

1 **Rodent Gut Bacteria Coexisting with an Insect Gut Virus in Parasitic Cysts: Metagenomic
2 Evidence of Microbial Translocation and Co-adaptation in Spatially-Confined Niches**

3 Amro Ammar ^{1,2*}, Vaidhvi Singh ^{1,2*}, Sanja Ilic ³, Fnu Samiksha ⁷, Antoinette Marsh ⁶, Alex
4 Rodriguez-Palacios ^{1,2,4,5}.

5 ¹Division of Gastroenterology and Liver Disease, Case Western Reserve University School of
6 Medicine, Cleveland, OH 44106, USA.

7 ²Digestive Health Research Institute, Case Western Reserve University School of Medicine,
8 Cleveland, OH 44106, USA.

9 ³Department of Human Sciences, Human Nutrition and Food Microbiology, Ohio State
10 University, Columbus, OH, USA.

11 ⁴Department of Molecular Biology and Microbiology, Case Western Reserve University School
12 of Medicine, Cleveland, OH 44106, USA.

13 ⁵University Hospitals Research and Education Institute, University Hospitals Cleveland Medical
14 Center Cleveland, OH 44106, USA.

15 ⁶The Veterinary Medical Center Diagnostic Parasitology, The Ohio State University College of
16 Veterinary Medicine Department of Veterinary Preventive Medicine, Columbus, OH, USA.

17 ⁷Department of Cancer Biology, Learner Research Institute, Cleveland Clinic, Cleveland, Ohio,
18 USA.

19

20 **Keywords:** Bacteroidota, *Mythimna unipuncta* granulovirus A, *Hydatigera taeniaeformis*,
21 cysticercosis, *P. distasonis*, *Klebsiella*, Cavernous fistulous tracts, CAVFT, metacestode

22 **Acknowledgements.** This project was conducted with discretionary funds to support the NIH
23 study grant R21 DK118373 to A.R.-P., entitled “Identification of pathogenic bacteria in Crohn’s
24 disease.” We thank Afnan Khan and Brandon Grubb for their scientific contributions.

25 **Corresponding author:** axr503@case.edu (Alex Rodriguez-Palacios)

26 *co-first authors.

27 Abstract

28 In medicine, parasitic cysts or cysticerci (fluid-filled cysts, larval stage of tapeworms) are
29 believed to be sterile (no bacteria), and therein, the treatment of cysticerci infestations of deep
30 extra-intestinal tissues (e.g., brain) relies almost exclusively on the use of antiparasitic
31 medications, and rarely antibiotics. To date, however, it is unclear why common post-treatment
32 complications include abscessation. This study quantified the microbial composition of parasitic
33 cyst contents in a higher-order rodent host, using multi-kingdom shotgun metagenomics, to
34 improve our understanding of gut microbial translocation and adaptation strategies in wild
35 environments. Analysis was conducted on DNA from two hepatic parasitic cysts (*Hydatigera*
36 (*Taeenia*) *taeniaeformis*) in an adult vole mouse (*Microtus arvalis*), and from feces, liver, and
37 peritoneal fluid of three other vole family members living in a vegetable garden in Ohio, USA.
38 Bacterial metagenomics revealed the presence of gut commensal/opportunistic species, including
39 *Parabacteroides distasonis*, *Klebsiella variicola*, *Enterococcus faecium*, and *Lactobacillus*
40 *acidophilus*, inhabiting the cysts. *Parabacteroides distasonis* and other species were also present
41 outside the cyst in the peritoneal fluid. Remarkably, viral metagenomics revealed various murine
42 viral species, but unexpectedly, it detected an insect-origin virus from the army moth
43 (*Pseudaletia/Mythimna unipuncta*) known as *Mythimna unipuncta* granulovirus A (MyunGV-A)
44 in both cysts, and in one fecal and one peritoneal sample from two different voles, indicating
45 survival of the insect virus and adaption in voles. Metagenomics also revealed a significantly
46 lower probability of fungal detection in the cysts compared to other samples (peritoneal fluid,
47 p<0.05; and feces p<0.05), with single taxon detection in each cyst for *Malassezia* and
48 *Pseudophaeomoniella oleicola*. The samples with a higher probability of fungi were the
49 peritoneal fluid. In conclusion, commensal/pathobiont bacterial species can inhabit parasitic
50 tapeworm cysts, which needs to be considered during therapeutic decisions of cysticerci or other
51 chronic disease scenarios where immune privileged and spatially restricted ecosystems with
52 limited nutrients and minimal presence of immune cells could facilitate microbial adaptation,
53 such as within gut wall cavitating micropathologies in Crohn's disease.

54 Introduction

55 The microbial communities, with their diversity and interactions, continue to intrigue
56 scientists due to the unforeseen complexities of symbiosis in many ecosystems^{1,2}, including
57 spatially-confined niches such as within parasitic cysts. The interplay of microbial populations is
58 critical in maintaining homeostasis and health in the mammalian gut ecology. Therefore, the
59 study of these microbial communities could help us determine what influences these dynamic
60 relationships in restricted ecological niches^{3,4}, or the evasion of the host immunity in other
61 confined biological niches, such as within gut wall-associated cavitating micropathologies in
62 Crohn's disease^{5,6}, which we found to have genomic evidence for niche specific genomic
63 exchange that could favor silent commensalism and immune evasion⁶⁻⁹.

64 The relevance of cysticerci in medicine is associated with the diseases that they may
65 induce as they travel through the body and stop to enter into their seemingly quiescent cystic
66 stage, where they become space-occupying masses that gradually develop unnoticed by affected
67 individuals, and which could drag bacteria on integumentary micro-cavitations, as seen with
68 electron microscopy on tapeworms¹⁰, from the gut or ingested foods within the gut as parasitic
69 larvae migrate. Of immunological interest, such migratory parasites enter in contact with tissues,
70 triggering host immunity which could presumably stress and drive the selection of microbial
71 communities that successfully survive evading the immune system. How these communities are
72 assembled in areas distant from the gut where there is a narrow range of nutrient sources and
73 stressors, and where there is no physical removal of bacteria by peristalsis remains unknown.

74 Commonly, parasitic tapeworms in domestic animals in the adult forms live in
75 carnivorous species, which then develop cysts within the peritoneal cavity in intermediate hosts,
76 including humans, as larva migrate after ingestion and activation within the intestinal tract¹¹⁻¹³.
77 *Echinococcus granulosus* and other parasites alike¹², including *Taenia* and *Hydatigera*, are one
78 of the many pathogenic parasites that seem to facilitate intricate interactions within their
79 intermediary hosts during migration at the larva stage¹². In addition to helping us determine to
80 what extent the cysts could contain microbial species that may contribute to our understanding of
81 how to best treat, for instance, brain cysticerci in humans, especially children who are almost
82 always affected by one cysticercus¹⁴, the study of parasitic cysts in rodents provides an attractive
83 model¹⁵ for studying microbial survival and symbiosis away from the gut and its nutrient-rich
84 dietary and fecal environment.

85 Herein, we report the results from a metagenomics community composition analysis in
86 various tissue samples from a family of wild voles, one of which was affected with two extra-
87 hepatic parasitic cysts that resembled the appearance of *Echinococcus granulosus* cysts common
88 in 80.5% of affected humans¹⁴ (dimensions 10 and 12 mm diameter), but was confirmed as
89 *Hydatigera* (formerly *Taenia*) in this study. The purpose of this study was to assess and report
90 the community composition metagenomics analysis of parasitic systems in the context of other
91 organs (feces, liver, peritoneal fluid) among family members of the vole affected with the cysts
92 to catalogue the bacterial communities that may translocate within parasitic larval stages, and
93 thrive outside of the typical gut milieu, in the parasitic cysts.

94

95 Methods

96 **Animals and location.** Common voles (*Microtus arvalis*) were located in an
97 experimental community vegetable garden, in peri-urban Ohio, and trapped as a part of a pest
98 control program using over-the-counter approved humane mouse traps. Samples were collected
99 in the field, transferred to the lab, frozen, and processed for DNA extraction. The study included
100 a total of eleven tissue samples obtained from four different voles. The first vole provided the
101 two cysts located in its abdominal cavity, anchored on the surface of the liver capsule; no other
102 samples were collected. For the other three animals, we sampled liver, peritoneal fluid, and
103 feces. The samples were collected and frozen for metagenomic analysis which accounted for
104 bacteria, viruses, and fungi.

105 **Identification of the parasitic cysts.** The frozen cystic-like structure and the cyst fluid
106 DNA samples were sent overnight to the Diagnostic Veterinary Parasitology Laboratory, at the
107 Veterinary Medical Center, The Ohio State University. The cyst was thawed briefly, extraneous
108 host tissue removed from the cream/white colored cyst using small forceps and a needle. The
109 cyst was placed on a microscope, covered with a coverslip and pressure applied to flatten the
110 structure for photo microscopy. Images were captured using an Olympus BX41 with CellSens
111 software.

112 **Visualization and anaerobic culture of fluid from the parasitic cysts.** To help
113 determine whether the cysts were harboring live bacteria, we visualized the liquid in phase
114 contrast medium using a 1000x magnification, and also cultured¹⁶ the fluid by spread-plating 20
115 microliters onto a pre-reduced tryptic soy 5% defibrinated sheep blood agar (80% N–10% H–
116 10% CO₂, at 37°C; Thermo Fisher Scientific) using a variable-atmosphere anaerobic Whitley
117 workstation A85 (540 plate capacity; Microbiology International, Inc.) as described^{6,9}. Individual
118 colonies were sub-cultured and purified in the same agar and then immediately identified using
119 matrix-assisted laser desorption ionization–time of flight [MALDI-TOF] mass spectrometry) and
120 banked in pre-reduced brain heart infusion broth with 7% dimethyl sulfoxide^{6,9}.

121 **DNA extraction and metagenomics.** DNA extraction was conducted using the
122 DNAeasy Qiagen kit, while the DNA was quantified using the GloMax Plate Reader System
123 (Promega) using the QuantiFluor® dsDNA System (Promega) chemistry. Samples were
124 submitted for metagenomic analysis to a third party (CosmoID) which has validated methods and
125 software^{17,18} for library preparation, sequencing and cloud-based computing for data analysis¹⁹.

126 **Library Prep and Sequencing.** DNA libraries were prepared using the Nextera XT
127 DNA Library Preparation Kit (Illumina) and IDT Unique Dual Indexes with total DNA input of
128 1ng. Genomic DNA was fragmented using a proportional amount of Illumina Nextera XT
129 fragmentation enzyme. Unique dual indexes were added to each sample followed by 12 cycles of
130 PCR to construct libraries. DNA libraries were purified using AMpure magnetic Beads
131 (Beckman Coulter) and eluted in QIAGEN EB buffer. DNA libraries were quantified using
132 Qubit 4 fluorometer and Qubit™ dsDNA HS Assay Kit. Libraries were then sequenced on an
133 Illumina HiSeq X platform 2x150bp.

Bioinformatics Analysis and metagenome classification. The system used utilizes a high-performance data-mining k-mer algorithm that rapidly disambiguates millions of short sequence reads into the discrete genomes engendering the particular sequences. The methodology employed in this study uses the CosmosID-HUB for fast and precise metagenomic analysis of microbiome data¹⁸⁻²⁰, incorporating detection capabilities at the strain level across multiple kingdoms, along with antimicrobial resistance/virulence factors (AMR/VF), and functional analysis within a singular processing framework, which has been shown recently to perform well compared to other pipelines^{17,18}. Herein, we solely report the microbial community composition since the interpretation of functional data for *Bacteroidota* has some limitations and complexity that we recently determined and which are under investigation⁸. The complete documentation for the analysis¹⁹ is available at <https://docs.cosmosid.com/docs/methods> (accessed March 20, 2024). This analysis platform is powered by three core components, a genBook database, a Kepler algorithm, and machine learning filters. The GenBook is a meticulously curated Multi-Kingdom Reference Database featuring over 180,000 genomes and gene sequences from bacteria, fungi, viruses, phages, and protists. Its curation process is designed to enhance sensitivity by reducing redundancy and ensuring homogeneity, particularly in densely populated clades such as *Staphylococcus aureus*. The database universal curation approach allows for consistent analysis across various sample types within a project, ensuring accuracy through genome quality control and minimizing false positives. The Kepler Algorithm is a patented, k-mer based algorithm that offers efficient and highly accurate profiling. It utilizes unique and shared kmers across the phylogenetic tree for precise near-neighbor placement, ensuring these kmers are phylogenetically stable and do not overlap with mobile genetic elements or the human genome. This approach, coupled with GenBook phylogenetic ontology, permits accurate differentiation down to the strain level. Lastly, the system uses Machine Learning Filters within the analysis pipeline which is enhanced by machine learning algorithms trained on over 10,000 samples, allowing for the distinction between genuine signals and background noise. This maintains high sensitivity and precision, as evidenced by superior F1 scores in benchmarks and community challenges.

162 For metagenomic analysis, whole genome shotgun sequencing data (in fastq or fasta
163 formats) is used. Paired-end files may be combined for analysis if uploaded simultaneously.
164 Following sample upload, the CosmosID-HUB automatically processes and generates detailed
165 reports, including tables and visualizations for genome and gene databases, covering bacteria,
166 fungi, protists, viruses, respiratory viruses, antimicrobial resistance, and virulence factors, which
167 are shown in this report. As for performance evaluation, studies have validated CosmosID
168 leading accuracy and resolution in detection. The system demonstrates exceptional identification
169 accuracy across all taxonomic levels in benchmark datasets, significantly outperforming other
170 tools, especially in sub-species and strain-level classification.

171 The metagenomics pipeline has two separable comparators, the first consists of a pre-
172 computation phase for reference databases and the second is a per-sample computation¹⁹. The
173 input to the pre-computation phase are databases of reference genomes, virulence markers and

174 antimicrobial resistance markers that are continuously curated and added to an updated taxon
175 database. The output of the pre-computational phase is a phylogeny tree of microbes, together
176 with sets of variable length k-mer fingerprints (biomarkers) uniquely associated with distinct
177 branches and leaves of the tree.

178 The second per-sample computational phase searches the hundreds of millions of short
179 sequence reads, or alternatively contigs from draft *de novo* assemblies, against the fingerprint
180 sets. This query enables the sensitive yet highly precise detection and taxonomic classification of
181 microbial NGS reads. The resulting statistics are analyzed to return the fine-grain taxonomic and
182 relative abundance estimates for the microbial NGS datasets. To exclude false positive
183 identifications the results are filtered using a filtering threshold derived based on internal
184 statistical scores that are determined by analyzing a large number of diverse metagenomes¹⁹.

185 **Metacestode DNA extraction and sequencing.**

186 Genomic DNA was extracted using DNeasy Blood & Tissue Kit (Qiagen) following
187 manufacturer's instructions for tissues with a slight modification. During the proteinase K
188 digestion, the sample was continuously rotated at 56 C for 45 min. The mitochondrial 12S rRNA
189 gene region PCR was targeted using 20 to 45 ng of genomic DNA per reaction along with Applied
190 Biosystem Power SYBR Green PCR Master Mix and previously described primers, Cest F: 5'
191 AGTCTATGTGCTGCTTAT 3' and Cest R: 5' CCTTGTACGACTTACCT 3'. Oberli et al.,
192 2023. Cycling consisted of 95C for 2 minutes followed by 50 cycles of 95C for 15 sec, 45C for
193 30 sec and 60C for 1 min on an Applied Biosystems StepOne Instrument. Control DNA of
194 *Echinococcus granulosus*, *E. multilocularis* and *Taenia* sp. was provided by Kamilyah R. Miller
195 (Kansas State University). The amplicon obtained from the cystic structure DNA from 6 different
196 reactions were pooled and purified using QIAquick PCR Purification Kit spin columns. The
197 purified product and primers were submitted to Genewiz for DNA sequencing. Two replicate
198 experiments representing both forward and reverse were used to construct the consensus sequence.
199 The 176 base pair DNA sequence was compared to published sequences using a nucleotide Blastn
200 search (ncbi.nlm.nih.gov). The resulting DNA sequence was submitted to GenBank accession
201 PP477764.

202 **Statistics.** This report is primarily descriptive because the number of animals and
203 samples tested were limited. Univariate analysis of metagenomic community composition and
204 frequency statistics (presence/absence) for species of interest across the samples²¹ was conducted
205 to determine if findings were random or significantly different from random. For this purpose,
206 we used Fisher's exact, or Chi-square statistics using GraphPad (v10.2.1) depending on the
207 number of observations in each cell in a 2xn tables. Statistical significance for expected vs
208 observed was held at p<0.05.

209 **Data availability.** The metagenomic sequences and fastq files have been deposited in
210 NCBI GenBank under the BioProject number PRJNA1053337. Entitled 'gut microbiome that
211 evades host immunity in wild rodents (vole) and parasitic cysts', this project has 11 associated
212 BioSamples and Sequence Read Archive (SRA) numbers for sharing with the scientific

213 community under submission SUB14073752, and accessions SRR27223102 through
214 SRR27223112, scheduled for release on April 18, 2024.

215

216 **Results**

217 **Nucleotide sequence analysis of metcestode reveals *Hydatigera taeniaeformis*.** An
218 overview of the cysts and fecal, peritoneal fluid and liver samples, collected from 4 mice, and
219 processed in this study can be found in **Figures 1A-D**. Although initial environmental assumptions
220 suggested that *Echinococcus granulosus* was the most likely parasite (e.g., the presence of coyotes
221 and other carnivores in the farm where the vegetable garden was implemented), DNA
222 amplification and sanger sequencing results revealed the parasite metacestode was *Hydatigera*
223 *taeniaeformis*, which forms a strobilocerus as its metacestode stage in the intermediate rodent host.
224 The NCBI Blastn search showed the greatest percent identity (99%) to *Hydatigera* sp. (Genbank
225 LC008533.1). Microscopic examination of the parasite confirmed that the segmentation patterns
226 observed on the surface of the organism are suggestive of an immature strobilocercus metacestode
227 stage which was discernable on the photomicrographs using the magnification and dorsal ventral
228 flattening of the cyst. The lack of hooks and size suggests that this cyst-like structure is an
229 immature strobilocercus.

230 **Visualization and cultivation of fluid yielded *Enterococcus faecium*.** Of interest, we
231 were able to visualize the presence of highly mobile bacterial-like structures in the fluid
232 examined under contrast phase microscopy and visualized a complex array of gram-positive and
233 gram-negative bacteria. However, also of interest, cultivation of the cysticercus fluid only
234 revealed the presence of pure colonies of *Enterococcus faecium*, which were identified using
235 Maldi-Toff. Although gram-staining of biological samples do not resemble the textbook gram-
236 stain description of microbes isolated on agar surfaces, the isolation of pure *Enterococcus* on the
237 agar (typically gram-positive cocci), and not of other bacteria, indicates that the cohabitation of
238 multiple bacteria in a spatially-confined nutrient-depleted biological niches, such as the cysts,
239 could be rendering *Enterococcus* species more symbiotic with other community members,
240 instead of being inhibitory once it is growing on an artificial nutrient rich medium such as 5%
241 sheep blood TSA plates as we previously documented for a fecal *Enterococcus* strain against a
242 co-inhabitant *Lactobacillus* in the intestinal tract in a mouse model of Crohn's disease²².
243 Metagenomic analyses where therein pursued to better characterize the non-cultivable species in
244 the cysts.

245 **Metagenomics of the cystic fluid revealed gut commensal/opportunistic bacteria.**
246 Metagenomic analysis revealed a relatively simple bacterial community inside the two cysts,
247 demonstrating that these symbiotic bacteria could avoid the immune system and flourish over
248 time in a nutrient-depleted lesion. At the species level, *Klebsiella variicola* comprised 18.34%
249 and 35.48% of the total bacterial population in cysts 1 and 2, respectively, followed by
250 *Enterococcus faecium* in cyst 2 (32.59%). *K. variicola* was also highly abundant in the peritoneal
251 fluid samples of vole 2 (33.34%), vole 3 (39.86%), and vole 4 (74.9%), and feces samples of

252 vole 2 (29.66%) and vole 4 (37.96%). In contrast, the vole 3 liver was entirely inhabited by
253 *Propionibacteriaceae*, which only constituted 8.95% of cyst 1 (**Figures 2A-B**).

254 *Bacteroidales* amassed an abundance of 23.29% in cyst 1 and 10.28% in cyst 2. At the
255 species level, the cysts 1 and 2 had a very comparable abundance of *Parabacteroides distasonis*
256 with 9.08% and 9.88%, respectively. The analysis of peritoneal fluid revealed *P. distasonis* as
257 the most prevalent bacteria (42.39%) in vole 2, and as a highly abundant bacteria in vole 3
258 (9.36%). Of note, vole 3 was inhabited by *Quadrisphaera* sp. DD2A (44.69%). The latter finding
259 is of notoriety, since the DNA of fecal samples in this study did not reveal a large number of
260 bacterial taxonomic units, as expected from other studies we have conducted in human
261 colonoscopy content and in mice^{7,22}, with the same methodology, or using 16S rRNA
262 microbiome studies^{23,24}. This finding could be attributed to completely different gut microbiome
263 in these wild animals who inhabit subterranean environments and have different diets. Repeated
264 testing confirmed the limited detection of OTUs in feces on this study.

265 **Identification of insect virus outside its natural habitat.** Our metagenomic analysis
266 reports, for the first time, the presence of a virus, *Mythimna unipuncta* granulovirus A
267 (MyunGV-A), a virus adapted to the insect armyworm *Mythimna unipuncta*²⁵ (which feeds on
268 crops, including corn²⁶), detected outside of its natural insect habitat, inside parasitic cysts within
269 voles. MyunGV-A naturally infects and replicates within the larvae of the armyworm moth,
270 *Mythimna unipuncta*, primarily within the cells of the midgut epithelium.

271 Our study identifies the presence of MyunGV-A in high abundance, suggesting that the virus
272 may be thriving inside the cyst through cohabitation with the bacteria, and the absence of other
273 viruses that were identified in the liver, peritoneum and feces of the other voles. MyunGV-A was
274 found to be the only viral species in both cysts, while it was combined with Human
275 mastadenovirus C in vole 2 peritoneal fluid (61.19%; **Figures 3A-B**). In vole 4 peritoneal fluid
276 and vole 2 feces, MyunGV-A relative abundance was 100%, since no other viruses were
277 detected. The liver samples were mostly inhabited by Moloney murine sarcoma virus and Murine
278 osteosarcoma virus, which are expected infectious viruses of rodents. In the peritoneal fluid of
279 vole 3, Abelson murine leukemia virus was the most prevalent (51.19%), followed by MyunGV-
280 A (31.72%). This discovery indicates that MyunGV-A has probably adapted to voles, the
281 parasite, or to the gut microbiome of mice, or that the microbiome provides metabolites that
282 enable the virus to colonize other species (mouse or hydatygera), raising questions about the role
283 of newly adapted, or transiently infecting baculoviruses in rodents and the implications for both
284 the parasite and its mammalian host.

285 **Metagenomics suggests lower probability of fungal detection in the cysts.** A binary
286 analysis of the presence or absence of fungal DNA in the samples, regardless of the species
287 identified, revealed that the animals had a significantly lower probability of fungal detection in
288 the cysts compared to other samples (peritoneal fluid, $p < 0.05$; and feces $p < 0.05$), with single
289 taxon detection in each cyst for *Malassezia*, and *Pseudophaeomoniella oleicola*. Of interest, the
290 samples with higher probability of fungal taxa were the peritoneal fluids.

291

292

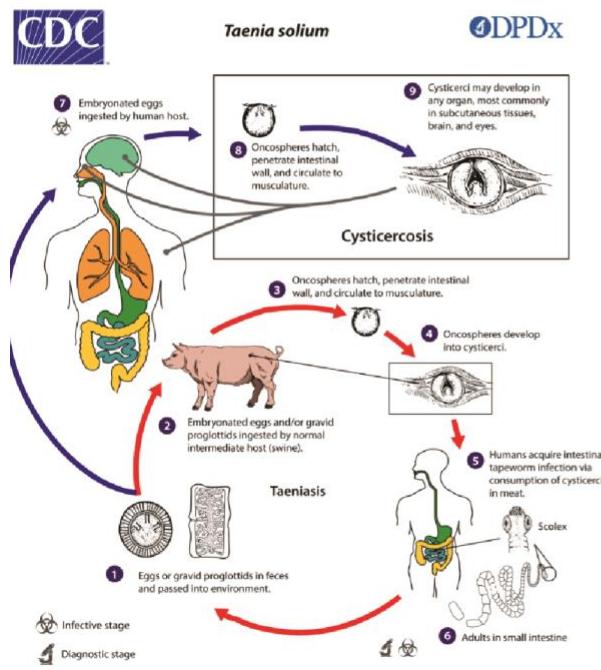
293 **Discussion**

294 Herein, we report the results from a metagenomics community composition analysis in
295 various tissue samples from a family of wild voles, one of which was affected with two extra-
296 hepatic tapeworm cysts. The tapeworm identified, *H. taeniaeformis*, is widely abundant
297 globally²⁷. Like other tapeworms, this parasite has been documented in a variety of mammals,
298 primarily infecting cats and other feline species²⁸ (**Figure 4A**). *H. taeniaeformis* typically infects
299 felines, having rodents serve as the primary intermediate host for the larval form,
300 *Strobilocercus*^{29,30}.

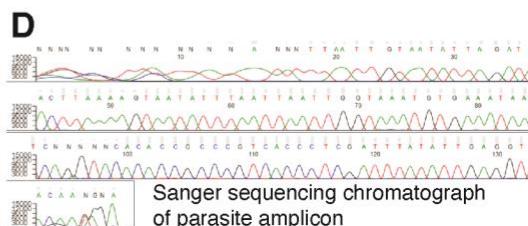
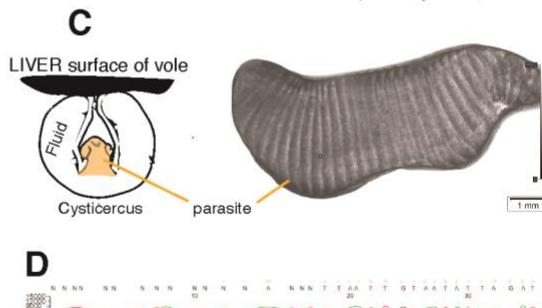
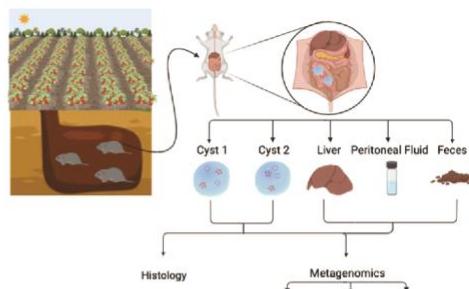
301 From a microbiome perspective, it is well known that tapeworms affect the gut
302 microbiome in humans and animals^{15,31-33}, they produce secretory molecules which affect the gut
303 microbiota³⁴, and that the infestation promotes the production of immunoglobulins (IgG, IgG1,
304 IgG2a, IgG2b, IgG3 and IgM) against gut commensals that correlate with increase or decrease in
305 the feces¹⁵. Despite this knowledge, little is known about the microbiome features of the cystic
306 structures of tapeworm larva or other migratory parasites and the potential they may have to
307 cause local infections. In our study, the identification of bacteria inside the parasitic peri-hepatic
308 cysts, opens new possibilities for understanding the complicated interplay of viruses, parasites,
309 and bacteria in the peritoneal cavity of mice.

310 From an ecological perspective, the unanticipated discovery of *Mythimna unipuncta*
311 granulovirus A (MyunGV-A), commonly a lepidopteran-specific baculovirus, in addition to a
312 community of bacteria such as *Lactobacillus acidophilus*, *Enterococcus faecium*, *Bacteroidales*,
313 and *Klebsiella variicola*, inside *H. taeniaeformis* cysts in wild voles challenges conventional
314 theories of host-virus specificity and microbial dynamics in ecosystems. Although we did not
315 verify the presence of viruses with cultivation methods or electron microscopy visualization, the
316 presence of MyunGV-A is intriguing because Baculoviruses, such as MyunGV-A, use receptors
317 on gut cells of their insect hosts to enable the virus entry, reproduction, and dissemination within
318 the insect cells^{35,36}. The gastrointestinal system of voles, which is normally a reservoir for a diverse
319 range of commensal bacteria^{37,38} could serve as a suitable environment for MyunGV-A survival
320 and likely replication which we did not visualize³⁹ or quantify⁴⁰. It is unclear if the virus interacts
321 with the strobilocercus microbiota, potentially aiding the survival of the community within the
322 parasite in the mammalian host. If it is not adaptation with replication, another possibility to
323 observe the infection of the mouse could be through dietary acquisition, in which voles consume
324 MyunGV-A-carrying insects and temporarily allow the virus to replicate, until the host clears the
325 viral infection. Although the virus does not reproduce within the vole digestive tract, it is possible
326 that it could survive in the gastrointestinal environment, if the virus symbiosis takes place with
327 bacteria, which has not been reported in MyunGV-A viral laboratory strains. Additionally, the
328 virus and bacteria could enter the systemic circulation via breaks in the mucosal surfaces of the
329 digestive tract of the voles, resulting in broad translocation and colonization throughout the
330 peritoneal cavity. The specificity of these viruses is highlighted by their successful usage as
331 biopesticides^{41,42}, which is due to their inability to cross species and infect non-target mammals.

332 Therefore, the existence of MyunGV-A within the rodent tapeworm larval cysts needs further
333 examination before considering this presumed co-adaptation in migratory parasites as a strategy
334 for non-traditional viral transmission and survival mechanisms outside the insect gut.

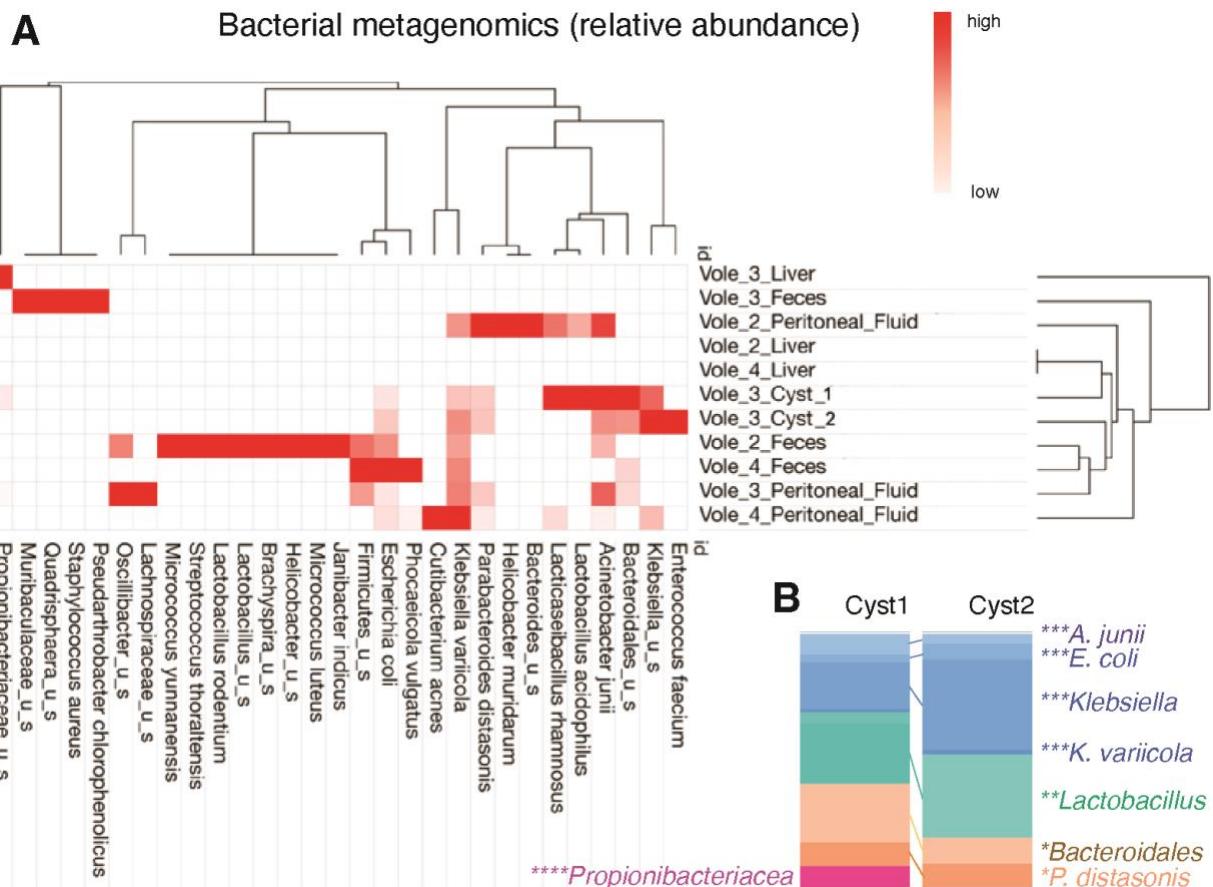

335 The findings also complement the results from a recent study where parasitic tapeworms
336 of domestic animals in China showed a highly variable virome, but did not identify MyunGV-A
337 in adult parasites⁴³ which indicated several possibilities and theories for future testing (**Figure 4B**).
338 Those theories include that adult tapeworm of domestic animals do not carry MyunGV-A or that
339 there are virome differences in China vs USA with China not having MyunGV-A, or that
340 MyunGV-A is likely associated with the gut microbiome of wild voles locally in Ohio being also
341 independent of the viral load of adult tapeworms.

342 In conclusion, our findings revealed a simplified microbial community within the parasitic
343 cysts of wild rodents, which contained gut commensals (*P. distasonis*) and an unexpected insect
344 virus, which thrive reproducibly and independently in spatially-restricted niches, away from the
345 gut, devoid of host-nutrient availability from ingested food or gut ingesta. Metacestodes represent
346 a unique model of bacterial community evasion of the immune system and survival in a host-
347 nutrient-deprived, parasite-acquired environment. This study provides a new perspective on the
348 understanding of bacterial communities in migratory tapeworms and in dysbiosis associated with
349 chronic intestinal diseases where spatially-restricted cavitating micro niches develop and could
350 perpetuate inflammation through symbiotic mechanisms. Such a scenario is in Crohn's disease,
351 where recently we discovered that *P. distasonis* predisposes susceptible hosts to inflammation
352 driven by succinate (*P. distasonis* metabolite)⁷, which increases cytotoxicity of immune cells to
353 co-habiting *Escherichia coli*. Our study could help identify revised strategies for the treatment of
354 clinical cysticercosis and the potential benefits of adding antibiotics.




355

356

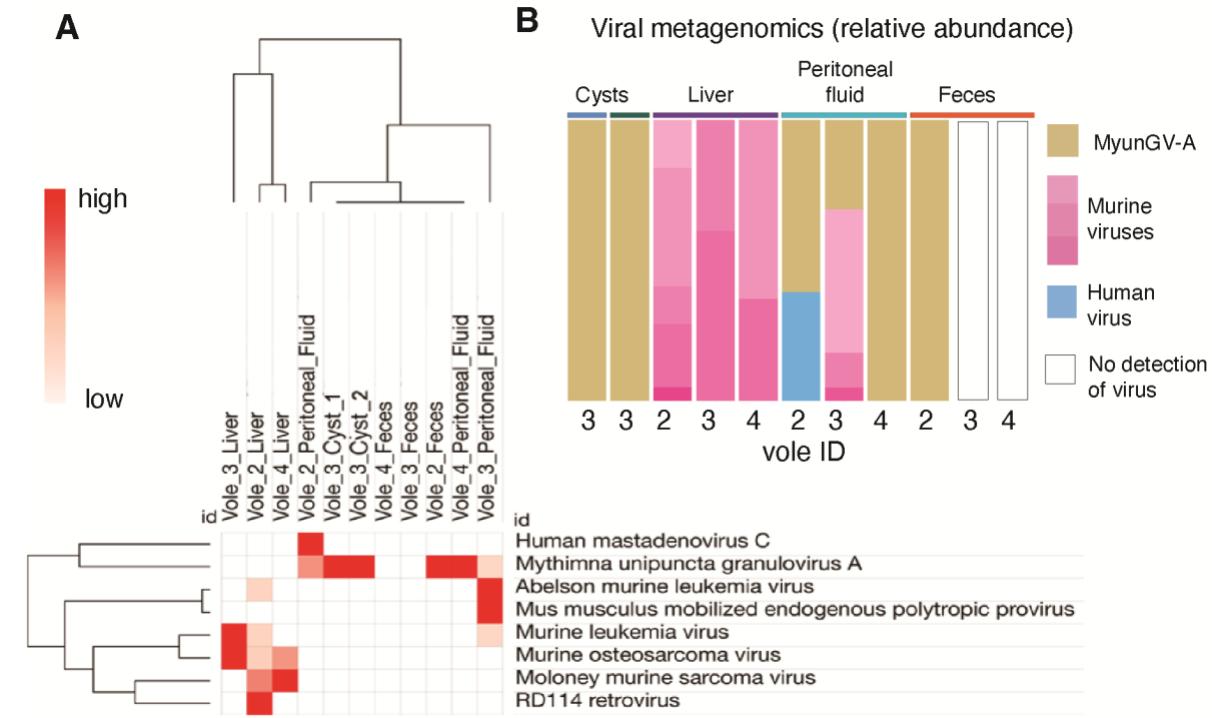
A Overview of life cycle that precedes extra-intestinal formation of cisticerci from *Taenia solium* in humans


B Overview of study of cisticerci in wild voles, this study

357

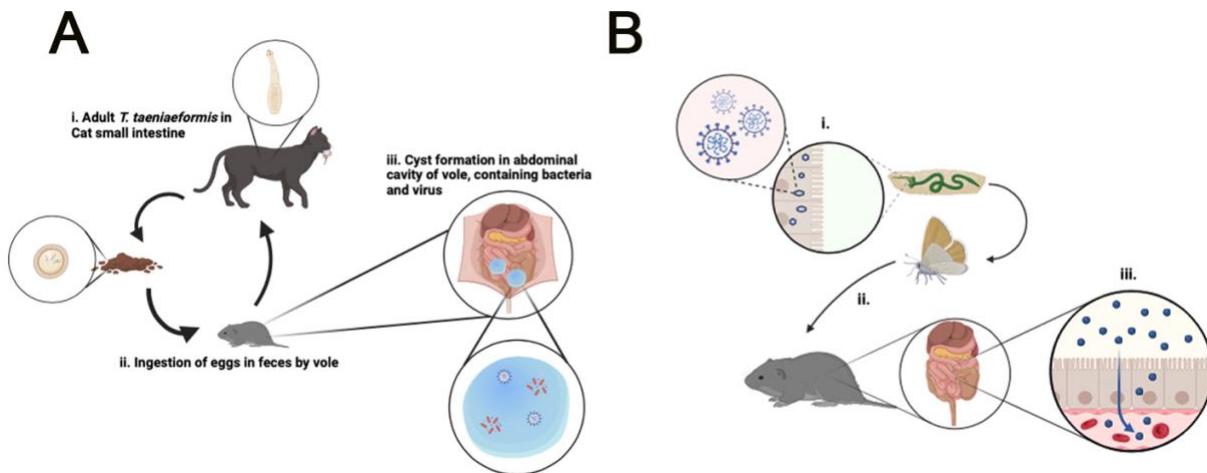
358 **Figure 1. Overview of family of voles in this study and identification of the hepatic parasitic**
 359 **cyst as the larval stage of *Hydatigera taeniaeformis* tapeworm. A)** Contextualization of the clinical and ecological relevance of human cysticercosis, exemplified with *Taenia solium*. (CDC public domain image). **B)** Samples collected from the voles in this report. **C)** Schematic of origin of samples within metacestode (parasitic-cystic structure) for analysis and photomicrograph, illustrating distinctive microscopic segmentation of the parasite as indicative of an immature strobilocerus metacestode. Not detailed the parasite lacks visualized hooks and the overall size suggests that this cyst-like structure is an immature strobilocerus. **D)** Chromatogram after Sanger sequencing used for tapeworm identification as *Hydatigera taeniaeformis* illustrates pure DNA in the cyst samples tested in this study.

360



369
370
371
372
373
374

Figure 2. Metagenomic analysis identifies reproducible commensal *Bacteroidota* and opportunistic *Pseudomonadota* (*Enterobacteriaceae*) in the parasitic cysts. A) Relative abundance across samples. **B)** Comparison of bacteria in both cysts demonstrates consistent pattern of abundance among similar bacteria, including *K. variicola*, *P. distasonis*, and *Bacteroidales*.


375

376

377

378 **Figure 3. Metagenomic analysis of viruses revealed MyunGV-A in Hydatygera larval cysts**
379 **and peritoneal fluid of wild voles. A)** Hierarchical clustering of samples based on abundance.
380 **B)** Abundance bar plot. MyunGV-A in both cysts was 100%, with similar
381 findings in the peritoneal fluid and feces of two voles.

382

383 **Figure 4. Overview of *Hydatigera taeniaeformis* lifecycle and metacestode larval cystic stages**
384 **in rodents and our theory of how MyunGV-A viral DNA could reach and co-adapt with**
385 **bacteria in tapeworm cysts. A) Left panel. *H. taeniaeformis* responsible for cyst formation in**
386 **the peritoneal cavity in rodents may serve as a conducive environment for the retention and**
387 **replication of MyunGV-A and bacteria. The cysts may offer protection against external factors**
388 **and create a microenvironment suitable for these microorganisms, facilitating evasion of the**
389 **immune system. B) Right panel. Presumptive theory for acquisition of the insect virus by voles is**
390 **presumed to have occurred indirectly through dietary sources e.g., ingestion of insects or**
391 **vegetation carrying MyunGV-A contaminants. Steps in proposed cycle: i., MyunGV-A replicates**
392 **in the midgut epithelial cells of armyworms; ii., vole consumes armyworm moth; iii., MyunGV-**
393 **A is absorbed by via the brush border of the intestinal epithelial cells and into the bloodstream,**
394 **disseminating to the cysts, or follows the *H. taeniaeformis* as it migrates through the gut wall to**
395 **extra-intestinal tissues to start the cystic stage of the tapeworm.**

396 **References:**

- 397 1. Webster NS. Cooperation, communication, and co-evolution: grand challenges in microbial
398 symbiosis research. *Front Microbiol.* 2014;5:164. doi:10.3389/fmicb.2014.00164
- 399 2. Raina JB, Eme L, Pollock FJ, Spang A, Archibald JM, Williams TA. Symbiosis in the
400 microbial world: from ecology to genome evolution. *Biol Open.* Feb 22
401 2018;7(2)doi:10.1242/bio.032524
- 402 3. Yeoman CJ, Chia N, Yildirim S, et al. Towards an Evolutionary Model of Animal-
403 Associated Microbiomes. *Entropy.* 2011;13(3):570-594.
- 404 4. McFall-Ngai MJ. Giving microbes their due--animal life in a microbially dominant world. *J
405 Exp Biol.* Jun 2015;218(Pt 12):1968-73. doi:10.1242/jeb.115121
- 406 5. Rodriguez-Palacios A, Kodani T, Kaydo L, et al. Stereomicroscopic 3D-pattern profiling of
407 murine and human intestinal inflammation reveals unique structural phenotypes. *Nat
408 Commun.* 2015;6:7577. doi:10.1038/ncomms8577
- 409 6. Yang F, Kumar A, Davenport KW, et al. Complete Genome Sequence of a Parabacteroides
410 distasonis Strain (CavFT hAR46) Isolated from a Gut Wall-Cavitating Microlesion in a
411 Patient with Severe Crohn's Disease. *Microbiol Resour Announc.* Sep
412 2019;8(36)doi:10.1128/MRA.00585-19
- 413 7. Singh V, West G, Fiocchi C, et al. Clonal Parabacteroides from Gut Microfistulous Tracts as
414 Transmissible Cytotoxic Succinate-Commensal Model of Crohn's Disease Complications.
415 *bioRxiv.* Jan 10 2024;doi:10.1101/2024.01.09.574896
- 416 8. Bank NC, Vaidhvi S, Grubb B, et al. The basis of antigenic operon fragmentation in
417 Bacteroidota and commensalism. *bioRxiv* 20230602543472; doi:
418 <https://doi.org/10.1101/20230602543472>. 2023;
- 419 9. Singh V, Rodriguez-Palacios A. Genomes of Bacteroides ovatus, B. cellulosilyticus, B.
420 uniformis, Phocaeicola vulgatus, and P. dorei isolated from Gut Cavernous Fistulous Tract
421 Micropathologies in Crohn's disease. *MRA.* 2024;
- 422 10. Caira JN, Jensen K. Electron microscopy reveals novel external specialized organs housing
423 bacteria in eagle ray tapeworms. *PLoS One.* 2021;16(1):e0244586.
424 doi:10.1371/journal.pone.0244586
- 425 11. Bonelli P, Serra E, Dei Giudici S, et al. Molecular phylogenetic analysis of Echinococcus
426 granulosus sensu lato infecting sheep in Italy. *Acta Trop.* Apr 2024;252:107151.
427 doi:10.1016/j.actatropica.2024.107151
- 428 12. Romig T, Wassermann M. Echinococcus species in wildlife. *Int J Parasitol Parasites Wildl.*
429 Apr 2024;23:100913. doi:10.1016/j.ijppaw.2024.100913
- 430 13. Celik F, Selcuk MA, Kilinc SG, et al. Molecular discrimination of G1 and G3 genotypes of
431 Echinococcus granulosus sensu stricto obtained from human, cattle, and sheep using the
432 mitochondrial NADH dehydrogenase subunit 5 marker. *Acta Trop.* Apr 2024;252:107124.
433 doi:10.1016/j.actatropica.2024.107124

- 434 14. Casulli A, Pane S, Randi F, et al. Primary cerebral cystic echinococcosis in a child from
435 Roman countryside: Source attribution and scoping review of cases from the literature. *PLoS*
436 *Negl Trop Dis.* Sep 2023;17(9):e0011612. doi:10.1371/journal.pntd.0011612
- 437 15. Bao J, Zheng H, Wang Y, et al. *Echinococcus granulosus* Infection Results in an Increase in
438 *Eisenbergiella* and *Parabacteroides* Genera in the Gut of Mice. *Front Microbiol.*
439 2018;9:2890. doi:10.3389/fmicb.2018.02890
- 440 16. Browne HP, Forster SC, Anonye BO, et al. Culturing of 'unculturable' human microbiota
441 reveals novel taxa and extensive sporulation. *Nature.* 05 2016;533(7604):543-546.
442 doi:10.1038/nature17645
- 443 17. Szabó BG, Kiss R, Makra N, et al. Composition and changes of blood microbiota in adult
444 patients with community-acquired sepsis: A. *Front Cell Infect Microbiol.* 2022;12:1067476.
445 doi:10.3389/fcimb.2022.1067476
- 446 18. Thoendel M, Jeraldo P, Greenwood-Quaintance KE, et al. Comparison of Three Commercial
447 Tools for Metagenomic Shotgun Sequencing Analysis. *J Clin Microbiol.* Feb 24
448 2020;58(3)doi:10.1128/JCM.00981-19
- 449 19. CosmosID. Metagenomics Cloud, app.cosmosid.com, CosmosID Inc.,
450 www.cosmosid.com 2024;
- 451 20. Yan Q, Wi YM, Thoendel MJ, et al. Evaluation of the CosmosID Bioinformatics Platform
452 for Prosthetic Joint-Associated Sonicate Fluid Shotgun Metagenomic Data Analysis. *J Clin*
453 *Microbiol.* Feb 2019;57(2)doi:10.1128/JCM.01182-18
- 454 21. Martin W. Linking causal concepts, study design, analysis and inference in support of one
455 epidemiology for population health. *Preventive Veterinary Medicine.* 2008;86(3-4):270-288.
- 456 22. Rodriguez-Palacios A, Aladyshkina N, Ezeji JC, et al. 'Cyclical Bias' in Microbiome
457 Research Revealed by A Portable Germ-Free Housing System Using Nested Isolation. *Sci*
458 *Rep.* Feb 2018;8(1):3801. doi:10.1038/s41598-018-20742-1
- 459 23. Raffner Basson A, Gomez-Nguyen A, LaSalla A, et al. Replacing Animal Protein with Soy-
460 Pea Protein in an "American Diet" Controls Murine Crohn Disease-Like Ileitis Regardless of
461 Firmicutes: Bacteroidetes Ratio. *J Nutr.* 03 2021;151(3):579-590. doi:10.1093/jn/nxaa386
- 462 24. Basson AR, Gomez-Nguyen A, Menghini P, et al. Human Gut Microbiome Transplantation
463 in Ileitis Prone Mice: A Tool for the Functional Characterization of the Microbiota in
464 Inflammatory Bowel Disease Patients. *Inflamm Bowel Dis.* Feb 11 2020;26(3):347-359.
465 doi:10.1093/ibd/izz242
- 466 25. Harrison RL, Mowery JD, Bauchan GR, Theilmann DA, Erlandson MA. The complete
467 genome sequence of a second alphabaculovirus from the true armyworm, *Mythimna*
468 *unipuncta*: implications for baculovirus phylogeny and host specificity. *Virus Genes.* Feb
469 2019;55(1):104-116. doi:10.1007/s11262-018-1615-7
- 470 26. García M, Ortego F, Hernández-Crespo P, Farinós GP, Castañera P. Inheritance, fitness
471 costs, incomplete resistance and feeding preferences in a laboratory-selected MON810-
472 resistant strain of the true armyworm *Mythimna unipuncta*. *Pest Manag Sci.* Dec
473 2015;71(12):1631-9. doi:10.1002/ps.3971

- 474 27. Gomez-Puerta LA, Vargas-Calla A, Garcia-Leandro M, et al. Identification of wild rodents
475 as intermediate hosts for *Hydatigera taeniaeformis* in Peru. *Parasitol Res.* Aug
476 2023;122(8):1915-1921. doi:10.1007/s00436-023-07892-6
- 477 28. Jia W, Yan H, Lou Z, et al. Mitochondrial genes and genomes support a cryptic species of
478 tapeworm within *Taenia taeniaeformis*. *Acta Trop.* Sep 2012;123(3):154-63.
479 doi:10.1016/j.actatropica.2012.04.006
- 480 29. Cook RW, Trapp AL, Williams JF. Pathology of *Taenia taeniaeformis* infection in the rat:
481 hepatic, lymph node and thymic changes. *J Comp Pathol.* Apr 1981;91(2):219-26.
482 doi:10.1016/0021-9975(81)90026-8
- 483 30. Mahesh Kumar J, Reddy PL, Aparna V, et al. *Strobilocercus fasciolaris* infection with
484 hepatic sarcoma and gastroenteropathy in a Wistar colony. *Vet Parasitol.* Nov 05
485 2006;141(3-4):362-7. doi:10.1016/j.vetpar.2006.05.029
- 486 31. Zhu M, Wang C, Yang S, et al. Alterations in Gut Microbiota Profiles of Mice Infected with
487 *Echinococcus granulosus* sensu lato Microbiota Profiles of Mice Infected with *E. granulosus*
488 s.l. *Acta Parasitol.* Dec 2022;67(4):1594-1602. doi:10.1007/s11686-022-00613-6
- 489 32. Cao D, Pang M, Wu D, et al. Alterations in the Gut Microbiota of Tibetan Patients With
490 *Echinococcosis*. *Front Microbiol.* 2022;13:860909. doi:10.3389/fmicb.2022.860909
- 491 33. Liu Z, Yin B. Alterations in the Gut Microbial Composition and Diversity of Tibetan Sheep
492 Infected With. *Front Vet Sci.* 2021;8:778789. doi:10.3389/fvets.2021.778789
- 493 34. Wu J, Zhu Y, Zhou L, et al. Parasite-Derived Excretory-Secretory Products Alleviate Gut
494 Microbiota Dysbiosis and Improve Cognitive Impairment Induced by a High-Fat Diet. *Front
495 Immunol.* 2021;12:710513. doi:10.3389/fimmu.2021.710513
- 496 35. Clem RJ, Passarelli AL. Baculoviruses: sophisticated pathogens of insects. *PLoS Pathog.*
497 2013;9(11):e1003729. doi:10.1371/journal.ppat.1003729
- 498 36. Rohrmann GF. Baculovirus Molecular Biology. 2013.
- 499 37. Weldon L, Abolins S, Lenzi L, Bourne C, Riley EM, Viney M. The Gut Microbiota of Wild
500 Mice. *PLoS One.* 2015;10(8):e0134643. doi:10.1371/journal.pone.0134643
- 501 38. Viney M. The gut microbiota of wild rodents: Challenges and opportunities. *Lab Anim.* Jun
502 2019;53(3):252-258. doi:10.1177/0023677218787538
- 503 39. Li Y, Liu X, Tang P, Zhang H, Qin Q, Zhang Z. Genome sequence and organization of the
504 *Mythimna* (formerly *Pseudaletia*) *unipuncta* granulovirus Hawaiian strain. *Sci Rep.* Jan 11
505 2021;11(1):414. doi:10.1038/s41598-020-80117-3
- 506 40. Mukawa S, Goto C. In vivo characterization of two granuloviruses in larvae of *Mythimna*
507 *separata* (Lepidoptera: Noctuidae). *J Gen Virol.* Apr 2008;89(Pt 4):915-921.
508 doi:10.1099/vir.0.83365-0
- 509 41. Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS. Insect
510 pathogens as biological control agents: Back to the future. *J Invertebr Pathol.* Nov
511 2015;132:1-41. doi:10.1016/j.jip.2015.07.009

- 512 42. van Oers MM, Pijlman GP, Vlak JM. Thirty years of baculovirus-insect cell protein
513 expression: from dark horse to mainstream technology. *J Gen Virol*. Jan 2015;96(Pt 1):6-23.
514 doi:10.1099/vir.0.067108-0
- 515 43. Zhang P, Zhang Y, Cao L, et al. A Diverse Virome Is Identified in Parasitic Flatworms of
516 Domestic Animals in Xinjiang, China. *Microbiol Spectr*. Jun 15 2023;11(3):e0070223.
517 doi:10.1128/spectrum.00702-23
- 518