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Abstract 83 

 84 

Emerging and re-emerging plant diseases continue to present multifarious threats to global food security. 85 

Considerable recent efforts are therefore being channeled towards understanding the nature of pathogen 86 

emergence, their spread and evolution.  Xanthomonas euvesicatoria pv. perforans (Xep), one of the causal 87 

agents of bacterial spot of tomato, rapidly emerged and displaced other bacterial spot xanthomonads in 88 

tomato production regions around the world. In less than three decades, it has become a dominant 89 

xanthomonad pathogen in tomato production systems across the world and presents a model for 90 

understanding diversification of recently emerged bacterial plant pathogens. Although Xep has been 91 

continuously monitored in Florida since its discovery, the global population structure and evolution at the 92 

genome-scale is yet to be fully explored. The objectives of this work were to determine genetic diversity 93 

globally to ascertain if different tomato production regions contain genetically distinct Xep populations, to 94 

examine genetic relatedness of strains collected in tomato seed production areas in East Asia and other 95 

production regions, and to evaluate variation in type III effectors, which are critical pathogenicity and 96 

virulence factors, in relationship to population structure. We used genome data from 270 strains from 13 97 

countries for phylogenetic analysis and characterization of Xop effector gene diversity among strains. Our 98 

results showed notable genetic diversity in the pathogen. We found genetically similar strains in distant 99 

tomato production regions, including seed production regions, and diversification over the past 100 years, 100 

which is consistent with intercontinental dissemination of the pathogen in hybrid tomato production 101 

chains. Evolution of the Xep pangenome, including the acquisition and loss of type III secreted effectors, 102 

is apparent within and among phylogenetic lineages. The apparent long-distance movement of the 103 

pathogen, together with variants that may not yet be widely distributed, poses risks of emergence of new 104 

variants in tomato production. 105 

 106 

 107 

  108 
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Introduction/Main 109 

Emerging and re-emerging plant diseases are a constant threat to global food security [1-3]. Bacterial 110 

plant pathogens cause some of the most intractable diseases of crops worldwide [4-7]. Novel emergence 111 

and re-emergence of bacterial diseases continue to be reported across the globe and is associated with an 112 

upsurge in efforts devoted to understanding the nature of pathogen emergence, spread, and evolution [8-113 

17]. A bacterial plant pathogen that emerged in the last few decades and is of global epidemiological 114 

consequences is Xanthomonas euvesicatoria pv. perforans, one of the causal agents of bacterial spot of 115 

tomato [18].  116 

Bacterial spot disease of tomato affects all aboveground plant parts including leaves, stems, flowers 117 

and fruit. Under optimal environmental conditions, fruit lesions and/or extensive defoliation can 118 

dramatically limit marketable yields and poses a continuous challenge to tomato production [19-21]. Once 119 

epidemics are initiated, growers have limited management tools and have relied heavily on copper-based 120 

bactericides. However, reliance on copper compounds has led to widespread copper tolerance [22-30]. 121 

Alternative bactericides are often costly, provide insufficient control when the weather favors rapid 122 

disease development, and rarely improve yields. While historically four taxa have caused this disease, 123 

Xanthomonas euvesicatoria pv. perforans (Xep) [31] (syn. X. perforans [32, 33]) has emerged rapidly and 124 

become a major player on tomato [18, 27, 34-41]. Xep was first reported in 1991 in Florida, USA [32] and 125 

is now found in all tomato production areas of the world, including regions with no history of the disease 126 

[42]. Xep has been isolated from tomato seed [32]; therefore, a plausible hypothesis for new outbreaks of 127 

Xep is pathogen movement with seeds and planting materials [43]. 128 

Tomato production is characterized by a high seed replacement rate (99.3%), meaning that growers 129 

require seeds each season, which in turn requires large-scale seed production [44]. Tomato hybrid seed 130 

production is concentrated in geographic areas where environmental conditions minimize seed 131 

contamination by pathogens and seed production costs are low. These seed production regions supply 132 

hybrid seeds globally for commercial production of tomato fruits for the fresh market or for processing 133 

into tomato products (e.g., sauce, paste, and diced tomatoes). The long-distance movement of seeds poses 134 
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a high risk for dissemination of seed borne pathogens to commercial tomato production areas. Seedlings 135 

are typically grown in transplant facilities and then transplanted into fields for the regional and 136 

international transplant markets, potentially amplifying and further disseminating seed-borne pathogens 137 

[45]. 138 

The success of Xep as a pathogen has been attributed to its production of bacteriocins against 139 

competing bacterial spot species, rapid genome evolution via recombination affecting the chromosome, 140 

and introduction of genes via horizontal gene transfer that contribute to fitness in tomato fields [46-52]. 141 

Distinct genetic lineages of Xep, each with unique patterns of allelic variation among core genes (genes 142 

present in all strains), were identified in fresh market and processing tomato production fields in the 143 

United States [47, 50, 51, 53, 54]. Additional lineages of Xep were found in Nigeria, Iran, Italy, and the 144 

Southwest Indian Ocean islands [42, 48, 55].   145 

Xanthomonas perforans strains, like other xanthomonads, acquire nutrients through colonization of 146 

compatible hosts. The type III secretion system (T3SS) and type III effector (T3E) proteins are critical for 147 

suppression of host defenses and virulence by Xep [56]. Effector content varies among Xanthomonas 148 

species and distinct lineages of Xep have distinguishable effector content [23, 48, 50, 57, 58]. Strains of 149 

Xep isolated in the 1990s were limited to tomato [59], but now strains of Xep are causing bacterial spot 150 

disease of pepper [50, 58, 60]. Host range expansion was attributed, in part, to loss of effectors that act as 151 

avirulence factors in pepper and other genomic changes as a result of recombination with other 152 

Xanthomonas lineages, including pepper pathogenic X. euvesicatoria pv. euvesicatoria. Effector variation 153 

may cause differences in disease epidemiology in addition to host range [49, 57, 61]. For example, 154 

wildtype strains with the acquired effector XopJ2 showed three times faster spread in the field than 155 

isogenic mutant strains without the effector [51].                 156 

Emerging pathogens may show limited genetic variation if they experienced a bottleneck during the 157 

ecological and evolutionary processes that often precede emergence (e.g., host jump or introduction 158 

event) [62]. Xep appears genetically diverse but it is not known how this variation is structured across 159 

global tomato production regions. The first objective of this work was to determine if different tomato 160 
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production regions contain genetically distinct Xep populations. Second, we asked if there was evidence 161 

for long-distance pathogen dissemination, as would be indicated by genotypes shared among distant 162 

regions. Specifically, we obtained strains from tomato seed production areas in East Asia and determined 163 

if they resembled strains from fruit production fields elsewhere in the world, which would be expected if 164 

strains are being disseminated in seeds. Third, we estimated the timing of Xep population expansion 165 

relative to its first report in 1991. Finally, we evaluated T3SE content and allelic variation in the context 166 

of geography and core genome variation as a proxy for genetic variation in virulence. Overall, we found 167 

extensive genetic diversity within Xep; genetically similar strains in distant geographic regions, inclusive 168 

of seed production regions; evidence of diversification prior and subsequent to the first report of 169 

emergence; and lineage-specific T3SE repertoires. Together, these results illustrate the capacity for this 170 

pathogen to rapidly evolve and strongly support the potential for intra- and intercontinental movement of 171 

pathogens in tomato production systems. 172 

 173 

Results 174 

X. euvesicatoria pv. perforans strains from seed and commercial fruit production areas 175 

 A total of 270 Xep genomes from 13 different countries – representing seed and fruit production – 176 

were used in this study (Table 1). We generated new genome sequence data for 153 strains (S1 Table; 177 

NCBI BioProject PRJNA941448). Xep strains were differentiated from other tomato-pathogenic 178 

xanthomonads using a real-time qPCR assay that specifically amplifies the hrcN (hrpB7) gene in Xep [63] 179 

and inoculated on tomato cv. ‘Bonny Best’ to confirm pathogenicity. Strains from China, Thailand, and 180 

Vietnam were collected from seed production areas (n = 31) and all other strains (n = 239) were collected 181 

in commercial fruit production areas from Australia, Brazil, Canada, Ethiopia, Iran, Italy, Mexico, 182 

Nigeria, South Africa, and the United States. Within the US, strains were collected from seven different 183 

states in the Midwest and Southeast, including strains collected since 1991 from Florida.  184 

  185 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2024. ; https://doi.org/10.1101/2024.03.22.585974doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.22.585974
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

7 

Table 1. Xanthomonas euvesicatoria pv. perforans strains used in this study. 186 

Country Locality Year Strain (original name, if applicable) 

Australia [57] Queensland 2015 Aus3, Aus7, Aus14 

  2016 Aus5, Aus10, Aus11 

  2017 Aus1, Aus15, Aus16 

 Brazil [39] São Paulo 2011 Bzl1 (2011-107), Bzl2 (2011-132)  

  Goiás 2012 Bzl3 (2012-08) 

  

Goiás, São 

Paulo 2013 Bzl5 (2013-16), Bzl6 (2013-42) 

  

Goiás, Minas 

Gerais 2014 Bzl7 (2014-10), Bzl8 (2014-17)  

  Minas Gerais 2015 Bzl10 (2015-53), Bzl11 (2015-56) 

  Goiás 2016 Bzl13 (2016-08) 

 Goiás 2017 Bzl14 (2017-21) 

Canada Ontario 2016 4A, 4D, 12A, 14A 

China  2016 

CHI-3, CHI-5, CHI-6, CHI-7, CHI-8, CHI-10, CHI-12, 

CHI-15, CHI-18 

Ethiopia [36]  2011 ETH5, ETH11, ETH21, ETH25, ETH33 

Iran [41]  2013 K41, F210, F215, TOM801, TOM816 

Italy [64]  2011 1P6S1, 2P4S1, 2P4S1D, 2P6S1, 1P4S1D 

Mexico    

Mexico-1, Mexico-3, Mexico-LT1, Mexico-LT3, Mexico-

LT5 

Nigeria [37, 65]  2014 NI-1, NI-2, NI-4, NI-7, NI-12, NI-13 

   2015 KS3, KS5, KS9, KS28  

South Africa Pretoria   X2-B14, X10-B85, X59-BD1351, X47-BD167 
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Vietnam    SEA-3, SEA-5, SEA-21, SEA-23 

Thailand  2016 

THA-8, THA-14, THA-40, THA-45, THA-54, THA-72, 

THA-81A, THA-100, THA-112, THA-116, THA-119, 

THA-120, THA-126, THA-127, THA-128, THA-132, 

THA-135, THA-157A 

United States Alabama [66] 1996 Xp1861 

 Indiana [25] 2016 

16-1165A1, 16-1181-2, 16-1182A, 16-1184A, 16-1187A, 

16-1205A, 16-1402A, 16-974C, 16-990A, 16-990C 

  2014 14-463-1A 

 

Florida [32, 

33, 43, 47, 58, 

67] 1991 XV0938, Xp91-118, Xp894, Xp909, Xp1183 

   1992 Xp1118, Xp1144 

   1993 Xp1241, Xp1268, Xp1275 

   1994 Xp1550, Xp1564 

   1995 Xp1797, Xp1805 

   1996 Xp1856 

   1997 Xp1912 

   1998 Scott-1, Xp1920 

   2006 

Xp1-5, Xp1-6, Xp3-12, Xp3-15, Xp3-16, Xp3-8, Xp4-20, 

Xp5-14, Xp5-6, Xp5-9, Xp7-12, Xp8-16, Xp9-5, Xp10-

13, Xp11-2, Xp15-11, Xp17-12, Xp18-15 

  2007 Xp4B 

   2010 Xp2010 

   2011 GEV485 
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   2012 

GEV839, GEV872, GEV893, GEV904, GEV909, 

GEV915, GEV917, GEV936, GEV940, GEV968, 

GEV993, GEV1001, GEV1026, GEV1044, GEV1054, 

GEV1063 

   2013 TB6, TB9, TB15 

   2015 

GEV2047, GEV2048, GEV2049, GEV2050, GEV2052, 

GEV2055, GEV2058, GEV2059, GEV2060, GEV2063, 

GEV1989, GEV1991, GEV1992, GEV1993, GEV2004, 

GEV2009, GEV2010, GEV2011, GEV2013, GEV2015, 

GEV1911, GEV1912, GEV1913, GEV1914, GEV1915, 

GEV1916, GEV1917, GEV1918, GEV1919, GEV1920, 

GEV1921 

   2016 

GEV2065, GEV2067, GEV2072, GEV2087, GEV2088, 

GEV2089, GEV2097, GEV2098, GEV2099, GEV2108, 

GEV2109, GEV2110, GEV2111, GEV2112, GEV2113, 

GEV2114, GEV2115, GEV2116, GEV2117, GEV2118, 

GEV2119, GEV2120, GEV2121, GEV2122, GEV2123, 

GEV2124, GEV2125, GEV2126, GEV2127, GEV2128, 

GEV2129, GEV2130, GEV2132, GEV2133, GEV2134, 

GEV2135 

 Louisiana [24] 2013 mli-2 

 

North 

Carolina [27] 2015 NC-14, NC-47, NC-67, NC-101, NC-112, NC-204 

   2016 

NC-242, NC-252, NC-282, NC-289, NC-350, NC-373, 

MRS-30P-011 
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South 

Carolina [43] 2016 

GEV2407, GEV2408, GEV2384, GEV2388, GEV2389, 

GEV2390, GEV2391, GEV2392, GEV2393, GEV2396, 

GEV2397, GEV2399, GEV2400, GEV2403, GEV2410, 

GEV2420 

 Ohio [53] 2017 

SM-1806, SM-1807, SM-1808, SM-1809, SM-1810, SM-

1811, SM-1812, SM-1813, SM-1814, SM-1815, SM-

1828, SM-1829, SM-1830, SM-1831 

 187 

Genomic diversity in X. euvesicatoria pv. perforans 188 

 To examine genetic diversity in the core genome, we curated a set of 887 genes that were present 189 

in all 270 Xep genomes based on IMG/JGI gene annotation. The aligned sequence length of concatenated 190 

core genes was 617,855 bp, which contained 14,427 polymorphic sites after removing ambiguous 191 

nucleotides and any alignment gaps (S1 Data). Maximum likelihood phylogenetic analysis showed a 192 

distinct and especially diverged lineage of 11 strains from Nigeria and Thailand (S1 Figure), that included 193 

a previously defined atypical strain – NI1 – from Nigeria [48]. Grouping strains by state within the United 194 

States and country elsewhere produced an FST [68] of 0.66. The number of core gene SNPs by 195 

geographic location represented by more than one strain ranged from 15 to 5929 (S2 Table). Nucleotide 196 

diversity (average number of differences among sequences) ranged from 3 to 1287, with both extremes in 197 

nucleotide diversity coming from the Midwestern U.S., Ohio and Indiana respectively (S2 Table). 198 

Tajima’s D [69] by geographic location ranged from –2.0 to 1.7 (S2 Table).  199 

Phylogenetic analysis of core SNPs, followed by correction of branch lengths for recombination, 200 

showed diversifying lineages of Xep (Figure 1; S1 Figure). After excluding a particularly diverged lineage 201 

of 11 strains (S1 Figure), ClonalFrameML [70] estimated an overall ratio of recombination rate to 202 

mutation rate (R/theta) of 0.60, with recombination causing approximately seven times more base 203 

changes than mutation (delta = 231; nu = 0.05). There were an estimated 221 recombination events that 204 
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affected more than 96 Kbp in terminal branches and 494 recombination events detected in internal 205 

branches encompassing 190 Kbp.  206 

 207 

Figure 1. Population structure of Xanthomonas euvesicatoria pv. perforans strains collected from 208 

tomato production regions. (A) Maximum likelihood phylogenetic tree of 259 X. euvesicatoria pv. 209 

perforans strains constructed with nucleotide sequences from 887 core genes, corrected for recombination 210 

by ClonalFrameML. Tips are colored according to clusters identified by hierBAPS. Cluster 10 strains 211 

(n=11) were genetically distant and excluded from the tree (see S1 Figure). Nucleotide alignment is 212 

available as S1 Data. (B) Distribution of 270 strains in each hierBAPS cluster by country or state of 213 

collection. Abbreviations are as follows: AUS – Australia; BRA – Brazil; CAN – Canada; CHN – China; 214 

ETH  – Ethiopia; FL – Florida, USA; IN – Indiana, USA; IRN – Iran; ITA – Italy; LOU – Louisiana, 215 

USA; MX – Mexico; NC – North Carolina, USA; NI – Nigeria; AL – Alabama; OH – Ohio, USA; SA – 216 

South Africa; SC – South Carolina, USA; THA – Thailand; VTM – Vietnam. (C) Map showing 217 

distribution of clusters by country of collection. Countries connected by lines show selected instances of 218 

genetically similar strains collected in different countries. (D) Pairwise comparison of whole genome 219 

average nucleotide identity (ANIb) of selected strains shows high identity between strains isolated from 220 

different continents. For each comparison, genome coverage is shown by grayscale in boxes, scale shown 221 

to the right. Values for each comparison are for genomes in rows when compared to genomes in columns. 222 

See S3 Table for additional ANI output. 223 

 224 

To summarize population structure based on core gene SNPs, we used hierBAPS [71], which 225 

assigned individual strains to 9 clusters using allele frequencies (Figure 1; S1 Table). This analysis 226 

excluded the 11 highly diverged strains from Nigeria and Thailand, which we designated as cluster 10. 227 

FST among clusters was 0.80. In some cases, clusters corresponded to phylogenetic lineages, including 228 

clusters 2, 3, 7, 8, and 9 (Figure 1). The remaining clusters were polyphyletic, encompassing multiple 229 

diverged clades or individual strains. Nucleotide diversity within clusters ranged from 13.8 to 675.9 and 230 
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Tajima’s D from –2.6 to 1.0. Presence-absence gene variation in the pangenome largely paralleled the 231 

phylogenetic diversity of core genes in that polyphyletic clusters 1, 4, and 5 also showed the most 232 

variation in gene content (S2 Figure).  233 

 234 

Geographic distribution of X. euvesicatoria pv. perforans core gene clusters 235 

Cluster 1 encompasses genetically diverse strains from seven countries, including most of the 236 

strains from Australia, all four strains from South Africa, and one strain from Southeast Asia (Figure 1B). 237 

All USA strains assigned to cluster 1 were isolated in or before 2006 from Florida except for one strain 238 

from North Carolina. Cluster 2 contains 88 strains from the United States and one from Mexico, while 239 

Cluster 3 includes strains isolated from Florida, North and South Carolina, China, and Australia. Cluster 4 240 

encompasses multiple lineages of strains from the United States, Canada, Ethiopia, China, and Nigeria. 241 

Cluster 5 is polyphyletic with diverged strains from three continents. Cluster 6 was isolated only within 242 

the United States from Florida, Indiana, North Carolina, and Ohio. Cluster 7 is a monophyletic group of 243 

strains from Southeast Asia and Italy. Cluster 8 is another monophyletic group found only in Brazil and 244 

Florida. Cluster 9 includes two clades of strains, one from China and the other from Iran and Nigeria. 245 

Cluster 10 comprises the atypical strains from Nigeria and similar strains from Thailand. Most countries 246 

contained strains from more than one core gene cluster (Figure 1C). 247 

Clusters 1, 3, 4, 5, 7, 9, and 10 contain strains isolated from both seed production and commercial 248 

fruit production regions, whereas strains in clusters 2, 6, and 8 were only isolated from commercial fruit 249 

production regions. Some strains found on different continents were nearly identical in core gene 250 

sequences (Figure 1D) with very high average nucleotide identity. Strains in cluster 1 from Australia 251 

differed by 6 to 10 SNPs in more than 617 Kbp of core gene sequence from strain VTM-23 from 252 

Vietnam. Pairwise average nucleotide identity (ANIb) between VTM-23 to Aus3 was 99.99% with 253 

alignment fraction of 0.998 (Figure 1D). Strains from the USA had up to 99.87 ANIb with strains from 254 

Australia and Vietnam (S3 Table). A different strain from Vietnam, VTM-5 in cluster 7, had as few as 255 

four SNPs in the core genome when compared to strains from Italy and ANIb of 99.95% to Italian strain 256 
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1P4S1D (Figure 1D). Likewise, strains collected in a seed production region in China had ANIb up to 257 

99.99% with strains from Florida and North Carolina. We also found similar strains between Brazil and 258 

USA, for example Bzl-10 (Minas Gerais) and Xp3-8 (Florida) had greater than 99.9% ANI (S3 Table). 259 

Other strains were similar between countries in core genes only after correction for recombination.  260 

 261 

Timing of X. euvesicatoria pv. perforans lineage emergence 262 

 We used the years of strain collection to estimate the timing of diversification of our sample of 263 

Xep, excluding the cluster 10 strains. We inferred dated phylogenies using whole genome alignments with 264 

inferred recombinant sites removed by Gubbins [72]. Due to recombination with other X. euvesicatoria 265 

lineages, we did not include an outgroup (S1 Figure, part B; [48]). Sampling year was significantly 266 

correlated with root-to-tip distance (R2 = 0.20 for the whole genome alignment, P < 1×10-4, S3 Figure). 267 

The root inferred by the BactDating R package [73] was placed between strains isolated in Florida in 268 

1991. The most recent common ancestor (MRCA) of all strains was dated to 1884 (95% HPD: 1655–269 

1966). Notably, strains that were isolated in the early 1990s, when Xep was first detected in U.S. tomato 270 

production [32, 37], represented multiple lineages (Figure 2). The MRCA of the clade representing core 271 

gene clusters 1, 2, 6, and 8 (including strains from USA, Brazil, and Mexico) was dated to 1980 (95% 272 

HPD: 1967–1987). A major clade, encompassing strains in clusters 3, 4, 5, 7, 9, which were collected in 273 

Africa, the Americas, Asia, Australia, and Europe, did not have a significant temporal signal across the 274 

clade. We repeated the analysis with BEAST, which inferred a different rooting. The tree inferred by 275 

BEAST placed the root between two strains isolated in 2011 from Brazil and all other strains (S4 Figure, 276 

part B). The MCRA of the BEAST tree was dated to 1868 (95% HPD: 1862–1919), which was similar to 277 

the root date estimated using BactDating (S4 Figure).  278 

 279 

Figure 2. Dated phylogeny of 259 X. euvesicatoria pv. perforans strains. BactDating analysis estimated 280 

an approximately 130-year history for Xep strains in core gene clusters 1 through 9 (Figure 1). Red dotted 281 

line indicates the first documented isolations in 1991. Internal nodes were collapsed for clades containing 282 
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strains from a single country with branch tips indicating country or strain (for full tree see S4 Figure). 283 

Vertical line to the right of tip labels indicates strains from USA; other countries are labeled. Temporal 284 

signal was assessed using Phylostems and results are shown for major nodes (for full results see S3 285 

Figure). Empty circles indicate no significant temporal signal. Colored circles indicate nodes with 286 

statistically significant temporal signal based on adjusted R2 values: green – 0.13-0.19; yellow – 0.45. The 287 

95% highest posterior density (95% HPD) of date estimates for major nodes with significant temporal 288 

signals are shown in brackets. 289 

 290 

Type III effector content 291 

 We detected 32 predicted type III effectors in our collection of 270 strains (S5 Figure, S4 Table). 292 

The diversity in amino acid sequences of predicted effectors ranged widely from a single conserved allele 293 

to 8 or more alleles per locus (Figure 3). None of the effectors were present and intact in 100% of our 294 

genomes, in part due to our analysis of draft genomes. The following effector genes were present in more 295 

than 95% of strains and can be considered “core effectors”: avrBs2, xopF1, xopF2, xopI, xopM, xopQ, 296 

xopS, xopV, xopX, xopAE, xopAK, xopAP, xopAU, and xopAW. The genes for xopD, xopE1, and xopN 297 

were present in some form in all genomes but more than 5% of strains contained a contig break within the 298 

gene. A closer examination of xopD by PCR and Sanger sequencing showed this to be an assembly issue 299 

due to the repeats within the gene. Effectors at low frequency in our Xep strains (<25%) were xopE3, 300 

xopAD, xopAJ, xopAO, and xopAQ. Transcription activator-like (TAL) effectors typically do not assemble 301 

in draft genomes due to their characteristic repeat sequences, but there were BLAST hits to previously 302 

described TAL effectors in 65 strains. We Sanger sequenced the TAL effector gene in strain 2P6S1 303 

collected in Italy (NCBI accession number OQ588696), which confirmed that it had the same repeat 304 

variable diresidues as PthXp1 reported in Xep strains from Alabama [50]. Previous phenotyping and 305 

sequencing indicated that the strain isolated in Louisiana, USA origin has AvrHah1 [16]. 306 

 307 
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Figure 3. Variation in type III effectors (Xop proteins) in Xanthomonas perforans. Type III effectors 308 

are in columns and 270 X. euvesicatoria pv. perforans strain in rows. Effector status is shown by allele 309 

type: absence is indicated by allele type 0 (white), while the most frequent allele observed when the 310 

effector is present is allele type 1 (purple), second most frequent is allele type 2 (blue), and so on. Putative 311 

pseudogenized effectors are shown as allele 13 (gray). The order of columns was determined by 312 

hierarchical clustering analysis, placing similarly distributed effectors adjacent to each other. Genomes 313 

showing BLAST hits to TAL effector(s) are indicated in Supporting Information Table S3 and not shown 314 

in heatmap. X. euvesicatoria pv. perforans strains (rows) are organized by core gene cluster. 315 

 316 

The T3E effector XopAF (AvrXv3), which is targeted by the tomato resistance gene Xv3 [74], 317 

was missing or pseudogenized in 64% of strains. Most strains examined from the United States did not 318 

have a complete copy of this gene, whereas it was intact in many strains collected in Asia and Africa. The 319 

gene for XopJ4 (AvrXv4), recognized by resistance gene RXopJ4 from S. pennellii [75], was present in 320 

88% of strains and absent in all cluster 10 strains and 19 of 88 cluster 2 strains. XopJ2 (AvrBsT), which 321 

elicits an HR in pepper but increases virulence in tomato [49], was present in less than half of strains 322 

examined (43%) and overwhelmingly in strains from the United States. A homolog of XopJ2, recently 323 

designated XopJ2b [76], was present in 50 strains, including two strains from Australia that carried both 324 

copies of XopJ2 (S4 Table).  325 

We tested for evidence of positive selection in T3E by estimating synonymous and non-326 

synonymous (dN/dS) substitution rates using a Bayesian approach for detecting pervasive selection 327 

(FUBAR, [77]) and maximum likelihood approach for detecting episodic selection (MEME, [78]). We 328 

found evidence of pervasive positive selection affecting at least one amino acid in AvrBs2, XopD, 329 

XopE1, XopF2, XopK, XopM, XopP and its paralog XopP2, XopQ, XopS, and XopAQ (S4 Table). We 330 

found evidence of episodic selection affecting at least one amino acid in XopF2, XopK, XopP, XopP2, 331 

XopQ, XopV, and XopAP (S4 Table). 332 
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We defined the effector profile of each strain as the predicted presence or absence of each 333 

effector and its allelic state, excluding TAL effector hits. Grouping effector profiles according to core 334 

gene cluster revealed that allelic variation of effectors often paralleled core genome variation (Figure 3). 335 

For example, specific alleles of effectors XopAW, XopQ, and XopP2 were mostly limited to strains in 336 

cluster 2. Cluster 3 strains carried unique alleles for effectors XopF2, XopS, XopN, and XopE1, and 337 

strains from cluster 7 shared unique alleles for effectors XopF1 and XopZ. Strains from highly diverged 338 

cluster 10 had rare alleles in many effectors, and it was the only cluster in which effector XopAJ was 339 

found (Figure 3). To visualize variation among strain effector profiles independent of core gene clusters, 340 

we transformed dissimilarities between profiles into distances represented in a two-dimensional plot and 341 

defined eight effector profile clusters (S6 Figure, part A). A lack of low frequency effectors characterized 342 

effector cluster A, containing 188 strains from 11 of 13 countries (S6 Figure). The remaining effector 343 

clusters were defined by the presence of one to three low frequency effectors (S7 Figure). While most 344 

effectors were found in multiple countries and continents (S6 Figure), populations in Brazil, Ethiopia, 345 

Nigeria, Thailand, South Africa, and the United States contained low frequency effectors that were not 346 

widely distributed. 347 

 348 

Copper resistance genes 349 

 Xanthomonads, including Xep, have acquired genes conferring copper tolerance, likely in 350 

response to exposure to copper-based bactericides [30, 79-81]. In Xep, copper tolerance is conferred by an 351 

operon containing the copper resistance genes copA and copB, and regulator copL (copLAB) [80]. BLAST 352 

analysis showed that these genes were present in 73% of the genomes in our sample (S5 Table). Copper 353 

resistance genes are prevalent in the USA; only the genomes from strains isolated from Florida in the 354 

early 1990s and a strain from Louisiana lacked copLAB. The genes were also missing in the genomes of a 355 

few strains from Australia (1), Brazil (2), Ethiopia (2), Mexico (1), and Vietnam (2). In contrast, the 356 

genes were absent in all genomes of all strains from Nigeria, China, Iran, Italy, and Thailand.  357 

 358 
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Discussion 359 

Emerging plant pathogens have the potential for global outbreaks, exacerbated by complex trade 360 

networks. Hybrid tomato production relies on international breeding and production chains with a global 361 

network to deliver seeds to growers. Global trade associated with vegetable seed production provides a 362 

pathway for global spread of pathogens, with quantities traded that challenge even strong phytosanitary 363 

measures [82, 83]. Over 100 countries import seeds of tomatoes and other vegetables; for example, 11.7 364 

million kg of vegetable seed were imported to the USA in 2019, with China being the biggest supplier at 365 

2.4 million kg [84]. Xanthomonas species can infest pepper and tomato seed [85], and Xep has been 366 

isolated from tomato seed [32, 86], supporting the hypothesis that seeds can be a source of inoculum for 367 

bacterial spot outbreaks [87, 88]. Thirty years after its first report, Xep has been identified in tomato 368 

production areas around the world [18]. Our results showed extensive genetic diversity in the pathogen, 369 

but also genetically similar strains in distant tomato production regions. Furthermore, we found 370 

genetically similar strains in seed production and fruit production regions on different continents, as 371 

would be expected if the pathogen was being moved in shared production chains. Dated phylogenies 372 

indicate multiple waves of diversification of the Xep population, before and since its first detection in 373 

1991. Variation in gene content confirms that Xep acquired and lost type III effectors during its 374 

diversification, which will continue to challenge sustainable management of tomato bacterial leaf spot 375 

[49, 66].  376 

  Using our broad strain collection, we found Xep variants in seed production regions in Asia that 377 

were previously reported in Australia, Italy, Nigeria, and the United States [43, 47, 48, 57]. Strains from 378 

Italy were nearly identical in core genes and very similar in accessory genomes to strains collected from 379 

Thailand and Vietnam, both major seed production regions. The atypical bacterial spot strains from 380 

Nigeria, recently designated as race T5 [21], were genetically similar to strains from Thailand. A recently 381 

described variant of Xep in Florida [cluster 3; [43, 47]], which was also found in Australia [57], was 382 

similar in the core genome to strains found in China; however, these strains showed divergence in the 383 

pangenome, consistent with accessory genome evolution in emergent populations. Beyond previously 384 
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described variants, we found strains in Iran that were closely related to strains from China; multiple 385 

instances of genetic similarity between strains from North America and Ethiopia; and highly similar 386 

strains shared between USA and Brazil, USA and Australia, and between Australia and Vietnam. Given 387 

the variation of Xep across our sample, genetic similarity in core genes and gene content across continents 388 

is strong evidence of international dissemination. Genetically similar strains of bacterial spot pathogens X. 389 

euvesicatoria pv. euvesicatoria and X. hortorum pv. gardneri collected from different continents similarly 390 

suggest intercontinental dissemination in tomato and pepper seed [15, 58, 89]. Whole genome analysis of 391 

X. hortorum pv. pelargonii strains from a 2022 epidemic of bacterial blight of geranium in the USA 392 

showed zero to seven chromosomal SNPs among isolates of the emergent strain that was distributed to 393 

multiple states in plant cuttings [9, 90]. 394 

Other Xep genotypes indicated a more limited distribution. We did not find core gene cluster 2 395 

strains in the seed production regions sampled (China, Thailand, Vietnam), while this lineage was highly 396 

represented in our USA sample. To date, strains in this cluster have been found only in the southeastern 397 

and midwestern USA [43, 47, 50, 53, 54] and Mexico. Seedling nurseries in the southeast USA produce 398 

tomato transplants for growers in multiple states. Interstate movement of strains on seedlings is likely 399 

responsible, at least in part, for disseminating genetically similar strains to different states [43, 53]. We 400 

previously reported extensive recombination with X. euvesicatoria pv. euvesicatoria in cluster 2 strains 401 

[47] and this cluster had a diverse accessory genome, perhaps suggesting that it has a larger geographic 402 

distribution than represented in our sample, which is biased towards the USA.  403 

The Xep strains we examined from the USA were assigned to core gene clusters 1, 2, 3, 4, 5, 6, 404 

and 8, representing several distinct genetic lineages. To better understand the initial emergence of Xep, we 405 

used calibrated phylogenies to examine the timing of lineage divergence. International trade in F1 hybrid 406 

tomato seed surged in the second half of the 20th century, after the first hybrid tomato cultivars were 407 

released by 1940 [91, 92]. There was a 300-fold increase in hybrid tomato seeds exported from Asia 408 

between 1962 and 1977 [93, 94] and subsequent rapid growth in tomato production. Our analyses 409 

estimate the most recent common ancestor of our sample to ~150 years ago, while the major ancestral 410 
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lineages diverged during or after the early expansion in the hybrid seed trade. We hypothesize that the 411 

emergence and geographic distribution of lineages may be associated with the multinational structure of 412 

tomato breeding and seed production, in which parental lines and geographic locations of seed production 413 

change over time [95]. 414 

The roles of T3E in pathogenicity and virulence make them important members of both the core 415 

and accessory genomes. We found up to 16 putative core effector genes,  most of which exhibited allelic 416 

variation. The impact of allelic variation in Xep effectors on pathogen fitness, if any, is unknown. Low 417 

frequency effectors were found across core gene clusters, suggesting acquisition of new effectors and 418 

their exchange among Xep lineages. For example, some strains in clusters 3, 4, and 5 from the United 419 

States, Canada, and Mexico carried the same alleles of low frequency effectors XopAQ and XopE3 as 420 

strains from Asia, Nigeria, and Italy. BLAST analysis suggested the geographically widespread presence 421 

of transcription activation-like (TAL) effectors in Xep. Both TAL effectors described in Xep, avrHah1 422 

and pthXp1, are associated with increased disease severity on tomato [16, 50]. Acquisition of T3Es could 423 

increase the fitness of Xep relative to other bacterial spot pathogens and cause more damaging disease 424 

outbreaks [49, 51, 66].   425 

The release of new plant varieties that carry disease resistance genes can have dramatic effects on 426 

pathogen population structure due to selection to overcome host resistance [96-98], and we have 427 

previously reported on the loss of function of effector AvrXv3 (XopAF) across lineages [27, 53, 66]. 428 

Examination of T3E content at a global scale puts variation previously observed in Florida into a larger 429 

context. XopAF was present in strains collected in the 1990s (cluster 1), but absent or non-functional in 430 

most strains from Florida, Indiana Ohio, and North Carolina, USA [23, 25, 27, 53, 66]. Here, we found 431 

that xopAF was intact in many strains from seed production areas, suggesting strong selection for loss of 432 

function in commercial fruit production. The effector XopJ4 is a possible resistance target [66], but Klein-433 

Gordon et al. [23] reported that it was missing from 3.2% of Florida strains collected in 2017 and, here, 434 

we found that it was absent in one North Carolina and 20 Florida, USA strains. All strains collected 435 

outside the USA contained xopJ4, except for cluster 10 strains. Another XopJ family member, xopJ2, is a 436 
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virulence factor in tomato [49, 51]. It is common in North America, particularly in cluster 2 and 6 strains, 437 

but absent or infrequently detected in Xep populations elsewhere. An alternative form of this effector, 438 

recently described as XopJ2b [76], is more common in strains from outside North America.  439 

Bacterial spot is a destructive disease in areas where tomatoes are grown under humid conditions 440 

and growers in the USA have relied heavily on copper bactericides to manage this disease. In response, 441 

Xep strains have developed copper tolerance [99]. Most strains isolated from Florida in the 1990s lacked 442 

the copLAB genes, but they are now common in strains collected in the USA. A recent study of Florida 443 

strains found that these copper resistance genes are more frequently present on the chromosome than on a 444 

plasmid, suggesting selection for vertical inheritance of copper tolerance [30]. In contrast, strains from 445 

other countries lacked copper resistance genes, indicating little or no local selection for the acquisition of 446 

cop genes.  447 

 In summary, we found strong evidence for intercontinental movement of Xep, consistent with the 448 

international nature of tomato breeding and hybrid tomato seed production. We also found notable 449 

diversity in our global sample of Xep, including in seed production regions, and multiple variants of Xep 450 

that do not appear to be widely distributed. The genomic diversity of Xep in seed and fruit production 451 

regions creates the opportunity for recombination among strains and subsequent dissemination of high 452 

fitness variants of Xep.  453 

 454 

 455 

Materials and Methods 456 

Bacterial strains, genome sequencing, and assembly 457 

 Xep strains were collected from 13 different countries (Table 1; S1 Table). Strains from the 458 

United States were collected from seven states between 1991 to 2016 and comprised 181 strains. The 459 

remaining 89 strains were collected from Canada, Mexico, Brazil, Italy, Ethiopia, Nigeria, South Africa, 460 

Iran, China, Thailand, Australia, and Vietnam. Strains from China, Thailand, and Vietnam were collected 461 

from fields designated for production of tomato seed for the global market. Strains from Brazil were 462 
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obtained from both staked fresh-market and processing tomato commercial fields. Strains from Italy were 463 

isolated from tomato pith in greenhouse tomato showing wilting symptoms [64, 100]. Strains from South 464 

Africa were collected from commercial seed lots. Strains from Nigeria were obtained from fields 465 

cultivated for both subsistence and commercial purposes. Strains from other countries were collected 466 

from fields designated for commercial fruit production.  467 

A total of 270 Xep genome sequences were used during this study (S1 Table). Draft and whole 468 

genomes of 117 strains were generated and published previously [43, 47, 48, 57, 58, 67, 100]. The 469 

remaining 153 strains were sequenced for this study using Illumina platforms.  Genomic DNA was 470 

extracted from single colony cultures grown for 24-hr in nutrient broth using the Wizard Genomic DNA 471 

Purification Kit (Promega, Chicago, IL) following manufacturer instructions. Genomic libraries for 472 

sequencing were prepared using the Nextera DNA library preparation kit from Illumina (Illumina, San 473 

Diego, CA). Sequencing was performed at the Interdisciplinary Center for Biotechnology Research, 474 

University of Florida, using an Illumina MiSeq to generate 250 bp paired end reads for each strain. 475 

Additional genomic sequence data were generated for five strains for the ANI analysis (S1 Table, part B). 476 

Genomic DNA was extracted using the above methods except that extracted genomic DNA was sent to 477 

SeqCenter (Pittsburg, PA) for sequencing with Illumina NovaSeq 6000, producing 150 bp paired end 478 

reads. 479 

Raw reads were trimmed of adapters and paired with Trim Galore 480 

(https://github.com/FelixKrueger/TrimGalore)[101], then assembled into contigs with Spades version 481 

3.10.1 [102], with k-mers 21, 33, 55, 77, 99, and 127 with read error correction and “--careful” switch. 482 

Reads were then aligned to the assembled contigs using Bowtie 2 v. 2.3.3 [103]. Inconsistencies were 483 

identified and polished using Pilon [104]. Contigs smaller than 500 bp and with less than 2.0 k-mer 484 

coverage were filtered out. Quality of genomes were assessed with CheckM [105]. Assembled genomes 485 

were annotated using the IMG/JGI platform [106]. The genome data generated for this study are available 486 

in NCBI BioProject PRJNA941448.  487 

 488 
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Core gene phylogeny 489 

 In a previous study, we defined a set of 1,356 ‘core genes’ from 58 genomes of Xep strains 490 

isolated from Florida [47]. The core genes were determined based on amino acid sequence homology 491 

using GET_HOMOLOGUES software package [107]. We used the core genes from a representative Xep 492 

genome, Xp91-118, as query to search the remaining 269 genomes using local BLAST [108]. BLAST 493 

results were filtered using query coverage and pairwise nucleotide sequence alignment thresholds of 70% 494 

each and the sequence was checked for the presence of standard start and stop codons at either end of the 495 

gene and gene was removed if both were not present. A total of 887 genes were found to be intact in all 496 

270 genomes. Genes were individually parsed and aligned using MAFFT [109] and concatenated using 497 

sequence matrix [110]. The result was a 617.854 Kbp alignment, hereafter referred to as core genes.  498 

 The concatenated core gene sequence was used to construct a maximum likelihood (ML) 499 

phylogenetic tree using RAxML v.8.2.12 [111]. General time reversible model with gamma distributed 500 

rates and invariant sites (GTRGAMMA) was used as the nucleotide substitution model. To account for 501 

recombination, the ML tree output from RAxML and concatenated core genome alignment were used as 502 

was input for ClonalFrameML v1.12 [70]. 503 

 504 

Population structure 505 

SNPs were extracted from core genes for hierarchical clustering based on Bayesian analysis of 506 

population structure (hierBAPS) algorithm [112], implemented in the ‘rhierBAPS’ R package v 1.0.1 [71, 507 

113]. For visualization, hierBAPS clusters were added to the phylogenetic tree generated from 508 

ClonalFrameML using the ‘ggtree’ package in R [114]. The treemap function in plotly [115] was used to 509 

show the relative distribution of clusters across geographic locations. R package ‘ggplot2’ was used to 510 

map hierBAPS clusters to countries [116]. The ‘PopGenome’ R package [117] was used to calculate FST, 511 

nucleotide diversity (pi), and Tajima’s D statistic by geographic location and by hierBAPS cluster.  512 

 Assembled genomes were used for calculating average nucleotide identity and pangenome 513 

analysis. Average nucleotide identity (ANIb) between strains was calculated using assembled genomes 514 
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with Pyani version 0.2.10 [118]. The pangenome was estimated using Roary v3.12.0 [119] after 515 

annotation from Prokka v1.12 [120]. The gene presence absence matrix from Roary (S4 Data) was used 516 

as input for generation of NMDS plots using the ‘dplyr’ and ‘ggplot2’ packages from tidyverse [116] and 517 

to generate gene accumulation curves for each cluster using package ‘micropan’ [121]. 518 

 519 

Bayesian analysis of X. euvesicatoria pv. perforans divergence times  520 

A whole genome alignment was generated using split k-mer analysis version 2 (SKA2) [122] for 521 

all 270 Xep strains plus outgroup X. euvesicatoria pv. euvesicatoria strain 85-10 (NCBI Accession 522 

GCA_000009165.1; S2 Data). The alignment was reduced to variable sites only using Geneious 2023.2.1 523 

(BioMatters Ltd.) A phylogenetic network was calculated from the resulting SNPs using the NeighborNet 524 

2004 algorithm in SplitsTree5 [123, 124]. Phylogenetic conflict was indicated between the 259 strains, 525 

cluster 10 strains, and outgroup (S1 Figure, part B). Removing the cluster 10 strains did not remove the 526 

conflict between Xep and Xee outgroup. As a result, we limited our dating of the phylogeny of Xep to the 527 

259 strains in BAPS clusters 1 through 9. We used Gubbins v. 2.4.1 [72] to remove putative recombinant 528 

sites from whole genome alignments generated using SKA2 [122] and the complete genome of Xp91-118 529 

as a reference (GCF_000192045.2). The resulting alignment was used to infer a phylogenetic tree using 530 

the GTRGAMMI model in RAxML version 8.2.10 [125]. The temporal analysis was conducted with 531 

BactDating v1.1.1 [73]. The inputs to the BactDating analysis were the maximum likelihood tree and 532 

dates of isolation assigned as dates of tips. The rooting of the tree was estimated using the initRoot 533 

function, which maximizes the correlation between tip date, the year the strain was collected, and root-to-534 

tip branch lengths. Dates of nodes were inferred using the bactdate function on the re-rooted tree using a 535 

relaxed molecular clock with Markov chain Monte Carlo (MCMC) chains of 106 iterations. Phylostems 536 

[126] was used to assess the temporal signals within internal clades for interpretation of node date 537 

inferences. 538 

We also used BEAST v. 1.10.4 (Suchard et al. 2018) to infer a dated phylogeny. The XML file 539 

was manually edited to include the ‘ascertained’ flag in the alignment block (S3 Data). The HKY 540 
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nucleotide substitution model with empirical base frequencies and gamma distribution of site-specific rate 541 

heterogeneity was used with coalescent Bayesian skyline priors with an uncorrelated relaxed clock for 542 

Bayesian phylogenetic inference over MCMC chains of 200 million generations. Adequate mixing was 543 

assessed based on a minimum effective sample size of 200 for parameter estimates as calculated by 544 

Tracer v. 1.10.4. A maximum clade credibility tree was inferred from the posterior distribution of trees 545 

using TreeAnnotator v. 1.10.4, specifying a burn-in of 10% and the ‘keep’ option for node heights. Trees 546 

were visualized in iTOL version 6.9.1 [127]. 547 

 548 

Type III Effector Analysis  549 

A T3E effector database was curated using amino acid sequences of 66 Xanthomonas effectors 550 

[128] (S6 Table). When available, functional annotations were retrieved from NCBI and Pfam databases 551 

[129]. Orthologous sequences were identified with the software BLASTp [130, 131], by querying the 552 

curated effectors database against the amino acid sequences of the annotated genomes of 270 Xep strains. 553 

Sequences (BLAST hits) were considered effector orthologs when at or above a threshold of 70 percent 554 

identity and 50 percent query coverage. When multiple sequences from the same strain had hits above the 555 

thresholds to a particular effector, a weighted calculation of the identity and coverage was used to select 556 

the best hit. Sequences with homology to multiple effectors and sequences with evidence of contig breaks 557 

were manually removed. Assignment of sequences as effector orthologues was confirmed by performing 558 

a clustering analysis of all sequences using the software USEARCH v. 11.0.667  and the algorithm HPC-559 

CLUST [132]. For the duplicated effector XopP, we used a phylogenetic analysis of all sequences to 560 

distinguish likely orthologous alleles from the more genetically distant paralogous sequences, which were 561 

assigned to XopP2.  562 

Orthologous sequences from each effector were extracted from the annotated genomes, aligned 563 

with MAFFT [109], and allelic variants identified [133] to generate a numeric matrix representing 564 

presence and allelic variant or absence. Hierarchical clustering analysis of effectors was performed by 565 

calculating a distance matrix with function ‘dist’ with the method ‘manhattan’, and the function ‘hclust’ 566 
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with the method ‘complete’ from the R package ‘vegan’ [113, 134]. The results were displayed as a 567 

heatmap with the package ‘gplots’ and the function heatmap.2 [135]. 568 

To investigate the presence of positive selection acting on the effector sequences, we used the 569 

software HyPhy (Hypothesis Testing using Phylogenies) implementing the methods FUBAR (Fast, 570 

Unconstrained Bayesian AprRoximation) and MEME (Mixed Effects Model of Evolution) [77, 78]. The 571 

Bayesian method FUBAR evaluates pervasive selection, assuming the same rates of synonymous and 572 

nonsynonymous substitution per site on all branches. The method MEME uses a maximum likelihood 573 

approach to evaluate episodic selection, i.e., selection only a subset of branches of the phylogeny. For 574 

each effector gene, a codon-aware alignment was generated with the software PRANK using the codon 575 

flag ‘-c’ as settings [136]. RAxML [111] was used to infer a phylogenetic tree with the GTRGAMMA 576 

(gamma time-reversible) model of nucleotide substitution. The codon-aware alignment and phylogenetic 577 

tree were used as the input files for FUBAR and MEME. 578 

To determine the relationship of the effector profiles with respect to core gene cluster, geographic 579 

and temporal distribution, we transformed the dissimilarities in the matrix of effector profiles into 580 

distances with non-metric multidimensional scaling (NMDS). We used the Bray-Curtis dissimilarity 581 

index, a robust index able to handle missing data that considers the presence and absence of effectors as 582 

equally informative, calculated with the package ‘vegan’ and the function ‘metaMDS’ [134]. We used a 583 

low number of dimensions (K=2) and set try=30 and trymax=500 for random starts to avoid the NMDS 584 

getting trapped in local optima. NMDS plots were created with the packages ‘ggrepel’ and ‘ggplot2’ [137, 585 

138]. Based on the NMDS analysis, we assigned strains to effector clusters, which were plotted on a 586 

worldwide map with the packages ‘ggplot2’ and ‘scatterpie’ [138, 139]. The map was created in R with 587 

the packages ‘cowplot’, ‘ggrepel’, ‘ggspatial’, ‘libwgeom’, ‘sf’, ‘rgeos’, ‘memisc’, ‘oz’, ‘maptools’ and 588 

‘rnaturalearth’ with the function ‘ne_countries’ [137, 140-147]. Geographic coordinates (longitude, 589 

latitude) of countries and states (for USA) of collection were obtained with the R package ‘googleway’ 590 

[148] and the function ‘mutate_geocode’ from Google maps.  591 
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To sequence the putative TAL effector from 2P6S1, native plasmid DNA was isolated using the 592 

alkaline lysis method [149]. EcoRI digested DNA of the plasmid prep was ligated into vector pLAFR3 593 

[150] restricted with the same enzyme for transformation into E. coli DH5α. Clones containing the TAL 594 

effector were identified by PCR and analyzed by restriction digest. One clone, designated as p7.1, 595 

contained an approx. 5 Kbp EcoRI fragment and was selected for Sanger sequencing and phenotype 596 

testing. For Sanger sequencing of the TAL repeat region, DNA of p7.1 was restricted with NsiI and the 597 

internal fragment was ligated into vector pBluescript restricted with PstI. Additional pBluescript 598 

subclones were made using BamHI (~3 Kbp and ~1.1 Kbp) and BamHI/EcoRI (~1 Kbp) in order to cover 599 

the entire cloned region in p7.1.  All clones were transformed into DH5α for sequencing using vector 600 

primers T3 and T7.  601 

Copper resistance genes in assembled genomes were identified with BLASTn analysis using copL 602 

(MBZ2440241.1), copA (MBZ2440240.1), and copB (MBZ2440239.1) 603 

 from Xep strain Xp2010 as reference sequences [30]. 604 

 605 
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Supporting Information  630 

 631 

S1 Figure. Phylogenetic analysis of 270 X. euvesicatoria pv. perforans strains. (A) Maximum likelihood 632 

phylogenetic tree of Xanthomonas euvesicatoria pv. perforans strains based on aligned nucleotide sequences of 633 

887 core genes. The tree was inferred using RAxML using a GTRGAMMAI substitution model. The tree was 634 

rooted using the 11 genetically diverged strains that make up core gene cluster 10. (B) NeighborNet network 635 

inferred using SNPs from aligned whole genome sequences, including X. euvesicatoria pv. euvesicatoria strain 636 

85-10 (bolded) as an outgroup. Core gene cluster 10 strains are highlighted. Reticulations in the network indicate 637 

conflicting phylogenetic relationships. 638 

 639 

S2 Figure. Accessory genome variation in Xanthomonas euvesicatoria pv. perforans. (A) Visualization of 640 

pangenome variation by non-metric multidimensional scaling of gene presence-absence for all 270 X. perforans 641 

strains by BAPS cluster. Ellipses assume a multivariate t-distribution. (C) Increase in gene count with increasing 642 

number of strains sampled. Clusters 1 and 2 were represented by the most strains, but other clusters showed 643 

similar rates of increase in the pangenome of the cluster. Pangenome matrix used for analysis is available as S4 644 

Data. 645 

 646 

S3 Figure. Temporal signal in phylogenetic tree of 259 X. euvesicatoria pv. perforans strains. (A) 647 

Correlation between sampling year and root-to-tip distance in maximum likelihood phylogenetic tree 648 

inferred from alignment of whole genome sequences. Output was generated from BactDating R package. 649 

(B) Temporal signal within the phylogenetic determined using Phylostems tool. Nodes with significant 650 

temporal signals are indicated with colored circles. Adjusted R-squared values by color are: dark green 0–651 

0.2; light green 0.2–0.4; yellow 0.4–0.6; orange 0.6–0.8; red 0.8–1. 652 

 653 

S4 Figure. Dated phylogenies of 259 X. euvesicatoria pv. perforans strains. (A) Dating using 654 

BactDating relaxed clock analysis on RAxML-generated phylogeny. This is the tree shown in Figure 2, 655 
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shown here without collapsed nodes. (B) Dating of same dataset using BEAST with coalescent Bayesian 656 

skyline priors and an uncorrelated relaxed clock. 657 

 658 

S5 Figure. Frequency of Xop effectors among 270 Xanthomonas euvesicatoria pv. perforans strains. 659 

The most common allele observed was assigned to allele type 1, second most frequent allele to allele type 660 

2, and so on. Note that alleles classified as pseudogenes included contig breaks, which include assembly 661 

errors. For example, all strains appear to have xopD, but a repeat caused a contig break in the gene in 662 

nearly half of the genomes. 663 

 664 

S6 Figure. Clustering of 270 Xanthomonas perforans effector profiles by non-metric 665 

multidimensional scaling and distribution of resulting clusters among geographic regions. Analysis 666 

did not include TAL effectors. (A) The most frequently observed group of effector profiles form cluster 667 

A. This cluster of 188 strains is represented as a star in plots B-C, as it is represented in most BAPS core 668 

gene clusters (B), most of the sampled tomato production regions (C), and in collections from 1991 to 669 

2017 (D). Clusters were largely defined by low frequency effectors (S7 Figure). (E) Distribution of strains 670 

by effector clusters among sampled countries. 671 

 672 

S7 Figure. Variation in type III effector profiles in 270 Xanthomonas euvesicatoria pv. perforans 673 

strains ordered according to NMDS of effector profiles. Analysis did not include TAL effectors. Type 674 

III effectors are in columns and Xep strains in rows. Effector status is shown by allele type: absence is 675 

indicated by allele type 0 (white), while the most frequent allele observed when the effector is present is 676 

allele type 1 (purple), second most frequent is allele type 2 (blue), and so on. Putative pseudogenized 677 

effectors are shown as allele 13 (gray). The order of columns was determined by hierarchical clustering 678 

analysis, placing similarly distributed effectors adjacent to each other. Order of rows is based on NMDS 679 

clustering analysis of effector profiles (see S6 Figure). 680 

 681 
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S1 Table. Genome data and metadata for X. euvesicatoria pv. perforans strains. (A) BAPS cluster 682 

assignment for each strain and NCBI information for each genome. Genome assembly statistics are given 683 

for newly sequenced strains. (B) Depth of coverage relevant to ANI comparisons in Fig. 1D. 684 

 685 

S2 Table. Genetic diversity statistics by geographic region and BAPS group. (A) Statistics by country 686 

and U.S. state. (B) Statistics by BAPS group. 687 

 688 

S3 Table. Average nucleotide identity (ANIb) comparisons between strains with highly similar core 689 

gene sequences collected across continents. (A) Proportion nucleotide identity. (B) Alignment fraction. 690 

 691 

S4 Table. Putative type III effectors (Xop proteins) found in 270 X. euvesicatoria pv. perforans 692 

assembled genomes. (A) Summary for each locus. (B) Results by strain. Each different amino acid 693 

sequence per gene was assigned a numerical allele type, such that the most common allele observed was 694 

assigned to allele type 1. Potential pseudogenes are indicated with “pseudo” and absence indicated with 695 

zero. Locus tags refer to JGI IMG annotations (https://img.jgi.doe.gov). Reference sequences used for 696 

BLAST searches are given in S5 Table. The final column shows the result of BLAST searches for TAL 697 

effectors. 698 

 699 

S5 Table. Presence or absence of copper genes (copLAB) in 270 X. euvesicatoria pv. perforans 700 

assembled genomes. Symbols represent gene presence ‘+’ or absence ‘-’. Contig break in gene is 701 

indicated by (+). 702 

 703 

S6 Table. Type III effector database used to query assembled genomes for effector genes. 704 

 705 

S1 Data. Nucleotide alignment of 887 core genes from 270 X. euvesicatoria pv. perforans strains. 706 

Alignment is 617,855 bp in FASTA format. 707 
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 708 

S2 Data. Nucleotide alignment of variable sites from whole genome alignment of 270 X. 709 

euvesicatoria pv. perforans strains and X. euvesicatoria pv. euvesicatoria strains 85-10. 710 

 711 

S3 Data. XML file used for BEAST analysis. 712 

 713 

S4 Data. Pangenome matrix for 270 X. euvesicatoria pv. perforans strains 714 

  715 
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S1 Figure. Phylogenetic analysis of 270 X. euvesicatoria pv. perforans strains. (A) 
Maximum likelihood phylogenetic tree of Xanthomonas euvesicatoria pv. perforans strains 
based on aligned nucleotide sequences of 887 core genes. The tree was inferred using 
RAxML using a GTRGAMMAI substitution model. The tree was rooted using the 11 
genetically diverged strains that make up core gene cluster 10. (B) Neighbor-net network 
inferred using SNPs from aligned whole genome sequences, including X. euvesicatoria pv. 
euvesicatoria strain 85-10 (bolded) as an outgroup. Core gene cluster 10 strains are 
highlighted. Reticulations in the network indicate conflicting phylogenetic relationships.  
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S2 Figure. Accessory genome variation in Xanthomonas euvesicatoria pv. perforans. (A) 
Visualization of pangenome variation by non-metric multidimensional scaling of gene 
presence-absence for all 270 X. perforans strains by BAPS cluster. Ellipses assume a 
multivariate t-distribution. (B) Increase in gene count with increasing number of strains 
sampled. Clusters 1 and 2 were represented by the most strains, but other clusters showed 
similar rates of increase in the pangenome of the cluster. 
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S3 Figure. Temporal signal in phylogenetic tree of 259 X. euvesicatoria pv. perforans 
strains. (A) Correlation between sampling year and root-to-tip distance in maximum 
likelihood phylogenetic tree inferred from alignment of whole genome sequences. Output 
was generated from BactDating R package. (B) Temporal signal within the phylogenetic 
determined using Phylostems tool. Tree is rooted as in Figure 2. Nodes with statistically 
significant temporal signals are indicated with colored circles. Adjusted R-squared values 
by color: dark green 0–0.2; light green 0.2–0.4; yellow 0.4–0.6; orange 0.6–0.8; red 0.8–1. 
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S4 Figure. Dated phylogenies of 259 X. euvesicatoria pv. perforans strains. (A) Dating 
using BactDating relaxed clock analysis on RAxML-generated phylogeny. This is the tree 
shown in Figure 2, shown here without collapsed nodes. (B) Dating of same dataset using 
BEAST with coalescent Bayesian skyline priors and an uncorrelated relaxed clock.  
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S5 Figure. Frequency of Xop effectors among 270 Xanthomonas euvesicatoria pv. 
perforans strains. The most common allele observed was assigned to allele type 1, second 
most frequent allele to allele type 2, and so on. Note that alleles classified as pseudogenes 
included contig breaks, which include assembly errors. For example, all strains appear to 
have xopD, but a repeat caused a contig break in the gene in nearly half of the genomes.  

AvrBs2

XopAD

XopAE

XopAF

XopAJ

XopAK

XopAO

XopAP

XopAQ

XopAU

XopAW

XopD

XopE1

XopE2

XopE3

XopF1

XopF2

XopI

XopJ2

XopJ4

XopJ2-h

XopK

XopM

XopN

XopP

XopP2

XopQ

XopS

XopV

XopX

XopZ

0 50 100 150 200 250
Frequency

Ef
fe
ct
or

Allele
1

2

3

4

5

6

7

8

9

10

11

12

pseudogene

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2024. ; https://doi.org/10.1101/2024.03.22.585974doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.22.585974
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

 

 
S6 Figure. Clustering of 270 Xanthomonas perforans effector profiles by non-metric 
multidimensional scaling and distribution of resulting clusters among geographic 
regions. Analysis did not include TAL effectors. (A) The most frequently observed group of 
effector profiles form cluster A. This cluster of 188 strains is represented as a star in plots 
B-C, as it is represented in most BAPS core gene clusters (B), most of the sampled tomato 
production regions (C), and in collections from 1991 to 2017 (D). Clusters were largely 
defined by low frequency effectors (S7 Figure). (E) Distribution of strains by effector 
clusters among sampled countries. 
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S7 Figure. Variation in Type III secreted effector profiles in 270 Xanthomonas 
euvesicatoria pv. perforans strains ordered according to NMDS of effector profiles. 
Analysis did not include TAL effectors. Type III secreted effectors are in columns and Xep 
strains in rows. Effector status is shown by allele type: absence is indicated by allele type 0 
(white), while the most frequent allele observed when the effector is present is allele type 1 
(purple), second most frequent is allele type 2 (blue), and so on. Putative pseudogenized 
effectors are shown as allele 13 (gray). The order of columns was determined by 
hierarchical clustering analysis, placing similarly distributed effectors adjacent to each 
other. Order of rows is based on NMDS clustering analysis of effector profiles (see S6 
Figure, part A). 
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