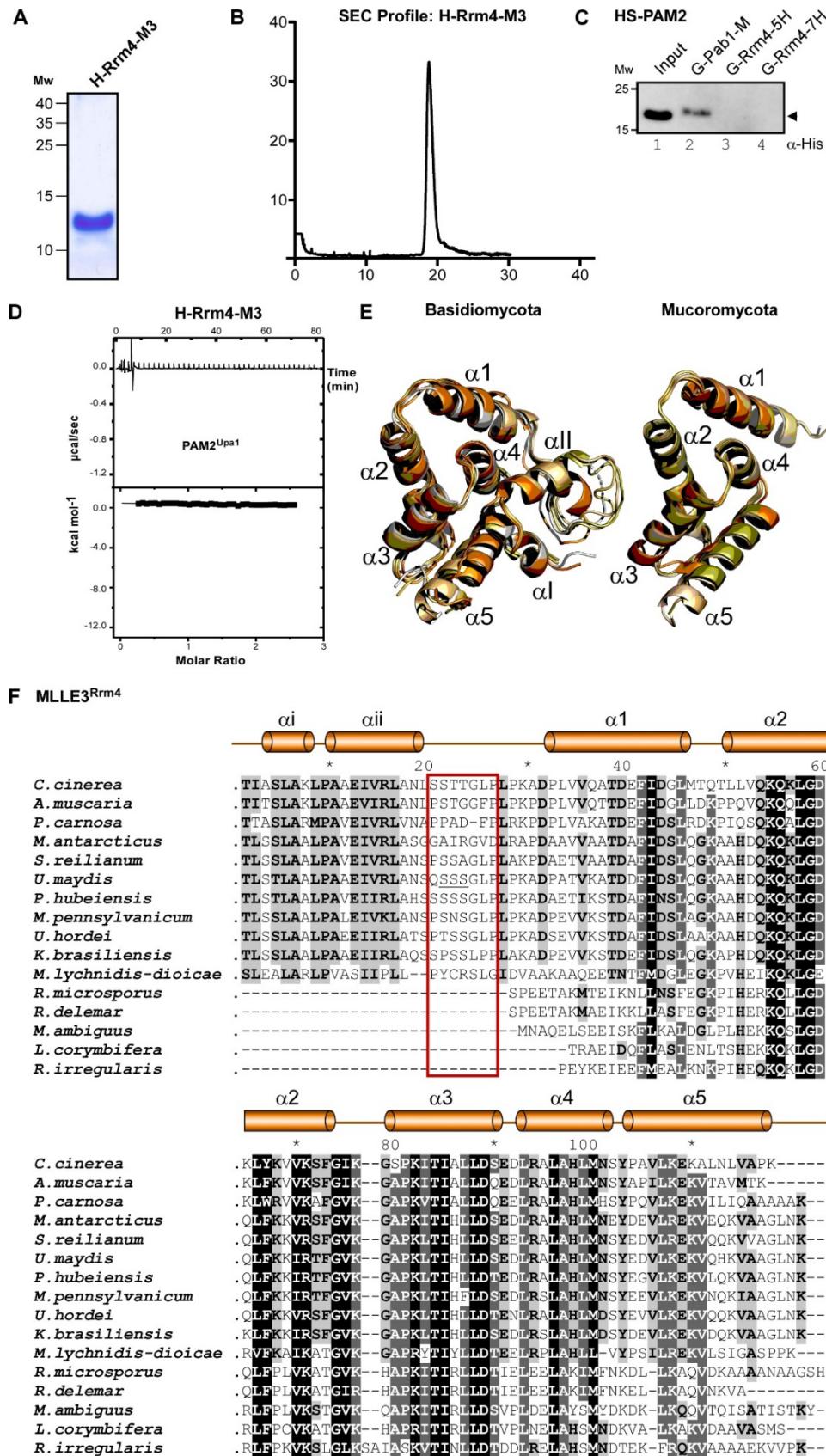

857 **Figure 5. Vps8 and Taf7 are *de novo* predicted interaction partners of Rrm4**

858 (A) Schematic representation of Vps8 (UMAG\_15064) (top) (aa number is indicated next to  
859 protein bars, drawn to scale, bar on top right is 200 AA; pink, PAM2L1,2; wheat, β-propeller  
860 domain; dark teal, α-solenoid domain; purple, RING domain. 3D structural model predicted  
861 using AlphaFold (bottom) with domains depicted using the above color code, amino (N),  
862 carboxy (C) terminals are indicated. (B) Schematic representation of Taf7 (UMAG\_10620)  
863 drawn to scale (Pink, PAM2L; wheat, activator interaction domain; dark teal, homolog of  
864 human TAFII250 interaction domain). Structural model predicted using AlphaFold (bottom)  
865 with domains depicted using the above color code, amino (N), carboxy (C) terminals are  
866 indicated. (C) De novo predicted PAM2L peptides of Vps8 and Taf7 are denoted, conserved,  
867 crucial residues are shaded in black, conserved key acidic residues are shaded in grey (D)  
868 Western blot analyses of GST pull-down experiments using α-His for detection.



870 **Figure 6. MLLE domains of PABC1 and UBR5 differentiate between binding partners.**  
871 (A) Schematic representation of protein variants drawn to scale (aa number is indicated next to  
872 protein bars, drawn to scale, bar on top right is 200 AA; grey, UBA, Ubr box, GST; yellow,  
873 HECT; orange, MLLE<sup>UBR5</sup>; red, PAM2L; blue, MLLE<sup>PABC1</sup>; green, RRM; cyan, MKRN1;  
874 wheat, Mkr1. (B) Comparison of PAM2 and PAM2L sequences found in Upa1 (UniProtKB  
875 ID: A0A0D1E015) with those of human proteins, such as PAIP2 (Q9BPZ3), TOB (P50616),  
876 GW182 (Q9HCJ0), MKRN1 (Q9UHC7), Mkr1 (A0A0D1E4Z6), UBR5 (O95071). (C)  
877 Structural models of MKRN1 and Mkr1 predicted using AlphaFold, domains depicted in the  
878 color code similar to the respective labels, PAM2L motifs are shown in. (D-E) Western blot  
879 analysis of GST pull-down experiments using  $\alpha$ -His for detection.  
880



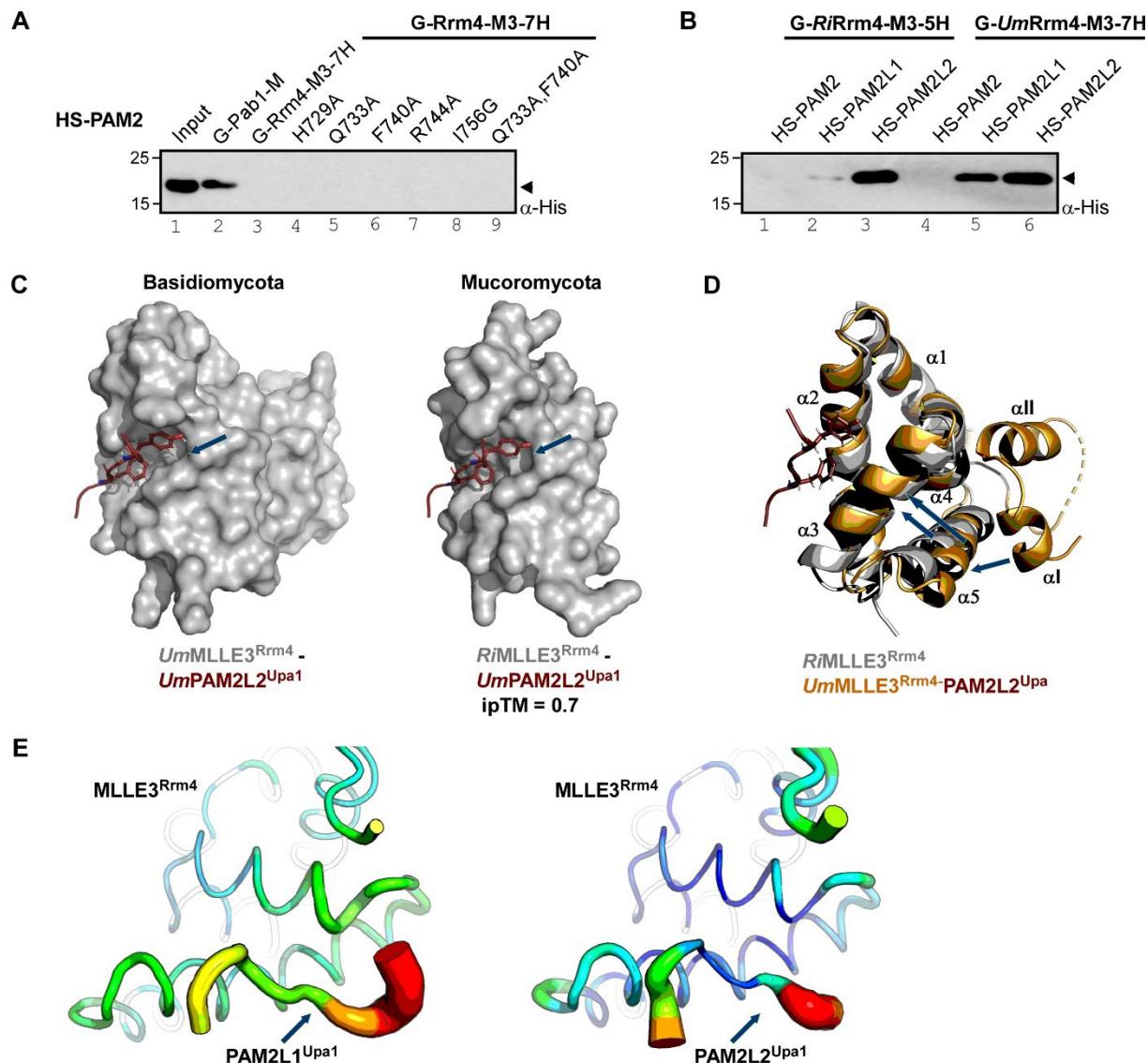

881

882 **Figure. 7 MLLE domains exhibit defined binding specificity.**

883 (A) Structures of three different MLLE domains bound to ligands. MLLE3<sup>Rrm4</sup>-PAM2L1,2<sup>Upa1</sup>,  
884 MLLE<sup>Pab1</sup>-PAM2<sup>Upa1</sup> and MLLE<sup>PABPC1</sup>-PAM2<sup>GW182</sup> (right, PDB ID: 3KTP). Helices 2 and 3  
885 are labeled. (B) Model depicting the complex protein-protein interaction network based on the  
886 binding specificity of MLLE domains of Rrm4 (orange) and Pab1 (blue). The following  
887 symbols are used: M1, MLLE1; M2, MLLE2; M3, MLLE3; M, MLLE; PL, PAM2-like;  
888 P, PAM2; mRNA with poly(A) tail in green; ?, unknown proteins.

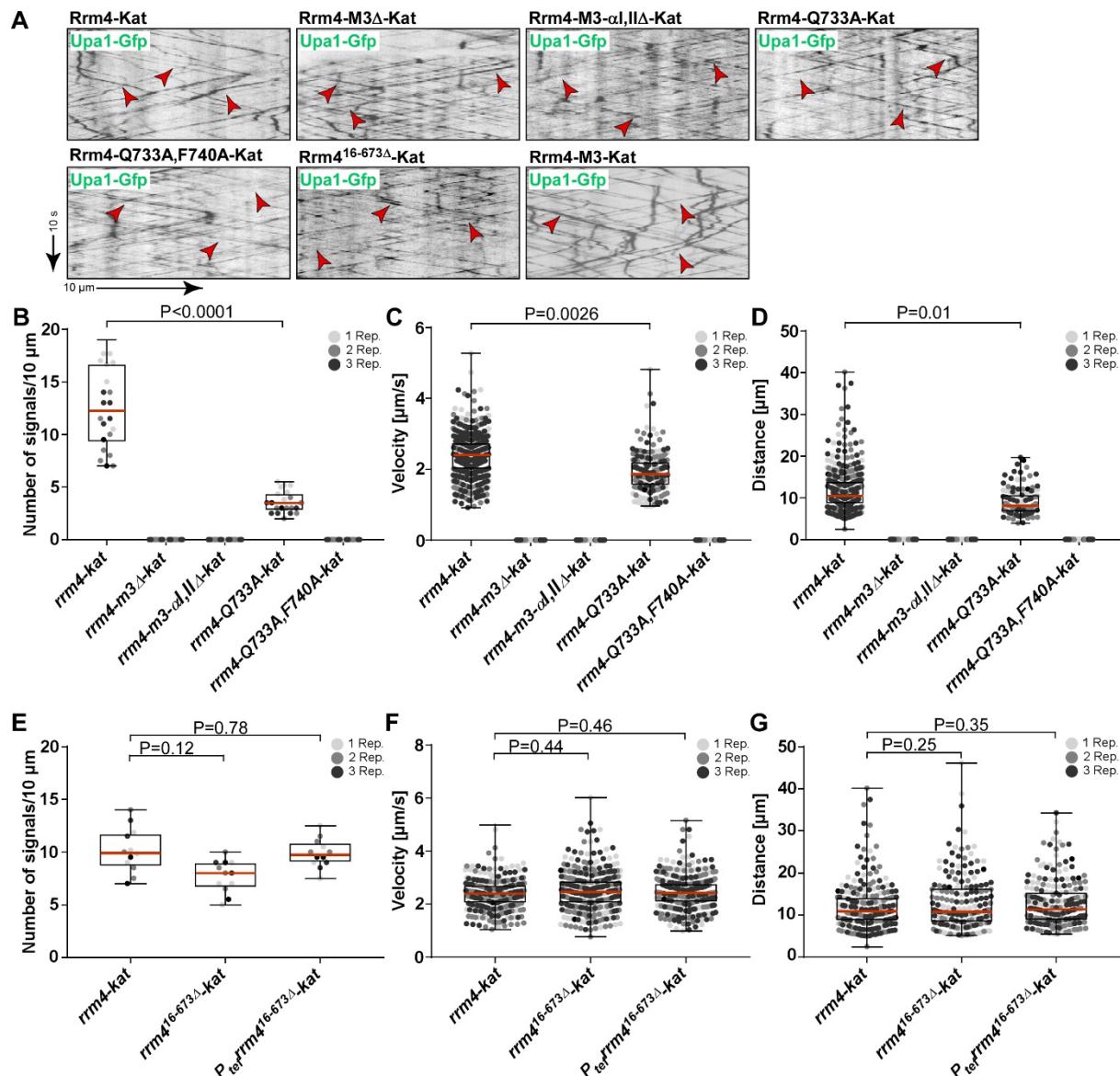
889

### Expanded View Figures




890

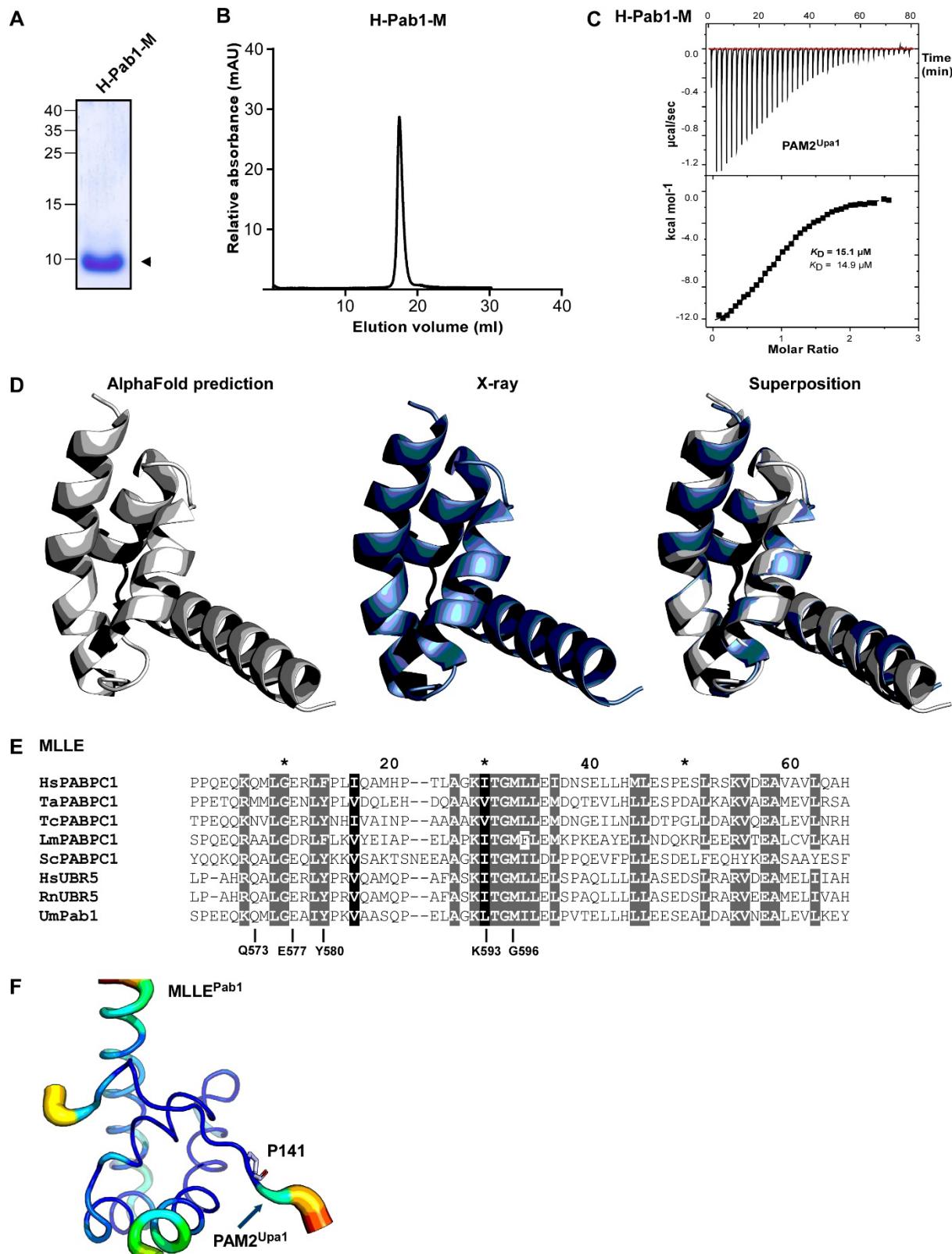
891 **Figure EV1. The seven-helix type MLLE domain is evolutionarily conserved.**  
892


Devan, Shanmugasundaram *et al.*

893 (A) SDS-PAGE analysis of purified H-Rrm4-M3 used in crystallography and ITC. (B) SEC  
894 analysis of purified H-Rrm4-M3. (C) Western blot analyses of GST pull-down experiments  
895 using  $\alpha$ -His for detection, (input, respective His<sub>6</sub>-SUMO peptides). (D) ITC binding curves of  
896 MLLE3<sup>Rrm4</sup> domain (H-Rrm4-M3) with PAM2<sup>Upa1</sup>. No interaction detected. (E) Overlay of  
897 Alphafold predicted models of MLLE3<sup>Rrm4</sup> orthologues from Basidiomycota consisted of 7  
898 helices (left; grey, *U. maydis*; yellow orange, *S. reilianum*; deep olive, *C. cinerea*; light orange,  
899 *P. carnosa*; Orange, *M. lychnidis-dioicae*), Mucoromycota consisted of 5 helices (right; wheat,  
900 *R. microspores*, yellow orange, *R. delemar*, light orange, *M. ambiguus*, deep olive, *L.*  
901 *corymbifera*, Orange, *R. irregularis*). (F) Multiple sequence alignment of MLLE3<sup>Rrm4</sup> orthologs  
902 of representative fungi from Basidiomycota (*C. cinerea*; *A. muscaria*, *P. carnosa*, *M.*  
903 *antarcticus*, *S. reilianum*, *U. maydis*, *P. hubeiensis*, *M. pennsylvanicum*, *U. hordei*, *K.*  
904 *brasiliensis*, *M. lychnidis-dioicae*) and Mucoromycota (pale yellow, *R. microspores*; wheat, *M.*  
905 *ambiguus*, light orange, *R. delemar*, orange, *L. corymbifera*; olive, *R. irregularis*). Accession  
906 number and sequence coverage are listed in SI Table S2. Red box indicates the serine/threonine  
907 rich linker.  
908



910 **Figure EV2.** Comparison of seven-helix and five-helix versions of MLLE3<sup>Rrm4</sup> domains


911 (A-B) Western blot analysis of GST pull-down experiments using  $\alpha$ -His for detection (input,  
 912 respective His<sub>6</sub>-SUMO peptides). (C) Comparison of co-crystallized complex of MLLE3<sup>Rrm4</sup>  
 913 from *U. maydis* (left, grey surface) consisted of seven-helices bound to PAM2L2<sup>Upa1</sup> (red sticks)  
 914 with Alphafold predicted complex of MLLE3<sup>Rrm4</sup> from *R. irregularis* (right, grey surface)  
 915 consisted of five-helices bound to PAM2L2<sup>Upa1</sup> (red sticks) (D) Overlay of five and seven-  
 916 helix-type versions of MLLE3 from *U. maydis* (orange cartoon) and *R. irregularis* (grey  
 917 cartoon) (E) Local displacement of atoms within the MLLE3<sup>Rrm4</sup>-PAM2L1<sup>Upa1</sup> (left) and  
 918 MLLE3<sup>Rrm4</sup>-PAM2L1<sup>Upa1</sup> (right) complexes indicating flexible versus rigid regions as  
 919 suggested by b-factors (red to blue: high b-factors to low b-factors).



920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
930  
931  
932  
933  
934

**Figure EV3. Loss of endosomal localization of Rrm4 caused by the absence of αI and αII helices and the mutation of key amino acids QF740 and Q733 in MLLE3<sup>Rrm4</sup>**

(A) Kymographs of AB33 hyphae derivatives (6 h.p.i.) showing movement of Upa1-Gfp in hyphae coexpressing different Rrm4-Kat versions (inverted fluorescence images; arrow length on the left and bottom indicates time and distance, respectively). Processive signals are indicated by red arrowheads. (B-G) Quantification of processive Rrm4-Kat signals (B and E), velocity of fluorescent Rrm4-Kat signals (C and F) and the traveled distance of processive Rrm4-Kat (D and G; exemplarily kymographs are shown in figure 3; per 10 μm of hyphal length; only particles with a processive movement of > 5 μm were conducted; the three replicates are shown in different gray levels for better identification, red line shows median, SEM; unpaired two-tailed Student's t-test ( $\alpha < 0.05$ ), for each experiment more than 20 hyphae were analyzed per strain).



935

936 **Figure EV4. The MLLE domain of Pab1 exhibits a classical  $\alpha$ -helical bundle.**

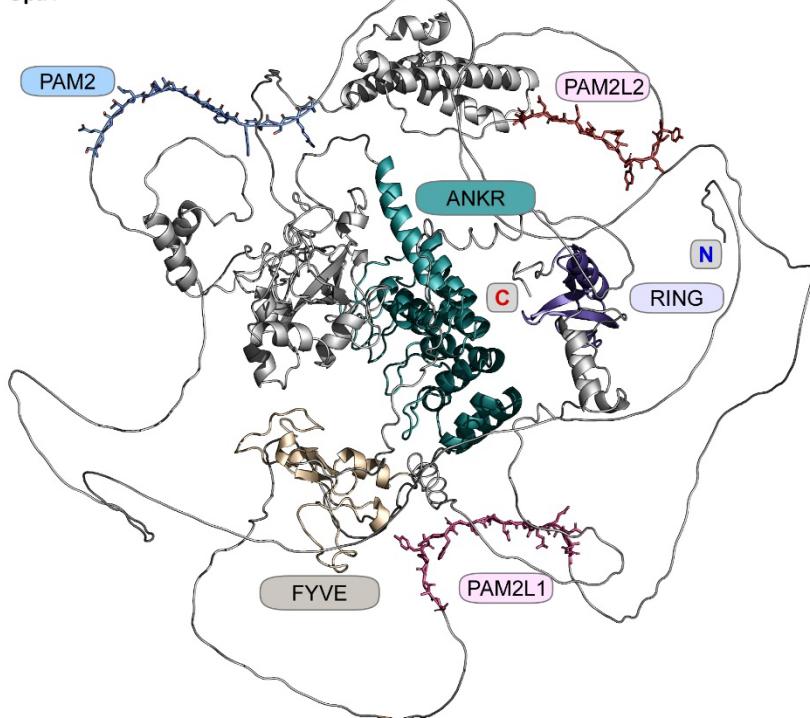
937 (A) SDS-PAGE analysis of purified H-Pab1-M used in crystallography and ITC. (B) SEC  
938 analysis of purified H-Pab1-M. (C) Representative ITC binding curve of MLLE<sup>Pab1</sup> domain (H-  
939 Pab1-M) with ligand PAM2<sup>Upa1</sup>. KD values of two independent measurements are given  
940 (indicated data in bold). (D) Structural models of MLLE<sup>Pab1</sup>, generated using Alphafold (grey),  
941 X-ray (blue) and overlay as indicated. (E) Comparison of MLLE<sup>Pab1</sup> sequence with structure

Devan, Shanmugasundaram *et al.*

942 determined orthologs (Hs - *Homo sapiens*, Ta - *Triticum aestivum*, Tc -*Trypanosoma cruzi*, Lm  
943 - *Leishmania major*, Sc - *Saccharomyces cerevisiae*, Rn - *Rattus norvegicus*, Um - *Ustilago  
944 maydis*, PABPC1, Pab1 -poly [A]-binding protein, UBR5 - E3 ubiquitin-protein ligase).  
945 Accession number and sequence coverage are listed in SI Table S3 (F) Local displacement of  
946 atoms within the MLLE<sup>Pab1</sup>-PAM2<sup>Upa1</sup> complex indicating flexible versus rigid regions as  
947 suggested by b-factors are shown (red to blue: high b-factors to low b-factors).

**A Vps8**

|                         | PAM2L1 |                   |                  |     | PAM2L2           |              |                        |                 |
|-------------------------|--------|-------------------|------------------|-----|------------------|--------------|------------------------|-----------------|
|                         | *      | 100               | *                | 120 | *                | 140          | *                      | 160             |
| <i>U.maydis</i>         | :      | ----DDDDNDNDD     | <b>FFVYDGDID</b> | AA  | -----            | -----        | -----                  | -----           |
| <i>P.hubeiensis</i>     | :      | -----DDE          | FFVYDGDID        | TAP | -----VSSEMSSDT   | YSAKLKDILGSD | DDDAGRQH               | -----ADLTIER    |
| <i>K.brasiliensis</i>   | :      | -----DDDF         | FFVYDGDID        | TA  | -----VSSEMSSDT   | YSAKLKDILGSD | DGQVEQQDD              | -----AQQSVIEI   |
| <i>S.reilianum</i>      | :      | -----HVDQDDDD     | FFVYDGDID        | TA  | -----VSSEMSSDT   | YSAKLKDILGSD | DGDDGDDDEDDTAVKAVIDTSV |                 |
| <i>M.pennsylvanicum</i> | :      | -----DDDAADDI     | DDQFFVYDGDID     | TA  | -----VSSEMSSDT   | YSAKLKDILGSD | DEDEDDHVQN             | -----DAAPAAIDTV |
| <i>U.hordei</i>         | :      | -----DDDDDDDE     | DDQFFVYDGDID     | TTA | -----VSSEMSSDT   | YSAKLKDILGSD | DEGGQESSL              | -----PVALPLNN   |
| <i>M.antarcticus</i>    | :      | -----DDDDDDDE     | DDQFFVYDGDID     | TA  | -----VSSEMSSDT   | YSAKLKDILGSD | DEQQLDVA               | -----ADDQH      |
| <i>T.cyperi</i>         | :      | -----DLD          | DDQFFVYDGDID     | TA  | -----VSSEMSSDT   | YSAKLKDILGSD | DEDEVDTTT              | -----ELIN-GNF   |
| <i>M.globosa</i>        | :      | -----DLD          | DDQFFVYDGDID     | TA  | -----VSSEMSSDT   | YSAKLKDILGSD | DEQQLDVA               | -----ADDQH      |
| <i>C.neoformans</i>     | :      | -----EPLLRQDSD    | DDQFFVYDGDID     | TA  | -----VSSEMSSDT   | YSAKLKDILGSD | ADASSTHNVSDDGAPDVAIQPE |                 |
| <i>R.irregularis</i>    | :      | -----EPLLRQDSD    | DDQFFVYDGDID     | TA  | -----VSSEMSSDT   | YSAKLKDILGSD | ADASSTHNVSDDGAPDVAIQPE |                 |
| <i>S.cerevisiae</i>     | :      | -----EKYLSNLKKRME | AA               | GLT | -----DAMKRAELLHE | -----        | -----                  | -----           |
| <i>H.sapiens</i>        | :      | -----EKYLSNLKKRME | AA               | GLT | -----DAMKRAELLHE | -----        | -----                  | -----           |

|                         | * | 180     | *  | 200       | *                        | 220                  | *                | 240      | *         |                |                |                |
|-------------------------|---|---------|----|-----------|--------------------------|----------------------|------------------|----------|-----------|----------------|----------------|----------------|
| <i>U.maydis</i>         | : | SPSSPT  | TQ | KAPVILQVD | -----TSSNTTPRHTDQAF      | <b>SDDSF</b>         | <b>SFRYFPHF</b>  | CPNDVSFD | TRSS      | TSSQ           | -----RHLRPSQPS | <b>SSLRLIT</b> |
| <i>P.hubeiensis</i>     | : | SSSSPAT | Q  | RGIL      | -----HHDADTVSNTTPRHYEEAI | <b>SDAF</b>          | <b>SSFRYFPHF</b> | CPNDVSFD | TRSA      | TSSQ           | -----RQLRPSHPS | <b>SSSRIFT</b> |
| <i>K.brasiliensis</i>   | : | SPSSPT  | TQ | RGIL      | -----QGDVSASNTTPRHAEEAH  | <b>SDDGSSFRYFPHF</b> | CPNDVSFD         | TRSA     | SSLQNHOLP | -----HHLRPSHPS | <b>SSSRIFT</b> |                |
| <i>S.reilianum</i>      | : | SPSSPT  | TQ | RGIL      | -----QGDVSASNTTPRHAEEAH  | <b>SDDGSSFRYFPHF</b> | CPNDVSFD         | TRSA     | SSLQNHOLP | -----RQLRPSHPS | <b>SSSRIFT</b> |                |
| <i>M.pennsylvanicum</i> | : | SPSSPT  | TQ | RGIL      | -----QGDVSASNTTPRHAEEAH  | <b>SDDGSSFRYFPHF</b> | CPNDVSFD         | TRSA     | SSLQNHOLP | -----RQLRPSHPS | <b>SSSRIFT</b> |                |
| <i>U.hordei</i>         | : | SPSSPT  | TQ | RGIL      | -----QGDVSASNTTPRHAEEAH  | <b>SDDGSSFRYFPHF</b> | CPNDVSFD         | TRSA     | SSLQNHOLP | -----RQLRPSHPS | <b>SSSRIFT</b> |                |
| <i>M.antarcticus</i>    | : | SPSSPT  | TQ | RGIL      | -----QGDVSASNTTPRHAEEAH  | <b>SDDGSSFRYFPHF</b> | CPNDVSFD         | TRSA     | SSLQNHOLP | -----RQLRPSHPS | <b>SSSRIFT</b> |                |
| <i>T.cyperi</i>         | : | SPSSPT  | TQ | RGIL      | -----QGDVSASNTTPRHAEEAH  | <b>SDDGSSFRYFPHF</b> | CPNDVSFD         | TRSA     | SSLQNHOLP | -----RQLRPSHPS | <b>SSSRIFT</b> |                |
| <i>M.globosa</i>        | : | SPSSPT  | TQ | RGIL      | -----QGDVSASNTTPRHAEEAH  | <b>SDDGSSFRYFPHF</b> | CPNDVSFD         | TRSA     | SSLQNHOLP | -----RQLRPSHPS | <b>SSSRIFT</b> |                |
| <i>C.neoformans</i>     | : | SPSSPT  | TQ | RGIL      | -----QGDVSASNTTPRHAEEAH  | <b>SDDGSSFRYFPHF</b> | CPNDVSFD         | TRSA     | SSLQNHOLP | -----RQLRPSHPS | <b>SSSRIFT</b> |                |
| <i>R.irregularis</i>    | : | SPSSPT  | TQ | RGIL      | -----QGDVSASNTTPRHAEEAH  | <b>SDDGSSFRYFPHF</b> | CPNDVSFD         | TRSA     | SSLQNHOLP | -----RQLRPSHPS | <b>SSSRIFT</b> |                |
| <i>S.cerevisiae</i>     | : | SPSSPT  | TQ | RGIL      | -----QGDVSASNTTPRHAEEAH  | <b>SDDGSSFRYFPHF</b> | CPNDVSFD         | TRSA     | SSLQNHOLP | -----RQLRPSHPS | <b>SSSRIFT</b> |                |
| <i>H.sapiens</i>        | : | SPSSPT  | TQ | RGIL      | -----QGDVSASNTTPRHAEEAH  | <b>SDDGSSFRYFPHF</b> | CPNDVSFD         | TRSA     | SSLQNHOLP | -----RQLRPSHPS | <b>SSSRIFT</b> |                |

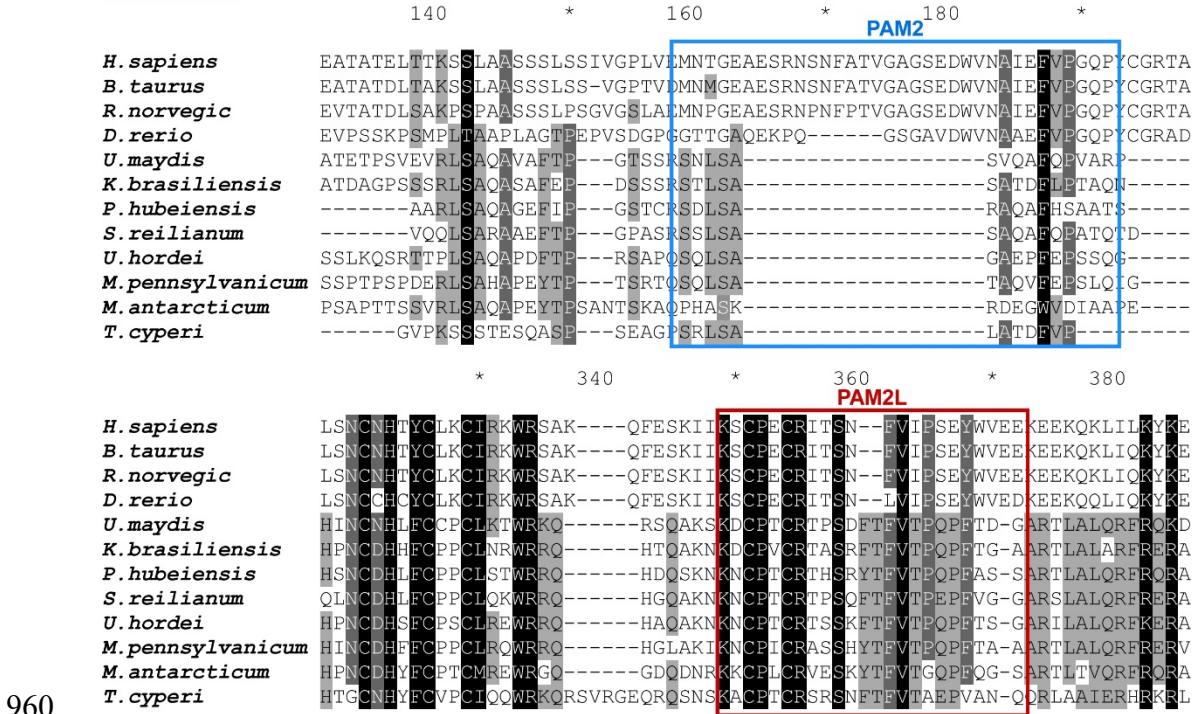
**B Taf7**

|                         | * | 300   | *     | 320    | *         | 340 | *             | 360     |     |
|-------------------------|---|-------|-------|--------|-----------|-----|---------------|---------|-----|
| <i>U.maydis</i>         | : | SOQAS | --GG  | GKGFNT | DDFTYFPHG | IT  | PMQWARKRRFRKR | AARRAIE | --T |
| <i>P.hubeiensis</i>     | : | AOQAS | --SS  | GKGFNT | DDFTYFPHG | IT  | PMQWARKRRFRKR | AARRAIE | --T |
| <i>S.reilianum</i>      | : | TOQAS | --GG  | GKGFNT | DDFTYFPHG | IT  | PMQWARKRRFRKR | AARRAIE | --V |
| <i>K.brasiliensis</i>   | : | SOQAS | --SSG | GKGFNT | DDFTYFPHG | IT  | PMQWARKRRFRKR | AARRAIE | --V |
| <i>U.hordei</i>         | : | SOQAS | --SSG | GKGFNT | DDFTYFPHG | IT  | PMQWARKRRFRKR | AARRAIE | --V |
| <i>M.pennsylvanicum</i> | : | SOQAS | --SSG | GKGFNT | DDFTYFPHG | IT  | PMQWARKRRFRKR | AARRAIE | --V |
| <i>M.antarcticus</i>    | : | SOQAS | --SSG | GKGFNT | DDFTYFPHG | IT  | PMQWARKRRFRKR | AARRAIE | --V |
| <i>T.cyperi</i>         | : | SOQAS | --SSG | GKGFNT | DDFTYFPHG | IT  | PMQWARKRRFRKR | AARRAIE | --V |
| <i>M.globosa</i>        | : | SOQAS | --SSG | GKGFNT | DDFTYFPHG | IT  | PMQWARKRRFRKR | AARRAIE | --V |
| <i>C.neoformans</i>     | : | SOQAS | --SSG | GKGFNT | DDFTYFPHG | IT  | PMQWARKRRFRKR | AARRAIE | --V |
| <i>S.pombe</i>          | : | SEAAA | --AT  | SAKSND | YYIYPH    | G   | PMQWARKRRFRKR | VHNNSID | --V |
| <i>R.irregularis</i>    | : | SEAAA | --AT  | SAKSND | YYIYPH    | G   | PMQWARKRRFRKR | VHNNSID | --V |
| <i>H.sapiens</i>        | : | SEAAA | --AT  | SAKSND | YYIYPH    | G   | PMQWARKRRFRKR | VHNNSID | --V |

**C Upa1**



948


949 **Figure EV5. De novo predicted interaction partners of MLLE3<sup>Rrm4</sup> and Alphafold**  
950 **predicted model of Upa1.**

951

Devan, Shanmugasundaram *et al.*

952 Multiple sequence alignment of Vps8 (**A**) and Taf7 (**B**) orthologs (*Ustilago maydis*,  
953 *Pseudozyma hubeiensis*, *Kalmanozyma brasiliensis*, *Sporisorium reilianum*, *Ustilago hordei*,  
954 *Moesziomyces pennsylvanicum*, *M. antarcticus*, *Testicularia cyperi*, *Malassezia globosa* ,  
955 *Cryptococcus neoformans* var. *grubii*, *Rhizophagus irregularis*, *Saccharomyces cerevisiae*,  
956 *Schizosaccharomyces pombe*, *Homo sapiens*, accession numbers are listed in the SI Table S5-  
957 S6). PAM2L sequences are denoted by red box. (C) Structural model of Upa1 predicted using  
958 AlphaFold indicating the presence of PAM2<sup>Upa1</sup> (blue sticks) and PAM2L1,2<sup>Upa1</sup> (Pink sticks)  
959 motifs at the intrinsically disordered region.

**MKRN1/Mkr1**



**961 Figure EV6. Makorin from human and *U. maydis* contain PAM2L sequences**

962 Multiple sequence alignment of MRKN1 (Human) and Mkr1 (*U. maydis*) orthologs. PAM2,  
963 PAM2L sequences are indicated by blue and red boxes respectively.