

1 Diversification of an emerging bacterial plant pathogen; insights from the global spread of *Xanthomonas*
2 *euvesicatoria* pv. *perforans*

3

4 Short title: Intercontinental dissemination of *X. euvesicatoria* pv. *perforans*

5

6 Sujan Timilsina^{1¶}, Fernanda Iruegas-Bocardo^{1¶}, Mustafa O. Jibrin^{1,2,3, #a¶}, Anuj Sharma¹, Aastha Subedi¹,
7 Amandeep Kaur¹, Gerald V. Minsavage¹, Jose Huguet-Tapia¹, Jeannie Klein-Gordon¹, Pragya Adhikari¹²,
8 Tika B. Adhikari⁴, Gabriella Cirvilleri⁵, Laura Belen Tapia de la Barrera⁶, Eduardo Bernal⁷, Tom C.
9 Creswell⁸, Doan Thi Kieu Tien¹⁶, Teresa A. Coutinho⁹, Daniel S. Egel⁸, Rubén Félix-Gastélum¹⁰, David
10 M. Francis⁷, Misrak Kebede¹¹, Melanie Lewis Ivey¹⁵, Frank J. Louws^{4,12}, Laixin Luo¹³, Elizabeth T.
11 Maynard¹⁴, Sally A. Miller¹⁵, Nguyen Thi Thu Nga¹⁶, Ebrahim Osdaghi¹⁷, Alice M. Quezado-Duval¹⁸,
12 Rebecca Roach¹⁹, Francesca Rotondo¹⁵, Gail E. Ruhl⁸, Vou M. Shutt^{9,20}, Petcharat Thummabenjapone²¹,
13 Cheryl Trueman²², Pamela D. Roberts^{1,2}, Jeffrey B. Jones^{1*}, Gary E. Vallad^{1,23*}, Erica M. Goss^{1,24*}

14

15

16 ¹ Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America

17

18 ² Department of Crop Protection, Ahmadu Bello University, Zaria, Nigeria

19

20 ³ Southwest Florida Research and Education Center, University of Florida, Immokalee, Florida, United
21 States of America

22

23 ⁴ Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North
24 Carolina, United States of America

25

26 ⁵ Dipartimento di Agricoltura, Alimentazione e Ambiente, Sezione Patologia Vegetale, Catania, Italy

27

28 ⁶ Centro de Investigación an Alimentación y Desarrollo, Mexico

29

30 ⁷ Department of Horticulture and Crop Science, The Ohio State University, Wooster, Ohio, United States
31 of America

32

33 ⁸ Botany and Plant Pathology Department, Purdue University, West Lafayette, Indiana, United States of
34 America

35

36 ⁹Department of Microbiology and Plant Pathology, Centre for Microbial Ecology and Genomics, Forestry
37 and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
38

39 ¹⁰Departamento de Ciencias Biológicas, Universidad Autónoma de Occidente, Unidad Los Mochis, Blvd.
40 Macario Gaxiola y Carretera Internacional s/n Los Mochis, Sinaloa, México
41

42 ¹¹Biotechnology Department, Collage of Biological and Chemical Engineering, Addis Ababa Science and
43 Technology University, Addis Ababa, Ethiopia
44

45 ¹²Department of Horticultural Science, North Carolina State University
46 Raleigh, North Carolina, United States of America
47

48 ¹³Department of Plant Pathology, China Agricultural University, Beijing, China
49

50 ¹⁴Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana,
51 United States of America
52

53 ¹⁵Department of Plant Pathology, The Ohio State University, Wooster, Ohio, United States of America
54

55 ¹⁶Department of Plant Protection, College of Agriculture, Can Tho University, Can Tho City, Vietnam
56

57 ¹⁷Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
58

59 ¹⁸Embrapa Hortalicas. Laboratorio de Fitopatologia. Brasilia-DF, Brazil
60

61 ¹⁹Queensland Department of Agriculture and Fisheries, Brisbane, Queensland, Australia
62

63 ²⁰Department of Plant Science and Biotechnology, University of Jos, Nigeria
64

65 ²¹Khon Kaen University, Plant Science and Agricultural Resources, Section Plant Pathology, Khon Kaen,
66 Thailand
67

68 ²²Department of Plant Agriculture, Ridgetown Campus, University of Guelph, Ridgetown, Ontario,
69 Canada
70

71 ²³Gulf Coast Research and Education Center, University of Florida, Wimauma, Florida, United States of
72 America
73

74 ²⁴Emerging Pathogen Institute, University of Florida, Gainesville, FL 32610, United States of America
75

76 ^{#a}Current Address: Department of Entomology and Plant Pathology, Oklahoma State University,
77 Stillwater, Oklahoma, United States of America
78

79 * Corresponding authors

80 Email: emgoss@ufl.edu (EMG); gvallad@ufl.edu (GEV); [bjjones@ufl.edu](mailto:jbjones@ufl.edu) (BJJ)

81

82 [†]These authors contributed equally to this work.

83 **Abstract**

84

85 Emerging and re-emerging plant diseases continue to present multifarious threats to global food security.
86 Considerable recent efforts are therefore being channeled towards understanding the nature of pathogen
87 emergence, their spread and evolution. *Xanthomonas euvesicatoria* pv. *perforans* (*Xep*), one of the causal
88 agents of bacterial spot of tomato, rapidly emerged and displaced other bacterial spot xanthomonads in
89 tomato production regions around the world. In less than three decades, it has become a dominant
90 xanthomonad pathogen in tomato production systems across the world and presents a model for
91 understanding diversification of recently emerged bacterial plant pathogens. Although *Xep* has been
92 continuously monitored in Florida since its discovery, the global population structure and evolution at the
93 genome-scale is yet to be fully explored. The objectives of this work were to determine genetic diversity
94 globally to ascertain if different tomato production regions contain genetically distinct *Xep* populations, to
95 examine genetic relatedness of strains collected in tomato seed production areas in East Asia and other
96 production regions, and to evaluate variation in type III effectors, which are critical pathogenicity and
97 virulence factors, in relationship to population structure. We used genome data from 270 strains from 13
98 countries for phylogenetic analysis and characterization of *Xop* effector gene diversity among strains. Our
99 results showed notable genetic diversity in the pathogen. We found genetically similar strains in distant
100 tomato production regions, including seed production regions, and diversification over the past 100 years,
101 which is consistent with intercontinental dissemination of the pathogen in hybrid tomato production
102 chains. Evolution of the *Xep* pangenome, including the acquisition and loss of type III secreted effectors,
103 is apparent within and among phylogenetic lineages. The apparent long-distance movement of the
104 pathogen, together with variants that may not yet be widely distributed, poses risks of emergence of new
105 variants in tomato production.

106

107

108

109 **Introduction/Main**

110 Emerging and re-emerging plant diseases are a constant threat to global food security [1-3]. Bacterial
111 plant pathogens cause some of the most intractable diseases of crops worldwide [4-7]. Novel emergence
112 and re-emergence of bacterial diseases continue to be reported across the globe and is associated with an
113 upsurge in efforts devoted to understanding the nature of pathogen emergence, spread, and evolution [8-
114 17]. A bacterial plant pathogen that emerged in the last few decades and is of global epidemiological
115 consequences is *Xanthomonas euvesicatoria* pv. *perforans*, one of the causal agents of bacterial spot of
116 tomato [18].

117 Bacterial spot disease of tomato affects all aboveground plant parts including leaves, stems, flowers
118 and fruit. Under optimal environmental conditions, fruit lesions and/or extensive defoliation can
119 dramatically limit marketable yields and poses a continuous challenge to tomato production [19-21]. Once
120 epidemics are initiated, growers have limited management tools and have relied heavily on copper-based
121 bactericides. However, reliance on copper compounds has led to widespread copper tolerance [22-30].
122 Alternative bactericides are often costly, provide insufficient control when the weather favors rapid
123 disease development, and rarely improve yields. While historically four taxa have caused this disease,
124 *Xanthomonas euvesicatoria* pv. *perforans* (*Xep*) [31] (syn. *X. perforans* [32, 33]) has emerged rapidly and
125 become a major player on tomato [18, 27, 34-41]. *Xep* was first reported in 1991 in Florida, USA [32] and
126 is now found in all tomato production areas of the world, including regions with no history of the disease
127 [42]. *Xep* has been isolated from tomato seed [32]; therefore, a plausible hypothesis for new outbreaks of
128 *Xep* is pathogen movement with seeds and planting materials [43].

129 Tomato production is characterized by a high seed replacement rate (99.3%), meaning that growers
130 require seeds each season, which in turn requires large-scale seed production [44]. Tomato hybrid seed
131 production is concentrated in geographic areas where environmental conditions minimize seed
132 contamination by pathogens and seed production costs are low. These seed production regions supply
133 hybrid seeds globally for commercial production of tomato fruits for the fresh market or for processing
134 into tomato products (e.g., sauce, paste, and diced tomatoes). The long-distance movement of seeds poses

135 a high risk for dissemination of seed borne pathogens to commercial tomato production areas. Seedlings
136 are typically grown in transplant facilities and then transplanted into fields for the regional and
137 international transplant markets, potentially amplifying and further disseminating seed-borne pathogens
138 [45].

139 The success of *Xep* as a pathogen has been attributed to its production of bacteriocins against
140 competing bacterial spot species, rapid genome evolution via recombination affecting the chromosome,
141 and introduction of genes via horizontal gene transfer that contribute to fitness in tomato fields [46-52].
142 Distinct genetic lineages of *Xep*, each with unique patterns of allelic variation among core genes (genes
143 present in all strains), were identified in fresh market and processing tomato production fields in the
144 United States [47, 50, 51, 53, 54]. Additional lineages of *Xep* were found in Nigeria, Iran, Italy, and the
145 Southwest Indian Ocean islands [42, 48, 55].

146 *Xanthomonas perforans* strains, like other xanthomonads, acquire nutrients through colonization of
147 compatible hosts. The type III secretion system (T3SS) and type III effector (T3E) proteins are critical for
148 suppression of host defenses and virulence by *Xep* [56]. Effector content varies among *Xanthomonas*
149 species and distinct lineages of *Xep* have distinguishable effector content [23, 48, 50, 57, 58]. Strains of
150 *Xep* isolated in the 1990s were limited to tomato [59], but now strains of *Xep* are causing bacterial spot
151 disease of pepper [50, 58, 60]. Host range expansion was attributed, in part, to loss of effectors that act as
152 avirulence factors in pepper and other genomic changes as a result of recombination with other
153 *Xanthomonas* lineages, including pepper pathogenic *X. euvesicatoria* pv. *euvesicatoria*. Effector variation
154 may cause differences in disease epidemiology in addition to host range [49, 57, 61]. For example,
155 wildtype strains with the acquired effector XopJ2 showed three times faster spread in the field than
156 isogenic mutant strains without the effector [51].

157 Emerging pathogens may show limited genetic variation if they experienced a bottleneck during the
158 ecological and evolutionary processes that often precede emergence (e.g., host jump or introduction
159 event) [62]. *Xep* appears genetically diverse but it is not known how this variation is structured across
160 global tomato production regions. The first objective of this work was to determine if different tomato

161 production regions contain genetically distinct *Xep* populations. Second, we asked if there was evidence
162 for long-distance pathogen dissemination, as would be indicated by genotypes shared among distant
163 regions. Specifically, we obtained strains from tomato seed production areas in East Asia and determined
164 if they resembled strains from fruit production fields elsewhere in the world, which would be expected if
165 strains are being disseminated in seeds. Third, we estimated the timing of *Xep* population expansion
166 relative to its first report in 1991. Finally, we evaluated T3SE content and allelic variation in the context
167 of geography and core genome variation as a proxy for genetic variation in virulence. Overall, we found
168 extensive genetic diversity within *Xep*; genetically similar strains in distant geographic regions, inclusive
169 of seed production regions; evidence of diversification prior and subsequent to the first report of
170 emergence; and lineage-specific T3SE repertoires. Together, these results illustrate the capacity for this
171 pathogen to rapidly evolve and strongly support the potential for intra- and intercontinental movement of
172 pathogens in tomato production systems.

173

174 **Results**

175 *X. euvesicatoria* pv. *perforans* strains from seed and commercial fruit production areas

176 A total of 270 *Xep* genomes from 13 different countries – representing seed and fruit production –
177 were used in this study (Table 1). We generated new genome sequence data for 153 strains (S1 Table;
178 NCBI BioProject PRJNA941448). *Xep* strains were differentiated from other tomato-pathogenic
179 xanthomonads using a real-time qPCR assay that specifically amplifies the *hrcN* (*hrpB7*) gene in *Xep* [63]
180 and inoculated on tomato cv. ‘Bonny Best’ to confirm pathogenicity. Strains from China, Thailand, and
181 Vietnam were collected from seed production areas (n = 31) and all other strains (n = 239) were collected
182 in commercial fruit production areas from Australia, Brazil, Canada, Ethiopia, Iran, Italy, Mexico,
183 Nigeria, South Africa, and the United States. Within the US, strains were collected from seven different
184 states in the Midwest and Southeast, including strains collected since 1991 from Florida.

185

186 **Table 1. *Xanthomonas euvesicatoria* pv. *perforans* strains used in this study.**

Country	Locality	Year	Strain (original name, if applicable)
Australia [57]	Queensland	2015	Aus3, Aus7, Aus14
		2016	Aus5, Aus10, Aus11
		2017	Aus1, Aus15, Aus16
Brazil [39]	São Paulo	2011	Bzl1 (2011-107), Bzl2 (2011-132)
	Goiás	2012	Bzl3 (2012-08)
	Goiás, São Paulo	2013	Bzl5 (2013-16), Bzl6 (2013-42)
	Goiás, Minas Gerais	2014	Bzl7 (2014-10), Bzl8 (2014-17)
	Minas Gerais	2015	Bzl10 (2015-53), Bzl11 (2015-56)
	Goiás	2016	Bzl13 (2016-08)
	Goiás	2017	Bzl14 (2017-21)
Canada	Ontario	2016	4A, 4D, 12A, 14A
China		2016	CHI-3, CHI-5, CHI-6, CHI-7, CHI-8, CHI-10, CHI-12, CHI-15, CHI-18
Ethiopia [36]		2011	ETH5, ETH11, ETH21, ETH25, ETH33
Iran [41]		2013	K41, F210, F215, TOM801, TOM816
Italy [64]		2011	1P6S1, 2P4S1, 2P4S1D, 2P6S1, 1P4S1D
Mexico			Mexico-1, Mexico-3, Mexico-LT1, Mexico-LT3, Mexico-LT5
Nigeria [37, 65]		2014	NI-1, NI-2, NI-4, NI-7, NI-12, NI-13
		2015	KS3, KS5, KS9, KS28
South Africa	Pretoria		X2-B14, X10-B85, X59-BD1351, X47-BD167

Vietnam			SEA-3, SEA-5, SEA-21, SEA-23
Thailand		2016	THA-8, THA-14, THA-40, THA-45, THA-54, THA-72, THA-81A, THA-100, THA-112, THA-116, THA-119, THA-120, THA-126, THA-127, THA-128, THA-132, THA-135, THA-157A
United States	Alabama [66]	1996	Xp1861
	Indiana [25]	2016	16-1165A1, 16-1181-2, 16-1182A, 16-1184A, 16-1187A, 16-1205A, 16-1402A, 16-974C, 16-990A, 16-990C
		2014	14-463-1A
	Florida [32, 33, 43, 47, 58, 67]	1991	XV0938, Xp91-118, Xp894, Xp909, Xp1183
		1992	Xp1118, Xp1144
		1993	Xp1241, Xp1268, Xp1275
		1994	Xp1550, Xp1564
		1995	Xp1797, Xp1805
		1996	Xp1856
		1997	Xp1912
		1998	Scott-1, Xp1920
		2006	Xp1-5, Xp1-6, Xp3-12, Xp3-15, Xp3-16, Xp3-8, Xp4-20, Xp5-14, Xp5-6, Xp5-9, Xp7-12, Xp8-16, Xp9-5, Xp10-13, Xp11-2, Xp15-11, Xp17-12, Xp18-15
		2007	Xp4B
		2010	Xp2010
		2011	GEV485

		2012	GEV839, GEV872, GEV893, GEV904, GEV909, GEV915, GEV917, GEV936, GEV940, GEV968, GEV993, GEV1001, GEV1026, GEV1044, GEV1054, GEV1063
		2013	TB6, TB9, TB15
		2015	GEV2047, GEV2048, GEV2049, GEV2050, GEV2052, GEV2055, GEV2058, GEV2059, GEV2060, GEV2063, GEV1989, GEV1991, GEV1992, GEV1993, GEV2004, GEV2009, GEV2010, GEV2011, GEV2013, GEV2015, GEV1911, GEV1912, GEV1913, GEV1914, GEV1915, GEV1916, GEV1917, GEV1918, GEV1919, GEV1920, GEV1921
		2016	GEV2065, GEV2067, GEV2072, GEV2087, GEV2088, GEV2089, GEV2097, GEV2098, GEV2099, GEV2108, GEV2109, GEV2110, GEV2111, GEV2112, GEV2113, GEV2114, GEV2115, GEV2116, GEV2117, GEV2118, GEV2119, GEV2120, GEV2121, GEV2122, GEV2123, GEV2124, GEV2125, GEV2126, GEV2127, GEV2128, GEV2129, GEV2130, GEV2132, GEV2133, GEV2134, GEV2135
	Louisiana [24]	2013	mli-2
	North Carolina [27]	2015	NC-14, NC-47, NC-67, NC-101, NC-112, NC-204
		2016	NC-242, NC-252, NC-282, NC-289, NC-350, NC-373, MRS-30P-011

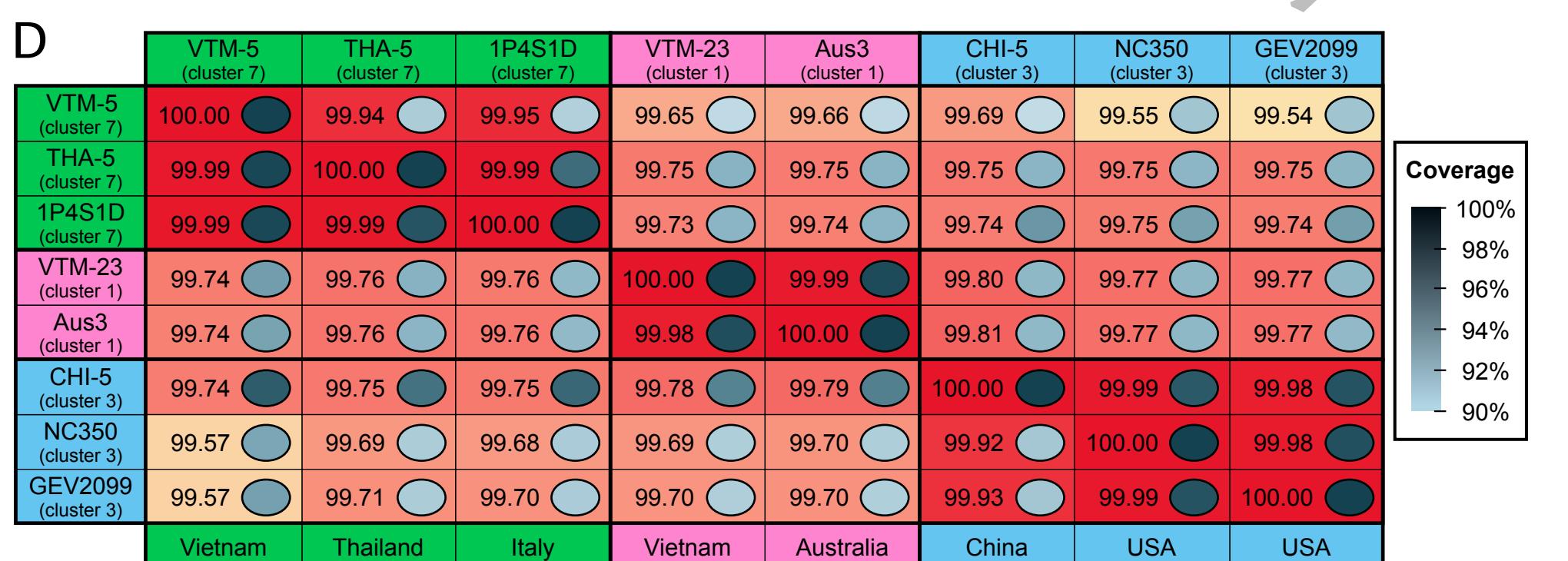
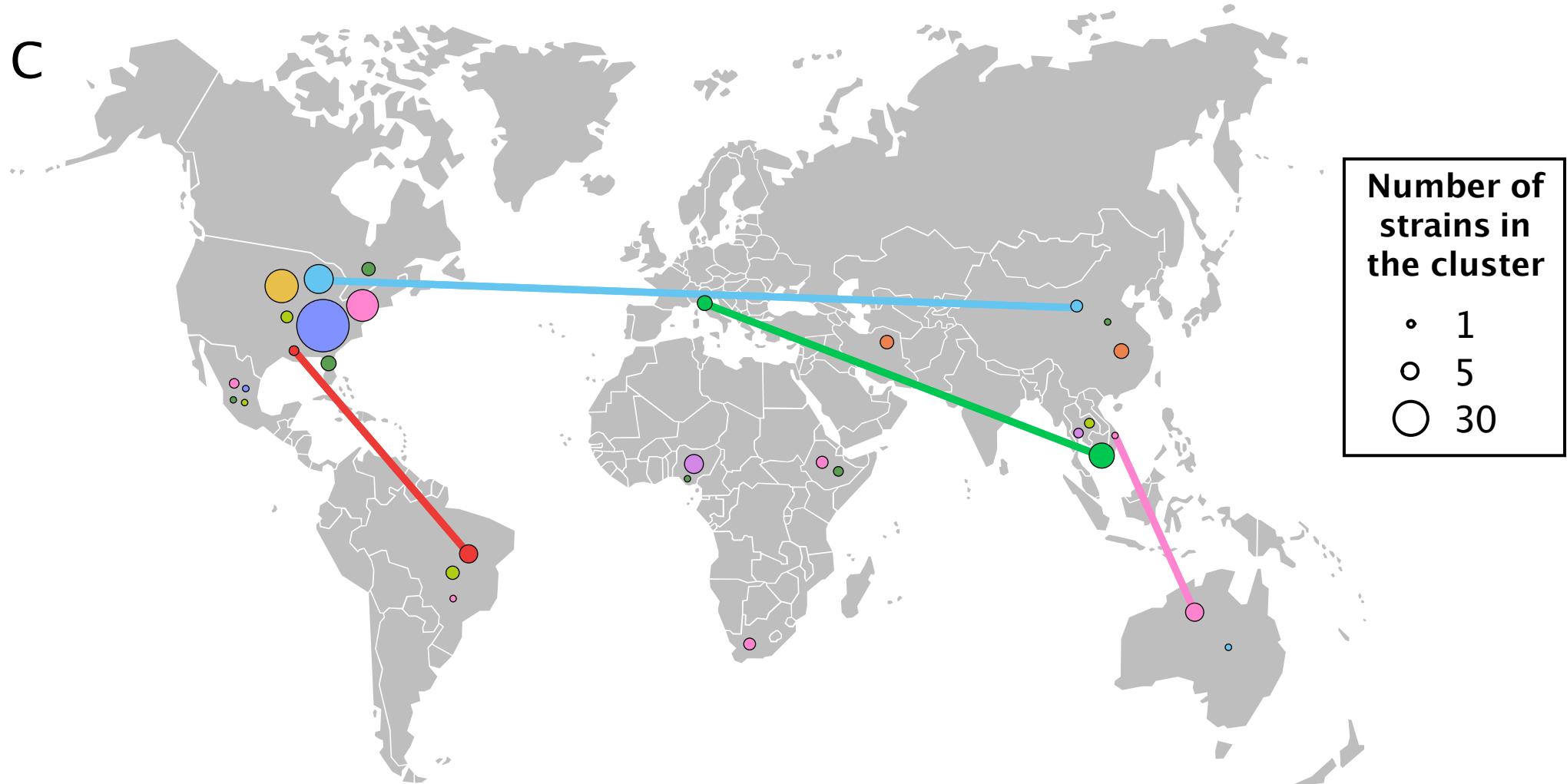
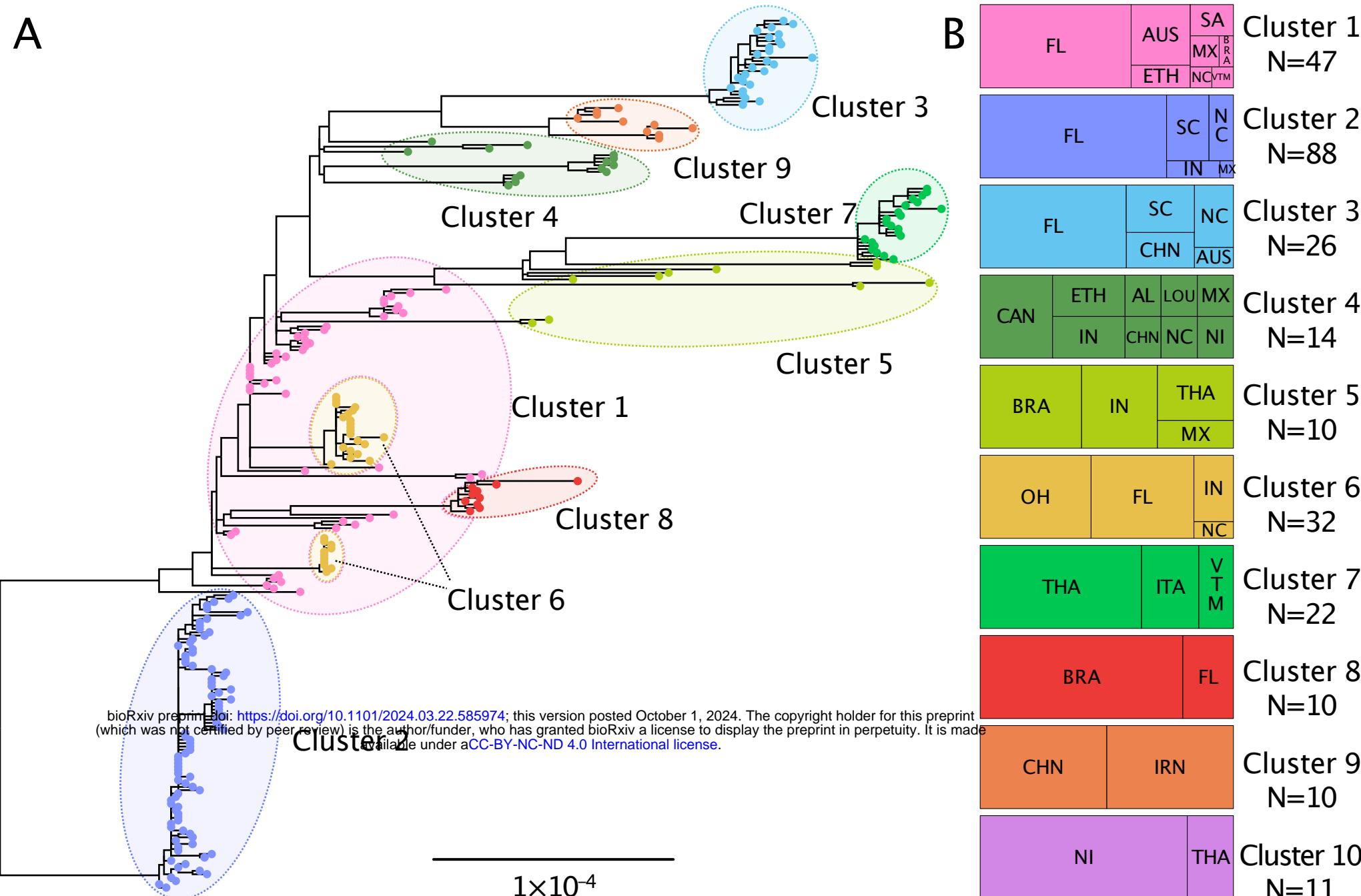
			GEV2407, GEV2408, GEV2384, GEV2388, GEV2389, GEV2390, GEV2391, GEV2392, GEV2393, GEV2396, GEV2397, GEV2399, GEV2400, GEV2403, GEV2410, GEV2420
			SM-1806, SM-1807, SM-1808, SM-1809, SM-1810, SM-1811, SM-1812, SM-1813, SM-1814, SM-1815, SM-1828, SM-1829, SM-1830, SM-1831

187

188 Genomic diversity in *X. euvesicatoria* pv. *perforans*

189 To examine genetic diversity in the core genome, we curated a set of 887 genes that were present
190 in all 270 *Xep* genomes based on IMG/JGI gene annotation. The aligned sequence length of concatenated
191 core genes was 617,855 bp, which contained 14,427 polymorphic sites after removing ambiguous
192 nucleotides and any alignment gaps (S1 Data). Maximum likelihood phylogenetic analysis showed a
193 distinct and especially diverged lineage of 11 strains from Nigeria and Thailand (S1 Figure), that included
194 a previously defined atypical strain – NI1 – from Nigeria [48]. Grouping strains by state within the United
195 States and country elsewhere produced an FST [68] of 0.66. The number of core gene SNPs by
196 geographic location represented by more than one strain ranged from 15 to 5929 (S2 Table). Nucleotide
197 diversity (average number of differences among sequences) ranged from 3 to 1287, with both extremes in
198 nucleotide diversity coming from the Midwestern U.S., Ohio and Indiana respectively (S2 Table).
199 Tajima's D [69] by geographic location ranged from -2.0 to 1.7 (S2 Table).

200 Phylogenetic analysis of core SNPs, followed by correction of branch lengths for recombination,
201 showed diversifying lineages of *Xep* (Figure 1; S1 Figure). After excluding a particularly diverged lineage
202 of 11 strains (S1 Figure), ClonalFrameML [70] estimated an overall ratio of recombination rate to
203 mutation rate (R/theta) of 0.60, with recombination causing approximately seven times more base
204 changes than mutation (delta = 231; nu = 0.05). There were an estimated 221 recombination events that




205 affected more than 96 Kbp in terminal branches and 494 recombination events detected in internal
206 branches encompassing 190 Kbp.

207

208 **Figure 1. Population structure of *Xanthomonas euvesicatoria* pv. *perforans* strains collected from**
209 **tomato production regions.** (A) Maximum likelihood phylogenetic tree of 259 *X. euvesicatoria* pv.
210 *perforans* strains constructed with nucleotide sequences from 887 core genes, corrected for recombination
211 by ClonalFrameML. Tips are colored according to clusters identified by hierBAPS. Cluster 10 strains
212 (n=11) were genetically distant and excluded from the tree (see S1 Figure). Nucleotide alignment is
213 available as S1 Data. (B) Distribution of 270 strains in each hierBAPS cluster by country or state of
214 collection. Abbreviations are as follows: AUS – Australia; BRA – Brazil; CAN – Canada; CHN – China;
215 ETH – Ethiopia; FL – Florida, USA; IN – Indiana, USA; IRN – Iran; ITA – Italy; LOU – Louisiana,
216 USA; MX – Mexico; NC – North Carolina, USA; NI – Nigeria; AL – Alabama; OH – Ohio, USA; SA –
217 South Africa; SC – South Carolina, USA; THA – Thailand; VTM – Vietnam. (C) Map showing
218 distribution of clusters by country of collection. Countries connected by lines show selected instances of
219 genetically similar strains collected in different countries. (D) Pairwise comparison of whole genome
220 average nucleotide identity (ANIb) of selected strains shows high identity between strains isolated from
221 different continents. For each comparison, genome coverage is shown by grayscale in boxes, scale shown
222 to the right. Values for each comparison are for genomes in rows when compared to genomes in columns.
223 See S3 Table for additional ANI output.

224

225 To summarize population structure based on core gene SNPs, we used hierBAPS [71], which
226 assigned individual strains to 9 clusters using allele frequencies (Figure 1; S1 Table). This analysis
227 excluded the 11 highly diverged strains from Nigeria and Thailand, which we designated as cluster 10.
228 F_{ST} among clusters was 0.80. In some cases, clusters corresponded to phylogenetic lineages, including
229 clusters 2, 3, 7, 8, and 9 (Figure 1). The remaining clusters were polyphyletic, encompassing multiple
230 diverged clades or individual strains. Nucleotide diversity within clusters ranged from 13.8 to 675.9 and

231 Tajima's D from -2.6 to 1.0. Presence-absence gene variation in the pangenome largely paralleled the
232 phylogenetic diversity of core genes in that polyphyletic clusters 1, 4, and 5 also showed the most
233 variation in gene content (S2 Figure).

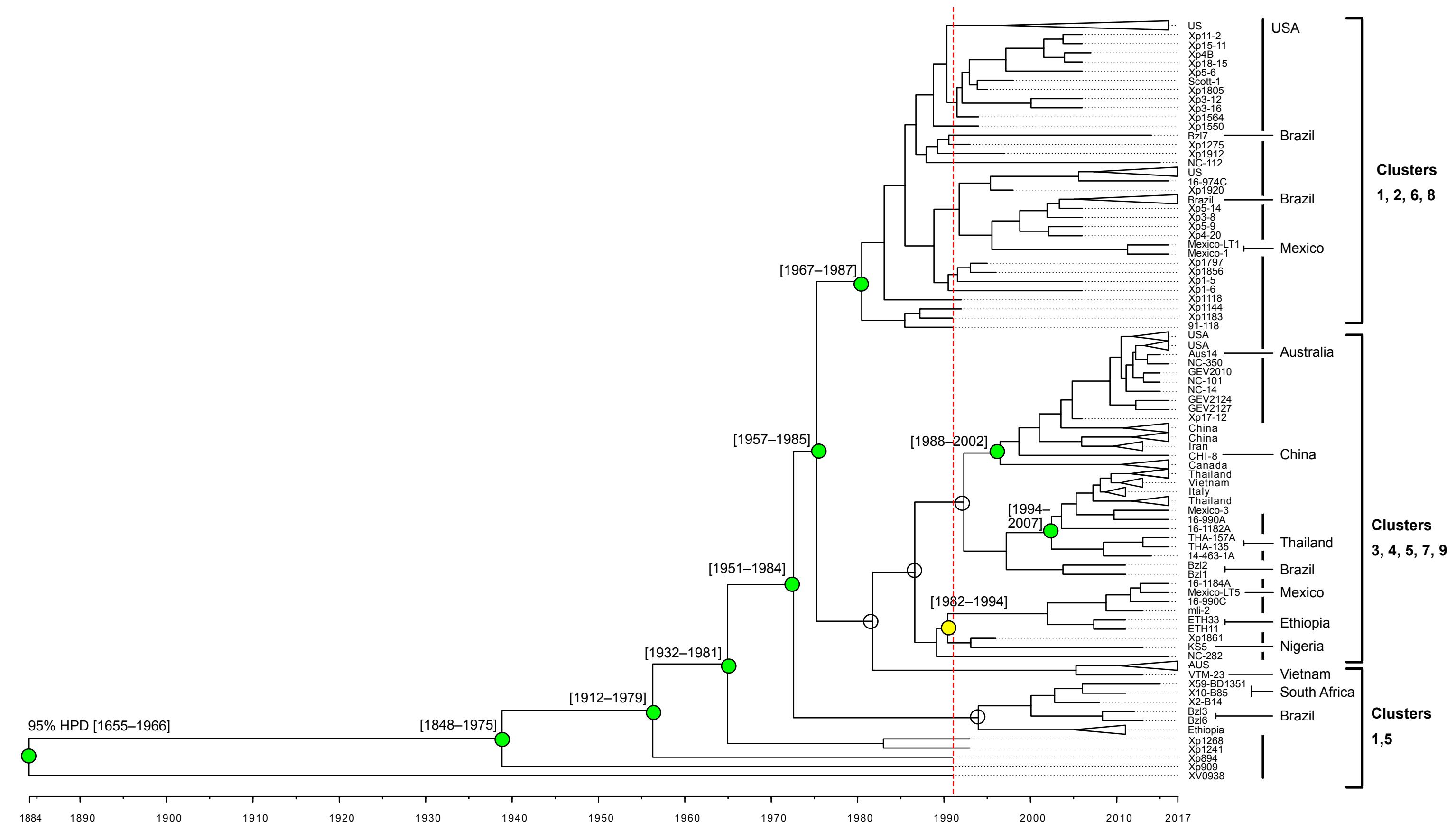
234

235 Geographic distribution of *X. euvesicatoria* pv. *perforans* core gene clusters

236 Cluster 1 encompasses genetically diverse strains from seven countries, including most of the
237 strains from Australia, all four strains from South Africa, and one strain from Southeast Asia (Figure 1B).
238 All USA strains assigned to cluster 1 were isolated in or before 2006 from Florida except for one strain
239 from North Carolina. Cluster 2 contains 88 strains from the United States and one from Mexico, while
240 Cluster 3 includes strains isolated from Florida, North and South Carolina, China, and Australia. Cluster 4
241 encompasses multiple lineages of strains from the United States, Canada, Ethiopia, China, and Nigeria.
242 Cluster 5 is polyphyletic with diverged strains from three continents. Cluster 6 was isolated only within
243 the United States from Florida, Indiana, North Carolina, and Ohio. Cluster 7 is a monophyletic group of
244 strains from Southeast Asia and Italy. Cluster 8 is another monophyletic group found only in Brazil and
245 Florida. Cluster 9 includes two clades of strains, one from China and the other from Iran and Nigeria.
246 Cluster 10 comprises the atypical strains from Nigeria and similar strains from Thailand. Most countries
247 contained strains from more than one core gene cluster (Figure 1C).

248 Clusters 1, 3, 4, 5, 7, 9, and 10 contain strains isolated from both seed production and commercial
249 fruit production regions, whereas strains in clusters 2, 6, and 8 were only isolated from commercial fruit
250 production regions. Some strains found on different continents were nearly identical in core gene
251 sequences (Figure 1D) with very high average nucleotide identity. Strains in cluster 1 from Australia
252 differed by 6 to 10 SNPs in more than 617 Kbp of core gene sequence from strain VTM-23 from
253 Vietnam. Pairwise average nucleotide identity (ANIb) between VTM-23 to Aus3 was 99.99% with
254 alignment fraction of 0.998 (Figure 1D). Strains from the USA had up to 99.87 ANIb with strains from
255 Australia and Vietnam (S3 Table). A different strain from Vietnam, VTM-5 in cluster 7, had as few as
256 four SNPs in the core genome when compared to strains from Italy and ANIb of 99.95% to Italian strain

257 1P4S1D (Figure 1D). Likewise, strains collected in a seed production region in China had ANIb up to
258 99.99% with strains from Florida and North Carolina. We also found similar strains between Brazil and
259 USA, for example Bzl-10 (Minas Gerais) and Xp3-8 (Florida) had greater than 99.9% ANI (S3 Table).
260 Other strains were similar between countries in core genes only after correction for recombination.


261

262 Timing of *X. euvesicatoria* pv. *perforans* lineage emergence

263 We used the years of strain collection to estimate the timing of diversification of our sample of
264 *Xep*, excluding the cluster 10 strains. We inferred dated phylogenies using whole genome alignments with
265 inferred recombinant sites removed by Gubbins [72]. Due to recombination with other *X. euvesicatoria*
266 lineages, we did not include an outgroup (S1 Figure, part B; [48]). Sampling year was significantly
267 correlated with root-to-tip distance ($R^2 = 0.20$ for the whole genome alignment, $P < 1 \times 10^{-4}$, S3 Figure).
268 The root inferred by the BactDating R package [73] was placed between strains isolated in Florida in
269 1991. The most recent common ancestor (MRCA) of all strains was dated to 1884 (95% HPD: 1655–
270 1966). Notably, strains that were isolated in the early 1990s, when *Xep* was first detected in U.S. tomato
271 production [32, 37], represented multiple lineages (Figure 2). The MRCA of the clade representing core
272 gene clusters 1, 2, 6, and 8 (including strains from USA, Brazil, and Mexico) was dated to 1980 (95%
273 HPD: 1967–1987). A major clade, encompassing strains in clusters 3, 4, 5, 7, 9, which were collected in
274 Africa, the Americas, Asia, Australia, and Europe, did not have a significant temporal signal across the
275 clade. We repeated the analysis with BEAST, which inferred a different rooting. The tree inferred by
276 BEAST placed the root between two strains isolated in 2011 from Brazil and all other strains (S4 Figure,
277 part B). The MCRA of the BEAST tree was dated to 1868 (95% HPD: 1862–1919), which was similar to
278 the root date estimated using BactDating (S4 Figure).

279

280 **Figure 2. Dated phylogeny of 259 *X. euvesicatoria* pv. *perforans* strains.** BactDating analysis estimated
281 an approximately 130-year history for *Xep* strains in core gene clusters 1 through 9 (Figure 1). Red dotted
282 line indicates the first documented isolations in 1991. Internal nodes were collapsed for clades containing

283 strains from a single country with branch tips indicating country or strain (for full tree see S4 Figure).
284 Vertical line to the right of tip labels indicates strains from USA; other countries are labeled. Temporal
285 signal was assessed using PhyloStems and results are shown for major nodes (for full results see S3
286 Figure). Empty circles indicate no significant temporal signal. Colored circles indicate nodes with
287 statistically significant temporal signal based on adjusted R^2 values: green – 0.13-0.19; yellow – 0.45. The
288 95% highest posterior density (95% HPD) of date estimates for major nodes with significant temporal
289 signals are shown in brackets.

290

291 Type III effector content

292 We detected 32 predicted type III effectors in our collection of 270 strains (S5 Figure, S4 Table).
293 The diversity in amino acid sequences of predicted effectors ranged widely from a single conserved allele
294 to 8 or more alleles per locus (Figure 3). None of the effectors were present and intact in 100% of our
295 genomes, in part due to our analysis of draft genomes. The following effector genes were present in more
296 than 95% of strains and can be considered “core effectors”: *avrBs2*, *xopF1*, *xopF2*, *xopI*, *xopM*, *xopQ*,
297 *xopS*, *xopV*, *xopX*, *xopAE*, *xopAK*, *xopAP*, *xopAU*, and *xopAW*. The genes for *xopD*, *xopE1*, and *xopN*
298 were present in some form in all genomes but more than 5% of strains contained a contig break within the
299 gene. A closer examination of *xopD* by PCR and Sanger sequencing showed this to be an assembly issue
300 due to the repeats within the gene. Effectors at low frequency in our *Xep* strains (<25%) were *xopE3*,
301 *xopAD*, *xopAJ*, *xopAO*, and *xopAQ*. Transcription activator-like (TAL) effectors typically do not assemble
302 in draft genomes due to their characteristic repeat sequences, but there were BLAST hits to previously
303 described TAL effectors in 65 strains. We Sanger sequenced the TAL effector gene in strain 2P6S1
304 collected in Italy (NCBI accession number OQ588696), which confirmed that it had the same repeat
305 variable diresidues as PthXp1 reported in *Xep* strains from Alabama [50]. Previous phenotyping and
306 sequencing indicated that the strain isolated in Louisiana, USA origin has AvrHah1 [16].

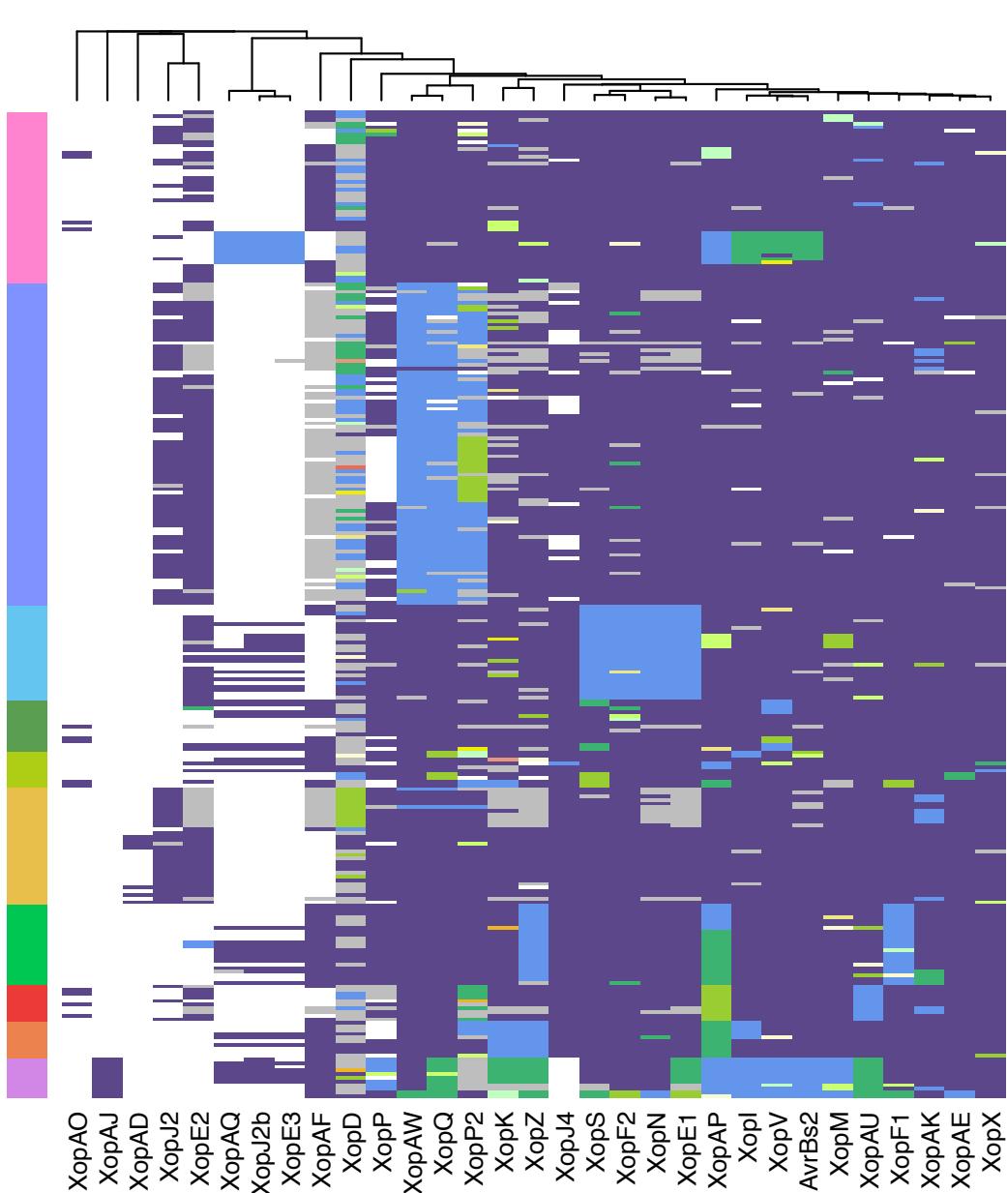
307

308 **Figure 3. Variation in type III effectors (Xop proteins) in *Xanthomonas perforans*.** Type III effectors
309 are in columns and 270 *X. euvesicatoria* pv. *perforans* strain in rows. Effector status is shown by allele
310 type: absence is indicated by allele type 0 (white), while the most frequent allele observed when the
311 effector is present is allele type 1 (purple), second most frequent is allele type 2 (blue), and so on. Putative
312 pseudogenized effectors are shown as allele 13 (gray). The order of columns was determined by
313 hierarchical clustering analysis, placing similarly distributed effectors adjacent to each other. Genomes
314 showing BLAST hits to TAL effector(s) are indicated in Supporting Information Table S3 and not shown
315 in heatmap. *X. euvesicatoria* pv. *perforans* strains (rows) are organized by core gene cluster.

316

317 The T3E effector XopAF (AvrXv3), which is targeted by the tomato resistance gene *Xv3* [74],
318 was missing or pseudogenized in 64% of strains. Most strains examined from the United States did not
319 have a complete copy of this gene, whereas it was intact in many strains collected in Asia and Africa. The
320 gene for XopJ4 (AvrXv4), recognized by resistance gene *RXopJ4* from *S. pennellii* [75], was present in
321 88% of strains and absent in all cluster 10 strains and 19 of 88 cluster 2 strains. XopJ2 (AvrBsT), which
322 elicits an HR in pepper but increases virulence in tomato [49], was present in less than half of strains
323 examined (43%) and overwhelmingly in strains from the United States. A homolog of XopJ2, recently
324 designated XopJ2b [76], was present in 50 strains, including two strains from Australia that carried both
325 copies of XopJ2 (S4 Table).

326 We tested for evidence of positive selection in T3E by estimating synonymous and non-
327 synonymous (dN/dS) substitution rates using a Bayesian approach for detecting pervasive selection
328 (FUBAR, [77]) and maximum likelihood approach for detecting episodic selection (MEME, [78]). We
329 found evidence of pervasive positive selection affecting at least one amino acid in AvrBs2, XopD,
330 XopE1, XopF2, XopK, XopM, XopP and its paralog XopP2, XopQ, XopS, and XopAQ (S4 Table). We
331 found evidence of episodic selection affecting at least one amino acid in XopF2, XopK, XopP, XopP2,
332 XopQ, XopV, and XopAP (S4 Table).



0 4 8 12

Allele type

Cluster

- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10

333 We defined the effector profile of each strain as the predicted presence or absence of each
334 effector and its allelic state, excluding TAL effector hits. Grouping effector profiles according to core
335 gene cluster revealed that allelic variation of effectors often paralleled core genome variation (Figure 3).
336 For example, specific alleles of effectors XopAW, XopQ, and XopP2 were mostly limited to strains in
337 cluster 2. Cluster 3 strains carried unique alleles for effectors XopF2, XopS, XopN, and XopE1, and
338 strains from cluster 7 shared unique alleles for effectors XopF1 and XopZ. Strains from highly diverged
339 cluster 10 had rare alleles in many effectors, and it was the only cluster in which effector XopAJ was
340 found (Figure 3). To visualize variation among strain effector profiles independent of core gene clusters,
341 we transformed dissimilarities between profiles into distances represented in a two-dimensional plot and
342 defined eight effector profile clusters (S6 Figure, part A). A lack of low frequency effectors characterized
343 effector cluster A, containing 188 strains from 11 of 13 countries (S6 Figure). The remaining effector
344 clusters were defined by the presence of one to three low frequency effectors (S7 Figure). While most
345 effectors were found in multiple countries and continents (S6 Figure), populations in Brazil, Ethiopia,
346 Nigeria, Thailand, South Africa, and the United States contained low frequency effectors that were not
347 widely distributed.

348

349 Copper resistance genes

350 Xanthomonads, including *Xep*, have acquired genes conferring copper tolerance, likely in
351 response to exposure to copper-based bactericides [30, 79-81]. In *Xep*, copper tolerance is conferred by an
352 operon containing the copper resistance genes *copA* and *copB*, and regulator *copL* (*copLAB*) [80]. BLAST
353 analysis showed that these genes were present in 73% of the genomes in our sample (S5 Table). Copper
354 resistance genes are prevalent in the USA; only the genomes from strains isolated from Florida in the
355 early 1990s and a strain from Louisiana lacked *copLAB*. The genes were also missing in the genomes of a
356 few strains from Australia (1), Brazil (2), Ethiopia (2), Mexico (1), and Vietnam (2). In contrast, the
357 genes were absent in all genomes of all strains from Nigeria, China, Iran, Italy, and Thailand.

358

359 **Discussion**

360 Emerging plant pathogens have the potential for global outbreaks, exacerbated by complex trade
361 networks. Hybrid tomato production relies on international breeding and production chains with a global
362 network to deliver seeds to growers. Global trade associated with vegetable seed production provides a
363 pathway for global spread of pathogens, with quantities traded that challenge even strong phytosanitary
364 measures [82, 83]. Over 100 countries import seeds of tomatoes and other vegetables; for example, 11.7
365 million kg of vegetable seed were imported to the USA in 2019, with China being the biggest supplier at
366 2.4 million kg [84]. *Xanthomonas* species can infest pepper and tomato seed [85], and *Xep* has been
367 isolated from tomato seed [32, 86], supporting the hypothesis that seeds can be a source of inoculum for
368 bacterial spot outbreaks [87, 88]. Thirty years after its first report, *Xep* has been identified in tomato
369 production areas around the world [18]. Our results showed extensive genetic diversity in the pathogen,
370 but also genetically similar strains in distant tomato production regions. Furthermore, we found
371 genetically similar strains in seed production and fruit production regions on different continents, as
372 would be expected if the pathogen was being moved in shared production chains. Dated phylogenies
373 indicate multiple waves of diversification of the *Xep* population, before and since its first detection in
374 1991. Variation in gene content confirms that *Xep* acquired and lost type III effectors during its
375 diversification, which will continue to challenge sustainable management of tomato bacterial leaf spot
376 [49, 66].

377 Using our broad strain collection, we found *Xep* variants in seed production regions in Asia that
378 were previously reported in Australia, Italy, Nigeria, and the United States [43, 47, 48, 57]. Strains from
379 Italy were nearly identical in core genes and very similar in accessory genomes to strains collected from
380 Thailand and Vietnam, both major seed production regions. The atypical bacterial spot strains from
381 Nigeria, recently designated as race T5 [21], were genetically similar to strains from Thailand. A recently
382 described variant of *Xep* in Florida [cluster 3; [43, 47]], which was also found in Australia [57], was
383 similar in the core genome to strains found in China; however, these strains showed divergence in the
384 pangenome, consistent with accessory genome evolution in emergent populations. Beyond previously

385 described variants, we found strains in Iran that were closely related to strains from China; multiple
386 instances of genetic similarity between strains from North America and Ethiopia; and highly similar
387 strains shared between USA and Brazil, USA and Australia, and between Australia and Vietnam. Given
388 the variation of *Xep* across our sample, genetic similarity in core genes and gene content across continents
389 is strong evidence of international dissemination. Genetically similar strains of bacterial spot pathogens *X.*
390 *euvesicatoria* pv. *euvesicatoria* and *X. hortorum* pv. *gardneri* collected from different continents similarly
391 suggest intercontinental dissemination in tomato and pepper seed [15, 58, 89]. Whole genome analysis of
392 *X. hortorum* pv. *pelargonii* strains from a 2022 epidemic of bacterial blight of geranium in the USA
393 showed zero to seven chromosomal SNPs among isolates of the emergent strain that was distributed to
394 multiple states in plant cuttings [9, 90].

395 Other *Xep* genotypes indicated a more limited distribution. We did not find core gene cluster 2
396 strains in the seed production regions sampled (China, Thailand, Vietnam), while this lineage was highly
397 represented in our USA sample. To date, strains in this cluster have been found only in the southeastern
398 and midwestern USA [43, 47, 50, 53, 54] and Mexico. Seedling nurseries in the southeast USA produce
399 tomato transplants for growers in multiple states. Interstate movement of strains on seedlings is likely
400 responsible, at least in part, for disseminating genetically similar strains to different states [43, 53]. We
401 previously reported extensive recombination with *X. euvesicatoria* pv. *euvesicatoria* in cluster 2 strains
402 [47] and this cluster had a diverse accessory genome, perhaps suggesting that it has a larger geographic
403 distribution than represented in our sample, which is biased towards the USA.

404 The *Xep* strains we examined from the USA were assigned to core gene clusters 1, 2, 3, 4, 5, 6,
405 and 8, representing several distinct genetic lineages. To better understand the initial emergence of *Xep*, we
406 used calibrated phylogenies to examine the timing of lineage divergence. International trade in F1 hybrid
407 tomato seed surged in the second half of the 20th century, after the first hybrid tomato cultivars were
408 released by 1940 [91, 92]. There was a 300-fold increase in hybrid tomato seeds exported from Asia
409 between 1962 and 1977 [93, 94] and subsequent rapid growth in tomato production. Our analyses
410 estimate the most recent common ancestor of our sample to ~150 years ago, while the major ancestral

411 lineages diverged during or after the early expansion in the hybrid seed trade. We hypothesize that the
412 emergence and geographic distribution of lineages may be associated with the multinational structure of
413 tomato breeding and seed production, in which parental lines and geographic locations of seed production
414 change over time [95].

415 The roles of T3E in pathogenicity and virulence make them important members of both the core
416 and accessory genomes. We found up to 16 putative core effector genes, most of which exhibited allelic
417 variation. The impact of allelic variation in *Xep* effectors on pathogen fitness, if any, is unknown. Low
418 frequency effectors were found across core gene clusters, suggesting acquisition of new effectors and
419 their exchange among *Xep* lineages. For example, some strains in clusters 3, 4, and 5 from the United
420 States, Canada, and Mexico carried the same alleles of low frequency effectors XopAQ and XopE3 as
421 strains from Asia, Nigeria, and Italy. BLAST analysis suggested the geographically widespread presence
422 of transcription activation-like (TAL) effectors in *Xep*. Both TAL effectors described in *Xep*, *avrHah1*
423 and *pthXp1*, are associated with increased disease severity on tomato [16, 50]. Acquisition of T3Es could
424 increase the fitness of *Xep* relative to other bacterial spot pathogens and cause more damaging disease
425 outbreaks [49, 51, 66].

426 The release of new plant varieties that carry disease resistance genes can have dramatic effects on
427 pathogen population structure due to selection to overcome host resistance [96-98], and we have
428 previously reported on the loss of function of effector AvrXv3 (XopAF) across lineages [27, 53, 66].
429 Examination of T3E content at a global scale puts variation previously observed in Florida into a larger
430 context. XopAF was present in strains collected in the 1990s (cluster 1), but absent or non-functional in
431 most strains from Florida, Indiana, Ohio, and North Carolina, USA [23, 25, 27, 53, 66]. Here, we found
432 that *xopAF* was intact in many strains from seed production areas, suggesting strong selection for loss of
433 function in commercial fruit production. The effector XopJ4 is a possible resistance target [66], but Klein-
434 Gordon et al. [23] reported that it was missing from 3.2% of Florida strains collected in 2017 and, here,
435 we found that it was absent in one North Carolina and 20 Florida, USA strains. All strains collected
436 outside the USA contained *xopJ4*, except for cluster 10 strains. Another XopJ family member, *xopJ2*, is a

437 virulence factor in tomato [49, 51]. It is common in North America, particularly in cluster 2 and 6 strains,
438 but absent or infrequently detected in *Xep* populations elsewhere. An alternative form of this effector,
439 recently described as XopJ2b [76], is more common in strains from outside North America.

440 Bacterial spot is a destructive disease in areas where tomatoes are grown under humid conditions
441 and growers in the USA have relied heavily on copper bactericides to manage this disease. In response,
442 *Xep* strains have developed copper tolerance [99]. Most strains isolated from Florida in the 1990s lacked
443 the *copLAB* genes, but they are now common in strains collected in the USA. A recent study of Florida
444 strains found that these copper resistance genes are more frequently present on the chromosome than on a
445 plasmid, suggesting selection for vertical inheritance of copper tolerance [30]. In contrast, strains from
446 other countries lacked copper resistance genes, indicating little or no local selection for the acquisition of
447 *cop* genes.

448 In summary, we found strong evidence for intercontinental movement of *Xep*, consistent with the
449 international nature of tomato breeding and hybrid tomato seed production. We also found notable
450 diversity in our global sample of *Xep*, including in seed production regions, and multiple variants of *Xep*
451 that do not appear to be widely distributed. The genomic diversity of *Xep* in seed and fruit production
452 regions creates the opportunity for recombination among strains and subsequent dissemination of high
453 fitness variants of *Xep*.

454

455

456 **Materials and Methods**

457 Bacterial strains, genome sequencing, and assembly

458 *Xep* strains were collected from 13 different countries (Table 1; S1 Table). Strains from the
459 United States were collected from seven states between 1991 to 2016 and comprised 181 strains. The
460 remaining 89 strains were collected from Canada, Mexico, Brazil, Italy, Ethiopia, Nigeria, South Africa,
461 Iran, China, Thailand, Australia, and Vietnam. Strains from China, Thailand, and Vietnam were collected
462 from fields designated for production of tomato seed for the global market. Strains from Brazil were

463 obtained from both staked fresh-market and processing tomato commercial fields. Strains from Italy were
464 isolated from tomato pith in greenhouse tomato showing wilting symptoms [64, 100]. Strains from South
465 Africa were collected from commercial seed lots. Strains from Nigeria were obtained from fields
466 cultivated for both subsistence and commercial purposes. Strains from other countries were collected
467 from fields designated for commercial fruit production.

468 A total of 270 *Xep* genome sequences were used during this study (S1 Table). Draft and whole
469 genomes of 117 strains were generated and published previously [43, 47, 48, 57, 58, 67, 100]. The
470 remaining 153 strains were sequenced for this study using Illumina platforms. Genomic DNA was
471 extracted from single colony cultures grown for 24-hr in nutrient broth using the Wizard Genomic DNA
472 Purification Kit (Promega, Chicago, IL) following manufacturer instructions. Genomic libraries for
473 sequencing were prepared using the Nextera DNA library preparation kit from Illumina (Illumina, San
474 Diego, CA). Sequencing was performed at the Interdisciplinary Center for Biotechnology Research,
475 University of Florida, using an Illumina MiSeq to generate 250 bp paired end reads for each strain.
476 Additional genomic sequence data were generated for five strains for the ANI analysis (S1 Table, part B).
477 Genomic DNA was extracted using the above methods except that extracted genomic DNA was sent to
478 SeqCenter (Pittsburg, PA) for sequencing with Illumina NovaSeq 6000, producing 150 bp paired end
479 reads.

480 Raw reads were trimmed of adapters and paired with Trim Galore
481 (<https://github.com/FelixKrueger/TrimGalore>)[101], then assembled into contigs with Spades version
482 3.10.1 [102], with k-mers 21, 33, 55, 77, 99, and 127 with read error correction and “--careful” switch.
483 Reads were then aligned to the assembled contigs using Bowtie 2 v. 2.3.3 [103]. Inconsistencies were
484 identified and polished using Pilon [104]. Contigs smaller than 500 bp and with less than 2.0 k-mer
485 coverage were filtered out. Quality of genomes were assessed with CheckM [105]. Assembled genomes
486 were annotated using the IMG/JGI platform [106]. The genome data generated for this study are available
487 in NCBI BioProject PRJNA941448.

488

489 Core gene phylogeny

490 In a previous study, we defined a set of 1,356 ‘core genes’ from 58 genomes of *Xep* strains
491 isolated from Florida [47]. The core genes were determined based on amino acid sequence homology
492 using GET_HOMOLOGUES software package [107]. We used the core genes from a representative *Xep*
493 genome, Xp91-118, as query to search the remaining 269 genomes using local BLAST [108]. BLAST
494 results were filtered using query coverage and pairwise nucleotide sequence alignment thresholds of 70%
495 each and the sequence was checked for the presence of standard start and stop codons at either end of the
496 gene and gene was removed if both were not present. A total of 887 genes were found to be intact in all
497 270 genomes. Genes were individually parsed and aligned using MAFFT [109] and concatenated using
498 sequence matrix [110]. The result was a 617.854 Kbp alignment, hereafter referred to as core genes.

499 The concatenated core gene sequence was used to construct a maximum likelihood (ML)
500 phylogenetic tree using RAxML v.8.2.12 [111]. General time reversible model with gamma distributed
501 rates and invariant sites (GTRGAMMA) was used as the nucleotide substitution model. To account for
502 recombination, the ML tree output from RAxML and concatenated core genome alignment were used as
503 was input for ClonalFrameML v1.12 [70].

504

505 Population structure

506 SNPs were extracted from core genes for hierarchical clustering based on Bayesian analysis of
507 population structure (hierBAPS) algorithm [112], implemented in the ‘rhierBAPS’ R package v 1.0.1 [71,
508 113]. For visualization, hierBAPS clusters were added to the phylogenetic tree generated from
509 ClonalFrameML using the ‘ggtree’ package in R [114]. The treemap function in plotly [115] was used to
510 show the relative distribution of clusters across geographic locations. R package ‘ggplot2’ was used to
511 map hierBAPS clusters to countries [116]. The ‘PopGenome’ R package [117] was used to calculate FST,
512 nucleotide diversity (pi), and Tajima’s D statistic by geographic location and by hierBAPS cluster.

513 Assembled genomes were used for calculating average nucleotide identity and pangenome
514 analysis. Average nucleotide identity (ANIb) between strains was calculated using assembled genomes

515 with Pyani version 0.2.10 [118]. The pangenome was estimated using Roary v3.12.0 [119] after
516 annotation from Prokka v1.12 [120]. The gene presence absence matrix from Roary (S4 Data) was used
517 as input for generation of NMDS plots using the ‘dplyr’ and ‘ggplot2’ packages from tidyverse [116] and
518 to generate gene accumulation curves for each cluster using package ‘micropan’ [121].

519

520 Bayesian analysis of *X. euvesicatoria* pv. *perforans* divergence times

521 A whole genome alignment was generated using split k-mer analysis version 2 (SKA2) [122] for
522 all 270 *Xep* strains plus outgroup *X. euvesicatoria* pv. *euvesicatoria* strain 85-10 (NCBI Accession
523 GCA_000009165.1; S2 Data). The alignment was reduced to variable sites only using Geneious 2023.2.1
524 (BioMatters Ltd.) A phylogenetic network was calculated from the resulting SNPs using the NeighborNet
525 2004 algorithm in SplitsTree5 [123, 124]. Phylogenetic conflict was indicated between the 259 strains,
526 cluster 10 strains, and outgroup (S1 Figure, part B). Removing the cluster 10 strains did not remove the
527 conflict between *Xep* and *Xee* outgroup. As a result, we limited our dating of the phylogeny of *Xep* to the
528 259 strains in BAPS clusters 1 through 9. We used Gubbins v. 2.4.1 [72] to remove putative recombinant
529 sites from whole genome alignments generated using SKA2 [122] and the complete genome of Xp91-118
530 as a reference (GCF_000192045.2). The resulting alignment was used to infer a phylogenetic tree using
531 the GTRGAMMI model in RAxML version 8.2.10 [125]. The temporal analysis was conducted with
532 BactDating v1.1.1 [73]. The inputs to the BactDating analysis were the maximum likelihood tree and
533 dates of isolation assigned as dates of tips. The rooting of the tree was estimated using the initRoot
534 function, which maximizes the correlation between tip date, the year the strain was collected, and root-to-
535 tip branch lengths. Dates of nodes were inferred using the bactdate function on the re-rooted tree using a
536 relaxed molecular clock with Markov chain Monte Carlo (MCMC) chains of 10^6 iterations. Phylostems
537 [126] was used to assess the temporal signals within internal clades for interpretation of node date
538 inferences.

539 We also used BEAST v. 1.10.4 (Suchard et al. 2018) to infer a dated phylogeny. The XML file
540 was manually edited to include the ‘ascertained’ flag in the alignment block (S3 Data). The HKY

541 nucleotide substitution model with empirical base frequencies and gamma distribution of site-specific rate
542 heterogeneity was used with coalescent Bayesian skyline priors with an uncorrelated relaxed clock for
543 Bayesian phylogenetic inference over MCMC chains of 200 million generations. Adequate mixing was
544 assessed based on a minimum effective sample size of 200 for parameter estimates as calculated by
545 Tracer v. 1.10.4. A maximum clade credibility tree was inferred from the posterior distribution of trees
546 using TreeAnnotator v. 1.10.4, specifying a burn-in of 10% and the ‘keep’ option for node heights. Trees
547 were visualized in iTOL version 6.9.1 [127].

548

549 Type III Effector Analysis

550 A T3E effector database was curated using amino acid sequences of 66 *Xanthomonas* effectors
551 [128] (S6 Table). When available, functional annotations were retrieved from NCBI and Pfam databases
552 [129]. Orthologous sequences were identified with the software BLASTp [130, 131], by querying the
553 curated effectors database against the amino acid sequences of the annotated genomes of 270 *Xep* strains.
554 Sequences (BLAST hits) were considered effector orthologs when at or above a threshold of 70 percent
555 identity and 50 percent query coverage. When multiple sequences from the same strain had hits above the
556 thresholds to a particular effector, a weighted calculation of the identity and coverage was used to select
557 the best hit. Sequences with homology to multiple effectors and sequences with evidence of contig breaks
558 were manually removed. Assignment of sequences as effector orthologues was confirmed by performing
559 a clustering analysis of all sequences using the software USEARCH v. 11.0.667 and the algorithm HPC-
560 CLUST [132]. For the duplicated effector XopP, we used a phylogenetic analysis of all sequences to
561 distinguish likely orthologous alleles from the more genetically distant paralogous sequences, which were
562 assigned to XopP2.

563 Orthologous sequences from each effector were extracted from the annotated genomes, aligned
564 with MAFFT [109], and allelic variants identified [133] to generate a numeric matrix representing
565 presence and allelic variant or absence. Hierarchical clustering analysis of effectors was performed by
566 calculating a distance matrix with function ‘dist’ with the method ‘manhattan’, and the function ‘hclust’

567 with the method ‘complete’ from the R package ‘vegan’ [113, 134]. The results were displayed as a
568 heatmap with the package ‘gplots’ and the function heatmap.2 [135].

569 To investigate the presence of positive selection acting on the effector sequences, we used the
570 software HyPhy (Hypothesis Testing using Phylogenies) implementing the methods FUBAR (Fast,
571 Unconstrained Bayesian Aprroximation) and MEME (Mixed Effects Model of Evolution) [77, 78]. The
572 Bayesian method FUBAR evaluates pervasive selection, assuming the same rates of synonymous and
573 nonsynonymous substitution per site on all branches. The method MEME uses a maximum likelihood
574 approach to evaluate episodic selection, i.e., selection only a subset of branches of the phylogeny. For
575 each effector gene, a codon-aware alignment was generated with the software PRANK using the codon
576 flag ‘-c’ as settings [136]. RAxML [111] was used to infer a phylogenetic tree with the GTRGAMMA
577 (gamma time-reversible) model of nucleotide substitution. The codon-aware alignment and phylogenetic
578 tree were used as the input files for FUBAR and MEME.

579 To determine the relationship of the effector profiles with respect to core gene cluster, geographic
580 and temporal distribution, we transformed the dissimilarities in the matrix of effector profiles into
581 distances with non-metric multidimensional scaling (NMDS). We used the Bray-Curtis dissimilarity
582 index, a robust index able to handle missing data that considers the presence and absence of effectors as
583 equally informative, calculated with the package ‘vegan’ and the function ‘metaMDS’ [134]. We used a
584 low number of dimensions (K=2) and set try=30 and trymax=500 for random starts to avoid the NMDS
585 getting trapped in local optima. NMDS plots were created with the packages ‘ggrepel’ and ‘ggplot2’ [137,
586 138]. Based on the NMDS analysis, we assigned strains to effector clusters, which were plotted on a
587 worldwide map with the packages ‘ggplot2’ and ‘scatterpie’ [138, 139]. The map was created in R with
588 the packages ‘cowplot’, ‘ggrepel’, ‘ggspatial’, ‘libwgeom’, ‘sf’, ‘rgeos’, ‘memisc’, ‘oz’, ‘maptools’ and
589 ‘rnatural-earth’ with the function ‘ne_countries’ [137, 140-147]. Geographic coordinates (longitude,
590 latitude) of countries and states (for USA) of collection were obtained with the R package ‘googleway’
591 [148] and the function ‘mutate_geocode’ from Google maps.

592 To sequence the putative TAL effector from 2P6S1, native plasmid DNA was isolated using the
593 alkaline lysis method [149]. *Eco*RI digested DNA of the plasmid prep was ligated into vector pLAFR3
594 [150] restricted with the same enzyme for transformation into *E. coli* DH5 α . Clones containing the TAL
595 effector were identified by PCR and analyzed by restriction digest. One clone, designated as p7.1,
596 contained an approx. 5 Kbp *Eco*RI fragment and was selected for Sanger sequencing and phenotype
597 testing. For Sanger sequencing of the TAL repeat region, DNA of p7.1 was restricted with *Nsi*I and the
598 internal fragment was ligated into vector pBluescript restricted with *Pst*I. Additional pBluescript
599 subclones were made using *Bam*HI (~3 Kbp and ~1.1 Kbp) and *Bam*HI/*Eco*RI (~1 Kbp) in order to cover
600 the entire cloned region in p7.1. All clones were transformed into DH5 α for sequencing using vector
601 primers T3 and T7.

602 Copper resistance genes in assembled genomes were identified with BLASTn analysis using *copL*
603 (MBZ2440241.1), *copA* (MBZ2440240.1), and *copB* (MBZ2440239.1)
604 from *Xep* strain Xp2010 as reference sequences [30].

605

606 **Acknowledgements**

607 We thank D. Ritchie and C. Mauney for providing reference strains and collecting disease samples,
608 respectively. Tina Simonton and Phyllis May provided assistance with strain collection in Ontario. This
609 research was supported by USDA NIFA awards 2015-51181-24312, 2020-67013-31921, and 2022-
610 51181-38242, Ontario Agri-Food Innovation Alliance, Ontario Tomato Research Institute, and the Fresh
611 Vegetable Growers of Ontario, the North Carolina Tomato Growers Association. Plant diagnostic
612 laboratories receive funding from USDA-NIFA through the National Plant Diagnostic Network. FIB was
613 supported by Conacyt Mexico. MK was supported by Swedish International Development Cooperation
614 Agency.

615

616 **Author Contributions**

617 ST, FIB, MOJ, PDR, GEV, JBJ, and EMG conceived the study. MOJ, GVM, PA, TBA, GC, LBTdlB,
618 EB, TCC, DTKT, TAC, DSE, RFG, DMF, MK, MLI, FJL, LL, ETM, SAM, NTTN, EO, AMQD, RR,
619 FR, GER, VMS, PT, CT, JBJ, and GEV collected bacterial strains. ST, MOJ, GVM, and JKG prepared
620 genomic libraries. ST, FIB, MOJ, JHT, A Sharma, A Subedi, AK, and EMG performed data analysis. ST,
621 FIB, MOJ, A Sharma, A Subedi, GEV, JBJ, and EMG drafted the manuscript. All authors reviewed the
622 manuscript.

623

624 **Data summary**

625 The raw read files and genome assemblies for all strains sequenced in this study are deposited in NCBI
626 under BioProject PRJNA941448. The sources of genome assemblies acquired from public databases are
627 listed in Table 1.

628

629

630 **Supporting Information**

631

632 **S1 Figure. Phylogenetic analysis of 270 *X. euvesicatoria* pv. *perforans* strains.** (A) Maximum likelihood
633 phylogenetic tree of *Xanthomonas euvesicatoria* pv. *perforans* strains based on aligned nucleotide sequences of
634 887 core genes. The tree was inferred using RAxML using a GTRGAMMA1 substitution model. The tree was
635 rooted using the 11 genetically diverged strains that make up core gene cluster 10. (B) NeighborNet network
636 inferred using SNPs from aligned whole genome sequences, including *X. euvesicatoria* pv. *euvesicatoria* strain
637 85-10 (bolded) as an outgroup. Core gene cluster 10 strains are highlighted. Reticulations in the network indicate
638 conflicting phylogenetic relationships.

639

640 **S2 Figure. Accessory genome variation in *Xanthomonas euvesicatoria* pv. *perforans*.** (A) Visualization of
641 pangenome variation by non-metric multidimensional scaling of gene presence-absence for all 270 *X. perforans*
642 strains by BAPS cluster. Ellipses assume a multivariate t-distribution. (C) Increase in gene count with increasing
643 number of strains sampled. Clusters 1 and 2 were represented by the most strains, but other clusters showed
644 similar rates of increase in the pangenome of the cluster. Pangenome matrix used for analysis is available as S4
645 Data.

646

647 **S3 Figure. Temporal signal in phylogenetic tree of 259 *X. euvesicatoria* pv. *perforans* strains.** (A)
648 Correlation between sampling year and root-to-tip distance in maximum likelihood phylogenetic tree
649 inferred from alignment of whole genome sequences. Output was generated from BactDating R package.
650 (B) Temporal signal within the phylogenetic determined using PhyloStems tool. Nodes with significant
651 temporal signals are indicated with colored circles. Adjusted R-squared values by color are: dark green 0–
652 0.2; light green 0.2–0.4; yellow 0.4–0.6; orange 0.6–0.8; red 0.8–1.

653

654 **S4 Figure. Dated phylogenies of 259 *X. euvesicatoria* pv. *perforans* strains.** (A) Dating using
655 BactDating relaxed clock analysis on RAxML-generated phylogeny. This is the tree shown in Figure 2,

656 shown here without collapsed nodes. (B) Dating of same dataset using BEAST with coalescent Bayesian
657 skyline priors and an uncorrelated relaxed clock.

658

659 **S5 Figure. Frequency of Xop effectors among 270 *Xanthomonas euvesicatoria* pv. *perforans* strains.**

660 The most common allele observed was assigned to allele type 1, second most frequent allele to allele type
661 2, and so on. Note that alleles classified as pseudogenes included contig breaks, which include assembly
662 errors. For example, all strains appear to have *xopD*, but a repeat caused a contig break in the gene in
663 nearly half of the genomes.

664

665 **S6 Figure. Clustering of 270 *Xanthomonas perforans* effector profiles by non-metric
666 multidimensional scaling and distribution of resulting clusters among geographic regions.** Analysis
667 did not include TAL effectors. (A) The most frequently observed group of effector profiles form cluster
668 A. This cluster of 188 strains is represented as a star in plots B-C, as it is represented in most BAPS core
669 gene clusters (B), most of the sampled tomato production regions (C), and in collections from 1991 to
670 2017 (D). Clusters were largely defined by low frequency effectors (S7 Figure). (E) Distribution of strains
671 by effector clusters among sampled countries.

672

673 **S7 Figure. Variation in type III effector profiles in 270 *Xanthomonas euvesicatoria* pv. *perforans*
674 strains ordered according to NMDS of effector profiles.** Analysis did not include TAL effectors. Type
675 III effectors are in columns and *Xep* strains in rows. Effector status is shown by allele type: absence is
676 indicated by allele type 0 (white), while the most frequent allele observed when the effector is present is
677 allele type 1 (purple), second most frequent is allele type 2 (blue), and so on. Putative pseudogenized
678 effectors are shown as allele 13 (gray). The order of columns was determined by hierarchical clustering
679 analysis, placing similarly distributed effectors adjacent to each other. Order of rows is based on NMDS
680 clustering analysis of effector profiles (see S6 Figure).

681

682 **S1 Table. Genome data and metadata for *X. euvesicatoria* pv. *perforans* strains.** (A) BAPS cluster
683 assignment for each strain and NCBI information for each genome. Genome assembly statistics are given
684 for newly sequenced strains. (B) Depth of coverage relevant to ANI comparisons in Fig. 1D.

685

686 **S2 Table. Genetic diversity statistics by geographic region and BAPS group.** (A) Statistics by country
687 and U.S. state. (B) Statistics by BAPS group.

688

689 **S3 Table. Average nucleotide identity (ANIb) comparisons between strains with highly similar core
690 gene sequences collected across continents.** (A) Proportion nucleotide identity. (B) Alignment fraction.

691

692 **S4 Table. Putative type III effectors (Xop proteins) found in 270 *X. euvesicatoria* pv. *perforans*
693 assembled genomes.** (A) Summary for each locus. (B) Results by strain. Each different amino acid
694 sequence per gene was assigned a numerical allele type, such that the most common allele observed was
695 assigned to allele type 1. Potential pseudogenes are indicated with “pseudo” and absence indicated with
696 zero. Locus tags refer to JGI IMG annotations (<https://img.jgi.doe.gov>). Reference sequences used for
697 BLAST searches are given in S5 Table. The final column shows the result of BLAST searches for TAL
698 effectors.

699

700 **S5 Table. Presence or absence of copper genes (*copLAB*) in 270 *X. euvesicatoria* pv. *perforans*
701 assembled genomes.** Symbols represent gene presence ‘+’ or absence ‘-’. Contig break in gene is
702 indicated by (+).

703

704 **S6 Table. Type III effector database used to query assembled genomes for effector genes.**

705

706 **S1 Data. Nucleotide alignment of 887 core genes from 270 *X. euvesicatoria* pv. *perforans* strains.**

707 Alignment is 617,855 bp in FASTA format.

708

709 **S2 Data. Nucleotide alignment of variable sites from whole genome alignment of 270 *X.***

710 *euvesicatoria* pv. *perforans* strains and *X. euvesicatoria* pv. *euvesicatoria* strains 85-10.

711

712 **S3 Data. XML file used for BEAST analysis.**

713

714 **S4 Data. Pangenome matrix for 270 *X. euvesicatoria* pv. *perforans* strains**

715

716 **References Cited**

717

718 1. Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A. The global burden of
719 pathogens and pests on major food crops. *Nature Ecology & Evolution*. 2019;3(3):430-9. doi:
720 10.1038/s41559-018-0793-y.

721 2. Ristaino JB, Anderson PK, Bebber DP, Brauman KA, Cunniffe NJ, Fedoroff NV, et al. The
722 persistent threat of emerging plant disease pandemics to global food security. *Proceedings of the National
723 Academy of Sciences*. 2021;118(23):e2022239118. doi: doi:10.1073/pnas.2022239118.

724 3. Rizzo DM, Lichdveld M, Mazet JAK, Togami E, Miller SA. Plant health and its effects on food
725 safety and security in a One Health framework: four case studies. *One Health Outlook*. 2021;3(1):6. doi:
726 10.1186/s42522-021-00038-7.

727 4. Martins PMM, Merfa MV, Takita MA, De Souza AA. Persistence in Phytopathogenic Bacteria:
728 Do We Know Enough? *Frontiers in Microbiology*. 2018;9. doi: 10.3389/fmicb.2018.01099.

729 5. Jeger MJ, Fielder H, Beale T, Szyniszewska AM, Parnell S, Cunniffe NJ. What Can Be Learned
730 by a Synoptic Review of Plant Disease Epidemics and Outbreaks Published in 2021? *Phytopathology®*.
731 2023;113(7):1141-58. doi: 10.1094/phyto-02-23-0069-ia. PubMed PMID: 36935375.

732 6. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, et al. Top 10 plant
733 pathogenic bacteria in molecular plant pathology. *Mol Plant Pathol*. 2012;13(6):614-29. doi:
734 <https://doi.org/10.1111/j.1364-3703.2012.00804.x>.

735 7. Pfeilmeier S, Caly DL, Malone JG. Bacterial pathogenesis of plants: future challenges from a
736 microbial perspective. *Mol Plant Pathol*. 2016;17(8):1298-313. doi: <https://doi.org/10.1111/mpp.12427>.

737 8. Morris CE, Sands DC, Vinatzer BA, Glaux C, Guilbaud C, Buffiere A, et al. The life history of
738 the plant pathogen *Pseudomonas syringae* is linked to the water cycle. *The ISME journal*. 2008;2(3):321-
739 34.

740 9. Roman-Reyna V, Sharma A, Toth H, Konkel Z, Omiotek N, Murthy S, et al. Live tracking of a
741 plant pathogen outbreak reveals rapid and successive, multidecade plasmid reduction. *mSystems*. 2024;9.
742 doi: <https://doi.org/10.1128/msystems.00795-23>.

743 10. Campos PE, Groot Crego C, Boyer K, Gaudeul M, Baider C, Richard D, et al. First historical
744 genome of a crop bacterial pathogen from herbarium specimen: Insights into citrus canker emergence.
745 *PLoS Path.* 2021;17(7):e1009714. doi: 10.1371/journal.ppat.1009714.

746 11. Xu J, Zhang Y, Li J, Teper D, Sun X, Jones D, et al. Phylogenomic analysis of 343 *Xanthomonas*
747 *citri* pv. *citri* strains unravels introduction history and dispersal paths. *PLoS Path.* 2023;19(12):e1011876.
748 doi: 10.1371/journal.ppat.1011876.

749 12. Weisberg AJ, Davis EW, Tabima J, Belcher MS, Miller M, Kuo C-H, et al. Unexpected
750 conservation and global transmission of agrobacterial virulence plasmids. *Science*.
751 2020;368(6495):eaba5256. doi: 10.1126/science.aba5256.

752 13. Castillo AI, Chacón-Díaz C, Rodríguez-Murillo N, Coletta-Filho HD, Almeida RPP. Impacts of
753 local population history and ecology on the evolution of a globally dispersed pathogen. *BMC Genomics*.
754 2020;21(1):369. doi: 10.1186/s12864-020-06778-6.

755 14. Castillo Andreina I, Bojanini I, Chen H, Kandel Prem P, De La Fuente L, Almeida Rodrigo PP.
756 Allopatric Plant Pathogen Population Divergence following Disease Emergence. *Appl Environ Microbiol*.
757 2021;87(7):e02095-20. doi: 10.1128/AEM.02095-20.

758 15. Jibrin MO, Sharma A, Mavian CN, Timilsina S, Kaur A, Iruegas-Bocardo F, et al. Phylodynamic
759 Insights into Global Emergence and Diversification of the Tomato Pathogen *Xanthomonas hortorum* pv.
760 *gardneri*. *Mol Plant-Microbe Interact.* 2024:MPMI-04-24-0035-R. doi: 10.1094/MPMI-04-24-0035-R.

761 16. Subedi A, Barrera LBTdl, Lewis Ivey M, Egel D, Kebede M, Kara S, et al. Population genomics
762 reveals an emerging lineage of *Xanthomonas perforans* on pepper. *Phytopathology*. 2023. doi:
763 10.1094/PHYTO-04-23-0128-R.

764 17. Dupas E, Durand K, Rieux A, Briand M, Pruvost O, Cunty A, et al. Suspicions of two bridgehead
765 invasions of *Xylella fastidiosa* subsp. multiplex in France. *Communications Biology*. 2023;6(1):103. doi:
766 10.1038/s42003-023-04499-6.

767 18. Potnis N, Timilsina S, Strayer A, Shantharaj D, Barak JD, Paret ML, et al. Bacterial spot of
768 tomato and pepper: diverse *Xanthomonas* species with a wide variety of virulence factors posing a
769 worldwide challenge. *Mol Plant Pathol*. 2015;16(9):907-20. doi: 10.1111/mpp.12244.

770 19. Osdaghi E, Jones JB, Sharma A, Goss EM, Abrahamian P, Newberry EA, et al. A centenary for
771 bacterial spot of tomato and pepper. *Mol Plant Pathol*. 2021;22(12):1500.

772 20. Potnis N. Harnessing eco-evolutionary dynamics of *Xanthomonads* on tomato and pepper to
773 tackle new problems of an old disease. *Annu Rev Phytopathol*. 2021;59:289-310.

774 21. Jibrin MO, Timilsina S, Minsavage GV, Vallad GE, Roberts PD, Goss EM, et al. Bacterial spot
775 of tomato and pepper in Africa: Diversity, emergence of T5 race, and management. *Frontiers in
776 Microbiology*. 2022;13:835647. doi: 10.3389/fmicb.2022.835647.

777 22. Abbasi PA, Khabbaz SE, Weselowski B, Zhang L. Occurrence of copper-resistant strains and a
778 shift in *Xanthomonas* spp. causing tomato bacterial spot in Ontario. *Canadian Journal of Microbiology*.
779 2015;61(10):753-61. doi: 10.1139/cjm-2015-0228 %M 26308592.

780 23. Klein-Gordon JM, Xing Y, Garrett KA, Abrahamian P, Paret ML, Minsavage GV, et al.
781 Assessing changes and associations in the *Xanthomonas perforans* population across Florida commercial
782 tomato fields via a statewide survey. *Phytopathology*. 2021;111(6):1029-41. doi: 10.1094/PHYTO-09-20-
783 0402-R.

784 24. Lewis Ivey ML, Strayer A, Sidhu JK, Minsavage GV. Bacterial leaf spot of tomato (*Solanum
785 lycopersicum*) in Louisiana is caused by *Xanthomonas perforans*, tomato race 4. *Plant Dis*.
786 2016;100(6):1233-. doi: 10.1094/PDIS-12-15-1451-PDN.

787 25. Egel DS, Jones JB, Minsavage GV, Creswell T, Ruhl G, Maynard E, et al. Distribution and
788 characterization of *Xanthomonas* strains causing bacterial spot of tomato in Indiana. *Plant Health
789 Progress*. 2018;19(4):319-21. doi: 10.1094/php-07-18-0041-br.

790 26. Abrahamian P, Jones JB, Vallad GE. Efficacy of copper and copper alternatives for management
791 of bacterial spot on tomato under transplant and field production. *Crop Protect.* 2019;126:104919. doi:
792 <https://doi.org/10.1016/j.cropro.2019.104919>.

793 27. Adhikari P, Adhikari TB, Timilsina S, Meadows I, Jones JB, Panthee DR, et al. Phenotypic and
794 genetic diversity of *Xanthomonas perforans* populations from tomato in North Carolina. *Phytopathology.*
795 2019;109(9):1533-43. doi: 10.1094/phyto-01-19-0019-r. PubMed PMID: 31038016.

796 28. Rotondo F, Bernal E, Ma X, Ivey MLL, Sahin F, Francis DM, et al. Shifts in *Xanthomonas* spp.
797 causing bacterial spot in processing tomato in the Midwest of the United States. *Canadian Journal of Plant
798 Pathology.* 2022;1-16. doi: 10.1080/07060661.2022.2047788.

799 29. Khanal S, Hind SR, Babadoost M. Occurrence of copper-resistant *Xanthomonas perforans* and *X.
800 gardneri* in Illinois tomato fields. *Plant Health Progress.* 2020;21(4):338-44. doi: 10.1094/PHP-06-20-
801 0048-RS.

802 30. Bibi S, Weis K, Kaur A, Bhandari R, Goss E, Jones JB, et al. A Brief Evaluation of a Copper
803 Resistance Mobile Genetic Island in the Bacterial Leaf Spot Pathogen *Xanthomonas euvesicatoria* pv.
804 *perforans*. *Phytopathology.* 2023;113(8):1394-8. doi: 10.1094/PHYTO-02-23-0077-SC.

805 31. Constantin EC, Cleenwerck I, Maes M, Baeyen S, Van Malderghem C, De Vos P, et al. Genetic
806 characterization of strains named as *Xanthomonas axonopodis* pv. *dieffenbachiae* leads to a taxonomic
807 revision of the *X. axonopodis* species complex. *Plant Pathol.* 2016;65(5):792-806. doi:
808 10.1111/ppa.12461.

809 32. Jones JB, Stall RE, Scott JW, Somodi GC, Bouzar H, Hodge NC. A third tomato race of
810 *Xanthomonas campestris* pv. *vesicatoria*. *Plant Dis.* 1995;79(4):395-8.

811 33. Jones JB, Lacy GH, Bouzar H, Stall RE, Schaad NW. Reclassification of the xanthomonads
812 associated with bacterial spot disease of tomato and pepper. *Syst Appl Microbiol.* 2004;27(6):755-62. doi:
813 <http://dx.doi.org/10.1078/0723202042369884>.

814 34. Roach R, Mann R, Gambley CG, Shivas RG, Rodoni B. Identification of *Xanthomonas* species
815 associated with bacterial leaf spot of tomato, capsicum and chilli crops in eastern Australia. Eur J Plant
816 Pathol. 2018;150(3):595-608. doi: 10.1007/s10658-017-1303-9.

817 35. Burlakoti RR, Hsu C-F, Chen J-R, Wang J-F. Population dynamics of xanthomonads associated
818 with bacterial spot of tomato and pepper during 27 years across Taiwan. Plant Dis. 2018;102(7):1348-56.
819 doi: 10.1094/PDIS-04-17-0465-RE.

820 36. Kebede M, Timilsina S, Ayalew A, Admassu B, Potnis N, Minsavage GV, et al. Molecular
821 characterization of *Xanthomonas* strains responsible for bacterial spot of tomato in Ethiopia. Eur J Plant
822 Pathol. 2014;140(4):677-88. doi: 10.1007/s10658-014-0497-3. PubMed PMID: WOS:000344533700006.

823 37. Timilsina S, Jibrin MO, Potnis N, Minsavage GV, Kebede M, Schwartz A, et al. Multilocus
824 sequence analysis of xanthomonads causing bacterial spot of tomato and pepper reveals strains generated
825 by recombination among species and recent global spread of *Xanthomonas gardneri*. Appl Environ
826 Microbiol. 2015;81:1520-9.

827 38. Hamza AA, Robène-Soustrade I, Jouen E, Gagnevin L, Lefevre P, Chiroleu F, et al. Genetic and
828 pathological diversity among *Xanthomonas* strains responsible for bacterial spot on tomato and pepper in
829 the Southwest Indian Ocean region. Plant Dis. 2010;94(8):993-9. doi: 10.1094/PDIS-94-8-0993. PubMed
830 PMID: 30743480.

831 39. Araújo ER, Costa JR, Ferreira MASV, Quezado-Duval AM. Widespread distribution of
832 *Xanthomonas perforans* and limited presence of *X. gardneri* in Brazil. Plant Pathol. 2017;66(1):159-68.
833 doi: <https://doi.org/10.1111/ppa.12543>.

834 40. Osdaghi E, Taghavi SM, Hamzehzarghani H, Lamichhane JR. Occurrence and characterization of
835 the bacterial spot pathogen *Xanthomonas euvesicatoria* on pepper in Iran. J Phytopathol.
836 2016;164(10):722-34. doi: <https://doi.org/10.1111/jph.12493>.

837 41. Osdaghi E, Taghavi SM, Hamzehzarghani H, Fazliarab A, Lamichhane JR. Monitoring the
838 occurrence of tomato bacterial spot and range of the causal agent *Xanthomonas perforans* in Iran. Plant
839 Pathol. 2017;66(6):990-1002. doi: <https://doi.org/10.1111/ppa.12642>.

840 42. Osdaghi E, Taghavi SM, Koebnik R, Lamichhane JR. Multilocus sequence analysis reveals a
841 novel phylogroup of *Xanthomonas euvesicatoria* pv. *perforans* causing bacterial spot of tomato in Iran.
842 Plant Pathol. 2018;67(7):1601-11. doi: <https://doi.org/10.1111/ppa.12864>.

843 43. Abrahamian P, Timilsina S, Minsavage GV, Potnis N, Jones JB, Goss EM, et al. Molecular
844 epidemiology of *Xanthomonas perforans* outbreaks in tomato plants from transplant to field as
845 determined by single-nucleotide polymorphism analysis. Appl Environ Microbiol. 2019;85(18):e01220-
846 19. doi: 10.1128/aem.01220-19.

847 44. Mordor Intelligence. Tomato Seeds Market - Growth, Trends, COVID-10 Impact, and Forecasts
848 (2022 - 2027) 2022. Available from: Available at: <https://www.mordorintelligence.com/industry-reports/tomato-seeds-market> [Accessed August 31, 2022].

849 45. Abrahamian P, Sharma A, Jones JB, Vallad GE. Dynamics and spread of bacterial spot epidemics
850 in tomato transplants grown for field production. Plant Dis. 2021;105(3):566-75.

851 46. Hert A, Roberts P, Momol M, Minsavage G, Tudor-Nelson S, Jones J. Relative importance of
852 bacteriocin-like genes in antagonism of *Xanthomonas perforans* tomato race 3 to *Xanthomonas*
853 *euvesicatoria* tomato race 1 strains. Appl Environ Microbiol. 2005;71(7):3581-8.

854 47. Timilsina S, Pereira-Martin JA, Minsavage G, Iruegas Bocardo F, Abrahamian P, Potnis N, et al.
855 Multiple recombination events drive the current genetic structure of *Xanthomonas perforans* in Florida.
856 Frontiers in Microbiology. 2019;10:448.

857 48. Jibrin MO, Potnis N, Timilsina S, Minsavage GV, Vallad GE, Roberts PD, et al. Genomic
858 inference of recombination-mediated evolution in *Xanthomonas euvesicatoria* and *X. perforans*. Appl
859 Environ Microbiol. 2018;84(13):e00136-18. Epub 2018/06/18. doi: 10.1128/aem.00136-18. PubMed
860 PMID: 29678917; PubMed Central PMCID: PMCPMC6007113.

861 49. Abrahamian P, Timilsina S, Minsavage GV, Kc S, Goss EM, Jones JB, et al. The type III effector
862 AvrBsT enhances *Xanthomonas perforans* fitness in field-grown tomato. Phytopathology.
863 2018;108(12):1355-62. doi: 10.1094/PHYTO-02-18-0052-R.

865 50. Newberry EA, Bhandari R, Minsavage GV, Timilsina S, Jibrin MO, Kemble J, et al. Independent
866 evolution with the gene flux originating from multiple *Xanthomonas* species explains genomic
867 heterogeneity in *Xanthomonas perforans*. *Appl Environ Microbiol*. 2019;85(20):e00885-19. Epub
868 2019/10/01. doi: 10.1128/aem.00885-19. PubMed PMID: 31375496; PubMed Central PMCID:
869 PMCPMC6805091.

870 51. Sharma A, Timilsina S, Abrahamian P, Minsavage GV, Colee J, Ojiambo PS, et al. Need for
871 speed: Bacterial effector XopJ2 is associated with increased dispersal velocity of *Xanthomonas perforans*.
872 *Environ Microbiol*. 2021;23(10):5850–65.

873 52. Klein-Gordon J, Cagmat JG, Minsavage GV, Meke LE, Vallad GE, Goss EM, et al. Strength in
874 numbers: Density-dependent volatile-induced antimicrobial activity by *Xanthomonas perforans*.
875 *Phytopathology*. 2022;113(2):160-9.

876 53. Bernal E, Rotondo F, Roman-Reyna V, Klass T, Timilsina S, Minsavage GV, et al. Migration
877 drives the replacement of *Xanthomonas perforans* races in the absence of widely deployed resistance.
878 *Frontiers in Microbiology*. 2022;13:826386. doi: 10.3389/fmicb.2022.826386.

879 54. Klein-Gordon JM, Timilsina S, Xing YR, Abrahamian P, Garrett KA, Jones JB, et al. Whole
880 genome sequences reveal the *Xanthomonas perforans* population is shaped by the tomato production
881 system. *The ISME Journal*. 2022;16(2):591-601. doi: 10.1038/s41396-021-01104-8. PubMed PMID:
882 WOS:000692961600002.

883 55. Richard D, Boyer C, Lefevre P, Canteros BI, Beni-Madhu S, Portier P, et al. Complete genome
884 sequences of six copper-resistant *Xanthomonas* strains causing bacterial spot of Solanaceous plants,
885 belonging to *X. gardneri*, *X. euvesicatoria*, and *X. vesicatoria*, using long-read technology. *Genome*
886 *Announcements*. 2017;5:e01693-16. Epub 2017/02/23. doi: 10.1128/genomeA.01693-16. PubMed PMID:
887 28232425; PubMed Central PMCID: PMCPMC5323636.

888 56. Timilsina S, Potnis N, Newberry EA, Liyanapathirana P, Iruegas-Bocardo F, White FF, et al.
889 *Xanthomonas* diversity, virulence and plant-pathogen interactions. *Nature Reviews Microbiology*.
890 2020;18(8):1-13. Epub 2020/04/30. doi: 10.1038/s41579-020-0361-8. PubMed PMID: 32346148.

891 57. Roach R, Mann R, Gambley CG, Chapman T, Shivas RG, Rodoni B. Genomic sequence analysis
892 reveals diversity of Australian *Xanthomonas* species associated with bacterial leaf spot of tomato,
893 capsicum and chilli. *BMC Genomics*. 2019;20(1):310. doi: 10.1186/s12864-019-5600-x.

894 58. Schwartz AR, Potnis N, Timilsina S, Wilson M, Patane J, Martins J, et al. Phylogenomics of
895 *Xanthomonas* field strains infecting pepper and tomato reveals diversity in effector repertoires and
896 identifies determinants of host specificity. *Frontiers in Microbiology*. 2015;6. doi:
897 10.3389/fmicb.2015.00535.

898 59. Horvath DM, Stall RE, Jones JB, Pauly MH, Vallad GE, Dahlbeck D, et al. Transgenic resistance
899 confers effective field level control of bacterial spot disease in tomato. *PLoS ONE*. 2012;7(8):e42036.

900 60. Subedi A, Minsavage J, Jones JB, Goss E, Roberts P. Exploring diversity of bacterial spot
901 associated *Xanthomonas* population of pepper in Southwest Florida. *Plant Dis*. 2023. doi: 10.1094/PDIS-
902 10-22-2484-RE.

903 61. Cesbron S, Briand M, Essakhi S, Gironde S, Boureau T, Manceau C, et al. Comparative genomics
904 of pathogenic and nonpathogenic strains of *Xanthomonas arboricola* unveil molecular and evolutionary
905 events linked to pathoadaptation. *Frontiers in Plant Science*. 2015;6:1126.

906 62. McCann HC. Skirmish or war: the emergence of agricultural plant pathogens. *Curr Opin Plant
907 Biol*. 2020;56:147-52. doi: <https://doi.org/10.1016/j.pbi.2020.06.003>.

908 63. Strayer AL, Jeyaprakash A, Minsavage GV, Timilsina S, Vallad GE, Jones JB, et al. A multiplex
909 real-time pcr assay differentiates four *Xanthomonas* species associated with bacterial spot of tomato. *Plant
910 Dis*. 2016;100(8):1660-8. doi: 10.1094/PDIS-09-15-1085-RE.

911 64. Aiello D, Scuderi G, Vitale A, Firrao G, Polizzi G, Cirvilleri G. A pith necrosis caused by
912 *Xanthomonas perforans* on tomato plants. *Eur J Plant Pathol*. 2013;137(1):29-41. doi: 10.1007/s10658-
913 013-0214-7.

914 65. Jibrin MO, Timilsina S, Potnis N, Minsavage GV, Shenge KC, Akpa AD, et al. First report of
915 atypical *Xanthomonas euvesicatoria* strains causing bacterial spot of tomato in Nigeria. *Plant Dis*.
916 2015; 99(3):415. doi: <https://doi.org/10.1094/PDIS-09-14-0952-PDN>.

917 66. Timilsina S, Abrahamian P, Potnis N, Minsavage GV, White FF, Staskawicz BJ, et al. Analysis
918 of sequenced genomes of *Xanthomonas perforans* identifies candidate targets for resistance breeding in
919 tomato. *Phytopathology*. 2016;106(10):1097-104. doi: 10.1094/PHYTO-03-16-0119-FI.

920 67. Potnis N, Krasileva K, Chow V, Almeida NF, Patil PB, Ryan RP, et al. Comparative genomics
921 reveals diversity among xanthomonads infecting tomato and pepper. *BMC Genomics*. 2011;12(1):146.

922 68. Hudson RR, Slatkin M, Maddison WP. Estimation of levels of gene flow from DNA sequence
923 data. *Genetics*. 1992;132.

924 69. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism.
925 *Genetics*. 1989;123:585-95.

926 70. Didelot X, Wilson DJ. ClonalFrameML: Efficient inference of recombination in whole bacterial
927 genomes. *PLoS Comp Biol*. 2015;11(2):e1004041. doi: 10.1371/journal.pcbi.1004041.

928 71. Tonkin-Hill G, Lees JA, Bentley SD, Frost SDW, Corander J. RhierBAPS: An R implementation
929 of the population clustering algorithm hierBAPS. *Wellcome Open Research*. 2019;3:93. doi:
930 <https://doi.org/10.12688/wellcomeopenres.14694.1>.

931 72. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, et al. Rapid phylogenetic
932 analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. *Nucleic
933 Acids Res*. 2015;43(3):e15-e.

934 73. Didelot X, Croucher NJ, Bentley SD, Harris SR, Wilson DJ. Bayesian inference of ancestral dates
935 on bacterial phylogenetic trees. *Nucleic Acids Res*. 2018;46(22):e134-e. doi: 10.1093/nar/gky783.

936 74. Stall RE, Jones JB, Minsavage GV. Durability of resistance in tomato and pepper to
937 xanthomonads causing bacterial spot. *Annu Rev Phytopathol*. 2009;47(1):265-84. doi: 10.1146/annurev-
938 phyto-080508-081752.

939 75. Sharlach M, Dahlbeck D, Liu L, Chiu J, Jiménez-Gómez JM, Kimura S, et al. Fine genetic
940 mapping of *RXopJ4*, a bacterial spot disease resistance locus from *Solanum pennellii* LA716. *Theor Appl
941 Genet*. 2013;126(3):601-9. doi: 10.1007/s00122-012-2004-6.

942 76. Sharma A, Iruegas-Bocardo F, Bibi S, Chen Y-C, Kim J-G, Abrahamian P, et al. Multiple
943 acquisitions of XopJ2 effectors in populations of *Xanthomonas perforans*. *Mol Plant-Microbe Interact.*
944 2024. doi: 10.1094/MPMI-05-24-0048-R.

945 77. Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Kosakovsky Pond SL, et al. FUBAR: A
946 Fast, Unconstrained Bayesian AppRoximation for Inferring Selection. *Mol Biol Evol.* 2013;30(5):1196-
947 205.

948 78. Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Kosakovsky Pond SL. Detecting
949 Individual Sites Subject to Episodic Diversifying Selection. *PLoS Genet.* 2012;8(7):e1002764. doi:
950 10.1371/journal.pgen.1002764.

951 79. Behlau F, Canteros BI, Minsavage GV, Jones JB, Graham JH. Molecular characterization of
952 copper resistance genes from *Xanthomonas citri* subsp. *citri* and *Xanthomonas alfalfae* subsp.
953 *citrumelonis*. *Appl Environ Microbiol.* 2011;77(12):4089-96.

954 80. Behlau F, Gochez AM, Lugo AJ, Elibox W, Minsavage GV, Potnis N, et al. Characterization of a
955 unique copper resistance gene cluster in *Xanthomonas campestris* pv. *campestris* isolated in Trinidad,
956 West Indies. *Eur J Plant Pathol.* 2017;147(3):671-81. doi: 10.1007/s10658-016-1035-2.

957 81. Stall, R. E. L, D. C., Jones JB. Linkage of copper resistance and avirulence loci on a self-
958 transmissible plasmid in *Xanthomonas campestris* pv. *vesicatoria*. *Phytopathology*; 1986. p. 240-3.

959 82. Gitaitis R, Walcott R. The epidemiology and management of seedborne bacterial diseases. *Annu*
960 *Rev Phytopathol.* 2007;45(1):371-97. doi: 10.1146/annurev.phyto.45.062806.094321.

961 83. Munkvold GP. Seed pathology progress in academia and industry. *Annu Rev Phytopathol.*
962 2009;47(1):285-311. doi: 10.1146/annurev-phyto-080508-081916.

963 84. Bank W. United States Seed; vegetable seed, of a kind used for sowing imports by country in
964 2019

965 [https://wits.worldbank.org/trade/comtrade/en/country/USA/year/2019/tradeflow/Imports/partner/ALL/](https://wits.worldbank.org/trade/comtrade/en/country/USA/year/2019/tradeflow/Imports/partner/ALL/duct/1209912019)
966 [duct/1209912019](https://wits.worldbank.org/trade/comtrade/en/country/USA/year/2019/tradeflow/Imports/partner/ALL/duct/1209912019) [2022-09-15]. Available from:

967 <https://wits.worldbank.org/trade/comtrade/en/country/USA/year/2019/tradeflow/Imports/partner/ALL/product/120991>.

969 85. Jones JB, Pohronezny KL, Stall RE, Jones JP. *Xanthomonas campestris* pv. *vesicatoria* in Florida
970 on tomato crop residue, weeds, seeds, and volunteer tomato plants. *Phytopathology*. 1986;76(4):430-4.

971 86. Jones JB, Bouzar H, Stall RE, Almira EC, Roberts PD, Bowen BW, et al. Systematic analysis of
972 xanthomonads (*Xanthomonas* spp.) associated with pepper and tomato lesions. *Int J Syst Evol Microbiol*.
973 2000;50 Pt 3:1211-9. doi: 10.1099/00207713-50-3-1211. PubMed PMID: 10843065.

974 87. Dutta B, Gitaitis R, Sanders H, Booth C, Smith S, Langston DB. Role of blossom colonization in
975 pepper seed infestation by *Xanthomonas euvesicatoria*. *Phytopathology*. 2014;104(3):232-9. doi:
976 10.1094/phyto-05-13-0138-r. PubMed PMID: 24111576.

977 88. Giovanardi D, Biondi, E., Ignjatov M, Jevtić, R., Stefani E. Impact of bacterial spot outbreaks on
978 the phytosanitary quality of tomato and pepper seeds. *Plant Pathol*. 2018;67:1168-76. doi:
979 10.1111/ppa.12839.

980 89. Parajuli A, Subedi A, Timilsina S, Minsavage GV, Kenyon L, Chen J-R, et al. Phenotypic and
981 Genetic Diversity of Xanthomonads Isolated from Pepper (*Capsicum* spp.) in Taiwan from 1989 to 2019.
982 *Phytopathology*. 2024;114(9):2033-44. doi: 10.1094/PHYTO-11-23-0449-R.

983 90. Iruegas-Bocardo F, Weisberg AJ, Riutta ER, Kilday K, Bonkowski JC, Creswell T, et al. Whole
984 genome sequencing-based tracing of a 2022 introduction and outbreak of *Xanthomonas hortorum* pv.
985 *pelargonii*. *Phytopathology*. 2022;113(6):975-84. doi: 10.1094/PHYTO-09-22-0321-R.

986 91. Emsweller SL. Fundamental Procedures in Breeding Crops. *The Yearbook of Agriculture U.S.*
987 Department of Agriculture; 1961. p. 127-33.

988 92. Dorst J. Een en twintigste beschrijvende rassenlijst voor landbouwgewassen. Wageningen,
989 Rijkscommissie voor de samenstelling van de rassenlijst voor landbouwgewassen; 1946. p. 221.

990 93. Gedgaew C, Simaraks S, Rambo AT. Trends in hybrid tomato seed production under contract
991 farming in Northeast Thailand. *Southeast Asian Studies*. 2017;6(2):339-3.

992 94. Ltd.” K-YNSPC, editor Production and marketing of F1 hybrid tomato seed in Taiwan. 1st
993 International Symposium on Tropical Tomato; 1978: AVRDC.

994 95. Kloppenburg JR. First the seed: The political economy of plant biotechnology, 1492-2000 (2nd
995 edition). Madison, WI: University of Wisconsin Press; 2004.

996 96. Quibod IL, Atieza-Grande G, Oreiro EG, Palmos D, Nguyen MH, Coronejo ST, et al. The Green
997 Revolution shaped the population structure of the rice pathogen *Xanthomonas oryzae* pv. *oryzae*. The
998 ISME Journal. 2020;14(2):492-505. doi: 10.1038/s41396-019-0545-2.

999 97. McDonald BA, Linde C. Pathogen population genetics, evolutionary potential, and durable
1000 resistance. Annu Rev Phytopathol. 2002;40:349-79.

1001 98. Gassmann W, Dahlbeck D, Chesnokova O, Minsavage Gerald V, Jones Jeffrey B, Staskawicz
1002 Brian J. Molecular Evolution of Virulence in Natural Field Strains of *Xanthomonas campestris* pv.
1003 *vesicatoria*. J Bacteriol. 2000;182(24):7053-9. doi: 10.1128/jb.182.24.7053-7059.2000.

1004 99. Klein J, Abrahamian P, Xing Y, Fulton J, Minsavage GV, Timilsina S, et al. It's complicated: The
1005 *Xanthomonas perforans* population across Florida commercial tomato fields. Phytopathology.
1006 2019;109(10):12-3. PubMed PMID: WOS:000492694200045.

1007 100. Torelli E, Aiello D, Polizzi G, Firrao G, Cirvilleri G. Draft genome of a *Xanthomonas perforans*
1008 strain associated with pith necrosis. FEMS Microbiol Lett. 2015;362(4). doi: 10.1093/femsle/fnv001.
1009 PubMed PMID: 25724775.

1010 101. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads.
1011 EMBnetjournal; Vol 17, No 1: Next Generation Sequencing Data AnalysisDO - 1014806/ej171200. 2011.

1012 102. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: A new
1013 genome assembly algorithm and Its applications to single-cell sequencing. J Comput Biol.
1014 2012;19(5):455-77.

1015 103. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods.
1016 2012;9(4):357-9. doi: 10.1038/nmeth.1923.

1017 104. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: An integrated
1018 tool for comprehensive microbial variant detection and genome assembly improvement. PLOS ONE.
1019 2014;9(11):e112963. doi: 10.1371/journal.pone.0112963.

1020 105. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality
1021 of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res.
1022 2015;25(7):1043-55.

1023 106. Markowitz VM, Chen IMA, Palaniappan K, Chu K, Szeto E, Grechkin Y, et al. IMG: the
1024 integrated microbial genomes database and comparative analysis system. Nucleic Acids Res.
1025 2012;40(D1):D115-D22.

1026 107. Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for
1027 scalable and robust microbial pangenome analysis. Appl Environ Microbiol. 2013;79(24):7696-701. doi:
1028 10.1128/AEM.02411-13.

1029 108. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol
1030 Biol. 1990;215. doi: 10.1016/s0022-2836(05)80360-2.

1031 109. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements
1032 in performance and usability. Mol Biol Evol. 2013;30(4):772-80. doi: 10.1093/molbev/mst010.

1033 110. Vaidya G, Lohman DJ, Meier R. SequenceMatrix: concatenation software for the fast assembly
1034 of multi-gene datasets with character set and codon information. Cladistics. 2011;27(2):171-80. doi:
1035 <https://doi.org/10.1111/j.1096-0031.2010.00329.x>.

1036 111. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large
1037 phylogenies. Bioinformatics. 2014;30(9):1312-3. doi: <https://doi.org/10.1093/bioinformatics/btu033>.

1038 112. Cheng L, Connor TR, Sirén J, Aanensen DM, Corander J. Hierarchical and spatially explicit
1039 clustering of DNA sequences with BAPS software. Mol Biol Evol. 2013;30(5):1224-8. doi:
1040 10.1093/molbev/mst028.

1041 113. R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R
1042 Foundation for Statistical Computing <https://www.R-project.org/>; 2019.

1043 114. Yu G. Using ggtree to visualize data on tree-like structures. *Current Protocols in Bioinformatics*.
1044 2020;69(1):e96. doi: <https://doi.org/10.1002/cpbi.96>.

1045 115. Sievert C. *Interactive web-based data visualization with R, plotly, and shiny*. Florida: CRC Press;
1046 2020.

1047 116. Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, et al. Welcome to the
1048 Tidyverse. *Journal of Open Source Software*. 2019;4:1686. doi: doi: 10.21105/joss.01686.

1049 117. Pfeifer B, Wittelsbürger U, Ramos-Onsins SE, Lercher MJ. PopGenome: An Efficient Swiss
1050 Army Knife for Population Genomic Analyses in R. *Mol Biol Evol*. 2014;31(7):1929-36. doi:
1051 10.1093/molbev/msu136.

1052 118. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in
1053 diagnostics for food security: soft-rotting enterobacterial plant pathogens. *Analytical Methods*.
1054 2016;8(1):12-24. doi: 10.1039/C5AY02550H.

1055 119. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, et al. Roary: rapid large-scale
1056 prokaryote pan genome analysis. *Bioinformatics*. 2015;31(22):3691-3. Epub 2015/07/20. doi:
1057 10.1093/bioinformatics/btv421. PubMed PMID: 26198102; PubMed Central PMCID:
1058 PMCPMC4817141.

1059 120. Seemann T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics*. 2014;30(14):2068-9.
1060 doi: 10.1093/bioinformatics/btu153.

1061 121. Snipen L, Liland KH. micropan: an R-package for microbial pan-genomics. *BMC
1062 Bioinformatics*. 2015;16:79. Epub 2015/03/12. doi: 10.1186/s12859-015-0517-0. PubMed PMID:
1063 25888166; PubMed Central PMCID: PMCPMC4375852.

1064 122. Harris SR. SKA: Split Kmer Analysis Toolkit for Bacterial Genomic Epidemiology. *bioRxiv*.
1065 2018;453142. doi: <https://doi.org/10.1101/453142>.

1066 123. Huson DH. SplitsTree: analyzing and visualizing evolutionary data. *Bioinformatics*.
1067 1998;14(1):68-73. doi: 10.1093/bioinformatics/14.1.68.

1068 124. Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. *Mol Biol*
1069 *Evol.* 2006;23(2):254-67. Epub 2005/10/14. doi: 10.1093/molbev/msj030. PubMed PMID: 16221896.

1070 125. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with
1071 thousands of taxa and mixed models. *Bioinforma.* 2006;22. doi: 10.1093/bioinformatics/btl446.

1072 126. Doizy A, Prin A, Cornu G, Chiroleu F, Rieux A. Phylostems: a new graphical tool to investigate
1073 temporal signal of heterochronous sequences datasets. *Bioinformatics Advances.* 2023;3(1):vbad026. doi:
1074 10.1093/bioadv/vbad026.

1075 127. Letunic I, Bork P. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree
1076 display and annotation tool. *Nucleic Acids Res.* 2024;52(W1):W78-W82. doi: 10.1093/nar/gkae268.

1077 128. Costa J, Pothier JF, Bosis E, Boch J, Kölliker R, Koebnik R. A community-curated DokuWiki
1078 resource on diagnostics, diversity, pathogenicity and genetic control of xanthomonads. *Mol Plant-*
1079 *Microbe Interact.* 2023. doi: 10.1094/MPMI-11-23-0184-FI.

1080 129. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, et al. The Pfam protein families
1081 database. *Nucleic Acids Res.* 2010;38(suppl_1):D211-D22. doi: 10.1093/nar/gkp985.

1082 130. Boratyn GM, Camacho C, Cooper PS, Coulouris G, Fong A, Ma N, et al. BLAST: a more
1083 efficient report with usability improvements. *Nucleic Acids Res.* 2013;41(W1):W29-W33. doi:
1084 10.1093/nar/gkt282.

1085 131. Altschul SF. BLAST Algorithm. *eLS.* 2014. doi:
1086 <https://doi.org/10.1002/9780470015902.a0005253.pub2>.

1087 132. Edgar RC. Search and clustering orders of magnitude faster than BLAST. *Bioinformatics.*
1088 2010;26:2460-1.

1089 133. Takebayashi N. uniqueHaplo.pl, <http://raven.wrrb.uaf.edu/~ntakebay/teaching/programming/perl-scripts/uniqHaplo.pl>, accessed 4-01-23. 2015.

1091 134. Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR, et al. vegan:
1092 Community Ecology Package. R package version 2.5-6. . <https://CRAN.R-project.org/package=vegan>.
1093 2019.

1094 135. Warnes G, Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw A, et al. gplots: Various R
1095 Programming Tools for Plotting Data. R package version 3.1.3, <<https://CRAN.R-project.org/package=gplots>>. 2020.

1096 136. Löytynoja A. Phylogeny-aware alignment with PRANK. In: Russell DJ, editor. Multiple
1097 Sequence Alignment Methods. Totowa, NJ: Humana Press; 2014. p. 155-70.

1098 137. Slowikowski K. ggrepel: Automatically Position Non-Overlapping Text Labels with 'ggplot2'. R
1099 package version 0.9.1, <<https://CRAN.R-project.org/package=ggrepel>>. 2020.

1100 138. Wickham H. ggplot2: Elegant Graphics for Data Analysis. 2 ed: Springer-Verlag New York;
1101 2016.

1102 139. Yu G. scatterpie: Scatter Pie Plot. R package version 0.1.8,
1103 <<https://CRAN.R-project.org/package=scatterpie>>. 2020.

1104 140. Wilke C. cowplot: Streamlined Plot Theme and Plot Annotations for 'ggplot2'. R package version
1105 1.0.0, <<https://cran.r-project.org/package=cowplot>>. 2019.

1106 141. Dunnington D, Thorne B, Hernangómez D. ggspatial: Spatial Data Framework for ggplot2. R
1107 package v. 1.1.1, <<https://cran.r-project.org/package=ggspatial>>. 2020.

1108 142. Pebesma E. Simple features for R: Standardized support for spatial vector data. The R Journal.
1109 2018;10(1):439–46. doi: 10.32614/RJ-2018-009.

1110 143. Bivand R, Rundel C. rgeos: Interface to Geometry Engine - Open Source ('GEOS'). R package v.
1111 0.5-1, <https://cran.r-project.org/package=rgeos>. 2019.

1112 144. Elff M. memisc: Management of Survey Data and Presentation of Analysis Results. R package
1113 version 0.99.27, <<https://cran.r-project.org/package=memisc>>. 2020.

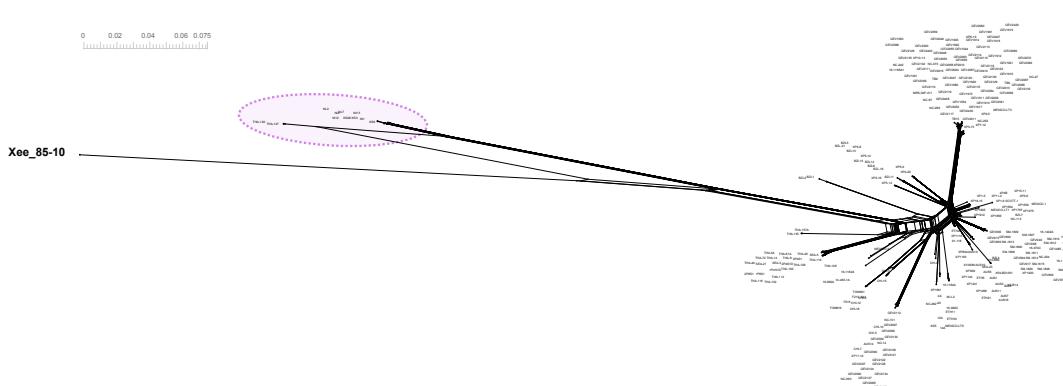
1114 145. Venables B, Hornik K. oz: Plot the Australian Coastline and States. R package version 1.0,
1115 <<https://cran.r-project.org/package=oz>>. 2016.

1116 146. Bivand R, Lewin-Koh N. maptools: Tools for Handling Spatial Objects. R package version 1.0.
1117 <<https://CRAN.R-project.org/package=maptools>>. 2020.

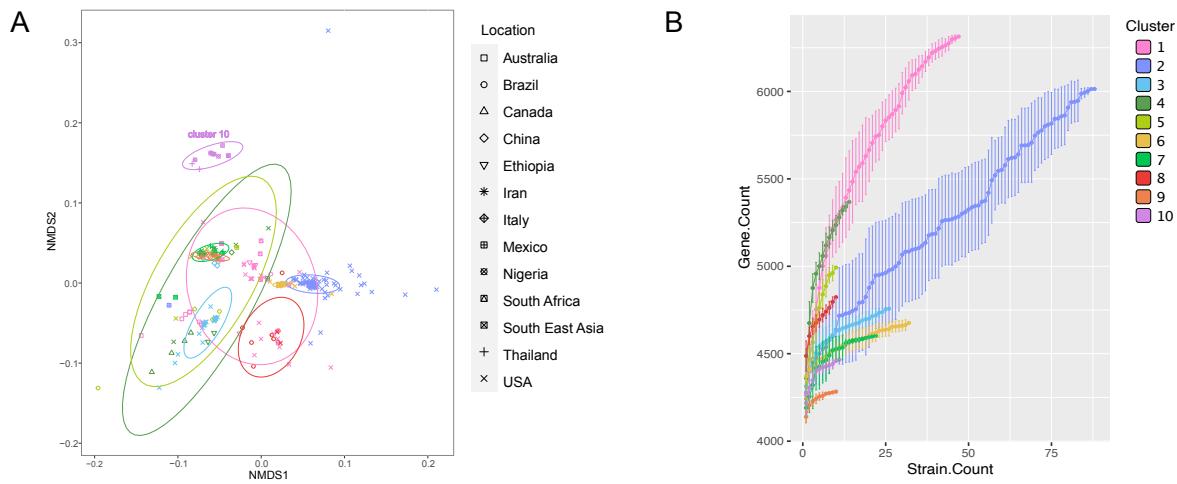
1119 147. South A. rnaturalearth: World Map Data from Natural Earth. R package version 0.1.0,
1120 <<https://cran.r-project.org/package=rnaturalearth>>. 2017.

1121 148. Cooley D. googleway: Accesses Google Maps APIs to Retrieve Data and Plot Maps. R package
1122 version 2.7.1. <https://CRAN.R-project.org/package=googleway> 2018.

1123 149. Minsavage GV, Canteros BI, Stall RE. Plasmid- mediated resistance to streptomycin in
1124 *Xanthomonas campestris* pv. *vesicatoria*. Phytopathology. 1990;80:719-23.

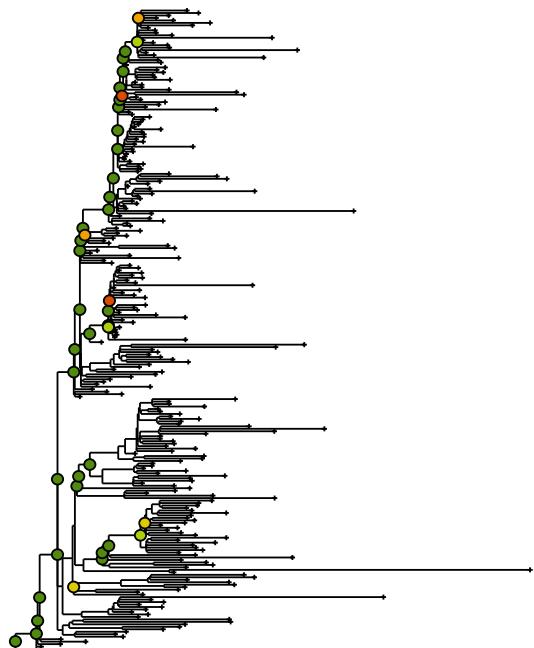

1125 150. Staskawicz BJ, Dahlbeck D, Keen N, Napoli C. Molecular characterization of cloned avirulence
1126 genes from race 0 and race 1 of *Pseudomonas syringae* pv. *glycinea*. J Bacteriol. 1987;169:5789-94.

1127


A

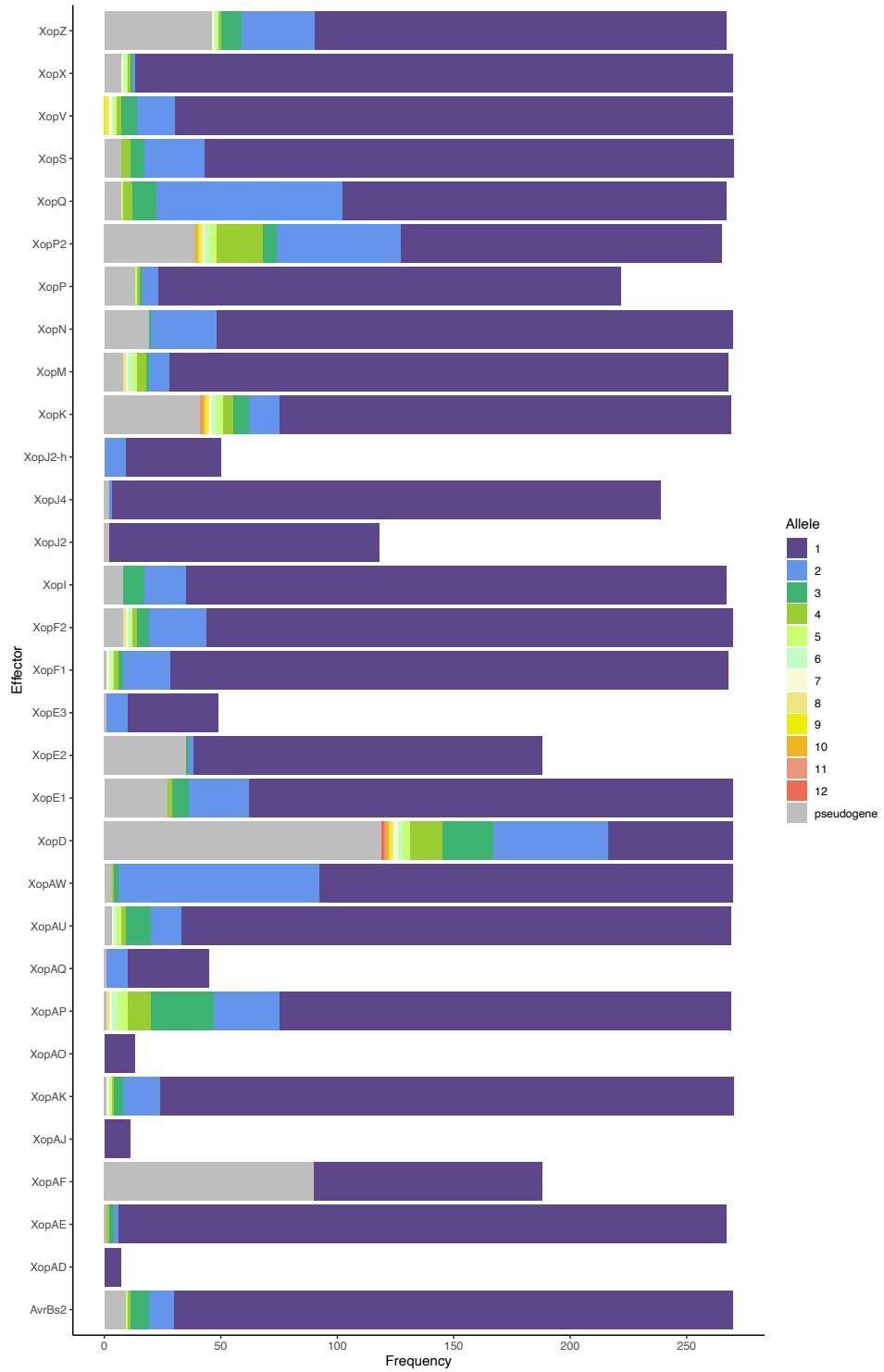
B


S1 Figure. Phylogenetic analysis of 270 *X. euvesicatoria* pv. *perforans* strains. (A) Maximum likelihood phylogenetic tree of *Xanthomonas euvesicatoria* pv. *perforans* strains based on aligned nucleotide sequences of 887 core genes. The tree was inferred using RAxML using a GTRGAMMA1 substitution model. The tree was rooted using the 11 genetically diverged strains that make up core gene cluster 10. (B) Neighbor-net network inferred using SNPs from aligned whole genome sequences, including *X. euvesicatoria* pv. *euvesicatoria* strain 85-10 (bolded) as an outgroup. Core gene cluster 10 strains are highlighted. Reticulations in the network indicate conflicting phylogenetic relationships.

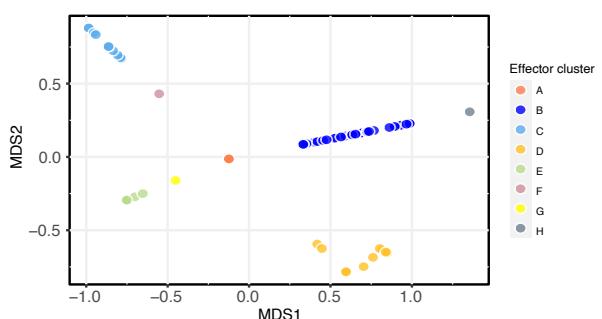

S2 Figure. Accessory genome variation in *Xanthomonas euvesicatoria* pv. *perforans*. (A) Visualization of pangenome variation by non-metric multidimensional scaling of gene presence-absence for all 270 *X. perforans* strains by BAPS cluster. Ellipses assume a multivariate t-distribution. (B) Increase in gene count with increasing number of strains sampled. Clusters 1 and 2 were represented by the most strains, but other clusters showed similar rates of increase in the pangenome of the cluster.

A

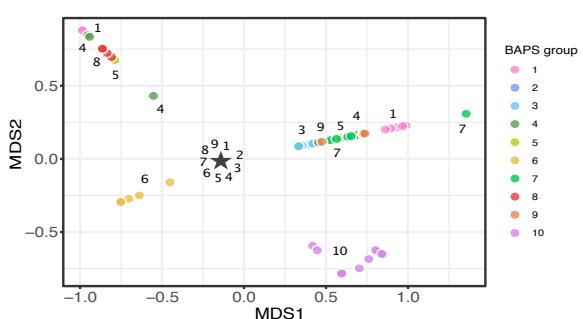
Rate=3.88e+00,MRCA=1969.60,R2=0.20,p<1.00e-04


B

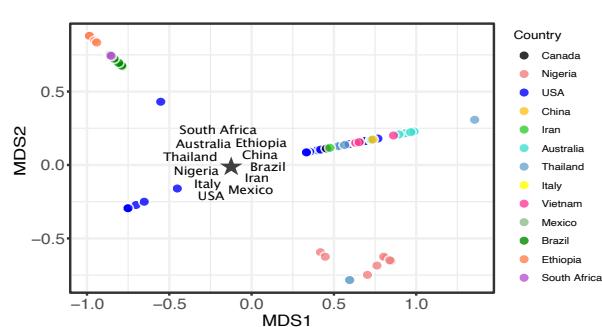
S3 Figure. Temporal signal in phylogenetic tree of 259 *X. euvesicatoria* pv. *perforns* strains. (A) Correlation between sampling year and root-to-tip distance in maximum likelihood phylogenetic tree inferred from alignment of whole genome sequences. Output was generated from BactDating R package. (B) Temporal signal within the phylogenetic determined using PhyloStems tool. Tree is rooted as in Figure 2. Nodes with statistically significant temporal signals are indicated with colored circles. Adjusted R-squared values by color: dark green 0–0.2; light green 0.2–0.4; yellow 0.4–0.6; orange 0.6–0.8; red 0.8–1.

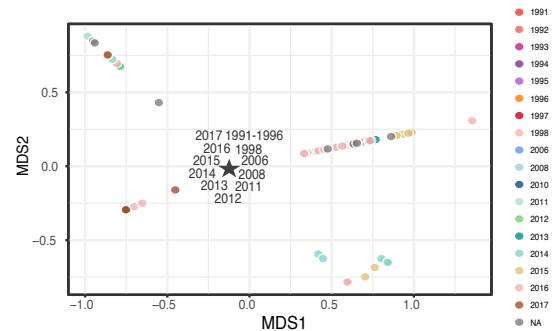


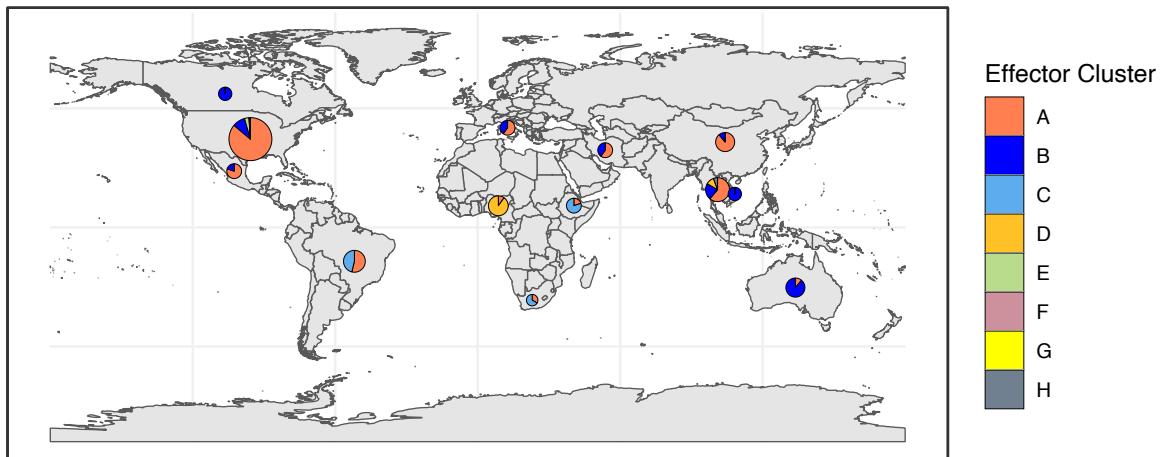
S4 Figure. Dated phylogenies of 259 *X. euvesicatoria* pv. *perforans* strains. (A) Dating using BactDating relaxed clock analysis on RAxML-generated phylogeny. This is the tree shown in Figure 2, shown here without collapsed nodes. (B) Dating of same dataset using BEAST with coalescent Bayesian skyline priors and an uncorrelated relaxed clock.

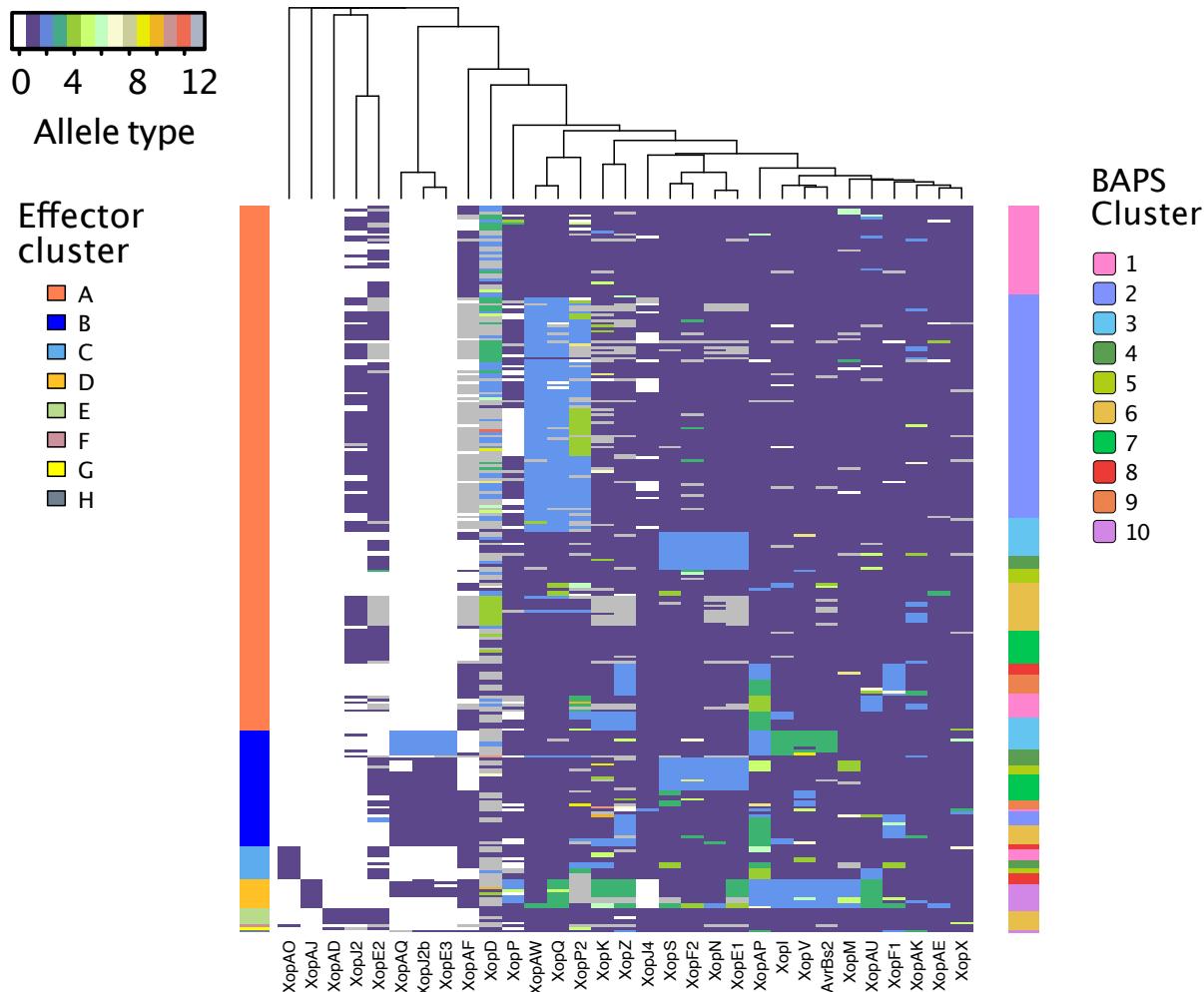


S5 Figure. Frequency of Xop effectors among 270 *Xanthomonas euvesicatoria* pv. *perforans* strains. The most common allele observed was assigned to allele type 1, second most frequent allele to allele type 2, and so on. Note that alleles classified as pseudogenes included contig breaks, which include assembly errors. For example, all strains appear to have *xopD*, but a repeat caused a contig break in the gene in nearly half of the genomes.


A Assignment of effector clusters


B BAPS group


C Country of collection


D Year of collection

E Global distribution of effector clusters

S6 Figure. Clustering of 270 *Xanthomonas perforans* effector profiles by non-metric multidimensional scaling and distribution of resulting clusters among geographic regions. Analysis did not include TAL effectors. (A) The most frequently observed group of effector profiles form cluster A. This cluster of 188 strains is represented as a star in plots B-C, as it is represented in most BAPS core gene clusters (B), most of the sampled tomato production regions (C), and in collections from 1991 to 2017 (D). Clusters were largely defined by low frequency effectors (S7 Figure). (E) Distribution of strains by effector clusters among sampled countries.

S7 Figure. Variation in Type III secreted effector profiles in 270 *Xanthomonas euvesicatoria* pv. *perforans* strains ordered according to NMDS of effector profiles.

Analysis did not include TAL effectors. Type III secreted effectors are in columns and *Xep* strains in rows. Effector status is shown by allele type: absence is indicated by allele type 0 (white), while the most frequent allele observed when the effector is present is allele type 1 (purple), second most frequent is allele type 2 (blue), and so on. Putative pseudogenized effectors are shown as allele 13 (gray). The order of columns was determined by hierarchical clustering analysis, placing similarly distributed effectors adjacent to each other. Order of rows is based on NMDS clustering analysis of effector profiles (see S6 Figure, part A).